
1 11111 11111111 11 111111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 111111 1111 1111 1111
US 20120140636Al

(19) U nited States
c12) Patent Application Publication

Resende et ai.

(lO) Pub. No.: US 2012/0140636 A1
(43) Pub. Date: Jun. 7, 2012

(54) METHODS AND APPARATUS TO
DETERMINE NETWORK LINK WEIGHTS

(52) U.S. Cl 370/238

(76) Inventors:

(21) Appl. No. :

(22) Filed:

Mauricio Guilherme de Carvalho
Resende, Holmdel, NJ (US);
Luciana Salete Buriol, Porto
Alegre (BR); Roger S. Reis, Porto
Alegre (BR); Marcus Ritt, Porto
Alegre (BR)

12/962,359

Dec. 7, 2010

(57) ABSTRACT

P ublication Classification

Methods and apparatus to determine network link weights are
disclosed. An example method disclosed herein to determine
link weights for routing in a communication network com­
prises iteratively updating a plurality of vectors using a
genetic algoritlllil, the vectors including a plurality of indi­
vidual values decodable into possible link weights, and
decoding a first one ofthe vectors updated using the genetic
algoritlllil into a first plurality of link weights providing a
possible routing of a load through the conllilunication net­
work, the load to be split among a plurality of paths having
respective path lengths determined from the plurality of link
weights, at least two of the paths having different path
lengths.

(5 1) Int. Cl.
H04L 12126 (2006.01)

511)�.
\ ('fiE.iiit:i.oEF·r·;�vEiii'Hr·osco'Diúo·,�No·cosr·E'i.iÃLÜÃriót�··)

NE1'VVORK ('�;\PH (G) (Vt:AT!CES (V}, f.':OC...f.'.S (F.':)}
SUBSET OF TARGET NODES {T)

DEMAND M,<\TR!:< (D)
CURRENT WEJGHT SOUJTION (Wj

GA.P lHRESHOLD

71ü

DETERMlNE SHORTEST D!STANCES TO TARGET NODE {t) FROM EA.CH

Df.Tf..RM!NE SHORTEST PATH NE'!WORK (7R>-'l.PH lO T.<\RGF..T N()f)F..

SORT SOURCE NC)QES {u) IN ORDER OF DECREAS!NG DlSTANCE. TO

T'N�GET NODE \ti

DETERMINE Pf-.RT!AL LOAD ASSOC!ATED VVlTH nus TAAGET NODE fli
ON EACH UNK {tt v) RESUL TlNG FROM DEFT ROUT!NO

UPDA'fE TOTAL LOAO FOR EACH liNK (w,v) lN NE'f'I"VORK GRAPI-1 TO

!NCLUOE PAf>HlAL LOAO ASSOC!ATED WlTH T'HlS TAFWET NODE (ti

Patent Application Publication

"Jf1Q ,.,.,.,.,., ... v \ �

Jun. 7, 2012 Sheet 1 of 19

FIG. 1

ctz o . .4 o.s �la
Uti�� Hniliti�bh

FIG. 2

US 2012/0140636 A1

·� .. 2

Patent Application Publication

4'){l t ' ,

405 ='\ ..

GENEHC
.ALGORITHM
PROCESSOR

iNPUT
•.•.•.• .•.•.•.•.•.•.•.•.•.•. INTERFACE

420/

Jun. 7, 2012 Sheet 2 of 19 US 2012/0140636 A1

, •.···.)\ l'_ __,'/

F!G. 3

410 ""'\,

WElGHT
DE CO DER

·���.,,

S::::: ··,·�. �;;� :::>'

43:0'/

FIG. 4

415 ""'\,

WEJGHT
UPDATER

OUTPUT
INTERFACE """"'" � ...

425/

Patent Application Publication Jun. 7, 2012 Sheet 3 o f 19 US 2012/0140636 A1

5Q·.,í\ ··········� � ... �..} �� "
��"""""""""'wmmmmmmmmm::''''''''�'''''''':''':�'''''''''':'''''''''''''''''''''':'''''�':'''''''''''''''''''''''m•,,.
\" SEGUi UNK WEiGHT SETT�NG

.)
i ! .é''"" 505 .,.... ! l' . ,, 1. \ . l

! PERFORM n'ERAT!ON OF BIASED RANDOM KEY l
il ..,(GENET!C ALGORtTHM TO DETERf<..4!NE KEYS I 1. f CORRESPONDING TO UNK WE�GHTS l ' � l �.�. �\ ./ . ,_,,,,,,,,,,,,,,,,>;.,r ,., __ . I ! r-510 I (,.,.,.,.,.,.,.ÕÊCÕÕE«KEYS1}lfõ

r
t1NKWE1G)i

4
TS«FõR'""'«««««·\� .:t.,l', ! NETWORK ROUTJNG !'E .. G-s FOR DISTRU3UTE.D l ' ! EXPONENTlAlLY*V'lEJGHTED FlOW SPUTTlNG- I I I DEFT) AND DETERM�NE COST/FfTNESS OF l

I " ,�
il .
.
:, (í .:::::515 '

f PERFORM LOCAL SEARCH TOATTEMPTTO l I ! !MPROVE UNK VVEIGHTS (E,G,; USING A DYNAMlC I
[I FLOW UPDATE ALGORiTHM FOR DEFT VVEH3HTS) I
I \ j

I Í r520
il /'''''''''''''''··J•

,,,, � NO / ····-.,
, L"""""""""""""""'< SOLUTION CONVERGED? :> '\.. ,.

�
,,<>"«<# 525

SELECT L!NK WEIGHTS Y�El.J)�NG M!�HMUM COST l
mmmmmmmmmm,mA""""""""""""""""""""""""r""'J

!
FIG. 5

Patent Application Publication Jun. 7, 2012 Sheet 4 o f 19 US 2012/0140636 A1

(BEG�r�"'GE:r.4E:+ic"ÃC8oRir!i'r�--�r'ERÃTioo"'"'·;
\,,.,._.,._.,._.,._.,._.,._.,._.,._., •.•. ·.·-··r···-·�'·

• �/�605

INITIAtJZE PARAMETER§ lNÇLUDING<
POPULAT!ON SIZE

ELITE SET S!ZE
f111UTAT!ON SET SIZE

CROSSOVER PROB.à.B!Lfr'·{ , ONE OR MORE MUTA liON PROBABiUTIE.S .
fmmmmmmmmmm � l

• ---615 ... ! .. «t:� � � IINITIAUZE VEC!OR FOREACH ��401\II?UAL INTHE I
{ POPULATjQN US!NG RANOOM �\EYS (EACH KEY IN l
� THE VECTOR CORRESP�ND!NG TO A UNK I � WE!GHT) l

! i·'''i I ·
-

· . r--�
l 620 '''''\ • ! ;:··-:')...,.,.,.,,,,,,,,,,,,,,,,,,,,,!,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
� ?. l li. I PAR:TlTtON POPULATION U'•HO EUTE GROUPAND l
l � NONNEUTE GROUP BASED ON F!TNESSICOST ANO l
l � ELITE SET S!ZE l
l { l I ' i ra2s .
j l EVOLVE POPULATION INTO A NEW GENERAT!ON l I § USING CROSSOVER MA TlNG BASED ON l � I CROSSOVER PROBA�It.ITY AND MUT ATION BASED l l l ON THE: MUTATION �ET SiZE ANO ONE OR MOR.E l I t,.--,J�YI�ng�_g_�g_ê�_ê!,UT!_§_§ _________________________________ j L""""""""""""""""""""""'"""""""""""""""""""J

1
/""""""""'"mmmmmmmmmmmmmmtmmmmmmmmmmmmmmmmmmmu-.\
<_ END GENETlC ALGOR!THM HERATlON)

FIG. 6

Patent Application Publication Jun. 7, 2012 Sheet 5 of 19 US 2012/0140636 A1

OBTA!N INPUTS, INCLUD!NG;
N!:tPNORK GRAPH (G} (VERTfCES {V}, EOGES {E.}}

SUBSET OF lARGET NODES ('r)
DEMAND f1.,1ATRlX (D)

! CURRENT WEIGHT SOUJT!ON (w} ! j GAP THRESHOLD (g) ! ···r··

.w.w.w.w.w.wuu.w�.w.w.w.w.w;!u.w.w.w.w.w.w.w.w.w.w.w.w.w'Vw'. 't 1 o
;
.. .,.(FOR EACH TARGET NODE fü i ! � ! ' '· , .

'« .. :r.:

! t. _./''·'•'·' l :: ;.1
•""""""""""""""""""""""""'""��-�---�--�-� :·

l j DETEf�M!NE SHORTEST D!STANCES TO TARGET NOOE íl) FROM EACH
� ! SOURCE NODE (u}
! 1 rrn ! i····aéff?.riwiiNii�:··sHor�+Eáf.Pià11 .. NE:1�6R:K··ar�Ãf.;·i1·:r:o··1:Ãf.ú§Ef.No6'E.(i)····!

I l Í T fo.RGET NODE {t) ·

i , .. ,. .. J
!1. f "/ Tlü l
! i DETERMINE. PART!AL LOAD ASSOC!ATED vVITH TH!S T ARGET NODE (t) !

! ON EACH UNK (tPt) RESULTlNG FROM OEFT ROUTlNG ·

;muuuuuuuuuuuuuuuuummmm."""""""""""""""""""'"'"""J
ti. ,o"'wu735

f"""üPo'ArrTrorÃL"LÕ,Ào"rõf{"fiÀ�3H"L'iNx'(�::�-)"iN"N'Eiwifo'R}{"<iFi'A'PH"rõ""'"!
j lNCLUOE PARTIAL LOAD ASSOCIATEO W!TH H·llS TARGET NODE (q �
�uuuuuuuuuuuuuuuuuuuuuuuu·----�----------w.w.oi

NO <···:·····:···························:·····l· : ··l 740
·��.wmm.wmm��� ALl NOOES PROCESSEO? V

u-.-.·.······ ···· ······ ······ ···· ······ ······ ···· ······ ······ ···· ······ ······ ····r:ri:s:-········· ······ ···· ······ ······ ···· ······ ······ ···· ······ ······''..

")) ' '•'•'•'• 145
i·'·"""'/.."""""""""' 1 OE'fE.RMlNE COS'i'ifTfNESS OF THE CURRENT WEIGHT SOlUTlON (w} j

(END DEFT WEIGHT DECODINB ANO COST EVAUJATION ") · ... � ... ������������������������������ .. ''

FIG. 7

Patent Application Publication Jun. 7, 2012 Sheet 6 o f 19

J:WO\�t:dUf:{�
801 for \it E
802. d =Reverw.Dijkslm(t.�u')

o ·· _ .. , .
'(

803 ::. ContpnteS.honestPathGraph(()
804 {(;nrnputeP�:nthdLj->fHls{d., t:t �· .l))!

US 2012/0140636 A1

00-5 .:::::::. sott(�d lH�dôs :in det·n�a$inà onk�t o f disl:nnc:t�s o ·�···'
o_ 0 ·6 fh*' ··� •:t(�!·) n ;;::; .H·. o "t l:; �� , '" '
so 7 rl<::>t<:·t =· o
80.8 f}�t> ··��-:·�:/'':�� i'� ;::::: {) f..l''].' ... , { ·:·,/� Vi j(.,xh ... h . . ·- '· \L/
809 if' ·· and
810 ·�
811 r�flÍ::'** = r
812 endi:f
813 cm:Ui���
814 f ;;;;; +
0 � 5· t'Ot' ·•'•'lf�� .. ' ······: 0 f.. F[· • { ····� Q i l' ·· ·· ç,.('- ·h� ... ::::::: / •' \h·
816 w
817
818
819
820
821!
822.
823
824

endlf

[end o f Cornpu:k}PartialLo��ds•J,
t\:w each { v) E

825 Ntd.Jiw
826

FIG. 8

Patent Application Publication

900 '''''\
'lt\

Jun. 7, 2012 Sheet 7 of 19

FIG. 9

\ / 925 v \
\

US 2012/0140636 A1

Patent Application Publication Jun. 7, 2012 Sheet 8 of 19

c::::::::::::::::::.·::::::����ª!�E�:���l��i:9�ê�-f�:::::::::::::::::::::::::)

US 2012/0140636 A1

!'''' 515 i
·1úot-i �''', '

! ''ir:.ié'Rii�,�'EN:r·tl.··t:i'Ni<.;úf2.iáiá:·of:·A.·ctl.'N6iiiiiif2
..
t:i'Ni<.{E:o::·ú�ii<s·w;;;�;;i�ú�·�;;;iii6i1ú�·1 j t.ESS THi�.N MA'>(IMUM WtJGKt AJ�E C.ANO!DA'fE$ AND f.XAM!NtiD !N bt:CR!?:J\$!�!(} �

j OROER O� ROUT!NG COST} i
... �.�.J.?:::�;:,:::::::::::::::::::I::"""""""""""""""""""""""'"J
f FOR EACH CANDIDATE }-"""""""""""""""""""""""""'"l
··:.;·:� �

101 s �--,,. .l l
�··········F;R'tàt'i4vE·rWiúíóúàv\iEiàt:i1.á6LüfióN.(E:à.::·'DEr:r·oiárÃNcE·vEcfór�)·········· l l f t •.•1•;:;•2;'·'o·:•nnnnnnnnnnnnnnnntnnmJ l
� . �J. ·. H.'.'... �
l ,•"""""'"""":::,..""""""""""" """""""""""""""�"""""''-.. \ j f FC<R EACH 1'AHGf.T NODE m i"'*'"""""""""""""""""""""''"'l l ! . 102s ... ,\ . : . . ! . .

. . . ! I ll ����:�:�':�.� . . :����.��j��1!�;.�§.��.tr�����!9;.:� .. ��,��������.::��� J li
l 1030 '""•,, ! l
1 . mr::Nn�Y Noor::s �NHOSE Rows �����ERED eY lHE INCR!:MHn·�:o UNK 111 l !... ·.············:···<···" i \
l 1035 wn,,,,

,
.l � l l .".,.r,., •• , •• , •• , •• , •• , •• , •• , •• , •• , •• , •• , •• , •• , •• , •• ,.!,, .. ,l i l

j � IOENTIFY SUCCESSOR NOOES JN O!RECT!ON TOWARDS TH!S Tt>.RGET NODE (t} ! ! j l 1040 wn •. , ! ! l
l '· .:t. � � I ! P�!�.����.:�� .. ;l:�·�9��:.�.'.�!.���.�:!!.?.::�.�.?.�.�.?.�.�!��·�·�� .. �?.��:. J I I
l r·······Ãtt:··w��'déi··uôÓ'[à·�;R<xfi.sà@·o�;·········l"���""""""""""""""""""""J I
� ,,,,o, .. o,o/,0 � l 1050 ""',, .l Vt.S l l r·························.:� Brs:1:1úii�i��E .. Né��;:·côàúf::ri:i:írúià··l l ! t"""""""""""""""""""""""""'1'ii5s m-= ! �. � 1 l </ !MPROVEMENT? '·-}�9.................. l I . ''· 1060 ·····,: t YES �./ I I
l l KEEP CURRENT WEIGHT SOtJJf!ON. !NCREMEi:N1' ; l , 1

SAME UNK 'NEJGHT ANfJ f�EPEAT Í l , .
1065 l l
RETAIN PREV!OUS VVE!GHT. SOt.UTION j-. J l
r-L�-�9-�ii;1ilPiióvK!eNfXFtKfi'f(mmmml NO

; I l,,, "'n��\���!P/�-:I�l�7��!,���efmmmm,)··"

FlG. 10

Patent Application Publication Jun. 7, 2012 Sheet 9 of 19

515_ \.
J.ll'Ot��dtH':(� f .� .. :,.,,.,H.:· .�: .. '" '·· rJ h�Jt t::::;:�:IOirl?'I'í: (} :::::::: { V:.

11 o 1 ·:::::: d
!�Jr '" t i:: �r

R�:w:��ru�DiJk::;:üm <rt', 'i'·)
��' Cn!np*�S!l:ntiB;:::;!l\lthGlN�h((:1,·!i.' ;4}

?::(v·
r;.Jndli.hmi :::::;: f:Wldiüor:Ct.:::::: Lú�m
t��r

�:mUhr

.. ; .. ô Hll:�U <'t:t�dith:wd :��· tn�
tlwn "''' lnl:E�

US 2012/0140636 A1

'1'102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1118
1117
1118
1119
'1%�0
1121
1122
1123
1 124
1125
1126
1127'
112S
1129
1130
1131
'1132
1133
'1'134
1135
113ft
11�17
1138
1139
1140

Ucm�JiW>n1 �md f;,.:md:íh�:)r!2 tbdt. �t!i�NtHi��*!:3(Hii.:l,,,,,1,
iH!dthr
for i:'�K:h p :;:;:

t�t!:dlhr
njr

:::::::. fl
fN' NKh :;::· :;:::

u·

t!�:t�'Uf
t�l:lll!'ál'

htt ::::f n.::tL >:·

iNHUI'
NHJitw

(�oolhr
hifdKh d {: B

···�··
*.?l�dfm·
<t> ·:::·:::

"'·"''''·'''' ·" l·=:::::s"

FIG. 11

Patent Application Publication

in�*DEFT ·DSSSP ':::::::::::::::::::::::::::::

Jun. 7, 2012 Sheet 10 of 19 US 2012/0140636 A1

inH:JEFT-
20 ------------------------�

14 .. , .. , .. , .. , ... , .. , .. ,.

FIG. 12

le i_-�� 14- t - - - : .,/'_: '

t:2

Hl

; I I -- ,......... L
: !.

l ••
---. -. __ , -- --------· �- ··--_,_;_t___ . I -------- ----·=---_r ----····--·. ····-··

l :
- - - - - - - - - : ·-- - - . - - - -- -: { J __ J :

:r_,:..' __ , .. , __________ [/. ... :t�L .. J
� .

• :r\. :1 ..

''
'':�- j

rr ··--- :
-

,,_/ \ :�
- __

__ ,i _____ / - \�i • 4 >-- -�- c . .. ·--· / "''\: :· --.·.{
-: / { \ :::' '/ ib

.i . ..

-��/ : :� -�.. �---·--·

21·$00 :$0�)0:0 :ltS:@ú 4-:S@út)

FIG. 13A FIG. 13B

......
�-;:} ·1:500·

!t�Hio:>'f! ::: T O$p;f :"··•····

?

J
.... _ . .., .. /·'' _ _.

�--y-·---"'�} ·1!···· .•. {:):··-··---'

FIG. 13C

FIG. 14A

40

151 w
r :$

::

........... --... -..... i�

......... L.

--�--

......... �

. _1 I
--� ······· -·..} � l ' i l l

· ·--:.-.

--
.

::1 · ·· ········:·
. -----�-�

•••
: .{

' .. ::

FIG. 148 FIG. 14C

�nt·-4-e:;1: w.-.-<�
:t:-��f ."' ; •.......

f

)
�:lS=P:O :}OQOO :37:$00 4$0(HJ

S�#:r;: d'd'*'·t'h:àM$.
FIG. 158 FIG� 15C

'l4

2

:nt�eft .-..·<:)-···

Qc�p.� ...• , ..•.....

.. , ... ,.�

li
I

;·�

J�
��� ::-:�l

,Jl
%1- ,

225�Ju :J;OOüo srs.;Jo 45uoo
$t1m pt i1�mi:tod$

FIG. 16A

�-;�o����� : ·: • ::�}.-..d� '##�:?�.-�······

'W ' ��,,,, ,,

, 'l , �,� �

> I'
.eo - - ·!· · · · · -·-:· - ···----···

·f}:) "•" •.v.•N.�•.•.•,• •
"•"�•"·"·"

r,,,
.· .

.. : h;t
4t� t,,.

··-···· tr ··- ··-·-·.·-· ::.-·-

hf r,,,-
11 �

li �
.zo f <i· /;;:• j

J._../
.. 1 :0 �---- .•.•.•.•.•.J. .•.•.·.-� ... -.•.• _._._._._._._._::._._._._._._._._._,._._.:. -

50004 75000 100000 ttMOO

FIG .. 168

FIG .. 17A

�""-' '·"·'·"'·'•'

i
l
/

u �
/

}'�l
/� _,J

l�'l
-

ó

400U5:J �'nOo:J snnnü
t'>t.�m �f d�mand;;>.

FIG. 178

Patent Application Publication Jun. 7, 2012 Sheet 16 o f 19

FIG. 18A
att

18 Avg and stci ôeviaÍion
Maximum

16 Minimum /

.c

14

12

g> 10
:!:
.c
1ii
o. 6.

4.

FIG. 18E

30 A'vii ânci sid'ôeviation
Max1mum
Minimum

25'

20

o
2.0 2.5 3.0 3.5 4.0 4.5 5.0

Sum of Demands x 103

FIG. 188
hier100

25
· Avg and Std Deviation

Maximum
Minimum

3.0 3.5 4.0
Sum of Demands x

FIG. 18F

18 :Avg and stiiDev,ation ·
Max1mum

· Minimum

4.0
Sum of Demands x

FIG. 18C
hier50a

14
;,;;�;;;;;rs!d·o;�;;t;on .:

Maximum
12 Minimum

10

o
2.0 2.5 3.0 3.5 4.0 4.5 5.0

Sum of Demands x 103

FIG. 18G

US 2012/0140636 A1

wax100

FIG. 180
wax100

10 Ãvg and std oe�iaticm ·
9. Maximum

M1n1mum

3.

2'

1.

o
2.0 2.5 3.0 3.5 4.0 4.5 5.0

Sum of Demands X 104

FIG. 18H

Patent Application Publication Jun. 7, 2012 Sheet 17 of 19

"' �
õ
Q;

.o § z

att
250'Aii9'8ri<isiiiüeviaiiün

Maximum
Minimum

ol ;
2.0 2.5 3.0 3.5 4 .0 4.5 5.0

Sum of Demands X 1 04

FIG. 19A
att

9 · Avg· and "std Deviation •
s; �1�\m�m

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Sum of Demands x 104

FIG. 19E

hier100
700 Avg and Std o'eviation

i Maximum
600 l Minimum

FIG. 198
hier100

25

20

10!

o
2.0 2.5 3.0 3.5 4.0 4.5 5.0

Sum of Demands X 1 03

FIG. 19F

hier50a
120 Aii9'aiiCi stiH5eiiiaiia·,, :

Maximum
Minimum

100:

60

FIG. 19C
hier50a

16 ' ' ' ' ' ' ' ' ' ' i Avg and Std Deviation ·
14. ����

i���

o
2.0 2.5 3.0 3.5 4.0 4.5 5.0

Sum of Demands x 1 03

FIG. 19G

US 2012/0140636 A1

wax100
35 0 Avg anci std Deviation: .

Maximum
300, , Minimum

200

150

100.

o
2.0

FIG. 190
wax100

7 Avg and,Std Deviation
Maximum

6• Minimum

O·
2.0 2.5 3.0 3.5 4.0 4.5 5.0

Sum of Demands X 104

FIG. 19H

Patent Application Publication Jun. 7, 2012 Sheet 18 of 19

att
60· Avg af1d std tievia!ian

Max1mum
Minimum

50

� 40 � "8 z 30 � :g ê 20
J!l
E

10i

o 2.0 2.5 3.0 3.5
FIG. 20A

att 30
Ãvg and sicJ 6e�iation

Maximum
Minimum

2.5 3.0 3.5 4.0 4.5 5.0
Sum of Demands x 104

FIG. 20E

hier100 50; Avg'and Std Deviatíon , .. :. 45! �1�ii���
4Di

� 35 r
<11 3Qi
"o"
z 25!
J!l � 20!
§ 15!
2 �
E 10f

5:
oi
2.0 2.5 3.5

FIG. 208
hier100

Avg· and Std Deviation
� Maximum

Minimum

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Sum of Demands x 103

FIG. 20F

hier50a
and Std Deviation

Maximum
Minimum

FIG. 20C
hier50a 45

· Avgand Std Deviation" 40 '������� �

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Sum of Demands x 103
FIG. 20G

J!l

US 2012/0140636 A1

wax100 80 Âvg ând sid bêviâlion
Maximum

70. Minimum

60

� 30' "
E
2 20
E

10'
02.0 3.0 3.5 4.5

Sum of Demands x 104

FIG. 200

FIG. 20H

Patent Application Publication Jun. 7, 2012 Sheet 19 o f 19 US 2012/0140636 A1

r211B
RANOOM
ACCESS
ME�,,ORY
CODE.D

!NSTRUCT!ONS
211fi

READONLY
MEMORY

r.21oo
L

r 21SO I
""' ... �

-MA-.·. S_,.:S� I
"'� STORAGE

r2126
fNPUT

DEVICE(S)

I
I
I

, r2t24 I
:� ::· iNTERFACE . .,; ;.... I

.21.22, .1 r2112 �� r 2128
�-�-�

OUTPUT I PROCESSOR
DEVICE(S} .

LOCAL
MEMORY

2114 _ _

I
I

--------·---··- 1

FIG. 21

US 2012/0140636 AI

METHODS AND APPARATUS TO
DETERMINE NETWORK LINK WEIGHTS

FIELD OF THE DISCLOSURE

[0001] This disclosure relates generally to communication
networks and, more particularly, to methods and apparatus to
determine network link weights.

