Mostrar registro simples

dc.contributor.authorValencia Ramírez, René Sebastianpt_BR
dc.contributor.authorMendiburu Zevallos, Andrés Armandopt_BR
dc.contributor.authorBravo, Luispt_BR
dc.contributor.authorKhare, Prashantpt_BR
dc.contributor.authorCelis Perez, Cesarpt_BR
dc.date.accessioned2024-12-13T06:56:25Zpt_BR
dc.date.issued2024pt_BR
dc.identifier.issn2666-352Xpt_BR
dc.identifier.urihttp://hdl.handle.net/10183/282380pt_BR
dc.description.abstractThis study explores in depth rotating detonation engines (RDEs) fueled by premixed stoichiometric hydrogen/air mixtures through two-dimensional numerical simulations including a detailed chemical kinetic mechanism. To model the spatial reactant non-uniformities observed in practical RDE combustors, the referred simulations incorporate different numbers of discrete inlet nozzles. The primary focus here is to analyze the influence of reactant non-uniformities on detonation combustion dynamics in RDEs. By systematically varying the number of reactant injection nozzles (from 15 to 240), while maintaining a constant total injection area, the study delves into how this variation influences the behavior of rotating detonation waves (RDWs) and the associated overall flow field structure. The numerical results obtained here reveal significant effects of the number of inlets employed on both RDE stability (self-sustaining detonation wave) and performance. RDE configurations with a lower number of inlets exhibit a detonation front with chaotic behavior (pressure oscillations) due to an increased amount of unburned gas ahead of the detonation wave. This chaotic behavior can lead to the flame extinguishing or decreasing in intensity, ultimately diminishing the engine's overall performance. Conversely, RDE configurations with a higher number of inlets feature smoother detonation propagations without chaotic transients, leading to more stable and reliable performance metrics. This study uses high-fidelity numerical techniques such as adaptive mesh refinement (AMR) and the PeleC compressible reacting flow solver. This comprehensive approach enables a thorough evaluation of critical RDE characteristics including detonation velocity, fuel mass flow rate, impulse, thrust, and reverse pressure waves under varying reactant injection conditions. The insights derived from the numerical simulations carried out here enhance the understanding of the fundamental processes governing the performance of RDE concepts.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofApplications in Energy and Combustion Science [recurso eletrônico]. Oxford. Vol. 20 (Dec. 2024), art. 100296, p. 1-16pt_BR
dc.rightsOpen Accessen
dc.subjectRotating detonation enginesen
dc.subjectMotorpt_BR
dc.subjectCombustãopt_BR
dc.subjectDetonation wavesen
dc.subjectCompressible flowen
dc.subjectReactant mixingen
dc.subjectMixing of reactants and combustion productsen
dc.titleFlow-field analysis and performance assessment of rotating detonation engines under different number of discrete inlet nozzlespt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001213183pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples