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METHODS AND APPARATUS TO
DETERMINE NETWORK LINK WEIGHTS

FIELD OF THE DISCLOSURE

[0001] This disclosure relates generally to communication
networks and, more particularly, to methods and apparatus to
determine network link weights.

BACKGROUND

[0002] The Internet includes multiple autonomous sys-
tems, each one using an interior gateway protocol to control
routing within the autonomous system. Interior gateway pro-
tocols, such as OSPF (Open Shortest Path First) and DEFT
(Distributed Exponentially-Weighted Flow spliTting), send
flow through forward links towards a destination node. OSPF
routes only on shortest-weight paths, whereas DEFT sends
flow on all forward links, but with an exponential penalty on
longer paths. Finding suitable weights for protocols such as
these is known as the weight setting problem.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] FIG. 11is block diagram of an example communica-
tion network represented as a graph comprising nodes and
links.

[0004] FIG. 2 is aplot of an example link routing cost that
is a function of link utilization.

[0005] FIG. 3 illustrates an example effect of varying a link
weight in the network graph of FIG. 1.

[0006] FIG. 4 is a block diagram of an example link weight
solver employing a genetic algorithm as described herein to
determine link weights for performing routing in the commu-
nication network of FIG. 1.

[0007] FIG. 5 is a flowchart representative of example
machine readable instructions that may be executed to imple-
ment the link weight solver of FIG. 4.

[0008] FIG. 6 is a flowchart representative of example
machine readable instructions thatmay be executed to imple-
ment genetic algorithm processing in the link weight solver of
FIG. 4.

[0009] FIG. 7 is a flowchart representative of example
machine readable instructions that may be executed to imple-
ment weight decoding in the link weight solver of FIG. 4.
[0010] FIG. 8 illustrates an example pseudocode listing
corresponding to the flowchart of FIG. 7.

[0011] FIG. 9 illustrates an example effect on routing flow
of incrementing a link weight in a set of possible link weights
determined by the link weight solver of FIG. 4.

[0012] FIG. 10 is a flowchart representative of example
machine readable instructions that may be executed to imple-
ment weight updating in the link weight solver of FIG. 4.
[0013] FIG. 11 illustrates an example pseudocode listing
corresponding to the flowchart of FIG. 10.

[0014] FIGS. 12-20H illustrate example performance
results for the link weight solver of FIG. 4.

[0015] FIG.21isablock diagram ofanexample processing
system that may execute the example machine readable
instructions of FIGS. 5-8, 10 and/or 11 to implement thelink
weight solver of FIG. 4.

DETAILED DESCRIPTION

[0016] Methods, apparatus and articles of manufacture to
determine network link weights are disclosed herein.
Example methods to determine link weights for routing in a
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communication network as described herein include itera-
tively updating a plurality of vectors using a genetic algo-
rithm, where each vector includes a plurality of individual
values decodable into possible link weights. Such example
methods also include decoding a vector updated using the
genetic algorithm into a plurality of link weights providing a
possible routing of a load through the communication net-
work. For example, the plurality of link weights are used to
split the load among a plurality of paths having respective
path lengths determined from the plurality of link weights,
with at least some of the paths having different path lengths
(e.g., such as in the case of DEFT-based routing). In some
examples, such methods further include determining a rout-
ing cost (also referred to as a fitness) associated with each
plurality of link weights decoded after each iteration of the
genetic algorithm, and when a processing convergence is
detected (e.g., such as when no further change in the mini-
mum routing cost is observed), selecting the plurality of link
weights associated with the minimum routing cost for per-
forming routing in the communication network. Example
genetic algorithms for iteratively updating the plurality of
vectors to determine respective pluralities of link weights are
described in greater detail below.

[0017] In some examples, the methods described herein
also perform a local search procedure to attempt to improve a
plurality of link weights decoded after an iteration of the
genetic algorithm. Examples of such a local search procedure
include incrementing a link weight of a plurality of link
weights decoded from a vector updated using the genetic
algorithm, and determining whether incrementing the link
weight of the plurality of link weights improved a routing cost
associated withtheplurality of link weights. Ifthe first DEFT
routing cost is improved, such example methods again incre-
ment the link weight of the plurality of link weights and
determinewhether the routing cost is furtherimproved. How-
ever, if the first DEFT routing cost is not improved, such
example methods can increment other link weights of the
plurality of link weights and determine whether associated
routing costs are improved, with the procedure terminating
when no improvement is observed after examining a number
of link weights of the plurality of link weights.

[0018] Various techniques for solving the weight setting
problem have been proposed for OSPF routing. Such tech-
niques include employing genetic algorithms to determine a
set of link weights that reduce or substantially minimize a
routing cost for OSPF routing. However, it is believed that
genetic algorithms have not been used to solve the weight
setting problem for DEFT link weights. As such, the example
methods, apparatus and articles of manufacture disclosed
herein overcome this deficiency in theart by utilizing genetic
algorithms to solve the weight setting problem for DEFT link
weights. Additionally, the example methods, apparatus and
articles of manufacture disclosed herein can determine a set
of link weights that reduces or substantially minimizes a
routing cost (also referred to a cost function, an objective
fimction, a solution fitness, a network congestion function,
etc.) under DEFT routing or, more generally, any routing
technique in which loads can be split unevenly among paths
having different path lengths determined from link weights.
Furthermore, the example methods, apparatus and articles of
manufacture disclosed herein can yield integer link weights
supportable by today’s network routing devices, thereby
enabling DEFT routing to be employed in existing conimu-
nication networks.
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[0019] Turning to the figures, an example network graph
100 representative of an example communication network is
illustrated in FIG. 1. As noted above, the Internet includes
many autonomous systems, each one using an Interior Gate-
way Protocol (IGP) to control routing within the autonomous
system (AS). The topology of an Internet network can be
represented as a directed graph, such as the graph 100 of FIG.
1, which includes a set of routers (represented as a set of
example nodes 101-104) and a set of communication links
(represented as a set of example arcs 111-114). A set of
routers under the control of one or more network operators
who apply the same routing policy is what characterizes an
AS. Given a demand matrix containing an amount of tratfic to
be sent between all pairs of routers, IGP routing protocols
establish rules on how loads will be sent from sources to
destinations within the AS.

[0020] A flexible routing model is the fractional multi-
commodity flow routing (referred to herein as OPT routing).
This routing model attempt to make the best possible use of
network link capacities. However, it is difficult to implement
this protocol in practice because of arbitrarily long paths, and
the arbitrarily small demand loads that can be routed on
high-capacity links. Therefore, telecommunication network
protocols are typically based on routing models that are less
efficient with respect to capacity utilization, but easier to
implement in practice.

[0021] Among existing IGP routing protocols, there are a
few thathave been long used in practice, such as the OSPF
routing protocol. Other IGP protocols have been recently
proposed and are not yet implemented in real networks, such
as the DEFT routing protocol. Both OSPF and DEFT are
link-state routing protocols. These protocols allow a network
operator to calculate paths on the network by setting adequate
link weights to balance loads traversing the network. The
loads are then sent through paths from sources to destinations,
and quantities such as network congestion, link utilization,
delay, etc., can be measured. The problem of determining
proper weights to reduce, improve or substantially optimize
an objective function or multiple conflicting objectives on
these metrics is known as theweightsetting problem (WSP).

[0022] An objective of intradomain traffic engineering is
the efficient utilization of the available network resources
within an AS under traffic constraints. The traflic constraints
can include QoS (Quality of Service) features, such as, but not
limited to, delay, jitter, number of hops, cost, etc. With these
aims, the weight setting problem has been studied for almost
adecade for OSPF routing. In OSPF, integer link weights are
set by the network operator. The flow is routed through the
shortest paths, with traffic being split evenly, in each node,
among all outgoing shortest path links. An objective is to
determine link weights such that, if the traffic is routed
according to the protocol, then congestion is minimized. This
single-objective routing, however, has its limitations. For
example, it does not deal directly with QoS requirements that
one may also want to optimize. Multi-objective routing can
help address these requirements.

[0023] A wide range of other link-state routing protocols
exist. One of these protocols is IS-IS (Intermediate System to
Intermediate System). The IS-IS protocol considers similar
rules as OSPF, with one difference being that OSPF is an
Internet protocol, whereas IS-IS is natively an ISO (Interna-
tional Organization for Standardization) network layer pro-
tocol.

Jun. 7, 2012

[0024] DEFT is another, recent IGP routing protocol.
DEFT considers not only shortest paths for routing, but also
directs flow through all forward paths, with exponential costs
being associated with longer paths. Furthermore, DEFT
weights are real numbers, whereas OSPF weights are inte-
gers. PEFT (Penalizing Exponential Flow-spliTting) is a
path-based routing protocol that splits trattic over multiple
paths with an exponential penalty on longer paths. One dif-
ference between the DEFT and PEFT protocols is that, in
terms of flow splitting, DEFT is a link-based protocol,
whereas PEFT is a path-based protocol. In PEFT, the outgo-
ing flow at any node is split among all shortest paths to a
destination node, whereas in DEFT, the outgoing flow is split
among all forwarding links. In PEFT, if an outgoing shortest
path link belongs to more than one shortest path, this link
receives more flow than a shortest path link that belongs to
only one shortest path to the destination node.

[0025] The example methods, apparatus and articles of
manufacture described herein solve the weight setting prob-
lem for DEFT weights using a biased random key genetic
algorithm (BRKGA). Furthermore, the example methods,
apparatus and articles of manufacture described herein can
support implementations of the DEFT protocol employing
integer weights, instead of real number weights. A benefit of
implementing the DEFT protocol with integer weights is that
routers typically used in practice allow only integer weights
and, therefore, allows the DEFT protocol with integer
weights as described herein to be employed in existing com-
munication networks. In the remainder of this disclosure,
DEFT with integer weights is also referred to as int-DEFT.

[0026] Example methods, apparatus and articles of manu-
facture to solve the weight setting problem for DEFT weights
using a BRKGA are described as follows. First, a description
of the general communication network routing problem is
provided. Then, the OSPFand DEFT protocols are described
in detail. The BRKGA framework for combinatorial optimi-
zation is then reviewed. Adapting BRKGA forthe OSPF and
DEFT weight setting problems is then disclosed, and example
performance results are provided.

[0027] To develop the general routing problem for a com-
munication network, let G=(V, E) be adirected graph (such as
the graph 100) modeling a network with a set of routers V
(e.g., represented by the example nodes 101-104) and links E
S VxV (e.g., represented by the examplearcs 111-114). Each
link (u, v)eE has a flow capacity ¢, ,. Let D be a demand
matrix, where D, , denotes the traffic flow from source node
u to target node v for u, veV. Let TSV be the subset of all
target nodes in V, i.e. T={veV: D, >0, ueV}. The general
routing problem is to find the flows £, , on each arc (u, v)eE
such that an appropriate objective fiinction is minimized and
all demands are delivered from their source nodes to their
target nodes.

[0028] An example of an objective function (also referred
as a routing cost, a solution fitness, a network congestion
function, etc.) to be minimized is given by Equation 1:

Z B(fs Vs Cup s Equation |

(uvlek

where @ is the network-link cost function, which depends on
the current flow and the link capacity. An example of @ is the
piecewise linear function given by Equation 2:
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DLy Cuy) = Equation 2
Juy if fuv/cuy <1/3,
3fuy =2/ 3cuy if 1/3 5 fuv/cuy <2/3,
10fiy = 16/3c,y  if 2/3  fyy/euy <9/10,
10ty = 178/ 3¢y, if 9/10 < fiu/cuw <1,
500f,, = 1468/3c,y  if 1S fuy /v, 11/10,
| 5000f,, - 16318/3c,, i 11/10% fo/ Cuye

A plot 200 of the link cost @ of Equation 2 as a function of the
linkutilization f, /c, , is illustrated in FIG. 2.

[0029] Letf,,’ be theflow with destination node t on link
(u, v). Then, at all intermediate nodes vt any resulting flow
must respect flow conservation constraints given by Equation
3

Z £ - Z f;.\rZDv,r- Equation 3

wiv,wek wuvek

andthe individual flow aggregation constraint given by Equa-
tion 4:

fuy = Z Sy Equation 4

el

As the constraints and the objective function ® are linear, an
optimum solution can be obtained by solving the linear pro-
gram OPT defined by Equation 1, Equation 3, Equation4,and
the non-negativity constraints f,,"Z0 and £, =0, forall (u,
v)eE and teT. The optimal solution of OPT is a lower bound
for the cost of any routing protocol.

[0030] The OSPF protocol, in contrast with the OPT solu-
tion, uses weights w,, , onlinks (u, v)eE (e.g., represented by
the example arcs 111-114 in FIG. 1) to determine the flow
distribution of demands. The weights are 16-bit integers in the
range [0, 2'°-1]. Fach router (e.g., represented by the
example nodes 101-104 of FIG. 1) maintains a link-state
database of the network topology and the weights, and regu-
larly exchanges state information with other routers in the
same AS to keep the database up-to-date. To route incoming
traffic, a router maintains a shortest path graph using the
weights as distances to all known target nodes within the AS.
The outgoing traffic of a node u with destination t is split
equally among all outgoing links on shortest paths to t.
[0031] The DEFT protocol relaxes the shortest-path-only
restriction of the OSPF protocol and also allows routing on
non-shortest paths. Under conventional DEFT routing, the
outgoing traffic of a node u is split proportionally among all
forward links to a target node t. Links belonging to non-
shortest paths receive exponentially greater penalties, and
consequently carry less flow.

[0032] Formally, todeterminehow load flows are to be split
under DEFT routing, let d,’ be the distance from node u to
destination node t. Thenh,, ,=d,"+w, ,-d,’is the difference
between the length of the shortest path and the length of the
path traversing link (u, v). The non-normalized flow fraction
I" in the direction to target node t traversing link (u, v) is
defined by Equation 5:
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Wy et ot Equation 5
ro,) = e if di > d)

0 otherwise

Equation 5 is then used to calculate the fraction of the total
flow for each outgoing link (u, v)of uto be T'(h,, V2., (, wye
I'(h, ). It can be shown that, in terms of total link cost and
maximum utilization, there always exists a weight setting
such that DEFT has a smaller total cost than OSPF.

[0033] FIG. 3 illustrates an example of increasing a link
weight in the network graph 100 to demonstrate differences
between the OSPF and DEFT routing protocols. In the
example of FIG. 3, the graph 100 is modified to yield an
example graph 300 by increasing the link weight for arc (b, t)
(having label 114 inFIG. 3) from weight P, (in network graph
100) to weight P, (in network graph 300). Suppose
P >P',>P,>0 and arc (u, a) (having label 111 in FIG. 3) and
arc (u, b) (having label 112 in FIG. 3) have the same positive
weight. In OSPF, the traffic from node u (having label 101 in
FIG. 3) to t (having label 104 in FIG. 3) is routed through the
shortest path u-b-t (i.e., from node 101, along link 112 to node
103, and then along link 114 to node 114). Node a (having
label 102 in FIG. 3) does not receive any flow. The weight
change does not alter this scenario. However, when routing
with DEFT, node a receives a fraction of the traffic and the
change in the weight of arc (b, t) causes a change of this
fraction. Increasing the weight of (b, t) causes a decrease in
the amount of flow routed through b, and a larger part of the
flow is now routed through a.

[0034] An example link weight solver 400 capable of solv-
ing the weight setting problem for DEFT weights (and/or
OSPF weights) is illustrated in FIG. 4. The link weight solver
400 includes an example genetic algorithm processor 405 to
implement a genetic algorithm for iteratively updating a
population of vectors (e.g., also referred to as evolving the
population of vectors), which are decoded into possible link
weights. In some examples, the genetic algorithm processor
405 continues to update the population of vectors until the
decoded link weights converge to a solution yielding a mini-
mum (or local minimum) of the routing cost (also referred to
as the solution fitness) given by Equation 1. Examples of
genetic algorithms that can be implemented by the genetic
algorithm processor 405 are described in greater detail below.
[0035] Thelinkweightsolver 400 also includes an example
weight decoder 410 to decode the population of vectors
updated by the genetic algorithm processor 405 into respec-
tivesets of possible link weights w,, , for thelinks (u, v) in the
network. The weight decoder 410 also determines the routing
cost (or fitness) of Equation 1 associated with each set of
possible link weights. The weight decoding and cost deter-
mination procedure performed by the weight decoder 410 can
depend upon the type of weights being determined, such as
DEFT weight, OSPF weights, etc. Example processing per-
formed by the weight decoder 410 is described in greater
detail below.

[0036] The link weight solver 400 further includes an
example weight updater 415 to perform a local search to
modify values of one or more weights in each set of possible
link weights decoded by the weight decoder 410 to attempt to
improve the cost (or fitness) associated with each set of pos-
sible link weights. In some examples, the weight updater 415
increments one weight in a set of possible link weights, and
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determines whether incrementing this weight improved the
routing cost (or fitness) associated with this set of possible
link weights. If the routing cost is improved, this same link
weight is incremented again to determine whether the routing
cost is further improved. However, if incrementing the weight
does not improve the routing cost, other weights in this set of
possible link weights are incremented and the resulting rout-
ing cost is again examined. In some examples, this local
search procedure terminates for a particular set of possible
link weights when no routing cost improvement is observed
after incrementing some number (e.g., specified as a configu-
ration parameter) of the link weights in the set. In the case of
determining DEFT weights, the weight updater 415 can
implement a dynamic flow update algorithm to determine the
new routing cost resulting from incrementing a weight in a set
of possible link weights. Example processing performed by
the weight updater 415 is described in greater detail below.
[0037] An example input interface 420 is also included in
the link weight solver 400 to receive input information, con-
figuration parameters, etc., for use by one or more of the
genetic algorithm processor 405, the weight decoder 410 and
the weight updater 415. Examples of the information and
parameters received or otherwise obtained by the input inter-
face 420 include, but are not limited to, a graph G describing
the topology of the routers V and links E forming the com-
munication network, the tarset nodes T of the network, the
demand matrix D specifying the load (or demand) to be
conveyed from source nodes to the target nodes in the net-
work, configuration parameters for the genetic algorithm
implemented by the genetic algorithm processor 405, etc. The
input interface 420 can be implemented by any type of inter-
face technology, processor, etc., such as the interface circuit
2124 and input device(s) 2126 of the processing system 2100,
which is described in greater detail below in connection with
FIG. 21.

[0038] An example output interface 425 is included in the
link weight solver 400 to output or otherwise provide the
solution for the set of link weights as determined by the
genetic algorithm processor 405, the weight decoder 410 and
the weight updater 415. In some examples, the output inter-
face 425 also provides the routing cost (or fitness) associated
with this resulting set of link weights. The output interface
425 can be implemented by any type of interface technology,
processor, etc., such as the interface circuit 2124 and input
device(s) 2126 of the processing system 2100, which is
described in greater detail below in connection with FIG. 21.
[0039] The link weight solver 400 further includes storage
430 for storing the sets of possible link weights, the set of link
weights determined to be the solution to the weight setting
problem, the input/configuration information, etc. The stor-
age 430 can be implemented using any type of storage or
memory, such as the mass storage device 2130 and/or the
volatile memory 2118 of the processing system 2100, which
is described in greater detail below in connection with FIG.
21.

[0040] While an example manner of implementing link
weight solver 400 has been illustrated in FIG. 4, one or more
ofthe elements, processes and/or devices illustrated in FIG. 4
may be combined, divided, re-arranged, omitted, eliminated
and/or implemented in any other way. Further, the example
genetic algorithm processor 405, theexample weight decoder
410, the example weight updater 415, the example input
interface 420, the example output interface 425, the example
storage 430 and/or, more generally, the link weight solver 400
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of FIG. 4 may be implemented by hardware, software, firm-
ware and/or any combination of hardware, software and/or
firmware. Thus, for example, any of the example genetic
algorithm processor 405, the example weight decoder 410,
the example weight updater 415, the example input interface
420, the example output interface 425, the example storage
430 and/or, more generally, the example link weight solver
400 could be implemented by one or more circuit(s), pro-
grammable processor(s), application specific integrated cir-
cuit(s) (ASIC(s)), programmable logic device(s) (PLD(s))
and/or field programmable logic device(s) (FPLD(s)), etc.
When any of the appended apparatus claims areread to cover
a purely software and/or firmware implementation, at least
one of the example link weight solver 400, the example
genetic algorithm processor 405, the example weight decoder
410, the example weight updater 415, the example input
interface 420, the example output interface 425 and/or the
example storage 430 are hereby expressly defined to include
a tangible computer readable medium such as a memory,
digital versatile disk (DVD), compact disk (CD), etc., storing
such software and/or firmware. Further still, the example link
weight solver 400 of FIG. 4 may include one or more ele-
ments, processes and/or devices in addition to, or instead of,
those illustrated in FIG. 4, and/or may include more than one
ofany or all of the illustrated elements, processes and devices.

[0041] Flowcharts and pseudocode listings representative
of example machine readable instructions that may be
executed to implement the example link weight solver 400,
the example genetic algorithm processor 405, the example
weight decoder 410, the example weight updater 415, the
example input interface 420, the example output interface 425
and/or the example storage 430 are shown in FIGS. 5-8 and
10-11. In these examples, the machine readable instructions
represented by each flowchart or pseudocode listing may
comprise one or more programs for execution by a processor,
such as the processor 2112 shown in the example processing
system 2100 discussed below in connection with FIG. 21.
Alternatively, the entire program or programs and/or portions
thereof implementing one or more of the processes repre-
sented by the flowcharts and pseudocode listings of FIGS. 5-8
and 10-11 could be executed by a device other than the pro-
cessor 2112 (e.g., such as a controller and/or any other suit-
able device) and/or embodied in firmware or dedicated hard-
ware (e.g., implemented by an ASIC, a PLD, an FPLD,
discrete logic, etc.). Also, one or more of the machine read-
able instructions represented by the flowcharts and
pseudocode listings of FIGS. 5-8 and 10-11 may be imple-
mented manually. Further, although the example machine
readable instructions aredescribed with reference to the flow-
charts and pseudocode listings illustrated in FIGS. 5-8 and
10-11, many other techniques for implementing the example
methods and apparatus described herein may alternatively be
used. For example, with reference to the flowcharts and
pseudocode listings illustrated in FIGS. 5-8 and 10-11, the
order of execution of the blocks/lines may be changed, and/or
some of the blocks/lines described may be changed, elimi-
nated, combined and/or subdivided into multiple blocks/
lines.

[0042] As mentioned above, the example processes of
FIGS. 5-8 and 10-11 may be implemented using coded
instructions (e.g.,computer readable instructions) stored on a
tangible computer readable medium such as a hard disk drive,
a flash memory, a read-only memory (ROM), a CD, a DVD,
a cache, a random-access memory (RAM) and/or any other
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storage media in which information is stored for any duration
(e.g., for extended time periods, permanently, briefinstances,
for temporarily buffering, and/or for caching of the inforima-
tion). As used herein, the term tangible computer readable
medium is expressly defined to include any type of computer
readable storage and to exclude propagating signals. Addi-
tionally or alternatively, the example processes of FIGS. 5-8
and 10-11 may be implemented using coded instructions
(e.g.,computer readable instructions) stored on a non-transi-
tory computer readable medium, such as a flash memory, a
ROM, a CD, a DVD, a cache, a random-access memory
(RAM) and/or any other storage media in which information
is stored for any duration (e.g., for extended time periods,
permanently, brief instances, for temporarily buffering, and/
or for caching of the information). As used herein, the term
non-transitory computer readable medium is expressly
defined to include any type of computer readable medium and
to exclude propagating signals. Also, as used herein, the terms
“computer readable” and “machine readable” are considered
equivalent unless indicated otherwise.

[0043] Example machine readable instructions 500 that
may be executed to implement the link weight solver 400 of
FIG. 4 to determine a set of link weights for performing
routing (e.g., DEFT or OSPF routing) in a communication
network are represented by the flowchart shown in FIG. 5.
With reference to the preceding figures and associated
descriptions, the machine readable instructions 500 begin
execution at block 505 of FIG. 5 at which the genetic algo-
rithm processor 405 included in the link weight solver 400
performs an iteration of a biased random key genetic algo-
rithm to update (e.g., evolve) a population of vectors each
containing a set of keys decodable into a corresponding set of
possible link weights for the links of a communication net-
work. Example machine readable instructions that may be
used to implement the processing at block 505 are illustrated
in FIG. 6 and described in greater detail below.

[0044] At block 510, the weight decoder 410 included in
the link weight solver 400 decodes each set of keys included
in each updated (e.g., evolved) vector of the population into
respective sets of possible link weights (such as DEFT
weights or OSPF weights). Additionally, at block 510 the
weight decoder 410 determines therouting cost (or fitness) of
Equation 1 for each decoded set of possible link weights.
Example machine readable instructions that may be used to
implement the processing atblock 510 are illustrated in FIGS.
7-8 and described in greater detail below.

[0045] Atblock 515, theweightupdater 415 included inthe
link weight solver 400 performs a local search to modity (e.g.,
repeatedly increment) values of one or more weights in each
set of possible link weights decoded at block 510 to attemptto
improve the cost (or fitness) associated with each set of pos-
siblelink weights. Forexample, in the case of DEFT weights
being decoded at block 510, the weight updater 415 may
implement a dynamic flow update algorithm to determine the
new routing cost resulting from moditying (e.g., increment-
ing) a weights at block 515. Example machine readable
instructions that may be used to implement the processing at
block 515 are illustrated in FIGS. 9-11 and described in
greater detail below.

[0046] At block 520, the link weight solver 400 determines
whether the iterative processing performed at blocks 505-515
has converged to a solution for the set of link weights. For
example, the link weight solver 400 may determine that pro-
cessing has converged when the minimum routing cost (or
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best fitness) among the set of possible link weights deter-
mined via processing at blocks 505-515 remains unchanged
after one or more successive iterations. If processing has not
converged (block 520), processing returns to block 505 to
begin another iteration. However, if processing has con-
verged, then at block 520 the link weight solver 400 selects
the set of link weights having the lowest routing cost (or best
fitness) to be the solution for weight setting problem and,
thus, the set of link weights for performing routing (e.g.,
DEFT or OSPF routing) in the communication network.
Execution of the example machine readable instructions 500
then ends.

[0047] Example machine readable instructions 505 that
may be executed to implement the genetic algorithm proces-
sor 405 of FIG. 4 and/or perform the genetic algorithm pro-
cessing at block 505 of FIG. 5 are illustrated in FIG. 6.
Genetic algorithms, such as one or more of the example
genetic algorithm implemented by the genetic algorithm pro-
cessor 405 and/or represented by the machine readable
instructions 505 of FIG. 6, mimic survival of the fittest to find
good quality (e.g., optimal or near-optimal) solutions to com-
binatorial optimization problems. Using generally-accepted
terminology for describing genetic algorithms, solutions are
associated with individuals in a population. Each individual’s
chromosome encodes the solution. Each chromosome is
made up of strings of genes, each of which takes on a value,
called an allele, from some alphabet. The fitness of a chro-
mosome is correlated with the objective function value of the
solution encoded by the chromosome. Over a number of
generations (eg. iterations of the genetic algorithm), indi-
viduals that make up a population are evolved. At each gen-
eration (e.g., iteration), offspring of the current population are
produced to make up the population of the next generation.
Mutation takes place in genetic algorithms as a means to
escape entrapment in local minima. Individuals are selected
at random for mating. The probability that an individual is
selected is proportional to the fitness of that individual. This
way, the genetic material from the most fit individuals is
passed on to the next generation (corresponding to survival of
the fittest evolution).

[0048] Examples of genetic algorithms that can be imple-
mented by the genetic algorithm processor 405 and/or the
machine readable instructions 505 of FIG. 6 are the random
key genetic algorithm (RKGA) and the biased RKGA
(BRKGA). In RKGA and BRKGA, chromosomes are repre-
sented as a vector of random real numbers (also referred to as
random keys) in the interval [0,1]. A decoder, such as the
weight decoder 415, takes as input any vector of random keys
and associates with it a solution of the combinatorial optimi-
zation problem (e.g., such as the weight setting problem) for
which an objective value or fitness can be computed (e.g.,
such as the routing cost of Equation 1).

[0049] The initial population in an RKGA or BRKGA is
made up of P vectors of random keys, where P can be a
configuration parameter. Each key for each vector in the
initial population is generated at random in the real interval
[0,1]. After decoding each individual, the population is par-
titioned into two groups of individuals: a smaller group of p,
elite individuals containing those individuals with the best
fitness values, and a larger group with the remaining P-p,
non-elite individuals, where p,<P-p,. To evolve the popula-
tion, anew generation of individuals is produced. RKG A and
BRKGA use an elitist strategy to evolve the population from
one generation to the next. In such a strategy, all of the elite
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individuals of generation k are copied unchanged to genera-
tion k+1. RKGAs and BRKGAs implement mutation by
introducing mutants into the population. A mutant is simply a
vector of random keys generated in the same way that an
element of the initial population is generated. At each gen-
eration a small set of p,, mutants is introduced into the popu-
lation. Discounting the p, elite individuals and the p,,
mutants, P-p,-p,, additional individuals need to be produced
to complete the P individuals that make up the population of
the next generation. These offspring are produced through
mating.

[0050] For example, after all individuals aresorted by their
fitness values, the population is partitioned into a set of elite
solutions, containing the most fit (e.g., lowest routing cost)
solutions, and another of the remaining non-elite solutions.
Thep, elite random-key vectors are copied without change to
the next population. The p,, mutant individuals are randomly
generated and placed in the new population. The remainder of
the population of the next generation is completed by cross-
over. In a RKGA, two parents for mating are selected at
random from the entire population. In a BRKGA, each off-
spring is generated by mating one parent chosen at random
(with repetition) from the elite partition in the current popu-
lation and the other parent is chosen at random (also with
repetition) from the non-elite partition. This way, an indi-
vidual can produce more than one offspring in the same
generation. Mating in both RKGA and BRKGA is performed
with parameterized uniform crossover. For example, let
p.>0.5 denote the probability that an offspring inherits the
key of its elite parent and let n denote the number ofkeys in a
random-key vector. Then, for i=1,. . ., n,the i-th allele c(i) of
the offspring c takes on the value of the i-th allele (i) of the
elite parent e with probability g, and the value of the i-thallele

e(i) of the non-elite parent e with probability 1-p,. In this
way, an offspring is more likely to inherit characteristics of
the elite parent than those of the non-elite parent (correspond-
ing to survival of the fittest evolution). Because any random
key vector can be decoded into a solution, the offspring result-
ing from mating is always valid and, thus, can be decoded into
a solution of the combinatorial optimization (e.g., weight
setting problem).

[0051] Based on the foregoing description of RKGAs and
BRKGAs, execution of the machine readable instructions
505 of FIG. 6 to implement the genetic algorithm processor
405 of FIG. 4 and/or perform the genetic algorithm process-
ing at block 505 of FIG. 5 begins at block 605 at which the
genetic algorithm processor 405 determines whether an ini-
tialiteration of the genetic algorithm isbeing performed. Ifan
initial iteration is being performed (block 605), then at block
610 the genetic algorithm processor 405 initializes the con-
figuration parameters of the genetic algorithms. Examples of
paranieters initialized at block 610include, butarenotlimited
to, the population size (P), the elite set size (p..), the mutation
set size (p,,), the mating crossover probability (p,), one or
more mutation probabilities (described in greater detail
below), etc. At block 615, the genetic algorithm processor
405 initializes, as described above, the vector for each indi-
vidual of the population to have a set of random keys, where
each key is decodable into a respective possible link weight,
as also described above.

[0052] However, if an initial iteration is not being per-
formed (block 605), then a new generation of the population
is to be determined and, thus. at block 620 the genetic algo-
rithm processor 405 partitions, as described above, the popu-
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lation of vectors into an elite group and a non-elite group
based on the population and elite set sizes configured at block
610, and the fitness (e.g., routing cost) associated with each
vector in the population. At block 625, the genetic algorithm
processor 405 evolves (e.g., updates) the population of vec-
tors into a new generation using crossover matingand muta-
tion, as described above, based on the crossover probability,
mutation set size and one or more mutation probabilities
configured at block 610. Execution of the genetic algorithm
iteration performed by the example machine readable instruc-
tions 505 of FIG. 6 then ends.

[0053] In an example implementation, a BRKGA imple-
mented by the genetic algorithm processor 405 and/or the
example machine readable instructions 505 is configured as
follows. The population is partitioned such that the set of elite
solutions is made up of the 25% most fit individuals (e.g.,
p.=0.25p). The number of mutants created at each new gen-
eration corresponds to 5% of the new population (e.g., p,,=O0.
05p). Additionally, another form of mutation is performed in
which, for each gene, with a mutation probability of 1% (or
any other probability value), each allele (e.g., each key) of the
child inherits, in the crossover operator, anew random key in
the interval (0,1). Furthermore, ifthe child does notinheritthe
new random key, then the probability that a child inherits the
corresponding allele (e.g., key) of the elite parent is 70% (e.g.,
p,=0.7).

[0054] Example machine readable instructions 510 that
may be executed to implement the weight decoder 410 of
FIG. 4 and/or perform weight decoding and routing cost
determination at block 510 of FIG. S are illustrated in FIGS.
7 and 8. The example machine readable instructions 510
correspond to weight decoding implementation to determine
DEFT weights for DEFT routing in a comtnunication net-
work. To provide context for the descriptions of FIGS. 7 and
8, an example implementation of the weight decoder 410 to
perforn1 OSPF weight decoding is first described.

[0055] Given a vector of keys determined by the genetic
algorithm processor 405 using the BRKGA described above
in connection with FIG. 6, the weight decoder 410 produces
anetwork flow for which the congestion is computed with the
network congestion function of Equation 1. In the BRKGA,
an individual of the population is encoded as a vector x of
n=IEl random keys, where each random key x,e(0,1), for i=1,
..., n. Given a particular individual vector x, a respective
initial OSPF weight vector can be decoded by the weight
decoder 410 to have individual link weights of W, =[ X,XW .. |,
where w,, , =20 (or any other appropriate value). In such an
example, initial OSPF link weightsareintegers in the interval
[1,20]. Starting from an initial OSPF weight vector, the
weight updater 415 performs a fast local search to try to
decrease network congestion by simple changes in individual
link weights.

[0056] An example local search procedure examines the
effect of increasing the weights of a subset of the links (e.g.,
arcs). The candidate links are links whose weight is smaller
thanw,,,,, and the candidates are visited in decreasing order
of their routing cost #(f,, , ¢, ). To reduce the routing cost of
acandidate link, theprocedureattempts to increase its weight
(within a given range) to reduce its load. If this leads to a
reduction of the overall routing cost, the change is accepted,
and the procedure is restarted. Otherwise, the increase is
rejected and the procedure continues with the next candidate
link.
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[0057] The local search is repeated until k candidate arcs
havetheirweights increased without improving the solution.
In some example, the weight updater 415 is configured with
k=5 (or some other relatively small value) to keep the search
neighborhood small and, thus, help preserve the diversity of
the population.

[0058] To develop an implementation of the weight
decoder 410 for DEFT weights, recall that, in OSPF routing,
the flow on each node is evenly split among all shortest path
links leaving this node with destination t. In DEFT, the load in
anode u is splitamong all outgoing links (u, v) (and not only
on links on the shortest path) in the direction of t, i.e. when
d,”>d,’. Moreover, the load is not splitequally among all links
as in OSPF. Instead, DEFT applies an exponential penalty to
longer paths between origin-destination pairs such that more
load is routed through links that result in shorter paths.
[0059] Also,incontrastto integer OSPF weights, the DEFT
weights are positive real numbers. Therefore, an implemen-
tation of DEFT on current routing hardware has to decide how
to map the real DEFT weights onto an available range of
integer weights, typically a 16-bitinteger. Another issue with
DEFT is how to handle small flow fractions. Even a path that
is considerably longer than the shortest path to the target will
receive a flow. This flow, however, can be very small, because
the assigned fraction of flow decreases exponentially. As
such, distributing flows to much longer paths can increase
communication latency.

[0060] To solve these problems, some example implemen-
tations of the weight decoder 410 described herein work with
integer weights, but use a scaling parameter p. Real-valued
DEFT distances are obtained by dividing the integer distances
by p. This integer-based DEFT implementation is referred to
herein as int-DEFT when appropriate to avoid ambiguity. In
the experiments described below, a scaling parameter of
p=1.8 is used, although any other scaling parameter could
alternatively be used.

[0061] Toavoid routing on long paths with a marginal flow
contribution, some examples of the weight decoder 410
employ a maximum gap g, and route flow only on links whose
integer gap h,,," is at most g. In the experiments describe
below, the maximum gap is set to g=9, which excludes from
routing those paths which would receive a fraction of the flow
having less than e™'*/*-%~8.39% ofthe flow routed on a short-
est path. In such examples employing a maximum gap, the
non-normalized flow fraction I in the direction to target node
t traversing link (u, v) as defined in Equation 5 is modified to
become Equation 6:

r etolr if dy>dand K, <g Equation @

0 otherwise.

[0062] Withthe foregoing descriptionof an example imple-
mentation of the weight decoder 410 to support DEFT as a
reference, the example machine readable instructions 510 are
now described. FIG. 7 illustrates the example machine read-
able instructions 510 in the form of a flowchart, whereas FIG.
8 illustrates the example machine readable instructions 510 in
the form of pseudocode. Execution of the example machine
readable instructions 510 executed to implement the weight
decoder 410 of FIG. 4 and/or perform weight decoding and
routing cost determination at block 510 of FIG. 5 begins at
block 705 of FIG. 7 at which the weight decoder 410 obtains
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inputs for decoding a population of vectors determined using,
forexample, the BRKGA procedure describedabove into sets
of possible DEFT weights. For example, the parameters
obtained at block 705 can include, but are not limited to,
graph G describing the topology of the routers V and links E
forming the communication network, the target nodes T of the
network, the demand matrix D specifying the load (or
demand) to be conveyed from source nodes to thetarget nodes
in the network, a current possible weight solutioncorrespond-
ing to a current set of possible DEFT weights w determined
from one of the updated population vectors resulting from the
current iteration of the BRKGA procedure, the gap threshold
g, etc. In some examples, each current set of DEFT link
weights w is determined from a respective population vector
in a manner similar to the OSPF implementation described
above in which individual link weights are determined by
scaling eachkey (e.g., each individual vector element) of each
population vector by a scale factor or, in other words, w,=[ x;x
wnux]'

[0063] Next, for each destination node teT, the weight
decoder 410 computes the reverse shortest path distance
(blocks 710 and 715 of FIG. 7, and lines 802 and 802 of FIG.
8) and, with ascanofthe links/arcs, the shortest path graph G*
(block 720 of FIG. 7, and line 803 of FIG. 8). Next, the weight
decoder 410 perfornis a procedure (e.g., ComputePartial-
Loads illustrated in lines 804-822 of FIG. 8) that implements
DEFT rules that allow flows to be routed on non-shortest
paths. For example, the weight decoder 410 sorts the nodes in
decreasing order of their distances to t (block 725 of FIG. 7
and line 805 of FIG. 8). Then, at block 730, the weight
decoder 410 analyzes nodes one by one, in decreasing dis-
tance to the target node, and determines the partial load flow
associated with the target node on each link resulting from
employing DEFT routing. For example, block 730 of FIG. 7
can include the loop in lines 808-813 of FIG. 8 at which the
weight decoder 410 calculates the sum (T,,,,,) of the flow
distribution function of Equation 6 for each outgoing link of
the current node. InFIG. 8, OUT(u)={v: (u, v)eE} denotesthe
set of outgoing links of node u. Block 730 of FIG. 7 can also
include line 814 of FIG. 8, at which the weight decoder 410
calculates the total demand f (traversing and leaving the cur-
rent node) per unit of I'. Block 730 of FIG. 7 can further
include the loop in lines 815-821, at which the weight decoder
410 calculates, for each forward outgoing link of node u, the
flow traversing the link according to its proportion of T". At
block 735 of FIG. 7 (corresponding to line 824 of FIG. 8), the
weight decoder 410 updates the total load of each link/arc
with the partial loads calculated for destination nodes teT.
Finally, at block 745 of FIG. 7 (corresponding to line 826 of
FIG. 8), the weight decoder 410 computes the fitness value of
the solution (e.g., using Equation 1).

[0064] Example machine readable instructions 515 that
may be executed to implement the weight updater 415 of FIG.
4 and/or perform the local search processing for weight
updating at block 515 of FIG. 5 areillustrated inFIGS. 10 and
11. The example implementations of FIGS. 10 and 11 are
developed as follows. As noted above, the DEFT routing
protocol distributes the flow among shortest and non-shortest
paths to a target node. As a result, small changes can cause a
new flow distribution in the network, even when the shortest
path graph is unaltered. As a consequence, a change in a link
weight can lead to an altered flow in a potentially large num-
ber of links. To reduce the computational cost of evaluations
of the objective function of Equation 1 by the local search
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procedure, a dynamic flow update algorithm is employed for
theint-DEFT implementations described herein. An example
dynamic flow update algorithm receives a unitary increment
of a single link weight and updates only the part of the net-
work affected by this change.

[0065] It turns out that there are three main cases to be
analyzed. Let t be the target node. Given a unitary increment
A in the weight of link (u, v), nodes can be classified in three
different cases according to their distance change. First,
nodes with no outgoing load (leaving or traversing the node)
directed to t are not affected by the increment A. Second,
nodes belonging to paths forwarding to t, in the case that
before and after the change all forwarding paths traverse arc
(u, v), and whose distances have changed, have no modifica-
tions in their loads because the loads traversing these nodes
arealfected equally by any A variation of the link weight. As
such, the flow distribution is unaltered. In the third case are
those nodes that, with increment A, create alternative paths
that do not traverse arc (u, v). Those, and each intermediate
successor node towards the target node t, have their flow
distribution altered and, therefore, have to be reevaluated.

[0066] Consider, as an example, the network graph 900
illustrated in FIG. 9. Suppose that due to the increment A in
link (u, v) (labeled as 905 in F1G. 9), node u (labeled as 910)
and node v (labeled as 915), whichare above the dashed curve
920, are the nodes whose distances are affected. Suppose that,
before the increment, link (a, b) (labeled as 925) did not
belong to the shortest path, but after the increment it does. In
this case, which corresponds to the third case described in the
preceding paragraph, some load is sent through link (a, b)
(labeled as 925) and link (b, v) (labeled as 930), while link (a,
u) (labeled as 935) and link (u, v) (labeled as 905) have their
loads decreased.

[0067] With the foregoing description of the three main
cases to be examined by an example dynamic flow update
algorithm implemented by the weight updater 415 as a refer-
ence, the example machine readable instructions 515 are now
described. FIG. 10 illustrates the example machine readable
instructions 515 in the forn of a flowchart, whereas FIG. 11
illustrates the example machine readable instructions 515 in
the form or pseudocode. The example machine readable
instructions 515 begin implementing weight updating at
block 1005 of FIG. 10 at which the weight updater 415
increments the weight of a candidate link of a set of possible
link weights (e.g., where the set of possible link weights is a
possible link weight solution corresponding to one of the
population vectors updated by the genetic algorithm). The
increment is represented by A, which can be an integer equal
to or greater than 1. As in the case of the local search proce-
dure described above for OSPF, candidate links for a possible
link weight solution are links having weights less than a
maximum weight, and candidate links are examined in
decreasing order of routing cost.

[0068] For each candidate (block 1010 of FIG. 10), the
weight updater 415 preserves the previous set of possible link
weights corresponding to this possible weight solution (block
1015 of FIG. 10 and line 1101 of FIG. 11). (A set of possible
link weights is also referred to as a distance vector because
paths distances are determined by summing the link weights
along the paths.) Then, for each target node teT (block 1020
of FIG. 10 and line 1102 of FIG. 11), the weight updater 415
calculates the new reverse shortest path graph G’ for this
target node t resulting from incrementing the candidate link
weight (block 1025 of FIG. 10 and lines 1103-1104 of FIG.
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11).Next, at block 1030 of FIG. 10 (corresponding to the loop
at lines 1106-1113 of FIG. 11) the weight updater 415 iden-
tifies all nodes u with two or more forward outgoing arcs
having at least one successor whose shortest distance to t is
not altered (corresponding to condition2 in FIG. 11) and a
different successor whose shortest distance to t is increased
by exactly A (corresponding to conditionl in FIG. 11). Those
nodes represent the third case described above, and their
flows are to be altered due to incrementing the candidate link
weight.

[0069] In some examples, the nodes that are identified at
block 1035 of FIG. 10 (corresponding to the loop at lines
1106-1113 of FIG. 11) as having altered flows are stored in a
heapdatastructure H, , , whose keys are pairs of the current
and the previous shortest distance (before the A increase)to t.
The heap is ordered by the current distance and, in case of a
tie, by the previous distance. More formally, this heap order-
ing is represented by Equation 7:

(d,d 1 )<(d"d", ) if d<d or (d=d' and djy<d’ ). Equation 7

From Equation 7, if two nodes have the same distance, the
node with the smaller distance before the update (d ;) has to
be processed first, to avoid evaluating links whose flow was
notyetupdated. With the order established by Equation 7, the
flow on links is reset (e.g., see line 1133 of FIG. 11) before
being calculated, to not consider the old flows on those links.
[0070] Next,atblock 1035 of FIG. 10 (corresponding to the
loop in lines 1114-1118 of FIG. 11) the weight updater 415
adds to the heap each intermediate node that is a successor in
the direction of t of a node whose flow has been altered (e.g.,
as identified at block 1035 of FIG. 10 or lines 1106-1113 of
FIG.11). Theweight updater 415 then calculates the new flow
distribution associated with these identified nodes (block
1040 of FIG. 10 and lines 1119-1137 of FIG. 11). For
example, at line 1127 of FIG. 11, the weight updater 415
calculates the total flow leaving each of the identified nodes.
Atlines 1128-1135 of FIG. 11, the weight updater 415 deter-
mines how to split the flow proportionally among all outgoing
arcs. At lines 1138, the weight updater 415 calculates the sum
of all flow fractions over all target nodes.

[0071] After all target nodes of't are processed, the weight
updater 415 evaluates the total network congestion @ (given
by Equation 1) for the current set of possible link weights for
which one of the link weights was incremented (block 1050 of
FIG. 10 and line 1140 of FIG. 11). The weight updater 415
determines whether an improvement in the total network
congestion @ was achieved by incrementing the link weight
(block 1055 of FIG. 10). Ifan improved was achieved (block
1055 of FIG. 10), the current versionof the set of possible link
weights having the incremented link weight is retained and
the process is repeated (block 1060). However, if an improve-
ment was not achieved (block 1055 of FIG. 10), the weight
updater 415 retains the previous version of the set of possible
weights (block 1060 of FIG. 10). The weight updater 415 then
continues examining the effect of incrementing other candi-
date link weights in the current set of possible link weights
until no improvement is observed after examining a specified/
configured number of candidate link weights.

[0072] Example performance results for OSPF and DEFT
link weight setting using the example BRKGA methods,
apparatus and articles of manufacture described herein are
illustrated in FIGS. 12-20H. The performance of BRKGA for
OSPF and DEFT link weight setting as described herein was
examined on twelve synthetic networks and another instance
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with real data from a large tier-1 Internet service provider
(ISP). Table 1 summarizes the characteristics of these net-
works. The columns represent, respectively, the instance
class, the instance name, number of nodes, number of arcs/
links, the values of link capacities (the instance atthas a large
amount of different values for the link capacities, so this entry
is omitted from the table), and the number of origin-destina-
tion (O-D) demand pairs. The instances are classified into
four groups: historical data from the ISP Backbone (att),
two-level hierarchical networks (hier), random networks
(rand), and Waxman networks (wax).
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[0081] A first experiment explored the time savings
obtained by tuning the BRKGA and weight decoding proce-
dures to work efficiently for DEFT and by using the dynamic
flow algorithm described above in connection with FIGS.
9-11 as compared to a straightforward adaptation of the
BRKGA discussed above for OSPF. In particular, the follow-
ing three different implementations were compared:

[0082] (1) int-DEFT-DSSSP: A straightforward adaptation
to DEFT ofthe BRKGA proposed for OSPE. This implemen-
tation employed a dynamic single source shortest path
(DSSSP) algorithim. The routing followed DEFT rules and
was computed statically.

TABLE 1
. = . [0083] (2) int-DEFT-opt: int-DEFT-DSSSP, with its data
Instance Name Nodes  Links Capacities @-D pairs structures tuned to work efficiently with DEFT, thereby
ISP backbone  att L] 274 — m decreasing the running times. In particular, the data structure
EWOJelvel hier50a 50 148 200and 2450 that maintains the number of links leaving each node that
ierarchy 1000 C . .
hierseh s 212 208and 2458 belongs to a s.hortest path to the destination node (in OSPF) is
1000 unnecessary in DEFT.
hier108 loo 278 201: .a;‘d 900 [0084] (3) int-DEFT: int-DEFT-opt, but additionally using
hierle0a 00 360 200and 9998 the dynamic flow algorithm described above.
R ] w o 1::: 2156 [0085] Itshouldbenoted thatthelink weight solution deter-
m;’;lgg, o dg:a w  us i.“ Saoe mined by each of these three implementations is the same,
) rand100 100 403 1000 0900 independent of the implementation. However, the running
rand100b 100 503 1000 9900 times are affected by which implementation is used. FIG. 12
Waxman wax5e S0 169 1000 2450 shows a comparison of the execution time in hours for 1000
Wax50a Se 230 1000 2450 . . .
’ generations of the three implementations and Table 2 shows
wax100 100 390 1000 9900 . . . X
Wax100a 100 46 1000 ™ the speedups of the improved }111p16m€11tat10115 over int-
DEFT-DSSSP. All 13 network instances of Table 1 were
tested with the highest total demand.
TABLE 2
Instance
Implementation att hier100  hierl00a  hier58a  hier50b rand100 rand100b
int-DEFT-opt 118 1.20 1.31 119 127 132 1.31
int-DEFT 374 373 3.77 2.89 271 3.33 2.89
rand5® randS@a wax100  wax100a wax5® wax50a
int-DEFT-opt 129 132 130 1.34 122 130
int-DEFT 281 268 3.25 301 286 282
[0073] Sevendifferent demand matrices were examined for [0086] Table 2 shows that the straightforward adaptation

each network, obtained by scaling a basic demand matrix for
each instance by a factor from 6 to 12. The BRKGA was
tested with the following parameters:

[0074] Population size: P=50 individuals;

[0075] Weight interval: [1, w,,,.]=[1,20];

[0076] Algorithm running time: 60 minutes;

[0077] Probability of inheriting allele from elite parent dur-

ing crossover: p,=0.7,
[0078] Maximum gap for h, " g=9; and
[0079] Scaling parameter: p=1.8.

[0080] Theexperiments were carried outon a cluster of ten
(10) Intel Duo Core processors with 1.23 GHz, .0GBRAM,
and rurming Linux 2.6.18-4. Each run used a single processor.

from OSPF is onaverage3.12 times slower than the int-DEFT
version. From the data in Table 2, it can also be seen that the
performance gains are mainly due to the dynamic flow com-
putation. Tuning the implementation for DEFT resultsin only
an average speedup of 1.27, while the dynamic flow compu-
tation algorithm was responsible for 51% to 68% of the time
savings for the set of instances tested. Thus, it can be con-
cluded thateven for non-shortest path routing protocols like
DEFT it is worthwhile to implementdynamic flow computa-
tion as described above in connection with FIGS. 9-11.

[0087] A second setofexperiments compared the quality of
the solutions obtained by the BRKGA when routing with
OSPF and DEFT. Performance was quantified in terms of an
optimality gap, which is the additional routing cost of the best
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link weight solution determined by the BRKGA techniques
described herein, as a percentage of the routing cost of the
lower bound given by the solution of OPT. FIGS. 13-17 show
the results for DEFT and OSPF for the network instances
listed in Table 1. In particular, FIGS. 13A, B and C illustrate
the BRKGA optimality gap for the network instances att,
hier50a, and hierS0b of Table 1, respectively, with each fig-
ures depicting the optimality gaps measured for OSPF and
DEFT solutions. FIGS. 14A, B and C illustrate the BRKGA
optimality gap for the network instances hier100, hier100 and
rand50a of Table 1, respectively, with each figures depicting
the optimality gaps measured for OSPF and DEFT solutions.
FIGS. 15A, Band C illustrate the BRKG A optimality gap for
the network instances wax50, wax50a andrand100of Table 1,
respectively, with each figures depicting the optimality gaps
measured for OSPF and DEFT solutions. FIGS. 16A and B
illustrate the BRKGA optimality gap for the network
instances randS0 and rand100b of Table 1, respectively, with
each figures depicting the optimality gaps measured for
OSPF and DEFT solutions. FIGS. 17A and B illustrate the
BRKGA optimality gap for the network instances wax100
and wax100a of Table 1, respectively, with each figures
depicting the optimality gaps measured for OSPF and DEFT
solutions.

[0088] For the six instances in FIG. 13A-C and 14A-C,
DEFT is able to improve over OSPF. In particular, for high
total demands, where OSPF has large optimality gaps, DEFT
can lower the gaps considerably. For the seven instances
shown in FIGS. 15A-C, 16 A-B and 17A-B, both DEFT and
OSPF result in about the same optimality gap, with the five
instances in FIGS. 15C, 16A-B and 17A-B, having points
where DEFT yields slightly worse results than OSPF.

[0089] A third experiment analyzed the number of interme-
diate nodes involved in the routes of a demand path. For an
examined demand matrix, the following three metrics were
compared:

[0090] (1) Path length, which is the average path length
over all paths used for routing for all O-D demand pairs,
measured in number of nodes of the path:

[0091] (2) Nunber of paths, which is the average numberof
different paths used for routing the O-D demand pairs. Two
paths are considered different if one path has at least one
link/arc that does not belong to the other path; and

[0092] (3) Percentage of intermediate nodes affected,
which represents the average number of intermediate nodes
routing an O-D demand pair, as a percentage of the total
number of nodes.

[0093] For each network instance examined, the minimum,
maximum, and average values, as well as the standard devia-
tion, of these three metrics were determined, considering all
paths of all O-D demand pairs. The values are the average of
three runs of 1000 generations each. To conduct this experi-
ment, the following four network instances of Table 1 were
examined: att, hier100, hier50a, and wax100. For each net-
work instance, four demand matrices were considered. These
results for each of these metrics are presented in turn.
[0094] The path length experiment has the objective of
comparing the network delay for int-DEFT and OSPF mea-
sured as the length of the paths (i.e., the number of nodes that
comprise the paths). The shortest path, the longest path, and
the average path size among all paths of all O-D demand pairs
were determined. The measure was calculated for int-DEFT
and OSPF for the best solution of the 1000th population
generation of the BRKGA, for four demand matrices of the
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four instances att, hier100, hier50a, and wax100 used in the
experiments. FIGS. 18A-H present the results for int-DEFT
and OSPF.