BACKGROUND
[0002] The Internet includes multiple autonomous sys­
tems, each one using an interior gateway protocol to contrai
routing within the autonomous system. Interior gateway pro­
tocais, such as OSPF (Open Shortest Path First) and DEFT
(Distributed Exponentially-Weighted Flow spliTting), send
fiow through forward links towards a destination nade. OSPF
routes only on shortest-weight paths, whereas DEFT sends
fiow on ali forward links, but with an exponential penalty on
longer paths. Finding suitable weights for protocols such as
these is known as the weight setting problem.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] FIG. 1 is block diagram o f an example communica­
tion network represented as a graph comprising nades and
links.
[0004] FIG. 2 is a plot of an example link routing cost that
is a function o f link utilization.
[0005] FIG. 3 illustrates an example effect ofvarying a link
weight in the network graph of FIG. 1.
[0006] FIG. 4 is a block diagram o f an example link weight
solver employing a genetic algorithm as described herein to
determine link weights for performing routing in the comnm­
nication network o f FI G. 1 .
[0007] FIG. 5 is a fiowchart representative of example
machine readable instructions that may be executed to imple­
ment the link weight solver o f FIG. 4.
[0008] FIG. 6 is a fiowchart representative of example
machine readable instructions that may be executed to imple­
ment genetic algorithm processing in the link weight solver o f
FIG. 4.
[0009] FIG. 7 is a fiowchart representative of example
machine readable instructions that may be executed to imple­
ment weight decoding in the link weight solver of FIG. 4.
[0010] FIG. 8 illustrates an example pseudocode listing
corresponding to the fiowchart ofFIG. 7.
[0011] FIG. 9 illustrates an example effect on routing fiow
o f incrementing a link weight in a set o f possible link weights
determined by the link weight solver of FIG. 4.
[0012] FIG. 10 is a fiowchart representative of example
machine readable instructions that may be executed to imple­
ment weight updating in the link weight solver o f FIG. 4.
[0013] FIG. 11 illustrates an example pseudocode listing
corresponding to the fiowchart ofFIG. 10.
[0014] FIGS. 12-20H illustrate example performance
results for the link weight solver o f FIG. 4.
[0015] FIG. 21 is a block diagram o f an exampleprocessing
system that may execute the example machine readable
instructions ofFIGS. 5-8, 10 anel/ar 11 to implement the link
weight solver of FIG. 4.

DETAILED DESCRIPTION

[0016] Methods, apparatus and articles of manufacture to
determine network link weights are disclosed herein.
Example methods to determine link weights for routing in a

1
Jun. 7,2012

communication network as described herein include itera­
tively updating a plurality o f vectors using a genetic algo­
rithm, where each vector includes a plurality o f individual
values decodable into possible link weights. Such example
methods also include decoding a vector updated using the
genetic algorithm into a plurality oflink weights providing a
possible routing of a load through the communication net­
work. For example, the plurality o f link weights are used to
split the load among a plurality of paths having respective
path lengths determined from the plurality o f link weights,
with at least some o f the paths having different path lengths
(e.g., such as in the case of DEFT-based routing). In some
examples, such methods fl!rther include determining a rout­
ing cost (also referred to as a fitness) associated with each
plurality o f link weights decoded after each iteration o f the
genetic algorithm, and when a processing convergence is
detected (e.g., such as when no further change in the mini­
mum routing cost is observed), selecting the plurality oflink
weights associated with the minimum routing cost for per­
forming routing in the communication network. Example
genetic algorithms for iteratively updating the plurality of
vectors to determine respective pluralities oflink weights are
described in greater detail below.
[0017] In some examples, the methods described herein
also perform a local search procedure to attempt to improve a
plurality of link weights decoded after an iteration of the
genetic algorithm. Examples of such a local search procedure
include incrementing a link weight of a plurality of link
weights decoded from a vector updated using the genetic
algoritlnn, and determining whether incrementing the link
weight ofthe plurality oflink: weights improved a routing cost
associated with the plurality oflink weights. If the first DEFT
routing cost is improved, such example methods again incre­
ment the link weight of the plurality of link weights and
determine whether the routing cost is further improved. How­
ever, if the first DEFT routing cost is not improved, such
example methods can increment other link: weights o f the
plurality o f link weights and determine whether associated
routing costs are improved, with the procedure terminating
when no improvement is observed after examining a nurnber
of link weights ofthe plurality of link weights.
[0018] Various teclmiques for solving the weight setting
problem have been proposed for OSPF routing. Such tech­
niques include employing genetic algorithms to detennine a
set of link: weights that reduce or substantially minimize a
routing cost for OSPF routing. However, it is believed that
genetic algorithms have not been used to solve the weight
setting problem for DEFT link weights. As such, the example
methods, apparatus and articles of manufacture disclosed
herein overcome this deficiency in the art by utilizing genetic
algorithms to solve the weight setting problem for DEFT link:
weights. Additionally, the example methods, apparatus and
articles o f manufacture disclosed herein can detennine a set
of link weights that reduces or substantially minimizes a
routing cost (ais o referred to a cost function, an objective
fimction, a solution fitness, a network: congestion function,
etc.) tmder DEFT routing or, more generally, any routing
technique in which loads can be split unevenly among paths
having different path lengths determined from link weights.
Furthermore, the example methods, apparatus and articles o f
manufacture disclosed herein can yield integer link weights
supportable by today's network routing devices, thereby
enabling DEFT routing to be employed in existing connnu­
nication networks.

US 2012/0140636 AI

(0019] Turning to the figures, an example network graph
100 representative o f an example communication network is
illustrated in FIG. 1 . As noted above, the Internet includes
many autonomous systems, each one using an Interior Gate­
way Pro toco! (IGP) to contrai routing within the autonomous
system (AS). The topology of an Internet network can be
represented as a directed graph, such as the graph 100 ofFIG.
1, which includes a set of routers (represented as a set of
example nades 101-104) and a set o f communication links
(represented as a set of example ares 111-114). A set of
routers under the contrai of one or more network operators
who apply the same routing policy is what characterizes an
AS. Given a demand matrix containi ng an amount o f traffic to
be sent between ali pairs of routers, IGP routing protocols
establish rules on how loads will be sent from sources to
destinations within the AS.
[0020] A fiexible routing model is the fractional multi­
commodity fiow routing (referred to herein as OPT routing).
This routing model attempt to make the best possible use o f
network link capacities. However, it is difficult to implement
this pro toco! in practice because o f arbitrarily long paths, and
the arbitrarily small demand loads that can be routed on
high-capacity links. Therefore, telecommunication network
protocols are typically based on routing models that are less
efficient with respect to capacity utilization, but easier to
implement in practice.
(0021] Among existing IGP routing protocols, there are a
few that have been long used in practice, such as the OSPF
routing protocol. Other IGP protocols have been recently
proposed and are not yet implemented in real networks, such
as the DEFT routing protocol. Both OSPF and DEFT are
link-state routing protocols. These protocols allow a network
operator to calcula te paths on the network by setting adequate
link weights to balance loads traversing the network. The
loads are then sent through paths from sources to destinations,
and quantities such as network congestion, link utilization,
delay, etc., can be measured. The problem of determining
proper weights to reduce, improve or substantially optimize
an objective function or multiple cmlflicting objectives on
these metrics is known as the weight setting problem (WSP).
(0022] An objective of intradomain traffic engineering is
the efficient utilization of the available network resources
within an AS tmder traffic constraints. The traffic constraints
can include QoS (Quality ofService) features, sue h as, but not
limited to, delay, jitter, number ofhops, cost, etc. With these
aims, the weight setting problem has been studied for almost
a decade for OSPF routing. In OSPF, integer link weights are
set by the network operator. The fiow is routed through the
shortest paths, with traffic being split evenly, in each nade,
among ali outgoing shortest path links. An objective is to
determine link weights such that, if the traffic is routed
according to the pro toco!, then congestion is minimized. This
single-objective routing, however, has its limitations. For
example, it does not deal directly with QoS requirements that
one may also want to optimize. Multi-objective routing can
help address these requirements.
(0023] A wide range of other link-state routing protocols
exist. One ofthese protocols is IS-IS (Intermediate System to
Intermediate System). The IS-IS protocol considers similar
rules as OSPF, with one difference being that OSPF is an
Internet protocol, whereas IS-IS is natively an ISO (Interna­
tional Organization for Standardization) network layer pro­
toco!.

2
Jun. 7,2012

[0024] DEFT is another, recent IGP routing protocol.
DEFT considers not only shortest paths for routing, but also
directs fiow through ali forward paths, with exponential costs
being associated with longer paths. Furthennore, DEFT
weights are real numbers, whereas OSPF weights are inte­
gers. PEFT (Penalizing Exponential Flow-spliTting) is a
path-based routing protocol that splits traffic over multiple
paths with an exponential penalty on longer paths. One dif­
ference between the DEFT and PEFT protocols is that, in
tenns of fiow splitting, DEFT is a link-based protocol,
whereas PEFT is a path-based protocol. In PEFT, the outgo­
ing fiow at any node is split among ali shortest paths to a
destination nade, whereas in DEFT, the outgoing fiow is split
among ali forwarding links. In if an outgoing shortest
path link belongs to more than one shortest path, this link
receives more fiow than a shortest path link that belongs to
only one shortest path to the destination node.
[0025] The example methods, apparatus and articles of
manufacture described herein solve the weight setting prob­
lem for DEFT weights using a biased random key genetic
algorithm (BRKGA). Furthennore, the example methods,
apparatus and articles o f manufacture described herein can
support implementations of the DEFT protocol employing
integer weights, instead o f real number weights. A benefit o f
implementing the DEFT protocol with integer weights is that
routers typically used in practice allow only integer weights
and, therefore, allows the DEFT protocol with integer
weights as described herein to be employed in existing com­
munication networks. In the remainder of this disclosure,
DEFT with integer weights is also referred to as int-DEFT.
[0026] Example methods, apparatus and articles o f manu­
facture to solve the weight setting problem for DEFT weights
using a BRKGA are described as follows. First, a description
o f the general communication network routing problem is
provided. Then, the OSPF and DEFT protocols are described
in detail. The BRKGA framework for combinatorial optimi­
zation is then reviewed. Adapting BRKGA for the OSPF and
DEFTweight setting problems is then disclosed, and example
performance results are provided.
[0027] To develop the general routing problem for a com­
munication network, let G=(V, E) be a directed graph (such as
the graph 100) modeling a network with a set of routers V
(e.g., represented by the example nodes 101-104) and links E
:::::._ VxV (e.g., represented bythe example ares 111-114). Each
link (u, v)EE has a fiow capacity cu, v· Let D be a demand
matrix, where Du, v denotes the traffic fiow from source nade
u to target nade v for u, vEV. Let I::=_ V be the subset of ali
target nades in V, i.e. T={vEV: Du,>O, uEV}. The general
routing problem is to find the fiows fu,, on each are (u, v)EE
such that an appropriate objective function is minimized and
ali demands are delivered from their source nades to their
target nades.
[0028] An example of an objective function (also referred
as a routing cost, a solution fitness, a network congestion
fimction, etc.) to be minimized is given by Equation 1 :

I <l>(ju, V, Cu,,),
(u,v)EE

Equation 1

where <I> is the network-link cost function, which depends on
the current fiow and the link capacity. An example o f <I> is the
piecewise linear function given by Equation 2:

US 2012/0140636 AI

fu,v

3J�.v 2/3cu.v

10J,,,v-16 j3cu,v

70J�.v -178/3cu,v

500fu,v -1468/3cu,v

SOOOJ�.v -16318j3c,,,

if fu,v /Cu. v < 1 /3,

if 1/3 $f�. v/ Cu, v< 2/3,

if 2/3 :5 fu,v /Cu, v < 9/10,

if 9/10:5 f�. v/ Cu, v< 1 ,

if 1 :5 fu,v /Cu, v . 1 1/10,

if 1 1/10:5 f,,,,/ Cu. v·

Equation

A plot 200 o f the link cost <l> ofEquation 2 as a fimction ofthe
link utilization fu)cu,v is illustrated in FIG. 2.
[0029] Let fu "t be the flow with destination nade t on link
(u, v). Then, at'an intennediate nades wt any resulting flow
must respect flow conservation constraints given by Equation
3:

Equation 3

and the individual flow aggregation constraint given by Equa­
tion 4:

Equation 4

As the constraints and the objective function <l> are linear, an
optimum solution can be obtained by solving the linear pro­
gram OPT defined by Equation 1 , Equation 3, Equation 4, and
the non-negativity constraints fu,vt�o and ±�, "�0, for ali (u,
v)EE and tET. The optimal solution o f OPT is a lower bound
for the cost of any routing protocol.
[0030] The OSPF protocol, in contrast with the OPT solu­
tion, uses weights wu v on links (u, v)EE (e.g., represented by
the example ares lll-114 in FIG. 1) to determine the flow
distribution of demands. The weights are 16-bit integers in the
range [0, 216-1] . Each router (e.g., represented by the
example nades 101-104 of FIG. 1) maintains a link-state
database of the network topology and the weights, and regu­
larly exchanges state infonnation with other routers in the
same AS to keep the data base up-to-date. To route incoming
traffic, a router maintains a shortest path graph using the
weights as distances to ali known target nades within the AS.
The outgoing traffic of a nade u with destination t is split
equally among ali outgoing links on shortest paths to t
[0031] The DEFT protocol relaxes the shortest-path-only
restriction o f the OSPF protocol and also allows routing on
non-shortest paths. Under conventional DEFT routing, the
outgoing traffic o f a nade u is split proportionally among ali
forward links to a target nade t Links belonging to non­
shortest paths receive exponentially greater penalties, and
consequently carry less flow.
[0032] Formally, to detemline how load flows are to be split
under DEFT routing, let dut be the distance from nade u to
destination nade t Then hu v t+W u v-dut is the difference
between the length ofthe shortest path and the length of the
path traversing link (u, v). The non-nom1alized flow fraction
r in the direction to target nade t traversing link (u, v) is
defined by Equation 5:

3

ifd�>d:
otherwise

Jun. 7,2012

Equation 5

Equation 5 is then used to calculate the fraction of the total
flow foreachoutgoing link (u, V) OfU to be f(hu, v��w: (u, w)EE
f(hu,w�· It can be shown that, in terms oftotal link cost and
maximum utilization, there always exists a weight setting
such that DEFT has a smaller total cost than OSPF.
[0033] FIG. 3 illustrates an example of increasing a link
weight in the network graph 100 to demonstrate differences
between the OSPF and DEFT routing protocols. In the
example of FIG. 3, the graph 100 is modified to yield an
example graph 300 by increasing the link weight for are (b, t)
(having label 114 inFIG. 3) from weight P2 (innetwork graph
100) to weight P'2 (in network graph 300). Suppose
P1>P'2>P2>0 and are (u, a) (having label ll1 in FIG. 3) and
are (u, b) (having label 112 in FIG. 3) have the same positive
weight. In OSPF, the traffic from nade u (having label 101 in
FIG. 3) to t (having label 104 in FIG. 3) is routed through the
shortest path u-b-t (i.e., from no de 101, along link 112 to no de
103, and then along link 114 to nade 114). Nade a (having
label 102 in FIG. 3) does not receive any flow. The weight
change does not alter this scenario. However, when routing
with DEFT, nade a receives a fraction o f the traffic and the
change in the weight of are (b, t) causes a change of this
fraction. Increasing the weight of (b, t) causes a decrease in
the amount o f flow routed through b, and a larger part o f the
flow is now routed through a.
[0034] An example link weight solver 400 capable o f solv­
ing the weight setting problem for DEFT weights (andlor
OSPF weights) is illustrated in FIG. 4. The link weight solver
400 includes an example genetic algorithm processar 405 to
implement a genetic algorithm for iteratively updating a
population o f vectors (e.g., also referred to as evolving the
population of vectors), which are decoded into possible link
weights. In some examples, the genetic algorithm processar
405 continues to update the population o f vectors until the
decoded link weights converge to a solution yielding a mini­
mum (ar local minimum) ofthe routing cost (also referred to
as the solution fitness) given by Equation 1 . Examples o f
genetic algorithms that can be implemented by the genetic
algorithm processar 405 are described in greater detail below.
[0035] The link weight solver 400 also includes an example
weight decoder 410 to decode the population of vectors
updated by the genetic algorithm processor 405 into respec­
tive sets ofpossible linkweights wu ,Jorthe links (u, v) in the
network. The weight decoder 41 O aÍso determines the routing
cost (or fitness) o f Equation 1 associated with each set o f
possible link weights. The weight decoding and cost deter­
mination procedure perfonned by the weight decoder410 can
depend upon the type o f weights being determined, such as
DEFT weight, OSPF weights, etc. Example processing per­
formed by the weight decoder 410 is described in greater
detail below.
[0036] The link weight solver 400 fürther includes an
example weight updater 415 to perform a local search to
modifY values of one or more weights in each set o f possible
link weights decoded by the weight decoder 410 to attempt to
improve the cost (or fitness) associated with each set o f pos­
sible link weights. In some examples, the weight updater 415
increments one weight in a set of possible link weights, and

US 2012/0140636 AI

determines whether incrementing this weight improved the
routing cost (or fitness) associated with this set o f possible
link weights. If the routing cost is improved, this same link
weight is incremented again to determine whether the routing
cost is further improved. However. if incrementing the weight
does not improve the routing cost, other weights in this set o f
possible link weights are incremented and the resulting rout­
ing cost is again examined. In some examples, this local
search procedure terminates for a particular set o f possible
link weights when no routing cost improvement is observed
after incrementing some number (e.g., specified as a configu­
ration parameter) ofthe link weights in the set. In the case o f
determining DEFT weights, the weight updater 415 can
implement a dynamic fiow update algorithm to determine the
new routing cost resulting from incrementing a weight in a set
o f possible link weights. Example processing performed by
the weight updater 415 is described in greater detail below.
[0037] An example input interface 420 is also included in
the link weight solver 400 to receive input information, con­
figuration parameters, etc., for use by one or more of the
genetic algorithm processar 405, the weight decoder 41 O and
the weight updater 415. Examples of the information and
parameters received or otherwise obtained by the input inter­
face 420 include, but are not limited to, a graph G describing
the topology of the routers V and links E forming the com­
munication network, the target nodes T o f the network, the
demand matrix D specifying the load (or demand) to be
conveyed from source nodes to the target nodes in the net­
work, configuration parameters for the genetic algorithm
implemented by the genetic algorithm processar 405, etc. The
input interface 420 can be implemented by any type o f inter­
face technology, processar, etc. , such as the interface circuit
2124 and input device(s) 2126 ofthe processing system 2100,
which is described in greater detail below in connection with
FIG. 21.
[0038] An example output interface 425 is included in the
link weight solver 400 to output or otherwise provide the
solution for the set of link weights as detennined by the
genetic algorithm processo r 405, the weight decoder 41 O and
the weight updater 415. In some examples, the output inter­
face 425 also provides the routing cost (o r fitness) associated
with this resulting set o f link weights. The output interface
425 can be implemented by any type o f interface technology,
processar, etc., such as the interface circuit 2124 and input
device(s) 2126 of the processing system 2100, which is
described in greater detail below in cmmection with FIG. 21.
[0039] The link weight solver 400 further includes storage
430 for storing the sets o f possible link weights, the set oflink
weights determined to be the solution to the weight setting
problem, the input/configuration information, etc. The stor­
age 430 can be implemented using any type of storage or
memory, such as the mass storage device 2130 ancllor the
volatile memory 2118 ofthe processing system 2100, which
is described in greater detail below in connection with FIG.
21.
[0040] While an example malllier of implementing link
weight solver 400 has been illustrated in FIG. 4, one or more
ofthe elements, processes and/or devices illustrated in FIG. 4
may be combined, divided, re-arranged, omitted, eliminated
and/or implemented in any other way. Further, the example
genetic algorithm processo r 405, the example weight decoder
410, the example weight updater 415, the example input
interface 420, the example output interface 425, the example
storage 430 andlor, more generally, the link weight solver400

4
Jun. 7,2012

of FIG. 4 may be implemented by hardware, software, firm­
ware and/or any combination of hardware, software and/or
fim1ware. Thus, for example, any of the example genetic
algorithm processar 405, the example weight decoder 410,
the example weight updater 415, the example input interface
420, the example output interface 425, the example storage
430 andlor, more generally, the example link weight solver
400 could be implemented by one or more circuit(s), pro­
grammable processor(s), application specific integrated cir­
cuit(s) (ASIC(s)), programmable logic device(s) (PLD(s))
and/or field progranunable logic device(s) (FPLD(s)), etc.
When any o f the appended apparatus claims are read to cover
a purely software and/or firmware implementation, at least
one of the example link weight solver 400, the example
genetic algorithm processor 405, the example weight decoder
410, the example weight updater 415, the example input
interface 420, the example output interface 425 and/or the
example storage 430 are hereby expressly defined to include
a tangible computer readable medium such as a memory,
digital versatile disk (DVD), compact disk (CD), etc. , storing
such software and/or firmware. Further still, the example link
weight solver 400 of FIG. 4 may include one or more ele­
ments, processes and/or devices in addition to, or instead of,
those illustrated in FIG. 4, and/or may include more than one
o f any or ali ofthe illustratedelements, processes and devices.
[0041] Flowcharts and pseudocode listings representative
of example machine readable instructions that may be
executed to implement the exan1ple link weight solver 400,
the example genetic algoritlllll processar 405, the example
weight decoder 410, the example weight updater 415, the
example input interface 420, the example output interface 425
and/or the example storage 430 are shown in FIGS. 5-8 and
10-11. In these examples, the machine readable instructions
represented by each fiowchart or pseudocode listing may
comprise one or more programs for execution by a processo r,
such as the processar 2112 shown in the example processing
system 2100 discussed below in connection with FIG. 21.
Alternatively, the entire program o r programs and/or portions
thereof implementing one or more of the processes repre­
sented by the fiowcharts and pseudocode listings ofFIGS. 5-8
and 10-11 could be executed by a device other than the pro­
cessar 2112 (e.g., such as a controller and/or any other suit­
able device) and/or embodied in firmware o r dedicated hard­
ware (e.g., implemented by an ASIC, a PLD, an FPLD,
discrete logic, etc.). Also, one or more ofthe machine read­
able instructions represented by the fiowcharts and
pseudocode listings of FIGS. 5-8 and 10-11 may be imple­
mented manually. Further, although the example machine
readable instructions are described with reference to the fiow­
charts and pseudocode listings illustrated in FIGS. 5-8 and
10-11, many other techniques ±o r implementing the example
methods and apparatus described herein may altematively be
used. For example, with reference to the fiowcharts and
pseudocode listings illustrated in FIGS. 5-8 and 10-11, the
order o f execution ofthe blocks/lines may be changed, and/or
some o f the blocks/lines described may be changed, elimi­
nated, combined and/or subdivided into multiple blocks/
!ines.
[0042] As mentioned above, the example processes of
FIGS. 5-8 and 10-11 may be implemented using coded
instructions (e.g., computer readable instructions) stored on a
tangible computer readable medi um such as a hard disk drive,
a flash memory, a read-only memory (ROM), a CD, a DVD,
a cache, a random-access memory (RAM) and/or any other

US 2012/0140636 AI

storage media in which infom1ation is stored for any duration
(e.g., for extended time periods, permanently, briefinstances,
for temporarily buffering, andlor for caching ofthe infonna­
tion). As used herein, the tenn tangible computer readable
medium is expressly defined to include any type o f computer
readable storage and to exclude propagating signals. Addi­
tionally or altematively, the example processes of FIGS. 5-8
and 10-11 may be implemented using coded instructions
(e.g., computer readable instructions) stored on a non-transi­
tory computer readable medium, such as a flash memory, a
ROM, a CD, a DVD, a cache, a random-access memory
(RAM) andlor any other storage media in which infonnation
is stored for any duration (e.g., for extended time periods,
permanently, brief instances, for temporarily buffering, andl
or for caching of the infonnation). As used herein, the tenn
non-transitory computer readable medium is expressly
defined to include any type o f computer readable medi um and
to exclude propagating signals. Ais o, as used herein, the terms
"computer readable" and "machine readable" are considered
equivalent unless indicated otherwise.
[0043] Example machine readable instructions 500 that
may be executed to implement the link weight solver 400 o f
FIG. 4 to determine a set of link weights for perfonning
routing (e.g., DEFT or OSPF routing) in a communication
network are represented by the flowchart shown in FIG. 5.
With reference to the preceding figures and associated
descriptions, the machine readable instructions 500 begin
execution at block 505 of FIG. 5 at which the genetic algo­
rithm processar 405 included in the link weight solver 400
performs an iteration o f a biased random key genetic algo­
rithm to update (e.g., evolve) a population of vectors each
containing a set ofkeys decodable into a corresponding set o f
possible link weights for the links o f a connmmication net­
work. Example machine readable instructions that may be
used to implement the processing at block 505 are illustrated
in FIG. 6 and described in greater detail below.
[0044] At block 510, the weight decoder 410 included in
the link weight solver 400 decodes each set ofkeys included
in each updated (e.g., evolved) vector ofthe population into
respective sets of possible link weights (such as DEFT
weights or OSPF weights). Additionally, at block 510 the
weight decoder 410 determines the routing cost (or fitness) o f
Equation 1 for each decoded set of possible link weights.
Example machine readable instructions that may be used to
implement the processing at block 51 O are illustrated in FIGS.
7-8 and described in greater detail below.
[0045] At block 515, the weight updater 415 included in the
link weight solver 400 performs a local search to modifY (e.g.,
repeatedly increment) values o fone o r more weights in each
set o f possible link weights decoded at block 51 O to attempt to
improve the cost (o r fitness) associated with each set of pos­
sible link weights. For example, in the case ofDEFT weights
being decoded at block 510, the weight updater 415 may
implement a dynamic flow update algorithm to determine the
new routing cost resulting from modifying (e.g., increment­
ing) a weights at block 515. Example machine readable
instructions that may be used to implement the processing at
block 515 are illustrated in FIGS. 9-11 and described in
greater detail below.
[0046] At block 520, the link weight solver 400 determines
whether the iterative processing performed at blocks 505-515
has converged to a solution for the set o f link weights. For
exan1ple, the link weight solver 400 may determine that pro­
cessing has converged when the minimtilll routing cost (or

5
Jun. 7,2012

best fitness) among the set o f possible link weights deter­
mined via processing at blocks 505-515 remains unchanged
after one o r more successive iterations. If processing has not
converged (block 520), processing retums to block 505 to
begin another iteration. However, if processing has con­
verged, then at block 520 the link weight solver 400 selects
the set o f link weights having the lowest routing cost (o r best
fitness) to be the solution for weight setting problem and,
thus, the set of link weights for performing routing (e.g.,
DEFT or OSPF routing) in the cmnmtmication network.
Execution ofthe example machine readable instructions 500
then ends.
[0047] Example machine readable instructions 505 that
may be executed to implement the genetic algoritlm1 proces­
sar 405 of FIG. 4 and/or perform the genetic algorithm pro­
cessing at block 505 of FIG. 5 are illustrated in FIG. 6.
Genetic algorithms, such as one or more of the example
genetic algorithm implemented by the genetic algorithm pro­
cessar 405 and/or represented by the machine readable
instructions 505 ofFIG. 6, mimic survival ofthe fittest to find
good quality (e.g., optimal or near-optimal) solutions to com­
binatorial optimization problems. Using generally-accepted
temlinology for describing genetic algorithms, solutions are
associated with individuais in a population. Each individual 's
chromosome encodes the solution. Each chromosome is
made up of strings of genes, each ofwhich takes on a value,
called an allele, from some alphabet. The fitness o f a chro­
mosome is correlated with the objective function value ofthe
solution encoded by the chromosome. Over a number of
generations (e.g .. iterations o f the genetic algoritl1lll), in di­
viduals that make up a population are evolved. At each gen­
eration (e.g., iteration), offspring ofthe current population are
produced to make up the population o f the next generation.
Mutation takes place in genetic algorithms as a means to
escape entrapment in local minima. Individuais are selected
at random for mating. The probability that an individual is
selected is proportional to the fitness o f that individual. This
way, the genetic material from the most fit individuais is
passed on to the next generation (corresponding to survival o f
the fittest evolution).
[0048] Examples of genetic algorithms that can be imple­
mented by the genetic algorithm processor 405 and/or the
machine readable instructions 505 o f FIG. 6 are the random
key genetic algoritl1lll (RKGA) and the biased RKGA
(BRKGA). In RKGA and BRKGA, chromosomes are repre­
sented as a vector ofrandom real numbers (also referred to as
random keys) in the interval [0, 1] . A decoder, such as the
weight decoder 415, takes as input any vector o f random keys
and associates with it a solution o f the combinatorial optimi­
zation problem (e.g., such as the weight setting problem) for
which an objective value or fitness can be computed (e.g.,
such as the routing cost o f Equation 1).
[0049] The initial population in an RKGA or BRKGA is
made up of P vectors of random keys, where P can be a
configuration parameter. Each key for each vector in the
initial population is generated at random in the real interval
[0, 1] . After decoding each individual, the population is par­
titioned into two groups o f individuais: a smaller group o f Pe
elite individuais containing those individuais with the best
fitness values, and a larger group with the remaining P-pe
non-elite individuais, where Pe <P-Pe · To evolve the popula­
tion, a new generation o f individuais is produced. RKGA and
BRKGA use an elitist strategy to evolve the population from
one generation to the next. In such a strategy, ali ofthe elite

US 2012/0140636 AI

individuais o f generation k are copied unchanged to genera­
tion k+l . RKGAs and BRKGAs implement mutation by
introducing mutants in to the population. A mutant is simply a
vector of random keys generated in the same way that an
element o f the initial population is generated. At each gen­
eration a small set of Pm mutants is introduced into the popu­
lation. Discounting the Pe elite individuais and the Pm
mutants, P-p e -pm additional individuais need to be produced
to complete the P individuais that make up the population o f
the next generation. These offspring are produced through
mating.
[0050] For example, after ali individuais are sorted by their
fitness values, the population is partitioned into a set o f elite
solutions, containing the most fit (e.g., lowest routing cost)
solutions, and another of the remaining non-elite solutions.
The Pe elite random-key vectors are copied without change to
the next population. The Pm mutant individuais are randomly
generated and placed in the new population. The remainder o f
the population ofthe next generation is completed by cross­
over. In a RKGA, two parents for mating are selected at
random from the entire population. In a BRKGA, each off­
spring is generated by mating one parent chosen at random
(with repetition) from the elite partition in the current popu­
lation and the other parent is chosen at random (also with
repetition) from the non-elite partition. This way, an indi­
vidual can produce more than one o±Ispring in the same
generation. Mating in both RKGA and BRKGA is performed
with parameterized uniform crossover. For example, let
Pe>0.5 denote the probability that an offspring inherits the
key of its elite parent and let n denote the number ofkeys in a
random-key vector. Then, for i=1 , . . . , n, the i-th allele c(i) o f
the offspring c takes on the value ofthe i-th allele e(i) ofthe
eliteparent ewith probabilit)'__pe and the value ofthe i-thallele
e(i) of the non-elite parent e with probability 1-Pe· In this
way, an offspring is more likely to inherit characteristics of
the elite parent than those ofthe non-elite parent (correspond­
ing to survival ofthe fittest evolution). Because any random
key vector can be decoded into a solution, the offspring result­
ing from mating is always valid and, thus, can be decoded in to
a solution of the combinatorial optimization (e.g., weight
setting problem).
[0051] Based on the foregoing description of RKGAs and
BRKGAs. execution of the machine readable instructions
505 o f FIG. 6 to implement the genetic algorithm processo r
405 o f FIG. 4 and/or perform the genetic algoritlnn process­
ing at block 505 o f FIG. 5 begins at block 605 at which the
genetic algorithm processar 405 determines whether an ini­
tial iteration ofthe genetic algorithm is being perfom1ed. If an
initial iteration is being performed (block 605), then at block
610 the genetic algorithm processar 405 initializes the con­
figuration parameters o f the genetic algorithms. Examples o f
paran1eters initialized at block 61 O include, but are not limited
to, the population size (P), the elite set size CP e), the mutation
set size (Pm), the mating crossover probability (Pe), one or
more mutation probabilities (described in greater detail
below), etc. At block 615, the genetic algoritlnn processar
405 initializes, as described above. the vector for each indi­
vidual o f the population to have a set o f random keys, where
each key is decodable into a respective possible link weight,
as also described above.
[0052] However, if an initial iteration is not being per­
farmed (block 605), then a new generation ofthe population
is to be determined and, thus. at block 620 the genetic algo­
rithm processor 405 partitions, as described above, the popu-

6
Jun. 7,2012

lation of vectors into an elite group and a non-elite group
based on the population and elite set sizes configured at block
610, and the fitness (e.g., routing cost) associated with each
vector in the population. At block 625, the genetic algorithm
processar 405 evolves (e.g., updates) the population of vec­
tors into a new generation using crossover mating and muta­
tion, as described above, based on the crossover probability,
mutation set size and one or more mutation probabilities
configured at block 610. Execution of the genetic algorithm
iteration performed by the example machine readable instruc­
tions 505 of FIG. 6 then ends.
[0053] In an example implementation, a BRKGA imple­
mented by the genetic algorithm processor 405 and/or the
example machine readable instructions 505 is configured as
follows. The population is partitioned sue h that the set o f elite
solutions is made up o f the 25% most fit individuais (e.g.,
Pe =0.25p). The number o f mutants created at each new gen­
eration corresponds to 5% ofthe new population (e.g., pm=O.
05p) . Additionally, another form o f mutation is performed in
which. for each gene, with a mutation probability o f 1% (or
any otherprobability value), each ali ele (e.g., each key) ofthe
child inherits, in the crossover operator, a new random key in
the interval (0, 1). Furthermore, ifthe child does not inherit the
new random key, then the probability that a child inherits the
corresponding aliei e (e.g., key) ofthe elite parent is 70% (e.g.,
Pe=0.7).
[0054] Example machine readable instructions 510 that
may be executed to implement the weight decoder 410 of
FIG. 4 and/or perform weight decoding and routing cost
determination at block 510 ofFIG. 5 are illustrated in FIGS.
7 and 8. The example machine readable instructions 510
correspond to weight decoding implementation to determine
DEFT weights for DEFT routing in a connnunication net­
work. To provide context for the descriptions ofFIGS. 7 and
8, an example implementation ofthe weight decoder 410 to
perfom1 OSPF weight decoding is first described.
[0055] Given a vector o f keys determined by the genetic
algarithm processor 405 using the BRKGA described above
in connection with FIG. 6, the weight decoder 410 produces
a netwark fiow for which the congestion is computed with the
network congestion function of Equation 1 . In the BRKGA,
an individual of the population is encoded as a vector x o f
n=IEI random keys, where each random key X;E(0,1), for i=1 ,
. . . , n . Given a particular individual vector x , a respective
initial OSPF weight vectar can be decoded by the weight
decoder 410 to have individual link weights ofw;=r x;xwmax l ,
where w max =20 (o r any other appropriate value). In such an
example, initial OSPF link weights are integers in the interval
[1 ,20]. Starting from an initial OSPF weight vectar, the
weight updater 415 performs a fast local search to try to
decrease network congestion by simple changes in individual
link weights.
[0056] An example local search procedure examines the
effect o f increasing the weights o f a subset o f the links (e.g.,
ares). The candidate links are links whose weight is smaller
than w max• and the candidates are visited in decreasing arder
oftheir routing cost <P(�,,v, cu.J To reduce the routing cost o f
a candidate link, the procedure attempts to increase its weight
(within a given range) to reduce its load. If this leads to a
reduction o f the overall routing cost, the change is accepted,
and the procedure is restarted. Otherwise, the increase is
rejected and the procedure continues with the next candidate
link.

US 2012/0140636 AI

[0057] The local search is repeated until k candidate ares
have their weights increased without improving the solution.
In some example, the weight updater 415 is configured with
k=S (or some other relatively small value) to keep the search
neighborhood small and, thus, help preserve the diversity of
the population.
[0058] To develop an implementation of the weight
decoder 410 for DEFT weights, recall that, in OSPF routing,
the fiow on each nade is evenly split among ali shortest path
links leaving this nade with destination t. In DEFT, the load in
a nade u is split among ali outgoing links (u. v) (and not only
on links on the shortest path) in the direction of t, i.e. when
dut>dvt· Moreover, the load is not split equally among all links
as in OSPF. Instead, DEFT applies an exponential penalty to
longer paths between origin-destination pairs such that more
load is routed through links that result in shorter paths.
[0059] Also, incontrastto integerOSPF weights, the DEFT
weights are positive real numbers. Therefore, an implemen­
tation ofDEFT on current routing hardware has to decide how
to map the real DEFT weights onto an available range of
integer weights, typically a 16-bit integer. Another issue with
DEFT is how to handle small fiow fractions. Even a path that
is considerably longer than the shortest path to the target will
receive a fiow. This fiow, however, can be very small, because
the assigned fraction of fiow decreases exponentially. As
such, distributing fiows to much longer paths can increase
commtmication latency.
[0060] To solve these problems, some example implemen­
tations o f the weight decoder 41 O described herein work with
integer weights, but use a scaling parameter p. Real-valued
DEFT distances are obtained by dividing the integer distances
by p. This integer-based DEFT implementation is referred to
herein as int-DEFT when appropriate to avoid ambiguity. In
the experiments described below, a scaling parameter of
p=l .8 is used, although any other scaling parameter could
alternatively be used.
[0061] To avoid routing on long paths with a marginal fiow
contribution, some examples of the weight decoder 410
employ a maximum gap g, and route fiow only on links whose
integer gap hu vt is at most g. In the experiments describe
below, the ma�imum gap is set to g=9, which excludes from
routing those paths which would receive a fraction o f the fiow
having less than e-IOIJ.s,..,Q.39% ofthe fiow routed on a short­
est path. In such examples employing a maximum gap, the
non-normalized fiow fraction r in the direction to target node
t traversing link (u, v) as defined in Equation 5 is modified to
become Equation 6:

r(e-h0i,,v/P jf d� > d: and
l otherwise.

Equation 6

[0062] With the foregoing description of an example imple­
mentation of the weight decoder 410 to support DEFT as a
reference, the exan1ple machine readable instmctions 51 O are
now described. FIG. 7 illustrates the example machine read­
able instmctions 510 in the form o f a fiowchart, whereas FIG.
8 illustrates the example machine readable instmctions 510 in
the form o f pseudocode. Execution o f the example machine
readable instmctions 510 executed to implement the weight
decoder 410 o f FIG. 4 and/or perfom1 weight decoding and
routing cost determination at block 510 of FIG. 5 begins at
block 705 ofFIG. 7 at which the weight decoder 410 obtains

7
Jun. 7,2012

inputs for decoding a population o f vectors determined using,
for example, the BRKGA procedure described above in to sets
of possible DEFT weights. For example, the parameters
obtained at block 705 can include, but are not limited to,
graph G describing the topology ofthe routers V and links E
forming the conununication network, the target nades T o f the
network, the demand matrix D specifying the load (or
demand) to be conveyed from source nades to the target nades
in the network, a current possible weight solution correspond­
ing to a current set o f possible DEFT weights w determined
from one ofthe updated population vectors resulting from the
current iteration o f the BRKGA procedure, the gap threshold
g, etc. In some examples, each current set of DEFT link
weights w is deterrnined from a respective population vector
in a manner similar to the OSPF implementation described
above in which individual link weights are deterrnined by
scaling eachkey (e.g., each individual vector element) o f each
population vector by a se ale factor o r, in other words, w;=r X; X
wmaxl ·
[0063] Next, for each destination node tET, the weight
decoder 410 computes the reverse shortest path distance
(blocks 710 and 715 ofFIG. 7, and !ines 802 and 802 ofFIG.
8) and, with a scan ofthe links/arcs, the shortest path graph Gt
(block 720 ofFIG. 7, and line 803 ofFIG. 8). Next, the weight
decoder 410 perfom1s a procedure (e.g., ComputePartial­
Loads illustrated in !ines 804-822 ofFIG. 8) that implements
DEFT mies that allow fiows to be routed on non-shortest
paths. For example, the weight decoder 410 sorts the nades in
decreasing order oftheir distances to t (block 725 o f FIG. 7
and line 805 of FIG. 8). Then, at block 730, the weight
decoder 410 analyzes nodes one by one, in decreasing dis­
tance to the target nade, and determines the partial load fiow
associated with the target nade on each link resulting from
employing DEFT routing. For example, block 730 o f FIG. 7
can include the loop in !ines 808-813 of FIG. 8 at which the
weight decoder 410 calculates the sum (ftata

z) of the fiow
distribution function of Equation 6 for each outgoing link o f
the currentnode. InFIG. 8, OUT(u)={v: (u, v)EE} denotes the
set o f outgoing links o f node u. Block 730 ofFIG. 7 can also
include line 814 of FIG. 8, at which the weight decoder 410
calculates the total demand f (traversing and leaving the cur­
rent nade) per unit of r. Block 730 of FIG. 7 can further
include the loop in !ines 815-821, at which the weight decoder
410 calculates, for each forward outgoing link of node u, the
fiow traversing the link according to its proportion o f r. At
block 735 ofFIG. 7 (corresponding to line 824 ofFIG. 8), the
weight decoder 410 updates the total load of each link/arc
with the partia! loads calculated for destination nades tET.
Finally, at block 745 of FIG. 7 (corresponding to line 826 of
FIG. 8), the weight decoder 410 computes the fitness value o f
the solution (e.g., using Equation 1).
[0064] Example machine readable instmctions 515 that
may be executed to implement the weight updater 415 o f FI G.
4 and/or perform the local search processing for weight
updating at block 515 ofFIG. 5 are illustrated inFIGS. lO and
11. The example implementations of FIGS. 10 and 11 are
developed as follows. As noted above, the DEFT routing
protocol distributes the fiow among shortest and non-shortest
paths to a target node. As a result, small changes can cause a
new fiow distribution in the network, even when the shortest
path graph is unaltered. As a consequence, a change in a link
weight can lead to an altered fiow in a potentially large num­
ber of links. To reduce the computational cost o f evaluations
o f the objective function o f Equation 1 by the local search

US 2012/0140636 AI

procedure, a dynamic flow update algorithm is employed for
the int-DEFT implementations described herein. An example
dynamic flow update algoritlun receives a unitary increment
o f a single link weight and updates only the part o f the net­
work affected by this change.
[0065] It tums out that there are three main cases to be
analyzed. Let t be the target nade. Given a unitary increment
!J. in the weight of link (u, v), nades can be classified in three
different cases according to their distance change. First,
nades with no outgoing load (leaving or traversing the nade)
directed to t are not affected by the increment !J.. Second,
nades belonging to paths forwarding to t, in the case that
before and after the change ali forwarding paths traverse are
(u, v), and whose distances have changed, have no modifica­
tions in their loads because the loads traversing these nades
are affected equally by any !J. variation o f the link weight. As
such, the flow distribution is unaltered. In the third case are
those nades that, with increment A, create altemative paths
that do not traverse are (u, v). Those, and each intermediate
successor nade towards the target nade t, have their flow
distribution altered and, therefore, have to be reevaluated.
[0066] Consider, as an example, the network graph 900
illustrated in FIG. 9. Suppose that due to the increment !J. in
link (u, v) (labeled as 905 in FIG. 9), nade u (labeled as 910)
andnode v (labeled as 915), whichare above the dashed curve
920, are the nades whose distances are affected. Suppose that,
before the increment, link (a, b) (labeled as 925) did not
belong to the shortest path, but after the increment it does. In
this case, which corresponds to the third case described in the
preceding paragraph, some load is sent through link (a, b)
(labeled as 925) and link (b, v) (labeled as 930), while link (a,
u) (labeled as 935) and link (u, v) (labeled as 905) have their
loads decreased.
[0067] With the foregoing description of the three main
cases to be examined by an example dynamic flow update
algorithm implemented by the weight updater 415 as a refer­
enee, the example machine readable instruetions 515 are now
described. FIG. 10 illustrates the example machine readable
instructions 515 in the fom1 of a flowchart, whereas FIG. 11
illustrates the example machine readable instructions 515 in
the forrn or pseudocode. The example machine readable
instructions 515 begin implementing weight updating at
block 1005 of FIG. 10 at which the weight updater 415
increments the weight o f a candidate link o f a set o f possible
link weights (e.g., where the set o f possible link weights is a
possible link weight solution corresponding to one of the
population vectors updated by the genetic algorithm). The
increment is represented by !J., which can be an integer equal
to or greater than 1 . As in the case o f the local search proce­
dure described above for OSPF, candidate links for a possible
link weight solution are links having weights less than a
maximum weight, and candidate linl<s are examined in
decreasing arder of routing cost.
[0068] For each candidate (block 1010 of FIG. 10), the
weight updater 415 preserves the previous set of possible link
weights corresponding to this possible weight solution (block
1015 ofFIG. 10 and line 1101 ofFIG. 11). (A set o f possible
link weights is also referred to as a distance vector because
paths distances are deterrnined by summing the link weights
along the paths.) Then, for each target nade tET (block 1020
ofFIG. 10 and line 1102 ofFIG. 11), the weight updater 415
calculates the new reverse shortest path graph Gt for this
target nade t resulting from incrementing the candidate link
weight (block 1025 of FIG. 10 and !ines 1103-1104 of FIG.

8
Jun. 7,2012

11). Next, at block 1030 ofFIG. 10 (corresponding to the loop
at !ines 1106-1113 of FIG. 11) the weight updater 415 iden­
tifies ali nades u with two or more forward outgoing ares
having at least one successor whose shortest distance to t is
not altered (corresponding to condition2 in FIG. 11) and a
different successor whose shortest distance to t is increased
by exactly !J. (corresponding to condition1 in FIG. 11). Those
nades represent the third case described above, and their
flows are to be altered due to incrementing the candidate link
weight.
[0069] In some examples, the nades that are identified at
block 1035 of FIG. 10 (corresponding to the loop at !ines
1106-1113 ofFIG. 11) as having altered flows are stored in a
heap data structure Hd, dold' whose keys are pairs ofthe current
and the previous shortest distance (beíore the !J. increase) to t.
The heap is ordered by the current distance and, in case o f a
ti e, by the previous distance. More forrnally, this heap order­
ing is represented by Equation 7 :

Equation 7

From Equation 7, if two nades have the same distance, the
nade with the smaller distance before the update (dold) has to
be processed first, to avoid evaluating links whose flow was
not yet updated. With the arder established by Equation 7, the
flow on links is reset (e.g., see line 1133 o f FIG. 11) before
being calculated, to not consider the old flows on those links.
[0070] Next, at block 1035 ofFIG. 10 (corresponding to the
loop in !ines 1114-1118 o f FIG. 11) the weight updater 415
adds to the heap each intermediate nade that is a successor in
the direction oft o f a nade whose flow has been altered (e.g.,
as identified at block 1035 of FIG. 10 or !ines 1106-1113 of
FI G. 11). The weight updater 415 then calculates the new flow
distribution associated with these identified nades (block
1040 of FIG. 10 and !ines 1119-1137 of FIG. 11). For
example, at line 1127 of FIG. 11, the weight updater 415
calculates the total flow leaving each of the identified nades.
At !ines 1128-1135 ofFIG. 11, the weight updater 415 deter­
mines how to split the flow proportionally among ali outgoing
ares. At !ines 1138, the weight updater 415 calculates the sum
o f ali flow fractions over ali target nades.
[0071] After ali target nades oft are processed, the weight
updater 415 evaluates the total network congestion ci> (given
by Equation 1) íor the current set o f possible link weights for
which one ofthe link weights was incremented (block 1050 o f
FIG. 10 and line 1140 of FIG. 11). The weight updater 415
determines whether an improvement in the total network
congestion ci> was achieved by incrementing the link weight
(block 1055 ofFIG. 10). Ifan improved was achieved (block
1055 ofFIG. 1 0), the current version ofthe set o f possible link
weights having the incremented link weight is retained and
the process is repeated (block 1060). However, if an improve­
ment was not achieved (block 1055 of FIG. 10), the weight
updater 415 retains the previous version ofthe set ofpossible
weights (block 1060 ofFIG. 10). The weight updater 415 then
continues examining the effect o f incrementing other candi­
date link weights in the current set of possible link weights
until no improvement is observed after examining a specifiecl/
configured number o f candidate link weights.
[0072] Example performance results íor OSPF and DEFT
link weight setting using the example BRKGA methods,
apparatus and articles o f manufacture described herein are
illustrated in FIGS. 12-20H. The performance ofBRKGA for
OSPF and DEFT link weight setting as described herein was
examined on twelve synthetic networks and another instance

US 2012/0140636 AI

with real data from a large tier- 1 Internet service provider
(ISP). Table 1 sunnnarizes the characteristics o f these net­
works. The colunms represent, respectively, the instance
class, the instance name, number o f nodes, number o f ares/
links. the values oflink capacities (the instance att has a large
amount o f different values for the link capacities, so this entry
is omitted from the table), and the number o f origin-destina­
tion (0-D) demand pairs. The instances are classified into
four groups: historical data from the ISP Backbone (att),
two-level hierarchical networks (hier), random networks
(rand), and Waxman networks (wax).

Instance

ISP backbone

Two-level
hierarchy

Random
topology

Waxman

Name

att

hier50a

hier50b

hier100

hier100a

rand50
rand50a
rand100

rand100b
wax50
wax50a
wax100
wax100a

TABLE 1

Nodes

90

50

50

100

100

50
50

100
100

50
50

100
100

Links Capacities 0-D pairs

274 272

148 200 and 2450
1000

2 1 2 200 and 2450

1 000
279 200 and 9900

1000
360 200 and 9900

1000
228 1000 2450
245 1000 2450
403 1000 9900
503 1000 9900
169 1000 2450
230 1000 2450
391 1000 9900
476 1000 9900

9

lmplementation

int-DEFT-opt

int-DEFT

int-DEFT-opt

int-DEFT

[0073] Seven different demand matrices were examined for
each network, obtained by scaling a basic demand matrix for
each instance by a factor from 6 to 12. The BRKGA was
tested with the following parameters:
[0074] Population size: P=50 individuais;
[0075] Weight interval: [1 , wm=J=[l ,20];
[0076] Algorithm nmning time: 60 minutes;
[0077] Probability o f inheriting ali ele from elite parent dur­
ing crossover: Pe =0.7;
(0078] Maximum gap for hu.v': and
[0079] Scaling parameter: p=1 .8.
[0080] The experiments were carried out on a cluster often
(10) Inte! Duo Core processors with 1 .23 GHz, 1 . 0GB RAM,
and numing Linux 2. 6 . 1 8-4. Each run used a single processor.

Jun. 7,2012

[0081] A first experiment explored the time savings
obtained by tuning the BRKGA and weight decoding proce­
dures to work efficiently for DEFT and by using the dynamic
fiow algorithm described above in connection with FIGS.
9-11 as compared to a straightforward adaptation of the
BRKGA discussed above for OSPF. In particular, the follow­
ing three different implementations were compared:
[0082] (1) int-DEFT-DSSSP: A straightforward adaptation
to DEFT ofthe BRKGA proposed for OSPF. This implemen­
tation employed a dynamic single source shortest path
(DSSSP) algoritlnn. The routing followed DEFT rules and
was computed statically.
[0083] (2) int-DEFT-opt: int-DEFT-DSSSP, with its data
structures tuned to work efficiently with DEFT, thereby
decreasing the nmning times. In particular, the data structure
that maintains the number of links leaving each node that
belongs to a shortest path to the destinationnode (in OSPF) is
unnecessary in DEFT.
[0084] (3) int-DEFT: int-DEFT-opt, but additionally using
the dynamic fiow algoritlnn described above.
[0085] It should be noted that the link weight solution deter­
mined by each o f these three implementations is the same,
independent of the implementation. However, the rumling
times are affected by which implementation is used. FIG. 12
shows a comparison o f the execution time in hours for 1000
generations ofthe three implementations and Table 2 shows
the speedups of the improved implementations over int­
DEFT-DSSSP. Ali 13 network instances of Table 1 were
tested with the llighest total demand.

TABLE 2

Instance

att hier100 hierlOOa hier50a hier50b rand100 rand100b

1 . 1 8 1 . 20 1 .31 1 . 19 1 .27 1 .32 1 .31

3.74 3.73 3.77 2.89 2.71 3.33 2.89

rand50 rand50a wax100 wax100a wax50 wax50a

1.29 1 .32 1.30 1 .34 1 .2 2 1.30

2.81 2.68 3.25 3.01 2.86 2.82

[0086] Table 2 shows that the straightforward adaptation
from OSPF is on average 3 . 12 times slowerthan the int-DEFT
version. From the data in Table 2. it can also be seen that the
perfom1ance gains are mainly due to the dynamic fiow com­
putation. Ttming the implementation for DEFT results in only
an average speedup of 1 .27, while the dynamic fiow compu­
tation algoritlnn was responsible for 5 1% to 68% ofthe time
savings for the set of instances tested. Thus, it can be con­
cluded that even for non-shortest path routing protocols like
DEFT it is worthwhile to implement dynamic fiow computa­
tion as described above in connection with FIGS. 9-11 .
[0087] A second set o f experiments compared the quality o f
the solutions obtained by the BRKGA when routing with
OSPF and DEFT. Performance was quantified in tenns o f an
optimality gap, which is the additional routing cost ofthe best

US 2012/0140636 AI

link weight solution determined by the BRKGA techniques
described herein, as a percentage o f the routing cost o f the
lower bound given by the solution ofOPT. FIGS. 13-17 show
the results for DEFT and OSPF for the network instances
listed in Table 1 . In particular. FIGS. 13A, B and C illustrate
the BRKGA optimality gap for the network instances att,
hier50a, and hier50b of Table 1 , respectively, with each fig­
ures depicting the optimality gaps measured for OSPF and
DEFT solutions. FIGS. 14A, B and C illustrate the BRKGA
optimality gap for the network instances hier 100, hier 100 and
rand50a ofTable 1 , respectively, with each figures depicting
the optimality gaps measured for OSPF and DEFT solutions.
FIGS. 15A, B and C illustrate the BRKGA optimality gap for
the network instances wax50, wax50a andrand1 00 ofTable 1 ,
respectively, with each figures depicting the optimality gaps
measured for OSPF and DEFT solutions. FIGS. 16A and B
illustrate the BRKGA optimality gap for the network
instances rand50 and rand1 OOb o f Table 1 , respectively, with
each figures depicting the optimality gaps measured for
OSPF and DEFT solutions. FIGS. 17A and B illustrate the
BRKGA optimality gap for the network instances wax100
and wax1 OOa o f Table 1 , respectively, with each figures
depicting the optimality gaps measured for OSPF and DEFT
solutions.
[0088] For the six instances in FIG. 13A-C and 14A-C,
DEFT is able to improve over OSPF. In particular, for high
total demands, where OSPF has large optimality gaps, DEFT
can lower the gaps considerably. For the seven instances
shown in FIGS. 15A-C, 16A-B and 17A-B, both DEFT and
OSPF result in about the same optimality gap, with the five
instances in FIGS. 15C, 16A-B and 17A-B, having points
where DEFT yields slightly worse results than OSPF.
[0089] A third experiment analyzed the number o f interme­
diate nades involved in the routes o f a demand path. For an
examined demand matrix, the following three metrics were
compared:
[0090] (1) Path length, which is the average path length
over ali paths used for routing for ali 0-D demand pairs,
measured in number o f nades o f the path;
[0091] (2) Nmnberofpaths, which is the average nmnberof
different paths used for routing the 0-D demand pairs. Two
paths are considered different if one path has at least one
link/arc that does not belong to the other path; and
[0092] (3) Percentage of intem1ediate nades affected,
which represents the average number of intermediate nodes
routing an 0-D demand pair, as a percentage of the total
number of nades.
[0093] For each network instance examined, the minimum,
maximum, and average values, as well as the standard devia­
tion, ofthese three metrics were determined, considering ali
paths of ali 0-D demand pairs. The values are the average o f
three runs of 1000 generations each. To conduct this experi­
ment, the following four network instances of Table 1 were
examined: att, hier100, hier50a, and wax100. For each net­
work instance, four demand matrices were considered. These
results for each o f these metrics are presented in tum.
[0094] The path length experiment has the objective of
comparing the network delay for int-DEFT and OSPF mea­
sured as the length ofthe paths (i.e., the number ofnodes that
comprise the paths). The shortest path, the longest path, and
the average path size among ali paths o f ali 0-D demand pairs
were determined. The measure was calculated for int-DEFT
and OSPF for the best solution o f the 1 OOOth population
generation of the BRKGA, for four demand matrices of the

10
Jun. 7,2012

four instances att, hier100, hier50a, and wax100 used in the
experiments. FIGS. 18A-H present the results for int-DEFT
and OSPF.
[0095] From the plots in FIGS. 18A-H, it can be observed
that the path lengths for int-DEFT are about 40% longer than
in OSPF. For example, for the demand matrix with the largest
sum o f demands, the average path lengths found by int-DEFT
are 10.63, 12.80, 8.2, and 6.92 hops, whereas the correspond­
ing values for OSPF are 7 .94, 9.03, 6 .0 1 , and 4.47 hops. Ifwe
compare the path length with the shortest possible length as
given by the topology ofthe instances, OSPF adds on average
2 hops, compared to 4.8 hops in int-DEFT. In a telecommu­
nication network, it can be desirable to maintain the path
lengths as short as possible. One reason is that as the path
length increases, so does the expected number of demand
pairs affected by a failure. Thus, the length of a path can be
directly related to the quality o f service o f a telecommunica­
tion network.
[0096] With respect to the minimum path length observed,
they are the same for OSPF and int-DEFT. The minimum
value is four for instance att, and two for the other three
instances. That was expected, since both protocols route
through the shortest path, and a path o f length two indicates
that the path is composed o f a single direct link. Instance att
does not have 0-D demand pairs between ali pairs o f nades,
while the other instances do. Thus, it is possible to have the
minimmn value larger for att than for the other instances.
[0097] From an analysis of results of FIGS. 18A-H, two
other conclusions can be drawn. For example, the path length
is almost constant through the generations for ali four
instances tested. Additionally, as can be seen in the plots, the
path lengths vary only slightly with the total demand.
[0098] The number o f paths experiment measures the mini­
mum, maximum, and average number of paths among ali
paths o f ali 0-D demand pairs. The measure is calculated for
int-DEFT and OSPF for the best solution ofthe 1 OOOth popu­
lation generation ofthe BRKGA, for four demand matrices o f
four instances. Two paths are considered different if one has
at least one link/arc that the other does not have, and a path is
considered different from a set o f paths if it is different from
each path o f the set. FI GS. 19 A-H present the nmnber o f paths
metrics for the solution fmmd for int-DEFT and OSPF.
[0099] From FIGS. 19A-H, the average number of paths
found by int-DEFT is about 10 times higher than the average
nmnber fmmd in OSPF solutions. For example, considering
the demand matrix with the largest total demand, the average
values for int-DEFT are 10.13 , 12.67, 5 .08, and 9.23, whereas
the corresponding values for OSPF are 1 .63, 1 .77, 1 .36, and
1 .08. The difference between the number o f paths between
int-DEFT and OSPF could be even larger if a larger gap
threshold íor hu vt is used. A gap threshold equal to nine (9)
was used in th� experiments to avoid having a very small
amount of load íor a demand pair fiowing in a link.
[0100] From FIGS. 19A-H, one can observe that the num­
ber o f paths changes slightly with the total demand. Further
experiments also showed that the nmnber o f paths is about the
same over different generations ofthe BRKGA.
[0101] The percentage of intermediate nades affected
experiment has the objective of showing the distribution of
paths in the network. In other words, this experiment presents
the percentage o f nades that are part o f some path used in an
0-D demand pair. The smallest, largest, and average percent­
age o f intem1ediate nades among ali paths o f ali 0-D demand
pairs were measured. The measure is calculated for int-D EFT

US 2012/0140636 AI

and OSPF for the best solution o f the I OOOth population
generation of the BRKGA, for four demand matrices of the
four instances used in the experiments. FIGS. 20A-H depict
the number o f intermediates nodes for int-DEFT and OSPF.
[0102] In the experiments performed, the percentage of
intermediate nodes of int-DEFT is almost twice the percent­
age of intennediate nodes of OSPF. Since int-DEFT sends
fiows among ali forward links, it is expected that a larger part
o f the graph would be used for routing a demand pair. As for
the path length, the larger the set o f intermediate nodes, the
higher the probability of a demand pair being affected in the
case of a link or node failure. For example, considering the
demand matrix with the largest total demand, the average
percentages ofintermediate nodes used in the int-DEFT solu­
tion are 13 .98, 12.23, 1 8.93, and 12 .61 , whereas the corre­
sponding values for the OSPF solution are 8 .61 , 8.37, 1 1 .83,
and 4.57.
[0103] As shown in FIGS. 20A-H, the minimum percent­
age of intennediate nodes is about the same for int-DEFT and
OSPF. The maximum percentage for DEFT was about twice
the maximum percentage found by OSPF in most instances,
and for the instance wax1 00, the percentage o f intermediate
nodes in int-DEFT was three times the percentage of OSPF.
[0104] It was also observed that the percentage o f intenne­
diate nodes was about the same throughout the generations o f
the BRKGA. Additionally, as can be observed in FIGS. ZOA­
H, the values did not change much when different demand
matrices were considered.
[0105] FIG. 21 is a block diagram ofan exampleprocessing
system 2100 capable of implementing the apparatus and
methods disclosed herein. The processing system 2100 can
be, for exan1ple, a server, a personal computer, a personal
digital assistant (PDA), an Internet appliance, a DVD player,
a CD player, a digital vídeo recorder, a personal vídeo
recorder, a set top box, o r any other type o f computing device.
[0106] The system 2100 ofthe instant example includes a
processor 2112 such as a general purpose progranunable
processor. The processor 2112 includes a local memory 2114,
and executes coded instmctions 2116 present in the local
memory 2114 and/or in another memory device. The proces­
sor 2112 may execute, among other things, the machine read­
able instructions represented in FIGS. 5-8 and 10-11. The
processo r 2112 may be any type o f processing unit, such as
one or more Intel® microprocessors from the Pentium® fam­
ily, the Itanium® family and/or the XScale® family, one or
more microcontrollers from theARM® and/or PIC® families
of microcontrollers, etc. Of course, other processors from
other families are also appropriate.
[0107] The processar 2112 is in communication with a
main memory including a volatile memory 2118 and a non­
volatile memory 2120 via a bus 2122. The volatile memory
2118 may be implemented by Static RandomAccess Memory
(SRAM), Synchronous Dynamic Random Access Memory
(SDRAM), Dynamic Random Access Memory (DRAM),
RAMBUS Dynamic Random Access Memory (RDRAM)
and/or any other type o f random access memory device. The
non-volatile memory 2120 may be implemented by flash
memory and/or any other desired type of memory device.
Access to the mainmemory 2118, 2120 is typically controlled
by a memory controller (not shown).
[0108] The processing system 2100 also includes an inter­
face circuit 2124. The interface circuit 2124 may be imple­
mented by any type o f interface standard, such as an Ethernet

11
Jun. 7,2012

interface, a universal serial bus (USB), and/or a third genera­
tion input/output (3GIO) interface.
[01 09] One o r more input devices 2126 are connected to the
interface circuit 2124. The input device(s) 2126 permit a use r
to enter data and commands into the processor 2112. The
input device(s) can be implemented by, for example, a key­
board, a mouse, a touchscreen, a track-pad, a trackball, an
isopoint and/or a voice recognition system. The interface
circuit 2124 andone or more ofthe input devices 2126 can be
used to implement the input interface 420 of FIG. 4.
[0110] One o r more output devices 2128 are also connected
to the interface circuit 2124. The output devices 2128 can be
implemented, for example, by display devices (e.g., a liquid
crystal display, a cathode ray tube display (CRI)), by a printer
and/or by speakers. The interface circuit 2124, thus, typically
includes a graphics driver card. The interface circuit 2124 and
one o r more ofthe output devices 2128 can be used to imple­
ment the output interface 425 of FIG. 4.
[0111] The interface circuit 2124 also includes a col1lllm­
nication device such as a modem or network interface card to
facilitate exchange of data with extemal computers via a
network (e.g., an Ethernet connection, a digital subscriber
!in e (DSL), a telephone !in e, coaxial cable, a cellular tele­
phone system, etc.).
[0112] The processing system 2100 also includes one or
more mass storage devices 2130 for storing software and data.
Examples o f such mass storage devices 2130 include fioppy
disk drives, hard drive disks, compact disk drives and digital
versatile disk (DVD) drives. The mass storage device 2130
may implement the storage 430 of FIG. 4. Additionally or
altematively, the volatile memory 2118 may implement the
storage 430 ofFIG. 4.
[0113] At least some o f the above described example meth­
ods and/or apparatus are implemented by one or more soft­
ware and/or finnware programs running on a computer pro­
cessor. However, dedicated hardware implementations
including, but not limited to, application specific integrated
circuits, progranunable logic arrays and other hardware
devices can likewise be constructed to implement some o r ali
o f the example methods and/or apparatus described herein,
either in whole or in part. Furthennore, altemative software
implementations including, but not limited to, distributed
processing or component/object distributed processing, par­
aliei processing, or virtual machine processing can also be
constmcted to implement the example methods and/or appa­
ratus described herein.
[0114] To the extent the above specification describes
example components and fnnctions with reference to particu­
lar standards and protocols, it is understood that the scope o f
this patent is not limited to such standards and protocols. For
instance, each of the standards for Internet and other packet
switched network transmission (e.g., Transmission Control
Protocol (TCP)/Internet Protocol (IP), User Datagram Proto­
col (UDP)/IP, HyperText Markup Language (HTML),
HyperText Transfer Protocol (HTTP)) represent examples of
the current state o f the art. Such standards are periodically
superseded by faster o r more efficient equivalents having the
same general ftmctionality. Accordingly, replacement stan­
dards and protocols having the same functions are equivalents
which are contemplated by this patent and are intended to be
included within the scope of the accompanying claims.
[0115] Additionally, although this patent discloses
example systems including software o r firmware executed on
hardware, it should be noted that such systems are merely

US 2012/0140636 AI

illustrative and should not be considered as limiting. For
example, it is contemplated that any or ali ofthese hardware
and software components could be embodied exclusively in
hardware, exclusively in software, exclusively in firmware or
in some combination o f hardware. firmware anel/o r software.
Accordingly, while the above specification described
example systems, methods and articles o f manufacture, per­
sons o f ordinary skill in thc art will rcadily appreciate that the
examples are not the only way to implement such systems,
methods and articles of manufacture. Therefore, although
certain example methods, apparatus and articles o f manufac­
ture have been described herein, the scope o f coverage ofthis
patent is not limited thereto. On the contrary, this patent
covers ali methods, apparatus and articles of manufacture
fairly falling within the scope ofthe appended claims either
literally or under the doctrine o f equivalents.

What is claimed is :
1 . A method to determine link weights for routing in a

communication network. the method comprising:
iteratively updating a plurality o f vectors using a genetic

algoritlnn, the vectors including a plurality o f individual
values decodable into possible link weights; and

decoding a first one ofthe vectors updated using the genetic
algoritlnn into a first plurality of link weights providing
a possible routing o f a load through the connnunication
network, the load to be split among a plurality o f paths
having respective path lengths detennined from the plu­
rality o f link weights, at least two o f the paths having
different path lengths.

2. A method as defined in claim 1 wherein íteratively updat­
ing the plurality ofvectors further comprises:

partitioning the plurality o f vectors into a first group o f
vectors and a second group o f vectors based on routing
costs assocíated with the vectors; and

randomly combining a first subset of the first group of
vectors and a second subset of the second group of
vectors based on a crossover probability.

3. A method as defined in claim 2 wherein íteratively updat­
ing the plurality of vectors further comprises:

randomly gcnerating a third group ofvcctors for inclusion
in the plurality ofvectors; and

randomly setting a first individual value o f a second vector
formed by combining one o f the first group o f vectors
and one ofthe second group ofvectors based on a muta­
tion probability.

4. A method as defined in claim 2 further comprising
including the first group o f vectors in the updated plurality o f
vectors.

5. A method as defined in claim 1 wherein, after an iteration
o f the genetic algoritlnn, the method fl.Jrther comprises:

decoding the updated plurality of vectors into respective
pluralities oflink weights supporting dynamic exponen­
tially-weighted flow splitting;

determining respective dynamic exponentially-weighted
flow splitting routing costs for thc pluralitics of link
weights; and

when a processing convergence is detected, selecting a first
o f the pluralities oflink weights associated with a mini­
mum dynamic exponcntially-wcightcd flow splitting
routing cost to perfom1 dynamic exponentially­
wcighted flow splitting routing in the communication
network.

12
Jun. 7,2012

6. A method as defined in claim 1 wherein, after decoding
the updated plurality o f vectors into the respective pluralities
oflink weights, the method further comprises:

incrementing a first link weight o f a first ofthe pluralities o f
link weights decoded from a first vector updated using
the genetic algorithm;

determining whether incrementing the first link weight
improved a first dynamic exponentially-weighted flow
splitting routing cost associated with the first plurality o f
link weights;

if the first dynamic exponentially-weighted flow splitting
routing cost is improved, again incrementing the first
link weight and determining whether the first dynamic
exponentially-weighted flow splitting routing cost is
improved; and

i f the first dynamic exponentially -weighted flow splitting
routing cost is not improved, iteratively incrementing a
next link weight of the first of the pluralities of link
weights and detemlining whether an associated
dynamic exponentially-weighted flow splitting routing
cost is improved until no improvement is observed after
examining a number o f link weights o f the first o f the
pluralities of link weights.

7. A method as defined in claim 1 wherein the at least two
paths comprise one or more links, and the load is not to be
split onto a linkhaving a gap distance exceeding a gap thresh­
old, the gap distance determined írom the plurality o f link
weights.

8 . A method as defined in claim 1 wherein decoding the
first one ofthe vectors into the first plurality of link weights
comprises:

scaling individual values included in the first vector by a
scale factor; and

rounding the scaled individual values to respective nearest
integer values to determine respective link weights.

9 . A tangible article ofmanufacture storing machine read­
able instructions which, when executed, cause a machine to at
least:

iteratively update a plurality of vectors using a genetic
algoritlnn, each vector including a plurality o f individual
values decodable in to possible link weights for perform­
ing routing in a connnunication network; and

decode a vector updated using the genetic algoritlnn into a
plurality of link weights providing a possible routing o f
a load through the conununication network, the load to
be split among a plurality o f paths having respective path
lengths determined from the plurality oflink weights, at
least some ofthe paths having different path lengths.

10. A tangible article ofmanuíàcture as defined in claim 9
wherein the machine readable instructions, when executed,
further cause the machine to:

partition the plurality o f vectors into a first group o f vectors
and a second group of vectors based on a routing cost
associated with each vector; and

randomly combine a first subset o f the first group o f vectors
and a second subset ofthe second group o f vectors based
on a crossover probability to detennine an updated plu­
rality o f vectors during an iteration of the genetic algo­
ritlnn.

11 . A tangible article of manufacture as defined in claim 10
wherein the maclline readable instructions, when executed,
further cause the machine to:

include the first group o f vectors in the updated plurality o f
vectors;

US 2012/0140636 AI

randomly generate a third group o f vectors for inclusion in
the updated plurality ofvectors; and

randomly set a first individual value of an updated vector
formed by combining one o f the first group o f vectors
and one ofthe second group ofvectors based on a muta­
tion probability to determine the updated plurality of
vectors during the iteration o f the genetic algorithm

12. A tangible article o f manufacture as defined in claim 9
wherein the machine readable instructions, when executed,
further cause the machine to:

decode each of the updated plurality of vectors into a
respective plurality of link weights supporting dynamic
exponentially-weighted flow splitting after each itera­
tion ofthe genetic algorithm;

determine a dynamic exponentially-weighted flow split­
ting routing cost associated with each plurality o f link
weights; and

when a processing convergence is detected, select a first
plurality of link weights associated with a minimum
dynamic exponentially-weighted flow splitting routing
cost for performing dynamic exponentially-weighted
flow splitting routing in the communication network.

13. A tangible article o f manufacture as defined in claim 9
wherein the machine readable instructions, when executed,
further cause the machine to:

increment a link weight o f a first plurality o f link weights
decoded from a first vector updated using the genetic
algorithm;

determine whether incrementing the link weight ofthe first
plurality oflink weights improved a first dynamic expo­
nentially-weighted flow splitting routing cost associated
with the first plurality of link weights;

if the first dynamic exponentially-weighted flow splitting
routing cost is improved, again increment the link
weight o f the plurality of link weights and determine
whether the first dynamic exponentially-weighted flow
splitting routing cost is improved; and

if the first dynamic exponentially-weighted flow splitting
routing cost is not improved, increment other link
weights of the first plurality of link weights and deter­
mine whether associated dynamic exponentially­
weighted flow splitting routing costs are improved tmtil
no improvement is observed after examining a number
of link weights of the first plurality o f link weights.

14. A tangible article o f manufacture as defined in claim 9
wherein the machine readable instructions, when executed,
further cause the machine to:

scale each individual value included in the vector by a scale
factor; and

round each scaled individual value to a nearest integer
value to determine a respective link weight.

15. An apparatus to determine link weights for routing in a
communication network, the apparatus comprising:

a processor to iteratively update a plurality o f vectors using
a genetic method, the vectors including respective plu­
ralities of individual values decodable into possible link
weights; and

a weight decoder to:
decode the plurality o f vectors updated by the processor

into respective pluralities o f link weights providing
respective pluralities of possible solutions to route

13
Jun. 7,2012

loads through the communication network, the link
weights supporting dynamic exponentially-weighted
flow splitting; and

determine dynamic exponentially-weighted flow split­
ting routing costs associated respectively with the
pluralities of link weights, the processor to partition
the vectors for subsequent updating based on the
dynamic exponentially-weighted flow splitting rout­
ing costs.

16. An apparatus as defined in claim 15 wherein the pro­
cessar is to update the vectors by:

partitioning the vectors into a first group ofvectors and a
second group ofvectors based on the dynamic exponen­
tially-weighted flow splitting routing costs; and

randomly combining a first subset of the first group of
vectors and a second subset of the second group of
vectors based on a crossover probability.

17. An apparatus as defined in claim 16 wherein the genetic
algorithm processo r is to update the vectors by:

including the first group ofvectors in the plurality ofvec­
tors;

randomly generating a third group ofvectors to include in
the plurality ofvectors; and

randomly setting a first individual value of an updated
vector formed by combining one o f the first group o f
vectors and one o f the second group o f vectors based on
a mutation pro bability.

18. An apparatus as defined in claim 15 wherein, when a
convergence is detected, the weight decoder is to select a first
plurality oflink weights associated with a minimum dynamic
exponentially-weighted flow splitting routing cost to perfonn
dynamic exponentially-weighted flow splitting routing in the
connnunication network

19. An apparatus as defined in claim 15 further comprising
a weight updater to:

increment a first link weight o f a first of the pluralities o f
link weights decoded from a first updated vector after
decoding the updated plurality ofvectors into respective
pluralities of link weights;

determine whether incrementing the first link weight
improved a first dynamic exponentially-weighted flow
splitting routing cost associated with the first plurality o f
link weights;

if the first dynamic exponentially-weighted flow splitting
routing cost is improved, again increment the first link
weight and detennine whether the first dynamic expo­
nentially-weighted flow splitting routing cost is
improved; and

if the first dynamic exponentially-weighted flow splitting
routing cost is not improved, iteratively increment a next
link weight of the first plurality of link weights and
determine whether an associated dynamic exponen­
tially-weighted flow splitting routing cost is improved
until no improvement is observed after examining a
number o f link weights o f the first o f the pluralities o f
link weights.

20. An apparatus as defined in claim 15 wherein the weight
decoder is to:

scale individual values included in the vectors by a scale
factor; and

round the scaled individual values to respective nearest
integer values to determine respective link weights.

* * * * *

	Bibliography
	Abstract
	Drawings
	Description
	Claims

