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Formulação Analítica Baseada em Logical Effort para 
Dimensionamento Local  

RESUMO 

A indústria de microeletrônica tem recorrido cada vez mais à metodologia de projeto 
baseado em células para fazer frente à crescente complexidade dos projetos de circuitos 
integrados digitais, uma vez que circuitos baseados em células são projetados mais 
rápida e economicamente que circuitos full-custom. Entretanto, apesar do progresso 
ocorrido na área de Electronic Design Automation, circuitos digitais baseados em 
células apresentam desempenho inferior ao de circuitos full-custom. Assim, torna-se 
interessante encontrar maneiras de se fazer com que circuitos baseados em células 
tenham desempenho próximo ao de circuitos full-custom, sem que isso implique 
elevação significativa nos custos do projeto. Com tal objetivo em vista, esta tese 
apresenta contribuições para um fluxo automático de otimização local para circuitos 
digitais baseados em células. Por otimização local se entende a otimização do circuito 
em pequenas janelas de contexto, onde são feitas otimizações considerando o contexto 
global. Deste modo, a otimização local pode incluir a detecção e isolamento de regiões 
críticas do circuito e a geração de redes lógicas e de redes de transistores de diferentes 
topologias que são dimensionadas de acordo com as restrições de projeto em questão. 
Como as otimizações locais atuam em um contexto reduzido, várias soluções podem ser 
obtidas considerando as restrições locais, entre as quais se escolhe a mais adequada para 
substituir o subcircuito (região crítica) original. A contribuição específica desta tese é o 
desenvolvimento de um método de dimensionamento de subcircuitos capaz de obter 
soluções com área ativa mínima, respeitando a capacitância máxima de entrada, a carga 
a ser acionada, e a restrição de atraso imposta. O método é baseado em uma formulação 
de logical effort, e a principal contribuição é calcular analiticamente a derivada da área 
para obter área mínima, ao invés de fazer a derivada do atraso para obter o atraso 
mínimo, como é feito na formulação tradicional do logical effort. Simulações elétricas 
mostram que o modelo proposto é muito preciso para uma abordagem de primeira 
ordem, uma vez que apresenta erros médios de 1,48% para dissipação de potência, 
2,28% para atraso de propagação e 6,5% para os tamanhos dos transistores. 

 

 

 

 

Palavras-Chave: Dimensionamento de Subcircuitos, Minimização de Área Ativa, 
Restrições de Projeto, Logical Effort. 
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Analytical Logical Effort Formulation for Local Sizing 

ABSTRACT 

Microelectronics industry has been relying more and more upon cell-based design 
methodology to face the growing complexity in the design of digital integrated circuits, 
since cell-based integrated circuits are designed in a faster and cheaper way than full-
custom circuits. Nevertheless, in spite of the advancements in the field of Electronic 
Design Automation, cell-based digital integrated circuits show inferior performance 
when compared with full-custom circuits. Therefore, it is desirable to find ways to bring 
the performance of cell-based circuits closer to that of full-custom circuits without 
compromising the design costs of the former circuits. Bearing this goal in mind, this 
thesis presents contributions towards an automatic flow of local optimization for cell-
based digital circuits. By local optimization, it is meant circuit optimization within 
small context windows, in which optimizations are done taking into account the global 
context. This way, local optimization may include the detection and isolation of critical 
regions of the circuit and the generation of logic and transistor networks; these networks 
are sized according to the existing design constraints. Since local optimizations act in a 
reduced context, several solutions may be obtained considering local constraints, out of 
which the fittest solution is chosen to replace the original subcircuit (critical region). 
The specific contribution of this thesis is the development of a subcircuit sizing method 
capable of obtaining minimum active area solutions, taking into account the maximum 
input capacitance, the output load to be driven, and the imposed delay constraint. The 
method is based on the logical effort formulation, and the main contribution is to 
compute the area derivative to obtain minimum area, instead of making the delay 
derivative to obtain minimum delay, as it is done in the traditional logical effort 
formulation. Electrical simulations show that the proposed method is very precise for a 
first order approach, as it presents average errors of 1.48% in power dissipation, 2.28% 
in propagation delay, and 6.5% in transistor sizes. 
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1 INTRODUCTION 

Electronic devices become more and more present on people’s daily lives, which 
makes out of the market of semiconductor devices an important parcel of world 
economy. A fair chance of good profits has attracted a great number of companies for 
such market, and so the electronics industry is induced to deliver products every time 
with higher quality standards and shorter time to market. Therefore, any way to reduce 
design time of integrated circuits is very appealing for this industry. 

Adding to this fact the current stage of miniaturization and integration in 
microelectronics, which makes the design of an integrated circuit steadily more 
complex, it is set up scenery for a design methodology capable of dealing with these 
boundaries efficiently. According to Weste (2006), there are seven design 
methodologies currently in use: 

- Structured design techniques; 
- Microprocessor/DSP (Digital Signal Processor); 
- Programmable Logic; 
- Gate array and Sea of gates design; 
- Cell-based design; 
- Full-custom design; 
- Platform-based design/System on a Chip (SOC). 

These design methodologies take advantage of CAD (Computer Aided Design) 
tools, in a way to allow them to cope with the current scale of miniaturization and 
integration of semiconductor devices. This is a way to reduce considerably the design 
time (SHERWANI, 1999). 

This research work is related to cell-based design. Cell-based design delivers faster, 
smaller and less power consuming integrated circuits than those integrated circuits 
produced by programmable logic or gate array. Nevertheless, cell-based design shows a 
higher design cost (WESTE, 2006). Compared with full-custom design, cell-based 
design demands much less man-hours and, therefore, it has a lower cost. Nevertheless, 
cell-based design generates integrated circuits that may be up to three to seven times 
more power consuming (CHINNERY, 2005) or three to eight times slower 
(CHINNERY, 2002) than equivalent integrated circuits designed via full-custom. Even 
though cell-based design delivers integrated circuits with inferior performance (as 
compared with full-custom integrated circuits), the market share of this methodology 
has been steadily increasing. 

Full-custom design inherently generates either faster or less power consuming 
integrated circuits than those generated via cell-based design. This happens because, in 
the former methodology, a human designer can manually optimize transistor sizing, 
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placement and routing of devices, even the layout of the circuit. Cell-based design, in its 
turn, relies on a limited set of options to accomplish the circuit sizing, among other 
factors that restrain its capacity of generating either faster or less power consuming 
integrated circuits (HU, 2007). 

Cell-based design must deal with discrete sizing of logic gates, since a standard cell 
library contains a finite number of different sizes for each cell. The problem of 
choosing, out of a limited number of options, the size of a cell to correspond to a node 
of a circuit under design is an NP-complete problem (LI, 1993; REZVANI, 2003). 
Besides, it is likely that the ideally-sized cell to map a given node does not belong to the 
current standard-cell library. 

As a consequence of the factors just mentioned, human intervention in cell-based 
design became a common practice (ROY, 2005), especially in the nodes that represent a 
performance bottleneck. This thesis aims specifically at developing a subcircuit sizing 
method oriented towards on-the-fly cell generation, within the context of local 
optimization. This sizing method obtains minimum active area solutions, taking into 
account the maximum input capacitance, the output load to be driven, and the delay 
constraint. The method is based on the logical effort formulation, and the main 
contribution is to compute the area derivative to obtain minimum area, instead of 
making the delay derivative to obtain minimum delay, as it is done in the traditional 
logical effort formulation. 

