
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

CAIO GRACO PRATES ALEGRETTI

Analytical Logical Effort Formulation for
Local Sizing

Thesis presented in partial fulfillment of the
requirements for the degree of Doctor in
Microelectronics.

Prof. Dr. André Inácio Reis
Advisor

Prof. Dr. Renato Perez Ribas
Co-advisor

Porto Alegre, June 2013.

2

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Aldo Bolten Lucion
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do PGMicro: Gilson Inácio Wirth
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

Alegretti, Caio Graco Prates

Analytical Logical Effort Formulation for Local Sizing
[manuscrito] / Caio Graco Prates Alegretti. – 2013.

84 f.:il.

Advisor: André Inácio Reis; Co-advisor: Renato Perez Ribas.

Tese (doutorado) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Microeletrônica. Porto Alegre,
BR – RS, 2013.

1. Subcircuit sizing. 2. Active area minimization. 3. Design
constraints. 4. Logical Effort. I. Reis, André Inácio. II. Ribas,
Renato Perez. III. Título.

3

ACKNOWLEDGMENTS

There are so many people I am thankful to…

First of all, I would like to express my most sincere gratitude to my advisors,
professors André Inácio Reis and Renato Perez Ribas. Their advices, availability,
guidance, and patience out of this world were vital for the conclusion of this work. In
them, I could find a combination of technical expertise and soft/human skills that is very
rare to come upon in the Engineering environment.

Working at LogiCS Labs was a very fruitful experience. I had the opportunity to
share the companionship of brilliant, highly motivated, and funny colleagues. It was
never ever a boring place. In particular, Vinicius Dal Bem helped a lot in the
implementation of the thesis. Here goes a non-exhaustive, lexicographic list of the
people I am indebted with: Alessandro Goulart, Digeorgia Natalie Silva, Felipe
Marques, Felipe Marranghello, Jody Matos, Leomar Soares Jr., Mayler Martins, Nivea
Schuch, Osvaldo Martinello Jr., Paulo Butzen, Rodrigo Mancuso, and Vinicius
Callegaro. Either by technical discussions or random conversation, they have all
contributed to my work.

Professor Paulo Fernandes, my master’s advisor, introduced me to the academic
research. I will always be thankful for that, even though my professional trajectory
drifted me away from the brave new world of stochastic automata networks.

It is widely known that money makes the world go round. In this sense, I would like
to thank the Brazilian funding agency CAPES and the Danish company Nangate A\S for
the financial support, as well as my current employer, IFRS. Although there was no
institutional stimulus for pursuing a doctorate degree, my colleagues at IFRS were
always willing to help.

None of this would have been possible without the support and unconditional love
from my family. My parents José Dante and Maria Elizabeth, as well as my brothers
Tito Lívio and Francisco José, have taught me the value of reading, studying, and
honest, hardworking. My wife Cristiane gave me Alexandre, by very, very far, the
greatest happiness in my life. I will always be thankful for her. Just seeing Alexandre
smiling, laughing, and playing makes life worth living.

Last, but not least, a perhaps unusual acknowledgment in a doctorate thesis. I would
like to register my gratitude to Deolinda, my first teacher in a poor, rotten, public
elementary school in a poor fisherman village. With her I learned how to read, to write,
and to do basic calculations. Basic education is of foremost importance for the
economic, technological, and social development of any nation. Regretfully, this is
hardly ever remembered.

4

Formulação Analítica Baseada em Logical Effort para
Dimensionamento Local

RESUMO

A indústria de microeletrônica tem recorrido cada vez mais à metodologia de projeto
baseado em células para fazer frente à crescente complexidade dos projetos de circuitos
integrados digitais, uma vez que circuitos baseados em células são projetados mais
rápida e economicamente que circuitos full-custom. Entretanto, apesar do progresso
ocorrido na área de Electronic Design Automation, circuitos digitais baseados em
células apresentam desempenho inferior ao de circuitos full-custom. Assim, torna-se
interessante encontrar maneiras de se fazer com que circuitos baseados em células
tenham desempenho próximo ao de circuitos full-custom, sem que isso implique
elevação significativa nos custos do projeto. Com tal objetivo em vista, esta tese
apresenta contribuições para um fluxo automático de otimização local para circuitos
digitais baseados em células. Por otimização local se entende a otimização do circuito
em pequenas janelas de contexto, onde são feitas otimizações considerando o contexto
global. Deste modo, a otimização local pode incluir a detecção e isolamento de regiões
críticas do circuito e a geração de redes lógicas e de redes de transistores de diferentes
topologias que são dimensionadas de acordo com as restrições de projeto em questão.
Como as otimizações locais atuam em um contexto reduzido, várias soluções podem ser
obtidas considerando as restrições locais, entre as quais se escolhe a mais adequada para
substituir o subcircuito (região crítica) original. A contribuição específica desta tese é o
desenvolvimento de um método de dimensionamento de subcircuitos capaz de obter
soluções com área ativa mínima, respeitando a capacitância máxima de entrada, a carga
a ser acionada, e a restrição de atraso imposta. O método é baseado em uma formulação
de logical effort, e a principal contribuição é calcular analiticamente a derivada da área
para obter área mínima, ao invés de fazer a derivada do atraso para obter o atraso
mínimo, como é feito na formulação tradicional do logical effort. Simulações elétricas
mostram que o modelo proposto é muito preciso para uma abordagem de primeira
ordem, uma vez que apresenta erros médios de 1,48% para dissipação de potência,
2,28% para atraso de propagação e 6,5% para os tamanhos dos transistores.

Palavras-Chave: Dimensionamento de Subcircuitos, Minimização de Área Ativa,
Restrições de Projeto, Logical Effort.

5

Analytical Logical Effort Formulation for Local Sizing

ABSTRACT

Microelectronics industry has been relying more and more upon cell-based design
methodology to face the growing complexity in the design of digital integrated circuits,
since cell-based integrated circuits are designed in a faster and cheaper way than full-
custom circuits. Nevertheless, in spite of the advancements in the field of Electronic
Design Automation, cell-based digital integrated circuits show inferior performance
when compared with full-custom circuits. Therefore, it is desirable to find ways to bring
the performance of cell-based circuits closer to that of full-custom circuits without
compromising the design costs of the former circuits. Bearing this goal in mind, this
thesis presents contributions towards an automatic flow of local optimization for cell-
based digital circuits. By local optimization, it is meant circuit optimization within
small context windows, in which optimizations are done taking into account the global
context. This way, local optimization may include the detection and isolation of critical
regions of the circuit and the generation of logic and transistor networks; these networks
are sized according to the existing design constraints. Since local optimizations act in a
reduced context, several solutions may be obtained considering local constraints, out of
which the fittest solution is chosen to replace the original subcircuit (critical region).
The specific contribution of this thesis is the development of a subcircuit sizing method
capable of obtaining minimum active area solutions, taking into account the maximum
input capacitance, the output load to be driven, and the imposed delay constraint. The
method is based on the logical effort formulation, and the main contribution is to
compute the area derivative to obtain minimum area, instead of making the delay
derivative to obtain minimum delay, as it is done in the traditional logical effort
formulation. Electrical simulations show that the proposed method is very precise for a
first order approach, as it presents average errors of 1.48% in power dissipation, 2.28%
in propagation delay, and 6.5% in transistor sizes.

Keywords: Subcircuit Sizing, Active Area Minimization, Design Constraints, Logical
Effort.

6

LIST OF FIGURES

Figure 2.1 – Different logic and transistor networks for the same logic function 16

Figure 2.2 – Scale factor of a NOR2 cell ... 18

Figure 2.3 – Examples of supercells for NAND2 logic function 19

Figure 2.4 – Current difference in cell sizes ... 20

Figure 2.5 – Cell based design flow ... 22

Figure 2.6 – Local and global design constraints ... 23

Figure 2.7 – Subcircuit with several paths (P1, P2, ..., P6) between input and output 25

Figure 2.8 – Example of part of SDC file .. 26

Figure 2.9 – Example of RC tree .. 29

Figure 2.10 – Logical effort delay model of a logic gate ... 30

Figure 2.11 – Examples of basic logic gates modeled according to logical effort 32

Figure 3.1 – Local optimization ... 39

Figure 3.2 – CSP CMOS logic gate seen as a combination of a pull-up and a pull-down
network .. 41

Figure 3.3 – Series-parallel duality in CSP CMOS logic gate 42

Figure 3.4 – Example of flex cell generation ... 49

Figure 4.1 – Laboratory approach for local optimization ... 51

Figure 4.2 – Example of local remapping .. 52

Figure 4.3 – Model of a 2-stage subcircuit with fixed input capacitance 53

Figure 4.4 – Model of a 3-stage subcircuit with fixed input capacitance 54

Figure 4.5 – Model of a 2-stage subcircuit with variable input capacitance 57

Figure 4.6 – Model of a 3-stage subcircuit with variable input capacitance 59

Figure 4.7 – Model of a 2-stage branching subcircuit with variable input capacitance . 65

Figure 5.1 – Subcircuit to be sized ... 71

Figure 5.2 – Delay vs. sizing of a subcircuit for minimum active area via exhaustive
search (electrical simulation) .. 73

Figure 5.3 – Power consumption of the subcircuit under design 74

7

LIST OF TABLES

Table 2.1 – Example of a standard cell library ... 17

Table 5.1 – Sizing results compared with HSPICE reference and Kabbani (2010) 72

8

LIST OF ABBREVIATIONS

AOI AND–OR–Inverter

ASIC Application Specific Integrated Circuit

AT Arrival Time

CAD Computer Aided Design

CMOS Complementary Metal Oxide Semiconductor

CP Convex Programming

CSP Complementary Series Parallel

DP Dynamic Programming

DSP Digital Signal Processor

EDA Electronic Design Automation

GGP Generalized Geometric Programming

GND Ground

GP Geometric Programming

HDL Hardware Description Language

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

I/O Input/Output

IP Integer Programming

LE Logical Effort

LP Linear Programming

LSH Locality Sensitive Hashing

LUT Lookup Table

m meter

MFI Maximum FanIn

MINLP Mixed Integer Nonlinear Program

MLE Modified Logical Effort

9

MOS Metal Oxide Semiconductor

MOSFET Metal Oxide Semiconductor Field Effect Transistor

n nano (910−)

NLDM Nonlinear Delay Model

NLP Nonlinear Programming

NMOS n-type MOS transistor

NOCL NANGATE 45nm Open Cell Library

OAI OR–AND–Inverter

PDN Pull-Down Network

PMOS p-type MOS transistor

PUN Pull-Up Network

RC Resistor–Capacitor

RT Required Time

RTL Register Transfer Level

SCMS Series-Connected MOSFET Structure

SDC Synopsys Design Constraints

SOC System on a Chip

STA Static Timing Analysis

tdhl delay time high to low

tdlh delay time low to high

TILOS TImed LOgic Synthesizer

UFRGS Universidade Federal do Rio Grande do Sul (Federal University of Rio
Grande do Sul)

VDD Supply voltage

Vt threshold voltage of a transistor

Vth Logic threshold voltage of a logic gate

10

TABLE OF CONTENTS

RESUMO ... 4

ABSTRACT……………………………………………………………………...….5

LIST OF FIGURES .. 6

LIST OF TABLES .. 7

LIST OF ABBREVIATIONS .. 8

1 INTRODUCTION .. 12

2 BASIC CONCEPTS ... 14

2.1 General Concepts about Digital Integrated Circuit Design 14

2.2 Design Constraints .. 22
2.2.1 Example of design constraint specification format 25

2.3 Delay .. 27
2.3.1 Fundamental concepts .. 27
2.3.2 Elmore delay model .. 28
2.3.3 Logical effort delay model ... 29
2.3.4 Nonlinear Delay Model – NLDM .. 33
2.3.5 Delay models comparison .. 34

2.4 Sizing .. 34

2.5 Mathematical Programming ... 36

2.6 Analytical Resolution of the Minimization Problem 38
2.6.1 Minimization of multivariable functions .. 38

3 BIBLIOGRAPHICAL REVIEW .. 39

11

3.1 Local Optimization ... 39

3.2 Transistor Networks ... 40

3.3 Delay Models ... 43
3.3.1 Extension of the logical effort model ... 43
3.3.2 Modified logical effort model... 43
3.3.3 Logical effort model considering transition time 43

3.4 Sizing Algorithms ... 44
3.4.1 TILOS: An initial approach in geometric programming 44
3.4.2 A modern approach in geometric programming..................................... 45
3.4.3 The logical effort sizing method ... 45
3.4.4 GS: A well-succeeded discrete sizing algorithm 46
3.4.5 NEW: A recent discrete sizing algorithm ... 47
3.4.6 The flex-cell approach for local optimizations 48

4 ANALYTICAL METHOD FOR MINIMIZING THE ACTIVE AREA OF
DIGITAL SUBCIRCUITS UNDER DELAY CONSTRAINT 50

4.1 Sizing Method Contextualization .. 51

4.2 Contribution of this Thesis .. 52

4.3 Fixed Input Capacitance .. 53
4.3.1 Two-stage subcircuits ... 53
4.3.2 Three-stage subcircuits ... 54

4.4 Variable Input Capacitance ... 56
4.4.1 Two-stage subcircuits ... 56
4.4.2 Three-stage subcircuits ... 59

4.5 Branching Subcircuits .. 65

4.6 Power Delay Product .. 68

5 EXPERIMENTAL RESULTS .. 71

6 CONCLUSION AND FUTURE WORK .. 76

REFERENCES .. 78

12

1 INTRODUCTION

Electronic devices become more and more present on people’s daily lives, which
makes out of the market of semiconductor devices an important parcel of world
economy. A fair chance of good profits has attracted a great number of companies for
such market, and so the electronics industry is induced to deliver products every time
with higher quality standards and shorter time to market. Therefore, any way to reduce
design time of integrated circuits is very appealing for this industry.

Adding to this fact the current stage of miniaturization and integration in
microelectronics, which makes the design of an integrated circuit steadily more
complex, it is set up scenery for a design methodology capable of dealing with these
boundaries efficiently. According to Weste (2006), there are seven design
methodologies currently in use:

- Structured design techniques;
- Microprocessor/DSP (Digital Signal Processor);
- Programmable Logic;
- Gate array and Sea of gates design;
- Cell-based design;
- Full-custom design;
- Platform-based design/System on a Chip (SOC).

These design methodologies take advantage of CAD (Computer Aided Design)
tools, in a way to allow them to cope with the current scale of miniaturization and
integration of semiconductor devices. This is a way to reduce considerably the design
time (SHERWANI, 1999).

This research work is related to cell-based design. Cell-based design delivers faster,
smaller and less power consuming integrated circuits than those integrated circuits
produced by programmable logic or gate array. Nevertheless, cell-based design shows a
higher design cost (WESTE, 2006). Compared with full-custom design, cell-based
design demands much less man-hours and, therefore, it has a lower cost. Nevertheless,
cell-based design generates integrated circuits that may be up to three to seven times
more power consuming (CHINNERY, 2005) or three to eight times slower
(CHINNERY, 2002) than equivalent integrated circuits designed via full-custom. Even
though cell-based design delivers integrated circuits with inferior performance (as
compared with full-custom integrated circuits), the market share of this methodology
has been steadily increasing.

Full-custom design inherently generates either faster or less power consuming
integrated circuits than those generated via cell-based design. This happens because, in
the former methodology, a human designer can manually optimize transistor sizing,

13

placement and routing of devices, even the layout of the circuit. Cell-based design, in its
turn, relies on a limited set of options to accomplish the circuit sizing, among other
factors that restrain its capacity of generating either faster or less power consuming
integrated circuits (HU, 2007).

Cell-based design must deal with discrete sizing of logic gates, since a standard cell
library contains a finite number of different sizes for each cell. The problem of
choosing, out of a limited number of options, the size of a cell to correspond to a node
of a circuit under design is an NP-complete problem (LI, 1993; REZVANI, 2003).
Besides, it is likely that the ideally-sized cell to map a given node does not belong to the
current standard-cell library.

As a consequence of the factors just mentioned, human intervention in cell-based
design became a common practice (ROY, 2005), especially in the nodes that represent a
performance bottleneck. This thesis aims specifically at developing a subcircuit sizing
method oriented towards on-the-fly cell generation, within the context of local
optimization. This sizing method obtains minimum active area solutions, taking into
account the maximum input capacitance, the output load to be driven, and the delay
constraint. The method is based on the logical effort formulation, and the main
contribution is to compute the area derivative to obtain minimum area, instead of
making the delay derivative to obtain minimum delay, as it is done in the traditional
logical effort formulation.

This thesis is organized as follows. Chapter 2 tackles the fundamental concepts for
this research work. In chapter 3, some reference works on digital circuit sizing are
shown, as well as concepts intrinsically related to this research. Next, in chapter 4, the
subcircuit sizing method is developed. Chapter 5 is devoted to the experimental results
obtained with the new sizing method. Finally, chapter 6 brings the conclusion.

14

2 BASIC CONCEPTS

In this chapter, the basic concepts needed for a better understanding of this thesis
will be reviewed. This research work refers to cell-based design methodology, within
the broader context of digital integrated circuits. The design of an integrated circuit,
from specification to final implementation, is an intricate process that shall be divided
into several stages. These stages involve well established concepts and methodologies.
Therefore, initially general concepts about digital integrated circuit design will be
shown. Based upon these general concepts, cell-based design flow will be tackled, since
this methodology came as an answer to the growing complexity of integrated circuit
design.

Next section deals with design constraints. When conceiving a digital circuit, there
are specifications and design constraints that must be observed in every proposed
modification to the circuit. Within design constraints, there are also cost functions that
may be associated with a circuit, which are useful for optimization purposes.

After that, the concepts of delay and timing will be seen, since they have foremost
importance in digital circuit design. Every digital circuit introduces a delay between its
input and output signals. For a digital circuit design to reach its performance goals,
these delays must be handled appropriately.

In the same fashion, the concepts regarding sizing of semiconductor devices deserve
a section of its own. It is useless to have a very fast circuit that does not respect either
area or power consumption limitations, hence the need for adequate sizing.

The final section is devoted to the mathematical tools related to the resolution of the
proposed problem. There are different ways to model the digital circuit sizing problem,
and for every model there may exist one or more mathematical techniques for its
resolution. Grosso modo, these techniques may be divided into mathematical
programming and analytical resolution of minimization problems, as reviewed in the
end of this chapter.

2.1 General Concepts about Digital Integrated Circuit Design
In this section, concepts referring to integrated circuit design are reviewed. Some of

these concepts are consensually defined in the literature, meanwhile others have
different definitions according to different authors, and there are even concepts that
have not been formally defined in the consulted literature. Therefore, in this section,
concepts alluding to integrated circuit design are either reviewed or defined, in a way to
conceive a consistent set of definitions to be referred to throughout this work.

15

The first concept to be reviewed is that of logic networks. Logic gates may be
organized into logic networks, which are sets of logic gates that implement a non-
elementary logic function. A transistor network is an array of transistors capable of
implementing a logic function, in which these transistors are not necessarily organized
into logic gates. For a given logic function, different logic networks and transistor
networks may be implemented. Each of these networks may belong to different logic
styles (RABAEY, 2003) — also known as circuit families (WESTE, 2006) —, as
shown in Figure 2.1. Logic networks and transistor networks differ from each other by
logic style and topology. Just to mention two examples, the logic style CSP CMOS —
Complementary Series Parallel CMOS —is composed of logic gates, meanwhile the
pass transistor logic style is composed of structures that are not organized as basic logic
gates. Therefore, this logic style is based on transistor networks.

This research work deals only with combinational digital circuits, i.e., circuits
whose outputs are functions exclusively of current inputs. Therefore, these are
memoryless circuits.

A concept closely related to logic gate is that of cell, although there is a difference
between these two concepts: Logic gate refers to the logic function under
implementation, its Boolean equation and truth table. In turn, cell alludes to physical
aspects of implementation, such as layout, etc. That is, the concept of logic gate is
related to logic functionality, meanwhile the concept of cell is related to electrical
aspects and physical implementation. For instance, an inverter logic gate may
correspond either to a small-sized inverter cell or to an inverter cell capable of driving a
large capacitance in its output. In short, according to Gajski-Kuhn’s Y diagram
(WESTE, 2006), cell belongs to physical domain, and logic gate belongs to structural
domain. A cell provides a Boolean logic function (e.g., inverter, AND, NAND, OR,
NOR, XOR, XNOR, AOI, OAI, adder, multiplexer) or storage function (latch, flip-
flop). Therefore, it can be stated that the cell is the basic unit of organization of a digital
circuit designed under cell based design.

Cells are conceived by experienced designers, who spend a long time optimizing
each cell and taking full advantage of layout properties. Besides, each cell must be
verified and characterized individually, which is a time demanding activity. However,
once concluded the design, the cell can be reused several times, without need for
redesign.

Logic threshold and drive strength are two of the characteristics that define the
functioning of a cell. Logic threshold (Vth), also named input threshold or switching
threshold, is the voltage that, when applied to the input of a cell, causes the output
voltage Vout to be equal to the input voltage Vin (RABAEY, 2003; WESTE, 2005). Drive

strength (or driving strength) is the ability of the cell in charging or discharging a given
capacitance in its output. This drive strength is directly related to the size of the
transistors in the cell. Logic threshold may be used in the calculation of a cell
propagation delay. Drive strength is very important in the sizing of digital integrated
circuits, as shown throughout this work.

Usually, cells belong to a standard cell library (or cell library). This library is a set
of cells with compatible layout template, in which the cells provide different logic
functions and storage functions. These cells are used to map a given logic network,
according to the cell-based design methodology. Table 2.1 shows an example of a
standard cell library.

16

Figure 2.1 – Different logic and transistor networks for the same logic function

Source: Logics (2013).

Designers find the cell-based design methodology appealing because the power
distribution and compatibility among neighbor cells is greatly improved by using a
compatible layout template for all cells. This compatible layout template forces the cells
to have compatibility with neighbor cells by using power lines (VDD and GND) at
compatible positions, so that placement and routing can be done automatically. Cells are
organized in rows, and these rows may be separated one from another by routing
channels.

Usually, a standard cell library contains cells with different sizes that implement the
same logic function. X1 stands for the minimum sized cell, X2 represents the cell twice
as big as X1 cell, and so forth. Larger cells have greater drive strength and therefore are
faster, but at the cost of greater power consumption. On the contrary, smaller cells have
less drive strength and therefore are slower, but they consume less power.

The concepts of template and scale factor are needed for a better understanding of
the subject of cell size. The template of a cell is the minimum sized version of this cell,
which defines the cell topology and the ratio between the sizes of its transistors. Each
and every cell obtained from this template has the same topology and the same
transistor size ratios. An example of a NOR2 cell template is shown in Figure 2.2a. It is
worthy to emphasize that the current concept of template is related to neither layout
aspects nor physical implementation aspects. Therefore, the current concept of template
shall not be confused with the notion of layout template mentioned in the definition of
standard cell library. This latter sort of template refers solely to physical implementation

GND

!A

OUT

B C

A A

A B

B C

A

C

D

D

B

C

B

OUT

A C

A B

B C

A B

B C

A

C

D

D

OUT

B C

A A

A B

A C

D

B

C

B

B D

B C

OUT

A

B

C

D

B

C

GND

OUT = A·B + A·C·D + B·C

V
DD

V
DD

!B

!B

GND

OUT

!A

!C

!C

!B

!B!B

!A

!D

!D

GND

GND

V
DD

V
DD

V
DD

V
DD

!A

!A

!C

!C

!C !C

!B !B

!D V
DD

GND

GND

V
DD

17

aspects. Every standard cell in a library has an exclusive layout template, but several
cells may have the same template.

Table 2.1 – Example of a standard cell library

Gate type Variations Options

Inverter, buffer, tristate
buffer

 1X, 2X, 4X, 8X, 16X, 32X
minimum size inverter

NAND, AND 2-8 inputs High, normal, low power

NOR, OR 2-8 inputs High, normal, low power

XOR, XNOR High, normal, low power

AOI, OAI High, normal, low power

Multiplexer Inverting, non inverting High, normal, low power

Schmitt trigger High, normal, low power

Adder, half adder High, normal, low power

Latch High, normal, low power

Flip-flop D, with and without
synch/asynch set and reset,
scan

High, normal, low power

I/O pad Input, output, tristate,
bidirectional, boundary
scan, slew rate limited,
crystal oscillator

Various drive levels (1-16
mA) and logic levels

Source: Weste (2006, p. 426).

The scale factor (BOYD, 2005; HEDLUND, 1987) is the number greater than or
equal to 1 that multiplies the widths of the transistors in the template in order to obtain
the corresponding cell with the expected drive strength. Figure 2.2 shows two instances
of a NOR2 cell: a minimum sized cell (i.e., template — Figure 2.2a) and another cell
with size z. In this case, the cell depicted in Figure 2.2b has a scale factor equal to z.
These two cells have different sizes, but the transistor sizes in each cell keep the same
ratio between each other, i.e., w1 : w2 : w3 : w4, where wi, i ∈ {1, 2, 3, 4}, is the width of
every transistor in the template.

Although the scale factor may in principle assume any value greater than or equal to
1, usually the standard cells in a library have scale factors given by natural numbers. In
this work, this set of standard cells in a library, which have the same template and that
differ from each other just by their scale factors, is named supercell

1. As examples of
supercells, one can mention: a) the supercell constituted by the six inverter cells in the
library depicted in Table 2.1; b) the supercell given by the two NOR2 cells in Figure 2.2

1 This definition of supercell is different from the one given by Zhou (2007).

18

and c) the three supercells depicted in Figure 2.3, each of which is composed by three
cells.

Figure 2.2 – Scale factor of a NOR2 cell

Source: Logics (2013).

In Figure 2.3, the numbers in each transistor represent the width of the transistor
channel (i.e., its size), parameterized with respect to a reference value (e.g., the channel
width of the smallest NMOS transistor that can be implemented with the technology).
Although the three supercells implement the same logic function, they have different
templates. This can be observed in the ratio between PMOS and NMOS transistor sizes
in each supercell: in supercell 1, this proportion is equal to 1:1; in supercell 2, it is worth
3:1; and in supercell 3 it is equal to 1:3. This example shows that there may exist
standard cells (with the same logic function) that show differences among themselves
other than their sizes (drive strengths). In other words, there are standard cell libraries
with only one supercell for every logic function implemented, and there are also
standard cell libraries with more than one supercell for a given logic function.

In earlier times, there were a few sizes for every template in a standard cell library.
Nowadays, the cell size may vary from X1 to X16. As represented in Figure 2.4, there is
a huge difference between an X1 cell and an X16 cell. This difference is reflected in the
delay, area, and power consumption of each cell.

With respect to the amount of standard cells, there are libraries ranging from just
tens of standard cells (ROSA JUNIOR, 2008) up to thousands of standard cells
(SHERWANI, 1999; TRIHY, 2008). Regarding the amount of standard cells in a
library, there is a tradeoff that must be respected: the bigger the number of logic
functions and the number of different options for every logic function implemented as
standard cells, the easier the obtention of a cell with the desired logic function and a
close to ideal size for a given node of the circuit under design. However, as more

19

standard cells are added to the library, the runtime of the cell chooser algorithm
increases polynomially and there is also the additional work of designing, verifying, and
characterizing extra standard cells. In the literature, there are authors who plead libraries
with a few standard cells — e.g., Ricci (2007), Seo (2008) —, and there are also those
who defend libraries with many standard cells — e.g., Berkelaar (1988), Correia (2004),
Gavrilov (1997), Keutzer (1987), Marques (2007), Scott (1994), Sechen (1996) —, with
no consensus whatsoever about this matter.

Figure 2.3 – Examples of supercells for NAND2 logic function

b) Supercell 2

VDD VDDVDD VDDVDD VDD

3 3

1

1

VDD VDDVDD VDDVDD VDD

6 6

2

2

VDD VDDVDD VDDVDD VDD

12 12

4

4

X1 X2 X4

c) Supercell 3

VDD VDDVDD VDDVDD VDD

1 1

3

3

VDD VDDVDD VDDVDD VDD

2 2

6

6

VDD VDDVDD VDDVDD VDD

4 4

12

12

X1 X2 X4

VDD VDDVDD VDDVDD VDD

2 2

2

2

VDD VDDVDD VDDVDD VDD

4 4

4

4

VDD VDDVDD VDDVDD VDD

8 8

8

8

X1 X2 X4

a) Supercell 1

Source: Logics (2013).

All cells in a standard cell library have been previously verified and characterized.
Therefore, the designer can take its correct functioning for granted. However, the
designer is limited to using in his (her) project only the cells made available by the
standard cell library. This is indeed a limiting factor in the cell-based design
methodology, which is tackled in this research work.

20

Technology mapping is the process of expressing a logic network in terms of cells
chosen from a standard cell library. Usually, technology mapping aims at the optimized
usage of standard cells in order to implement a circuit that obeys given timing
constraints, with a minimum area. In its most generic fashion, technology mapping is
free to choose both the logic functionality and the size of the standard cells, out of the
available sizes in the standard cell library (HU, 2003; KARANDIKAR, 2004).
However, in some particular cases, technology mapping just determines the logic
functionality of the cells (BERKELAAR, 1988; CORREIA, 2004; MARQUES, 2007)
and, in some other cases, technology mapping can choose just the size of the cells
(COUDERT, 1997, 2002; HU, 2009).

Figure 2.4 – Current difference in cell sizes

Source: Logics (2013).

The concepts of standard cell, standard cell library, and technology mapping are
used in the explanation of cell-based design methodology. Prior to that, however, it is
necessary to differentiate the concepts of full-custom circuits, ASIC circuits, and cell-
based circuits, since there are in the literature conflicting definitions about this
terminology.

There is a strict relationship between the design methodology and the integrated
circuit thus produced. By definition, a full custom circuit is the one produced via full
custom design methodology (also named custom design methodology). A full custom
circuit is also named custom circuit. A characteristic of full custom design methodology
is to give the designer a wide freedom of action. The designer may conceive each
device without interfering in the design of the other devices. If necessary, the designer
may act directly into the integrated circuit layout, by manually designing, positioning,
and routing the devices. The full custom methodology design is suited for the design of

21

high performance integrated circuits, such as microprocessors and DSP processors.
However, such a high performance is obtained because designers work for a long time
in the project, which raises the costs.

The definition of ASIC circuits is somewhat different from the other categories.
According to Chinnery (2002), strictly speaking, the expression “Application Specific

Integrated Circuit” as well as the acronym ASIC refer to an integrated circuit designed
for a particular application. As examples of ASIC circuits, one can cite: an IC for a
speaking doll; an IC for military gear; an IC to interface the memory and the
microprocessor of a workstation (SMITH, 1997).

There is no consensus in the literature about the utilization and real meaning of the
concepts “ASIC circuit”, “full custom circuit”, and “cell-based circuit”. Although the
notion of ASIC circuit refers just to the purpose with which a given integrated circuit
was conceived – and not to the design methodology used (cell-based design, full custom
design etc.) –, most of the times the acronym ASIC refers to an integrated circuit
designed via cell-based design methodology (CHINNERY, 2002). This confusion is due
to the fact that, according to Sapatnekar (1993-a), cell-based design methodology is the
most widely used methodology in the design of ASIC circuits. However, just like there
are ASIC circuits conceived via cell-based design methodology, there are also ASIC
circuits conceived under full custom methodology. This way, for the sake of coherence,
in this research work only cell-based and full custom are referred to henceforth.

That said, the next topic is the definition of cell based design methodology. In this
methodology, the circuit under design is mapped to a standard cell library, and the
placement and routing are done automatically. Figure 2.5 depicts the cell-based design
flow. By design flow, it is meant a set of procedures that allow the designer to start from
the specification of an integrated circuit and come to the error-free, final
implementation of this circuit (WESTE, 2005).

The design starts with its behavioral description in HDL (Hardware Description
Language). From this description, logic synthesis generates the circuit netlist, as
follows. The RTL (Register Transfer Level) description is interpreted as a Boolean
network not necessarily optimized. This network goes through technology-independent
optimizations, which use properties of logic functions to generate an optimized Boolean
network. Next, technology mapping is done. As result of such mapping, the circuit is
now described as a cell network, which goes through technology-dependent
optimizations, in order to generate the final, optimized cell network. At this moment,
logic synthesis happens: based on the optimized cell network, and on the processes of
floorplanning, placement and routing, all the information needed to completely specify
the circuit layout is obtained (RABAEY, 2003).

The main objective of cell based design is to reduce implementation costs, by
reusing a standard cell library. In this methodology, the cells need to be designed,
verified, and characterized only once for a given technology. This is a great advantage
of this methodology, because the cells may be reused, thus reducing design cost
(RABAEY, 2003). Besides, once the standard cell library is ready to be used, the design
time of a new circuit is considerably reduced (as compared with full-custom integrated
circuits). The design time is shortened even further, because placement and routing is
done automatically in this methodology.

22

Figure 2.5 – Cell based design flow

Source: Schneider (2007).

2.2 Design Constraints
Regardless of the design methodology in use, there are design constraints to be taken

into account. In terms of engineering design, a design constraint refers to a
characteristic that the design must possess. According to Design (2008), design
constraints are declarations that define the design goals in terms of measurable
characteristics of the circuit, such as timing, area, and capacitance. Typically, design
constraints state that a circuit must have a delay less than or equal to a given maximum
delay, a maximum input pin capacitance (MFI — Maximum FanIn), and a given load to
be driven by output pin (Cout).

In this research work, a design constraint is regarded as an objective or characteristic
to be attained by the circuit. For instance, if a given circuit path has a delay constraint
d1, but the circuit is optimized in such a way that this path comes to have a delay
d2 < d1, then the delay constraint is updated to d2. The same applies to the other design
constraints.

Design constraints may also contain directives for the optimization process. These
directions point to the costs to be reduced in this process. Usually, some constraints
(e.g., maximum input pin capacitance and maximum delay) must be respected,
meanwhile some costs (such as area and power consumption) shall be minimized.

When analyzing or designing a circuit, attention can be focused on a small piece of
the global circuit, named subcircuit. Just like the global circuit has global design
constraints, each subcircuit has its own local design constraints. In the same fashion as
there is a relationship between the subcircuit and the global circuit it belongs to, there is

23

also a relationship between the corresponding global and local design constraints, as
depicted in Figure 2.6. The global circuit has m primary inputs (in1, in2, ... , inm) and n
primary outputs (out1, out2, ... , outn). Suppose this circuit is divided into subcircuits, out
of which ten are emphasized in Figure 2.6. Each subcircuit subj has inputs ij_k and
outputs oj_l, where j ∈ {1, 2, 3, ... ,T}, k, l ∈ {1, 2, 3, ..., U}, T is the total number of
subcircuits and U is the maximum number of inputs or outputs of the subcircuits.

Figure 2.6 – Local and global design constraints

Source: Logics (2013).

Figure 2.6 shows that there is a strict relationship between the maximum input pin
capacitance of the global circuit and the maximum input pin capacitances of the
subcircuits in the input of the global circuit. This relationship is expressed in the
following set of equations:

MFI(in1) = MFI(i1_1) (2-1)

 MFI(in2) = MFI(i1_2)

 MFI(in3) = MFI(i1_3) + MFI(i2_1)

 MFI(in4) = MFI(i2_2)

 M

 MFI(inm) = MFI(i3_1)

The maximum capacitance of the input pin in3 of the global circuit is given by the
sum of the maximum capacitances of two inputs of two subcircuits — MFI(i1_3) and
MFI(i2_1) — due to the bifurcation in in3 that drives these two inputs. The set of

24

equations (2-1) shows that an alteration in the maximum input capacitance of the global
circuit implies the same alteration in the maximum input capacitance of the subcircuit in
the input of the global circuit and vice versa. When there is a bifurcation in the input
signal, a modification in the corresponding maximum input capacitance of the global
circuit may be spread over the maximum input capacitances of one or more subcircuits.

With respect to the load to be driven by the output pins, there is always a biunivocal
correspondence between the capacitances of the output pins of the global circuit and the
capacitances of the output pins of the subcircuits in the output of the global circuit. Let
Cx be the capacitance of a generic pin x:

Cout1 = Co8_1 (2-2)

 Cout2 = C o8_2

 M

 Cout10 = Co9_1

 Cout11 = Co9_2

 M

 Cout n = Co10_1

The set of equations (2-2) shows that an alteration in the capacitance to be driven by
the output pin of the global circuit implies the same alteration in the capacitance to be
driven by the output pin of the subcircuit in the output of the global circuit and vice
versa.

In its turn, the global design constraint on maximum delay in every path (connecting
an input to an output of the global circuit) is equivalent to the sum of the local design
constraints on maximum delays of the subcircuits that constitute this global path. An
alteration in the global design constraint on maximum delay implies alterations in one
or more (or even all) local design constraints on maximum delay. In the same fashion,
an alteration in a local design constraint on maximum delay implies the same alteration
in the global design constraint on maximum delay. Mathematically speaking, let Px be
an arbitrary path between an input and an output of the global circuit; let d(Px) be the
global design constraint on maximum delay of such path. The relationship between the
global and local design constraints on maximum delay is given by:

∑
∈

=
xPi

ix dPd)((2-3)

where di denotes the local design constraint on maximum delay of the path within
subcircuit i that belongs to global path Px. A subcircuit may have several inputs and
outputs (as seen in Figure 2.7) and therefore several local design constraints on
maximum delay, but for equation (2-3) only the path within subcircuit i that belongs to
global path Px matters.

Now let us suppose that the global path Px has been optimized, its maximum delay
has changed from d1(Px) to d2(Px), where d2(Px) = d1(Px) – δ and δ > 0. The outcome of
this optimization is a variation δi > 0 on the local design constraint on maximum delay
of the subcircuit i that belongs to global path Px, so that

25

∑
∈

=
xPi

i δδ (2-4)

That is, the global path optimization may involve the optimization of one or more
subcircuits that belong to such path. In the case of a subcircuit with more than one
output, only the path within the subcircuit that belongs to the global path needs to be
optimized.

Figure 2.7 – Subcircuit with several paths (P1, P2, ..., P6) between input and output

Source: Logics (2013).

With respect to power consumption, an alteration in the power consumption of a
subcircuit implies the same alteration in the power consumption of the global circuit. As
for the area, an alteration in the area of a subcircuit is also reflected in the area of the
global circuit, as long as layout aspects of the global circuit do not dim or even nullify
this area variation. When the area or power consumption of the global circuit is
minimized, this minimization is spread over the subcircuits in a similar way to equation
(2-4).

2.2.1 Example of design constraint specification format

The SDC format (Synopsys Design Constraints) is a popular design constraint
specification format. Several companies use this format in their EDA (Electronic
Design Automation) tools as a means of communicating design intentions (USING).

In SDC format, design constraints are divided in two categories: design rule
constraints and optimization constraints (also known as user specified constraints).
Design rule constraints are due to the cell-based design methodology. The synthesis tool
uses a standard cell library, and for every standard cell in the library there is a set of
design rules that must be rigorously obeyed by this synthesis tool. Examples of design
rule constraints are:

- Maximum transition time of the cell input signal, also referred to as slew;
- Maximum capacitance: maximum capacitive load that a cell output is capable of

driving;

26

- Cell degradation: some standard cell libraries supply cell degradation tables, which
indicate the maximum capacitance that a cell is capable of driving as a function of
the transition time of its input signals (SYNOPSYS-b).

Optimization constraints are designer-made specifications that define design
intentions such as timing, area, and power consumption. These constraints act as a guide
for the synthesis tool to do its task. Examples of optimization constraints are:

- Input and output delays, which restrict the delays of the external paths in the
borders of the circuit under design. The input delay specifies the path delay
between an external input signal and the first register in the circuit, meanwhile the
output delay specifies the delay between the last register in the circuit and its
outputs;

- Minimum and maximum path delays, which specify, for every path between an
input and an output, its timing constraint;

- Total circuit area (SYNOPSYS-b).

The synthesis tool tries to respect both design rule constraints and optimization
constraints, but the former constraints have precedence over the latter ones. That is,
some optimization constraints may be sacrificed so that all design rule constraints are
met.

Figure 2.8 shows parts of a SDC file for the design of a ripple carry adder (DESIGN
COMPILER). In this example, the clock signal has a period of 4 ns, pulse ratio 50/50,
uncertainty 0.1 ns, latency 0.2 ns, and transition time 0.1 ns. The commands (attributes)
set_dont_touch_network, set_dont_touch, and set_ideal_network are directives
for the design. The command set_driving_cell specifies the cells that drive the
adder. The command set_load specifies the load that must be driven by the adder. The
commands set_input_delay and set_output_delay specify the time the input signal
takes to arrive at the adder input and the time it takes to pass through the external block
until the end of the logic path. The difference between these two delays is the amount of
time available for the adder internal logic. Finally, the last design constraint sets the
maximum area allowed for the design.

Figure 2.8 – Example of part of SDC file

create_clock -name "clk" -period 4 -waveform {0 2} {clk}

set_clock_uncertainty 0.1 clk

set_clock_latency 0.2 clk

set_clock_transition 0.1 clk

set_dont_touch_network clk

set_dont_touch rst_n

set_ideal_network rst_n

set_driving_cell -library umcl18g212t3_tc_180V_25C -lib_cell

HDDFFPB1 -pin Q [get_ports a]

set_driving_cell -library umcl18g212t3_tc_180V_25C -lib_cell

HDINVD1 -pin Z [get_ports b]

set_load [load_of umcl18g212t3_tc_180V_25C/HDDFFPB1/D]

[get_ports s]

set_input_delay 0.67 [get_ports b] -clock clk

set_output_delay 0.5 [get_ports s] -clock clk

set_max_area 1000

Source: DESIGN COMPILER.

27

2.3 Delay
In this section, the concepts related to signal propagation delay in digital integrated

circuits are seen. Regardless of the logic path implemented as a digital integrated
circuit, there is always a delay between the input and output signals, due to the electrical
charge propagation through resistive and capacitive components of the circuit. In its
current stage of miniaturization, microelectronics industry delivers integrated circuits
with transistors whose channel length is equal to 22 nm (e.g., processors Intel Core i5
and i7). Regarded as semiconductor switching devices, these transistors change state
very quickly, thanks to their tiny dimensions. Therefore, these devices can deliver a
very high maximum operation frequency. However, for an integrated circuit to reach a
good effective operation frequency, signal propagation delay in this circuit must be kept
under control. The concepts related to delay and timing are seen in this section. Three
delay models are also reviewed, namely, Elmore delay model, the gain-based logical
effort delay model and the nonlinear delay model (NLDM). Elmore delay is a classic
model, still used in recent sizing algorithms — e.g., Hu (2007) —, meanwhile the
logical effort delay model was adopted in this research work. The NLDM is mentioned
as an example of an empirical model, for the sake of comparison with the former
models, which are theoretical delay models.

2.3.1 Fundamental concepts

The first concept worth mentioning is transition time, which encompasses the
concepts of fall time (tf) and rise time (tr). In this research work, fall time corresponds to
the time a waveform takes to fall from 90% to 10% of its steady value. In its turn, rise
time corresponds to the time a waveform takes to rise from 10% to 90% of its steady
value.

The second concept is propagation delay (dt) — or delay (SAPATNEKAR, 2004),

for short —, which is defined in this research work as the maximum time interval which
starts when the input signal (whose transition causes a transition in the output) reaches
VDD/2 to the time the output signal reaches the same voltage VDD/2. VDD is the supply
voltage, corresponding to logic level 1.

Since the propagation delay uses to be different for rise and fall transitions of the
output signal of the cell, there are two distinct propagation delays: tdlh — delay time

low to high and tdhl — delay time high to low, respectively.

The arrival time (AT) denotes the time a signal takes to propagate from the primary
inputs until a given node. In its turn, the required time (RT) represents the time the
signal must arrive at a given node, so that the local delay design constraint is satisfied.
The slack S is defined as:

ATRTS −= (2-5)

The critical path of a circuit is the logic path between a primary input and a primary
output that shows the largest delay.

Timing analysis consists in computing the delay in a path of a digital circuit, in order
to verify if the timing constraints imposed by the remaining of the circuit are satisfied
(NOWE, 2003). Timing closure represents the timing analysis of an entire circuit
(RABAEY, 2003). When a circuit path does not comply with the timing constraints, it is
said that a timing violation occurs.

28

Theoretical delay model denotes the closed form equationing that gives the
propagation delay of a logic gate, based on the electrical description of this gate. For
instance, there is the Elmore delay model (ELMORE, 1948) and the logical effort delay
model (SUTHERLAND, 1999). Besides these theoretical (physical) delay models, there
are also empirical delay models, based upon experimental data. Initially, the theoretical
delay models are reviewed.

2.3.2 Elmore delay model

The Elmore delay model is a classic method for estimating the delay in circuits,
when the circuit is excited by a step function. It is a not very precise model, in which
the delay is computed on RC networks, and transistors are modeled as resistances. The
propagation delay (dt) for the response of the circuit to this step function may be

approximated by the first momentum of the response of the circuit to the impulse
function:

 dtttetd)('
0∫
∞

= (2-6)

where: t – time.
)(te – response of the circuit to the step function.

)(' te – derivative of the response of the circuit to the step function (i.e.,
response of the circuit to the impulse function).

This is the formal definition of the Elmore delay. Obtaining the response of a circuit
to the impulse function, as defined, may be an arduous task. Nevertheless, when the
objective is to evaluate the delay in an RC tree, the Elmore delay becomes friendlier.
According to Rubinstein (1983) and Sapatnekar (2004), an RC tree – depicted in

Figure 2.9 – is a connection of resistors structured as a tree, with two restrictions: a)
a capacitance connected to any node in the tree must be grounded; and b) there is no
resistor grounded. An RC tree thus defined shows two fundamental characteristics: there
are no resistive loops and, if a node other than the ground is the input, then there is only
one path from this input node to any other non-ground node in the tree. Besides, if two
RC trees with the same ground are connected by a non-ground node, then they form a
new RC tree.

The Elmore delay in node ni of an RC tree may be obtained as follows. Let Pi the
path between input node n0 and ni, which may be any tree node other than ground and
input node. Analogously, let Pj be the path between n0 and a node nj. Let jiij PPP ∩=

be the part of the path between n0 and ni that is common with the path between n0 and
nj. For convenience of notation, Pij also denotes the set of resistances that belong to the
path Pij. The Elmore delay between the input node n0 and the node ni of the RC tree is
given by:

 ∑∑
∈=

=
ij

i

Pk

k

n

j

jD RCT
0

 (2-7)

29

Figure 2.9 – Example of RC tree

Source: Sapatnekar (2004).

For example, in

Figure 2.9:

4421321221114)()()()(CRRRCRRCRRCRnTD +++++++=
 5421)(CRRR +++ 817161 CRCRCR +++ (2-8)

66151413121118)()(CRRCRCRCRCRCRnTD ++++++=

 887617761)()(CRRRRCRRR +++++++ (2-9)

2.3.3 Logical effort delay model

The logical effort (LE) delay model is a gain-based model, which emphasizes the
linearity between delay and gain (i.e., the ratio between the input and output
capacitances) in a given logic gate. This model has been used in several papers – e.g.,
Boyd (2005), Hu (2003), Joshi (2008), Karandikar (2004; 2005; 2008), Rezvani (2003),
and Zeydel (2006).

The model expresses the delay of a logic gate as a function of four parameters,
which are defined and explained along the deduction of the model:

− τ: characteristic delay of the given technology;
− g: logical effort of the gate;
− h: electrical effort of the gate;
− p: parasitic (intrinsic) delay of the logic gate.

What matters now is that these four parameters allow the designer to obtain the
delay of any logic gate in a quick, straightforward way. Besides, the logical effort
differentiates the parasitic delay p (due to the intrinsic parasitic capacitances of the logic
gate) from the delay due to the load driven by the logic gate (electrical effort h) and
from the delay due to the topological characteristics of the logic gate (logical effort g).

30

This way, it becomes easy to realize the contribution of each of these factors to the total
delay of the logic gate. Next, the logical effort is deducted, which better explains the
four parameters previously mentioned. Examples of obtaining the parameters logical
effort (g) and parasitic delay (p) for basic logic gates are also given.

According to Sutherland (1999), a single-input logic gate is modeled according to
Figure 2.10. Cin represents the capacitance of each input of the logic gate. Cin is given
by the sum of the gate capacitances of the transistors whose gates are connected to such
input. Cpi denotes the intrinsic parasitic capacitance of the logic gate. Cpi is given
basically by the sum of the drain capacitances of the transistors whose drains are
connected to the output of the logic gate. The capacitance to be driven by the logic gate
is named Cout.

Figure 2.10 – Logical effort delay model of a logic gate

Source: Sutherland (1999).

When the pull-up key is closed, the pull-up network offers a resistance Rui to the

current between VDD and the logic gate output. When it is the turn for the pull-down key
to be closed, the pull-down network offers a resistance Rdi to the current between GND
and the logic gate output (The concepts of pull-up and pull-down network are explained
in section 3.2). To keep the model simple, it is assumed that Rui = Rdi = Ri, so that the
logic gate has equal tr and tf.

In order to assure that Rui is indeed equal to Rdi, it suffices to use the convenient γ
parameter for the technology, where γ is the ratio between the channel width of the
PMOS transistor (wp) and the channel width of the NMOS transistor (wn) in a minimum
sized inverter:

 np ww=γ (2-10)

The logical effort model uses the parameters Cin, Cpi, Cout, and Ri, along with the
concepts of template and scale factor of a logic gate seen in section 2.1, to determine the
delay of a generic logic gate, with arbitrary size and topology. In order to obtain the
transistor sizes of a generic logic gate, the size of each transistor in the corresponding
template is multiplied by a convenient scale factor x. The template of the logic gate in
Figure 2.10 has input capacitance Ct, intrinsic parasitic capacitance Cpt and pull-up/pull-

in

pi C out C
di R

VDD

R ui

in C

31

down resistance Rt. The logic gate parameters and the corresponding template
parameters obey the following relationship:

Cin = xCt (2-11)

Cpi = xCpt (2-12)

Ri = x-1
Rt (2-13)

According to Sutherland (1999), the absolute delay (dabs) of the logic gate depicted
in Figure 2.10 is given by:

)(pioutiabs CCkRd += (2-14)

where k is a dimensionless constant, that is specific to the used technology. Let:

invinvCkR=τ (2-15)

invinv

tt

CR

CR
g = (2-16)

in

out

C
C

h = (2-17)

invinv

ptt

CR

CR
p = (2-18)

where:

− Rinv is the pull-up/pull-down resistance of the minimum-sized inverter (i.e.,
inverter template);

− Cinv is the input capacitance of the minimum-sized inverter;
− τ is the characteristic delay of the used technology;
− g is the logical effort of the logic gate;
− h is the electrical effort of the logic gate;
− p is the parasitic delay of the logic gate.

Rewriting equation (2-14) as a function of (2-11), (2-12), (2-13), (2-15), (2-16),
(2-17), and (2-18), we have:

)(pghd abs += τ (2-19)

The logical effort g depends solely on the topology of the logic gate; it does not
depend on the size of this logic gate. The logical effort expresses how much the logic
gate is inferior to the minimum sized inverter of the same technology in delivering
output current. By definition, the logical effort of an inverter is equal to 1. The electrical
effort gives the ratio between the fanout and the fanin of the logic gate. Therefore, the
electrical effort depends on the size of the logic gate and also on the load that it must
drive.

The parasitic delay p is so called because it represents the delay due to the intrinsic
parasitic capacitance Cpt of the logic gate. In the hypothetical situation of the logic gate
driving no load whatsoever (h = 0), the delay is equal to p. The parasitic delay p denotes
how much the parasitic delay is greater in a generic logic gate than the parasitic delay of
the minimum inverter in the given technology. There is no relationship between the size

32

of the logic gate and its parasitic delay, since this delay depends only on the topology of
the logic gate.

From equation (2-19), one can see that the characteristic delay τ may be understood
in two different ways: 1) τ is the delay of an inverter with no intrinsic parasitic
capacitance (p = 0) driving an identical inverter; or 2) τ is the delay of a loadless
inverter whose transistors have gate capacitances equal to the drain capacitances. The
absolute delay dabs may be parameterized as a function of τ:

τdd abs = (2-20)

This parameterization is useful for comparing the dimensionless relative delay d of
circuits developed in different technologies.

According to Sutherland (1999), there are two rules to determine the logical effort g
and the parasitic delay p of a logic gate. The first rule refers to the parameter γ, which is
obtained based upon the inverter; γ gives the relative sizes of PMOS and NMOS
transistors, and it is valid for all logic gates in a given technology. The second rule
refers to series transistors, connected between the output of the logic gate and either VDD
or GND. If there are n series transistors, then each one must be n times bigger than a
single transistor, in the same situation. Figure 2.11 exemplifies this procedure for three
basic logic gates.

Figure 2.11 – Examples of basic logic gates modeled according to logical effort

VDD

a

OUT

1

1,5

a)

b

c)

b

a

3

1

1

OUT

VDD

32

1,5

1,5

VDD

OUT

2

b)

a

DDV

Source: Logics (2013).

For the technology used in Figure 2.11, parameter γ is equal to 1.5. Therefore, the
inverter (Figure 2.11a) has input capacitance Cin_INV equal to 2.5. The logical effort g of
the inverter is equal to 1. Parasitic delay p is also equal to 1, as long as the transistors
have equal gate and drain capacitances.

In the NAND2 logic gate (Figure 2.11b), the PMOS transistors have the same size as
the PMOS transistor in the inverter. However, the two NMOS transistors are in series
and, therefore, they must have twice the size of the NMOS transistor in the inverter.

33

Thus, input capacitance Cin_NAND2 is equal to 3.5. The logical effort g is equal to 1.4
(g = Cin_NAND2/Cin_INV) and the parasitic delay p is equal to 2 (there are two PMOS
transistors and one NMOS transistor connected to the output of the logic gate).

In the NOR2 logic gate (Figure 2.11c), the PMOS transistors are in series and have
twice the size of the PMOS transistor in the inverter. The input capacitance Cin_NOR2 is
equal to 4, the logical effort g is equal to 1.6 and the parasitic delay is equal to 2.

The logical effort delay model is very simple and easy to use. It is especially well
suited for sizing for minimum delay. Nevertheless, its simplicity causes inaccuracy.
This model assumes that the gate and drain capacitances of a transistor are equal, but in
fact the gate capacitance uses to be greater than drain capacitance. This issue may be
solved via model calibration (SUTHERLAND, 1999). Besides, the sizing of series
transistors does not take into account the velocity saturation of carriers. This
phenomenon is more evident in NMOS transistors, since electrons have a greater
mobility than holes. Moreover, series transistors are less prone to showing this
phenomenon than single transistors. Therefore, series transistors, especially NMOS
transistors, must have a smaller size than that predicted by logical effort. An adequate
calibration solves this problem.

Furthermore, the logical effort model computes the delay of a logic gate regardless
of the transition time of the input signal. This behavior does not correspond to the real
world, since a logic gate shows different delays for different transition times of the input
signal. Besides, the logical effort model makes no distinction whatsoever between the
transition time in the output of a logic gate and the propagation delay of this logic gate.
These problems were solved by Lasbouygues (2006). Other papers also extended the
logical effort delay model — e.g., Kabbani (2005) and Keane (2006).

2.3.4 Nonlinear Delay Model – NLDM

The nonlinear delay model (NLDM) is mentioned here as an example of an
empirical delay model, in order to show the differences with respect to theoretical
(Elmore and logical effort) delay models. This research work is based upon the logical
effort delay model, since both mathematical programming techniques and analytical
solution of the minimization problem are well suited for solving a problem modeled this
way.

The NLDM model, introduced by Synopsys and embodied by the Liberty format
(SYNOPSYS-a), consists in a discrete lookup table (LUT) filled by pre-
characterization, which gives the delay and the output transition time of a generic cell as
a function of both the transition time of the input signal and the output load of this cell.
For values of transition time of the input signal and of output load that do not belong in
the table, an interpolation is done. A lookup table is empirically constructed for every
standard cell in the library.

By construction, the NLDM model is exact in the points of transition time of the
input signal and output load in which the table was built. It is an accurate model, but its
complexity turns out the simulation of the logic gates to be very slow. The NLDM
model demands a high computational effort to simulate the standard cells in order to
build the lookup tables, especially during the characterization of these cells
(TRIHY, 2008).

34

There is no consensus in the literature as to which delay model (theoretical or
empirical) is the most appropriate one. Even though there is a survey showing that
lookup-table based models are more accurate than theoretical models (MARTINEZ
apud COUDERT, 1996-b), the interpolation done in the former models may generate
inaccurate delay values.

2.3.5 Delay models comparison

Theoretical and empirical delay models have different characteristics and objectives.
These differences make each category of delay model more suitable for a specific stage
of the industrial design flow, as it is explained next.

Timing analysis is performed twice in an industrial design flow. Initially, an early
timing estimation is done. This early timing estimation must be fast enough so that it
can be used in the initial sizing of complete circuits, even though it is not sufficiently
accurate for timing closure. Theoretical delay models such as Elmore and logical effort
delay models are well suited for such early timing estimation.

In a later stage of the industrial design flow, the back-end timing estimation is
accomplished. It is too slow for the initial sizing of complete circuits, but its accuracy
allows it to be used for timing closure. Empirical delay models are appropriate models
for this back-end timing estimation. In fact, the NLDM model is currently the industry
standard delay model for timing closure.

2.4 Sizing
Circuit sizing is accomplished in order to determine the size of the components of

the circuit, aiming at optimizing a given objective function, and always respecting the
design constraints. Within the scope of this research work, the goal is to minimize the
active area of the circuit, respecting the maximum delay, maximum input pin
capacitance, as well as the load to be driven in each output pin. Depending on the case,
the delay constraint may be reduced, and a new sizing is done so that all design
constraints are fully respected.

Sizing is of foremost importance in the design flow of digital integrated circuits,
since it guarantees that the circuit is conceived within the specifications and required
design constraints. More than that, an adequate sizing is capable of delivering an
optimized version of the circuit, with more demanding design constraints. In this
section, the concept of sizing is introduced. Examples and more details about sizing
algorithms and methods are seen in chapter 3.

Transistor sizing is the first type of sizing. In it, each transistor in a logic gate (or in
a circuit as a whole) can have its size modified individually, without necessarily
provoking modifications in the size of the remaining transistors in the logic gate (or in
the circuit). Transistor sizing uses to be employed for sizing standard cells in a library.
Based on this sizing, a table of transistor sizes is generated. Then, this table is used for
obtaining the template of each standard cell in the library. Transistor sizing was used in
Kung (1999), Roy (2007), and Shah (2006).

Once the transistor sizing is done, the next step is cell sizing. This latter sizing aims
at determining the size of a cell that is used to map a circuit node. This means to find
the scale factor that will be applied to each transistor in the cell template, in order to

35

obtain the cell with the desired size. In cell sizing, the sizes of all transistors in the cell
are multiplied by the found scale factor. For the sake of compatibility with the
terminology adopted in the literature, the expressions ‘cell sizing’ and ‘gate sizing’ are
used indistinctively in this research work.

Sizing may also be classified with respect to its scope, which may be either global or
local. In global sizing, the circuit as a whole is sized. This can be done via either
transistor sizing or cell sizing. Transistor sizing offers considerable freedom to the
designer, since the size of each transistor can be adjusted to the design needs. This is the
sizing used in full custom design. However, technological progress fosters the
miniaturization and integration in the microelectronics industry, leading to an increase
in the number of transistors in a circuit. The complexity of sizing transistors
individually grows the same way. Consequently, cell sizing becomes more and more
relevant. This kind of sizing handles circuits of high complexity, but this is
accomplished at the expense of a lesser sizing granularity: it is impossible to change the
size of a single transistor in one cell without changing the size of all the other transistors
in the same proportion.

In Joshi (2008), it is proposed a global sizing method that is capable of optimizing a
circuit with more than one million logic gates, always finding the global optimum for
the circuit. Nevertheless, this huge scale is achieved at the expense of using an
inaccurate delay model, which might compromise the optimality of the solution. In
order to achieve a high accuracy, local sizing must be used. In local sizing, only a small
part (subcircuit) of the circuit is sized. Since there are fewer components to be sized, a
more accurate delay model may be used. Global and local sizing may be used in a
complementary way. Initially, the entire circuit is globally sized, generating a first
version of the circuit. Then, this version of the circuit is optimized, one subcircuit at a
time, via local sizing.

Local sizing is advantageous when it is known beforehand that the circuit has just a
few specific bottlenecks, in which design constraints are not met. In this case, there is
no need to resize globally the entire circuit, it suffices to attack the problematic parts.
Local sizing is part of the wider concept of local optimization, which is better explained
in the coming chapter.

A third criterion to classify the sizing techniques refers to the way the transistor
dimensions can vary. In continuous scale sizing – or just continuous sizing –, the
transistor size is free to assume any calculated value. In discrete scale sizing – or
discrete sizing, for short –, the transistor sizes cannot assume an arbitrary value, but just
one out of a finite set of allowed values.

Discrete sizing is used in cell-based design. In this case, the designer (or CAD tool)
is aware, e.g., that the standard cell library contains a given cell with drive strength 1X,
2X, and 4X. Therefore, when sizing a circuit, the designer (CAD tool) is aware that, in a
given node, this cell may have drive strength 2X or 4X, but never an intermediate value.
Based on this knowledge, the sizing of this node generates a value close enough either
to 2X or 4X.

Continuous sizing may also be used in cell-based design, but there is a handicap.
The designer (CAD tool) sizes the circuit supposing that the standard cells can assume
any drive strength. Later on, when mapping the circuit to the standard-cell library, the
designer rounds up the calculated value to a drive strength value available in the library.
Let us make a comparison with the example in the previous paragraph. Let us suppose

36

that a second designer, when conceiving the same circuit, finds a value of 2.82X for the
drive strength in the given node. This value must be rounded for either 2X or 4X. No
matter which rounding is done, there is a considerable inaccuracy in the sizing of such
node, because the calculated (ideal) value is geometrically equidistant from the two
values available in the standard cell library.

2.5 Mathematical Programming
By mathematical programming, it is meant the resolution techniques for

optimization problems that can be modeled as a set of equations and inequations.
Mathematical programming has a wide area of application, including sizing of digital
integrated circuits.The origin of mathematical programming dates back to the first half
of the last century, with the pioneer work on linear programming (LP) by George
Dantzig and Leonid Kantorovich (VANDERBEI, 2008). Since then, with the
development of new techniques and depending on the kind of problem to be solved, the
equations and inequations of the mathematical program may have particular
characteristics, such as: linear functions, nonlinear, convex, integer variables etc. In its
most generic form, a mathematical program may be defined as follows (BOYD, 2004):

minimize)(0 xf (2-21)

 subject to ii bxf ≤)(, },,1{ mi K∈

where:),,(1 nxxx K= – vectorial optimization variable;

 ℜ→ℜn
f :0 – objective function;

 ℜ→ℜn

if : , },,1{ mi K∈ – constraint functions;

 mbb ,,1 K – constants that limit the constraint functions.

The optimal vector ∗
x – solution vector to the problem stated in equation (2-21) – is

the vector for which)(0
∗

xf has the minimum value, among all vectors that satisfy the

m constraint functions.

Linear programming was the first kind of mathematical programming to be
developed. Diverse problems can be modeled as linear programs, and there are reliable
solution methods for linear programming (e.g., simplex method and interior-point
methods) (VANDERBEI, 2008). This made out of linear programming a very popular
technique, most of all in Economics and Business Administration. However, in Science,
Technology, and Engineering, nonlinear problems are very common, which lessens the
use of linear programming. For instance, digital circuit sizing is a nonlinear problem,
because the delay of a cell is an affine function of the inverse of the scale factor of the
cell. A standard linear program may be stated as:

minimize nn xcxcxc +++ L2211 (2-22)

 subject to ininii bxaxaxa ≤+++ L2211 , },,1{ mi K∈

 0≥jx , },,1{ nj K∈

37

 where:),,(1 nxxx K= – real vectorial optimization variable;

 ℜ∈jij ca , .

Convex programming (CP) is a generalization of linear programming, which
became popular more recently. Convex programming is capable of filling part of the
gap left behind by linear programming, mainly in Science, Technology, and
Engineering. A convex program is described as in equation (2-21), in which the
objective function f0 and the constraint functions fi are convex functions of the vectorial
optimization variable. A convex function is a continuous function whose value at the
midpoint of every interval in its domain does not exceed the arithmetic mean of its
values at the ends of the interval. More generally, in formal terms:

)()1()())1((yftxtfyttxf −+≤−+ , nyx ℜ∈∀ , and]1,0[∈∀t (2-23)

It can be said that geometric programming is a specific type of convex programming
since, via variable change and rewrite of the objective function and the constraint
functions, a generic geometric program becomes a convex program. Besides, in some
sense geometric programming is a generalization of linear programming, even though
some linear programs cannot be modeled as geometric programs. Geometric
programming is more appropriate than linear programming for modeling problems in
Science, Technology, and Engineering, and the programs can be solved efficiently.

According to Boyd (2004), a geometric program is defined as:

minimize)(0 xf (2-24)

 subject to 1)(≤xf i , },,1{ mi K∈

 1)(=xhi , },,1{ pi K∈

where:),,(1 nxxx K= – vectorial optimization variable;

 ℜ→ℜ+

n

f
*

0 : – posynomial objective functions;

 ℜ→ℜ+

n

if
*: , },,1{ mi K∈ – posynomial constraint functions;

 ℜ→ℜ+

n

ih
*: , },,1{ pi K∈ – monomial constraint functions.

Among all kinds of mathematical programming, nonlinear programming (NLP) is
the most generic type; i.e., it has the greatest capacity of describing a real world
problem as equations and inequations. However, nonlinear programs have the most
difficult resolution. In fact, only some particular types can be solved
(LUENBERGER, 2008). In mathematical terms, a nonlinear program is a program as
specified in (2-21), in which the objective function f0 or one or more constraint
functions fi are nonlinear (BERTSEKAS, 1999).

Integer programming (IP) is a particular case of linear programming as stated in
equation (2-22), in which the scalar components of the vectorial optimization variable
are required to take on integer values only. Unlike the previous categories of
mathematical programming, integer programming is solved by combinatorial
optimization techniques, which usually demand more computational resources than
mathematical programs based on real (continuous) variables (GOLDBARG, 2005).

38

2.6 Analytical Resolution of the Minimization Problem
Mathematical programming is widely used for solving optimization problems,

inclusive digital circuit sizing — e.g., Berkelaar (1990), Chen (1996), Joshi (2008),
Kasamsetty (2000), Mahalingam (2005), Menezes (1995), Nguyen (2003), Pattanaik
(2003), Roy (2007), Sapatnekar (1995), and Singh (2008). This is due to the fact that
mathematical programming has a wide area of application, as well as it can deal with
problems with a large number of variables easily. However, mathematical programming
is not the only possible approach for optimization problems. Mathematical analysis, a
technique precedent to mathematical programming, offers an efficient way for sizing
digital circuits.

By mathematical analysis, it is meant the study — via infinitesimal calculus — of
extreme points (local and global maxima and minima) of real functions of real
variables. These functions shall be piecewise continuous and piecewise differentiable at
least up to the second order. There are many practical situations in which mathematical
programming may be used and mathematical analysis may not. Nevertheless, when it
may be used, mathematical analysis tends to give an answer faster and using less
computational resources than mathematical programming would. There are two
conditions that must be satisfied, so that mathematical programming may be used for
sizing digital circuits:

- The delay model must express analytically the active area of the digital circuit as a
function of the scale factors of every logic gate in the circuit;

- This function must have first and second order derivatives.

As seen in section 2.3.3, the logical effort delay model provides an analytical
expression for the active area of the circuit. In chapter 4, it is shown that this expression
may be manipulated via mathematical analysis, resulting in one univariate equation. The
solution of this univariate equation gives the value of the scale factor of the last logic
gate in the logic path. By replacing the value of the scale factor just obtained in other
equations of the model, it is calculated the value of the penultimate scale factor in the
logic path, and so forth.

2.6.1 Minimization of multivariable functions

Let),,,(21 nxxxf K be a real function of n real variables with continuous second

order partial derivatives. The local minima of f are the points p =),,,(21 nppp K in

which we have:

0
21

=
∂

∂
==

∂

∂
=

∂

∂

nx

f

x

f

x

f
L (2-25)

and nkkk ≤≤∀>∆ 1|,0

where: kjiji
xx

f

ji

k ≤≤∀














∂∂

∂
=∆ ,1|,det

2

That is, the local minima are the critical points p =),,,(21 nppp K in which the

determinants of all principal submatrices of the Hessian matrix H(f) are strictly positive
(ROBINSON).

39

3 BIBLIOGRAPHICAL REVIEW

In this chapter, concepts more intrinsically related to this thesis are reviewed, as well
as some reference works about digital circuit sizing. Initially, the concept of local
optimization is reviewed, along with some examples. Next, the kind of logic network
this research work refers to is seen. After that, modifications and extensions to the
logical effort delay model are analyzed, in order to evaluate the feasibility of using such
modifications and extensions within the scope of this research work. This thesis focuses
on the sizing of logic networks for local optimization. Therefore, the most relevant
methods for sizing digital circuits are also analyzed in this chapter.

3.1 Local Optimization
Local optimization consists in successively replacing specific subcircuits (each

subcircuit with an approximate size of a few two-input logic gates) of a digital circuit by
more efficient subcircuits whose logical functionalities are indistinguishable from the
logical functionalities of the original subcircuits (GOPALAKRISHNAN, 1999). Each
subcircuit is optimized according to the environment imposed by the remainder of the
circuit. This environment is characterized by the local design constraints. Figure 3.1
depicts such idea.

Figure 3.1 – Local optimization

Source: Logics (2013).

40

In Figure 3.1, both the original and the optimized subcircuits implement the same
logic function. However, the optimized subcircuit shows at least one local design
constraint that is optimized with respect to the corresponding local design constraint of
the original subcircuit, at the same time assuring that the remaining local design
constraints do not deteriorate. Only when these conditions are fulfilled, the original
subcircuit is replaced by the optimized one.

Unlike methods that optimize an entire circuit, with hundreds of thousands or even
millions of logic gates, local optimization focuses on a small piece of the circuit and,
consequently, it has more freedom for actuating. Indeed, local optimization can handle
the logic functions implemented by the subcircuit. This is done by changing the logic
networks or transistor networks by other ones with the same logic functionality. Besides
choosing the most appropriate logic network or transistor network, local optimization
can also perform the local sizing of these networks. To do that, local optimization may
rely upon delay models more accurate than those used in global sizing.

In the literature, there can be found works on local optimization that focus
exclusively on the exchange of logic networks and transistor networks
(WERBER, 2007; YOSHIDA, 2006), as well as papers that deal solely with the sizing
of networks previously defined (MAURINE, 2002; PANDA, 1998).

3.2 Transistor Networks
As seen in section 2.1, a transistor network is an array of transistors capable of

implementing a logic function, in which these transistors are not necessarily organized
into logic gates. Specifically within this research work, only MOS transistor networks
are studied.

A specific logic function may be implemented by diverse logic and transistor
networks, as seen in Figure 2.1. Each network has its own tradeoff between active area
and delay. This is particularly true after the network has been sized according to the
design constraints of a particular application context. As examples of transistor network
generating methods, one can mention Kagaris (2007), Poli (2003), Reis (2009), Rosa
Junior (2006), and Schneider (2005).

Transistor networks may be classified in different logic styles (RABAEY, 2003),
also named circuit families (WESTE, 2006). There are numerous circuit families, each
of them with its own characteristics and specific properties. Out of these logic styles,
this research work focuses on static CSP CMOS networks. In static networks, the output
is always connected to either VDD or GND through a low resistance path. CSP CMOS
networks represent the most widely used logic style in the microelectronics industry,
due to its low noise sensitivity, good performance, low power consumption, and no
static power dissipation (RABAEY, 2003).

Figure 3.2 shows that a CSP CMOS logic gate is made up of a pull-up network
(PUN) and a pull-down network (PDN). Each of the n inputs of the logic gates feeds
both networks. Basically, the role of the PUN is to establish a connection – i.e., a low
resistance path – between the output OUT and supply voltage VDD whenever the output
should have a high value (true – ‘1’), according to the values of the n input signals.
Analogously, the function of the PDN is to make a connection between the output OUT
and the ground GND whenever the output should have a low value (false – ‘0’),

41

according to the values of the n input signals. The pull-up and pull-down networks are
conceived in a mutually exclusive way, in order to assure that, in steady state, one and
only one of the networks is conducting, at any given time. In other words, the output is
always connected to either VDD or GND, it is never in a high impedance state or
connected to VDD and GND simultaneously (RABAEY, 2003).

Figure 3.2 – CSP CMOS logic gate seen as a combination of a pull-up and a pull-down network

Source: Rabaey (2003).

The pull-up network is made of PMOS transistors, while the pull-down network is
made of NMOS transistors. This is that way because a PMOS transistor generates
strong ‘1’ and weak ‘0’, meanwhile an NMOS transistor generates strong ‘0’ and weak
‘1’. Hence, each kind of transistor is used in its most efficient way (RABAEY, 2003).

In pull-up and pull-down networks, the transistors are associated in series-parallel.
Depending on the association, different logic functions may be implemented. Two
series NMOS transistors implement the AND function over the transistor gate signals:
only when both transistor gate signals are equal to ‘1’, the composition conducts.
Analogously, two parallel NMOS transistors implement the OR function over the
transistor gate signals: it suffices that one of the transistor gate signals be equal to ‘1’
for the composition to conduct. In the same fashion, two series PMOS transistors
implement the NOR function over the transistor gate signals: only when both transistor
gate signals are equal to ‘0’, the composition conducts. Analogously, two parallel
PMOS transistors implement the NAND function over the transistor gate signals: it
suffices that one of the transistor gate signals be equal to ‘0’ for the composition to
conduct.

In static CMOS networks, the transistors work as keys controlled by the input signal
in their gates. Every input signal is applied to the gate of a PMOS transistor and also to
the gate of an NMOS transistor. Therefore, an n-input logic gate is made of 2n
transistors. This is due to the mutually exclusive way in which the PUN and PDN are

42

conceived. These are dual networks, i.e., for every series connection of PMOS
transistors in the PUN, there is a parallel connection of NMOS transistors in the PDN
and vice versa. Since PMOS (NMOS) transistors only conduct with a ‘0’ (‘1’) signal in
its gate, only one of the two transistors driven by an input signal is allowed to conduct
at a given moment. This fact, along with the duality principle, assures that one and only
one of the networks is conducting at a given time, except for the transition time.

The duality principle may be observed in Figure 3.3. For convenience of notation,
the transistors are identified by the input signals in their gates. In the pull-down plane,
the NMOS transistors i1 and i2 are in parallel. Therefore, in the pull-up plane, the PMOS
transistors i1 and i2 are in series. The NMOS transistor i3, in the pull-down plane, is in
series with the subnetwork composed of the NMOS transistors i1 and i2. Henceforth, in
the pull-up plane, the PMOS transistor i3 is in parallel with the subnetwork composed of
the PMOS transistors i1 and i2.

Since the pull-down network is made of NMOS transistors that conduct with a
signal ‘1’ in their gates, CSP CMOS logic gates implement negated logic. That is, logic
functions INV, NAND, NOR etc. may be implemented by only one CSP CMOS logic
gate. Logic functions AND and OR need an additional inverter to be implemented.

In order to build a CSP CMOS logic gate that implements a logic function f, it
suffices to create a pull-down network that implements function !f, and the pull-up
network is implemented as the dual of the PDN. In other words, the PDN is obtained
from the off-set of logic function f. By off-set it is meant the set of values of the
variables of logic function f for which the function is equal to ‘0’. This is the standard
procedure for the generation of CSP CMOS logic gates.

Figure 3.3 – Series-parallel duality in CSP CMOS logic gate

Source: Logics (2013).

43

3.3 Delay Models
In the previous section, the logic style of the subcircuits to be optimized in this

research work was described. For the optimization to be successful, the delay model
must be at the same time both accurate and capable of generating a system of equations
and inequations that can be solved by mathematical techniques. The logical effort delay
model analyzed in subsection 2.3.3 is suited for such use, but it is somewhat inaccurate.
In this section, delay models that have evolved from the original logical effort delay
model are analyzed. These models are likely to be used in future works based upon this
thesis.

3.3.1 Extension of the logical effort model

According to Lasbouygues (2006), the logical effort delay model makes no
distinction between propagation delay and transition time in order to compute the delay
of a logic gate. The logical effort delay model simply calculates the transition time of
the output signal of the logic gate and takes this as the propagation delay of the logic
gate. Besides, this delay is computed without taking into account: a) if the input signal
is rising or falling; b) transition time of the input signal; and c) coupling capacitance. As
a result, the logical effort produces inaccurate results, which lead to non-optimal
sizings, especially when rigorous timing design constraints are at stake.

In order to solve such problems, Lasbouygues (2006) proposes an extension to the
logical effort delay model that is capable of considering coupling capacitance effects, as
well as the transition time of the input signal, in the computation of the delay of the
logic gate. This is done via modeling the charge and discharge current during the
switching of a basic logic gate.

This extension to the logical effort delay model has two different formulations,
depending on the transition time of the input signal. This fact, as well as the very
equationing of the extension, must be analyzed to verify the compatibility of this
extension to the logical effort delay model with mathematical techniques.

3.3.2 Modified logical effort model

Another approach to compensate for the deficiencies of the logical effort delay
model is found in the paper of Kabbani (2005). This work introduces the Modified
Logical Effort (MLE), a delay model for CSP CMOS logic gates that takes into account
the behavior of series-connected MOSFET structures (SCMS), the input transition time,
internodal charges, mobility degradation, and velocity saturation. Since MLE evaluates
internodal charges, it is capable of dealing with input signals switching in different
series transistors. This is advantageous over the original logical effort delay model,
which considers solely the switching of transistors directly connected to the output of
the logic gate. The properties of the MLE model are reflected into its mathematical
formulation, which might compromise the feasibility of using it as the delay model of a
sizing method.

3.3.3 Logical effort model considering transition time

In Wang (2009), it is proposed another improvement to the original logical effort
delay model. Based in one additional experimental parameter, this work manages to
account for the transition time of the input signal in a more straightforward way than the
approaches seen in the two previous subsections, while keeping the same accuracy

44

level. Nevertheless, the delay model of Wang (2009) – as well as the models of
Lasbouygues (2006) and Kabbani (2005) – is not a posynomial model. This fact
imposes a severe restriction with respect to the mathematical programming techniques
that may be used with it.

3.4 Sizing Algorithms
As seen in the previous chapter, sizing is of foremost importance in the design flow

of digital integrated circuits. There are diverse approaches for sizing, as described in
papers about the subject.

The works of Chu (2001), Kasamsetty (2000), Matson (1986), Otten (2000),
Pattanaik (2003), Sapatnekar (1993-b; 1995), and Tennakoon (2002) are examples of
delay models compatible with geometric programming that are applied in the sizing of
transistors and logic gates. In Berkelaar (1990), a convex delay model is used for sizing
logic gates, and the problem is solved via linear programming. In Tennakoon (2005), a
piecewise convex delay model is presented. It is more accurate than a conventional
convex delay model, but the sizing problem must be solved via lagrangian relaxation,
since the delay model as a whole is no longer convex. In Shah (2005), dual-Vt is added
to an originally convex delay model. Since Vt can assume only two different values, the
problem becomes a mixed integer nonlinear program (MINLP), which is solved
heuristically.

The objective of this section is to analyze six algorithms that solve the sizing
problem via distinct approaches. Based on this analysis, the sizing technique of this
research work is proposed. The first two algorithms rely on convex optimization and are
suitable for continuous sizing of digital integrated circuits. The third algorithm is
popular among designers and may be regarded as the predecessor of the sizing method
proposed in this research work. The algorithms of subsections 3.4.4 e 3.4.5 perform
discrete sizing and are adequate for cell-based design. At last, the fifth method to be
analyzed introduces the concept of flex cells for optimizing digital integrated circuits.

3.4.1 TILOS: An initial approach in geometric programming

Fishburn (1985) presents the software TILOS (TImed LOgic Synthesizer), which is
based on a transistor and interconnection sizing algorithm. TILOS uses convex
programming techniques, and the delay in each logic gate is modeled according to
Elmore (1948). The gate, drain, and source capacitances of a transistor are supposed to
be directly proportional to the size of this transistor, meanwhile the drain–source
resistance is supposed to be inversely proportional to the size of the transistor.
Therefore, the delay in the circuit is expressed as a posynomial function – hence,
convex – of the sizes of the transistors.

The software TILOS works in an interactive way. Initially, all the transistors in the
circuit have minimum size. A static timing analysis (STA) is performed, thus detecting
the path with the greatest timing violation. This path is traversed until the transistor with
the greatest timing sensitivity with respect to its sizing is found. The size of this
transistor is increased, therefore diminishing the delay in the path. This process goes on,
until there are no more timing violations left.

45

TILOS was one of the first proposals based in geometric programming for sizing
digital circuits. TILOS was capable of sizing circuits with 26,000 transistors, which was
a large circuit at that time. However, the optimality of the solution of the convex
program is not granted (BERKELAAR, 1990), due to the greedy way with which the
highest sensitivity transistor is enlarged. This is done without taking into account the
circuit as a whole (CHINNERY, 2005). Besides, the modeling of the delay of a logic
gate with a distributed RC network is not capable of handling input signals with high
transition time (FISHBURN, 1985). These signals have an equationing that is not
necessarily convex. It is worthy to remember that TILOS performs just transistor sizing,
it does not modify the circuit topology.

3.4.2 A modern approach in geometric programming

In Boyd (2005), there is a survey about the use of geometric programming (GP) and
generalized geometric programming (GGP) for sizing semiconductor devices, logic
gates, and interconnections. The proposed method encompasses the transition time of
the input signals, as well as robust project, multimode project, statistical project, and
projects in which the threshold voltage Vt and VDD are variables to be determined. The
method can optimize the area or power for a given timing constraint, as well as it can
optimize the delay for a given area or power constraint.

This method consists in applying GP for the global sizing of digital circuits. It
performs cell sizing, based on a convex delay model (Elmore, logical effort, or another
one) for the logic gates. A scale factor is associated to each logic gate, and the
corresponding delay is expressed as a convex function of this scale factor. The method
performs continuous sizing: the scale factor may, at principle, assume any real value
greater than or equal to 1. When the method of Boyd (2005) is used to size a circuit to
be mapped to a standard-cell library, the rounding problem discussed in section 2.4
arises.

Geometric programming may be used for modeling the delay in a logic path, as long
as the delay model is convex. The delay in a digital circuit is given by the maximum
delay of all paths between the inputs and outputs of the circuit. This maximum delay
cannot be modeled by geometric programming, but rather by generalized geometric
programming (GGP)

This method, based on GP, has the characteristics inherent to this kind of
mathematical programming, namely:

- if there is a local minimum for the sizing objective function, then this minimum is
found by the method and it is guaranteed to be the global minimum;

- if this minimum does not exist, this is quickly detected by the method.

The method of Boyd (2005) can perform the global sizing of large circuits, as long
as the convex delay model is simple.

This method preserves the pre-defined topology of the circuit. The only thing to
change is the drive strength of each logic gate of the circuit. Therefore, the method of
Boyd (2005) is unable to obtain an optimization that demands changes in the topology.

3.4.3 The logical effort sizing method

The logical effort sizing method (SUTHERLAND, 1999) is very popular, due to its
simplicity and didactic aspects. The groundwork for this sizing method is the
homonymous gain-based delay model, as seen in subsection 2.3.3. Based on this delay

46

model, the logical effort sizing method may be derived as follows. It is assumed that the
total delay of a logic path is given by the sum of the delays of every logic gate in such
path. Taking the derivative of this total delay with respect to the electrical effort h, one
can see that minimum delay is obtained when the product gh is the same for each logic
gate in the path. This result is valid regardless of the number of logic gates in the path.
Therefore, the logic path is sized for minimum delay, regardless of area or power
considerations. This is the major handicap of this sizing method, but the proposed sizing
method offers a solution for such problem.

3.4.4 GS: A well-succeeded discrete sizing algorithm

In Coudert (1996-a), it is introduced the GS algorithm for sizing of logic gates. It is
a general purpose optimizer, that can optimize the area or power for given timing
constraints, as well as it can optimize the delay for given area or power constraints. The
GS algorithm performs discrete sizing and it was developed aiming at the cell-based
design methodology.

This algorithm has a combinatorial optimization approach for the sizing of a circuit
mapped to a standard cell library, as described next. Let a generic logic path of this
circuit, and let Celli be the cell in the i-th stage of this path. The GS algorithm
determines locally which is the standard cell with best timing for the node (Celli’) and
replaces Celli for Celli’. Since Celli and Celli’ do not necessarily have the same input
capacitances, propagation delays, and drive strengths, it is necessary to verify the
impact of this change in the global delay of this logic path.

In order to compute this change in the delay, the algorithm takes advantage of the
following fact: the impact of changing a cell decays nearly geometrically, as one moves
forward or backward in the logic path, taking as reference the replaced cell. Changing
from cell Celli to cell Celli’, the cell Celli-1 now sees as output capacitance the (new)
input capacitance of Celli’. Therefore, the propagation delay of Celli-1 may be altered,
and this must be taken into account to verify the feasibility of replacing Celli by Celli’.
The propagation delay of Celli-2 does not change, because Celli-1 remains unchanged.

Now moving forward in the logic path, one can see that, if Celli’ and Celli have
different drive strengths, then the transition time of the input signal in Celli+1 will
change accordingly. As mentioned in subsection 2.3.3, the propagation delay of a cell
depends on the transition time of its input signals. Therefore, the replacement of Celli by
Celli’ may cause a change in the propagation delay of Celli+1. Besides, according to
Lasbouygues (2006), the transition time of the output signal of a logic gate depends on
the transition time of the input signal of this logic gate. Therefore, a modification in the
transition time of the input signal in Celli+1 will carry out a change in the transition time
of its output signal, which is the input signal of Celli+2. This, in turn, affects the
propagation delay of Celli+2. This effect, in principle, propagates until the end of the
logic path under analysis. However, the algorithm of Coudert (1996-a) takes into
account the roughly geometric decay of this impact and it supposes that, from cell
Celli+3 (inclusive) on, this effect is so mitigated that it can be discarded. Hence, only the
cells Celli+1 and Celli+2 are verified with respect to the change of Celli by Celli’.

It is worthy to remember that a cell with high drive strength may overload the
previous cell in the logic path, due to its likely high input capacitance. Therefore, the
standard cell with best timing for the logic path is not necessarily the fastest one.

47

The GS algorithm proceeds this way, replacing the cell in a given node by a
candidate cell to better timing. GS verifies the new global delay in the logic path and so
forth, until coming to the cell that gives the smallest delay for this logic path. The
algorithm is able to size fairly large circuits, despite its iterative approach.

The algorithm performs a nonlinear, non-convex, plurimodal (i.e., several minima),
design constraint bounded optimization. Therefore, GS can handle complex delay
models (or another cost function). In Coudert (1996-a), a nonlinear delay model
(NLDM) was used. The algorithm uses a heuristics based on perturbation propagation to
avoid gradient recomputing and a global perturbation technique to avoid local minima.
Thence, GS algorithm is better than greedy methods for sizing.

Nevertheless, despite all the advantages, the GS algorithm is based on a heuristics,
which may not find the optimal solution. In Hu (2007), it is shown an algorithm with
better results than Coudert (1996-a). The GS algorithm was presented here as an
example of an efficient and popular method for performing the global sizing of a cell-
based-designed digital integrated circuit, via combinatorial optimization and discrete
sizing.

3.4.5 NEW: A recent discrete sizing algorithm

In Hu (2007), it is introduced the algorithm NEW for discrete sizing, used in cell-
based design. This algorithm aims at the same objectives as those of Coudert (1996-a),
but it works in a considerably different manner. NEW performs an approach similar to
dynamic programming (DP) and guided by a continuous solution, as described next.

The algorithm performs a breadth-first traversal on the circuit graph, processing one
node at a time. Instead of verifying every possible cell implementation for a node, it just
verifies a small number of implementations. These verified implementations are close to
the optimized continuous solution. By doing so, the search space is drastically reduced,
but practically without compromising the quality of the solutions found. The algorithm
also concentrates the efforts in the nodes of greater criticality, i.e., nodes with less slack.
Since NEW searches for solutions in a more ordered fashion than Coudert (1996-a)
algorithm, the former is able of obtaining solutions more efficiently.

In order to preserve the diversity and representativeness of the intermediate
solutions, as well as to eliminate the solutions of inferior quality, the NEW algorithm
uses the LSH — Locality Sensitive Hashing (GIONIS, 1999) — technique.

It is important to emphasize that the NEW algorithm does not perform continuous
sizing of a circuit. The NEW algorithm is just guided by a continuous solution,
meanwhile it executes the discrete sizing. This is rather different from algorithms that
simply perform continuous sizing for cell-based design and, when the sizing is
concluded, just round up the final continuous results to the cells of closest size. By
doing so, these algorithms incur in the rounding problem explained in section 2.4. Once
the NEW algorithm executes a discrete sizing since the beginning, there is no such
inconvenience. The bigger the gap between the sizes of the standard cells in the library,
the bigger the rounding error introduced by the continuous sizing and, therefore, the
better the advantage of using the NEW algorithm.

For the same timing design constraint, the NEW algorithm designs a circuit with less
area than that of the circuit conceived by Coudert (1996-a) algorithm, at the expense of
a longer execution time (HU, 2009).

48

3.4.6 The flex-cell approach for local optimizations

In Roy (2005), it is introduced the concept of flex cells for optimizing digital
integrated circuits. This approach arose as a means of improving the performance of
cell-based digital integrated circuits. According to Chinnery (2005), cell-based digital
IC’s show inferior performance when compared with full-custom digital IC’s with the
same functionality. There are several reasons why full-custom circuits overcome cell-
based design IC’s (CHINNERY, 2002), one of which is the limited number of available
standard cells in a predefined library. The designer – or EDA tool – counts on a limited
number of cell options to map the circuit, which narrows his/her/its freedom of action.
Once it is highly unlikely that the cells in a library are optimized for a given digital
circuit, it is fairly probable that the cell-based design circuit has a non-optimal
performance.

Consequently, human intervention in the cell-based design – or any other automatic
design flow – of integrated circuits became commonplace. This is particularly true in
the cell-based design of high performance digital circuits, in which the design
constraints are so demanding that sometimes they cannot be achieved via mere
automatic execution of CAD tools.

Tactical cell insertion is a manner to proceed with this human intervention. These
cells are created manually and are also manually inserted in the manually identified
nodes in the circuit, in substitution to the existing standard cells (ROY, 2005). Usually,
the need for manual intervention only happens on isolated nodes in the circuit, in which
the design constraints are not met. When this is the case, there is no need to redesign the
entire circuit; it suffices to tackle the problems in the specific nodes where they occur.
This is the essence of local optimization seen in section 3.1 and is also the approach of
flex cells.

In a very succinct way, the flex cell approach proposed by Roy (2005) consists in
the automatic generation of tactic cells. Flex cells are generated specifically to the
design at issue and their characteristics are determined according to the local design
constraints of the nodes in which they will be inserted. The flex cell approach happens
in a post-processing stage, when technology mapping is over. The final result is an
optimized circuit, made up of standard cells from a standard cell library and of flex
cells. These flex cells are generated in a way to be layout compatible with the standard
cells.

The starting point of the flex cell approach is the STA analysis of the circuit to be
optimized. As a result of such analysis, the regions of the circuit that are prone to go
through local optimization are detected. Each region is composed of a cluster of one or
more standard cells. The series of operations for detecting and delimiting each cluster to
be optimized is named clustering process (ROY, 2005).

The clusters and their local design constraints are the starting point for the mapping
process, which generates candidate flex cells to replace such clusters. These flex cells
may be generated by a new sizing of predefined standard cells or by the generation of
new transistor networks (with appropriate sizing) with the same logic functionalities of
the clusters to be replaced (ROY, 2005). In Figure 3.4, there is an example of flex cell
generation.

49

The clustering process detects the standard cell cluster depicted in Figure 3.4a, from
which the mapping process generates the flex cell shown in Figure 3.4b. The table in
Figure 3.4 shows the gain in timing, especially for input ‘a’, which corresponds to the
critical path of the original cluster. It is worthy to emphasize that the mapping process
just described is a stage of the flex cell approach, it should not be confused with the
technology mapping, which is part of every cell-based design.

Figure 3.4 – Example of flex cell generation

Source: Roy (2005).

The flex cell approach, as well as the sizing algorithms seen in subsections 3.4.4 and
3.4.5, perform the sizing of cell-based design digital integrated circuits. The method of
Boyd (2005) seen in subsection 3.4.2 may also be used in cell-based design
methodology, as long as the rounding problem seen in section 2.4 is taken into account.
However, there is an important difference between the flex cell approach and the three
other sizing methods just mentioned: meanwhile the latter use just standard cells already
defined in the library to map the circuit, the former approach generates on the fly the
flex cells. These newly created cells need to be characterized, which happens in the very
mapping process. Since each flex cell is used in a specific context – in terms of local
design constraints and input signal combinations –, its characterization is much simpler
than that of a conventional standard cell (ROY, 2005).

The flex cell approach is an example of local optimization in which both the original
topology and sizing of the circuit may be modified.

50

4 ANALYTICAL METHOD FOR MINIMIZING THE
ACTIVE AREA OF DIGITAL SUBCIRCUITS UNDER
DELAY CONSTRAINT

In this chapter, it is developed the specific contribution of this thesis, namely, a
method for sizing subcircuits that shall respect the design constraints. As seen in
section 2.6, mathematical analysis offers a straightforward way to size digital
subcircuits. The proposed sizing method relies on this mathematical technique and on
the logical effort delay model to come to a sort of generalization of the logical effort
sizing method. Meanwhile the logical effort sizing method only delivers circuits with
minimum achievable delay, the proposed method aims at achieving minimum active
area for a specific delay D. Therefore, the expression for the total active area of the
subcircuit is derived with respect to the size of each logic gate. This size can be
represented either as the input capacitance of the logic gate or as the scale factor
(BOYD, 2005) of such gate, since the scale factor is the ratio between the input
capacitance of the logic gate and the input capacitance of the corresponding seed size in
NANGATE 45nm Open Cell Library (NOCL). When the delay constraint D is made
equal to the minimum achievable delay of the circuit, the proposed method delivers
exactly the same results as the logical effort sizing method.

This chapter is organized as follows. Initially, it is explained how the proposed
sizing method is positioned in the design flow collectively developed in the laboratory
in which this thesis was elaborated. Next, the specific contribution of this thesis is
emphasized. After that, the sizing method is derived. To do so, the digital subcircuits to
be sized are classified according to three orthogonal criteria, since a specific set of
equations must be derived for each category. These criteria are as follows: a) fixed or
variable input capacitance; b) number of stages in the subcircuit; c) fanout free or
branched subcircuits. Initially, all subcircuits are supposed to be fanout free. These
subcircuits are then analyzed for fixed input capacitance (section 4.3), considering two-
stage and three-stage subcircuits (sections 4.3.1 and 4.3.2, respectively). Then, in
section 4.4, the same approach is applied for subcircuits with variable input capacitance.
Next, in section 4.5, the implications of subcircuits with branching are taken into
account. Finally, section 4.6 brings a discussion about how the proposed analytical
method may be used in the evaluation of power delay product.

51

4.1 Sizing Method Contextualization
As mentioned in the introduction, the proposed sizing method is tailored for local

optimization. The need for such sizing method arose in the context of the research being
conducted in the laboratory, as it will be explained in this section. Figure 4.1 shows a
digital circuit to be optimized. This circuit has already been previously sized, and each
one of the thirteen boxes represents a standard cell, with the corresponding scale factor
in it. Despite the previous sizing, there is room for further improvement in this circuit,
which may be achieved via local optimization.

Figure 4.1 – Laboratory approach for local optimization

Source: Logics (2013).

Initially, a subcircuit is selected, e.g., the three shaded standard cells in Figure 4.1.
In the laboratory approach, the selection algorithm is the KL–Cuts algorithm described
by Martinello (2010), which finds a subcircuit with K = 4 inputs and L = 2 outputs. This
algorithm was chosen since it preserves the logic relationship among circuit inputs,
which is important for using highly Boolean methods of optimization such as functional
composition (REIS, 2009; MARTINS, 2012) or read-polarity-once Boolean functions
(CALLEGARO, 2013). These Boolean optimization methods can rewrite the logic
functions in several different ways, which eventually leads to a minimal area solution,
as depicted in Figure 4.2. It is worthy to mention that the subcircuit under remapping in
Figure 4.2 is distinct from the shaded subcircuit in Figure 4.1, it is a different example.

The remapped subcircuit in Figure 4.2 has the same logical functionalities as the
original subcircuit, but its outputs must be buffered before being reinserted again in the
original circuit. This is exactly the point in which the proposed sizing method fits into
the laboratory approach for local optimization: the contribution of this thesis is an
analytical solution for the sizing algorithm needed at the outputs.

52

Figure 4.2 – Example of local remapping

Source: Logics (2013).

4.2 Contribution of this Thesis

The original contribution of this thesis is the development of a subcircuit sizing
method appropriate for obtaining minimum active area solutions, taking into

53

consideration the maximum input capacitance, the output load to be driven, and the
imposed delay constraint.

The method is based on the logical effort formulation, but it was derived for
obtaining minimum area (under design constraints) rather than minimum delay. The
original logical effort sizing method solves the delay equation analytically and
concludes that, in order to achieve minimum delay, all the stages in the logic path must
bear the same effort. However, this is costly in terms of power and area.

The proposed method, instead, computes the subcircuit area derivative, and thus
finds an analytical solution for minimum area. For modern sizing, minimizing area
under delay constraints is much more important than minimizing delay.

4.3 Fixed Input Capacitance
The proposed method was developed so that the input capacitance of the subcircuit

under design may have either a fixed or a variable value. Each case has its own set of
equations, and they are shown in different sections. These two approaches can be
combined, allowing us to size a subcircuit with a variable, yet limited, input
capacitance. In terms of subcircuit input capacitance, this is the ultimate goal of a
subcircuit sizing method.

4.3.1 Two-stage subcircuits

In this subsection, the proposed method is deducted for a 2-stage fanout free
subcircuit, with fixed topology, fixed extra parasitic capacitances, and fixed subcircuit
input capacitance, as depicted in Figure 4.3:

Figure 4.3 – Model of a 2-stage subcircuit with fixed input capacitance

Source: Logics (2013).

In the subcircuit shown, parameters gi, hi, and pi (i = 1, 2) come from the logical
effort delay model. ni is the ratio between the total input capacitance of gate i and the
capacitance of the input pin of gate i that belongs to the logic path under analysis. For a
symmetric gate (SUTHERLAND, 1999), the numerical value of ni is equal to the
number of input pins of gate i. Cini is the capacitance of the input pin of gate i that
belongs to the logic path. Since the subcircuit has a fixed input capacitance, it is labeled

fixed

inC 1 . C1 is a fixed extra parasitic capacitance. Cout is the output capacitance, which

might encompass another fixed extra parasitic capacitance in the output of gate 2.

54

This is a straightforward case, since there are only two stages, and the input
capacitance of the first one has already been defined. Therefore, there is just one
variable left, namely, Cin2, which can be found algebraically. In this particular case,
there is no need for mathematical analysis. According to the logical effort delay model,
the delay equation may be expressed as:

P
C

C
g

C

CC
gD

in

out

fixed

in

in ++






 +
=

2
2

1

12
1 (4.1)

where 21 ppP += . Solving this equation for the variable Cin2, we have:

() 2112212121 in

fixed

in

fixed

inoutininin

fixed

in CPCCCgCCCgCDC +++=

() 021122111
2

21 =++−+ in

fixed

in

fixed

inoutin

fixed

inin CPCCCgCDCCgCg

() 0)(122111
2

21 =+−++ fixed

inoutin

fixed

inin CCgCCDPCgCg

()()()
1

121

2

111111
2 2

4)(
2

1

g

CCggCDPCgCPDCg
C

fixed

inout

fixed

in

fixed

in
in

−−+±−+−
=∴ (4.2)

Equation (4.2) can give either positive or negative results for Cin2. Negative values
are physically meaningless and, in the case of two distinct positive values, one shall
choose the smallest one, since the objective is to attain the minimum active area.

4.3.2 Three-stage subcircuits

In this subsection, the proposed method is deducted for a 3-stage fanout free
subcircuit, with fixed topology, fixed extra parasitic capacitances, and fixed subcircuit
input capacitance, as shown in Figure 4.4:

Figure 4.4 – Model of a 3-stage subcircuit with fixed input capacitance

Source: Logics (2013).

Just like the previous subsection, in the subcircuit shown, parameters gi, hi, and pi
(i = 1, 2, 3) come from the logical effort delay model. ni is the ratio between the total
input capacitance of gate i and the capacitance of the input pin of gate i that belongs to
the logic path under analysis. For a symmetric gate, the numerical value of ni is equal to
the number of input pins of gate i. Cini is the capacitance of the input pin of gate i that
belongs to the logic path. C1 and C2 are fixed extra parasitic capacitances. Cout is the

55

output capacitance, which might encompass another fixed extra parasitic capacitance in
the output of gate 3.

Following the logical effort delay model, the total relative delay (D) for the
subcircuit depicted in Figure 4.4 is specified by a delay constraint and is given by:

)(321332211 ppphghghgD +++++= (4.3)

Since 1121 /)(inin CCCh += , 2232 /)(inin CCCh += , 33 / inout CCh = , Pppp =++ 321 , and
fixed

inin CC 11 = , equation (4.3) may be rewritten as

P
C

C
g

C

CC
g

C

CC
gD

in

out

in

in

fixed

in

in ++
+

+
+

=
3

3
2

23
2

1

12
1

)()(
 (4.4)

Eliminating the denominators, we have:

0)(

)(

23321

2313131311
2

231

=++

−+++

CCCgC

CDCCPCCCgCCCgCCg

inin

fixed

in

inin

fixed

inin

fixed

inout

fixed

inininin (4.5)

Equation (4.5) shows the relationship between the variables Cin2 and Cin3 so that all
design constraints for the subcircuit are fulfilled. Since the input capacitance of the
subcircuit is fixed (fixed

inC 1), Cin2 and Cin3 are the only variables in this problem.

Moreover, equation (4.5) may be regarded as a univariate polynomial equation of the
second degree on Cin2. Therefore, Cin2 may be expressed as a function of Cin3, since all
the other terms are constant parameters.

31

31
2

2 2

4

in

in

in
Cg

Cg
C

γββ −±−
= (4.6)

where:

3131311)(in

fixed

inout

fixed

inin CPDCCgCCCg −−+=β (4.7)

)(23321 CCCgC inin

fixed

in +=γ (4.8)

The new variables β and γ were introduced just for the sake of better visualization of
the equations. According to Boyd (2005), Kasamsetty (2000), Tennakoon (2008),
Joshi (2008), Lefebvre (1997), and Otten (2000), the active area of the subcircuit in
Figure 4.4 may be considered as

33221132),(inin

fixed

ininin CnCnCnCCA ++= . (4.9)

I.e., the active area of a logic gate is monotonically related to its total input
capacitance. Replacing the expression obtained in equation (4.6) for Cin2 into (4.9),
A(Cin2, Cin3) becomes a univariate equation on Cin3:

33
31

31
2

2113 2

)4(
)(in

in

infixed

inin Cn
Cg

Cg
nCnCA +

−±−
+=

γββ
 (4.10)

Now, we find the derivatives of β, γ, and ν (new variable). This was done so in order
to find the final expression for the derivative of A(Cin3). Otherwise, the equations would
be too long to fit in the page.

)(
)(

' 111
3

3 PDCCg
dC

Cd fixed

in

in

in −−==
β

β (4.11)

56

221321
3

3 2
)(

' CgCCgC
dC

Cd fixed

inin

fixed

in

in

in +==
γ

γ (4.12)

γβν 31
2 4 inCg−= (4.13)

())(4)(23
2

3121

2

3131311 CCCCggCPDCCgCCCg inin

fixed

inin

fixed

inout

fixed

inin +−−−+=ν (4.14)

)'(4'2
)(

' 311
3

3 γγββ
ν

ν in

in

in Cgg
dC

Cd
+−== (4.15)

)23(4

)(2

)(2

)(4

22'

32211
2

3211

3
22

1

3

2

1

3111

13113
2

1
2
1

in

fixed

inin

fixed

in

in

fixed

in

out

fixed

in

in

fixed

in

out

fixed

inin

CCggCCggC

CPDC

PDCgC

CPDCgC

CCggCCCg

+−

−+

−−

−−

+=ν

 (4.16)

Taking the derivative of A(Cin3) in equation (4.10) and introducing the expressions
in (4.11)-(4.16), we have:

3
2

1

2
31

2

2
1

31

2

3

3

22

'
'

2

)(
n

Cg

n

Cg

n

dC

CdA

ininin

in +




+










±−= νβ

ν

ν
β m

 (4.17)

At this point, it is straightforward to obtain the minimum active area; it suffices to
find the zeroes of equation (4.17):

0)(2)(
2

'
' 2

3131
2

1

31
2

12 =+











+










±− inin CgngCgn νβ

ν

ν
β m (4.18)

Equation (4.18) can be solved numerically, giving 3inC for minimum active area.

Solving equation (4.6) with 3inC just obtained, we have the corresponding value of 2inC .

Eventually, more than one pair of values may be attained, but only one of them
corresponds to minimum active area. Besides, due to the mathematical formulation of
the problem, either negative or nonreal values for 2inC and 3inC may be obtained from

equations (4.6) and (4.18). However, discarding these inconsistent results, there is
always one and only one pair of values for minimum active area.

4.4 Variable Input Capacitance
The proposed sizing method is capable of coping with both fixed input capacitance

and variable input capacitance. In the next two subsections, it is derived the set of
equations for variable input capacitance.

4.4.1 Two-stage subcircuits

In this subsection, the proposed method is deducted for a 2-stage fanout free
subcircuit, with fixed topology, fixed extra parasitic capacitances, and variable
subcircuit input capacitance, as depicted in Figure 4.5:

57

Figure 4.5 – Model of a 2-stage subcircuit with variable input capacitance

Source: Logics (2013).

Just like subsection 4.3.1, in the current subcircuit, parameters gi, hi, and pi (i = 1, 2)
come from the logical effort delay model. ni is the ratio between the total input
capacitance of gate i and the capacitance of the input pin of gate i that belongs to the
logic path under analysis. For a symmetric gate, the numerical value of ni is equal to the
number of input pins of gate i. Cini is the capacitance of the input pin of gate i that
belongs to the logic path. C1 is a fixed extra parasitic capacitance. Cout is the output
capacitance, which might include another fixed extra parasitic capacitance in the output
of gate 2.

Unlike section 4.3.1, now Cin1 has a variable value. Therefore, there are two
variables in this problem, namely, Cin1 and Cin2. According to the logical effort delay
model, the delay equation may be expressed as:

)(212211 pphghgD +++= (4.19)

Since 1121 /)(inin CCCh += , 22 / inout CCh = , and Ppp =+ 21 , equation (4.19) may be

rewritten as

P
C

C
g

C

CC
gD

in

out

in

in ++
+

=
2

2
1

12
1

)(
 (4.20)

Rearranging the terms in the last equation, one can express Cin1 as a function of Cin2:

2
2

121
1

)(

in

out

in
in

C

C
gPD

CCg
C

−−

+
= (4.21)

According to Boyd (2005), Kasamsetty (2000), Tennakoon (2008), Joshi (2008),
Lefebvre (1997), and Otten (2000), the active area of the subcircuit in Figure 4.5 may
be regarded as

221121),(inininin CnCnCCA += . (4.22)

Replacing the expression obtained in equation (4.21) for Cin1 into equation (4.22),
A(Cin1, Cin2) becomes a univariate equation on Cin2:

22

2
2

1211
2

)(
)(in

in

out

in
in Cn

C
C

gPD

CCgn
CA +

−−

+
= (4.23)

or

58

22
22

21211
2)(

)(
)(in

outin

inin
in Cn

CgCPD

CCCgn
CA +

−−

+
= (4.24)

as long as
PD

Cg
C out

in
−

≠ 2
2 . From the definition of the logical effort delay model, it can be

seen that PD > . Now that we have)(2inCA , the values of 2inC that correspond to the

minimum active area are given by the solutions of the equation 0
)(

2

2 =
in

in

dC

CdA
. For the

sake of an easier algebraic manipulation, let the functions:

212112)()(ininin CCCgnCu += (4.25)

outinin CgCPDCv 222)()(−−= (4.26)

Therefore,)(2inCA may be written as:

22
2

2
2)(

)(
)(in

in

in
in Cn

Cv

Cu
CA += (4.27)

Hence,

2
2

2
2222

2

2
2)(

)()()()()(
)(n

Cv

CvCuCvCu

dC

CdA
CA

in

inininin

in

in
in +

′−′
==′ (4.28)

Note that:

2111
2

211212112)()(ininininin CCgnCgnCCCgnCu +=+=

111211
2

2
2 2

)(
)(CgnCgn

dC

Cdu
Cu in

in

in
in +==′⇒ (4.29)

and

PD
dC

Cdv
CvCgCPDCv

in

in
inoutinin −==′⇒−−=

2

2
2222

)(
)()()((4.30)

Therefore,

=−+−−−+=′−′)()()))((2(2121122111211 PDCCCgnCgCPDCgnCgnvuvu ininoutinin

))((

)(2)(2

21
2

211

121121112211
2

211

inin

outininoutin

CCCPDgn

CCggnCPDCgnCCggnCPDgn

+−−

−−+−−=

outinoutin CCggnCCggnCPDgn 12112211
2

211 2)(−−−= (4.31)

Replacing equation (4.31) into (4.28) and setting it to zero, we have:

0
))((

2)()(
22

22

12112211
2

211

2

2 =+
−−

−−−
= n

CgCPD

CCggnCCggnCPDgn

dC

CdA

outin

outinoutin

in

in

Eliminating the denominator, we have:

0))(2)((

2)(
22

222
2

2
2

2

12112211
2

211

=+−−−+

−−−

outinoutin

outinoutin

CgCPDCgCPDn

CCggnCCggnCPDgn

59

After algebraic manipulation, we have:

0

))((2))()((
22

221211

222211
2

2
2

211

=+−

−+−−+−

outout

inoutoutin

CgnCCggn

CPDCgnCggnCPDnPDgn
 (4.32)

Written this way, equation (4.32) is a univariate polynomial equation of the second
degree on Cin2, whose solutions are given by:

η

ηλκκ

2

42

2

−±
=inC (4.33)

where:

2
211)()(PDnPDgn −+−=η (4.34)

))((2 22211 PDCgnCggn outout −+=κ (4.35)

outout CCggnCgn 1211
22

22 −=λ (4.36)

The new variables η, κ, and λ were introduced for the sake of better visualization of
equation (4.33). The pair of equations (4.21) and (4.33) defines the sizing of the
subcircuit. Since these equations have been algebraically solved, the numerical values
are obtained by straightforward calculation. Eventually, two pairs of values for 1inC and

2inC may be obtained, but only one of them corresponds to the minimum active area.

4.4.2 Three-stage subcircuits

In this subsection, the proposed method is deducted for a 3-stage fanout free
subcircuit, with fixed topology, fixed extra parasitic capacitances, and variable
subcircuit input capacitance, as depicted in Figure 4.6:

Figure 4.6 – Model of a 3-stage subcircuit with variable input capacitance

Source: Logics (2013).

Just like subsection 4.3.2, in the subcircuit shown, parameters gi, hi, and pi
(i = 1, 2, 3) come from the logical effort delay model. ni is the ratio between the total
input capacitance of gate i and the capacitance of the input pin of gate i that belongs to
the logic path under analysis. For a symmetric gate, the numerical value of ni is equal to
the number of input pins of gate i. Cini is the capacitance of the input pin of gate i that
belongs to the logic path. C1 and C2 are fixed extra parasitic capacitances. Cout is the

60

output capacitance, which might encompass another fixed extra parasitic capacitance in
the output of gate 3.

Unlike subsection 4.3.2, now Cin1 has a variable value. Therefore, there are three
variables in this problem, namely, Cin1, Cin2, and Cin3. According to the logical effort
delay model, the delay equation for each stage may be expressed as:

3,2,1, =+= iphgd iiii (4.37)

)(321332211

3

1

ppphghghgdD
i

i +++++==∴ ∑
=

 (4.38)

Since 1121 /)(inin CCCh += , 2232 /)(inin CCCh += , 33 / inout CCh = , and Pppp =++ 321 ,

equation (4.38) may be rewritten as

P
C

Cg
CC

C

g
CC

C

g
D

in

out
in

in

in

in

+++++=
3

3
23

2

2
12

1

1)()((4.39)

Isolating 1inC in the last equation:

3
323

2

2

121
1

)(

)(

in

out
in

in

in

in

C

C
gCC

C

g
PD

CCg
C

−+−−

+
= (4.40)

As stated before, according to Boyd (2005), Kasamsetty (2000), Tennakoon (2008),
Joshi (2008), Lefebvre (1997), and Otten (2000), the active area of the subcircuit in
Figure 4.6 is given by:

332211321),,(inininininin CnCnCnCCCA ++= . (4.41)

Replacing the expression obtained in equation (4.40) for Cin1 into equation (4.41),
A(Cin1, Cin2, Cin3) becomes a bivariate equation:

3322

3
323

2

2

1211
32

)(

)(
),(inin

in

out
in

in

in
inin CnCn

C

C
gCC

C

g
PD

CCgn
CCA ++

−+−−

+
=

Therefore, after some algebraic manipulation:

3322
23233232

321211
32)()(

)(
),(inin

inoutinininin

ininin
inin CnCn

CCgCCCgCCPD

CCCCgn
CCA ++

−+−−

+
=

And hence:

3322

23322
2

3232

321113
2

211
32)(
),(

inin

inoutinininin

inininin
inin

CnCn

CCgCCgCgCCPD

CCCgnCCgn
CCA

++
−−−−

+
=

 (4.42)

According to subsection 2.6.1, the minimum active area is attained when the partial
derivatives of),(32 inin CCA are zero. That is,

61

0
),(

2

32 =
∂

∂

in

inin

C

CCA
 (4.43)

and

0
),(

3

32 =
∂

∂

in

inin

C

CCA
. (4.44)

For the sake of an easier algebraic manipulation, let the functions:

321113
2

2112)(ininininin CCCgnCCgnCu += (4.45)

23322
2

32322)()(inoutininininin CCgCCgCgCCPDCv −−−−= (4.46)

It is easy to notice that)(2inCu corresponds to the numerator of the ratio in equation

(4.42), meanwhile)(2inCv corresponds to the denominator in this fraction. In a truly

rigorous notation, the functions)(2inCu and)(2inCv should be written as),(32 inin CCu

and),(32 inin CCv respectively, since they are functions of both 2inC and 3inC . However,

when dealing with partial derivatives with respect to one specific variable, the other
variables may be considered as constant values, which justifies the current notation.
Later on, these same functions are regarded as)(3inCu and)(3inCv . Replacing equations

(4.45) and (4.46) into (4.42), the partial derivative of),(32 inin CCA with respect to 2inC

may be expressed as:

3322
2

2
32)(

)(
),(inin

in

in
inin CnCn

Cv

Cu
CCA ++= (4.47)

Therefore,

2
2

2
2222

2

32

)(

)()()()(),(
n

Cv

CvCuCvCu

C

CCA

in

inininin

in

inin +
′−′

=
∂

∂
 (4.48)

Note that

31113211
2

2
2 2

)(
)(ininin

in

in
in CCgnCCgn

C

Cu
Cu +=

∂

∂
=′ (4.49)

and

outin

in

in
in CgCPD

C

Cv
Cv 33

2

2
2)(

)(
)(−−=

∂

∂
=′ (4.50)

Therefore,

])[(

)2()()(

23322
2

3232

3111321122

inoutinininin

ininininin

CCgCCgCgCCPD

CCgnCCgnCvCu

−−−−⋅

⋅+=′

Rearranging the terms:

)}(]){[(

)2()()(

2332233

3111321122

CCCgCCgCPD

CCgnCCgnCvCu

inininoutin

ininininin

+−−−⋅

⋅+=′

Expanding the terms:

62

)(])[(

)(2])[(2)()(

23
2

312112333111

223
2

3211
2

23331122

CCCCggnCCgCPDCCgn

CCCCggnCCgCPDCgnCvCu

inininoutinin

ininininoutinininin

+−−−+

+−−−=′

Expressing as a polynomial equation of the second degree on Cin2:

)(

)}(2])[({

])[(2)()(

23
2

31211

223
2

3211333111

2
23331122

CCCCggn

CCCCggnCgCPDCCgn

CCgCPDCgnCvCu

inin

inininoutinin

inoutinininin

+−

+−−−+

−−=′

 (4.51)

In the same fashion,

]))[(()()(33321113
2

21122 outininininininin CgCPDCCCgnCCgnCvCu −−+=′

Expanding the terms:

2313112
2

3111

2
23311

2
2

2
31122

)(

)()()(

ininoutinin

ininoutinininin

CCCCggnCCPDCgn

CCCggnCCPDgnCvCu

−−+

−−=′

Expressing as a polynomial equation of the second degree on Cin2:

231311
2

3111

2
23311

2
31122

])([

])([)()(

ininoutin

ininoutininin

CCCCggnCPDCgn

CCCggnCPDgnCvCu

−−+

−−=′
 (4.52)

Merging equations (4.51) and (4.52), we have:

)()(2

])([)()()()(

23
2

31211223
2

3211

2
23311

2
3112222

CCCCggnCCCCggn

CCCggnCPDgnCvCuCvCu

ininininin

ininoutininininin

+−+−

−−=′−′
 (4.53)

Putting the result just obtained into equation (4.48), we have:

2
2332233

2
23322332

2
2332233

23
2

31211

2
2332233

223
2

3211

2
2332233

2
23311

2
311

2

32

)}(]){[(

)}(]){[(
)}(]){[(

)(
)}(]){[(

)(2
)}(]){[(

])([),(

CCCgCCgCPD

CCCgCCgCPDn

CCCgCCgCPD

CCCCggn

CCCgCCgCPD

CCCCggn

CCCgCCgCPD

CCCggnCPDgn

C

CCA

inininoutin

inininoutin

inininoutin

inin

inininoutin

ininin

inininoutin

ininoutin

in

inin

+−−−

+−−−
+

+−−−

+
−

+−−−

+
−

+−−−

−−
=

∂

∂

 (4.54)

In order to find the values of 2inC and 3inC that satisfy equation (4.43), two

conditions must be satisfied: a) the denominator in the right-hand side of equation
(4.54) must be different from zero; and b) the corresponding numerator must be equal to
zero. The first condition can be checked. The second condition leads to the following
equation, after conveniently reordering the constants and variables:

63

0)()(

]}))[((2)(2{

}])[()({

23
2

31211
2

23
2

3
2
22

2332332223
2

3211

2
2

2
3323311

2
311

=+−++

−−+++−

−−+−−

CCCCggnCCCgn

CCgCPDCCCgnCCCggn

CCgCPDnCCggnCPDgn

inininin

inoutininininin

inoutininoutin

(4.55)

Expressed in such a suitable way, equation (4.55) may be regarded as if it were a
univariate polynomial equation of the second degree on 2inC . Doing so, the variable

2inC can be isolated from 3inC and its values are given by:

a

acbb
CcbCaC ininin 2

4
0

2

22
2

2

−±
=⇒=+− (4.56)

where:
2

3323311
2

311])[()(outininoutin CgCPDnCCggnCPDgna −−+−−= (4.57)

]))[((2)(2 332332223
2

3211 outininininin CgCPDCCCgnCCCggnb −−+++= (4.58)

)()(23
2

31211
2

23
2

3
2
22 CCCCggnCCCgnc inininin +−+= (4.59)

The three new variables a, b, and c have been introduced for the sake of an easier
algebraic manipulation. At this point, out of the three variables in the problem, 1inC has

already been expressed as a function of 2inC and 3inC in equation (4.40), and 2inC has

been expressed as a function of 3inC in equation (4.56). Therefore, 3inC is the only

variable that remains to be determined. This can be done as follows. Equation (4.45)
may now be expressed as:

3122113)()(inininin CCCCgnCu += (4.60)

Idem for equation (4.46):

233222
2

323])[()(inoutinininin CCgCCgCPDCgCv −−−+−= (4.61)

Replacing equations (4.60) and (4.61) into (4.42), the partial derivative of
),(32 inin CCA with respect to 3inC may be expressed as:

3322
3

3
32)(

)(
),(inin

in

in
inin CnCn

Cv

Cu
CCA ++= (4.62)

Therefore,

3
3

2
3333

3

32

)(

)()()()(),(
n

Cv

CvCuCvCu

C

CCA

in

inininin

in

inin +
′−′

=
∂

∂
 (4.63)

Since

)(
)(

)(12211
3

3
3 CCCgn

C

Cu
Cu inin

in

in
in +=

∂

∂
=′ (4.64)

64

and

22232
3

3
3)(2

)(
)(CgCPDCg

C

Cv
Cv inin

in

in
in −−+−=

∂

∂
=′ (4.65)

we have:

2
212311

322212211

2
312221133

)(

]))[((

)()()(

inoutin

inininin

ininininin

CCCCggn

CCgCPDCCCgn

CCCCggnCvCu

+−

−−++

+−=′

 (4.66)

and

312222211

2
312221133

)(])[(

)(2)()(

inininin

ininininin

CCCCCgCPDgn

CCCCggnCvCu

+−−+

+−=′
 (4.67)

Therefore, merging equations (4.66) and (4.67):

2
212311

2
31222113333

)(

)()()()()(

inoutin

ininininininin

CCCCggn

CCCCggnCvCuCvCu

+−

+=′−′
 (4.68)

Consequently, inserting equation (4.68) into (4.63), we have:

2
233222

2
32

2
233222

2
323

2
233222

2
32

2
212311

2
3122211

3

32

]])[([

]])[([
]])[([

)()(),(

inoutininin

inoutininin

inoutininin

inoutinininin

in

inin

CCgCCgCPDCg

CCgCCgCPDCgn

CCgCCgCPDCg

CCCCggnCCCCggn

C

CCA

−−−+−

−−−+−
+

−−−+−

+−+
=

∂

∂

 (4.69)

In order to find the values of 2inC and 3inC that satisfy equation (4.44), two

conditions shall be obeyed: a) the denominator in the right-hand side of equation (4.69)
must be non-null; and b) the corresponding numerator must be null. The first condition
can be verified. The second condition takes us to the coming equation, after
conveniently reordering the constants and variables:

0)(

])([2

)](2

)(2)([

])([2

2
212311

2
2

22
33

3
2

2322323

2
31222112323

2
2

2
232223

2
2

2
3

3
3222

2
23

4
3

2
23

=+−+

−−+

+++

+−−−+

−−+

inoutininout

ininoutinout

ininininout

inin

ininin

CCCCggnCCgn

CCPDCgCCCggn

CCCCggnCCggn

CgnCPDCgnCPDn

CCPDgCgnCgn

 (4.70)

The triple of equations (4.40), (4.56), and (4.70) defines the sizing of the subcircuit.
By replacing the expression for 2inC – equation (4.56) – into equation (4.70), we end up

with a univariate equation for 3inC . This equation must be solved numerically, giving

the value of 3inC corresponding to minimum active area. This value of 3inC allows to

calculate 2inC , via equation (4.56). Finally, equation (4.40) gives the value of 1inC for

65

minimum active area. Eventually, more than one triple of values is attained, but only
one of them corresponds to minimum active area. Besides, due to the mathematical
formulation of the problem, either negative or complex values for 2inC and 3inC may be

obtained from equations (4.56) and (4.70). However, after rejecting these inconsistent
results, there is always one and only one triple of values for minimum active area.

4.5 Branching Subcircuits
In the previous sections, all the circuits analyzed were fanout free. However, the

proposed sizing method is also suitable for branching subcircuits. In this section, the
proposed method is deducted for a 2-stage branching subcircuit, with fixed topology,
fixed extra parasitic capacitance, and variable subcircuit input capacitance, as depicted
in Figure 4.7.

Just like subsection 4.3.2, in the subcircuit shown, parameters gi, hi, and pi
(i = 1, 2, 3) come from the logical effort delay model. ni is the ratio between the total
input capacitance of gate i and the capacitance of the input pin of gate i that belongs to
the logic path under analysis. For a symmetric gate, the numerical value of ni is equal to
the number of input pins of gate i. Cini is the capacitance of the input pin of gate i that
belongs to the logic path. C1 is a fixed extra parasitic capacitance. Cout1 is the output
capacitance seen by gate 2, which might encompass another fixed extra parasitic
capacitance in the output of such gate. Cout2 is the output capacitance seen by gate 3,
which might encompass another fixed extra parasitic capacitance in the output of such
gate. It is worthy to mention that now there are two delay constraints: D1, corresponding
to the logic path formed by gates 1 and 2, and D2, corresponding to the logic path
formed by gates 1 and 3.

Figure 4.7 – Model of a 2-stage branching subcircuit with variable input capacitance

Source: Logics (2013).

66

There are three variables in this problem, namely, Cin1, Cin2, and Cin3. According to
the logical effort delay model, the delay equation for each logic path may be expressed
as:

)(2221111 phgphgD +++= (4.71)

)(3331112 phgphgD +++= (4.72)

Since 11321 /)(ininin CCCCh ++= , 212 / inout CCh = , and 323 / inout CCh = , equations (4.71)

and (4.72) may be rewritten respectively as

21
2

2
1132

1

1
1)(pC

C

g
pCCC

C

g
D out

in

inin

in

+++++= (4.73)

and

32
3

3
1132

1

1
2)(pC

C

g
pCCC

C

g
D out

in

inin

in

+++++= (4.74)

Isolating 1inC in equation (4.73):

122211

13221
1)(

)(

outin

ininin
in

CgCppD

CCCCg
C

−−−

++
= (4.75)

Replacing the expression for 1inC – equation (4.75) – into equation (4.74):

312
3

3

2

2121221
2

)(
ppC

C

g

C

ppCCgCD
D out

inin

inoutin +++
+−−

= (4.76)

Isolating 2inC in equation (4.76):

2323213

312
2)(outin

inout
in

CgppDDC

CCg
C

+−+−
= (4.77)

Now replacing the expression for 2inC – equation (4.77) – into equation (4.75), we

obtain 1inC as a function of solely 3inC :

))()()((

))()((
))()()((

232321323312312

2323213133121

232321323312312

2
3

2
1

2
21

1

outinoutinout

outinininout

outinoutinout

inout
in

CgppDDCCgppDCCg

CgppDDCCCCCgg

CgppDDCCgppDCCg

CCgg
C

+−+−−−−

+−+−+
+

+−+−−−−
=

(4.78)

In this case, the active area of the subcircuit in Figure 4.7 is given by:

332211321),,(inininininin CnCnCnCCCA ++= . (4.79)

Merging equations (4.77), (4.78), and (4.79):

67

33
2323213

3122

232321323312312

23232131331211

232321323312312

2
3

2
1

2
211

3

)(

))()()((

))()((
))()()((

)(

in

outin

inout

outinoutinout

outinininout

outinoutinout

inout
in

Cn
CgppDDC

CCgn

CgppDDCCgppDCCg

CgppDDCCCCCggn

CgppDDCCgppDCCg

CCggn
CA

+
+−+−

+

+−+−−−−

+−+−+
+

+−+−−−−
=

(4.80)

That is, the active area is now a univariate function of 3inC . By taking the derivative

of)(3inCA and setting it to zero, the value of 3inC for minimum active area is attained.

For the sake of an easier algebraic manipulation, let the functions:
2

3
2

1
2
2113)(inoutin CCggnCu = (4.81)

))()()(()(2323213233123123 outinoutinoutin CgppDDCCgppDCCgCv +−+−−−−= (4.82)

))()(()(232321313312113 outinininoutin CgppDDCCCCCggnCw +−+−+= (4.83)

31223)(inoutin CCgnCx = (4.84)

23232133)()(outinin CgppDDCCy +−+−= (4.85)

It is easy to notice that)(3inCu is the numerator of the first fraction in the right-hand

side of equation (4.80), meanwhile)(3inCv is the denominator of the two first fractions

in the right-hand side of this same equation. In the same fashion,)(3inCw is the

numerator of the second fraction, and the numerator and denominator of the third
fraction are given by)(3inCx and)(3inCy , respectively. Therefore,)(3inCA may be

expressed as:

33
3

3

3

3

3

3
3)(

)(

)(

)(

)(

)(
)(in

in

in

in

in

in

in
in Cn

Cy

Cx

Cv

Cw

Cv

Cu
CA +++= (4.86)

Hence,

0
)(

3222
3

3 =+
′−′

+
′−′

+
′−′

= n
y

yxyx

v

vwvw

v

vuvu

dC

CdA

in

in (4.87)

where },,,,{,
)(

3

3 yxwvu
dC

Cd

in

in ∈=′ θ
θ

θ .

Rearranging equation (4.87):

0)()()(22
3

222 =+′−′+′−′+′−′ yvnvyxyxyvwvwyvuvu (4.88)

This is a sixth degree univariate (on 3inC) polynomial equation, whose solutions

may be obtained numerically. Among these solutions, one corresponds to the minimum
active area. Therefore, the triple of equations (4.77), (4.78), and (4.88) defines the
sizing of the branching subcircuit.

68

4.6 Power Delay Product
In the design of power-efficient circuits, an important figure of merit is the power-

delay (P – D) tradeoff. In its simplest form, it is expressed as the product PD. In order
to achieve a thorough analysis in the P – D space, this tradeoff may also be considered
as 0,, ≥jiDP ji (ALIOTO, 2011). The correct understanding of this tradeoff is
essential for designing either high-speed or low-power circuits (DAO, 2006;
MARKOVIC, 2004). One way of doing this analysis is based upon a power-efficient
curve, which consists of the minimum points of each ji DP curve, for several
combinations of the exponents i and j. The minimum points of these curves use to be
obtained via iterative optimization procedures (ALIOTO, 2011), which is a time-
demanding task. In this section, it is shown that the proposed sizing method is suited for
finding analytically the minimum points for power-delay product.

As an example, it is obtained analytically the minimum point of PD product for a
3-stage fanout free subcircuit, with fixed topology, fixed extra parasitic capacitances,
and fixed subcircuit input capacitance, as shown in Figure 4.4. The delay and active
area of this subcircuit are given respectively by equations (4.3) and (4.9). According to
Weste (2006), the dynamic power P dissipated by the subcircuit is given by:

fCVP DD

2α= (4.89)

where f is the clock frequency, C is the total input capacitance (i.e., active area A), and α
is an activity factor, which can be empirically determined (WESTE, 2006).
Consequently, equation (4.89) may be rewritten as:

kAP = (4.90)

where k is a constant. Hence, the PD product is given by:

),(),(3232 inininin CCDCCAkDPPD ××=×= (4.91)

Even though the same expression for the delay – equation (4.3) – is valid throughout
this thesis, in this section there is a remarkable difference in its interpretation.
Previously, the delay of the subcircuit was a design constraint, i.e., a fixed value.
However, the objective now is to do an analysis in the PD space. Therefore, the delay is
not only variable, but also a function of 2inC and 3inC . Merging equations (4.3) and

(4.90) into (4.91), it follows that the PD product may be expressed as:

)()(321332211332211 ppphghghgCnCnCnkPD inin

fixed

in +++++×++×= (4.92)

Since fixed

inin CCCh 1121 /)(+= , 2232 /)(inin CCCh += , 33 / inout CCh = , and Pppp =++ 321 ,

equation (4.92) may be rewritten as

)
)()(

)((
3

3
2

23
2

1

12
1332211 P

C

C
g

C

CC
g

C

CC
gCnCnCnkPD

in

out

in

in

fixed

in

in
inin

fixed

in ++
+

+
+

++= (4.93)

Expanding the terms in equation (4.93) and finding the two partial derivatives:

69








 +
−+++








 +
+

+
−=

∂

∂

2
2

23
323

1

3
132

3
32

1

12
122

2

23
21111

2

32

)(

)2()(),(

in

in
infixed

in

in

in

out

fixed

in

in

in

infixed

in

in

inin

C

CC
Cgn

C

C
gnPn

C

C
gnk

C

CC
gn

C

CC
gCngnk

C

CCPD

 (4.94)

and









+

+
+

+
+









−+−=

∂

∂

Pn
C

CC
gn

C

CC
gnk

C

C
Cgngn

C

C
Cgn

C

C
gnk

C

CCPD

in

in

fixed

in

in

in

in
out

in

outfixed

in

in

fixed

in

in

inin

3
2

23
23

1

12
13

2
3

2
32222

3
131

2

1
21

3

32

)2()(

),(

 (4.95)

Setting these two partial derivatives equal to zero:

0)(

)2()(

0
),(

23
2

3123
2

3
2

2133
2

212
2

2132

3
2

212123232

2

113
2

2111

2

32

=+−+++

+++−

⇒=
∂

∂

CCCCgnCCgnCCPCnCCCgn

CCCCgnCCCgCnCCCgn

C

CCPD

inin

fixed

ininininin

fixed

inin

fixed

inout

ininininin

fixed

ininin

fixed

in

in

inin

(4.96)

and

0)2()(

0
),(

2
3213

2
323123

2
321213

2
2132

2
321222

2

131
2

3

2

121

3

32

=+++++

−+−

⇒=
∂

∂

inin

fixed

ininin

fixed

inininin

in

fixed

inoutinin

fixed

ininout

fixed

inin

fixed

in

in

inin

CCPCnCCCCgnCCCCgn

CCCgnCCCgnCCCgnCCgn

C

CCPD

 (4.97)

Rearranging conveniently the terms in equation (4.97), it can be expressed as if it
were a univariate polynomial equation of the second degree on 2inC :

()
()

0)2(2
323123

2
3

2

121

2
2

313
2

3113

2

131
2

3122

2
2132

2
313

=+++

++−+

−

inin

fixed

inin

fixed

in

inin

fixed

ininout

fixed

inin

fixed

in

in

fixed

inoutin

CCCCgnCCgn

CCPCnCCgnCCgnCCgn

CCCgnCgn

 (4.98)

Therefore, the variable 2inC can be expressed as a function of 3inC :

a

acbb
CcbCaC ininin 2

4
0

2

22
2

2

−±−
=⇒=++ (4.99)

where:
fixed

inoutin CCgnCgna 132
2

313 −= (4.100)

2
313

2
3113

2

131
2

3122 in

fixed

ininout

fixed

inin

fixed

in CPCnCCgnCCgnCCgnb ++−= (4.101)

2
323123

2
3

2

121)2(inin

fixed

inin

fixed

in CCCCgnCCgnc ++= (4.102)

70

The variables a, b, and c have been introduced for the sake of an easier algebraic
manipulation. Replacing equation (4.99) into (4.96), we have a univariate nonlinear
equation on 3inC , which can be solved numerically. Replacing the value thus obtained

for 3inC into equation (4.99), we have the corresponding value of 2inC . Eventually,

either negative or nonreal values may be found, but there will always be one and only
one pair of values for 2inC and 3inC that correspond to the minimum PD product.

71

5 EXPERIMENTAL RESULTS

In this section we investigate the validity of the method compared with results
obtained with electrical simulations. The subcircuit used for validation is shown in
Figure 5.1. Even though the proposed method is capable of coping with fixed extra
parasitic capacitances, they are not taken into account in this validation. The
comparison is based on the Nangate Open Cell Library (NOCL) library, and the specific
values of logical effort parameters g and p for the logic gates are obtained by simulation
according to the logical effort original method (SUTHERLAND, 1999). The
formulation proposed herein is developed so that the input capacitance of the subcircuit
under design may have either a fixed or a maximum value. Working with a variable –
albeit limited – input capacitance would give an additional degree of freedom to the
problem, making it easier to come to a global optimum. However, in this chapter, for
the sake of comparison with the logical effort sizing method, the input capacitance of
the subcircuit is made equal to the X1 NAND2 cell in NOCL.

Figure 5.1 – Subcircuit to be sized

Source: Logics (2013).

The proposed method is used to size the subcircuit of Figure 5.1 for 20 different
configurations of output load and delay constraints, which are shown in Table 5.1. The
four columns under the Experiment Configuration title specify the conditions under
which each experiment was carried out. The column labeled Case presents the
configuration identifier label, ranging from C1 to C20. The column labeled Load
represents the output load used in the configuration. Xi expresses a load whose value is
i times the input capacitance of the X1 inverter in NOCL. The third column (Const.)
represents the delay constraint of the experiment configuration, given in picoseconds
(ps). The column entitled LE ratio explains how the delay constraint is obtained from
the minimum achievable delay. These delay constraints are obtained as follows. First,
we calculate the minimum possible delay for every load Xi, namely, LEi, given by the
logical effort sizing method (SUTHERLAND, 1999). Then, the minimum achievable
LE delay is augmented by a factor within the range 0.9-1 to 0.5-1, thus introducing a
slack in the minimum achievable delay constraint. This slack is increased as long as the
logic gates of the corresponding optimized subcircuit are not sized to scale factors

72

smaller than 1. In this case, the scale factors would be automatically set to 1, and
therefore any sizing comparison would be meaningless.

For each of the case studies (C01 to C20), the subcircuit is sized with the proposed
method, and the corresponding results are shown in the three columns in Table 5.1
under the Proposed method title. The column labeled ΣW shows the sum of the scale
factors of the two inverters (stages 2 and 3) in the subcircuit obtained with the method.
The columns entitled Delay (in picoseconds) and Pow.(parameterized), respectively,
show the corresponding delay and dynamic power obtained by HSPICE simulations for
the subcircuit obtained with the method. Pow. is parameterized by the dynamic power
consumption of a subcircuit with ΣW = 2.9 under load X1.

Table 5.1 – Sizing results compared with HSPICE reference and Kabbani (2010)

Experiment Configuration Proposed method Reference Proposed method (%) Kabbani [7] (%)
Case Load Const. LE Ratio ∑ W Delay Pow. ∑ W Pow. ∑ W(%) D(%) Pw(%) ∑ W(%) D(%) Pw(%)

C01 X4 42.7 (LE4/0.9) 2.02 43.603 1.21 2.2 1.26 -8.0 +2.00 -4.0 +70,90 -8,38 +26,90

C02 X16 56.2 (LE16/0.9) 4.01 58.210 3.24 4.6 3.38 -12.8 +3.45 -4.1 +77,59 -7,21 +23,40

C03 X16 63.2 (LE16/0.8) 3.00 64.703 3.03 3.2 3.07 -6.3 +2.29 -1.3 +155,29 -17,48 +35,86

C04 X16 72.3 (LE16/0.7) 2.49 72.769 2.92 2.6 2.94 -4.3 +0.70 -0.68 +214,20 -27,87 +41,87

C05 X32 65.7 (LE32/0.9) 6.14 68.041 5.83 7.1 6.05 -13.5 +3.50 -3.6 +72,40 -6,76 +19,01

C06 X32 73.9 (LE32/0.8) 4.49 75.669 5.47 4.8 5.54 -6.4 +2.38 -1.3 +155,01 -17,10 +29,96

C07 X32 84.4 (LE32/0.7) 3.51 84.816 5.26 3.6 5.28 -2.4 +0.47 -0.38 +240,01 -27,42 +36,36

C08 X32 98.5 (LE32/0.6) 2.90 96.865 5.14 2.9 5.14 +0.1 -1.67 0.0 +322,08 -37,81 +40,08

C09 X40 69.2 (LE40/0.9) 7.05 71.711 7.08 8.1 7.33 -12.9 +3.50 -3.4 +72,48 -6,59 +17,98

C10 X40 77.8 (LE40/0.8) 5.18 79.677 6.69 5.5 6.75 -5.9 +2.29 -0.89 +154,02 -16,92 +28,12

C11 X40 89.0 (LE40/0.7) 3.99 89.349 6.43 4.1 6.45 -2.7 +0.42 -0.31 +240,75 -27,37 +34,08

C12 X64 77.6 (LE64/0.9) 9.44 80.381 10.8 10.9 11.1 -13.4 +3.49 -2.7 +69,85 -6,26 +15,77

C13 X64 87.3 (LE64/0.8) 6.81 90.203 10.2 7.4 10.3 -8.0 +3.25 -0.97 +150,19 -16,68 +24,76

C14 X64 99.7 (LE64/0.7) 5.35 99.945 9.90 5.4 9.90 -0.9 +0.20 0.0 +242,85 -27,04 +29,80

C15 X64 116 (LE64/0.6) 4.21 113.78 9.65 4.1 9.63 +2.7 -2.27 +0.21 +351,56 -37,29 +33,44

C16 X100 86.8 (LE100/0.9) 12.5 90.002 16.2 14.4 16.7 -13.3 +3.51 -3.0 +68,56 -5,78 +13,29

C17 X100 97.7 (LE100/0.8) 9.26 99.562 15.5 9.8 15.6 -5.5 +1.87 -0.64 +147,68 -16,29 +21,28

C18 X100 112 (LE100/0.7) 7.14 111.47 15.0 7.1 15.1 +0.6 -0.16 -0.67 +241,87 -26,98 +25,30

C19 X100 130 (LE100/0.6) 5.54 126.98 14.7 5.3 14.6 +4.4 -2.58 +0.68 +357,98 -37,09 +29,59

C20 X100 156 (LE100/0.5) 4.37 148.00 14.5 4.1 14.4 +6.6 -5.62 +0.69 +492,03 -47,58 +31,39

Source: Author.

Table 5.1 also presents two columns used as reference, listed under the title
Reference. In order to generate the reference data, an exhaustive set of HSPICE
simulations – level 6, using Predictive Technology Model 45 nm technology (PTM) – is
performed for each output load (ranging from X4 to X100). The goal is to compare the
results given by the sizing method with the minimum active area obtained by exhaustive
electrical simulations. The results of the delay obtained by electrical simulations form a
surface, as illustrated for the load X16 in Figure 5.2 for delay and in Figure 5.3 for

73

power. These data sets can be used to discover minimum active area respecting the
delay constraint and minimum power respecting the delay constraint for cases C02 to
C04, which have load X16. Similar surfaces are produced for loads X4 (case C01), X32
(cases C05 to C08), X40 (cases C09 to C11), X64 (cases C12 to C15) and X100 (cases
C16 to C20). The columns under the title Reference labeled ΣW and Pow., respectively,
show the minimum possible ΣW and power respecting the design constraints, as
obtained empirically from the dataset forming the surfaces.

Figure 5.2 – Delay vs. sizing of a subcircuit for minimum active area via exhaustive search
(electrical simulation)

Source: Logics (2013).

Figure 5.2 plots the delay of the subcircuit for a range of scale factors for the two
inverters, with an output load of X16. The delay is parameterized by LE16. For any
given delay constraint greater than the minimum possible delay, there are several
possible pairs of scale factors. However, only one specific point corresponds to either
minimum active area (sum of widths) or power consumption. Figure 5.3 plots the power
consumption of the subcircuit for the same previous range of scale factors for the two
inverters and load. Notice that, for better visualization, the horizontal scales in the plot
are not the same as in Figure 5.2. The dynamic power consumption is parameterized by
that of the minimum inverter. Comparing these plots, it is clear that the fastest circuit is
not the most power consumer, as well as the slowest circuit is not the least power
consumer. This summarizes the importance of appropriate sizing for optimizing a
circuit. Figure 5.3 also shows a good correlation between the total input capacitances of
the logic gates of a circuit and its power consumption. This can be inferred from the fact
that the surface plotted is nearly a plane.

74

The comparison of the results from the method with HSPICE references is presented
in three columns of Table 5.1, under the title Proposed Method (%). The column labeled
ΣW(%) gives the percentage difference between the sum of widths (i.e., scale factors of
the two inverters) obtained by the proposed method and the minimum reference
obtained from HSPICE simulation datasets. The subcircuit can be oversized by 6.6% in
the worst case, but producing a better delay at a small power penalty. The column
entitled D(%) gives the percentage difference between the delay for the subcircuit
obtained by the proposed method and the delay constraint. Sometimes the delay is
slightly larger than the delay constraint (by 3.5%), which is acceptable for a first fast
computation. The column labeled Pw(%) gives the percentage difference between the
dynamic power obtained by the proposed method and the minimum reference obtained
from electrical simulation datasets. Notice that, in all cases but one (C18), the delay
difference has opposite signs with respect to both power and sum of width differences,
as expected. This exception is explained by the fact that the minimum value obtained
from electrical simulation is not necessarily the minimum minimorum, since this value
was obtained with a discrete simulation step (0.1 of scale factor). In case C18, the real
minimum value was found by using a simulation step ten times smaller (0.01 of scale
factor). This happens for reference ΣW = 7.14. In this situation, the delay difference has
positive sign, while the power difference has negative sign.

Using 0.1 as simulation step, a total of 5,000 simulations have been performed. It
would be unfeasible to use 0.01 as simulation step to fill in the table, since 500,000
simulations would be necessary.

Figure 5.3 – Power consumption of the subcircuit under design

Source: Logics (2013).

75

The proposed method presents improvements over previous approaches. According
to Kabbani (2010), the efforts (SUTHERLAND, 1999) of the logic gates in the
subcircuit should have the same value for attaining minimum area. In mathematical
terms, for the subcircuit under design, we would have:

3
3

2

3
2

1

2
1

in

out

in

in

in

in

C

C
g

C

C
g

C

C
g == (5.1)

Nevertheless, electrical simulations show that, for the load X16 and delay constraint
LE16/0.9, the efforts (SUTHERLAND, 1999) for the first, second, and third stages are
given by 1.60, 2.54, and 4.85, respectively. The proposed method finds 1.39, 2.56, and
5.55, respectively. This verification is conducted for several combinations of loads and
delay constraints, and the discrepancy between HSPICE results and equation (5.1) – as
stated by Kabbani (2010) – is always present. In turn, the results given by the proposed
method, for all experiments fulfilled, are much closer to the optimal results obtained by
electrical simulations. This happens because, unlike Kabbani (2010), the proposed
method takes into account the following facts: a) the input capacitance of the subcircuit
may have either fixed or variable – although limited – value; b) the number of stages in
the subcircuit may differ from the ideal number predicted by the logical effort sizing
method (SUTHERLAND, 1999); c) the cost function for the subcircuit active area in
equation (4.8) encompasses each logic gate in its entireness, not just the capacitance of
the input pin that belongs to the logic path under design.

76

6 CONCLUSION AND FUTURE WORK

This thesis presented a new method for sizing subcircuits based on the logical effort
delay model. The method is able to find the minimum active area of a subcircuit
analytically, thus dismissing the use of iterative methods such as mathematical
programming or algorithmic approaches. An analytical solution – rather than an
iterative one – has some advantages. The minimum active area is achieved by solving a
one-variable equation, which tends to be faster than iterative methods. Since power
consumption is closely related to active area, this method is also capable of minimizing
power.

Besides, an analytical solution offers a better understanding of the problem, which
may be the starting point for future works. As seen in section 4.6, the method may be
generalized in order to optimize power delay product. More specifically, the minimum
point for the PD curve was obtained. It is likely that the minimum points for ji DP , for
small values of i and j, may also be obtained with the proposed method.

Another extension of the proposed method is related to branching circuits. In section
4.5, the method was developed for two-stage branching subcircuits. It is very likely that
branching circuits may be treated to the same extension – in terms of the number of
stages – that fanout free circuits may be treated by the proposed method.

The model accuracy has been validated with respect to electrical simulations, which
showed that the proposed method was very precise for a first order approach, as it
presented average errors of 1.48% in power dissipation, 2.28% in propagation delay,
and 6.5% in transistor sizes.

The maximum delay error was 3.5%. This inaccuracy is inherent to the logical effort
delay model. In order to minimize such error, the usage of more accurate versions of the
logical effort delay model – such as Lasbouygues (2006), Wang (2009), and Masry
(2011) – is under study. Such model version should consider the impact of the input
signal slope on the delay of a logic gate. This way, the new sizing method would be able
to cope with non-posynomial delay models. Such models cannot be solved by convex
programming (TENNAKOON, 2008), and their solution by non-convex programming
is not granted.

Just like many other cases in engineering, there is a tradeoff relationship between
analytical solutions and numerical solutions. The former gives more elegant and less
computing power consuming solutions, meanwhile the latter relies on iterative methods
that may be computationally expensive. However, it is not always that analytical
solutions for sizing may be applied with precise, non-trivial delay models. In this case,

77

numerical solutions may be more appropriate. This is the challenge to be faced when
applying the proposed method with more accurate delay models.

Another future work is related to the generalization of the proposed sizing method
for subcircuits with an arbitrary number of stages. Currently, the method is derived for a
finite set of logic path lengths. Initially, it seems very likely that the method may be
applied to subcircuits with up to five stages. It depends on the system of polynomial
equations to be solved analytically, which may not always be possible. The next step
would be to find the solution of the proposed method for an arbitrary number of stages.
It is not granted that such problem has a closed-form solution. Therefore, for the sake of
simplicity, the investigation would start by analyzing fanout free buffers. For every
number of stages – up to a limit –, for every load – within a range –, and for every delay
constraint – as long as the inverters are not sized to a scale factor smaller than 1 –, a
buffer will be sized via exhaustive electrical simulations. The data set thus obtained
might reveal a pattern in the sizing of buffers with minimum active area, which might
lead to a new sizing formulation.

A somewhat peripheral future work is as follows. In Sutherland (1999), an analysis
is conducted about the wp/wn ratio that gives the smallest average delay (rise and fall
transitions) of a logic gate. Within the scope of the proposed method, an analogous
analysis may be conducted to determine the wp/wn ratio that gives the logic gates with
smallest active area.

To the best knowledge of the doctor’s degree candidate, this is the first approach for
analytical sizing under delay constraints based on the logical effort delay model. It
differs considerably from the existing sizing methods, since its main contribution is to
compute the area derivative to obtain minimum area, instead of making the delay
derivative to obtain minimum delay, as it is done in the traditional logical effort
formulation. At the same time, the proposed method shows a good precision – when
compared to electrical simulations – and superior results to other sizing method
(KABBANI, 2010) that has the same objectives. Equally important, the proposed
method paves way for consistent future works.

78

REFERENCES

ALIOTO, M.; CONSOLI, E.; PALUMBO, G. Analysis and Comparison in the Energy-
Delay-Area Domain of Nanometer CMOS Flip-Flops: Part I – Methodology and Design
Strategies. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
[S.l.], v.19, n. 5, p. 725-736, May. 2011.

BERKELAAR, M.; JESS, J. Technology Mapping for Standard-Cell Generators. In:
INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, ICCAD,
1988 [S.l.:s.n], Proceedings… Santa Clara, CA: IEEE, 1988, p. 470-473.

BERKELAAR, M. R. C. M.; JESS, J. A. G. Gate Sizing in MOS Digital Circuits with
Linear Programming. In: EUROPEAN DESIGN AUTOMATION CONFERENCE,
EDAC, 1990, [S.l.], Proceedings… [S.l:s.n.], 1990, p. 217-221.

BERTSEKAS, D. P. Nonlinear Programming. 2nd ed. Belmont: Athena, 1999.

BOYD, S. P.; VANDENBERGHE, L. Convex Optimization. Cambridge: Cambridge,
2004.

BOYD, S. P.; KIM, S. J.; PATIL, D. D.; HOROWITZ, M. A. Digital Circuit
Optimization via Geometric Programming. Operations Research [S.l.], v.53, n.6,
p. 899-932, Nov.-Dec. 2005.

CALLEGARO, V. ; MARTINS, M.G.A. ; RIBAS, R.P. ; REIS, A.I. Read-polarity-once
Boolean functions. In: 26th SYMPOSIUM ON INTEGRATED CIRCUITS AND
SYSTEMS DESIGN, SBCCI, 2013. Proceedings… [S.l.]: IEEE, 2013, p. 1 – 6.

CHEN, G.; ONODERA, H.; TAMARU, K. Timing and Power Optimization by Gate
Sizing Considering False Path. In: GREAT LAKES SYMPOSIUM ON VLSI,
GLSVLSI, 1996. Proceedings… [S.l.]: IEEE, 1996, p. 154-159.

CHINNERY, D. G.; KEUTZER, K. Closing the Gap between ASIC & Custom:
Tools and Techniques for High-Performance ASIC Design. Norwell: Kluwer, 2002.

CHINNERY, D. G.; KEUTZER, K. Closing the Power Gap between ASIC and Custom:
An ASIC Perspective. In: DESIGN AUTOMATION CONFERENCE, DAC, 42., 2005,
Anaheim, CA, USA. Proceedings… [S.l.]: ACM, 2005, p. 275-280.

CHU, C.; WONG, D. F. VLSI Circuit Performance Optimization by Geometric
Programming. Annals of Operations Research [S.l.], v.105, p. 37-60, 2001.

79

CORREIA, V. P.; REIS, A. I. Advanced Technology Mapping for Standard-Cell
Generators. In: SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS
DESIGN, SBCCI, 2004, Porto de Galinhas, PE. Proceedings… [S.l.]: SBC, 2004,
p. 254-259.

COUDERT, O. Gate Sizing: a General Purpose Optimization Approach. In:
EUROPEAN DESIGN AND TEST CONFERENCE, ED&TC, 1996-a, Paris, France.
Proceedings… Los Alamitos: IEEE, 1996-a, p. 214-218.

COUDERT, O.; HADDAD, R.; MANNE, S. New Algorithms for Gate Sizing: A
Comparative Study. In: DESIGN AUTOMATION CONFERENCE, DAC, 33., 1996-b,
Las Vegas, NV, USA. Proceedings… [S.l.]: ACM, 1996-b, p. 734-739.

COUDERT, O. Gate Sizing for Constrained Delay/Power/Area Optimization. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems [S.l.], v.5, n.4,
p. 465-472, Dec. 1997.

COUDERT, O. Timing and Design Closure in Physical Design Flows. In:
INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN, ISQED,
2002 [S.l.] Proceedings… [S.l:s.n.] 2002, p. 511-516.

DAO, H.; ZEYDEL, B.; OKLOBDZIJA, V. Energy Optimization of Pipelined Digital
Systems Using Circuit Sizing and Supply Scaling. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems [S.l.], v.14, n.2, p. 122-134, Feb. 2006.

DESIGN COMPILER Tutorial [S.l.:s.n]. Jul. 2010. Available at
http://www.tkt.cs.tut.fi/tools/public/tutorials/synopsys/design_compiler/gsdc.html

DESIGN Compiler® Reference Manual: Constraints and Timing [S.l.:s.n]. Sept. 2008.
Available at http://solvnet.synopsys.com

ELMORE, W. C. The Transient Response of Damped Linear Networks with Particular
Regard to Wideband Amplifiers. Journal of Applied Physics [S.l.], v. 19, p.55-63, Jan.
1948.

FISHBURN, J. P.; DUNLOP, A. E. TILOS: A Posynomial Programming Approach to
Transistor Sizing. In: INTERNATIONAL CONFERENCE ON COMPUTER-AIDED
DESIGN, ICCAD, 1985 [S.l.:s.n], Proceedings… [S.l.] IEEE, 1985, p. 326-328.

GAVRILOV, S. et al. Library-less Synthesis for Static CMOS Combinational Logic
Circuits. In: INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN,
ICCAD, 1997 [S.l.:s.n], Proceedings… [S.l.] IEEE, 1997, p. 658-662.

GIONIS, A.; INDYK, P.; MOTWANI, R. Similarity Search in High Dimensions via
Hashing. In: INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES,
VLDB, 1999, Edinburgh, SCO, 25., Proceedings… [S.l.] ACM, 1999, p. 518-529.

GOLDBARG, M. C.; LUNA, H. P. L. Otimização Combinatória e Programação
Linear. 2ª ed. Rio de Janeiro: Campus Elsevier, 2005.

GOPALAKRISHNAN, G.; KUDVA, P.; BRUNVAND, E. Peephole optimization of
asynchronous macromodule networks. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems [S.l.], v.7, n.1, p.30-37, Mar. 1999.

80

HEDLUND, K. S. Aesop: A Tool for Automated Transistor Sizing. In: DESIGN
AUTOMATION CONFERENCE, DAC, 24., 1987, Miami Beach, FL, USA.
Proceedings… [S.l.]: ACM, 1987, p. 114-120.

HU, B. et al. Gain-Based Technology Mapping for Discrete-Size Cell Libraries. In:
DESIGN AUTOMATION CONFERENCE, DAC, 40., 2003, Anaheim, CA, USA.
Proceedings… [S.l.]: ACM, 2003, p. 574-579.

HU, S.; KETKAR, M.; HU, J. Gate Sizing for Cell Library-Based Designs. In: DESIGN
AUTOMATION CONFERENCE, DAC, 44., 2007, San Diego, CA, USA.
Proceedings… [S.l.]: ACM, 2007, p. 847-852.

HU, S.; KETKAR, M.; HU, J. Gate Sizing for Cell Library-Based Designs. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems [S.l.],
v. 28, n. 6, p. 818-825, Jun. 2009.

JOSHI, S.; BOYD, S. An Efficient Method for Large-Scale Gate Sizing. IEEE
Transactions on Circuits and Systems [S.l.], v. 55, n. 9, p. 2760-2773, Oct. 2008.

KABBANI, A.; AL-KHALILI, D.; AL-KHALILI, A. J. Delay Analysis of CMOS
Gates Using Modified Logical Effort Model. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems [S.l.], v. 24, n. 6, p. 937-947, Jun. 2005.

KABBANI, A. Logical effort based dynamic power estimation and optimization of
static CMOS circuits. Integration, the VLSI Journal [S.l.], v.43, p.279-288, 2010.

KAGARIS, D.; HANIOTAKIS, T. A Methodology for Transistor-Efficient Supergate
Design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems [S.l.],
v.15, n.4, p. 488-492, Apr. 2007.

KARANDIKAR, S. K.; SAPATNEKAR, S. S. Logical Effort Based Technology
Mapping. In: INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN,
ICCAD, 2004 [S.l.:s.n], Proceedings… [S.l.] IEEE, 2004, p. 419-422.

KARANDIKAR, S. K.; SAPATNEKAR, S. S. Fast Comparisons of Circuit
Implementations. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems [S.l.], v.13, n.12, p. 1329-1339, Dec. 2005.

KARANDIKAR, S. K.; SAPATNEKAR, S. S. Technology Mapping Using Logical
Effort for Solving the Load-Distribution Problem. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems [S.l.], v. 27, n. 1, p. 45-58, Jan.
2008.

KASAMSETTY, K.; KETKAR, M.; SAPATNEKAR, S. S. A new class of convex
functions for delay modeling and its application to the transistor sizing problem. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems [S.l.],
v. 19, n. 7, p. 779-788, Jul. 2000.

KEANE, J.; EOM, H.; KIM, T-H.; SAPATNEKAR, S.; KIM, C. Subthreshold Logical
Effort: a Systematic Framework for Optimal Subthreshold Device Sizing. In: DESIGN
AUTOMATION CONFERENCE, DAC, 43., 2006, San Francisco, CA, USA.
Proceedings… [S.l.]: ACM, 2006, p. 425-428.

81

KEUTZER, K.; KOLWICZ, K.; LEGA, M. Impact of Library Size on the Quality of
Automated Synthesis. In: INTERNATIONAL CONFERENCE ON COMPUTER-
AIDED DESIGN, ICCAD, 1987 [S.l.:s.n], Proceedings… [S.l.] IEEE, 1987, p. 120-
123.

KUNG, D. S.; PURI, R. Optimal P/N Width Ratio Selection for Standard Cell Libraries.
In: INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, ICCAD,
1999 [S.l.:s.n], Proceedings… [S.l.] IEEE, 1999, p. 178-184.

LASBOUYGUES, B. et al. Logical Effort Model Extension to Propagation Delay
Representation. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems [S.l.], v. 25, n. 9, p. 1677-1684, Sept. 2006.

LI, W. N. Strongly NP-hard Discrete Gate Sizing Problems. In: INTERNATIONAL
CONFERENCE ON COMPUTER DESIGN, ICCD, 1993, Cambridge, MA, USA.
Proceedings… [S.l.]: IEEE, 1993, p. 468-471.

LOGICS – logic circuit synthesis labs homepage, 2013. Available at:
http://www.inf.ufrs.br/logics/

LUENBERGER, D. G.; YE, Y. Linear and Nonlinear Programming. 3rd ed. New
York: Springer, 2008.

MAHALINGAM, V.; RANGANATHAN, N. A Nonlinear Programming Based Power
Optimization Methodology for Gate Sizing and Voltage Selection. In: IEEE
COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI, 2005. Proceedings…
[S.l.]: IEEE, 2005.

MARKOVIC, D.; STOJANOVIC, V.; NIKOLIC, B.; HOROWITZ, M.; BRODERSEN,
R. Methods for True Energy-Performance Optimization. IEEE Journal on Solid-State
Circuits [S.l.] v. 39, n. 8, p. 1282-1293, Aug. 2004.

MARQUES, F. S.; ROSA JUNIOR, L. S.; RIBAS, R. P.; SAPATNEKAR, S. S.; REIS,
A. I. DAG Based Library-Free Technology Mapping. In: GREAT LAKES
SYMPOSIUM ON VLSI, GLSVLSI, 2007, Stresa. Proceedings… [S.l.]: ACM, 2007,
p. 293-298.

MARTINELLO, O. ; MARQUES, F.S. ; RIBAS, R.P. ; REIS, A.I. KL-Cuts: A new
approach for logic synthesis targeting multiple output blocks. In: Design, Automation &
Test in Europe Conference & Exhibition, DATE, 2010. Proceedings… [S.l. :s.n] IEEE,
2010, p. 777-782.

MARTINS, M.G.A. ; RIBAS, R.P. ; REIS, A.I. Functional composition: A new
paradigm for performing logic synthesis. In: 13th International Symposium on Quality
Electronic Design, ISQED, 2012. Proceedings… [S.l.] IEEE, 2012, p. 236 – 242.

MASRY, H. El; KHALILI, D. Al. Cell stack length using an enhanced logical effort
model for a library-free paradigm. In: 18th IEEE INTERNATIONAL CONFERENCE
ON ELECTRONICS, CIRCUITS AND SYSTEMS, 2011. Proceedings… [S.l.] IEEE,
2011, p.703-706.

82

MATSON, M. D.; GLASSER, L. A. Macromodeling and Optimization of Digital MOS
VLSI Circuits. IEEE Transactions on Computer-Aided Design [S.l.], v. CAD-5, n. 4,
p. 659-678, Oct. 1986.

MAURINE, P.; MICHEL, X.; AZEMARD, N.; AUVERGNE, D. Gate Speed
Improvement at Minimal Power Dissipation. In: ASIA PACIFIC CONFERENCE ON
CIRCUITS AND SYSTEMS, APCCAS, 2002 [S.l.:s.n], Proceedings… [S.l.] IEEE,
2002, p. 325-330.

MENEZES, N.; BALDICK, R.; PILEGGI, L. T. A Sequential Quadratic Programming
Approach to Concurrent Gate and Wire Sizing. In: INTERNATIONAL CONFERENCE
ON COMPUTER-AIDED DESIGN, ICCAD, 1995, San Jose, CA USA, Proceedings…
[S.l.] IEEE, 1995, p.144-151.

NANGATE 45nm Open Cell Library (NOCL) v1_3_v2010_12. Available at
http://www.nangate.com

NGUYEN, D. et al. Minimization of Dynamic and Static Power Through Joint
Assignment of Threshold Voltages and Sizing Optimization. In: INTERNATIONAL
SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN, ISLPED, 2003,
Seoul, Korea. Proceedings… [S.l.]: ACM, 2003, p. 158-163.

NOWE, P. Timing (Analysis) is Everything. Circuit Cellar – The Magazine for
Computer Applications [S.l.], n. 160, Nov. 2003.

OTTEN, R. H. J. M. Timing closure: the solution and its problems. In: ASIA AND
SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, ASP-DAC, 2000,
Yokohama, Japan, Proceedings… [S.l.] IEEE, 2000, p. 359-364.

PANDA, R. et al. Migration: A new technique to improve synthesized designs through
incremental customization. In: DESIGN AUTOMATION CONFERENCE, DAC, 35.,
1998, San Francisco, CA, USA. Proceedings… [S.l.]: ACM, 1998, p. 388-391.

PATTANAIK, M.; BANERJEE, S.; BAHINIPATI, B. K. GP Based Transistor Sizing
for Optimal Design of Nanoscale CMOS Inverter. In: IEEE CONFERENCE ON
NANOTECHNOLOGY, 2003, San Francisco, CA, USA. Proceedings… [S.l.] IEEE,
2003, p. 524-527.

POLI, R. E. B.; SCHNEIDER, F. R.; RIBAS, R. P.; REIS, A. I. Unified Theory to Build
Cell-level Transistor Networks from BDDs. In: SYMPOSIUM ON INTEGRATED
CIRCUITS AND SYSTEMS DESIGN, SBCCI, 2003, São Paulo, SP. Proceedings…
[S.l.]: SBC, 2003, p. 199-204.

PTM 45 nm model. Available at: http://www.eas.asu.edu/~ptm

RABAEY, J. M.; CHANDRAKASAN, A.; NIKOLIĆ, B. Digital Integrated Circuits –
a design perspective. 2nd ed. Upper Saddle River: Pearson, 2003.

REIS, A. I.; RASMUSSEN, A. B.; ROSA JUNIOR, L. S.; RIBAS, R. P. Fast Boolean
Factoring with Multi-Objective Goals. In: INTERNATIONAL WORKSHOP IN
LOGIC SYNTHESIS, IWLS, 2009, Berkeley, CA, USA, Proceedings... 2009.

83

REZVANI, P.; PEDRAM, M. A Fanout Optimization Algorithm Based on the Effort
Delay Model. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems [S.l.], v. 22, n. 12, p. 1671-1678, Dec. 2003.

RICCI, A.; DE MUNARI, I.; CIAMPOLINI, P. An Evolutionary Approach for
Standard-Cell Library Reduction. In: GREAT LAKES SYMPOSIUM ON VLSI,
GLSVLSI, 2007, Stresa. Proceedings… [S.l.]: ACM, 2007, p. 305-310.

ROBINSON, C. Second derivative test for a function with more variables. Available at
http://www.math.northwestern.edu/~clark/232/handouts/max-2deriv.pdf

ROSA JUNIOR, L. S.; MARQUES, F. S.; CARDOSO, T. M. G.; RIBAS, R. P.;
SAPATNEKAR, S. S.; REIS, A. I. Fast Disjoint Transistor Networks from BDDs. In:
SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI,
2006, Ouro Preto, MG. Proceedings… [S.l.]: SBC, 2006, p. 137-142.

ROSA JUNIOR, L. S. Automatic Generation and Evaluation of Transistor
Networks in Different Logic Styles. 2008. 147 f. Tese (Doutorado em
Microeletrônica) – Programa de Pós-Graduação em Microeletrônica, UFRGS, Porto
Alegre.

ROY, R.; BHATTACHARYA, D.; BOPPANA, V. Transistor-Level Optimization of
Digital Designs with Flex Cells. Computer [S.l.], v. 38, n. 12, p. 53-61, Feb. 2005.

ROY, S.; CHEN, W.; CHEN, C. C. P.; HU, Y. H. Numerically Convex Form and Their
Application in Gate Sizing. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems [S.l.], v. 26, n. 9, p. 1637-1647, Sept. 2007.

RUBINSTEIN, J.; PENFIELD JR., P.; HOROWITZ, M. A. Signal Delay in RC Tree
Networks. IEEE Transactions on Computer-Aided Design [S.l.], v. 2, n. 3, p. 202-
211, Jul. 1983.

SAPATNEKAR, S. S.; Kang, S. M. Design Automation for Timing-Driven Layout
Synthesis. Norwell: Kluwer, 1993-a.

SAPATNEKAR, S. S.; RAO, V. B.; VAIDYA, P. M.; KANG, S. M. An Exact Solution
to the Transistor Sizing Problem for CMOS Circuits Using Convex Optimization. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems [S.l.],
v. 12, n. 11, p. 1621-1634, Nov. 1993-b.

SAPATNEKAR, S. S.; CHUANG, W. Power vs. Delay in Gate Sizing: Conflicting
Objectives? In: INTERNATIONAL CONFERENCE ON COMPUTER-AIDED
DESIGN, ICCAD, 1995, San Jose, CA, USA, Proceedings… [S.l.] IEEE, 1995,
p. 463-466.

SAPATNEKAR, S. Timing. Norwell: Kluwer, 2004.

SCHNEIDER, F. R.; RIBAS, R. P.; SAPATNEKAR, S. S.; REIS, A. I. Exact Lower
Bound for the Number of Switches in Series to Implement a Combinational Logic Cell.
In: INTERNATIONAL CONFERENCE ON COMPUTER DESIGN, ICCD, 2005, San
Jose, CA, USA. Proceedings… [S.l.]: IEEE, 2005, p. 357-362.

84

SCHNEIDER, F. R. Building transistor-level networks following the lower bound
on the number of stacked switches. 2007. 109 f. Dissertação (Mestrado em Ciência da
Computação) – Programa de Pó-Graduação em Computação, UFRGS, Porto Alegre.

SCOTT, K.; KEUTZER, K. Improving Cell Libraries for Synthesis. In: CUSTOM
INTEGRATED CIRCUITS CONFERENCE, CICC, 1994 [S.l.:s.n], Proceedings…
[S.l.]: IEEE, 1994, p. 128-131.

SECHEN, C.; GUAN, B. Large Standard Cell Libraries and their Impact on Layout area
and circuit performance. In: INTERNATIONAL CONFERENCE ON COMPUTER
DESIGN, ICCD, 1996 [S.l.:s.n], Proceedings… [S.l.]: IEEE, 1996, p. 378-383.

SEO, J.; MARKOV, I. L.; SYLVESTER, D.; BLÁAUW, D. On the Decreasing
Significance of Large Standard Cells in Technology Mapping. In: INTERNATIONAL
CONFERENCE ON COMPUTER-AIDED DESIGN, ICCAD, 2008, San Jose, CA,
Proceedings… [S.l.] IEEE, 2008, p. 116-121.

SHAH, S. et al. Discrete Vt Assignment and Gate Sizing Using a Self-Snapping
Continuous Formulation. In: INTERNATIONAL CONFERENCE ON COMPUTER-
AIDED DESIGN, ICCAD, 2005, San Jose, CA, Proceedings… [S.l.] IEEE, 2005,
p. 704-711.

SHAH, S.; GUPTA, P.; KAHNG, A. Standard Cell Library Optimization for Leakage
Reduction. In: DESIGN AUTOMATION CONFERENCE, DAC, 43., 2006, San
Francisco, CA, USA. Proceedings… [S.l.]: ACM, 2006, p. 983-986.

SHERWANI, N. Algorithms for VLSI Physical Design Automation. 3rd ed. Norwell:
Kluwer, 1999.

SINGH, J.; LUO, Z. Q.; SAPATNEKAR, S. S. A Geometric Programming-Based
Worst Case Gate Sizing Method Incorporating Spatial Correlation. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems [S.l.], v. 27, n. 2, p.
295-308, Feb. 2008.

SMITH, M. J. S. Application-Specific Integrated Circuits. Reading: Addison-Wesley,
1997.

SUTHERLAND, I.; SPROULL, B.; HARRIS, D. Logical Effort: Designing Fast
CMOS Circuits. San Francisco: Morgan Kaufmann, 1999.

SYNOPSYS-a Open Source Liberty. [S.l.:s.n]. Available at
http://www.opensourceliberty.org/

SYNOPSYS-b Design Compiler Tutorial. [S.l.:s.n]. Dec. 2009. Available at http://
www.tkt.cs.tut.fi/tools/public/tutorials/synopsys/design_compiler/gsdc.html

TENNAKOON, H.; SECHEN, C. Gate Sizing Using Lagrangian Relaxation Combined
with a Fast Gradient-Based Pre-Processing Step. In: INTERNATIONAL
CONFERENCE ON COMPUTER-AIDED DESIGN, ICCAD, 2002 [S.l.]
Proceedings… [S.l.] IEEE, 2002, p. 395-402.

85

TENNAKOON, H.; SECHEN, C. Efficient and Accurate Gate Sizing with Piecewise
Convex Delay Models. In: DESIGN AUTOMATION CONFERENCE, DAC, 42.,
2005, Anaheim, CA, USA. Proceedings… [S.l.]: ACM, 2005, p. 807-812.

TENNAKOON, H.; SECHEN, C. Nonconvex Gate Delay Modeling and Delay
Optimization. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems [S.l.], v. 27, n. 9, p. 1583-1594, Sept. 2008.

TRIHY, R. Addressing Library Creation Challenges from Recent Liberty Extensions.
In: DESIGN AUTOMATION CONFERENCE, DAC, 45., 2008, Anaheim, CA, USA.
Proceedings… [S.l.]: ACM, 2008, p. 474-479.

USING the Synopsys Design Constraints Format. [S.l.:s.n]. Jun. 2009. Available at
http://solvnet.synopsys.com

VANDERBEI, R. J. Linear Programming – Foundations and Extensions. 3rd ed. New
York: Springer, 2008.

WAGNER, F. R.; REIS, A. I.; RIBAS, R. P. Fundamentos de Circuitos Digitais.
Porto Alegre: Sagra Luzzatto, 2006.

WANG, C. C.; MARKOVIC, D. Delay Estimation and Sizing of CMOS Logic Using
Logical Effort With Slope Correction. IEEE Transactions on Circuits and Systems –
II: Express Briefs [S.l.], v. 56, n. 8, p. 634-638, Aug. 2009.

WERBER, J.; RAUTENBACH, D.; SZEGEDY, C. Timing Optimization by
Restructuring Long Combinatorial Paths. In: INTERNATIONAL CONFERENCE ON
COMPUTER-AIDED DESIGN, ICCAD, 2007, San Jose, CA, USA. Proceedings…
[S.l.] IEEE, 2007, p. 536-543.

WESTE, N. W.; HARRIS, D. CMOS VLSI Design – A Circuit and Systems
Perspective. 3rd ed. Boston: Pearson, 2005.

WESTE, N. W.; HARRIS, D.; BANERJEE, A. CMOS VLSI Design – A Circuit and
Systems Perspective. New Delhi: Pearson, 2006.

YOSHIDA, H.; IKEDA, M.; ASADA, K. A Structural Approach for Transistor Circuit
Synthesis. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences [S.l.], v. E89-A, n. 12, p. 3529-3537, Dec. 2006.

ZEYDEL, B. R.; OKLOBDZIJA, V. G. Methodology for Energy-Efficient Digital
Circuit. In: INTERNATIONAL WORKSHOP ON POWER AND TIMING
MODELING, OPTIMIZATION AND SIMULATION, PATMOS, 2006, Montpellier,
France. Proceedings… [S.l.]: 2006.

ZHOU, L.; WAKAYAMA, C.; SHI, C.J.R. CASCADE: A Standard Supercell Design
Methodology with Congestion-Driven Placement for Three-Dimensional Interconnect-
Heavy Very Large Scale Integrated Circuits. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems [S.l.], v. 26, n. 7, p. 1270-1282, Jul. 2007.

