
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

IVÁN MARCELO CARRERA IZURIETA

Performance Modeling of MapReduce
Applications for the Cloud

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Prof. Dr. Cláudio Fernando Resin Geyer
Advisor

Porto Alegre, 2014



CIP – CATALOGING-IN-PUBLICATION

Carrera Izurieta, Iván Marcelo

Performance Modeling of MapReduce Applications for the
Cloud / Iván Marcelo Carrera Izurieta. – Porto Alegre: PPGC
da UFRGS, 2014.

64 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Mestrado em Ciência da Computação, Porto Alegre, BR–

, 2014. Advisor: Cláudio Fernando Resin Geyer.

1. Performance Evaluation. 2. Cloud Computing. 3. MapRe-
duce. 4. Capacity Planning. I. Resin Geyer, Cláudio Fernando.
II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Dr. Carlos Alexandre Netto
Vice-Reitor: Prof. Dr. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro



Dedicado a todos quienes acompañaron, aún a la distancia, mi vida en Brasil:

A mis padres, Manuel y Fabiola, por siempre haber incentivado la creatividad, la
crítica y la curiosidad en mí, y por el apoyo constante e incondicional y porque

me enseñaron a perseguir mis sueños hasta conseguirlos.

A Miguel Ángel, mi hermano mayor, por ser un ejemplo de amor al estudio, a la
verdad, a la ciencia y a la familia.

A Paolita, mi hermanita menor, por sus constantes palabras de apoyo y por
siempre estar pendiente de mi vida lejos de casa.

A Gloria, mi compañera de vida, por haberme llenado de amor y largas
conversaciones académicas, por ser la mejor parte de mi vida en Brasil.

A mis amigos, por haber sido mi familia lejos de casa.

Este trabajo es la materialización de un sueño que empezó en 2009.
No dejaré de soñar, ahora lo haré más alto.





ACKNOWLEDGEMENTS

I want to thank God in first place, for He has given me the opportunities to be, do and
live as I had to, in order to accomplish my path in this life.

I want to thank also my family and friends, for they have accompanied my journey in
Brazil. And to the lady that inspired the idea of taking the concept of Impressionism to
the Cloud. I could never have done none of this without their support.

I thank professor Cláudio Geyer for have given me the opportunity to work with him
and thus being able to fulfil my dream of study grad school in Brazil.

Special thanks to professor Arnaud Legrand from Centre national de la recherche sci-
entifique CNRS in France for his help explaining me the research problems in this work,
professor Luciana Arantes from the University of Pierre et Marie Currie (Paris 6), pro-
fessors Luciano Gaspary and Lucas Schnorr from Universidade Federal do Rio Grande
do Sul UFRGS in Brazil, and to Ph.D. Pedro Velho for their help and reviews in several
stages of my research.

Also special thanks to my colleague Julio Anjos for all his help during my time in
UFRGS and for he has been a true friend. To my labmates Flavio Alles, Pierre Turin and
Fabricio Scariot for their help running some of the experiments presented in this work, a
true feeling of gratefulness.

The present work was made with the support of Programa Estudantes-Convênio de
Pós-Graduação – PEC-PG, of CAPES/CNPq - Brazil.

Some of the experiments presented in this work were carried out using the Grid’5000
testbed, supported by a scientific interest group hosted by Inria and including CNRS, RE-
NATER and several Universities as well as other organizations (https://www.grid5000.
fr).

“Divide each difficulty into as many parts as is feasible and necessary to resolve it.”
RENÉ DESCARTES





ABSTRACT

In the last years, Cloud Computing has become a key technology that made possible
running applications without needing to deploy a physical infrastructure with the advan-
tage of lowering costs to the user by charging only for the computational resources used
by the application. The challenge with deploying distributed applications in Cloud Com-
puting environments is that the virtual machine infrastructure should be planned in a way
that is time and cost-effective.

Also, in the last years we have seen how the amount of data produced by applications
has grown bigger than ever. This data contains valuable information that has to be ex-
tracted using tools like MapReduce. MapReduce is an important framework to analyze
large amounts of data since it was proposed by Google, and made open source by Apache
with its Hadoop implementation.

The goal of this work is to show that the execution time of a distributed application,
namely, a MapReduce application, in a Cloud computing environment, can be predicted
using a mathematical model based on theoretical specifications. This prediction is made
to help the users of the Cloud Computing environment to plan their deployments, i.e.,
quantify the number of virtual machines and its characteristics in order to have a lesser
cost and/or time.

After measuring the application execution time and varying parameters stated in the
mathematical model, and after that, using a linear regression technique, the goal is achieved
finding a model of the execution time which was then applied to predict the execution time
of MapReduce applications with satisfying results.

The experiments were conducted in several configurations: namely, private and public
clusters, as well as commercial cloud infrastructures, running different MapReduce ap-
plications, and varying the number of nodes composing the cluster, as well as the amount
of workload given to the application. Experiments showed a clear relation with the the-
oretical model, revealing that the model is in fact able to predict the execution time of
MapReduce applications. The developed model is generic, meaning that it uses theoreti-
cal abstractions for the computing capacity of the environment and the computing cost of
the MapReduce application.

Further work in extending this approach to fit other types of distributed applications
is encouraged, as well as including this mathematical model into Cloud services offering
MapReduce platforms, in order to aid users plan their deployments.

Keywords: Performance Evaluation, Cloud Computing, MapReduce, Capacity Plan-
ning.





RESUMO

Modelagem de Desempenho de Aplicações MapReduce para a Núvem

Nos últimos anos, Cloud Computing tem se tornado uma tecnologia importante que
possibilitou executar aplicações sem a necessidade de implementar uma infraestrutura
física com a vantagem de reduzir os custos ao usuário cobrando somente pelos recursos
computacionais utilizados pela aplicação. O desafio com a implementação de aplicações
distribuídas em ambientes de Cloud Computing é o planejamento da infraestrutura de
máquinas virtuais visando otimizar o tempo de execução e o custo da implementação.

Assim mesmo, nos últimos anos temos visto como a quantidade de dados produzida
pelas aplicações cresceu mais que nunca. Estes dados contêm informação valiosa que
deve ser obtida utilizando ferramentas como MapReduce. MapReduce é um importante
framework para análise de grandes quantidades de dados desde que foi proposto pela
Google, e disponibilizado Open Source pela Apache com a sua implementação Hadoop.

O objetivo deste trabalho é apresentar que é possível predizer o tempo de execução de
uma aplicação distribuída, a saber, uma aplicação MapReduce, na infraestrutura de Cloud
Computing, utilizando um modelo matemático baseado em especificações teóricas.

Após medir o tempo levado na execução da aplicação e variando os parámetros indi-
cados no modelo matemático, e, após utilizar uma técnica de regressão linear, o objetivo é
atingido encontrando um modelo do tempo de execução que foi posteriormente aplicado
para predizer o tempo de execução de aplicações MapReduce com resultados satisfatórios.

Os experimentos foram realizados em diferentes configurações: a saber, executando
diferentes aplicações MapReduce em clusters privados e públicos, bem como em infra-
estruturas de Cloud comercial, e variando o número de nós que compõem o cluster, e o
tamanho do workload dado à aplicação. Os experimentos mostraram uma clara relação
com o modelo teórico, indicando que o modelo é, de fato, capaz de predizer o tempo de
execução de aplicações MapReduce. O modelo desenvolvido é genérico, o que quer dizer
que utiliza abstrações teóricas para a capacidade computacional do ambiente e o custo
computacional da aplicação MapReduce.

Motiva-se a desenvolver trabalhos futuros para estender esta abordagem para atingir
outro tipo de aplicações distribuídas, e também incluir o modelo matemático deste traba-
lho dentro de serviços na núvem que ofereçam plataformas MapReduce, a fim de ajudar
os usuários a planejar suas implementações.

Palavras-chave: Avaliação de Desempenho, Computação em Núvem, MapReduce, Di-
mensionamento de Servidores.





LIST OF FIGURES

Figure 3.1: MapReduce execution flow . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 5.1: Execution time vs. Workload for the gradep cluster . . . . . . . . . 49
Figure 5.2: Execution time vs. Workload for the Griffon cluster running the

Sorter application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 5.3: Execution time vs. Workload for the Griffon cluster running the

Word-count application . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 5.4: Execution time vs. Workload for the Amazon EMR Environment . . 54
Figure 5.5: Execution time vs. Workload for the Azure HDInsight Environment . 56





LIST OF TABLES

Table 3.1: Related work in Performance Evaluation of MapReduce applications 36
Table 3.2: Related work in Benchmarking for MapReduce applications . . . . . 38

Table 4.1: Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 5.1: Parameter values for gradep cluster . . . . . . . . . . . . . . . . . 47
Table 5.2: Results for model assessing on the gradep cluster . . . . . . . . . . 49
Table 5.3: Parameter values for Grid’5000 . . . . . . . . . . . . . . . . . . . . 50
Table 5.4: Parameter values for Amazon Elastic MapReduce environment . . . . 53
Table 5.5: Results for model assessing of the Amazon measures . . . . . . . . . 54
Table 5.6: Parameter values for Windows Azure HDInsight . . . . . . . . . . . 55
Table 5.7: Results for model assessing the measures on the Azure HDInsight

Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56





LIST OF ABBREVIATIONS AND ACRONYMS

AWS Amazon Web Services

CDN Content Delivery Network

CUS Component Under Study

DFS Distributed File System

EC2 Elastic Compute Cloud

ECU EC2 Compute Unit

EMR Elastic MapReduce

HDFS Hadoop Distributed FileSystem

IaaS Infrastructure as a Service

MTC Many Task Computing

MR MapReduce

NFS Network File System

SaaS Software as a Service

S3 Simple Storage Service

SLA Service Level Agreement

SPoF Single Point of Failure

SUT System Under Test

VM Virtual Machine





CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3 Relation with GPPD’s research . . . . . . . . . . . . . . . . . . . . . . . 21
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 PERFORMANCE EVALUATION . . . . . . . . . . . . . . . . . . . . . . 23
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Performance Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Capacity Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Performance Evaluation in Cloud Environments . . . . . . . . . . . . . 26
2.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1 MapReduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Hadoop Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Performance Evaluation and Modeling over MapReduce . . . . . . . . . 33
3.4 Benchmarking in MapReduce . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 PROPOSED MODEL AND EXPERIMENTAL DESIGN . . . . . . . . . 39
4.1 Proposed Hadoop Performance Model . . . . . . . . . . . . . . . . . . . 39
4.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.1 Hardware description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Software description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Specification of Experiments . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.1 Evaluation Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.3 Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.4 Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1 Experiments on Physical Clusters . . . . . . . . . . . . . . . . . . . . . . 47
5.1.1 Private Cluster gradep . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.2 Grid’5000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Experiments on Cloud Infrastructure . . . . . . . . . . . . . . . . . . . 52
5.2.1 Amazon Elastic MapReduce . . . . . . . . . . . . . . . . . . . . . . . . 52



5.2.2 Windows Azure HDInsight . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1 About the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



19

1 INTRODUCTION

1.1 Motivation

In the last years, Cloud Computing has become a key technology that made possible
to run applications without needing to deploy a physical infrastructure. Cloud Comput-
ing, as defined in (MELL; GRANCE, 2011) by the U.S. National Institute of Standards
and Technology NIST, is a computing model enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources. Also, the U.S. De-
partment of Energy, DoE, addresses in (YELICK et al., 2011) how the Cloud Computing
model can bring to the general user a big gain in terms of scalability, usability and flexibil-
ity of a computing infrastructure, which is a very positive feature for a computing system,
however, as a negative feature, it also says that a Cloud Computing model still lacks a
good performance management.

One of the key features of Cloud Computing is the one of a way for understanding the
Cloud infrastructure as a shared pool of configurable computing resources, this means that
Cloud Computing users and system managers can define the values of the system charac-
teristics of their virtual machines with the goal of meeting application requirements and
user constraints. Research work like (BOUTABA; CHENG; ZHANG, 2012) shows Cloud
Computing nowadays as a computational paradigm becoming more present in many en-
vironments and applications, as well as being said to be by far the most cost-effective
technology for hosting Internet-scale services and applications.

Virtualization is an essential technology for Cloud Computing. It introduces an ab-
straction layer that logically separates each virtual machine, specifically their resources
like RAM, CPU, storage, etc., as if they were physically isolated, allowing Cloud providers
to offer services in models as Infrastructure as a Service IaaS. The capability provided in
IaaS to users, as described in (MELL; GRANCE, 2011), is to provision features as pro-
cessing, storage, networks, and other fundamental computing resources, separately or
associated with virtual machine instances where the consumer is able to deploy and run
arbitrary software defined by himself. Cloud Computing offers its users the advantage of
being able to manage distributed systems as a collection of virtual machines forming a
cluster that can be modified, and therefore optimized for a certain application. One of the
constraints of this approach is that we have to keep in mind that it would require a Cloud-
specific capacity planning in order to specify parameters of virtual machines, namely,
number of cores of the processor, RAM, network bandwidth and some others, according
to the requirements of the application. This customization of virtual machine clusters
would have to be specific of the application, since not all applications behave the same
way, in other words, there is no single way to tune a virtual machine (HERODOTOU;
DONG; BABU, 2011). These clusters can be implemented on physical machines as a



20

normal implementation or they can be implemented on virtual machines, as they are the
basic component of a Cloud Computing environment to fully utilize the system resources,
improve reliability and save power (IBRAHIM et al., 2009).

MapReduce is a programming model and an associated implementation for process-
ing and generating large data-sets proposed by Google. MapReduce programs can be
parallelized and scaled rapidly and automatically, and they are intended to be executed
on a multi-computer environment (DEAN; GHEMAWAT, 2008), as a grid or a cluster.
MapReduce performance depends, amongst other things, on the type of data that is going
to be processed, so various types of workloads can have different characteristics. It is
important to consider a number of different kinds of workloads. In (ABAD et al., 2012)
authors describe the parameters that can characterize a Map Reduce workload and how
to synthesize it. There are some variable parameters on the MapReduce application that
can also be changed or tuned in order to change the performance, specially the execution
time. Research in (BABU, 2010) establishes a number of parameters that have to be con-
figured by the administrators of a Map Reduce application, in a way that is time-effective.
As said previously and shown in research as (HERODOTOU; DONG; BABU, 2011) and
(BOUTABA; CHENG; ZHANG, 2012), an optimal cluster size should save money by op-
timizing infrastructure Cloud resources for the MapReduce user and the Cloud provider.
This optimization can let users to take a better advantage of the resources they are using
in the Cloud.

The work presented in (BOUTABA; CHENG; ZHANG, 2012) shows a survey of
cloud computational models and heterogeneity challenges. The heterogeneity problem of
workloads like job scheduling, task and data placement, resource sharing and resource
allocation, and the problems of machine capabilities like varied CPU, memory, I/O speed,
and network bandwidth capacities are described as a real challenge for researchers in this
field; and further research is encouraged.

This master’s thesis is motivated by the need of being able to predict the behavior of a
distributed application running in a Cloud Computing environment in terms of execution
time that would allow users to perform capacity planning and so plan their virtual clusters
in a cost and time-effective way. The main objective is to present a way of predicting
the execution time of a distributed application. MapReduce has been chosen as the major
application for its nowadays importance in the scientific media. This research’s main
approach is to develop a capacity planning model as was described and validated by the
scientific community in (CARRERA; GEYER, 2013).

1.2 Objectives and Contributions

The main objective of this work is to present a way of predicting the execution time
of a distributed application when run in different environments. The selected distributed
application for this work is a MapReduce application, but further work with other kind of
distributed applications is encouraged as well. The prediction will be done with a formula
that computes the execution time t of the application as a function of four variables:

1. W, the amount of workload the application is intended to process;

2. p, the number of computers the application will be run on top of, since it is a dis-
tributed application;

3. A, the type of the MapReduce application, since Map Reduce is a very versatile
framework and many different applications can be programmed with it, and A will



21

be expressed as a relation between the number of operations per GB the application
has to perform in order to process the W amount of data in Map and Reduce phases;
and,

4. T, the capacity of the p computers that compose the cluster on top of which the
application will be run, T will be expressed in terms of the number of operations
per second that every computer in the cluster is capable of perform.

Thus,

t = f (W, p,A,T ) (1.1)

How and why these parameters were chosen will be fully explained in the following
chapters.

The contribution of this work is to help users to know ‘a priori’ how long it will take
for the application to run, so they can predict how much money they will spend when
running in a commercial Cloud Computing environment, and find a configuration that
can save them money.

The experimental results of this work are also an important contribution showing that
it is possible to model the behavior of a MapReduce application, and how the performance
of a MapReduce application in terms of execution time changes when running in different
environments.

1.3 Relation with GPPD’s research

In GPPD (Grupo de pesquisa em Processamento Paralelo e Distribuído), since 2010,
there has been several studies and research about MapReduce. One of the most notables
is MRSG (MapReduce over SimGrid) simulator published in (KOLBERG et al., 2013)
developed to simulate the behavior of the MapReduce model under different scenarios.
After that, a set of algorithms for improving MapReduce in heterogeneous environments
were addressed in (ANJOS et al., 2012) with very successful results. And currently, the
main focuses of in progress research are new algorithms for running Map Reduce on
volatile environments and improve its behavior with fault tolerance techniques.

The present work is about modeling performance for distributed applications and the
application of this models in Cloud environments, it is not a work about MapReduce
performance or algorithms. It bases its approach on the MapReduce algorithms described
and modeled in the cited research work; however, it does not pretend to test them nor
improve them in any way. In this work we use MapReduce as an example application
to test our approach about modeling the behavior of distributed applications in Cloud
environments.

1.4 Organization

The remainder of the dissertation is organized as follows:
Chapter 2 talks about Performance Evaluation and how it is achieved, as well as Per-

formance Modeling and Capacity Planning techniques and considerations, in physical
infrastructures, and specially in Cloud Computing environments.

The Performance Modeling section will present the concepts of the SUT, the CUS,
and some other topics, as well as the ways a mathematical model can be defined for a
computer system.



22

In the Capacity Planning section it will be explained some considerations for capac-
ity planning based on performance evaluation and a few research projects that aimed to
perform capacity planning for MapReduce applications.

In the Performance Evaluation in Cloud Environments section, there will be the spe-
cific considerations for capacity planning in the cloud, and some research projects devel-
oped in the subject.

Chapter 3 talks about the related work concerning to modeling and assessing the
MapReduce computing model.

The MapReduce section talks about how the MapReduce computing model works.
After that, the Hadoop Overview section defines how Hadoop, one of the most known
implementations of MapReduce functions, and the execution model time of a Hadoop
application.

The Performance Evaluation and Modeling over MapReduce section, as well as the
Benchmarking in MapReduce section talk about the benchmarks used to theorize MapRe-
duce applications. There has been several benchmarks that deal with the different types
of applications, some are theoretically designed and some others are obtained from actual
production MapReduce job logs. It focuses in MRBS, a MapReduce Benchmarking Suite,
that was used as an example of MapReduce applications to test the modeling approach in
physical infrastructure.

Chapter 4 talks about the Proposed Model and the Experimental Design.
The Proposed Hadoop Performance Model section talks about the definitions used to

model the performance, and specifically the execution time of MapReduce applications
in the present work and in related work.

The Scenarios section talks about the characteristics of platforms where the experi-
ments were run, as well as the applications used for the experiments. The Specification of
Experiments section talks about the definition of System Under Test SUT and the Com-
ponent Under Study CUS that will be used in the experiments of the present work, as well
as how the values of the parameters from section 4.1 were specified and combined to form
the experiments execution plan.

Chapter 5 talks about the results of the experiments, as well as how the model was
assessed against experimental results. The results of the tests in every environment are
explained, as well as it is commented on what were the simplifications to the model led
from the experimental data.

It has two sections, the first section talks about how the formula was obtained and how
it was assessed in physical environments and the second sections explains the formula for
Cloud Computing environments.

And finally, Chapter 6 talks about the conclusions of this work, how the results show
that a MapReduce application can actually be modeled in a mathematical formula with a
general form for physical and cloud platforms and most kind of applications, and how a
user can benefit from this research and what are the next steps to continue.



23

2 PERFORMANCE EVALUATION

This chapter talks about Performance Evaluation and how it is achieved, as well as
Performance Modeling and Capacity Planning techniques and considerations in physical
infrastructures, with a special section on Cloud Computing environments.

2.1 Introduction

Performance Evaluation of a system is an important matter in computer science, spe-
cially when trying to get out the maximum performance of a system. The process of
evaluating the performance of a given system begins by defining its characteristics. As
exposed in (JAIN, 1991), the System Under Test SUT is defined as the collection of parts,
treated as a whole, with a specific input and output data that will be assessed; and simi-
larly, the Component Under Study CUS defines the part of the system whose parameters
are going to be manipulated in order to cause changes in the performance of the system.
The specifications of the SUT and CUS for this research project will be presented further
in detail in chapter 4.

Performance Modeling refers to developing a mathematical model to express the per-
formance of a system as a mathematical function that computes one or more output vari-
ables of the performance, based on relations among input parameters. The Performance
Modeling section will present the concepts of the SUT, the CUS, and some other topics,
as well as the ways a mathematical model can be defined for a computer system.

Capacity Planning refers to knowing what values for the parameters of the infrastruc-
ture of a system can achieve a desired performance (MENASCÉ et al., 2004). In the
Capacity Planning section it will be explained some considerations for capacity planning
based on performance evaluation and some research projects aiming to perform capacity
planning for MapReduce applications.

In cloud environments, the capacity planning has to deal with specifying the virtual
infrastructure that will ensure the best performance in terms of execution time and money
expended when executing on a public/commercial cloud infrastructure. In the Perfor-
mance Evaluation in Cloud Environments section, the specific considerations for capacity
planning in the cloud, and some research projects developed in the subject will be de-
scribed.

2.2 Performance Modeling

In Computer Science, Performance Modeling is a discipline that refers to develop
a mathematical model that can compute one or more output variables dealing with the



24

performance of a system as a mathematical function of one or more input variables refer-
ring to characteristics of: the system, the workload, the users behavior and/or other input
conditions (ALMEIDA; MENASCÉ, 2002). Analytical performance models capture fun-
damental aspects and relate to each other by mathematical formulas and/or computational
algorithms. When developing performance models it is important to know conditions like:
system parameters, characteristics of a system that affect performance; resource parame-
ters, features of the resources that affect performance; and workload parameters, intensity
and service demand from the workload characterization.

In the methodology specified in (ALMEIDA; MENASCÉ, 2002) the first step is to
specify the objectives of the system in terms of performance metrics, for example, defin-
ing the performance as the number of cache hits/misses, the amount of write/read oper-
ations, or the execution time of an application, amongst other metrics. One critical goal
when analyzing and designing IT systems is guaranteeing the performance objectives are
satisfied, and it is important to minimize the amount of guesswork (MENASCÉ et al.,
2004); in this matter, IT systems users tend to be more concerned on Quality of Service
QoS than technical issues, normally, they do not worry about numerical metrics but they
do worry about their experience in terms of timing (response time, read/write time, execu-
tion time, etc.). So, performance goals should be stated in a simple manner and quantified
with numbers in order to be measured and compared with the results.

Following the specification of the objectives, the system should be understood as a
collection of components (subsystems) following a queue in which the n-th subsystem
receives the output queue of the n-1-th subsystem and it provides its own output queue
to the n+1-th component. The performance definitions established in the previous step
should relate to the component of the system that is in charge of controlling that metric,
or the system itself when the metric is related with the performance of the whole system.
Also, in (HARBAOUI et al., 2009) performance prediction tools are based on a perfor-
mance model of the system. The general approach is to decompose the system in black
boxes, with each one studied in isolation and modeled with a queuing model.

After the characterization of the performance, then the workload has to be character-
ized as well, because the performance depends heavily on how much load it receives. In
order to do this, a benchmark can be used as a workload model. A benchmark is a term
for defining the workload used when comparing the performance of two or more systems
by measurements (JAIN, 1991). Benchmarking is useful when the system has defined a
workload. For example, for MapReduce applications a benchmark composed by typical
applications can be used to test a computer system in which a MapReduce application is
to be run.

A workload model is a representation of the real load given to the system that should
be compact and representative of the actual workload in production environments. There
are two kinds of workload models, the natural models which are constructed from com-
ponents of the real workload, they are also called natural benchmarks; and the artificial
models, theoretical models that aim to test the whole set of features a certain system can
have (JAIN, 1991).

After the workload characteristics are specified, the system has to be measured in or-
der to obtain the values of the workload characteristics. To characterize a workload, some
specifications must be given, such as its quantity, the number of service requests, or spec-
ifying which are the resource demands. When choosing the parameters to characterize
the workload, it is better to use the parameters which depend on the workload rather than
on the system.



25

Following, with all the information obtained in previous steps, a performance model
can be developed using quantitative techniques. Since it was settled previously that a per-
formance model can compute a set of performance characteristics as function of a set of
characteristics of the system, the workload, and/or other input conditions, the quantitative
techniques should use the relations between those two sets and relate them using a math-
ematical model. This model is understood as the Performance Model of the system. The
data that will be used to relate the two sets of input and output characteristics ought to
be obtained via theoretical deduction or experimentation. In this work it will be used the
experimental approach. The developed model has to be proven and validated. Depending
of the nature of the model, also its proof and validation can be theoretical or experimental.

The validation of a performance model can be done predicting the system perfor-
mance, which would be to determine how a system will react with a specific workload
or when changes in load levels occur, and compare the prediction with actual measure-
ments of the performance afterward. The results of the comparison will give us the idea
of a reliable model under some conditions, called scenarios. The analysis of performance
scenarios will establish conditions in which the performance will achieve desirable or
undesirable performance levels in the future (MENASCÉ et al., 2004).

2.3 Capacity Planning

In the study of (ALMEIDA; MENASCÉ, 2002), the design of IT systems must be
done with service levels in mind, a designer of IT systems must know their limits ‘a
priori’. The term Capacity Planning refers to knowing what values for the parameters of
the infrastructure of a system can achieve a desired performance.

Capacity Planning is described in (JAIN, 1991) as a process where computer system
managers and engineers can ensure that adequate computer resources will be available to
the users of the system to meet future workload demands in a cost-effective way, while
meeting the performance objectives. Capacity Planning can be understood as determining
the size of the components of a computer systems that will allow performing in a desired
way with the minimum waste of computational and time resources. The main goals of Ca-
pacity Planning are described as improving performance availability, reliability, security
and cost.

Also, in (MENASCÉ et al., 2004), authors define the process of Capacity Planning
as to properly design and size a computer system for a given load condition, allowing
computer system engineers to make a full use of the capacity of a system. They also de-
scribe a process called Performance engineering which can be understood as applying the
concepts of Capacity Planning to the whole lifespan of a computer system. Performance
engineering has two objectives: to predict the level of performance a system can have dur-
ing its lifespan, and to provide recommendations to accomplish the optimal performance
level.

Some of the problems concerning Capacity Planning are the lack of a standard defi-
nition of capacity, but it usually can be understood as maximum throughput of a system;
also, there is no standard workload unit, because of the variability of environments, and
this is something that has to be specified for every system.

The steps for Capacity Planning are in many ways similar as the ones for Performance
Modeling, described in the previous section. For achieving capacity planning, in the same
way as for performance modeling, it is required to fully understand the behavior, architec-
ture and infrastructure of the system, breaking its complexity, and this can be achieved by



26

analyzing its components; and afterward, analyzing the functionality of each component,
evaluate its requirements, and design systems that will meet user’s expectations.

The steps for Capacity Planning can be summarized as: to instrument in the first place
the system with probes, using software or hardware components that can measure the
performance of the system in some subsystems; these probes will monitor system usage
under variations of the workload. The variation of the workload should be characterized
as well as the workload itself using models. Often, queuing models are used for sizing
because capacity planning models are general, coarse and system independent or less spe-
cific. Afterward, we should be able to predict performance under different alternatives.
The final step in Capacity Planning is to select the lowest cost and/or the highest perfor-
mance alternative (MENASCÉ et al., 2004). Capacity Planning relies in many ways on
Performance Modeling in order to fully understand the system and its workload. There
cannot be an appropriate Capacity Planning of a system without good performance and
workload models.

2.4 Performance Evaluation in Cloud Environments

In cloud environments, Capacity Planning refers to specify the virtual infrastructure
that will ensure a desired performance in terms of execution time and money expended,
when a public cloud infrastructure is chosen. In this section, the specific considerations
for capacity planning in Cloud Computing environments will be explained, as well as
some research projects in the subject.

According to the Magellan Report, a document presented by the U.S. Department of
Energy DoE in 2011 (YELICK et al., 2011), a Cloud computing model offers to the users
a big advantage in terms of scalability and usability of a computing infrastructure. The
goal of the Magellan Report was to research the potential role of Cloud computing in
dealing with the computing needs for the DoE, related to serving the needs of future data-
intensive workloads. The main findings of the Magellan Report concerning to the present
project can be listed as:

• Cloud computing has won attention from industry and academic perspectives in
research, as it has shown its capacity to address a broad array of computing needs.

• Developing an application in a cloud computing environment can require significant
initial effort and skills in order to port them to these new models.

• A cloud computing model still lacks a good management of security and perfor-
mance.

• A cloud performance management model should guide the cloud user in the ca-
pacity planning process of its virtual machine cluster in order to have a time and
cost-effective performance for its application.

• The key economic benefit of clouds comes from consolidating physical resources
across a broad community, which results in higher utilization rates of infrastruc-
tures.

• Cloud computing is ultimately a business model, but cloud models often provide
additional capabilities and flexibility, helpful to certain workloads.



27

In a private cloud environment, as it is defined in (MELL; GRANCE, 2011), param-
eters of the virtual machine images, which are specifications of the virtual hardware that
will be provided for the virtual machines, such as: number of cores of the processor,
amount of main memory, bandwidth capacity and some other features can be freely man-
aged according to the settings defined by the system administrator; on the other hand, in a
public cloud environment, this ability is restricted by the available instance types defined
by the provider. A Capacity Planning approach in a public cloud environment will have
to be restrained to choose between the possibilities made available by the provider.

Research projects like (HERODOTOU; DONG; BABU, 2011), as well as (BOUTABA;
CHENG; ZHANG, 2012) state that an optimal cluster size should save money by optimiz-
ing infrastructure cloud resources for the cloud user and provider. Also, in (MIETZNER;
LEYMANN, 2008) the vision of a Software as a Service that requires Infrastructure as a
Service level management is described as very important research field and an interest-
ing trend in cloud computing. This vision relates to the resource provisioning based on
the application performance. Therefore, this optimization can let users to take a better
advantage of the resources they are using in the cloud.

In particular, (HERODOTOU; DONG; BABU, 2011) uses a training workload, to
asses the performance of the cluster, and suggests computing the performance as a func-
tion of input data, resources and the application configuration.

Other study, exposed in (IBRAHIM et al., 2009), shows virtual machines that are
tuned for data-intensive applications, and the master node is shown as a single point of
failure (SPoF) in a MapReduce application. In that case, the master node is recommended
to be instantiated on a physical machine rather than a virtual machine. Said work does
not consider a cloud computing middleware, as it works directly with XEN based virtual
machines. In a cloud computing environment this way of thinking is valid, but will not
necessarily present the same results, and likely the experiments will not be the same either.

In (MIETZNER; LEYMANN, 2008), the approach of understanding an application
offered in a SaaS model, can benefit from management at infrastructure level, or IaaS
management. Provisioning infrastructure is described as very important research field for
SaaS users and providers and a trend in Cloud Computing. This vision relates to auto-
matic resource provisioning based on the performance of the application. Authors pro-
pose a whole architecture for provisioning infrastructure, which is based on Web services
and workflow technology, so it can be possible to allow SaaS application providers to
specify generic installation and maintenance flows to be independent from the underlying
provisioning engines.

In the study of (WANG; HUANG; VARELA, 2010), the impact of VM granularity on
workload performance in cloud computing environments shows that the number of VMs
per physical machine has an actual significant impact on the performance of the virtual
machines. Authors use HPL, which is a portable implementation of the high-performance
Linpack benchmark for distributed-memory computers, and a web server as representa-
tive workloads. Their results show the optimal number of VMs per physical machine in
a cluster. The results suggest that there can be scenarios, like when having tightly cou-
pled computational workloads, where is best to change dynamically VM granularity to
improve performance, and other scenarios, where VM granularity would have to be static
for energy savings, like when having loosely coupled network intensive workloads.

In (IBRAHIM et al., 2009), the evaluation of virtual machine capacity planning for
running MapReduce applications is shown, and authors state that it is feasible to demon-
strate the applicability of MapReduce on a virtualized data center. A virtualized data



28

center is a way of seeing the virtual machine instances of applications running in a Cloud
environment. The study shows that there is a tradeoff between poor performance and
resource utilization. Virtual machines can be used to fully utilize the system resources,
which is one of the most important advantages in Cloud computing environments, along
with easing the management of such systems, improving the reliability, and saving power.
However, this full resource utilization can compromise the performance of a given appli-
cation when run in a virtualized environment because of the different processes competing
over the shared resources. The experiments using MapReduce applications as a workload
model. The authors relate a number of issues when running data intensive applications
using Hadoop in virtual cluster. Those issues include:

• Due to VMs being highly prone to error, it could be useful to separate the perma-
nent data storage from the virtual storage associated with VM. Similar to the Elastic
MapReduce service from Amazon, separating the data storage related to MapRe-
duce by using the Amazon S3 service for that purpose.

• Using VM as execution unit will allow to define using VM migration as a replace-
ment of the existing fault tolerance mechanism represented as speculative tasks.

• It is feasible to use VM in data intensive computing systems to fully utilize the
physical node resources, using VM only as a computation unit for the data located
on its physical node.

• VMs within the same physical node are competing for the node I/O, causing poor
performance.

• As the master node is a single point of failure for the MapReduce infrastructure,
and a VM is being highly prone to failure, it would be recommended to allocate the
master node in a physical machine, or use VM checkpointing to implement a more
reliable master.

In (ANDRZEJAK; KONDO; ANDERSON, 2010), PCs are considered the processing
tier of a web service. In a Cloud Computing environment the physical infrastructure can
be understood as a tier of aggregated CPUs that exclusively perform computation. This
idea of concieving the PCs as a processing tier, isolated from other tiers is very interesting
and makes the performance modeling easier. Also, it is said that the mechanisms that
could deal with assessing cost of using the system and the system’s reliability could be
very valuable for users seeking to lessen their costs while keeping reliability at a high
level. In this schema, checkpointing can be used to minimize the cost and volatility of
resource provisioning.

In (ANDRZEJAK; KONDO; YI, 2010), it is shown that the mathematical model for
the execution time of a distributed application can be built. Said work addresses the
challenge of determining bid prices of AWS Spot Instances that could minimize costs for
a user meeting Service Level Agreement (SLA) restrictions by proposing a probabilistic
model for optimizing costs, performance and reliability. The probabilistic model would
rely on user and application requirements and dynamic conditions computed from real
instance price traces and workload models and would guide users how to optimally bid
on Spot Instances.

The work (IOSUP et al., 2011) aims to answer the question of that if the performance
of cloud computing environments can be sufficient for scientific computing based on



29

Many Task Computing (MTC). The compute performance of cloud environment is tested
and compared with other scientific computing environments such as grids and parallel
production infrastructures. Authors find that, even if current cloud computing services
can be considered as insufficient for scientific computing at large, they might be a fair
solution for scientific applications needing resources instantly and/or temporarily. The
concept of MTC is explained as loosely coupled applications comprising many tasks. In
another work, In (IOSUP; YIGITBASI; EPEMA, 2011) authors analyze the dependability
of cloud services, establishing that finding out the performance variability is significant,
saying that there is, indeed, performance variability in commercial clouds and it can be
an important factor when deciding between cloud providers, and that there is no accepted
comprising model for commercial clouds.

Similarly, in (FOSTER et al., 2008), authors explain the main differences between a
Grid and a Cloud Computing environment, presenting that the vision in both sides about
reducing costs for computing problems are equally important, the clusters are expensive
to maintain for a provider, and that is why the clouds are more accessible for the scientific
and industrial world. The cloud brings new problems like security issues. But in a general
view the problems are similar.

In (ARMBRUST et al., 2010), the Top10 obstacles and opportunities for Cloud com-
puting is shown. Authors explain that multiple virtual machines VMs can share CPUs and
main memory surprisingly well in cloud computing, but that network and disk I/O shar-
ing is more problematic, with the resulting performance variations in I/O more frequently
than in main memory performance. This demonstrates the problem of I/O interference be-
tween virtual machines. Authors also establish the opportunity to improve architectures
and operating systems to efficiently virtualize I/O channels.

In (DEELMAN et al., 2008), it is said that the cost of running an application on
commercial clouds depends on the consumed resources regarding computation, storage
and communication. Different execution plans, using different mixes of infrastructure
and resources with the same application may result in significantly different performance
values, and consequently different costs. Authors modeled the use of AWS cloud structure
by a real-life data-intensive scientific application, and simulated the performance trade-
offs of different execution and resource provisioning plans. Said work shows that by
provisioning the right amount of storage and compute resources, cost can be significantly
reduced with no significant impact on application performance. Similarly, in (SHI; TAIFI;
KHREISHAH, 2011), Timing Models are specified, which are formulas for Sequential
and Parallel Time of distributed applications. Authors prove simple models using AWS
EC2 nodes.

2.5 Concluding Remarks

In this chapter we show the relevance for the particular issue of determining ‘a-priori’
the size of a virtual machine cluster for distributed applications to be run in the cloud, with
the objective of having a time- and/or cost-effective performance. The approach intended
in this work is a way to present a methodology that can guide users to find a capacity
planning model for cloud computing applications.



30



31

3 RELATED WORK

This chapter talks about the computing model of MapReduce, the current research
work on Performance Evaluation and Modeling of MapReduce, as well as research work
on benchmarking for MapReduce environments.

The MapReduce and the Hadoop Overview sections talk about the MapReduce model,
as well as Hadoop, one of the most known implementations of MapReduce, and how it
works, The Performance Evaluation and Modeling over MapReduce section talks about
research projects with the objective of the performance prediction of MapReduce appli-
cations, as well as the benchmarks used to theorize and tests MapReduce environments.

3.1 MapReduce

MapReduce is a largely used programming model for processing and generating ex-
tensive data-sets proposed by Google in (DEAN; GHEMAWAT, 2008). MapReduce of-
fers a mechanism inspired in the Map and Reduce primitives from high-level languages
like Lisp and Haskell. The MapReduce model isolates the programmers from the com-
plexity of the parallelization and management of data. Also, MapReduce is mostly used
in large clusters, with low-latency networks and low-cost local storage devices (DEAN;
GHEMAWAT, 2008).

In MapReduce, applications must be written in the form of two functions: a Map
function and a Reduce function. The Map function transforms the input data into tuples
<key, value> in what is called the Map phase, and the Reduce function takes the resulting
tuples and summarizes them according to the key value during the Reduce phase.

MapReduce works with a master/worker architecture. In this architecture, the mas-
ter node splits the input data in a distributed file system among the worker nodes, thus
spreading the entire job into smaller tasks running in parallel, which are assigned to the
workers.

Each worker node performs the Map function to its corresponding data, which were
assigned when splitting the input. These data are grouped in small parts called chunks.
After the Map function is executed over each chunk, the resulting data is again spread
across the network. A key set is assigned to each node, so it processes only the tuples
containing its corresponding key value. This process is called Shuffle. After the Shuffle
phase is finished, each node executes the Reduce function over its corresponding data.

The execution model creates a computational barrier, which allows to synchronize the
tasks execution between the Map and the Reduce tasks. A Reduce task does not begin its
processing as long all the Map tasks are not finished.

In MapReduce it is preferred the execution of local taks, using local data, avoiding the
need to transfer large volumes of data in processing time (DEAN; GHEMAWAT, 2008).



32

3.2 Hadoop Overview

Hadoop (HADOOP, 2013) is a Java implementation of MapReduce proposed by the
Apache Foundation. It is the most used MapReduce implementation (WHITE, 2012).
Hadoop’s API (Application Programming Interface) allows the user to program the Map
and the Reduce functions.

Hadoop was originally thought to be run as a distributed application on top of a cluster
of homogeneous machines, sharing a Distributed FileSystem, though several research
projects have been developed to cover some of its issues in matters of fault tolerance, and
execution on top of heterogeneous and voluntary computing environments.

Hadoop also uses a Distributed FileSystem, called the Hadoop Distributed FileSys-
tem HDFS, which is likewise an open implementation of the Google FileSystem GFS
described in (DEAN; GHEMAWAT, 2008). HDFS performs similarly to Google File
System (SHVACHKO et al., 2010). HDFS and GFS are based on NFS working as a
shared partition, accessible from all machines, in every hard disk of the nodes composing
the MapReduce cluster. However, Hadoop can work with other distributed file systems.

The Hadoop execution algorithm is based on the MapReduce proposed by Google.
According to the Hadoop execution algorithm (HADOOP, 2013), represented in figure
3.1 (WHITE, 2012), it has four defined phases:

Figure 3.1: MapReduce execution flow

(WHITE, 2012)

1. Data distribution. The first process is to copy the data for the MapReduce ex-
ecution to the HDFS. The node in charge of this phase is the master node. The
time length of this step depends on three factors: the amount of data that has to be
copied through the network to the MapReduce cluster nodes, the number of said
nodes, and the speed of the network that connects the nodes. Normally, all nodes
would receive approximately the same amount of data workload. It can be expected
that all nodes would receive approximately the same amount of data workload, be-
cause the approach used is write-once/read-many.

2. Map phase. The second process can be described as mapping the data, taking the
input data, and, according to the programming of the Map phase, generating an
output composed of <key, value> pairs. Each node has locally stored the data that
is in charge of processing. Since the Map phase is run by all the nodes in parallel,
the time length of this phase would depend on the amount of workload a single node
has to process, the speed of said node to process said individual workload, and the
number of operations that involve the processing of the individual workload.

3. Shuffle. Once the Map phase has reached a 5% of its progress, map outputs are
sorted to ease the processing in the next phase. Output data from the Map phase



33

is transmitted over the network to one or other data node according to its content.
The time lenght of this phase depends on the amount of data is transmitted and the
speed of the network; however, since this phase runs in parallel with the Map phase,
it only takes into account the shuffling of the last map outputs, corresponding to the
last chunks.

4. Reduce phase. Finally, the reduce phase takes the output of the shuffle phase and
process it according to its programming. The time length of this phase depends
on the amount of data that is going to be processed, the number of operations that
would be required to process the Reduce inputs, again, the speed of the node.

3.3 Performance Evaluation and Modeling over MapReduce

As explained in chapter 2, in order to develop a performance model of a system, it
is necessary to understand and evaluate it against experimentation. In this section some
research projects in the field of applying Performance Evaluation and Modeling tech-
niques in MapReduce environments will be exposed, focusing on presenting metrics and
parameters that have made possible previous performance models of MapReduce:

• Very extensive and comprehensive models of each phase of MapReduce are pre-
sented in (HERODOTOU, 2011), and discussed in (HERODOTOU; BABU, 2011).
In said work, the MapReduce algorithm has two sets of tasks: Map, run first, and
Reduce, run last. The Map task execution is divided into five phases: Read, Map,
Collect, Spill and Merge; and in the same way, the Reduce task execution is divided
into four phases: Shuffle, Merge, Reduce and Write.

The performance is calculated as a function of three parameters: d, data properties,
r, cluster resource properties, and c, configuration parameter settings. It actually
shows a number of formulas that are useful to determine the execution time of a
MapReduce job. The formulas calculate the time spent in every stage of the Map
and the Reduce phases. They also introduce the concept of ‘cost’ for the stages,
understood as what determines the amount of performed operations on the CPU or
the hard drive to process data or write/read data from/to the hard drive.

Also, in (HERODOTOU; DONG; BABU, 2011), authors develop a way for perform
Capacity Planning in Cloud computing environments for MapReduce applications.
Authors deal with the problem of determining the virtual machine cluster resources
and the MapReduce configurations to achieve user-defined requirements on execu-
tion time and economic cost for a given analytic workload.

A system called the Elastisizer abstracts the complexities of MapReduce appli-
cations by profiling them and considering the discrete space that is the resource
choices offered by IaaS cloud providers in their instance types.

• Another interesting work in the topic of MapReduce and Performance Evaluation
is (TIAN; CHEN, 2011). In said work, authors present three cost functions that
show a relationship between some characteristics of the MapReduce application
and the time that takes for the application to execute. These three cost functions for
MapReduce differ from each other by taking into account more or less complexity
of the MapReduce application; for example, in the most complex cost function,
authors consider a more complex Map function, including Copy and WriteBack



34

sub-functions inside the Map phase, as well as the MergeSort sub-function inside
the Reduce phase. A simpler function considers the complexity of the Reduce phase
linear to the size of input data. And the simplest approach assumes that the amount
of input data is fixed, so it is not necessary to take into account in the cost function.

The authors of (TIAN; CHEN, 2011) assess their performance model taking into
account very specific parameters of MapReduce applications like the number Map
and Reduce slots, the number Map and Reduce rounds, the complexity of Map and
Reduce phases and the cost of scheduling all said processes. The model is assessed
with some MapReduce applications, like WordCount, TeraSort, PageRank and Join
in an in-house 16-node Hadoop cluster.

Research presented in (TIAN; CHEN, 2011) is quite exhaustive and comprehensive
of the MapReduce applications; however, it can be mentioned as a limitation that
it is very specific to the MapReduce framework, and the shown approach could not
be used for other types of applications.

• Other work showing performance models of MapReduce is (KARLOFF; SURI;
VASSILVITSKII, 2010), where MapReduce is expressed in three separated phases:
Map, Shuffle and Reduce. Also, said work takes into account three parameters:
memory, understood as the capacity of a cluster node to save information in its hard
disk, machine, understood as the total number of nodes composing the cluster and
time, as the running time available for the execution of the MapReduce application.

Authors describe also the execution of a MapReduce job subject to a probability
function of correctness, meaning that the job will be executed with no error in only
some cases, defined by the probability function.

• Authors in (JIANG et al., 2010) determine 5 design factors utilized to run MapRe-
duce application that affect the performance, namely:

1. I/O mode. Which is the way the MapReduce application gets its input data:
direct mode, when reading directly from the hard drive or streaming mode,
when streaming by a communication scheme as TCP/IP or JDBC,

2. Indexing. Even if MapReduce is typically used for unsorted data, when using
sorted files, or database indexed tables, performance seems to improve,

3. Data parsing. If there is any decoding procedures inside the Map phase that
can be fixed or variable along the execution,

4. Grouping schemes of input data, and

5. Block-level scheduling. Showing that the scheduler performs faster when
using larger blocks.

Authors also investigated alternative implementation strategies for each factor, and
how they affect the general performance of MapReduce applications. They have
evaluated the performance of MapReduce with representative combinations of these
five factors using a benchmark consisting of seven tasks. Amongst their findings is
that, when using block-level scheduling, MapReduce can improve its performance
when increasing the number of nodes in execution time.

• In (VERMA; CHERKASOVA; CAMPBELL, 2011), authors aim for designing a
MapReduce performance model based on job profile and performance bounds of



35

completion time for different job phases. This means they target to calculate the
minimum number of maps and reduce tasks for a given time constraint and also that
before running a job, they analyze the data and formulate a job profile that describes
the typical behavior of said data. Without a time constraint, their approach is to
compute job completion time as a function of the characteristics of input data set
and allocated resources with performance models based on service level objectives

• In (VIANNA et al., 2013), authors express the need for specific analytical models
of MapReduce that capture the sources of delays of processing jobs. The approach
of (VIANNA et al., 2013) is to model the execution of MapReduce considering
a series of parameters, related to the architecture of the cluster and the MapRe-
duce application workload. Namely, the architecture parameters that are taken into
account are the number of nodes and how many CPUs and disks each node has.
Similarly, the considered MapReduce workload parameters are the number of Map
and Reduce tasks, the number of threads per task and a service demand matrix

The MapReduce model of (VIANNA et al., 2013) considers a queue of phases
with a complex pipeline relating several stages of the MapReduce execution, and
it uses a task precedence tree. The model is interesting and it is validated against
experimental data and a simulator.

• Authors of (ZHANG; CHERKASOVA; LOO, 2013) address the problem of het-
erogeneity between the nodes of a Cloud Computing cluster, which is described as
an important issue when dealing with virtualized infrastructure running distributed
applications.

In (ZHANG; CHERKASOVA; LOO, 2013), authors model MapReduce perfor-
mance as a function of the number of tasks and nodes. The execution time of a
MapReduce task is considered as bounded between a maximum and a minimum
time. The described tasks comprehend three phases of the MapReduce execution:
Map, Shuffle and Reduce; and there are upper and lower bound for the completion
time of each phase. Authors indicate that the main factors impacting the MapRe-
duce performance in Cloud environments are due to the heterogeneity of the cluster,
which manifests in having different completion time of each one of the phases of
the MapReduce execution.

• Finally, in (KONDO; ANDRZEJAK; ANDERSON, 2008) when modeling MapRe-
duce applications, authors express CPU speed in FPOPS Floating Point Operations
Per Second, which is a very handy way of generalizing the CPU speed, disregard-
ing the amount of cores in it and understanding the CPU as a system which handles
computing operations. Also, taking the phases of MapReduce as simple operations
requiring an amount of time to be computed, regardless the type of data that is being
processed is an interesting and simple way of understanding MapReduce and data
processing.

*This concept is going to be useful when modeling MapReduce applications execu-
tion in following sections.



36

Table 3.1: Related work in Performance Evaluation of MapReduce applications

Author/Work MapReduce modeling Performance modeling
(HERODOTOU, 2011),
(HERODOTOU;
DONG; BABU, 2011),
(HERODOTOU;
BABU, 2011)

Map divided in 5 phases, Re-
duce divided in 4 phases

The performance is a function
of: data properties, cluster re-
source properties, and config-
uration parameter settings.

(TIAN; CHEN, 2011) MapReduce application pa-
rameters

Three cost functions relating
execution time and MapRe-
duce parameters.

(KARLOFF; SURI;
VASSILVITSKII,
2010)

MapReduce in 3 phases:
Map, Shuffle and Reduce.
MapReduce is subject to
errors based on probability
functions.

Performance in 3 parameters:
memory, machines, and time.

(JIANG et al., 2010) MapReduce function of 5 ap-
plications parameters.

MapReduce application pa-
rameters affect performance.

(VERMA;
CHERKASOVA;
CAMPBELL, 2011)

MapReduce model based on
job profiles.

Completion time bounds for
each MapReduce phase.

(VIANNA et al., 2013) MapReduce model based on
precedence tree.

Performance as a function of
architecture and workload pa-
rameters

(ZHANG;
CHERKASOVA;
LOO, 2013)

MapReduce affected by het-
erogeneity. MapReduce in 3
phases: Map, Shuffle and Re-
duce.

Performance modeled with
upper and lower bounds due
to heterogeneity.

(KONDO; ANDRZE-
JAK; ANDERSON,
2008)

Phases of MapReduce as sim-
ple operations requiring an
amount of time to be com-
puted.

CPU speed in FLOPS Float-
ing Point Operations Per Sec-
ond.

Table 3.1 summarizes the approaches of the authors cited in this research work. It can
be seen a difference between the considerations to model the MapReduce execution; in-
cluding or excluding execution phases. It is important to divide the MapReduce execution
into several phases in the model because the algorithm of MapReduce describes it a queue
where each process depends on its predecessor. A conservative approach not considering
all the phases of MapReduce can be prone to errors and it would overlook some of the
specific behavior of MapReduce applications; however, it can also be more general and
comprehensive when modeling the performance for other types of applications, and not
necessarily MapReduce.

In a general way, most authors take into account characteristics from MapReduce ap-
plications, which depend on the workload characteristics as well, and from the underlying
cluster that executes the MapReduce program.



37

3.4 Benchmarking in MapReduce

A lot of research has been made in the field of characterizing and synthesizing the
workload for MapReduce applications, some of the most relevant are cited and explained
following:

• MRBS, specified in (SANGROYA; SERRANO; BOUCHENAK, 2012) as a MapRe-
duce Benchmark Suite, is a collection of MapReduce benchmarks, that includes
benchmarks covering five application domains and a wide range of execution sce-
narios like data-intensive and compute-intensive applications, batch and online in-
teractive applications. MRBS can also simulate various types of faults at different
rates, and considers different application workloads and data loads, and produces
extensive reliability, availability and performance statistics. It can be executed over
an on-premises private cluster, or in a third-party environment.

• In (CHEN et al., 2011), authors propose a framework for synthesizing workload for
MapReduce applications. Its approach is an interesting way to work with MapRe-
duce and, in the case of a very specific application to generate a workload for run-
ning tests with. In said work, authors analyze two production MapReduce traces to
develop a vocabulary for describing MR workloads, and after that, they develop a
framework that synthesizes workload with performance results closer to real work-
load. The analyzed data contains a log file of job submission and completion times,
data sizes for the input, shuffle and output stages, and the running time in task-
seconds of map and reduce functions.

• In the research exposed in (CHEN et al., 2010a) and (MISHRA et al., 2010), authors
talk about 3 main characteristics for the MapReduce jobs: duration, CPU usage and
Memory usage. They establish a few values for each characteristic in order to make
their benchmark comprehensive of the majority of possible MapReduce applica-
tions that can be found in production environments. Namely, authors talk about
small/large duration, small/medium/large CPU usage, and small/medium/large Mem-
ory usage. With the combination of the values, authors talk about 18 possible sizes
of the jobs.

In (CHEN et al., 2010b), the workload from a production environment is specified
as a collection of vectors which differ from each other in inter-job arrival time, in-
put size, shuffle-input ratio, and output shuffle ratio. Those metrics are very specific
for MapReduce jobs. In their production environment traces they identify different
performance gains when varying the underlying virtual infrastructure in a cloud en-
vironment, indicating how some combinations of sizes of virtual machine instances
are equivalent in terms of performance.

And in (CHEN et al., 2011), authors define the workload of MapReduce application
with several characteristics like: computation semantics, which can be understood
as a metric of how the Map and the Reduce functions will be programmed, data
characteristics, which would depend on the type of data analyzed by the MapRe-
duce application and patterns of arrival when the workload is real-time jobs. In
said work, also it is been said that the disk I/O in the nodes is a bottleneck for the
execution of MapReduce.

• Other work, like (BABU, 2010) and (HERODOTOU et al., 2011) present a way for
self-tuning of Map Reduce applications. In (HERODOTOU et al., 2011) authors



38

present a system that can automatically change some parameters of the MapReduce
application in execution time depending of the running performance. Said work
is based on (HERODOTOU; DONG; BABU, 2011) where the Elastisizer is used
to help the on-time cluster tuning. Conversely, in (BABU, 2010) some techniques
for tuning automatically the settings of Map Reduce programs are presented; in
contrast, authors also say that it is possible that no single approach is good enough
to set all high-impact job configuration parameters.

Table 3.2: Related work in Benchmarking for MapReduce applications

Author/Work Characteristics

(SANGROYA; SERRANO;
BOUCHENAK, 2012)

MRBS, a collection of MR benchmarks, covers 5 appli-
cation domains and a wide range of execution scenarios.

(CHEN et al., 2011), (CHEN
et al., 2010b), (CHEN et al.,
2010a) and (MISHRA et al.,
2010)

Framework for synthesizing workload for MapReduce
applications based on 3 main characteristics for the MR
jobs: duration, CPU usage and Memory usage Results
are close to real workload.

(BABU, 2010) and
(HERODOTOU et al.,
2011)

Self-tuning of Map Reduce applications. Can automati-
cally change parameters of the application in execution
time depending of the running performance.

Table 3.2 summarizes the related work developing benchmarks for MapReduce appli-
cations. It can be seen that MapReduce benchmarks attempt to include the most known
types of MapReduce applications. Benchmarks show a way to synthesize the workload
of MapReduce applications and they are either based on analysis of production traces or
based on studying the characteristics of the most common applications.

3.5 Concluding Remarks

In this chapter, it could be seen that there has been a lot of research about performance
evaluation, performance modeling and benchmarking in MapReduce. The large amount
of research in this field shows that it is a matter of interest and that it can be achieved in
several different ways.

The approach intended in this work is to model the execution time in general terms,
assigning values to the computing capacity of the MapReduce nodes and the processing
cost of the MapReduce applications.

Next chapter will specify the performance model and will talk about the definition of
the experiments that were carried out to assess such performance model.



39

4 PROPOSED MODEL AND EXPERIMENTAL DESIGN

This chapter talks about the proposed performance model for Hadoop and the speci-
fications of the performed experiments. Section 4.1 expresses a form of quantifying the
execution time of a Hadoop application as a formula based on the described Hadoop al-
gorithm in section 3.2. The Scenarios section talks about the platforms where the ex-
periments were run, namely: gradep, Grid’5000, Amazon Elastic MapReduce, and
Windows Azure HDInsight; and it also talks about the applications that were used as
benchmark for the experiments. The Specification of Experiments section explains how
the experimental design was defined as well as the values of the parameters used to assess
the model described in equation 4.12.

4.1 Proposed Hadoop Performance Model

As we referred in section 2.1, in order to carry out a performance evaluation of a
computer system, the System Under Test SUT and the Component Under Study CUS
have to be specified. The SUT is defined as the set of parts, with its corresponding input
and output data that is going to be tested. In our case of evaluating the performance of a
distributed system, running a MapReduce application, we have defined the System Under
Test SUT as the cluster of computers, running a set of MapReduce applications that uses
the Hadoop framework. The input and output data will be specific for each application
in the set, but in a general way, it will be a synthetic workload, specifically created for
testing the applications.

Similarly, the Component Under Study CUS will also be the cluster of computers
modeled as a black box. The reason for treating the cluster of computers as a whole is
to be able to understand its behavior with a general view, and not introduce any bias that
could make the model less general.

For the CUS there are 4 parameters for evaluation, namely:

1. W, the amount of workload the application is intended to process, expressed in units
of storage;

2. p, the number of computers the application will be run on top of, since it is a dis-
tributed application, it is supposed to be run on top of a cluster of computers, ex-
pressed as an integer;

3. A, the type of the MapReduce application, since MapReduce is a very versatile
framework and many different applications can be programmed with it. A will
be expressed as a the number of operations per unit of storage performed by the
application in Map and Reduce phases; and,



40

4. T, the processing capacity of the p computers that compose the cluster on top of
which the application will be run. T will be expressed in terms of the number of
operations per second that every machine in the cluster is capable of perform.

The first goal of this work is to obtain a mathematical model of the execution time of
a Hadoop program, as a function of the 4 parameters indicated above. In order to build
such a model, we have to make some considerations:

• Phases of the Hadoop algorithm, as they were described in section 3.2, follow a
particular order;

• Even though the Data Distribution phase is considered in (WHITE, 2012) as a part
of the Hadoop execution algorithm, it is not considered inside the execution time of
a Hadoop program, since the execution logs do not quantify this time. Also, when
working in a Cloud Computing environment, a provider does not charge a user for
the time spent in this phase, so the duration of the Data Distribution phase can be
disregarded;

• The Shuffle phase starts when the Map phase has reached a 5% of its completion,
and runs simultaneously with the Map phase;

• For matter of simplifying the model, the Shuffle phase time will be considered only
as the time when the Map phase has already finished;

• The Reduce phase starts only when the Shuffle phase has been fully completed;

• The Map and Reduce phases run in slots, that means that each node can run more
than one Map or Reduce task in parallel; usually, the number of slots is related with
the number of cores a node has.

Thus, the execution time of a Hadoop program can be modeled as the sum of the times
of all phases:

ttotal = tMAP + tSHUFFLE + tREDUCE (4.1)

The time of the Map phase tMAP can be computed as the product of the time of a single
Map task times the number of Map tasks per node:

tMAP = tUMAP ∗
nMAP

p
(4.2)

The time of a single Map task tUMAP is computed as the product of the amount of
workload for a single Map task WMAP (known as a chunk size) times the cost of a single
Map task CUMAP (expressed as a relation of the number of floating point operations FLOPs
required by the Map task and the chunk size), and divided by the capacity T of a single
node (the number of floating point operations FLOPs per second):

tUMAP =
WMAP ∗CUMAP

T
(4.3)

The number of Map tasks for a job is computed as the division between the total
Workload and the chunk size:

nMAP =

⌈
W

chunksize

⌉
(4.4)



41

The time of the Reduce phase tREDUCE can be computed as the product of the time of
a single Reduce task times the number of Reduce tasks per node:

tREDUCE = tUREDUCE ∗
nREDUCE

p
(4.5)

The time of a single Reduce task tUREDUCE is computed as the product of the amount of
input workload for a single Reduce task WUREDUCE times the cost of a single Reduce task
CUREDUCE , and divided by the capacity T of a single node (the number of floating point
operations FLOPs per second):

tUREDUCE =
W IN

UREDUCE
∗CUREDUCE

T
(4.6)

Replacing equations 4.3 and 4.6 into equations 4.2 and 4.5 we have:

tMAP =
WMAP ∗CUMAP

T
∗ nMAP

p
(4.7)

tREDUCE =
W IN

UREDUCE
∗CUREDUCE

T
∗ nREDUCE

p
(4.8)

Also, the time for the Shuffle phase tSHUFFLE can be computed as the product of the
size of the output data of a single Map task times the number of remaining Shuffle tasks
divided by the bandwith of the network:

tSHUFFLE =
W OUT

UMAP
∗ (nMAPmod p)

B
(4.9)

The size of the output data of a single Map task W OUT
UMAP

can be computed as the division
between the total amount of output data of the Map phase divided by the number of Map
tasks:

W OUT
UMAP

=
W OUT

MAP
nMAP

(4.10)

So, replacing equations 4.7, 4.8, 4.9 and 4.9 in equation 4.1 we have:

ttotal =
WMAP ∗CUMAP

T
∗ nMAP

p
+

W OUT
MAP ∗ (nMAPmod p)

nMAP ∗B
+

W IN
REDUCE ∗CUREDUCE

T
∗ nREDUCE

p
(4.11)

Simplifying W IN
REDUCE in 4.11

ttotal =
WMAP ∗CUMAP

T
∗ nMAP

p
+

W OUT
MAP ∗ (nMAPmod p)

nMAP ∗B
+

W IN
UREDUCE

∗CUREDUCE

T ∗ p
(4.12)

Equation 4.12 will serve as the performance model for MapReduce applications as
a function of the parameters of the CUS. Defining this equation was one of the main
objectives of the present work.



42

4.2 Scenarios

4.2.1 Hardware description

In order to verify the model of equation 4.12, experiments have to be performed in
several different environments, comprising private and public infrastructure, physical and
virtual cloud infrastructure. The environments where the tests were run in, are described
following:

1. Cluster gradep

The gradep is a computer cluster on premises of Institute of Informatics INF, in
the Federal University of Rio Grande do Sul UFRGS composed of 18 nodes in total.
Each node has an Intel Pentium 4 2.79 GHz CPU with 2 GB in RAM, and a Gigabit
Ethernet connection.

Each time the applications were run, the worker nodes were randomly chosen
amongst these 18 machines to avoid errors produced by running all times in the
same cluster nodes.

2. Grid’5000

The Grid’5000 (GRID5000, 2013) is a shared infrastructure built to support re-
search in many fields, housed in several cities, each city hosting a site organized
as a collection of clusters. It is developed by the project INRIA ALADDIN and
supported by the CNRS, RENATER e several universities.

The experiments were run in two clusters, one in the Nancy site and one in the
Grenoble site:

• In Nancy griffon nodes have an Intel Xeon L5420 2.5 Ghz processor, 16GB
in RAM, 320GB in SATA II hard drive, and Infiniband-20G Gigabit Ether-
net network interfaces. These nodes have an average processing power of 20
GFLOPS.

• In Grenoble edel, nodes have an Intel Xeon E5520 2.27 GHz processor, 24GB
in RAM, 64GB in SATA hard drive, and Infiniband-40G Gigabit Ethernet net-
work interfaces.

3. Amazon EMR

Amazon Elastic MapReduce EMR (EMR, 2013) is a web service from Amazon
Cloud services that uses Hadoop to process data across a cluster of Amazon EC2
instances (EC2, 2013).

For the purposes of this research work, the m1.small instance type was employed.
EC2 instance types are specified in (EC2, 2013). The processing power of Amazon
EC2 instances is expressed in ECU, which is a unit with the equivalent CPU power
of a 1.0-1.2 GHz 2007 Opteron or Xeon processor as specified to Amazon EC2
documentation. The m1.small instance type, for example, has the processing
power of 1 ECU.

According to (IOSUP et al., 2011), the theoretical peak performance can be com-
puted for different instances from the ECU definition: a 1.1 GHz 2007 Opteron can
perform 4 flops per cycle at full pipeline, which means at peak performance one



43

ECU equals 4.4 gigaflops per second. This value will be used for the T parameter
described in section 4.1.

4. Windows Azure HDInsight

Windows Azure HDInsight (HDINSIGHT, 2013) is a Hadoop-based service from
Microsoft Azure for running an Apache Hadoop solution in a Cloud Computing
environment. HDInsight uses the General Purpose Instances from Microsoft Azure.

In this work we used the Large (A3) compute instance type. According to the
Windows Azure documentation, the A3 compute instance type has a 4-core 1.6
GHz processor, and 7GB in RAM.

4.2.2 Software description

In the same way that it is necessary to perform the tests in several different hardware
environments, it is also necessary to test the performance model from equation 4.12 with
different MapReduce applications. Varying the applications in the tests help the model to
identify when it cannot be useful, or if it only serves for a certain type of applications.
The applications used for the tests are described following:

• In the gradep cluster, two applications, named sort and wordcount, were
used. These applications form part of the text-processing benchmark from
the MapReduce Benchmark Suite MRBS described in (SANGROYA; SERRANO;
BOUCHENAK, 2012).

As it is explained in (O’MALLEY, 2008), the sort application takes an input
of text registers, and sorts them depending on its contents. And the wordcount
application, as explained in (DEAN; GHEMAWAT, 2008), takes a text input and
counts the occurrences of each word, resulting in a sorted list of words indicating
how many times they appeared in the input text.

The wordcount application is CPU bound, meaning that the execution time is
mainly limited by the processing power of the CPU, and the sort application is
CPU bound and IO Bound, meaning that the execution time is mainly limited by
the CPU and the IO system.

• In the Grid’5000 environment we used the text-processing benchmark from
the MapReduce Benchmark Suite MRBS described in (SANGROYA; SERRANO;
BOUCHENAK, 2012) that includes a mix of basic applications to process text input
files. MRBS is a software that was programmed in Grid’5000, but can be run on top
of over an on-premises private cluster, or in a Cloud environment.

The text-processing benchmark includes sort and wordcount used in
the tests with the gradep cluster.

• And finally, in the Cloud environments of Amazon and Azure it was used a log
processing application, which basically is a text processing application similar to
the ones used in the environments explained above.

In 2013, a private company located in Brazil, asked the GPPD/INF research group
for help to develop and test a MapReduce application to process large amounts of
logs and to be run in a Cloud environment. The project supported the research
presented in this dissertation by providing a use case for what it is intended to



44

do, to predict the execution time of a MapReduce application running in a Cloud
environment. The log processing application takes the log records and rearranges
the contents of each text line, leaving the output slightly smaller than the output.
The logs contain the same information but in a different order. More information
about the application and the project can be found in (CARRERA et al., 2013).

4.3 Specification of Experiments

In (JAIN, 1991) authors describe several techniques to specify the execution of exper-
iments. The details of the specifications for this work are described following:

4.3.1 Evaluation Technique

In the present work we used two evaluation techniques, one for elaborating the per-
formance model in equation 4.12, and another one to assess said performance model. The
evaluation techniques are described following:

In sections 4.1 and 3.2, Analytical Modeling was first used as an evaluation technique,
where, based on theoretical models of MapReduce, a formula to model its performance
was developed. Analytical Modeling characterizes for evaluating performance in a the-
oretical form, by looking at the definitions of the SUT and CUS and thus understanding
and evaluating their behavior.

The second evaluation technique used in this work is Experimental Measurement. In
this technique, the analytical/theoretical hypothesis is tested with experimentation. The
experiments made to validate the analytical model in equation 4.12 are described in this
chapter and their results are described in chapter 5.

4.3.2 Performance Metrics

As it has been discussed earlier in this work, and modeled in equation 4.12, the perfor-
mance metric used in the experiments is the execution time of the applications, considered
from the beginning of the first Map operation, until the end of the last Reduce operation.

Hadoop generates log records in every execution, these logs are recorded . In this logs
there are timestamps for each process inside a MapReduce execution and we were able to
calculate the execution time by simply subtracting the time.

Subtracting these timestamps return a total execution time in milliseconds that had to
be transformed for the calculations in the next chapter.

4.3.3 Workload

In (JAIN, 1991), when the workload used in the experiments is a typical application,
and it is applied to test a set of environments, it is called a benchmark. The benchmarks
used in the experiments are specified in section 4.2.2. 1

4.3.4 Parameter Values

As established in section 4.1, the System Under Test SUT considered for this work
is a cluster of computers, forming a distributed system, running a distributed MapReduce

1In this work, it has been used the term benchmark as a group of applications that assess the performance
of a system. Also, in (JAIN, 1991) the Workload type for Performance Evaluation techniques is called a
benchmark when using typical applications with a synthesized input for evaluating the performance of a
system. This last one is the intended concept of the word benchmark in this section.



45

application that uses the Hadoop framework. Is this particular case, the Component Under
Study CUS will also be the cluster of computers.

The values for the 4 parameters for the CUS depend on the scenarios described in the
previous section.

Table 4.1 shows the used values in the different scenarios.

Table 4.1: Parameter Values

Scenario
gradep cluster Grid’5000 AWS Azure

Parameter

W {1, 5, 10, 20,
25} [GB]

{1, 10, 100}
[GB]

{1, 5, 10, 20,
25} [GB]

{1, 5, 10, 20,
25} [GB]

p {4, 8, 12, 16}
[nodes]

{10, 25, 50}
[nodes]

{4, 6, 8}
[nodes]

{4, 6, 8}
[nodes]

A text processing text processing log processing log processing
T gradep griffon, edel m1.small A3

The values for W for the experiments using the Grid’5000 infrastructure, were based
on the specifications of the text-processing benchmark of the MapReduce Bench-
mark Suite MRBS. All the other values for W were assigned based on the amount of
available machines in the gradep cluster and in the Cloud environments.

In table 4.1, W, the amount of workload is expressed in GB; p, the number of nodes
is an integer; A, the type of the Map Reduce application is expressed as an application
type, while in the formula this categorical value has to be changed for a numeric one in
[ f lops/GB]; and T, the node capacity is expressed as the name of the cluster the node
belongs to, or the instance type if it belongs to a Cloud environment, while in the formula
this categorical value has to be changed for a numeric one in [ f lops].

4.4 Concluding Remarks

In this chapter, the performance model for MapReduce was presented. The model
is a main objective of this work and it will be assessed with experimentation in order
to see how it behaves and if it is capable o predict the execution time of a MapReduce
application. Also, the experiments are specified using the concepts described in chapter
2, as well as the parameter values for the performance evaluation are described.

In the next chapter the results of the performed experiments will be presented.



46



47

5 RESULTS

In this chapter, the results of the experiments described in chapter 4 are presented, as
well as how the mathematical model of the execution time was specified as a function of
the variables. Section 5.1 talks about the experiments in physical clusters like gradep
and Grid’5000, an explanation about the results and the obtained formula; and section
5.2 talks about the results in cloud environments of Amazon Web Services and Windows
Azure, as well as its explanation about how the results were got and the formula.

The performed experiments had two objectives: the first one was to determine the
values of A, the number of operations per unit of storage performed by the application
in the Map and Reduce phases; and the second one is to assess the execution model of
equation 4.12 to verify its capacity for predicting the behavior of MapReduce applications
running in a Cloud environment.

One thing that was not said in the previous chapter is that the experiments in physical
clusters like gradep and Grid’5000 do not form part of the objectives of the present
work, the experiments were performed as a training and to see if it was possible to predict
the execution time of a distributed application.

5.1 Experiments on Physical Clusters

5.1.1 Private Cluster gradep

As shown in table 5.1, in the gradep cluster, two applications were run to obtain
and test the performance model. These applications were taken from the text-processing
benchmark of MRBS (SANGROYA; SERRANO; BOUCHENAK, 2012). Tests were run
with the combination of the following values for the parameters:

Table 5.1: Parameter values for gradep cluster

Parameter Value
W {1, 5, 10, 20, 25}
p {4, 8, 12, 16}
A sort, wordcount
T gradep

Values for W and p in table 5.1 were arbitrarily established in function of the available
nodes in gradep cluster. Values in table 5.1 were combined for each execution of the
experiments, and each combination was run 20 times, for a total of 800 executions.



48

After the executions for the sort application, we noticed that the Map phase out-
put W OUT

MAP is proportional to the Map phase input WMAP. This makes sense because the
amount of Map output data would depend on the amount of Map input data, and the
following relation can be established:

W OUT
MAP ∝ WMAP (5.1)

WMAP = k ∗W IN
REDUCE (5.2)

And when replacing equation 5.2 into equation 4.12, it simplifies to:

ttotal =
WMAP

p∗T
∗ (CUMAP + k ∗CUREDUCE )+

W OUT
MAP ∗ (nMAPmod p)

nMAP ∗B
(5.3)

Without making these simplifications in equation 4.12, we could not be able to calcu-
late the values for A. Equation 5.3 shows the linear relation between the execution time t
and the workload WMAP.

Also, since it was required to quantify the computational power of the cluster nodes,
that can be done using a benchmark. However, the tests were already performing a bench-
mark over the cluster, so, with the experimental data, it was possible compute the relation
between the cost for Map and Reduce phases CUMAP + k ∗CUREDUCE and the computational
power of the nodes T using the linear regression tool of the software R (R, 2011). The
value of the relation between the cost for Map and Reduce phases and the computational
power was computed to:

CUMAP + k ∗CUREDUCE

T
= 6.05e−7

[
s

Byte

]
(5.4)

With an standard error of SE = 1.15e−8 and a coefficient of determination of R2 =
0.88. A value of R2 = 0.88 gives the idea that the model is close to an optimal fit, but
considering this model being general and that it has to serve different values, it can be
recognized as a very good model. The final model for this type of application and envi-
ronment remains like this:

ttotal =
WMAP [Byte]

p
∗ (6.05e−7

[
s

Byte

]
)+

W OUT
MAP [Byte]∗ (nMAPmod p)

nMAP ∗B
[

Byte
s

] (5.5)

Following, in figure 5.1 it is shown the experimental data, grouped by the number of
nodes used in each experiment and the corresponding line for the mathematical model
with two auxiliary lines showing the 95% confidence interval of the model.

Figure 5.1 shows that the experimental results follow a clear trend that is followed by
the model. A 95% confidence interval of the model means that, in average, 95% of the
results will fall in the space between the two auxiliary lines.

After modeling the execution time, giving values to the formula of equation 5.3, more
experiments were run to assess the model, with the results detailed in table 5.2.



49

Figure 5.1: Execution time vs. Workload for the gradep cluster

●

●

●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

5 10 15 20 25

10
00

30
00

input size (GB)

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

p = 4 nodes

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

5 10 15 20 25

50
0

15
00

25
00

input size (GB)

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

p = 8 nodes

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

5 10 15 20 25

50
0

15
00

25
00

input size (GB)

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

p = 12 nodes

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

5 10 15 20 25

50
0

10
00

15
00

20
00

input size (GB)

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

p = 16 nodes

Table 5.2: Results for model assessing on the gradep cluster

Values Predicted Value Exp. Value Error

W=1, p=6 401.6 430.7 7.24%
W=1, p=10 373.4 374.8 0.38%
W=1, p=14 339.7 387.3 14.0%
W=5, p=6 899.3 962.1 6.98%

W=5, p=10 752.9 734.7 2.42%
W=5, p=14 687.9 653.1 5.05%
W=10, p=6 1521.4 1442.0 5.22%

W=10, p=10 1227.3 1241.0 1.12%
W=10, p=14 1123.0 1250.3 11.33%
W=20, p=6 2765.6 2526.2 8.66%

W=20, p=10 2176.0 2454.4 12.8%
W=20, p=14 1993.3 2021.5 1.41%
W=25, p=6 3387.7 3392.4 0.14%

W=25, p=10 2560.3 2557.0 3.52%
W=25, p=14 2428.5 2296.9 5.42%



50

Results in table 5.2 show that the model from equation 5.3, using the values in 5.4,
was actually able to predict the execution time of the MapReduce applications with a
reasonable error. This error is small considering that when expressed in absolute value it
reduces to a few minutes of execution. We have to keep in mind that these models are
meant to be used in Cloud infrastructures, where a few minutes of difference do not mean
excessive changes in the cost of using the platforms.

5.1.2 Grid’5000

Similarly to the experiments performed in the gradep cluster, the applications used
to obtain and assess the model were taken from the text-processing benchmark from
MRBS (SANGROYA; SERRANO; BOUCHENAK, 2012). In table 5.3, it can be seen
the parameter values for the experiments on Grid’5000:

Table 5.3: Parameter values for Grid’5000

Parameter Value
W {1, 10, 100}
p {10, 25, 50}
A text-processing
T griffon, edel

The text-processing benchmark contains 4 applications, from where there were as well
chosen two: sort and wordcount.

Experiments were run on two different clusters from Grid’5000, namely, Griffon and
Edel clusters. Each combination of the values described in table 5.3 was run at least 45
times, for a total of 1620 executions.

In the Griffon cluster, the computing power T was established with the value of 20
GFlops per second, the cost for Map and Reduce phases was computed to:

• CUMAP + k ∗CUREDUCE = 5.73e−4, with a standard error of SE = 3.01e−5 and a coef-
ficient of determination of R2 = 0.32 for the sorter application, and,

• CUMAP + k ∗CUREDUCE = 9.70e−4, with a standard error of SE = 4.59e−5 and a coef-
ficient of determination of R2 = 0.55 for the wordcount application.

In the Edel cluster, the computing power T was established with the value of 16
GFlops per second, the cost for Map and Reduce phases was computed to:

• CUMAP + k ∗CUREDUCE = 1.06e−3, with a standard error of SE = 3.71e−5 and a coef-
ficient of determination of R2 = 0.55 for the sorter application, and,

• CUMAP + k ∗CUREDUCE = 7.83e−4, with a standard error of SE = 5.41e−5 and a coef-
ficient of determination of R2 = 0.31 for the wordcount application.

The values of 20 and 16 GFlops per second were taken from the Grid’5000 web page
(GRID5000, 2013). The values for the cost for Map and Reduce phases were computed
like in the previous subsection using the software R (R, 2011).

Figures 5.2 and 5.3 show the execution time for the applications run in Grid’5000, with
the specifications shown in table 5.3. As it can be seen in figures 5.2 and 5.3, and in the



51

Figure 5.2: Execution time vs. Workload for the Griffon cluster running the Sorter appli-
cation

values of R2 for the Grid’5000 experiments, the results of the tests show a considerable
variation between executions, specially with a large workload. What was interesting is
that most executions did not end with errors, yet the execution times varied a lot.

One of the most probable reasons for this behavior in a distributed system can be the
fact that the infrastructure was shared amongst a large quantity of users, with no network
isolation. When the nodes ran the MapReduce applications they were also competing with
other cluster nodes running other applications. The main difference with the gradep
cluster is that the it is, in fact, private, so a shared network is no problem.

Further research is encouraged to assess the influence of network isolation in the vari-
ability of the execution time of distributed applications, specifically with MapReduce
applications. Further research might obtain a plausible answer for our variable behavior
found in Grid’5000.



52

Figure 5.3: Execution time vs. Workload for the Griffon cluster running the Word-count
application

5.2 Experiments on Cloud Infrastructure

As it has been said previously, the main goal for this research work is to obtain a
model able to predict the behavior of a MapReduce application in terms of execution
time. In this section we will see if the main goal of this work is achieved, and under what
conditions.

5.2.1 Amazon Elastic MapReduce

The experiments using the cloud infrastructure of Amazon Elastic MapReduce fol-
lowed the values shown in table 5.4. Each combination was run 10 times, for a total of
150 executions.

The main restrictions for only running 10 times was the budget and the fact that the
account for running the tests in Amazon Web Services belonged to the enterprise that



53

asked the GPPD/INF research group for assistance as it was explained in subsection 4.2.2
and in (CARRERA et al., 2013).

Table 5.4: Parameter values for Amazon Elastic MapReduce environment

Parameter Value
W {1, 5, 10, 20, 25}
p {4, 6, 8}
A log processing
T m1.small

The log processing application, as explained in section 4.2.2 is an example of a sort
application, meaning that the relation explained in equation 5.1 serves in this case as well.
So, the model to follow with this environment is the one explained in equation 5.3.

The value the cost for Map and Reduce phases was computed using the software R
(R, 2011) to:

CUMAP + k ∗CUREDUCE = 2.16e6
[

f lop
Byte

]
(5.6)

With an standard error of SE = 6.46e4 and a coefficient of determination of R2 = 0.88.

The formula for predicting the execution time of a MapReduce application in this case
would remain as:

ttotal =
WMAP [Byte]

p∗T
[

f lop
s

] ∗ (2.16e6
[

f lop
Byte

]
)+

W OUT
MAP [Byte]∗ (nMAPmod p)

nMAP ∗B
[

Byte
s

] (5.7)

Following, in figure 5.4 it is shown the experimental data, grouped by the number of
nodes used in each experiment and the corresponding line for the mathematical model
with two auxiliary lines showing the 95% confidence interval of the model.

After modeling the execution time, giving values to the formula of equation 5.3, more
experiments were performed in order to assess the model, with the results described in
table 5.5:



54

Figure 5.4: Execution time vs. Workload for the Amazon EMR Environment

●●●●●●●●

●●●●●●
●●

●●●●●
●●
●

●●●
●
●
●●●

●●●●●
●●
●

5 10 15 20 25

50
0

15
00

25
00

input size (GB)

ex
ec

ut
io

n 
tim

e 
(s

)

p = 4 nodes

●
●

●

●●●●●●●

●●

●●●●

●

●

●
●
●●●●
●

●●●●●●

●
●●●

●
●●

●

5 10 15 20 25

50
0

10
00

15
00

20
00

input size (GB)

ex
ec

ut
io

n 
tim

e 
(s

)

p = 6 nodes

●●●●●●●●●●

●●●●●
●●●

●

●

●●

●

●

●
●●
●

●
●
●●
●●
●

●
●●●
●

●●
●

5 10 15 20 25

50
0

10
00

15
00

input size (GB)

ex
ec

ut
io

n 
tim

e 
(s

)

p = 8 nodes

Table 5.5: Results for model assessing of the Amazon measures

Values Predicted Value Exp. Value Error

W=1, p=5 531.01 458.22 13.71%
W=1, p=7 488.23 361.53 25.95%
W=5, p=5 1061.4 870.24 18.01%
W=5, p=7 860.64 780.91 9.26%

W=10, p=5 1724.38 1556.93 9.71%
W=10, p=7 1326.15 1186.78 10.51%
W=20, p=5 3050.35 2826.88 7.33%
W=20, p=7 2257.17 2928.47 29.74%
W=25, p=5 3713.33 3556.38 4.23%
W=25, p=7 2722.68 2414.57 11.32%

Table 5.5 shows the percentage error from comparing the execution times obtained.
Errors show a gap between experimental and theoretical values, however, considering that
in a Cloud environment the execution times are charged by the hour or fraction, this values
should be considered important only when reaching values close to one hour.



55

5.2.2 Windows Azure HDInsight

Experiments using the Windows Azure HDInsight cloud infrastructure used values
from the table 5.6. Each combination was run 10 times, for a total of 150 executions.

Similarly to the experiments in Amazon Elastic MapReduce, the main restrictions for
only running 10 times each combination of parameter values were the budget and the fact
that we were not the owners of the account for running the tests.

Table 5.6: Parameter values for Windows Azure HDInsight

Parameter Value
W {1, 5, 10, 20, 25}
p {4, 6, 8}
A log processing
T A3

As in the previous case, the log processing application being an example of a sort
application, follows the model explained in equation 5.3. And, since there was no data to
assign a value to T for the A3 Azure node type, the relation between the cost for Map and
Reduce phases CUMAP + k ∗CUREDUCE and the computational power T was computed to:

CUMAP + k ∗CUREDUCE

T
= 4.14e−4

[
s

Byte

]
(5.8)

With an standard error of SE = 1.06e−5 and a coefficient of determination of R2 =
0.86.

ttotal =
WMAP [Byte]

p
∗ (4.14e−4

[
s

Byte

]
)+

W OUT
MAP [Byte]∗ (nMAPmod p)

nMAP ∗B
[

Byte
s

] (5.9)

In figure 5.5 it is shown the experimental data, grouped by the number of nodes used
in each experiment and the corresponding line for the mathematical model with two aux-
iliary lines showing the 95% confidence interval of the model.

After the execution time model was obtained, giving values to the formula of equation
5.3, more experiments were run to assess the model and to verify that it was able to
predict the performance of a MapReduce application running in the Azure HDInsight
cloud environment. Each combination of W and p was run 10 times as well, in order to
obtain the average and error values shown in table 5.7.

The values in table 5.7 show the percentage error from comparing the execution times
obtained. As in the previous section, since experiments deal with commercial Cloud
environments, where execution time is charged by the hour or fraction, this values should
be considered big when reaching values close to one hour.



56

Figure 5.5: Execution time vs. Workload for the Azure HDInsight Environment

●●●●●●●●●●

●●●●●●●●●●

●
●
●
●
●●
●
●●
●

●

●

●

●

●●
●●
●●

●●

●
●●●
●●●●

5 10 15 20 25

50
0

10
00

20
00

input size (GB)

ex
ec

ut
io

n 
tim

e 
(s

)

p = 4 nodes

●●●●●●●●●●

●●●●●●●●●●

●
●●
●●●●●●●

●●●

●

●

●●
●
●

●●●●
●
●●●

5 10 15 20 25

50
0

10
00

15
00

20
00

input size (GB)

ex
ec

ut
io

n 
tim

e 
(s

)

p = 6 nodes

●●●●●●●●●●

●●●●●●●●●●

●●
●●●●●●●●

●●
●●

●

●●●

●

●

●
●

●
●
●●

●●●●

5 10 15 20 25

50
0

10
00

20
00

input size (GB)

ex
ec

ut
io

n 
tim

e 
(s

)

p = 8 nodes

Table 5.7: Results for model assessing the measures on the Azure HDInsight Environment

Values Predicted Value Exp. Value Error

W=1, p=6 401.6 430.7 7.24%
W=1, p=10 373.4 374.8 0.38%
W=1, p=14 339.7 387.3 14.0%
W=5, p=6 899.3 962.1 6.98%

W=5, p=10 752.9 734.7 2.42%
W=5, p=14 687.9 653.1 5.05%
W=10, p=6 1521.4 1442.0 5.22%

W=10, p=10 1227.3 1241.0 1.12%
W=10, p=14 1123.0 1250.3 11.33%
W=20, p=6 2765.6 2526.2 8.66%

W=20, p=10 2176.0 2454.4 12.8%
W=20, p=14 1993.3 2021.5 1.41%
W=25, p=6 3387.7 3392.4 0.14%

W=25, p=10 2560.3 2557.0 3.52%
W=25, p=14 2428.5 2296.9 5.42%



57

Results for Azure HDInsight, shown in table 5.7 differ from the experimental results
from the executions in Amazon Elastic MapReduce, shown in table 5.5. This difference
is due to the characteristics of the virtual machines in both Cloud providers, which are
different, meaning that with different virtual machine characteristics, the execution time
of MapReduce applications would have to be also different. Values for the types of the
virtual machines are shown in table 4.1, and addressed in subsections 5.2.1 and 5.2.2,
where it can be seen the values T for both Cloud environments.

Finally, as it can be seen from the results of tables 5.5 and 5.7, it is possible to predict
the performance of a MapReduce application running in a Cloud Computing environment,
thus achieving the main goal of this work.

5.3 Concluding Remarks

In a general way, we can see that we were able to predict the execution time. The
error rates from tables 5.2, 5.5 and 5.7 show that the execution model is suitable for the
applications, and, since the predictions were done with a generalization of the applica-
tions, considering the parameter A as the amount of computing power required to process
a unit of storage, the model should work as well for other types of applications.

Also, from the results shown in section 5.1 we can say that a prediction model can be
useful in environments where there is some control of the communication layer amongst
the cluster nodes. This supposition will have to be proven accurate or inaccurate with
more experiments focusing on discovering where the big fluctuation of results come from.

Results in tables 5.5 and 5.7 show a validation of the model, within a certain range of
values. It could be said that this range is a constraint for the validity of the model. There
could be a divergence when performing experiments with values outside the range used in
this experiments, which is the main reason why further work, with different experimen-
tal values, is encouraged to be performed by researchers looking to apply the approach
described in this research with a broader reach.

In the next chapter, all the conclusions for this work will be summed up.



58



59

6 CONCLUSIONS

6.1 About the Results

This master’s thesis succeeded in accomplishing its objectives about predicting the
performance in terms of execution time of MapReduce applications in the Cloud. The
predictions were made using a mathematical model and a methodology to extend this
approach to other distributed applications. The mathematical model has the intended
form: t = f (W, p,A,T ).

The intention for using a general methodology is to be able to extend this approach,
as said in (CARRERA; GEYER, 2013), to other types of distributed applications running
in a Cloud Computing environment. The idea explained in (CARRERA; GEYER, 2013),
where it was said that following a performance evaluation methodology, it should be pos-
sible to predict the execution time of a distributed application in a Cloud environment and,
conversely, given a time constraint we could be able to know what virtual infrastructure
can be enough to execute the distributed application was validated and further research is
encouraged in order to test this approach in a more general manner.

Based on the Hadoop Algorithm model described in section 3.2, is was possible to
develop a successful mathematical model, expressed in section 4.1, for computing the ex-
ecution time of MapReduce applications. Similarly, following the procedures for perfor-
mance modeling and capacity planning described in sections 2.2 and 2.3, it was possible
to assess the mathematical model, and to find some practical simplifications to it, as it can
be seen in chapter 5.

The formula expressed in equation 4.12 is suitable for modeling the execution time of
MapReduce applications. Amongst its strengths, it can be said that it is a general model,
since it does not rely its computation on a specific type of application or hardware. It
models the execution time with general parameters like the computing power of nodes,
expressed as a number of operations per second performed by their processors, and the
computing cost of Map and Reduce phases, expressed as the number of operations that
the nodes have to process per unit of storage. This model should be able to compute the
execution time of a large set of MapReduce applications.

In the mathematical model expressed in equation 4.1, the communication amongst
worker nodes is represented by the corresponding tSHUFFLE , which is detailed in 5.3
as inversely proportional to the bandwidth B and directly proportional to the number of
nodes. In the experiments for this research work, this time was found to be very small
compared with the other two values tMAP and tREDUCE , however, this value could not be
disregarded in Cloud Computing environments where other users can have an effect over
the network usage and thus compromise the prediction of the execution of MapReduce
applications.



60

Findings about the proportionality between the input and the output in the Map phase
of sort and wordcount applications permitted the simplifications of the mathematical
model of the execution time of MapReduce applications. The simplifications of the the-
oretical model in equation 4.12, shown in chapter 5, favor us to see, with more ease, the
factors that have a direct impact on the execution time of the MapReduce applications.
The linear proportionality of the execution time and the amount of workload reflects an
important characteristic of MapReduce applications, which is that the applications mainly
depend on the size of the workload, and giving a lesser importance to other factors.

Understanding and modeling MapReduce applications as a relation between the amount
of processing operations per unit of storage processed shows a handy way for evaluating
the and predicting the performance of this type of applications. This approach is present
in other research projects like (KOLBERG et al., 2013) and (KONDO; ANDRZEJAK;
ANDERSON, 2008). This approach of thinking of MapReduce applications as opera-
tions with units of storage also permitted to model the type of working nodes in Cloud
environments considering mostly their processors.

For Cloud users, the capability to predict the execution time of applications running in
a Cloud model like Software as a Service or Infrastructure as a Service is important when
estimating the costs that could involve to deploy an infrastructure for an application. This
capability could be an interesting feature for Cloud services, and could help users plan
their developments.

6.2 Further Work

As it was stated in the motivation of this work, further work is encouraged to test
the approach described in this work with different distributed applications. Testing with
different MapReduce applications should allow to strengthen the mathematical model,
and better understand the behavior of the applications.

From the point of view of a Cloud provider, being able to tell the time that a distributed
application will take to run ‘a-priori’ is useful in business models like the Spot Instances
of Amazon (EC2, 2013). In said business model, providers offer virtual machines with
lower prices, based on the fact that they were reserved for other users for a longer time
than the one they were actually busy. So, the provider can re-lease the virtual machines
in lower prices. If a provider is able to know when a virtual machine will be freed, it can
predict when it can be used as a Spot Instance.

With the models exposed in chapter 5, a Cloud provider can use the approach ex-
plained in this work to program a feature of its Cloud platform where a Cloud user can
know how much time a given MapReduce application will take to run, letting him pro-
gram his budget.

As it was shown in the results in subsection 5.1.2, when running the experiments in
the Grid’5000 environment we were not able to carry out the performance model of the
MapReduce applications. There was a considerable variation amongst the execution time
measures, which we believe that was caused because of the variability of load over the
shared network through the execution of experiments. This considerable variation was not
found when running in Cloud Computing environments. With further experimentation we
should be able to identify the actual cause of this difference.



61

REFERENCES

ABAD, C. L.; ROBERTS, N.; LU, Y.; CAMPBELL, R. H. A storage-centric analy-
sis of MapReduce workloads: file popularity, temporal locality and arrival patterns. In:
WORKLOAD CHARACTERIZATION (IISWC), 2012 IEEE INTERNATIONAL SYM-
POSIUM ON, 2012. Proceedings. . . [S.l.: s.n.]. p.100–109, 2012.

ALMEIDA, V. A.; MENASCÉ, D. A. Capacity planning an essential tool for managing
Web services. IT professional, [S.l.], v.4, n.4, p.33–38, 2002.

ANDRZEJAK, A.; KONDO, D.; ANDERSON, D. P. Exploiting non-dedicated resources
for cloud computing. In: NETWORK OPERATIONS AND MANAGEMENT SYMPO-
SIUM (NOMS), 2010 IEEE, 2010. Proceedings. . . [S.l.: s.n.]. p.341–348, 2010.

ANDRZEJAK, A.; KONDO, D.; YI, S. Decision model for cloud computing under sla
constraints. In: MODELING, ANALYSIS & SIMULATION OF COMPUTER AND
TELECOMMUNICATION SYSTEMS (MASCOTS), 2010 IEEE INTERNATIONAL
SYMPOSIUM ON, 2010. Proceedings. . . [S.l.: s.n.]. p.257–266, 2010.

ANJOS, J.; KOLBERG, W.; GEYER, C. R.; ARANTES, L. B. Addressing Data-Intensive
Computing Problems with the Use of MapReduce on Heterogeneous Environments as
Desktop Grid on Slow Links. In: COMPUTER SYSTEMS (WSCAD-SSC), 2012 13TH
SYMPOSIUM ON, 2012. Proceedings. . . [S.l.: s.n.]. p.148–155, 2012.

ARMBRUST, M.; FOX, A.; GRIFFITH, R.; JOSEPH, A. D.; KATZ, R.; KONWINSKI,
A.; LEE, G.; PATTERSON, D.; RABKIN, A.; STOICA, I. et al. A view of cloud com-
puting. Communications of the ACM, [S.l.], v.53, n.4, p.50–58, 2010.

BABU, S. Towards automatic optimization of MapReduce programs. In: ACM SYM-
POSIUM ON CLOUD COMPUTING, 1., 2010. Proceedings. . . [S.l.: s.n.]. p.137–142,
2010.

BOUTABA, R.; CHENG, L.; ZHANG, Q. On Cloud computational models and the het-
erogeneity challenge. Journal of Internet Services and Applications, [S.l.], v.3, n.1,
p.77–86, 2012.

CARRERA, I.; GEYER, C. Impressionism in Cloud Computing. A Position Paper on Ca-
pacity Planning in Cloud Computing environments. In: INTERNATIONAL CONFER-
ENCE ON ENTERPRISE INFORMATION SYSTEMS (ICEIS), 15., 2013. Proceed-
ings. . . [S.l.: s.n.]. p.333–338, 2013.



62

CARRERA, I.; SCARIOT, F.; TURIN, P.; GEYER, C. An Example for Performance Pre-
diction for Map Reduce Applications in Cloud Environments. In: ESCOLA REGIONAL
DE REDES DE COMPUTADORES ERRC - RS RIO GRANDE DO SUL, 2013. Pro-
ceedings. . . [S.l.: s.n.]. 2013.

CHEN, Y.; GANAPATHI, A.; GRIFFITH, R.; KATZ, R. The case for evaluating
MapReduce performance using workload suites. In: MODELING, ANALYSIS &
SIMULATION OF COMPUTER AND TELECOMMUNICATION SYSTEMS (MAS-
COTS), 2011 IEEE 19TH INTERNATIONAL SYMPOSIUM ON, 2011. Proceedings. . .
[S.l.: s.n.]. p.390–399, 2011.

CHEN, Y.; GANAPATHI, A. S.; GRIFFITH, R.; KATZ, R. H. Analysis and lessons from
a publicly available google cluster trace. EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2010-95, [S.l.], 2010.

CHEN, Y.; GANAPATHI, A. S.; GRIFFITH, R.; KATZ, R. H. Towards understanding
cloud performance tradeoffs using statistical workload analysis and replay. University of
California at Berkeley, Technical Report No. UCB/EECS-2010-81, [S.l.], 2010.

DEAN, J.; GHEMAWAT, S. MapReduce: simplified data processing on large clusters.
Communications of the ACM, [S.l.], v.51, n.1, p.107–113, 2008.

DEELMAN, E.; SINGH, G.; LIVNY, M.; BERRIMAN, B.; GOOD, J. The cost of do-
ing science on the cloud: the montage example. In: ACM/IEEE CONFERENCE ON
SUPERCOMPUTING, 2008., 2008. Proceedings. . . [S.l.: s.n.]. p.50, 2008.

EC2. Amazon Web Services - EC2 Elastic Compute Cloud http://aws.amazon.
com/ec2 acessed on 07/23/2013.

EMR. Amazon Web Services - EMR Elastic MapReduce http://aws.amazon.
com/elasticmapreduce acessed on 07/23/2013.

FOSTER, I.; ZHAO, Y.; RAICU, I.; LU, S. Cloud computing and grid computing 360-
degree compared. In: GRID COMPUTING ENVIRONMENTS WORKSHOP, 2008.
GCE’08, 2008. Proceedings. . . [S.l.: s.n.]. p.1–10, 2008.

GRID5000. Grid 5000 Project https://www.grid5000.fr/ acessed on
07/23/2013.

HADOOP. Apache Hadoop https://www.grid5000.fr/ acessed on 12/28/2013.

HARBAOUI, A.; SALMI, N.; DILLENSEGER, B.; VINCENT, J.-M. et al. Automatic
performance modelling of black boxes targetting self-sizing. INRIA Tech. Rep. 7027,
[S.l.], 2009.

HDINSIGHT. Windows Azure HDInsight http://azure.microsoft.com/
en-us/documentation/services/hdinsight/ acessed on 12/02/2014.

HERODOTOU, H. Hadoop performance models. Technical Report CS-2011-05. Duke
Computer Science, [S.l.], 2011.

HERODOTOU, H.; BABU, S. Profiling, what-if analysis, and cost-based optimization of
MapReduce programs. In: VLDB ENDOWMENT, 2011. Proceedings. . . [S.l.: s.n.]. v.4,
n.11, p.1111–1122, 2011.



63

HERODOTOU, H.; DONG, F.; BABU, S. No one (cluster) size fits all: automatic cluster
sizing for data-intensive analytics. In: ACM SYMPOSIUM ON CLOUD COMPUTING,
2., 2011. Proceedings. . . [S.l.: s.n.]. p.18, 2011.

HERODOTOU, H.; LIM, H.; LUO, G.; BORISOV, N.; DONG, L.; CETIN, F. B.; BABU,
S. Starfish: a self-tuning system for big data analytics. In: FIFTH CIDR CONF, 2011.
Proceedings. . . [S.l.: s.n.]. 2011.

IBRAHIM, S.; JIN, H.; LU, L.; QI, L.; WU, S.; SHI, X. Evaluating mapreduce on virtual
machines: the hadoop case. In: Cloud Computing. [S.l.]: Springer, 2009. p.519–528,
2009.

IOSUP, A.; OSTERMANN, S.; YIGITBASI, M. N.; PRODAN, R.; FAHRINGER, T.;
EPEMA, D. H. Performance analysis of cloud computing services for many-tasks scien-
tific computing. Parallel and Distributed Systems, IEEE Transactions on, [S.l.], v.22,
n.6, p.931–945, 2011.

IOSUP, A.; YIGITBASI, N.; EPEMA, D. On the performance variability of produc-
tion cloud services. In: CLUSTER, CLOUD AND GRID COMPUTING (CCGRID),
2011 11TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON, 2011. Proceedings. . .
[S.l.: s.n.]. p.104–113, 2011.

JAIN, R. The art of computer systems performance analysis. [S.l.]: John Wiley & Sons
Chichester, 1991. v.182.

JIANG, D.; OOI, B. C.; SHI, L.; WU, S. The performance of mapreduce: an in-depth
study. In: VLDB ENDOWMENT, 2010. Proceedings. . . [S.l.: s.n.]. v.3, n.1-2, p.472–
483, 2010.

KARLOFF, H.; SURI, S.; VASSILVITSKII, S. A model of computation for MapReduce.
In: TWENTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGO-
RITHMS, 2010. Proceedings. . . [S.l.: s.n.]. p.938–948, 2010.

KOLBERG, W.; B. MARCOS, P. de; ANJOS, J. C.; MIYAZAKI, A. K.; GEYER, C. R.;
ARANTES, L. B. {MRSG} – A MapReduce simulator over SimGrid. Parallel Comput-
ing, [S.l.], v.39, n.4–5, p.233 – 244, 2013.

KONDO, D.; ANDRZEJAK, A.; ANDERSON, D. P. On correlated availability in
internet-distributed systems. In: IEEE/ACM INTERNATIONAL CONFERENCE ON
GRID COMPUTING, 2008., 2008. Proceedings. . . [S.l.: s.n.]. p.276–283, 2008.

MELL, P.; GRANCE, T. The NIST definition of cloud computing (draft). NIST special
publication, [S.l.], v.800, p.145, 2011.

MENASCÉ, D. A.; ALMEIDA, V. A.; DOWDY, L. W.; DOWDY, L. Performance by
design: computer capacity planning by example. [S.l.]: Prentice Hall Professional, 2004.

MIETZNER, R.; LEYMANN, F. Towards provisioning the cloud: on the usage of multi-
granularity flows and services to realize a unified provisioning infrastructure for saas ap-
plications. In: SERVICES-PART I, 2008. IEEE CONGRESS ON, 2008. Proceedings. . .
[S.l.: s.n.]. p.3–10, 2008.



64

MISHRA, A. K.; HELLERSTEIN, J. L.; CIRNE, W.; DAS, C. R. Towards characterizing
cloud backend workloads: insights from google compute clusters. ACM SIGMETRICS
Performance Evaluation Review, [S.l.], v.37, n.4, p.34–41, 2010.

O’MALLEY, O. Terabyte sort on apache hadoop. Yahoo, available online at:
http://sortbenchmark. org/Yahoo-Hadoop. pdf, [S.l.], p.1–3, 2008.

R. R: a language and environment for statistical computing. Vienna, Austria: R Foun-
dation for Statistical Computing. ISBN 3-900051-07-0 http://www.R-project.
org/.

SANGROYA, A.; SERRANO, D.; BOUCHENAK, S. Benchmarking Dependability of
MapReduce Systems. In: RELIABLE DISTRIBUTED SYSTEMS (SRDS), 2012 IEEE
31ST SYMPOSIUM ON, 2012. Proceedings. . . [S.l.: s.n.]. p.21–30, 2012.

SHI, J. Y.; TAIFI, M.; KHREISHAH, A. Resource planning for parallel processing
in the cloud. In: HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS
(HPCC), 2011 IEEE 13TH INTERNATIONAL CONFERENCE ON, 2011. Proceed-
ings. . . [S.l.: s.n.]. p.828–833, 2011.

SHVACHKO, K.; KUANG, H.; RADIA, S.; CHANSLER, R. The hadoop distributed file
system. In: MASS STORAGE SYSTEMS AND TECHNOLOGIES (MSST), 2010 IEEE
26TH SYMPOSIUM ON, 2010. Proceedings. . . [S.l.: s.n.]. p.1–10, 2010.

TIAN, F.; CHEN, K. Towards optimal resource provisioning for running mapreduce pro-
grams in public clouds. In: CLOUD COMPUTING (CLOUD), 2011 IEEE INTERNA-
TIONAL CONFERENCE ON, 2011. Proceedings. . . [S.l.: s.n.]. p.155–162, 2011.

VERMA, A.; CHERKASOVA, L.; CAMPBELL, R. H. ARIA: automatic resource infer-
ence and allocation for mapreduce environments. In: ACM INTERNATIONAL CON-
FERENCE ON AUTONOMIC COMPUTING, 8., 2011. Proceedings. . . [S.l.: s.n.].
p.235–244, 2011.

VIANNA, E.; COMARELA, G.; PONTES, T.; ALMEIDA, J.; ALMEIDA, V.; WILKIN-
SON, K.; KUNO, H.; DAYAL, U. Analytical performance models for MapReduce work-
loads. International Journal of Parallel Programming, [S.l.], v.41, n.4, p.495–525,
2013.

WANG, P.; HUANG, W.; VARELA, C. A. Impact of virtual machine granularity on
cloud computing workloads performance. In: GRID COMPUTING (GRID), 2010 11TH
IEEE/ACM INTERNATIONAL CONFERENCE ON, 2010. Proceedings. . . [S.l.: s.n.].
p.393–400, 2010.

WHITE, T. Hadoop: the definitive guide. [S.l.]: O’Reilly, 2012.

YELICK, K.; COGHLAN, S.; DRANEY, B.; CANON, R. S. et al. The Magellan report
on cloud computing for science. US Department of Energy Office of Science, Office of
Advanced Scientific Computing Research (ASCR) December, [S.l.], 2011.

ZHANG, Z.; CHERKASOVA, L.; LOO, B. T. Performance modeling of mapreduce jobs
in heterogeneous cloud environments. In: IEEE SIXTH INTERNATIONAL CONFER-
ENCE ON CLOUD COMPUTING, 2013. Proceedings. . . [S.l.: s.n.]. p.839–846, 2013.


