Mostrar registro simples

dc.contributor.advisorHorta, Eduardo de Oliveirapt_BR
dc.contributor.authorPaz, Leonardo Gabriel dapt_BR
dc.date.accessioned2022-10-27T04:49:41Zpt_BR
dc.date.issued2018pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/250388pt_BR
dc.description.abstractThis article aims to compare the forecast performance of the LHAR-CJ model, proposed in Corsi and Renò (2012) and a LHAR-CJ model with functional coefficients for a Vale return series. This new model, instead of estimating fixed coefficients for each variable in the autoregressive model, estimates a functional coefficient that is state dependent, where the state is represented by the lagged realized volatility. In other words, the coefficients are functions of the states of the response variable. We found out that, for this data, the functional coefficients model has a better forecast performance with the right smoothness parameter.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.rightsOpen Accessen
dc.subjectRealized volatilityen
dc.subjectEstatísticapt_BR
dc.subjectJumpsen
dc.subjectLeverage effecten
dc.subjectFunctional coefficientsen
dc.subjectContinuous volatilityen
dc.subjectVolatility forecastingen
dc.titleAn implementation of the LHAR-CJ model with functional coefficientspt_BR
dc.typeTrabalho de conclusão de graduaçãopt_BR
dc.identifier.nrb001065461pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Matemática e Estatísticapt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2018pt_BR
dc.degree.graduationEstatística: Bachareladopt_BR
dc.degree.levelgraduaçãopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples