Resolução de equações de Navier-Stokes em domínio não limitados através do método de Galerkin
Visualizar/abrir
Data
1999Orientador
Nível acadêmico
Mestrado
Tipo
Assunto
Resumo
Neste trabalho, apresenta-se o resultado da existência de soluções fracas em domínios não-limitados para as equações de Navier-Stokes, desde que a fronteira satisfaça uma certa condição de regularidade que é necessária para a obtenção de estimativas em domínios não-limitados semelhantes à desigualdade de Poincaré em domínios limitados. Apresenta-se o desenvolvimento detalhado do método de Galerkin para as equações de Navier-Stokes em domínios não-limitados com cálculo explícito de várias consta ...
Neste trabalho, apresenta-se o resultado da existência de soluções fracas em domínios não-limitados para as equações de Navier-Stokes, desde que a fronteira satisfaça uma certa condição de regularidade que é necessária para a obtenção de estimativas em domínios não-limitados semelhantes à desigualdade de Poincaré em domínios limitados. Apresenta-se o desenvolvimento detalhado do método de Galerkin para as equações de Navier-Stokes em domínios não-limitados com cálculo explícito de várias constantes e com forças externas não nulas. Apresenta-se dois teoremas fundamentais: um fornecendo condições para existência de soluções do problema estacionário e o outro fornecendo condições para existência de soluções do problema não-estacionário. ...
Abstract
In the work it is presented results of existence of weak solutions in unbounded doroains for the Navier-Stokes equations. The roain condition to obtain similar results as those for bounded doroains; for e."'Carople the Poincaré inequality; is a certain condition of regularity at the boundary of the doroain. It is presented the detailed developroent of the Galerkin roethod for the t.he Navier-Stokes equations in unbounded doroains ~vith the explicit calculat ions of many constants and ''rith non ...
In the work it is presented results of existence of weak solutions in unbounded doroains for the Navier-Stokes equations. The roain condition to obtain similar results as those for bounded doroains; for e."'Carople the Poincaré inequality; is a certain condition of regularity at the boundary of the doroain. It is presented the detailed developroent of the Galerkin roethod for the t.he Navier-Stokes equations in unbounded doroains ~vith the explicit calculat ions of many constants and ''rith non null externai forces. It is presented two basic theorern: one presenting condition for the existence of solutions for the stationary problem and the other presenting conditions for existence of solution for the non stationary problem. ...
Instituição
Universidade Federal do Rio Grande do Sul. Instituto de Matemática. Programa de Pós-Graduação em Matemática Aplicada.
Coleções
-
Ciências Exatas e da Terra (5135)Matemática Aplicada (285)
Este item está licenciado na Creative Commons License