[0095] Fromthe plots in FIGS. 18A-H, it can be observed
that the path lengths for int-DEFT are about 40% longer than
in OSPF. For example, for the demand matrix with the largest
sum of demands, the average path lengths found by int-DEFT
are 10.63, 12.80, 8.2, and 6.92 hops, whereas the correspond-
ing values for OSPF are 7.94,9.03,6.01, and 4.47 hops. Ifwe
compare the path length with the shortest possible length as
given by the topology of the instances, OSPF adds on average
2 hops, compared to 4.8 hops in int-DEFT. In a telecommu-
nication network, it can be desirable to maintain the path
lengths as short as possible. One reason is that as the path
length increases, so does the expected number of demand
pairs affected by a failure. Thus, the length of a path can be
directly related to the quality of service of a telecommunica-
tion network.

[0096] With respect to the minimum path length observed,
they are the same for OSPF and int-DEFT. The minimum
value is four for instance att, and two for the other three
instances. That was expected, since both protocols route
through the shortest path, and a path of length two indicates
that the path is composed of a single direct link. Instance att
does not have O-D demand pairs between all pairs of nodes,
while the other instances do. Thus, it is possible to have the
minimum value larger for att than for the other instances.
[0097] From an analysis of results of FIGS. 18A-H, two
other conclusions can be drawn. For example, the path length
is almost constant through the generations for all four
instances tested. Additionally, as can be seen in the plots, the
path lengths vary only slightly with the total demand.
[0098] The number of paths experiment measures the mini-
mum, maximum, and average number of paths among all
paths of all O-D demand pairs. The measure is calculated for
int-DEFT and OSPF for the best solution of the 1000th popu-
lation generationof the BRKGA, for four demand matrices of
four instances. Two paths are considered different if one has
at least one link/arc thattheother does not have, and a path is
considered different from a set of paths if it is different from
eachpathoftheset. FIGS. 19A-H present the number of paths
metrics for the solution found for int-DEFT and OSPF.
[0099] From FIGS. 19A-H, the average number of paths
found by int-DEFT is about 10 times higher thanthe average
number found in OSPF solutions. For example, considering
the demand matrix with the largest total demand, the average
values forint-DEFT are 10.13, 12.67,5.08, and 9.23, whereas
the corresponding values for OSPF are 1.63, 1.77, 1.36, and
1.08. The difference between the number of paths between
int-DEFT and OSPF could be even larger if a larger gap
threshold for b, " is used. A gap threshold equal to nine (9)
was used in the experiments to avoid having a very small
amount of load for a demand pair flowing in a link.

[0100] From FIGS. 19A-H, one can observe thatthe num-
ber of paths changes slightly with the total demand. Further
experiments also showed that the nwnber of paths is about the
same over different generations of the BRKGA.

[0101] The percentage of intermediate nodes affected
experiment has the objective of showing the distribution of
paths in the network. In other words, this experiment presents
the percentage of nodes that are part of some path used in an
0O-D demand pair. The smallest, largest, and average percent-
age of intermediate nodes among all paths of all O-D demand
pairs were measured. The measure is calculated for int-DEFT
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and OSPF for the best solution of the 1000th population
generation of the BRKGA, for four demand matrices of the
four instances used in the experiments. FIGS. 20A-H depict
the number of intermediates nodes for int-DEFT and OSPF.

[0102] In the experiments performed, the percentage of
intermediate nodes of int-DEFT is almost twice the percent-
age of intermediate nodes of OSPF. Since int-DEFT sends
flows among all forward links, it is expected that a larger part
of the graph would be used for routing a demand pair. As for
the path length, the larger the set of intermediate nodes, the
higher the probability of a demand pair being affected in the
case of a link or node failure. For example, considering the
demand matrix with the largest total demand, the average
percentages of intermediate nodes used in the int-DEFT solu-
tion are 13.98, 12.23, 18.93, and 12.61, whereas the corre-
sponding values for the OSPF solution are 8.61, 8.37, 11.83,
and 4.57.

[0103] As shown in FIGS. 20A-H, the minimum percent-
age of intermediate nodes is about the same for int-DEFT and
OSPF. The maximum percentage for DEFT was about twice
the maximum percentage found by OSPF in most instances,
and for the instance wax100, the percentage of intermediate
nodes in int-DEFT was three times the percentage of OSPF.

[0104] It was also observed that the percentage of interme-
diate nodes was about the same throughout the generations of
the BRKGA. Additionally, as can be observed in FIGS. 20A-
H, the values did not change much when different demand
matrices were considered.

[0105] FIG. 21 is a block diagram of an example processing
system 2100 capable of implementing the apparatus and
methods disclosed herein. The processing system 2100 can
be, for example, a server, a personal computer, a personal
digital assistant (PDA), an Internet appliance, a DVD player,
a CD player, a digital video recorder, a personal video
recorder, a set top box, or any other type of computing device.

[0106] The system 2100 of the instant example includes a
processor 2112 such as a general purpose programmable
processor. The processor 2112 includes alocal memory 2114,
and executes coded instructions 2116 present in the local
memory 2114 and/or in another memory device. The proces-
sor 2112 may execute, among other things, the machine read-
able instructions represented in FIGS. 5-8 and 10-11. The
processor 2112 may be any type of processing unit, such as
one or more Intel® microprocessors from the Pentium® fam-
ily, the Itanium® family and/or the XScale® family, one or
more microcontrollers from the ARM® and/or PIC® families
of microcontrollers, etc. Of course, other processors from
other families are also appropriate.

[0107] The processor 2112 is in communication with a
main memory including a volatile memory 2118 and a non-
volatile memory 2120 via a bus 2122. The volatile memory
2118 may be implemented by Static Random Access Memory
(SRAM), Synchronous Dynamic Random Access Memory
(SDRAM), Dynamic Random Access Memory (DRAM),
RAMBUS Dynamic Random Access Memory (RDRAM)
and/or any other type of random access memory device. The
non-volatile memory 2120 may be implemented by flash
memory and/or any other desired type of memory device.
Access to the mainmemory 2118, 2120 is typically controlled
by a memory controller (not shown).

[0108] The processing system 2100 also includes an inter-
face circuit 2124. The interface circuit 2124 may be imple-
mented by any type of interface standard, such as an Ethernet
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interface, a universal serial bus (USB), and/or a third genera-
tion input/output (3GIO) interface.

[0109] Oneor more inputdevices 2126 areconnected to the
interface circuit 2124. The input device(s) 2126 permit a user
to enter data and commands into the processor 2112. The
input device(s) can be implemented by, for example, a key-
board, a mouse, a touchscreen, a track-pad, a trackball, an
isopoint and/or a voice recognition system. The interface
circuit 2124 andone or more of the input devices 2126 can be
used to implement the input interface 420 of FIG. 4.

[0110] One or more output devices 2128 are also connected
to the interface circuit 2124. The output devices 2128 can be
implemented, for example, by display devices (e.g., a liquid
crystal display, a cathoderay tube display (CRT)), by a printer
and/or by speakers. The interface circuit 2124, thus, typically
includes a graphics driver card. The interface circuit 2124 and
one or more of the output devices 2128 can be used to imple-
ment the output interface 425 of FIG. 4.

[0111] The interface circuit 2124 also includes a commu-
nication device such as a modem or network interface card to
facilitate exchange of data with external computers via a
network (e.g., an Ethernet connection, a digital subscriber
line (DSL), a telephone line, coaxial cable, a cellular tele-
phone system, etc.).

[0112] The processing system 2100 also includes one or
more mass storage devices 2130 for storing software and data.
Examples of such mass storage devices 2130 include floppy
disk drives, hard drive disks, compact disk drives and digital
versatile disk (DVD) drives. The mass storage device 2130
may implement the storage 430 of FIG. 4. Additionally or
alternatively, the volatile memory 2118 may implement the
storage 430 of FIG. 4.

[0113] Atleast some of the above described example meth-
ods and/or apparatus are implemented by one or more soft-
ware and/or firmware programs running on a computer pro-
cessor. However, dedicated hardware implementations
including, but not limited to, application specific integrated
circuits, programmable logic arrays and other hardware
devices can likewise be constructed to implement some or all
of the example methods and/or apparatus described herein,
either in whole or in part. Furthermore, alternative software
implementations including, but not limited to, distributed
processing or component/object distributed processing, par-
allel processing, or virtual machine processing can also be
constructed to implement the example methods and/or appa-
ratus described herein.

[0114] To the extent the above specification describes
example components and fanctions with reference to particu-
lar standards and protocols, it is understood that the scope of
this patent is not limited to such standards and protocols. For
instance, each of the standards for Internet and other packet
switched network transmission (e.g., Transmission Control
Protocol (TCP)/Internet Protocol (IP), User Datagram Proto-
col (UDPYIP, HyperText Markup Language (HTML),
HyperText Transfer Protocol (HTTP)) represent examples of
the current state of the art. Such standards are periodically
superseded by faster or more efficient equivalents having the
same general functionality. Accordingly, replacement stan-
dards and protocols having the same functionsare equivalents
which are contemplated by this patent and are intended to be
included within the scope of the accompanying claims.
[0115] Additionally, although this patent discloses
example systems including software or firmware executed on
hardware, it should be noted that such systems are merely
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illustrative and should not be considered as limiting. For
example, it is contemplated thatany or all of these hardware
and software components could be embodied exclusively in
hardware, exclusively in software, exclusively in firmware or
in some combination of hardware, firmware and/or software.
Accordingly, while the above specification described
example systems, methods and articles of manufacture, per-
sons of ordinary skill inthe art will readily appreciatethat the
examples are not the only way to implement such systems,
methods and articles of manufacture. Therefore, although
certain example methods, apparatus and articles of manufac-
ture have been described herein, the scope of coverage of this
patent is not limited thereto. On the contrary, this patent
covers all methods, apparatus and articles of manufacture
fairly falling within the scope of the appended claims either
literally or under the doctrine of equivalents.

What is claimed is:
1. A method to determine link weights for routing in a
communication network, the method comprising;
iteratively updating a plurality of vectors using a genetic
algorithin, the vectors including a plurality of individual
values decodable into possible link weights; and

decodinga first one of the vectors updated using the genetic
algorithm into a first plurality of link weights providing
a possible routing of a load through the comimunication
network, the load to be split among a plurality of paths
having respective path lengths deterinined from the plu-
rality of link weights, at least two of the paths having
different path lengths.

2. A method as defined inclaim 1 wherein iteratively updat-
ing the plurality of vectors further comprises:

partitioning the plurality of vectors into a first group of

vectors and a second group of vectors based on routing
costs associated with the vectors; and

randomly combining a first subset of the first group of

vectors and a second subset of the second group of
vectors based on a crossover probability.

3. A method as defined in claim 2 wherein iteratively updat-
ing the plurality of vectors further comprises:

randomly generating a third group of vectors for inclusion

in the plurality of vectors; and

randomly setting a first individual value of a second vector

formed by combining one of the first group of vectors
and one of the second group of vectors based on a muta-
tion probability.

4. A method as defined in claim 2 further comprising
including the first group of vectors in the updated plurality of
vectors.

5. A method as defined in claim 1 wherein, after an iteration
of the genetic algorithm, the method further comprises:

decoding the updated plurality of vectors into respective

pluralities of link weights supporting dynamic exponen-
tially-weighted tlow splitting;

determining respective dynamic exponentially-weighted

flow splitting routing costs for the pluralities of link
weights; and

when a processing convergence is detected, selecting a first

of the pluralities of link weights associated with a mini-
mum dynamic exponentially-weighted flow splitting
routing cost to perform dynamic exponentially-
weighted tlow splitting routing in the communication
network.
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6. A method as defined in claim 1 wherein, after decoding
the updated plurality of vectors into the respective pluralities
of link weights, the method further comprises:

incrementing a first link weight of a first of the pluralities of

link weights decoded from a first vector updated using
the genetic algorithm;

determining whether incrementing the first link weight

improved a first dynamic exponentially-weighted flow
splitting routing cost associated with the first plurality of
link weights;

if the first dynamic exponentially-weighted flow splitting

routing cost is improved, again incrementing the first
link weight and determining whether the first dynamic
exponentially-weighted flow splitting routing cost is
improved; and

if the first dynamic exponentially-weighted flow splitting

routing cost is not improved, iteratively incrementing a
next link weight of the first of the pluralities of link
weights and determining whether an associated
dynamic exponentially-weighted flow splitting routing
cost is improved until no improvement is observed after
examining a number of link weights of the first of the
pluralities of link weights.

7. A method as defined in claim 1 wherein the at least two
paths comprise one or more links, and the load is not to be
splitontoa link having a gap distance exceeding a gap thresh-
old, the gap distance determined from the plurality of link
weights.

8. A method as defined in claim 1 wherein decoding the
first one of the vectors into the first plurality of link weights
comprises:

scaling individual values included in the first vector by a

scale factor; and

rounding the scaled individual values to respective nearest

integer values to determine respective link weights.

9. A tangible article of manufacture storing machine read-
able instructions which, when executed, cause a machine to at
least:

iteratively update a plurality of vectors using a genetic

algorithm, each vector including a plurality of individual
values decodable into possible link weights for perform-
ing routing in a conununication network; and

decode a vector updated using the genetic algorithm into a

plurality of link weights providing a possible routing of
a load through the conununication network, the load to
be splitamong a plurality of paths having respective path
lengths determined from the plurality of link weights, at
least some of the paths having different path lengths.

10. A tangible article of manufacture as defined in claim 9
wherein the machine readable instructions, when executed,
further cause the machine to:

partition the plurality of vectors into a first group of vectors

and a second group of vectors based on a routing cost
associated with each vector; and

randomly combine a first subset of the first group of vectors

and a second subset of the second group of vectors based
on a crossover probability to determine an updated plu-
rality of vectors during an iteration of the genetic algo-
rithin.

11. Atangiblearticle of manufacture as defined in claim 10
wherein the machine readable instructions, when executed,
further cause the machine to:

include the first group of vectors in the updated plurality of

vectors;
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randomly generate a third group of vectors forinclusion in

the updated plurality of vectors; and

randomly set a first individual value of an updated vector

formed by combining one of the first group of vectors
and one of the second group of vectors based on a muta-
tion probability to determine the updated plurality of
vectors during the iteration of the genetic algorithm

12. A tangible article of manufacture as defined in claim 9
wherein the machine readable instructions, when executed,
further cause the machine to:

decode each of the updated plurality of vectors into a

respective plurality of link weights supporting dynamic
exponentially-weighted flow splitting after each itera-
tion of the genetic algorithm,

determine a dynamic exponentially-weighted flow split-

ting routing cost associated with each plurality of link
weights: and

when a processing convergence is detected, select a first

plurality of link weights associated with a minimum
dynamic exponentially-weighted flow splitting routing
cost for performing dynamic exponentially-weighted
flow splitting routing in the communication network.

13. A tangible article of manufacture as defined in claim 9
wherein the machine readable instructions, when executed,
further cause the machine to:

increment a link weight of a first plurality of link weights

decoded from a first vector updated using the genetic
algorithm;

determine whether incrementing the link weight of the first

plurality of link weights improved a first dynamic expo-
nentially-weighted flow splitting routing cost associated
with the first plurality of link weights;

if the first dynamic exponentially-weighted flow splitting

routing cost is improved, again increment the link
weight of the plurality of link weights and determine
whether the first dynamic exponentially-weighted flow
splitting routing cost is improved; and

if the first dynamic exponentially-weighted flow splitting

routing cost is not improved, increment other link
weights of the first plurality of link weights and deter-
mine whether associated dynamic exponentially-
weighted flow splitting routing costs are improved until
no improvement is observed after examining a number
of link weights of the first plurality of link weights.

14. A tangible article of manufacture as defined in claim 9
wherein the machine readable instructions, when executed,
further cause the machine to:

scaleeach individual value included in the vector by a scale

factor; and

round each scaled individual value to a nearest integer

value to determine a respective link weight.

15. An apparatus to determine link weights for routing in a
communication network, the apparatus comprising;

a processor to iteratively updatea plurality of vectors using

a genetic method, the vectors including respective plu-
ralities of individual values decodable into possible link
weights; and

a weight decoder to:

decode the plurality of vectors updated by the processor
into respective pluralities of link weights providing
respective pluralities of possible solutions to route
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loads through the communication network, the link
weights supporting dynamic exponentially-weighted
flow splitting; and
determine dynamic exponentially-weighted flow split-
ting routing costs associated respectively with the
pluralities of link weights, the processor to partition
the vectors for subsequent updating based on the
dynamic exponentially-weighted flow splitting rout-
ing costs.
16. An apparatus as defined in claim 15 wherein the pro-
cessor is to update the vectors by:
partitioning the vectors into a first group of vectors and a
second group of vectors based on the dynamic exponen-
tially-weighted flow splitting routing costs; and

randomly combining a first subset of the first group of
vectors and a second subset of the second group of
vectors based on a crossover probability.

17. An apparatus as defined in claim 16 wherein the genetic
algorithm processor is to update the vectors by:

including the first group of vectors in the plurality of vec-

tors;

randomly generating a third group of vectors to include in

the plurality of vectors; and

randomly setting a first individual value of an updated

vector formed by combining one of the first group of
vectorsand one of the second group of vectors based on
a mutation probability.

18. An apparatus as defined in claim 15 wherein, when a
convergence is detected, the weightdecoder is to select a first
plurality of link weights associated with a minimum dynamic
exponentially-weighted flow splitting routing cost to perform
dynamic exponentially-weighted flow splitting routing in the
communication network

19. An apparatus as defined in claim 15 further comprising
a weight updater to:

increment a first link weight of a first of the pluralities of

link weights decoded from a first updated vector after
decoding the updated plurality of vectors into respective
pluralities of link weights;

determine whether incrementing the first link weight

improved a first dynamic exponentially-weighted flow
splitting routing cost associated with the first plurality of
link weights;

if the first dynamic exponentially-weighted flow splitting

routing cost is improved, again increment the first link
weight and determine whether the first dynamic expo-
nentially-weighted flow splitting routing cost is
improved; and

if the first dynamic exponentially-weighted flow splitting

routing cost is not improved, iteratively increment a next
link weight of the first plurality of link weights and
determine whether an associated dynamic exponen-
tially-weighted flow splitting routing cost is improved
until no improvement is observed after examining a
number of link weights of the first of the pluralities of
link weights.

20. An apparatus as defined in claim 15 wherein the weight
decoder is to:

scale individual values included in the vectors by a scale

factor; and

round the scaled individual values to respective nearest

integer values to determine respective link weights.
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