SDSS-IV MaNGA : inside-out versus outside-in quenching of galaxies in different local environments
Visualizar/abrir
Data
2019Autor
Tipo
Assunto
Abstract
The large Integral Field Spectroscopy surveys have allowed the classification of ionizing sources of emission lines on sub-kiloparsec scales. In this work, we define two non-parametric parameters, quiescence (Fq) and its concentration (Cq), to quantify the strength and the spatial distribution of the quenched areas, respectively, traced by the LI(N)ER regions with low EW(Hα). With these two measurements, we classify MaNGA galaxies into inside-out and outside-in quenching types according to thei ...
The large Integral Field Spectroscopy surveys have allowed the classification of ionizing sources of emission lines on sub-kiloparsec scales. In this work, we define two non-parametric parameters, quiescence (Fq) and its concentration (Cq), to quantify the strength and the spatial distribution of the quenched areas, respectively, traced by the LI(N)ER regions with low EW(Hα). With these two measurements, we classify MaNGA galaxies into inside-out and outside-in quenching types according to their locations on the Fqversus Cqplane and we measure the fraction of inside-out (outside-in) quenching galaxies as a function of halo mass. We find that the fraction of galaxies showing inside-out quenching increases with halo mass, irrespective of stellar mass or galaxy type (satellites versus centrals). In addition, high-stellar-mass galaxies exhibit a greater fraction of inside-out quenching compared to low-stellar-mass ones in all environments. In contrast, the fraction of outside-in quenching does not depend on halo mass. Our results suggest that morphological quenching may be responsible for the inside-out quenching seen in all environments. On the other hand, the flat dependence of the outside-in quenching on halo mass could be a mixed result of ram pressure stripping and galaxy mergers. Nevertheless, for a given environment and stellar mass, the fraction of inside-out quenching is systematically greater than that of outside-in quenching, suggesting that inside-out quenching is the dominant quenching mode in all environments. ...
Contido em
The astrophysical journal. Bristol. Vol. 872, no. 1 (Feb. 2019), 50, 14 p.
Origem
Estrangeiro
Coleções
-
Artigos de Periódicos (40091)Ciências Exatas e da Terra (6108)
Este item está licenciado na Creative Commons License