Introdução de dados auxiliares na classificação de imagens digitais de sensoriamento remoto aplicando conceitos da teoria da evidência
Visualizar/abrir
Data
2008Autor
Orientador
Nível acadêmico
Doutorado
Tipo
Assunto
Resumo
Nesta tese investiga-se uma nova abordagem visando implementar os conceitos propostos na Teoria da Evidencia para fins de classificação de imagens digitais em Sensoriamento Remoto. Propõe-se aqui a utilização de variáveis auxiliares, estruturadas na forma de Planos de Informação (P.I.s) como em um SIG para gerar dados de confiança e de plausibilidade. São então aplicados limiares aos dados de confiança e de plausibilidade, com a finalidade de detectar erros de inclusão e de omissão, respectivam ...
Nesta tese investiga-se uma nova abordagem visando implementar os conceitos propostos na Teoria da Evidencia para fins de classificação de imagens digitais em Sensoriamento Remoto. Propõe-se aqui a utilização de variáveis auxiliares, estruturadas na forma de Planos de Informação (P.I.s) como em um SIG para gerar dados de confiança e de plausibilidade. São então aplicados limiares aos dados de confiança e de plausibilidade, com a finalidade de detectar erros de inclusão e de omissão, respectivamente, na imagem temática. Propõe-se nesta tese que estes dois limiares sejam estimados em função das acurácias do usuário e do produtor. A metodologia proposta nesta tese foi testada em uma área teste, coberta pela classe Mata Nativa com Araucária. O experimento mostrou que a metodologia aqui proposta atinge seus objetivos. ...
Abstract
In this thesis we investigate a new approach to implement concepts developed by the Theory of Evidence to Remote Sensing digital image classification. In the proposed approach auxiliary variables are structured as layers in a GIS-like format to produce layers of belief and plausibility. Thresholds are applied to the layers of belief and plausibility to detect errors of commission and omission, respectively on the thematic image. The thresholds are estimated as functions of the user’s and produc ...
In this thesis we investigate a new approach to implement concepts developed by the Theory of Evidence to Remote Sensing digital image classification. In the proposed approach auxiliary variables are structured as layers in a GIS-like format to produce layers of belief and plausibility. Thresholds are applied to the layers of belief and plausibility to detect errors of commission and omission, respectively on the thematic image. The thresholds are estimated as functions of the user’s and producer’s accuracy. Preliminary tests were performed over an area covered by natural forest with Araucaria, showing some promising results. ...
Instituição
Universidade Federal do Rio Grande do Sul. Instituto de Geociências. Programa de Pós-Graduação em Geografia.
Coleções
-
Ciências Humanas (7466)Geografia (843)
Este item está licenciado na Creative Commons License