This thesis is organized as follows. Chapter 2 tackles the fundamental concepts for 
this research work. In chapter 3, some reference works on digital circuit sizing are 
shown, as well as concepts intrinsically related to this research. Next, in chapter 4, the 
subcircuit sizing method is developed. Chapter 5 is devoted to the experimental results 
obtained with the new sizing method. Finally, chapter 6 brings the conclusion. 
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2 BASIC CONCEPTS 

In this chapter, the basic concepts needed for a better understanding of this thesis 
will be reviewed. This research work refers to cell-based design methodology, within 
the broader context of digital integrated circuits. The design of an integrated circuit, 
from specification to final implementation, is an intricate process that shall be divided 
into several stages. These stages involve well established concepts and methodologies. 
Therefore, initially general concepts about digital integrated circuit design will be 
shown. Based upon these general concepts, cell-based design flow will be tackled, since 
this methodology came as an answer to the growing complexity of integrated circuit 
design. 

Next section deals with design constraints. When conceiving a digital circuit, there 
are specifications and design constraints that must be observed in every proposed 
modification to the circuit. Within design constraints, there are also cost functions that 
may be associated with a circuit, which are useful for optimization purposes. 

After that, the concepts of delay and timing will be seen, since they have foremost 
importance in digital circuit design. Every digital circuit introduces a delay between its 
input and output signals. For a digital circuit design to reach its performance goals, 
these delays must be handled appropriately. 

In the same fashion, the concepts regarding sizing of semiconductor devices deserve 
a section of its own. It is useless to have a very fast circuit that does not respect either 
area or power consumption limitations, hence the need for adequate sizing. 

The final section is devoted to the mathematical tools related to the resolution of the 
proposed problem. There are different ways to model the digital circuit sizing problem, 
and for every model there may exist one or more mathematical techniques for its 
resolution. Grosso modo, these techniques may be divided into mathematical 
programming and analytical resolution of minimization problems, as reviewed in the 
end of this chapter. 

2.1 General Concepts about Digital Integrated Circuit Design 
In this section, concepts referring to integrated circuit design are reviewed. Some of 

these concepts are consensually defined in the literature, meanwhile others have 
different definitions according to different authors, and there are even concepts that 
have not been formally defined in the consulted literature. Therefore, in this section, 
concepts alluding to integrated circuit design are either reviewed or defined, in a way to 
conceive a consistent set of definitions to be referred to throughout this work. 
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The first concept to be reviewed is that of logic networks. Logic gates may be 
organized into logic networks, which are sets of logic gates that implement a non-
elementary logic function. A transistor network is an array of transistors capable of 
implementing a logic function, in which these transistors are not necessarily organized 
into logic gates. For a given logic function, different logic networks and transistor 
networks may be implemented. Each of these networks may belong to different logic 
styles (RABAEY, 2003) — also known as circuit families (WESTE, 2006) —, as 
shown in Figure 2.1. Logic networks and transistor networks differ from each other by 
logic style and topology. Just to mention two examples, the logic style CSP CMOS — 
Complementary Series Parallel CMOS —is composed of logic gates, meanwhile the 
pass transistor logic style is composed of structures that are not organized as basic logic 
gates. Therefore, this logic style is based on transistor networks. 

This research work deals only with combinational digital circuits, i.e., circuits 
whose outputs are functions exclusively of current inputs. Therefore, these are 
memoryless circuits. 

A concept closely related to logic gate is that of cell, although there is a difference 
between these two concepts: Logic gate refers to the logic function under 
implementation, its Boolean equation and truth table. In turn, cell alludes to physical 
aspects of implementation, such as layout, etc. That is, the concept of logic gate is 
related to logic functionality, meanwhile the concept of cell is related to electrical 
aspects and physical implementation. For instance, an inverter logic gate may 
correspond either to a small-sized inverter cell or to an inverter cell capable of driving a 
large capacitance in its output. In short, according to Gajski-Kuhn’s Y diagram 
(WESTE, 2006), cell belongs to physical domain, and logic gate belongs to structural 
domain. A cell provides a Boolean logic function (e.g., inverter, AND, NAND, OR, 
NOR, XOR, XNOR, AOI, OAI, adder, multiplexer) or storage function (latch, flip-
flop). Therefore, it can be stated that the cell is the basic unit of organization of a digital 
circuit designed under cell based design. 

Cells are conceived by experienced designers, who spend a long time optimizing 
each cell and taking full advantage of layout properties. Besides, each cell must be 
verified and characterized individually, which is a time demanding activity. However, 
once concluded the design, the cell can be reused several times, without need for 
redesign. 

Logic threshold and drive strength are two of the characteristics that define the 
functioning of a cell. Logic threshold (Vth), also named input threshold or switching 
threshold, is the voltage that, when applied to the input of a cell, causes the output 
voltage Vout to be equal to the input voltage Vin (RABAEY, 2003; WESTE, 2005). Drive 

strength (or driving strength) is the ability of the cell in charging or discharging a given 
capacitance in its output. This drive strength is directly related to the size of the 
transistors in the cell. Logic threshold may be used in the calculation of a cell 
propagation delay. Drive strength is very important in the sizing of digital integrated 
circuits, as shown throughout this work. 

Usually, cells belong to a standard cell library (or cell library). This library is a set 
of cells with compatible layout template, in which the cells provide different logic 
functions and storage functions. These cells are used to map a given logic network, 
according to the cell-based design methodology. Table 2.1 shows an example of a 
standard cell library. 
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Figure 2.1 – Different logic and transistor networks for the same logic function 

 
Source: Logics (2013). 

 

Designers find the cell-based design methodology appealing because the power 
distribution and compatibility among neighbor cells is greatly improved by using a 
compatible layout template for all cells. This compatible layout template forces the cells 
to have compatibility with neighbor cells by using power lines (VDD and GND) at 
compatible positions, so that placement and routing can be done automatically. Cells are 
organized in rows, and these rows may be separated one from another by routing 
channels. 

Usually, a standard cell library contains cells with different sizes that implement the 
same logic function. X1 stands for the minimum sized cell, X2 represents the cell twice 
as big as X1 cell, and so forth. Larger cells have greater drive strength and therefore are 
faster, but at the cost of greater power consumption. On the contrary, smaller cells have 
less drive strength and therefore are slower, but they consume less power. 

The concepts of template and scale factor are needed for a better understanding of 
the subject of cell size. The template of a cell is the minimum sized version of this cell, 
which defines the cell topology and the ratio between the sizes of its transistors. Each 
and every cell obtained from this template has the same topology and the same 
transistor size ratios. An example of a NOR2 cell template is shown in Figure 2.2a. It is 
worthy to emphasize that the current concept of template is related to neither layout 
aspects nor physical implementation aspects. Therefore, the current concept of template 
shall not be confused with the notion of layout template mentioned in the definition of 
standard cell library. This latter sort of template refers solely to physical implementation 
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aspects. Every standard cell in a library has an exclusive layout template, but several 
cells may have the same template. 

 

Table 2.1 – Example of a standard cell library 

Gate type Variations Options 

Inverter, buffer, tristate 
buffer 

 1X, 2X, 4X, 8X, 16X, 32X 
minimum size inverter 

NAND, AND 2-8 inputs High, normal, low power 

NOR, OR 2-8 inputs High, normal, low power 

XOR, XNOR  High, normal, low power 

AOI, OAI  High, normal, low power 

Multiplexer Inverting, non inverting High, normal, low power 

Schmitt trigger  High, normal, low power 

Adder, half adder  High, normal, low power 

Latch  High, normal, low power 

Flip-flop D, with and without 
synch/asynch set and reset, 
scan 

High, normal, low power 

I/O pad Input, output, tristate, 
bidirectional, boundary 
scan, slew rate limited, 
crystal oscillator 

Various drive levels (1-16 
mA) and logic levels 

Source: Weste (2006, p. 426). 

 

The scale factor (BOYD, 2005; HEDLUND, 1987) is the number greater than or 
equal to 1 that multiplies the widths of the transistors in the template in order to obtain 
the corresponding cell with the expected drive strength. Figure 2.2 shows two instances 
of a NOR2 cell: a minimum sized cell (i.e., template — Figure 2.2a) and another cell 
with size z. In this case, the cell depicted in Figure 2.2b has a scale factor equal to z. 
These two cells have different sizes, but the transistor sizes in each cell keep the same 
ratio between each other, i.e., w1 : w2 : w3 : w4, where wi, i ∈ {1, 2, 3, 4}, is the width of 
every transistor in the template. 

Although the scale factor may in principle assume any value greater than or equal to 
1, usually the standard cells in a library have scale factors given by natural numbers. In 
this work, this set of standard cells in a library, which have the same template and that 
differ from each other just by their scale factors, is named supercell

1. As examples of 
supercells, one can mention: a) the supercell constituted by the six inverter cells in the 
library depicted in Table 2.1; b) the supercell given by the two NOR2 cells in Figure 2.2 

                                                 
1 This definition of supercell is different from the one given by Zhou (2007). 
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and c) the three supercells depicted in Figure 2.3, each of which is composed by three 
cells. 

 

Figure 2.2 – Scale factor of a NOR2 cell 

 
Source: Logics (2013). 

 

In Figure 2.3, the numbers in each transistor represent the width of the transistor 
channel (i.e., its size), parameterized with respect to a reference value (e.g., the channel 
width of the smallest NMOS transistor that can be implemented with the technology). 
Although the three supercells implement the same logic function, they have different 
templates. This can be observed in the ratio between PMOS and NMOS transistor sizes 
in each supercell: in supercell 1, this proportion is equal to 1:1; in supercell 2, it is worth 
3:1; and in supercell 3 it is equal to 1:3. This example shows that there may exist 
standard cells (with the same logic function) that show differences among themselves 
other than their sizes (drive strengths). In other words, there are standard cell libraries 
with only one supercell for every logic function implemented, and there are also 
standard cell libraries with more than one supercell for a given logic function. 

In earlier times, there were a few sizes for every template in a standard cell library. 
Nowadays, the cell size may vary from X1 to X16. As represented in Figure 2.4, there is 
a huge difference between an X1 cell and an X16 cell. This difference is reflected in the 
delay, area, and power consumption of each cell. 

With respect to the amount of standard cells, there are libraries ranging from just 
tens of standard cells (ROSA JUNIOR, 2008) up to thousands of standard cells 
(SHERWANI, 1999; TRIHY, 2008). Regarding the amount of standard cells in a 
library, there is a tradeoff that must be respected: the bigger the number of logic 
functions and the number of different options for every logic function implemented as 
standard cells, the easier the obtention of a cell with the desired logic function and a 
close to ideal size for a given node of the circuit under design. However, as more 
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standard cells are added to the library, the runtime of the cell chooser algorithm 
increases polynomially and there is also the additional work of designing, verifying, and 
characterizing extra standard cells. In the literature, there are authors who plead libraries 
with a few standard cells — e.g., Ricci (2007), Seo (2008) —, and there are also those 
who defend libraries with many standard cells — e.g., Berkelaar (1988), Correia (2004), 
Gavrilov (1997), Keutzer (1987), Marques (2007), Scott (1994), Sechen (1996) —, with 
no consensus whatsoever about this matter. 

 

Figure 2.3 – Examples of supercells for NAND2 logic function 

b) Supercell 2
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c) Supercell 3

VDD VDDVDD VDDVDD VDD

1 1

3

3

VDD VDDVDD VDDVDD VDD

2 2

6

6

VDD VDDVDD VDDVDD VDD

4 4

12

12

X1 X2 X4

VDD VDDVDD VDDVDD VDD

2 2

2

2

VDD VDDVDD VDDVDD VDD

4 4

4

4

VDD VDDVDD VDDVDD VDD

8 8

8

8

X1 X2 X4

a) Supercell 1

 
Source: Logics (2013). 

