Mostrar registro simples

dc.contributor.authorGiardino Filho, Sergio Augustopt_BR
dc.date.accessioned2024-12-13T06:56:51Zpt_BR
dc.date.issued2024pt_BR
dc.identifier.issn1307-5624pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/282396pt_BR
dc.description.abstractThis paper establishes the basis of the quaternionic differential geometry (HDG) initiated in a previous article. The usual concepts of curves and surfaces are generalized to quaternionic constraints, as well as the curvature and torsion concepts, differential forms, directional derivatives and the structural equations. The analogy between the quaternionic and the real geometries is obtained using a matrix representation of quaternions. The results evidences the quaternionic formalism as a suitable language to differential geometry that can be useful in various directions of future investigation.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofInternational Electronic Journal of Geometry. Ankara. Vol. 17, n. 2 (2024), p. 700-711pt_BR
dc.rightsOpen Accessen
dc.subjectCurves in Euclidean spaceen
dc.subjectGeometria diferencialpt_BR
dc.subjectOther special differential geometriesen
dc.subjectEspaço euclidianopt_BR
dc.subjectCurvaspt_BR
dc.subjectQuaternion and other division algebrasen
dc.subjectQuatérniopt_BR
dc.titleDifferential geometry using quaternionspt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001213202pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples