Mostrar registro simples

dc.contributor.advisorComba, Joao Luiz Dihlpt_BR
dc.contributor.authorRomero, Noemi Maritza Lapapt_BR
dc.date.accessioned2024-10-08T06:47:14Zpt_BR
dc.date.issued2022pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/279745pt_BR
dc.description.abstractA pandemia da COVID-19 trouxe diversos desafios aos sistemas de saúde em todo o mundo. Como a maioria dos pacientes com COVID-19 tem infecções pulmonares, uma tomografia computadorizada (TC) do tórax se mostra eficiente na identificação de infecções por COVID-19, bem como outras classes de doenças pulmonares. Arquiteturas de redes profundas surgiram para identificar automaticamente classes de doenças pulmonares, usando as fatias de TCs como entrada para modelos de classificação. Este trabalho propõe COVID-VR, uma nova abordagem para classificar COVID-19 baseado na classi- ficação de imagens tiradas de diferentes ângulos da renderização do volume dos pulmões, fornecendo assim uma visão global de todo o pulmão em cada imagem. Comparamos nossa proposta com as principais estratégias concorrentes com soluções de código aberto disponíveis, usando dados privados de hospitais parceiros e dados disponíveis publicamente. Os resultados mostram que nossa abordagem identifica lessões pulmonares de COVID-19 com sucesso e é competitiva em relação aos métodos baseados em fatias de TC. Embora nossos experimentos tenham sido focados em dados do COVID-19, nossa solução é extensível a outras doenças pulmonares.pt_BR
dc.description.abstractThe COVID-19 pandemic brought several challenges to health systems worldwide. Since most patients with COVID-19 have lung infections, a Computer Tomography (CT) of the chest is often used to identify COVID-19 infections, as well as other classes of pul- monary diseases. Deep-learning architectures surfaced to automatically identify classes of pulmonary diseases, using the slices of CTs as inputs to classification models. This work proposes COVID-VR, a novel approach for classifying COVID-19 based on vol- ume rendering images of the lungs taken from different angles, thus providing a global view of the entire lung in each image. We compared our proposal against leading com- peting strategies with available solutions, using private data from partner hospitals and publicly available data. Results show that our approach successfully identifies COVID-19 pulmonary lesions and is competitive against slice-based methods. Although our exper- iments were focused on COVID-19 data, our solution is extensible to other pulmonary diseases.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.rightsOpen Accessen
dc.subjectArquitetura de redes de sistemapt_BR
dc.subjectDiagnóstico por imagempt_BR
dc.subjectTomografia computadorizadapt_BR
dc.subjectCOVID-19pt_BR
dc.titleCOVID-VR : deep learning COVID-19 classification model using volume-rendered computer tomographypt_BR
dc.typeDissertaçãopt_BR
dc.identifier.nrb001150469pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Informáticapt_BR
dc.degree.programPrograma de Pós-Graduação em Computaçãopt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2022pt_BR
dc.degree.levelmestradopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples