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METHODS AND APPARATUS TO 
DETERMINE NETWORK LINK WEIGHTS 

FIELD OF THE DISCLOSURE 

[0001] This disclosure relates generally to communication 
networks and, more particularly, to methods and apparatus to 
determine network link weights. 

BACKGROUND 
[0002] The Internet includes multiple autonomous sys­
tems, each one using an interior gateway protocol to contrai 
routing within the autonomous system. Interior gateway pro­
tocais, such as OSPF (Open Shortest Path First) and DEFT 
(Distributed Exponentially-Weighted Flow spliTting), send 
fiow through forward links towards a destination nade. OSPF 
routes only on shortest-weight paths, whereas DEFT sends 
fiow on ali forward links, but with an exponential penalty on 
longer paths. Finding suitable weights for protocols such as 
these is known as the weight setting problem. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0003] FIG. 1 is block diagram o f an example communica­
tion network represented as a graph comprising nades and 
links. 
[0004] FIG. 2 is a plot of an example link routing cost that 
is a function o f link utilization. 
[0005] FIG. 3 illustrates an example effect ofvarying a link 
weight in the network graph of FIG. 1.  
[0006] FIG. 4 is a block diagram o f an example link weight 
solver employing a genetic algorithm as described herein to 
determine link weights for performing routing in the comnm­
nication network o f FI G. 1 .  
[0007] FIG. 5 is a fiowchart representative of  example 
machine readable instructions that may be executed to imple­
ment the link weight solver o f FIG. 4. 
[0008] FIG. 6 is a fiowchart representative of example 
machine readable instructions that may be executed to imple­
ment genetic algorithm processing in the link weight solver o f 
FIG. 4.  
[0009] FIG. 7 is a fiowchart representative of example 
machine readable instructions that may be executed to imple­
ment weight decoding in the link weight solver of FIG. 4. 
[0010] FIG. 8 illustrates an example pseudocode listing 
corresponding to the fiowchart ofFIG. 7. 
[0011] FIG. 9 illustrates an example effect on routing fiow 
o f incrementing a link weight in a set o f possible link weights 
determined by the link weight solver of FIG. 4. 
[0012] FIG. 10 is a fiowchart representative of example 
machine readable instructions that may be executed to imple­
ment weight updating in the link weight solver o f FIG. 4.  
[0013] FIG. 11 illustrates an example pseudocode listing 
corresponding to the fiowchart ofFIG. 10. 
[0014] FIGS. 12-20H illustrate example performance 
results for the link weight solver o f FIG. 4. 
[0015] FIG. 21 is a block diagram o f an exampleprocessing 
system that may execute the example machine readable 
instructions ofFIGS. 5-8, 10 anel/ar 11 to implement the link 
weight solver of FIG. 4. 

DETAILED DESCRIPTION 

[0016] Methods, apparatus and articles of manufacture to 
determine network link weights are disclosed herein. 
Example methods to determine link weights for routing in a 
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communication network as described herein include itera­
tively updating a plurality o f vectors using a genetic algo­
rithm, where each vector includes a plurality o f individual 
values decodable into possible link weights. Such example 
methods also include decoding a vector updated using the 
genetic algorithm into a plurality oflink weights providing a 
possible routing of a load through the communication net­
work. For example, the plurality o f link weights are used to 
split the load among a plurality of paths having respective 
path lengths determined from the plurality o f link weights, 
with at least some o f the paths having different path lengths 
(e.g., such as in the case of DEFT-based routing). In some 
examples, such methods fl!rther include determining a rout­
ing cost (also referred to as a fitness) associated with each 
plurality o f link weights decoded after each iteration o f the 
genetic algorithm, and when a processing convergence is 
detected (e.g., such as when no further change in the mini­
mum routing cost is observed), selecting the plurality oflink 
weights associated with the minimum routing cost for per­
forming routing in the communication network. Example 
genetic algorithms for iteratively updating the plurality of 
vectors to determine respective pluralities oflink weights are 
described in greater detail below. 
[0017] In some examples, the methods described herein 
also perform a local search procedure to attempt to improve a 
plurality of link weights decoded after an iteration of the 
genetic algorithm. Examples of such a local search procedure 
include incrementing a link weight of a plurality of link 
weights decoded from a vector updated using the genetic 
algoritlnn, and determining whether incrementing the link 
weight ofthe plurality oflink: weights improved a routing cost 
associated with the plurality oflink weights. If the first DEFT 
routing cost is improved, such example methods again incre­
ment the link weight of the plurality of link weights and 
determine whether the routing cost is further improved. How­
ever, if the first DEFT routing cost is not improved, such 
example methods can increment other link: weights o f the 
plurality o f link weights and determine whether associated 
routing costs are improved, with the procedure terminating 
when no improvement is observed after examining a nurnber 
of link weights ofthe plurality of link weights. 
[0018] Various teclmiques for solving the weight setting 
problem have been proposed for OSPF routing. Such tech­
niques include employing genetic algorithms to detennine a 
set of link: weights that reduce or substantially minimize a 
routing cost for OSPF routing. However, it is believed that 
genetic algorithms have not been used to solve the weight 
setting problem for DEFT link weights. As such, the example 
methods, apparatus and articles of manufacture disclosed 
herein overcome this deficiency in the art by utilizing genetic 
algorithms to solve the weight setting problem for DEFT link: 
weights. Additionally, the example methods, apparatus and 
articles o f manufacture disclosed herein can detennine a set 
of link weights that reduces or substantially minimizes a 
routing cost (ais o referred to a cost function, an objective 
fimction, a solution fitness, a network: congestion function, 
etc.) tmder DEFT routing or, more generally, any routing 
technique in which loads can be split unevenly among paths 
having different path lengths determined from link weights. 
Furthermore, the example methods, apparatus and articles o f 
manufacture disclosed herein can yield integer link weights 
supportable by today's network routing devices, thereby 
enabling DEFT routing to be employed in existing connnu­
nication networks. 
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(0019] Turning to the figures, an example network graph 
100 representative o f an example communication network is 
illustrated in FIG. 1 .  As noted above, the Internet includes 
many autonomous systems, each one using an Interior Gate­
way Pro toco! (IGP) to contrai routing within the autonomous 
system (AS). The topology of an Internet network can be 
represented as a directed graph, such as the graph 100 ofFIG. 
1, which includes a set of routers (represented as a set of 
example nades 101-104) and a set o f communication links 
(represented as a set of example ares 111-114). A set of 
routers under the contrai of one or more network operators 
who apply the same routing policy is what characterizes an 
AS. Given a demand matrix containi ng an amount o f traffic to 
be sent between ali pairs of routers, IGP routing protocols 
establish rules on how loads will be sent from sources to 
destinations within the AS. 
[0020] A fiexible routing model is the fractional multi­
commodity fiow routing (referred to herein as OPT routing). 
This routing model attempt to make the best possible use o f 
network link capacities. However, it is difficult to implement 
this pro toco! in practice because o f arbitrarily long paths, and 
the arbitrarily small demand loads that can be routed on 
high-capacity links. Therefore, telecommunication network 
protocols are typically based on routing models that are less 
efficient with respect to capacity utilization, but easier to 
implement in practice. 
(0021] Among existing IGP routing protocols, there are a 
few that have been long used in practice, such as the OSPF 
routing protocol. Other IGP protocols have been recently 
proposed and are not yet implemented in real networks, such 
as the DEFT routing protocol. Both OSPF and DEFT are 
link-state routing protocols. These protocols allow a network 
operator to calcula te paths on the network by setting adequate 
link weights to balance loads traversing the network. The 
loads are then sent through paths from sources to destinations, 
and quantities such as network congestion, link utilization, 
delay, etc., can be measured. The problem of determining 
proper weights to reduce, improve or substantially optimize 
an objective function or multiple cmlflicting objectives on 
these metrics is known as the weight setting problem (WSP). 
(0022] An objective of intradomain traffic engineering is 
the efficient utilization of the available network resources 
within an AS tmder traffic constraints. The traffic constraints 
can include QoS (Quality ofService) features, sue h as, but not 
limited to, delay, jitter, number ofhops, cost, etc. With these 
aims, the weight setting problem has been studied for almost 
a decade for OSPF routing. In OSPF, integer link weights are 
set by the network operator. The fiow is routed through the 
shortest paths, with traffic being split evenly, in each nade, 
among ali outgoing shortest path links. An objective is to 
determine link weights such that, if the traffic is routed 
according to the pro toco!, then congestion is minimized. This 
single-objective routing, however, has its limitations. For 
example, it does not deal directly with QoS requirements that 
one may also want to optimize. Multi-objective routing can 
help address these requirements.  
(0023] A wide range of other link-state routing protocols 
exist. One ofthese protocols is IS-IS (Intermediate System to 
Intermediate System). The IS-IS protocol considers similar 
rules as OSPF, with one difference being that OSPF is an 
Internet protocol, whereas IS-IS is natively an ISO (Interna­
tional Organization for Standardization) network layer pro­
toco!. 

2 
Jun. 7,2012 

[0024] DEFT is another, recent IGP routing protocol. 
DEFT considers not only shortest paths for routing, but also 
directs fiow through ali forward paths, with exponential costs 
being associated with longer paths. Furthennore, DEFT 
weights are real numbers, whereas OSPF weights are inte­
gers. PEFT (Penalizing Exponential Flow-spliTting) is a 
path-based routing protocol that splits traffic over multiple 
paths with an exponential penalty on longer paths. One dif­
ference between the DEFT and PEFT protocols is that, in 
tenns of fiow splitting, DEFT is a link-based protocol, 
whereas PEFT is a path-based protocol. In PEFT, the outgo­
ing fiow at any node is split among ali shortest paths to a 
destination nade, whereas in DEFT, the outgoing fiow is split 
among ali forwarding links. In if an outgoing shortest 
path link belongs to more than one shortest path, this link 
receives more fiow than a shortest path link that belongs to 
only one shortest path to the destination node. 
[0025] The example methods, apparatus and articles of 
manufacture described herein solve the weight setting prob­
lem for DEFT weights using a biased random key genetic 
algorithm (BRKGA). Furthennore, the example methods, 
apparatus and articles o f manufacture described herein can 
support implementations of the DEFT protocol employing 
integer weights, instead o f real number weights. A benefit o f 
implementing the DEFT protocol with integer weights is that 
routers typically used in practice allow only integer weights 
and, therefore, allows the DEFT protocol with integer 
weights as described herein to be employed in existing com­
munication networks. In the remainder of this disclosure, 
DEFT with integer weights is also referred to as int-DEFT. 
[0026] Example methods, apparatus and articles o f manu­
facture to solve the weight setting problem for DEFT weights 
using a BRKGA are described as follows. First, a description 
o f the general communication network routing problem is 
provided. Then, the OSPF and DEFT protocols are described 
in detail. The BRKGA framework for combinatorial optimi­
zation is then reviewed. Adapting BRKGA for the OSPF and 
DEFTweight setting problems is then disclosed, and example 
performance results are provided. 
[0027] To develop the general routing problem for a com­
munication network, let G=(V, E) be a directed graph (such as 
the graph 100) modeling a network with a set of routers V 
(e.g., represented by the example nodes 101-104) and links E 
:::::._ VxV (e.g., represented bythe example ares 111-114). Each 
link (u, v)EE has a fiow capacity cu, v· Let D be a demand 
matrix, where Du, v denotes the traffic fiow from source nade 
u to target nade v for u, vEV. Let I::=_ V be the subset of ali 
target nades in V, i.e. T={vEV: Du,>O, uEV}. The general 
routing problem is to find the fiows fu,, on each are (u, v)EE 
such that an appropriate objective function is minimized and 
ali demands are delivered from their source nades to their 
target nades. 
[0028] An example of an objective function (also referred 
as a routing cost, a solution fitness, a network congestion 
fimction, etc.) to be minimized is given by Equation 1 :  

I <l>(ju, V, Cu,,), 
(u,v)EE 

Equation 1 

where <I> is the network-link cost function, which depends on 
the current fiow and the link capacity. An example o f <I> is the 
piecewise linear function given by Equation 2: 
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fu,v 

3J�.v 2/3cu.v 

10J,,,v-16 j3cu,v 

70J�.v -178/3cu,v 

500fu,v -1468/3cu,v 

SOOOJ�.v -16318j3c,,, 

if fu,v /Cu. v < 1 /3, 

if 1/3 $f�. v/ Cu, v< 2/3, 

if 2/3 :5 fu,v /Cu, v < 9/10, 

if 9/10:5 f�. v/ Cu, v< 1 ,  

if 1 :5 fu,v /Cu, v .  1 1/10, 

if 1 1/10:5 f,,,,/ Cu. v· 

Equation 

A plot 200 o f the link cost <l> ofEquation 2 as a fimction ofthe 
link utilization fu)cu,v is illustrated in FIG. 2. 
[0029] Let fu "t be the flow with destination nade t on link 
(u, v). Then, at'an intennediate nades wt any resulting flow 
must respect flow conservation constraints given by Equation 
3: 

Equation 3 

and the individual flow aggregation constraint given by Equa­
tion 4: 

Equation 4 

As the constraints and the objective function <l> are linear, an 
optimum solution can be obtained by solving the linear pro­
gram OPT defined by Equation 1 ,  Equation 3, Equation 4, and 
the non-negativity constraints fu,vt�o and ±�, "�0, for ali (u, 
v)EE and tET. The optimal solution o f OPT is a lower bound 
for the cost of any routing protocol. 
[0030] The OSPF protocol, in contrast with the OPT solu­
tion, uses weights wu v on links (u, v)EE (e.g., represented by 
the example ares lll-114 in FIG. 1) to determine the flow 
distribution of demands. The weights are 16-bit integers in the 
range [0, 216-1 ] .  Each router (e.g., represented by the 
example nades 101-104 of FIG. 1) maintains a link-state 
database of the network topology and the weights, and regu­
larly exchanges state infonnation with other routers in the 
same AS to keep the data base up-to-date. To route incoming 
traffic, a router maintains a shortest path graph using the 
weights as distances to ali known target nades within the AS. 
The outgoing traffic of a nade u with destination t is split 
equally among ali outgoing links on shortest paths to t 
[0031] The DEFT protocol relaxes the shortest-path-only 
restriction o f the OSPF protocol and also allows routing on 
non-shortest paths. Under conventional DEFT routing, the 
outgoing traffic o f a nade u is split proportionally among ali 
forward links to a target nade t Links belonging to non­
shortest paths receive exponentially greater penalties, and 
consequently carry less flow. 
[0032] Formally, to detemline how load flows are to be split 
under DEFT routing, let dut be the distance from nade u to 
destination nade t Then hu v t+W u v-dut is the difference 
between the length ofthe shortest path and the length of the 
path traversing link (u, v). The non-nom1alized flow fraction 
r in the direction to target nade t traversing link (u, v) is 
defined by Equation 5: 
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Equation 5 

Equation 5 is then used to calculate the fraction of the total 
flow foreachoutgoing link (u, V) OfU to be f(hu, v��w: (u, w)EE 
f(hu,w�· It can be shown that, in terms oftotal link cost and 
maximum utilization, there always exists a weight setting 
such that DEFT has a smaller total cost than OSPF. 
[0033] FIG. 3 illustrates an example of increasing a link 
weight in the network graph 100 to demonstrate differences 
between the OSPF and DEFT routing protocols. In the 
example of FIG. 3, the graph 100 is modified to yield an 
example graph 300 by increasing the link weight for are (b, t) 
(having label 114 inFIG. 3) from weight P2 (innetwork graph 
100) to weight P'2 (in network graph 300). Suppose 
P1>P'2>P2>0 and are (u, a) (having label ll1 in FIG. 3) and 
are (u, b) (having label 112 in FIG. 3) have the same positive 
weight. In OSPF, the traffic from nade u (having label 101 in 
FIG. 3 )  to t (having label 104 in FIG. 3) is routed through the 
shortest path u-b-t (i.e., from no de 101, along link 112 to no de 
103, and then along link 114 to nade 114). Nade a (having 
label 102 in FIG. 3) does not receive any flow. The weight 
change does not alter this scenario. However, when routing 
with DEFT, nade a receives a fraction o f the traffic and the 
change in the weight of are (b, t) causes a change of this 
fraction. Increasing the weight of (b, t) causes a decrease in 
the amount o f flow routed through b, and a larger part o f the 
flow is now routed through a. 
[0034] An example link weight solver 400 capable o f solv­
ing the weight setting problem for DEFT weights (andlor 
OSPF weights) is illustrated in FIG. 4. The link weight solver 
400 includes an example genetic algorithm processar 405 to 
implement a genetic algorithm for iteratively updating a 
population o f vectors ( e.g., also referred to as evolving the 
population of vectors ), which are decoded into possible link 
weights. In some examples, the genetic algorithm processar 
405 continues to update the population o f vectors until the 
decoded link weights converge to a solution yielding a mini­
mum (ar local minimum) ofthe routing cost (also referred to 
as the solution fitness) given by Equation 1 .  Examples o f 
genetic algorithms that can be implemented by the genetic 
algorithm processar 405 are described in greater detail below. 
[0035] The link weight solver 400 also includes an example 
weight decoder 410 to decode the population of vectors 
updated by the genetic algorithm processor 405 into respec­
tive sets ofpossible linkweights wu ,Jorthe links (u, v) in the 
network. The weight decoder 41 O aÍso determines the routing 
cost ( or fitness) o f Equation 1 associated with each set o f 
possible link weights. The weight decoding and cost deter­
mination procedure perfonned by the weight decoder410 can 
depend upon the type o f weights being determined, such as 
DEFT weight, OSPF weights, etc. Example processing per­
formed by the weight decoder 410 is described in greater 
detail below. 
[0036] The link weight solver 400 fürther includes an 
example weight updater 415 to perform a local search to 
modifY values of one or more weights in each set o f possible 
link weights decoded by the weight decoder 410 to attempt to 
improve the cost ( or fitness) associated with each set o f pos­
sible link weights. In some examples, the weight updater 415 
increments one weight in a set of possible link weights, and 
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determines whether incrementing this weight improved the 
routing cost ( or fitness) associated with this set o f possible 
link weights. If the routing cost is improved, this same link 
weight is incremented again to determine whether the routing 
cost is further improved. However. if incrementing the weight 
does not improve the routing cost, other weights in this set o f 
possible link weights are incremented and the resulting rout­
ing cost is again examined. In some examples, this local 
search procedure terminates for a particular set o f possible 
link weights when no routing cost improvement is observed 
after incrementing some number ( e.g., specified as a configu­
ration parameter) ofthe link weights in the set. In the case o f 
determining DEFT weights, the weight updater 415 can 
implement a dynamic fiow update algorithm to determine the 
new routing cost resulting from incrementing a weight in a set 
o f possible link weights. Example processing performed by 
the weight updater 415 is described in greater detail below. 
[0037] An example input interface 420 is also included in 
the link weight solver 400 to receive input information, con­
figuration parameters, etc., for use by one or more of the 
genetic algorithm processar 405, the weight decoder 41 O and 
the weight updater 415. Examples of the information and 
parameters received or otherwise obtained by the input inter­
face 420 include, but are not limited to, a graph G describing 
the topology of the routers V and links E forming the com­
munication network, the target nodes T o f the network, the 
demand matrix D specifying the load ( or demand) to be 
conveyed from source nodes to the target nodes in the net­
work, configuration parameters for the genetic algorithm 
implemented by the genetic algorithm processar 405, etc. The 
input interface 420 can be implemented by any type o f inter­
face technology, processar, etc. ,  such as the interface circuit 
2124 and input device(s) 2126 ofthe processing system 2100, 
which is described in greater detail below in connection with 
FIG. 21. 
[0038] An example output interface 425 is included in the 
link weight solver 400 to output or otherwise provide the 
solution for the set of link weights as detennined by the 
genetic algorithm processo r 405, the weight decoder 41 O and 
the weight updater 415. In some examples, the output inter­
face 425 also provides the routing cost (o r fitness) associated 
with this resulting set o f link weights. The output interface 
425 can be implemented by any type o f interface technology, 
processar, etc., such as the interface circuit 2124 and input 
device(s) 2126 of the processing system 2100, which is 
described in greater detail below in cmmection with FIG. 21. 
[0039] The link weight solver 400 further includes storage 
430 for storing the sets o f possible link weights, the set oflink 
weights determined to be the solution to the weight setting 
problem, the input/configuration information, etc. The stor­
age 430 can be implemented using any type of storage or 
memory, such as the mass storage device 2130 ancllor the 
volatile memory 2118 ofthe processing system 2100, which 
is described in greater detail below in connection with FIG. 
21. 
[0040] While an example malllier of implementing link 
weight solver 400 has been illustrated in FIG. 4, one or more 
ofthe elements, processes and/or devices illustrated in FIG. 4 
may be combined, divided, re-arranged, omitted, eliminated 
and/or implemented in any other way. Further, the example 
genetic algorithm processo r 405, the example weight decoder 
410, the example weight updater 415, the example input 
interface 420, the example output interface 425, the example 
storage 430 andlor, more generally, the link weight solver400 
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of FIG. 4 may be implemented by hardware, software, firm­
ware and/or any combination of hardware, software and/or 
fim1ware. Thus, for example, any of the example genetic 
algorithm processar 405, the example weight decoder 410, 
the example weight updater 415, the example input interface 
420, the example output interface 425, the example storage 
430 andlor, more generally, the example link weight solver 
400 could be implemented by one or more circuit(s), pro­
grammable processor(s ), application specific integrated cir­
cuit(s) (ASIC(s)), programmable logic device(s) (PLD(s)) 
and/or field progranunable logic device(s) (FPLD(s)), etc. 
When any o f the appended apparatus claims are read to cover 
a purely software and/or firmware implementation, at least 
one of the example link weight solver 400, the example 
genetic algorithm processor 405, the example weight decoder 
410, the example weight updater 415, the example input 
interface 420, the example output interface 425 and/or the 
example storage 430 are hereby expressly defined to include 
a tangible computer readable medium such as a memory, 
digital versatile disk (DVD), compact disk (CD), etc. , storing 
such software and/or firmware. Further still, the example link 
weight solver 400 of FIG. 4 may include one or more ele­
ments, processes and/or devices in addition to, or instead of, 
those illustrated in FIG. 4, and/or may include more than one 
o f any or ali ofthe illustratedelements, processes and devices. 
[0041] Flowcharts and pseudocode listings representative 
of example machine readable instructions that may be 
executed to implement the exan1ple link weight solver 400, 
the example genetic algoritlllll processar 405, the example 
weight decoder 410, the example weight updater 415, the 
example input interface 420, the example output interface 425 
and/or the example storage 430 are shown in FIGS. 5-8 and 
10-11. In these examples, the machine readable instructions 
represented by each fiowchart or pseudocode listing may 
comprise one or more programs for execution by a processo r, 
such as the processar 2112 shown in the example processing 
system 2100 discussed below in connection with FIG. 21. 
Alternatively, the entire program o r programs and/or portions 
thereof implementing one or more of the processes repre­
sented by the fiowcharts and pseudocode listings ofFIGS. 5-8 
and 10-11 could be executed by a device other than the pro­
cessar 2112 (e.g., such as a controller and/or any other suit­
able device) and/or embodied in firmware o r dedicated hard­
ware (e.g., implemented by an ASIC, a PLD, an FPLD, 
discrete logic, etc.). Also, one or more ofthe machine read­
able instructions represented by the fiowcharts and 
pseudocode listings of FIGS. 5-8 and 10-11 may be imple­
mented manually. Further, although the example machine 
readable instructions are described with reference to the fiow­
charts and pseudocode listings illustrated in FIGS. 5-8 and 
10-11, many other techniques ±o r implementing the example 
methods and apparatus described herein may altematively be 
used. For example, with reference to the fiowcharts and 
pseudocode listings illustrated in FIGS. 5-8 and 10-11, the 
order o f execution ofthe blocks/lines may be changed, and/or 
some o f the blocks/lines described may be changed, elimi­
nated, combined and/or subdivided into multiple blocks/ 
!ines. 
[0042] As mentioned above, the example processes of 
FIGS. 5-8 and 10-11 may be implemented using coded 
instructions ( e.g., computer readable instructions) stored on a 
tangible computer readable medi um such as a hard disk drive, 
a flash memory, a read-only memory (ROM), a CD, a DVD, 
a cache, a random-access memory (RAM) and/or any other 
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storage media in which infom1ation is stored for any duration 
( e.g., for extended time periods, permanently, briefinstances, 
for temporarily buffering, andlor for caching ofthe infonna­
tion). As used herein, the tenn tangible computer readable 
medium is expressly defined to include any type o f computer 
readable storage and to exclude propagating signals. Addi­
tionally or altematively, the example processes of FIGS. 5-8 
and 10-11 may be implemented using coded instructions 
( e.g., computer readable instructions) stored on a non-transi­
tory computer readable medium, such as a flash memory, a 
ROM, a CD, a DVD, a cache, a random-access memory 
(RAM) andlor any other storage media in which infonnation 
is stored for any duration (e.g., for extended time periods, 
permanently, brief instances, for temporarily buffering, andl 
or for caching of the infonnation). As used herein, the tenn 
non-transitory computer readable medium is expressly 
defined to include any type o f computer readable medi um and 
to exclude propagating signals. Ais o, as used herein, the terms 
"computer readable" and "machine readable" are considered 
equivalent unless indicated otherwise. 
[0043] Example machine readable instructions 500 that 
may be executed to implement the link weight solver 400 o f 
FIG. 4 to determine a set of link weights for perfonning 
routing (e.g., DEFT or OSPF routing) in a communication 
network are represented by the flowchart shown in FIG. 5.  
With reference to the preceding figures and associated 
descriptions, the machine readable instructions 500 begin 
execution at block 505 of FIG. 5 at which the genetic algo­
rithm processar 405 included in the link weight solver 400 
performs an iteration o f a biased random key genetic algo­
rithm to update ( e.g., evolve) a population of vectors each 
containing a set ofkeys decodable into a corresponding set o f 
possible link weights for the links o f a connmmication net­
work. Example machine readable instructions that may be 
used to implement the processing at block 505 are illustrated 
in FIG. 6 and described in greater detail below. 
[0044] At block 510, the weight decoder 410 included in 
the link weight solver 400 decodes each set ofkeys included 
in each updated (e.g., evolved) vector ofthe population into 
respective sets of possible link weights (such as DEFT 
weights or OSPF weights). Additionally, at block 510 the 
weight decoder 410 determines the routing cost ( or fitness) o f 
Equation 1 for each decoded set of possible link weights. 
Example machine readable instructions that may be used to 
implement the processing at block 51 O are illustrated in FIGS. 
7-8 and described in greater detail below. 
[0045] At block 515, the weight updater 415 included in the 
link weight solver 400 performs a local search to modifY ( e.g., 
repeatedly increment) values o fone o r more weights in each 
set o f possible link weights decoded at block 51 O to attempt to 
improve the cost (o r fitness) associated with each set of pos­
sible link weights. For example, in the case ofDEFT weights 
being decoded at block 510, the weight updater 415 may 
implement a dynamic flow update algorithm to determine the 
new routing cost resulting from modifying ( e.g., increment­
ing) a weights at block 515. Example machine readable 
instructions that may be used to implement the processing at 
block 515 are illustrated in FIGS. 9-11 and described in 
greater detail below. 
[0046] At block 520, the link weight solver 400 determines 
whether the iterative processing performed at blocks 505-515 
has converged to a solution for the set o f link weights. For 
exan1ple, the link weight solver 400 may determine that pro­
cessing has converged when the minimtilll routing cost ( or 
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best fitness) among the set o f possible link weights deter­
mined via processing at blocks 505-515 remains unchanged 
after one o r more successive iterations. If processing has not 
converged (block 520), processing retums to block 505 to 
begin another iteration. However, if processing has con­
verged, then at block 520 the link weight solver 400 selects 
the set o f link weights having the lowest routing cost (o r best 
fitness) to be the solution for weight setting problem and, 
thus, the set of link weights for performing routing ( e.g., 
DEFT or OSPF routing) in the cmnmtmication network. 
Execution ofthe example machine readable instructions 500 
then ends. 
[0047] Example machine readable instructions 505 that 
may be executed to implement the genetic algoritlm1 proces­
sar 405 of FIG. 4 and/or perform the genetic algorithm pro­
cessing at block 505 of FIG. 5 are illustrated in FIG. 6.  
Genetic algorithms, such as one or more of the example 
genetic algorithm implemented by the genetic algorithm pro­
cessar 405 and/or represented by the machine readable 
instructions 505 ofFIG. 6, mimic survival ofthe fittest to find 
good quality ( e.g., optimal or near-optimal) solutions to com­
binatorial optimization problems. Using generally-accepted 
temlinology for describing genetic algorithms, solutions are 
associated with individuais in a population. Each individual 's 
chromosome encodes the solution. Each chromosome is 
made up of strings of genes, each ofwhich takes on a value, 
called an allele, from some alphabet. The fitness o f a chro­
mosome is correlated with the objective function value ofthe 
solution encoded by the chromosome. Over a number of 
generations ( e.g .. iterations o f the genetic algoritl1lll), in di­
viduals that make up a population are evolved. At each gen­
eration ( e.g., iteration), offspring ofthe current population are 
produced to make up the population o f the next generation. 
Mutation takes place in genetic algorithms as a means to 
escape entrapment in local minima. Individuais are selected 
at random for mating. The probability that an individual is 
selected is proportional to the fitness o f that individual. This 
way, the genetic material from the most fit individuais is 
passed on to the next generation ( corresponding to survival o f 
the fittest evolution). 
[0048] Examples of genetic algorithms that can be imple­
mented by the genetic algorithm processor 405 and/or the 
machine readable instructions 505 o f FIG. 6 are the random 
key genetic algoritl1lll (RKGA) and the biased RKGA 
(BRKGA). In RKGA and BRKGA, chromosomes are repre­
sented as a vector ofrandom real numbers (also referred to as 
random keys) in the interval [0, 1 ] .  A decoder, such as the 
weight decoder 415, takes as input any vector o f random keys 
and associates with it a solution o f the combinatorial optimi­
zation problem ( e.g., such as the weight setting problem) for 
which an objective value or fitness can be computed (e.g., 
such as the routing cost o f Equation 1 ). 
[0049] The initial population in an RKGA or BRKGA is 
made up of P vectors of random keys, where P can be a 
configuration parameter. Each key for each vector in the 
initial population is generated at random in the real interval 
[0, 1 ] .  After decoding each individual, the population is par­
titioned into two groups o f individuais: a smaller group o f Pe 
elite individuais containing those individuais with the best 
fitness values, and a larger group with the remaining P-pe 
non-elite individuais, where Pe <P-Pe · To evolve the popula­
tion, a new generation o f individuais is produced. RKGA and 
BRKGA use an elitist strategy to evolve the population from 
one generation to the next. In such a strategy, ali ofthe elite 
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individuais o f generation k are copied unchanged to genera­
tion k+l .  RKGAs and BRKGAs implement mutation by 
introducing mutants in to the population. A mutant is simply a 
vector of random keys generated in the same way that an 
element o f the initial population is generated. At each gen­
eration a small set of Pm mutants is introduced into the popu­
lation. Discounting the Pe elite individuais and the Pm 
mutants, P-p e -pm additional individuais need to be produced 
to complete the P individuais that make up the population o f 
the next generation. These offspring are produced through 
mating. 
[0050] For example, after ali individuais are sorted by their 
fitness values, the population is partitioned into a set o f elite 
solutions, containing the most fit ( e.g., lowest routing cost) 
solutions, and another of the remaining non-elite solutions. 
The Pe elite random-key vectors are copied without change to 
the next population. The Pm mutant individuais are randomly 
generated and placed in the new population. The remainder o f 
the population ofthe next generation is completed by cross­
over. In a RKGA, two parents for mating are selected at 
random from the entire population. In a BRKGA, each off­
spring is generated by mating one parent chosen at random 
(with repetition) from the elite partition in the current popu­
lation and the other parent is chosen at random (also with 
repetition) from the non-elite partition. This way, an indi­
vidual can produce more than one o±Ispring in the same 
generation. Mating in both RKGA and BRKGA is performed 
with parameterized uniform crossover. For example, let 
Pe>0.5 denote the probability that an offspring inherits the 
key of its elite parent and let n denote the number ofkeys in a 
random-key vector. Then, for i=1 ,  . . .  , n, the i-th allele c(i) o f 
the offspring c takes on the value ofthe i-th allele e(i) ofthe 
eliteparent ewith probabilit)'__pe and the value ofthe i-thallele 
e(i) of the non-elite parent e with probability 1-Pe· In this 
way, an offspring is more likely to inherit characteristics of 
the elite parent than those ofthe non-elite parent ( correspond­
ing to survival ofthe fittest evolution). Because any random 
key vector can be decoded into a solution, the offspring result­
ing from mating is always valid and, thus, can be decoded in to 
a solution of the combinatorial optimization (e.g., weight 
setting problem). 
[0051] Based on the foregoing description of RKGAs and 
BRKGAs. execution of the machine readable instructions 
505 o f FIG. 6 to implement the genetic algorithm processo r 
405 o f FIG. 4 and/or perform the genetic algoritlnn process­
ing at block 505 o f FIG. 5 begins at block 605 at which the 
genetic algorithm processar 405 determines whether an ini­
tial iteration ofthe genetic algorithm is being perfom1ed. If an 
initial iteration is being performed (block 605), then at block 
610 the genetic algorithm processar 405 initializes the con­
figuration parameters o f the genetic algorithms. Examples o f 
paran1eters initialized at block 61 O include, but are not limited 
to, the population size (P), the elite set size CP e), the mutation 
set size (Pm), the mating crossover probability (Pe), one or 
more mutation probabilities ( described in greater detail 
below), etc. At block 615, the genetic algoritlnn processar 
405 initializes, as described above. the vector for each indi­
vidual o f the population to have a set o f random keys, where 
each key is decodable into a respective possible link weight, 
as also described above. 
[0052] However, if an initial iteration is not being per­
farmed (block 605), then a new generation ofthe population 
is to be determined and, thus. at block 620 the genetic algo­
rithm processor 405 partitions, as described above, the popu-
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lation of vectors into an elite group and a non-elite group 
based on the population and elite set sizes configured at block 
610, and the fitness (e.g., routing cost) associated with each 
vector in the population. At block 625, the genetic algorithm 
processar 405 evolves (e.g., updates) the population of vec­
tors into a new generation using crossover mating and muta­
tion, as described above, based on the crossover probability, 
mutation set size and one or more mutation probabilities 
configured at block 610. Execution of the genetic algorithm 
iteration performed by the example machine readable instruc­
tions 505 of FIG. 6 then ends. 
[0053] In an example implementation, a BRKGA imple­
mented by the genetic algorithm processor 405 and/or the 
example machine readable instructions 505 is configured as 
follows. The population is partitioned sue h that the set o f elite 
solutions is made up o f the 25% most fit individuais ( e.g., 
Pe =0.25p ). The number o f mutants created at each new gen­
eration corresponds to 5% ofthe new population (e.g., pm=O. 
05p ) .  Additionally, another form o f mutation is performed in 
which. for each gene, with a mutation probability o f 1% ( or 
any otherprobability value ), each ali ele ( e.g., each key) ofthe 
child inherits, in the crossover operator, a new random key in 
the interval (0, 1 ). Furthermore, ifthe child does not inherit the 
new random key, then the probability that a child inherits the 
corresponding aliei e ( e.g., key) ofthe elite parent is 70% ( e.g., 
Pe=0.7). 
[0054] Example machine readable instructions 510 that 
may be executed to implement the weight decoder 410 of 
FIG. 4 and/or perform weight decoding and routing cost 
determination at block 510 ofFIG. 5 are illustrated in FIGS. 
7 and 8. The example machine readable instructions 510 
correspond to weight decoding implementation to determine 
DEFT weights for DEFT routing in a connnunication net­
work. To provide context for the descriptions ofFIGS. 7 and 
8, an example implementation ofthe weight decoder 410 to 
perfom1 OSPF weight decoding is first described. 
[0055] Given a vector o f keys determined by the genetic 
algarithm processor 405 using the BRKGA described above 
in connection with FIG. 6, the weight decoder 410 produces 
a netwark fiow for which the congestion is computed with the 
network congestion function of Equation 1 .  In the BRKGA, 
an individual of the population is encoded as a vector x o f 
n=IEI random keys, where each random key X;E(0,1 ), for i=1 ,  
. . .  , n .  Given a particular individual vector x ,  a respective 
initial OSPF weight vectar can be decoded by the weight 
decoder 410 to have individual link weights ofw;=r x;xwmax l , 
where w max =20 (o r any other appropriate value ). In such an 
example, initial OSPF link weights are integers in the interval 
[ 1 ,20]. Starting from an initial OSPF weight vectar, the 
weight updater 415 performs a fast local search to try to 
decrease network congestion by simple changes in individual 
link weights. 
[0056] An example local search procedure examines the 
effect o f increasing the weights o f a subset o f the links ( e.g., 
ares). The candidate links are links whose weight is smaller 
than w max• and the candidates are visited in decreasing arder 
oftheir routing cost <P(�,,v, cu.J To reduce the routing cost o f 
a candidate link, the procedure attempts to increase its weight 
(within a given range) to reduce its load. If this leads to a 
reduction o f the overall routing cost, the change is accepted, 
and the procedure is restarted. Otherwise, the increase is 
rejected and the procedure continues with the next candidate 
link. 
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[0057] The local search is repeated until k candidate ares 
have their weights increased without improving the solution. 
In some example, the weight updater 415 is configured with 
k=S ( or some other relatively small value) to keep the search 
neighborhood small and, thus, help preserve the diversity of 
the population. 
[0058] To develop an implementation of the weight 
decoder 410 for DEFT weights, recall that, in OSPF routing, 
the fiow on each nade is evenly split among ali shortest path 
links leaving this nade with destination t. In DEFT, the load in 
a nade u is split among ali outgoing links (u. v) (and not only 
on links on the shortest path) in the direction of t, i.e. when 
dut>dvt· Moreover, the load is not split equally among all links 
as in OSPF. Instead, DEFT applies an exponential penalty to 
longer paths between origin-destination pairs such that more 
load is routed through links that result in shorter paths. 
[0059] Also, incontrastto integerOSPF weights, the DEFT 
weights are positive real numbers. Therefore, an implemen­
tation ofDEFT on current routing hardware has to decide how 
to map the real DEFT weights onto an available range of 
integer weights, typically a 16-bit integer. Another issue with 
DEFT is how to handle small fiow fractions. Even a path that 
is considerably longer than the shortest path to the target will 
receive a fiow. This fiow, however, can be very small, because 
the assigned fraction of fiow decreases exponentially. As 
such, distributing fiows to much longer paths can increase 
commtmication latency. 
[0060] To solve these problems, some example implemen­
tations o f the weight decoder 41 O described herein work with 
integer weights, but use a scaling parameter p. Real-valued 
DEFT distances are obtained by dividing the integer distances 
by p. This integer-based DEFT implementation is referred to 
herein as int-DEFT when appropriate to avoid ambiguity. In 
the experiments described below, a scaling parameter of 
p=l .8 is used, although any other scaling parameter could 
alternatively be used. 
[0061] To avoid routing on long paths with a marginal fiow 
contribution, some examples of the weight decoder 410 
employ a maximum gap g, and route fiow only on links whose 
integer gap hu vt is at most g. In the experiments describe 
below, the ma�imum gap is set to g=9, which excludes from 
routing those paths which would receive a fraction o f the fiow 
having less than e-IOIJ.s,..,Q.39% ofthe fiow routed on a short­
est path. In such examples employing a maximum gap, the 
non-normalized fiow fraction r in the direction to target node 
t traversing link (u, v) as defined in Equation 5 is modified to 
become Equation 6: 

r( e-h0i,,v/P jf d� > d: and 
l otherwise. 

Equation 6 

[0062] With the foregoing description of an example imple­
mentation of the weight decoder 410 to support DEFT as a 
reference, the exan1ple machine readable instmctions 51 O are 
now described. FIG. 7 illustrates the example machine read­
able instmctions 510 in the form o f a fiowchart, whereas FIG. 
8 illustrates the example machine readable instmctions 510 in 
the form o f pseudocode. Execution o f the example machine 
readable instmctions 510 executed to implement the weight 
decoder 410 o f FIG. 4 and/or perfom1 weight decoding and 
routing cost determination at block 510 of FIG. 5 begins at 
block 705 ofFIG. 7 at which the weight decoder 410 obtains 
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inputs for decoding a population o f vectors determined using, 
for example, the BRKGA procedure described above in to sets 
of possible DEFT weights. For example, the parameters 
obtained at block 705 can include, but are not limited to, 
graph G describing the topology ofthe routers V and links E 
forming the conununication network, the target nades T o f the 
network, the demand matrix D specifying the load ( or 
demand) to be conveyed from source nades to the target nades 
in the network, a current possible weight solution correspond­
ing to a current set o f possible DEFT weights w determined 
from one ofthe updated population vectors resulting from the 
current iteration o f the BRKGA procedure, the gap threshold 
g, etc. In some examples, each current set of DEFT link 
weights w is deterrnined from a respective population vector 
in a manner similar to the OSPF implementation described 
above in which individual link weights are deterrnined by 
scaling eachkey ( e.g., each individual vector element) o f each 
population vector by a se ale factor o r, in other words, w;=r X; X 
wmaxl ·  
[0063] Next, for each destination node tET, the weight 
decoder 410 computes the reverse shortest path distance 
(blocks 710 and 715 ofFIG. 7, and !ines 802 and 802 ofFIG. 
8) and, with a scan ofthe links/arcs, the shortest path graph Gt 
(block 720 ofFIG. 7, and line 803 ofFIG. 8). Next, the weight 
decoder 410 perfom1s a procedure (e.g., ComputePartial­
Loads illustrated in !ines 804-822 ofFIG. 8) that implements 
DEFT mies that allow fiows to be routed on non-shortest 
paths. For example, the weight decoder 410 sorts the nades in 
decreasing order oftheir distances to t (block 725 o f FIG. 7 
and line 805 of FIG. 8). Then, at block 730, the weight 
decoder 410 analyzes nodes one by one, in decreasing dis­
tance to the target nade, and determines the partial load fiow 
associated with the target nade on each link resulting from 
employing DEFT routing. For example, block 730 o f FIG. 7 
can include the loop in !ines 808-813 of FIG. 8 at which the 
weight decoder 410 calculates the sum (ftata

z) of the fiow 
distribution function of Equation 6 for each outgoing link o f 
the currentnode. InFIG. 8, OUT(u)={v: (u, v)EE} denotes the 
set o f outgoing links o f node u. Block 730 ofFIG. 7 can also 
include line 814 of FIG. 8, at which the weight decoder 410 
calculates the total demand f ( traversing and leaving the cur­
rent nade) per unit of r. Block 730 of FIG. 7 can further 
include the loop in !ines 815-821, at which the weight decoder 
410 calculates, for each forward outgoing link of node u, the 
fiow traversing the link according to its proportion o f r. At 
block 735 ofFIG. 7 ( corresponding to line 824 ofFIG. 8), the 
weight decoder 410 updates the total load of each link/arc 
with the partia! loads calculated for destination nades tET. 
Finally, at block 745 of FIG. 7 (corresponding to line 826 of 
FIG. 8), the weight decoder 410 computes the fitness value o f 
the solution (e.g., using Equation 1 ). 
[0064] Example machine readable instmctions 515 that 
may be executed to implement the weight updater 415 o f FI G. 
4 and/or perform the local search processing for weight 
updating at block 515 ofFIG. 5 are illustrated inFIGS. lO and 
11. The example implementations of FIGS. 10 and 11 are 
developed as follows. As noted above, the DEFT routing 
protocol distributes the fiow among shortest and non-shortest 
paths to a target node. As a result, small changes can cause a 
new fiow distribution in the network, even when the shortest 
path graph is unaltered. As a consequence, a change in a link 
weight can lead to an altered fiow in a potentially large num­
ber of links. To reduce the computational cost o f evaluations 
o f the objective function o f Equation 1 by the local search 
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procedure, a dynamic flow update algorithm is employed for 
the int-DEFT implementations described herein. An example 
dynamic flow update algoritlun receives a unitary increment 
o f a single link weight and updates only the part o f the net­
work affected by this change. 
[0065] It tums out that there are three main cases to be 
analyzed. Let t be the target nade. Given a unitary increment 
!J. in the weight of link (u, v), nades can be classified in three 
different cases according to their distance change. First, 
nades with no outgoing load (leaving or traversing the nade) 
directed to t are not affected by the increment !J.. Second, 
nades belonging to paths forwarding to t, in the case that 
before and after the change ali forwarding paths traverse are 
(u, v), and whose distances have changed, have no modifica­
tions in their loads because the loads traversing these nades 
are affected equally by any !J. variation o f the link weight. As 
such, the flow distribution is unaltered. In the third case are 
those nades that, with increment A, create altemative paths 
that do not traverse are (u, v). Those, and each intermediate 
successor nade towards the target nade t, have their flow 
distribution altered and, therefore, have to be reevaluated. 
[0066] Consider, as an example, the network graph 900 
illustrated in FIG. 9.  Suppose that due to the increment !J. in 
link (u, v) (labeled as 905 in FIG. 9), nade u (labeled as 910) 
andnode v (labeled as 915), whichare above the dashed curve 
920, are the nades whose distances are affected. Suppose that, 
before the increment, link (a, b) (labeled as 925) did not 
belong to the shortest path, but after the increment it does. In 
this case, which corresponds to the third case described in the 
preceding paragraph, some load is sent through link (a, b)  
(labeled as 925) and link (b, v)  (labeled as 930), while link (a, 
u) (labeled as 935) and link (u, v) (labeled as 905) have their 
loads decreased. 
[0067] With the foregoing description of the three main 
cases to be examined by an example dynamic flow update 
algorithm implemented by the weight updater 415 as a refer­
enee, the example machine readable instruetions 515 are now 
described. FIG. 10 illustrates the example machine readable 
instructions 515 in the fom1 of a flowchart, whereas FIG. 11 
illustrates the example machine readable instructions 515 in 
the forrn or pseudocode. The example machine readable 
instructions 515 begin implementing weight updating at 
block 1005 of FIG. 10 at which the weight updater 415 
increments the weight o f a candidate link o f a set o f possible 
link weights ( e.g., where the set o f possible link weights is a 
possible link weight solution corresponding to one of the 
population vectors updated by the genetic algorithm). The 
increment is represented by !J., which can be an integer equal 
to or greater than 1 .  As in the case o f the local search proce­
dure described above for OSPF, candidate links for a possible 
link weight solution are links having weights less than a 
maximum weight, and candidate linl<s are examined in 
decreasing arder of routing cost. 
[0068] For each candidate (block 1010 of FIG. 10), the 
weight updater 415 preserves the previous set of possible link 
weights corresponding to this possible weight solution (block 
1015 ofFIG. 10 and line 1101 ofFIG. 11). (A set o f possible 
link weights is also referred to as a distance vector because 
paths distances are deterrnined by summing the link weights 
along the paths.) Then, for each target nade tET (block 1020 
ofFIG. 10 and line 1102 ofFIG. 11), the weight updater 415 
calculates the new reverse shortest path graph Gt for this 
target nade t resulting from incrementing the candidate link 
weight (block 1025 of FIG. 10 and !ines 1103-1104 of FIG. 

8 
Jun. 7,2012 

11). Next, at block 1030 ofFIG. 10 ( corresponding to the loop 
at !ines 1106-1113 of FIG. 11) the weight updater 415 iden­
tifies ali nades u with two or more forward outgoing ares 
having at least one successor whose shortest distance to t is 
not altered (corresponding to condition2 in FIG. 11) and a 
different successor whose shortest distance to t is increased 
by exactly !J. ( corresponding to condition1 in FIG. 11). Those 
nades represent the third case described above, and their 
flows are to be altered due to incrementing the candidate link 
weight. 
[0069] In some examples, the nades that are identified at 
block 1035 of FIG. 10 (corresponding to the loop at !ines 
1106-1113 ofFIG. 11) as having altered flows are stored in a 
heap data structure Hd, dold' whose keys are pairs ofthe current 
and the previous shortest distance (beíore the !J. increase) to t. 
The heap is ordered by the current distance and, in case o f a 
ti e, by the previous distance. More forrnally, this heap order­
ing is represented by Equation 7 :  

Equation 7 

From Equation 7, if two nades have the same distance, the 
nade with the smaller distance before the update ( dold) has to 
be processed first, to avoid evaluating links whose flow was 
not yet updated. With the arder established by Equation 7, the 
flow on links is reset ( e.g., see line 1133 o f FIG. 11) before 
being calculated, to not consider the old flows on those links. 
[0070] Next, at block 1035 ofFIG. 10 ( corresponding to the 
loop in !ines 1114-1118 o f FIG. 11) the weight updater 415 
adds to the heap each intermediate nade that is a successor in 
the direction oft o f a nade whose flow has been altered ( e.g., 
as identified at block 1035 of FIG. 10 or !ines 1106-1113 of 
FI G. 11 ). The weight updater 415 then calculates the new flow 
distribution associated with these identified nades (block 
1040 of FIG. 10 and !ines 1119-1137 of FIG. 11). For 
example, at line 1127 of FIG. 11, the weight updater 415 
calculates the total flow leaving each of the identified nades. 
At !ines 1128-1135 ofFIG. 11, the weight updater 415 deter­
mines how to split the flow proportionally among ali outgoing 
ares. At !ines 1138, the weight updater 415 calculates the sum 
o f ali flow fractions over ali target nades. 
[0071] After ali target nades oft are processed, the weight 
updater 415 evaluates the total network congestion ci> (given 
by Equation 1 )  íor the current set o f possible link weights for 
which one ofthe link weights was incremented (block 1050 o f 
FIG. 10 and line 1140 of FIG. 11). The weight updater 415 
determines whether an improvement in the total network 
congestion ci> was achieved by incrementing the link weight 
(block 1055 ofFIG. 10). Ifan improved was achieved (block 
1055 ofFIG. 1 0), the current version ofthe set o f possible link 
weights having the incremented link weight is retained and 
the process is repeated (block 1060). However, if an improve­
ment was not achieved (block 1055 of FIG. 10), the weight 
updater 415 retains the previous version ofthe set ofpossible 
weights (block 1060 ofFIG. 10). The weight updater 415 then 
continues examining the effect o f incrementing other candi­
date link weights in the current set of possible link weights 
until no improvement is observed after examining a specifiecl/ 
configured number o f candidate link weights. 
[0072] Example performance results íor OSPF and DEFT 
link weight setting using the example BRKGA methods, 
apparatus and articles o f manufacture described herein are 
illustrated in FIGS. 12-20H. The performance ofBRKGA for 
OSPF and DEFT link weight setting as described herein was 
examined on twelve synthetic networks and another instance 
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with real data from a large tier- 1 Internet service provider 
(ISP). Table 1 sunnnarizes the characteristics o f these net­
works. The colunms represent, respectively, the instance 
class, the instance name, number o f nodes, number o f ares/ 
links. the values oflink capacities (the instance att has a large 
amount o f different values for the link capacities, so this entry 
is omitted from the table ), and the number o f origin-destina­
tion (0-D) demand pairs. The instances are classified into 
four groups: historical data from the ISP Backbone (att), 
two-level hierarchical networks (hier), random networks 
(rand), and Waxman networks (wax). 

Instance 

ISP backbone 

Two-level 
hierarchy 

Random 
topology 

Waxman 

Name 

att 

hier50a 

hier50b 

hier100 

hier100a 

rand50 
rand50a 
rand100 

rand100b 
wax50 
wax50a 
wax100 
wax100a 

TABLE 1 

Nodes 

90 

50 

50 

100 

100 

50 
50 

100 
100 

50 
50 

100 
100 

Links Capacities 0-D pairs 

274 272 

148 200 and 2450 
1000 

2 1 2  200 and 2450 

1 000 
279 200 and 9900 

1000 
360 200 and 9900 

1000 
228 1000 2450 
245 1000 2450 
403 1000 9900 
503 1000 9900 
169 1000 2450 
230 1000 2450 
391 1000 9900 
476 1000 9900 
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lmplementation 

int-DEFT-opt 

int-DEFT 

int-DEFT-opt 

int-DEFT 

[0073] Seven different demand matrices were examined for 
each network, obtained by scaling a basic demand matrix for 
each instance by a factor from 6 to 12. The BRKGA was 
tested with the following parameters: 
[0074] Population size: P=50 individuais; 
[0075] Weight interval: [ 1 ,  wm=J=[l ,20]; 
[0076] Algorithm nmning time: 60 minutes; 
[0077] Probability o f inheriting ali ele from elite parent dur­
ing crossover: Pe =0.7; 
(0078] Maximum gap for hu.v': and 
[0079] Scaling parameter: p=1 .8. 
[0080] The experiments were carried out on a cluster often 
(10) Inte! Duo Core processors with 1 .23 GHz, 1 . 0GB RAM, 
and numing Linux 2. 6 . 1 8-4. Each run used a single processor. 
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[0081] A first experiment explored the time savings 
obtained by tuning the BRKGA and weight decoding proce­
dures to work efficiently for DEFT and by using the dynamic 
fiow algorithm described above in connection with FIGS. 
9-11 as compared to a straightforward adaptation of the 
BRKGA discussed above for OSPF. In particular, the follow­
ing three different implementations were compared: 
[0082] (1) int-DEFT-DSSSP: A straightforward adaptation 
to DEFT ofthe BRKGA proposed for OSPF. This implemen­
tation employed a dynamic single source shortest path 
(DSSSP) algoritlnn. The routing followed DEFT rules and 
was computed statically. 
[0083] (2) int-DEFT-opt: int-DEFT-DSSSP, with its data 
structures tuned to work efficiently with DEFT, thereby 
decreasing the nmning times. In particular, the data structure 
that maintains the number of links leaving each node that 
belongs to a shortest path to the destinationnode (in OSPF) is 
unnecessary in DEFT. 
[0084] (3) int-DEFT: int-DEFT-opt, but additionally using 
the dynamic fiow algoritlnn described above. 
[0085] It should be noted that the link weight solution deter­
mined by each o f these three implementations is the same, 
independent of the implementation. However, the rumling 
times are affected by which implementation is used. FIG. 12 
shows a comparison o f the execution time in hours for 1000 
generations ofthe three implementations and Table 2 shows 
the speedups of the improved implementations over int­
DEFT-DSSSP. Ali 13  network instances of Table 1 were 
tested with the llighest total demand. 

TABLE 2 

Instance 

att hier100 hierlOOa hier50a hier50b rand100 rand100b 

1 . 1 8  1 . 20 1 .31  1 . 19  1 .27 1 .32 1 .31  

3.74 3.73 3.77 2.89 2.71 3.33 2.89 

rand50 rand50a wax100 wax100a wax50 wax50a 

1.29 1 .32 1.30 1 .34 1 .2 2  1.30 

2.81 2.68 3.25 3.01 2.86 2.82 

[0086] Table 2 shows that the straightforward adaptation 
from OSPF is on average 3 . 12  times slowerthan the int-DEFT 
version. From the data in Table 2. it can also be seen that the 
perfom1ance gains are mainly due to the dynamic fiow com­
putation. Ttming the implementation for DEFT results in only 
an average speedup of 1 .27, while the dynamic fiow compu­
tation algoritlnn was responsible for 5 1% to 68% ofthe time 
savings for the set of instances tested. Thus, it can be con­
cluded that even for non-shortest path routing protocols like 
DEFT it is worthwhile to implement dynamic fiow computa­
tion as described above in connection with FIGS. 9-11 .  
[0087] A second set o f experiments compared the quality o f 
the solutions obtained by the BRKGA when routing with 
OSPF and DEFT. Performance was quantified in tenns o f an 
optimality gap, which is the additional routing cost ofthe best 
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link weight solution determined by the BRKGA techniques 
described herein, as a percentage o f the routing cost o f the 
lower bound given by the solution ofOPT. FIGS. 13-17 show 
the results for DEFT and OSPF for the network instances 
listed in Table 1 .  In particular. FIGS. 13A, B and C illustrate 
the BRKGA optimality gap for the network instances att, 
hier50a, and hier50b of Table 1 ,  respectively, with each fig­
ures depicting the optimality gaps measured for OSPF and 
DEFT solutions. FIGS. 14A, B and C illustrate the BRKGA 
optimality gap for the network instances hier 100, hier 100 and 
rand50a ofTable 1 ,  respectively, with each figures depicting 
the optimality gaps measured for OSPF and DEFT solutions. 
FIGS. 15A, B and C illustrate the BRKGA optimality gap for 
the network instances wax50, wax50a andrand1 00 ofTable 1 ,  
respectively, with each figures depicting the optimality gaps 
measured for OSPF and DEFT solutions. FIGS. 16A and B 
illustrate the BRKGA optimality gap for the network 
instances rand50 and rand1 OOb o f Table 1 ,  respectively, with 
each figures depicting the optimality gaps measured for 
OSPF and DEFT solutions. FIGS. 17A and B illustrate the 
BRKGA optimality gap for the network instances wax100 
and wax1 OOa o f Table 1 ,  respectively, with each figures 
depicting the optimality gaps measured for OSPF and DEFT 
solutions. 
[0088] For the six instances in FIG. 13A-C and 14A-C, 
DEFT is able to improve over OSPF. In particular, for high 
total demands, where OSPF has large optimality gaps, DEFT 
can lower the gaps considerably. For the seven instances 
shown in FIGS. 15A-C, 16A-B and 17A-B, both DEFT and 
OSPF result in about the same optimality gap, with the five 
instances in FIGS. 15C, 16A-B and 17A-B, having points 
where DEFT yields slightly worse results than OSPF. 
[0089] A third experiment analyzed the number o f interme­
diate nades involved in the routes o f a demand path. For an 
examined demand matrix, the following three metrics were 
compared: 
[0090] (1)  Path length, which is the average path length 
over ali paths used for routing for ali 0-D demand pairs, 
measured in number o f nades o f the path; 
[0091] (2) Nmnberofpaths, which is the average nmnberof 
different paths used for routing the 0-D demand pairs. Two 
paths are considered different if one path has at least one 
link/arc that does not belong to the other path; and 
[0092] (3) Percentage of intem1ediate nades affected, 
which represents the average number of intermediate nodes 
routing an 0-D demand pair, as a percentage of the total 
number of nades. 
[0093] For each network instance examined, the minimum, 
maximum, and average values, as well as the standard devia­
tion, ofthese three metrics were determined, considering ali 
paths of ali 0-D demand pairs. The values are the average o f 
three runs of 1000 generations each. To conduct this experi­
ment, the following four network instances of Table 1 were 
examined: att, hier100, hier50a, and wax100. For each net­
work instance, four demand matrices were considered. These 
results for each o f these metrics are presented in tum. 
[0094] The path length experiment has the objective of 
comparing the network delay for int-DEFT and OSPF mea­
sured as the length ofthe paths (i.e., the number ofnodes that 
comprise the paths). The shortest path, the longest path, and 
the average path size among ali paths o f ali 0-D demand pairs 
were determined. The measure was calculated for int-DEFT 
and OSPF for the best solution o f the 1 OOOth population 
generation of the BRKGA, for four demand matrices of the 
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four instances att, hier100, hier50a, and wax100 used in the 
experiments. FIGS. 18A-H present the results for int-DEFT 
and OSPF. 
[0095] From the plots in FIGS. 18A-H, it can be observed 
that the path lengths for int-DEFT are about 40% longer than 
in OSPF. For example, for the demand matrix with the largest 
sum o f demands, the average path lengths found by int-DEFT 
are 10.63, 12.80, 8.2, and 6.92 hops, whereas the correspond­
ing values for OSPF are 7 .94, 9.03, 6 .0 1 ,  and 4.47 hops. Ifwe 
compare the path length with the shortest possible length as 
given by the topology ofthe instances, OSPF adds on average 
2 hops, compared to 4.8 hops in int-DEFT. In a telecommu­
nication network, it can be desirable to maintain the path 
lengths as short as possible. One reason is that as the path 
length increases, so does the expected number of demand 
pairs affected by a failure. Thus, the length of a path can be 
directly related to the quality o f service o f a telecommunica­
tion network. 
[0096] With respect to the minimum path length observed, 
they are the same for OSPF and int-DEFT. The minimum 
value is four for instance att, and two for the other three 
instances. That was expected, since both protocols route 
through the shortest path, and a path o f length two indicates 
that the path is composed o f a single direct link. Instance att 
does not have 0-D demand pairs between ali pairs o f nades, 
while the other instances do. Thus, it is possible to have the 
minimmn value larger for att than for the other instances. 
[0097] From an analysis of results of FIGS. 18A-H, two 
other conclusions can be drawn. For example, the path length 
is almost constant through the generations for ali four 
instances tested. Additionally, as can be seen in the plots, the 
path lengths vary only slightly with the total demand. 
[0098] The number o f paths experiment measures the mini­
mum, maximum, and average number of paths among ali 
paths o f ali 0-D demand pairs. The measure is calculated for 
int-DEFT and OSPF for the best solution ofthe 1 OOOth popu­
lation generation ofthe BRKGA, for four demand matrices o f 
four instances. Two paths are considered different if one has 
at least one link/arc that the other does not have, and a path is 
considered different from a set o f paths if it is different from 
each path o f the set. FI GS. 19 A-H present the nmnber o f paths 
metrics for the solution fmmd for int-DEFT and OSPF. 
[0099] From FIGS. 19A-H, the average number of paths 
found by int-DEFT is about 10 times higher than the average 
nmnber fmmd in OSPF solutions. For example, considering 
the demand matrix with the largest total demand, the average 
values for int-DEFT are 10.13 ,  12.67, 5 .08, and 9.23, whereas 
the corresponding values for OSPF are 1 .63, 1 .77, 1 .36, and 
1 .08. The difference between the number o f paths between 
int-DEFT and OSPF could be even larger if a larger gap 
threshold íor hu vt is used. A gap threshold equal to nine (9) 
was used in th� experiments to avoid having a very small 
amount of load íor a demand pair fiowing in a link. 
[0100] From FIGS. 19A-H, one can observe that the num­
ber o f paths changes slightly with the total demand. Further 
experiments also showed that the nmnber o f paths is about the 
same over different generations ofthe BRKGA. 
[0101] The percentage of intermediate nades affected 
experiment has the objective of showing the distribution of 
paths in the network. In other words, this experiment presents 
the percentage o f nades that are part o f some path used in an 
0-D demand pair. The smallest, largest, and average percent­
age o f intem1ediate nades among ali paths o f ali 0-D demand 
pairs were measured. The measure is calculated for int-D EFT 
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and OSPF for the best solution o f the I OOOth population 
generation of the BRKGA, for four demand matrices of the 
four instances used in the experiments.  FIGS. 20A-H depict 
the number o f intermediates nodes for int-DEFT and OSPF. 
[0102] In the experiments performed, the percentage of 
intermediate nodes of int-DEFT is almost twice the percent­
age of intennediate nodes of OSPF. Since int-DEFT sends 
fiows among ali forward links, it is expected that a larger part 
o f the graph would be used for routing a demand pair. As for 
the path length, the larger the set o f intermediate nodes, the 
higher the probability of a demand pair being affected in the 
case of a link or node failure. For example, considering the 
demand matrix with the largest total demand, the average 
percentages ofintermediate nodes used in the int-DEFT solu­
tion are 13 .98, 12.23, 1 8.93, and 12 .61 ,  whereas the corre­
sponding values for the OSPF solution are 8 .61 ,  8.37, 1 1 .83, 
and 4.57. 
[0103] As shown in FIGS. 20A-H, the minimum percent­
age of intennediate nodes is about the same for int-DEFT and 
OSPF. The maximum percentage for DEFT was about twice 
the maximum percentage found by OSPF in most instances, 
and for the instance wax1 00, the percentage o f intermediate 
nodes in int-DEFT was three times the percentage of OSPF. 
[0104] It was also observed that the percentage o f intenne­
diate nodes was about the same throughout the generations o f 
the BRKGA. Additionally, as can be observed in FIGS. ZOA­
H, the values did not change much when different demand 
matrices were considered. 
[0105] FIG. 21 is a block diagram ofan exampleprocessing 
system 2100 capable of implementing the apparatus and 
methods disclosed herein. The processing system 2100 can 
be, for exan1ple, a server, a personal computer, a personal 
digital assistant (PDA), an Internet appliance, a DVD player, 
a CD player, a digital vídeo recorder, a personal vídeo 
recorder, a set top box, o r any other type o f computing device. 
[0106] The system 2100 ofthe instant example includes a 
processor 2112 such as a general purpose progranunable 
processor. The processor 2112 includes a local memory 2114, 
and executes coded instmctions 2116 present in the local 
memory 2114 and/or in another memory device. The proces­
sor 2112 may execute, among other things, the machine read­
able instructions represented in FIGS. 5-8 and 10-11. The 
processo r 2112 may be any type o f processing unit, such as 
one or more Intel® microprocessors from the Pentium® fam­
ily, the Itanium® family and/or the XScale® family, one or 
more microcontrollers from theARM® and/or PIC® families 
of microcontrollers, etc. Of course, other processors from 
other families are also appropriate. 
[0107] The processar 2112 is in communication with a 
main memory including a volatile memory 2118 and a non­
volatile memory 2120 via a bus 2122. The volatile memory 
2118 may be implemented by Static RandomAccess Memory 
(SRAM), Synchronous Dynamic Random Access Memory 
(SDRAM), Dynamic Random Access Memory (DRAM), 
RAMBUS Dynamic Random Access Memory (RDRAM) 
and/or any other type o f random access memory device. The 
non-volatile memory 2120 may be implemented by flash 
memory and/or any other desired type of memory device. 
Access to the mainmemory 2118, 2120 is typically controlled 
by a memory controller (not shown). 
[0108] The processing system 2100 also includes an inter­
face circuit 2124. The interface circuit 2124 may be imple­
mented by any type o f interface standard, such as an Ethernet 
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interface, a universal serial bus (USB), and/or a third genera­
tion input/output (3GIO) interface. 
[01 09] One o r more input devices 2126 are connected to the 
interface circuit 2124. The input device( s) 2126 permit a use r 
to enter data and commands into the processor 2112. The 
input device(s) can be implemented by, for example, a key­
board, a mouse, a touchscreen, a track-pad, a trackball, an 
isopoint and/or a voice recognition system. The interface 
circuit 2124 andone or more ofthe input devices 2126 can be 
used to implement the input interface 420 of FIG. 4.  
[0110] One o r more output devices 2128 are also connected 
to the interface circuit 2124. The output devices 2128 can be 
implemented, for example, by display devices (e.g., a liquid 
crystal display, a cathode ray tube display (CRI)), by a printer 
and/or by speakers. The interface circuit 2124, thus, typically 
includes a graphics driver card. The interface circuit 2124 and 
one o r more ofthe output devices 2128 can be used to imple­
ment the output interface 425 of FIG. 4.  
[0111] The interface circuit 2124 also includes a col1lllm­
nication device such as a modem or network interface card to 
facilitate exchange of data with extemal computers via a 
network (e.g., an Ethernet connection, a digital subscriber 
!in e (DSL ), a telephone !in e, coaxial cable, a cellular tele­
phone system, etc.). 
[0112] The processing system 2100 also includes one or 
more mass storage devices 2130 for storing software and data. 
Examples o f such mass storage devices 2130 include fioppy 
disk drives, hard drive disks, compact disk drives and digital 
versatile disk (DVD) drives. The mass storage device 2130 
may implement the storage 430 of FIG. 4.  Additionally or 
altematively, the volatile memory 2118 may implement the 
storage 430 ofFIG. 4.  
[0113] At least some o f the above described example meth­
ods and/or apparatus are implemented by one or more soft­
ware and/or finnware programs running on a computer pro­
cessor. However, dedicated hardware implementations 
including, but not limited to, application specific integrated 
circuits, progranunable logic arrays and other hardware 
devices can likewise be constructed to implement some o r ali 
o f the example methods and/or apparatus described herein, 
either in whole or in part. Furthennore, altemative software 
implementations including, but not limited to, distributed 
processing or component/object distributed processing, par­
aliei processing, or virtual machine processing can also be 
constmcted to implement the example methods and/or appa­
ratus described herein. 
[0114] To the extent the above specification describes 
example components and fnnctions with reference to particu­
lar standards and protocols, it is understood that the scope o f 
this patent is not limited to such standards and protocols. For 
instance, each of the standards for Internet and other packet 
switched network transmission ( e.g., Transmission Control 
Protocol (TCP)/Internet Protocol (IP), User Datagram Proto­
col (UDP)/IP, HyperText Markup Language (HTML), 
HyperText Transfer Protocol (HTTP)) represent examples of 
the current state o f the art. Such standards are periodically 
superseded by faster o r more efficient equivalents having the 
same general ftmctionality. Accordingly, replacement stan­
dards and protocols having the same functions are equivalents 
which are contemplated by this patent and are intended to be 
included within the scope of the accompanying claims. 
[0115] Additionally, although this patent discloses 
example systems including software o r firmware executed on 
hardware, it should be noted that such systems are merely 
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illustrative and should not be considered as limiting. For 
example, it is contemplated that any or ali ofthese hardware 
and software components could be embodied exclusively in 
hardware, exclusively in software, exclusively in firmware or 
in some combination o f hardware. firmware anel/o r software. 
Accordingly, while the above specification described 
example systems, methods and articles o f manufacture, per­
sons o f ordinary skill in thc art will rcadily appreciate that the 
examples are not the only way to implement such systems, 
methods and articles of manufacture. Therefore, although 
certain example methods, apparatus and articles o f manufac­
ture have been described herein, the scope o f coverage ofthis 
patent is not limited thereto. On the contrary, this patent 
covers ali methods, apparatus and articles of manufacture 
fairly falling within the scope ofthe appended claims either 
literally or under the doctrine o f equivalents.  

What is claimed is :  
1 .  A method to determine link weights for routing in a 

communication network. the method comprising: 
iteratively updating a plurality o f vectors using a genetic 

algoritlnn, the vectors including a plurality o f individual 
values decodable into possible link weights; and 

decoding a first one ofthe vectors updated using the genetic 
algoritlnn into a first plurality of link weights providing 
a possible routing o f a load through the connnunication 
network, the load to be split among a plurality o f paths 
having respective path lengths detennined from the plu­
rality o f link weights, at least two o f the paths having 
different path lengths. 

2. A method as defined in claim 1 wherein íteratively updat­
ing the plurality ofvectors further comprises: 

partitioning the plurality o f vectors into a first group o f 
vectors and a second group o f vectors based on routing 
costs assocíated with the vectors; and 

randomly combining a first subset of the first group of 
vectors and a second subset of the second group of 
vectors based on a crossover probability. 

3. A method as defined in claim 2 wherein íteratively updat­
ing the plurality of vectors further comprises: 

randomly gcnerating a third group ofvcctors for inclusion 
in the plurality ofvectors; and 

randomly setting a first individual value o f a second vector 
formed by combining one o f the first group o f vectors 
and one ofthe second group ofvectors based on a muta­
tion probability. 

4. A method as defined in claim 2 further comprising 
including the first group o f vectors in the updated plurality o f 
vectors. 

5. A method as defined in claim 1 wherein, after an iteration 
o f the genetic algoritlnn, the method fl.Jrther comprises: 

decoding the updated plurality of vectors into respective 
pluralities oflink weights supporting dynamic exponen­
tially-weighted flow splitting; 

determining respective dynamic exponentially-weighted 
flow splitting routing costs for thc pluralitics of link 
weights; and 

when a processing convergence is detected, selecting a first 
o f the pluralities oflink weights associated with a mini­
mum dynamic exponcntially-wcightcd flow splitting 
routing cost to perfom1 dynamic exponentially­
wcighted flow splitting routing in the communication 
network. 
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6. A method as defined in claim 1 wherein, after decoding 
the updated plurality o f vectors into the respective pluralities 
oflink weights, the method further comprises: 

incrementing a first link weight o f a first ofthe pluralities o f 
link weights decoded from a first vector updated using 
the genetic algorithm; 

determining whether incrementing the first link weight 
improved a first dynamic exponentially-weighted flow 
splitting routing cost associated with the first plurality o f 
link weights; 

if the first dynamic exponentially-weighted flow splitting 
routing cost is improved, again incrementing the first 
link weight and determining whether the first dynamic 
exponentially-weighted flow splitting routing cost is 
improved; and 

i f the first dynamic exponentially -weighted flow splitting 
routing cost is not improved, iteratively incrementing a 
next link weight of the first of the pluralities of link 
weights and detemlining whether an associated 
dynamic exponentially-weighted flow splitting routing 
cost is improved until no improvement is observed after 
examining a number o f link weights o f the first o f the 
pluralities of link weights. 

7. A method as defined in claim 1 wherein the at least two 
paths comprise one or more links, and the load is not to be 
split onto a linkhaving a gap distance exceeding a gap thresh­
old, the gap distance determined írom the plurality o f link 
weights. 

8 .  A method as defined in claim 1 wherein decoding the 
first one ofthe vectors into the first plurality of link weights 
comprises: 

scaling individual values included in the first vector by a 
scale factor; and 

rounding the scaled individual values to respective nearest 
integer values to determine respective link weights. 

9 .  A tangible article ofmanufacture storing machine read­
able instructions which, when executed, cause a machine to at 
least: 

iteratively update a plurality of vectors using a genetic 
algoritlnn, each vector including a plurality o f individual 
values decodable in to possible link weights for perform­
ing routing in a connnunication network; and 

decode a vector updated using the genetic algoritlnn into a 
plurality of link weights providing a possible routing o f 
a load through the conununication network, the load to 
be split among a plurality o f paths having respective path 
lengths determined from the plurality oflink weights, at 
least some ofthe paths having different path lengths. 

10. A tangible article ofmanuíàcture as defined in claim 9 
wherein the machine readable instructions, when executed, 
further cause the machine to: 

partition the plurality o f vectors into a first group o f vectors 
and a second group of vectors based on a routing cost 
associated with each vector; and 

randomly combine a first subset o f the first group o f vectors 
and a second subset ofthe second group o f vectors based 
on a crossover probability to detennine an updated plu­
rality o f vectors during an iteration of the genetic algo­
ritlnn. 

11 .  A tangible article of manufacture as defined in claim 10 
wherein the maclline readable instructions, when executed, 
further cause the machine to: 

include the first group o f vectors in the updated plurality o f 
vectors; 
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randomly generate a third group o f vectors for inclusion in 
the updated plurality ofvectors; and 

randomly set a first individual value of an updated vector 
formed by combining one o f the first group o f vectors 
and one ofthe second group ofvectors based on a muta­
tion probability to determine the updated plurality of 
vectors during the iteration o f the genetic algorithm 

12. A tangible article o f manufacture as defined in claim 9 
wherein the machine readable instructions, when executed, 
further cause the machine to: 

decode each of the updated plurality of vectors into a 
respective plurality of link weights supporting dynamic 
exponentially-weighted flow splitting after each itera­
tion ofthe genetic algorithm; 

determine a dynamic exponentially-weighted flow split­
ting routing cost associated with each plurality o f link 
weights; and 

when a processing convergence is detected, select a first 
plurality of link weights associated with a minimum 
dynamic exponentially-weighted flow splitting routing 
cost for performing dynamic exponentially-weighted 
flow splitting routing in the communication network. 

13. A tangible article o f manufacture as defined in claim 9 
wherein the machine readable instructions, when executed, 
further cause the machine to: 

increment a link weight o f a first plurality o f link weights 
decoded from a first vector updated using the genetic 
algorithm; 

determine whether incrementing the link weight ofthe first 
plurality oflink weights improved a first dynamic expo­
nentially-weighted flow splitting routing cost associated 
with the first plurality of link weights; 

if the first dynamic exponentially-weighted flow splitting 
routing cost is improved, again increment the link 
weight o f the plurality of link weights and determine 
whether the first dynamic exponentially-weighted flow 
splitting routing cost is improved; and 

if the first dynamic exponentially-weighted flow splitting 
routing cost is not improved, increment other link 
weights of the first plurality of link weights and deter­
mine whether associated dynamic exponentially­
weighted flow splitting routing costs are improved tmtil 
no improvement is observed after examining a number 
of link weights of the first plurality o f link weights. 

14. A tangible article o f manufacture as defined in claim 9 
wherein the machine readable instructions, when executed, 
further cause the machine to: 

scale each individual value included in the vector by a scale 
factor; and 

round each scaled individual value to a nearest integer 
value to determine a respective link weight. 

15. An apparatus to determine link weights for routing in a 
communication network, the apparatus comprising: 

a processor to iteratively update a plurality o f vectors using 
a genetic method, the vectors including respective plu­
ralities of individual values decodable into possible link 
weights; and 

a weight decoder to: 
decode the plurality o f vectors updated by the processor 

into respective pluralities o f link weights providing 
respective pluralities of possible solutions to route 
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loads through the communication network, the link 
weights supporting dynamic exponentially-weighted 
flow splitting; and 

determine dynamic exponentially-weighted flow split­
ting routing costs associated respectively with the 
pluralities of link weights, the processor to partition 
the vectors for subsequent updating based on the 
dynamic exponentially-weighted flow splitting rout­
ing costs. 

16. An apparatus as defined in claim 15 wherein the pro­
cessar is to update the vectors by: 

partitioning the vectors into a first group ofvectors and a 
second group ofvectors based on the dynamic exponen­
tially-weighted flow splitting routing costs; and 

randomly combining a first subset of the first group of 
vectors and a second subset of the second group of 
vectors based on a crossover probability. 

17. An apparatus as defined in claim 16 wherein the genetic 
algorithm processo r is to update the vectors by: 

including the first group ofvectors in the plurality ofvec­
tors; 

randomly generating a third group ofvectors to include in 
the plurality ofvectors; and 

randomly setting a first individual value of an updated 
vector formed by combining one o f the first group o f 
vectors and one o f the second group o f vectors based on 
a mutation pro bability. 

18. An apparatus as defined in claim 15 wherein, when a 
convergence is detected, the weight decoder is to select a first 
plurality oflink weights associated with a minimum dynamic 
exponentially-weighted flow splitting routing cost to perfonn 
dynamic exponentially-weighted flow splitting routing in the 
connnunication network 

19. An apparatus as defined in claim 15 further comprising 
a weight updater to: 

increment a first link weight o f a first of the pluralities o f 
link weights decoded from a first updated vector after 
decoding the updated plurality ofvectors into respective 
pluralities of link weights; 

determine whether incrementing the first link weight 
improved a first dynamic exponentially-weighted flow 
splitting routing cost associated with the first plurality o f 
link weights; 

if the first dynamic exponentially-weighted flow splitting 
routing cost is improved, again increment the first link 
weight and detennine whether the first dynamic expo­
nentially-weighted flow splitting routing cost is 
improved; and 

if the first dynamic exponentially-weighted flow splitting 
routing cost is not improved, iteratively increment a next 
link weight of the first plurality of link weights and 
determine whether an associated dynamic exponen­
tially-weighted flow splitting routing cost is improved 
until no improvement is observed after examining a 
number o f link weights o f the first o f the pluralities o f 
link weights. 

20. An apparatus as defined in claim 15 wherein the weight 
decoder is to: 

scale individual values included in the vectors by a scale 
factor; and 

round the scaled individual values to respective nearest 
integer values to determine respective link weights. 

* * * * * 
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