 

All cells in a standard cell library have been previously verified and characterized. 
Therefore, the designer can take its correct functioning for granted. However, the 
designer is limited to using in his (her) project only the cells made available by the 
standard cell library. This is indeed a limiting factor in the cell-based design 
methodology, which is tackled in this research work. 
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Technology mapping is the process of expressing a logic network in terms of cells 
chosen from a standard cell library. Usually, technology mapping aims at the optimized 
usage of standard cells in order to implement a circuit that obeys given timing 
constraints, with a minimum area. In its most generic fashion, technology mapping is 
free to choose both the logic functionality and the size of the standard cells, out of the 
available sizes in the standard cell library (HU, 2003; KARANDIKAR, 2004). 
However, in some particular cases, technology mapping just determines the logic 
functionality of the cells (BERKELAAR, 1988; CORREIA, 2004; MARQUES, 2007) 
and, in some other cases, technology mapping can choose just the size of the cells 
(COUDERT, 1997, 2002; HU, 2009). 

 

Figure 2.4 – Current difference in cell sizes 

 
Source: Logics (2013). 

 

The concepts of standard cell, standard cell library, and technology mapping are 
used in the explanation of cell-based design methodology. Prior to that, however, it is 
necessary to differentiate the concepts of full-custom circuits, ASIC circuits, and cell-
based circuits, since there are in the literature conflicting definitions about this 
terminology. 

There is a strict relationship between the design methodology and the integrated 
circuit thus produced. By definition, a full custom circuit is the one produced via full 
custom design methodology (also named custom design methodology). A full custom 
circuit is also named custom circuit. A characteristic of full custom design methodology 
is to give the designer a wide freedom of action. The designer may conceive each 
device without interfering in the design of the other devices. If necessary, the designer 
may act directly into the integrated circuit layout, by manually designing, positioning, 
and routing the devices. The full custom methodology design is suited for the design of 
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high performance integrated circuits, such as microprocessors and DSP processors. 
However, such a high performance is obtained because designers work for a long time 
in the project, which raises the costs. 

The definition of ASIC circuits is somewhat different from the other categories. 
According to Chinnery (2002), strictly speaking, the expression “Application Specific 

Integrated Circuit” as well as the acronym ASIC refer to an integrated circuit designed 
for a particular application. As examples of ASIC circuits, one can cite: an IC for a 
speaking doll; an IC for military gear; an IC to interface the memory and the 
microprocessor of a workstation (SMITH, 1997). 

There is no consensus in the literature about the utilization and real meaning of the 
concepts “ASIC circuit”, “full custom circuit”, and “cell-based circuit”. Although the 
notion of ASIC circuit refers just to the purpose with which a given integrated circuit 
was conceived – and not to the design methodology used (cell-based design, full custom 
design etc.) –, most of the times the acronym ASIC refers to an integrated circuit 
designed via cell-based design methodology (CHINNERY, 2002). This confusion is due 
to the fact that, according to Sapatnekar (1993-a), cell-based design methodology is the 
most widely used methodology in the design of ASIC circuits. However, just like there 
are ASIC circuits conceived via cell-based design methodology, there are also ASIC 
circuits conceived under full custom methodology. This way, for the sake of coherence, 
in this research work only cell-based and full custom are referred to henceforth. 

That said, the next topic is the definition of cell based design methodology. In this 
methodology, the circuit under design is mapped to a standard cell library, and the 
placement and routing are done automatically. Figure 2.5 depicts the cell-based design 
flow. By design flow, it is meant a set of procedures that allow the designer to start from 
the specification of an integrated circuit and come to the error-free, final 
implementation of this circuit (WESTE, 2005). 

The design starts with its behavioral description in HDL (Hardware Description 
Language). From this description, logic synthesis generates the circuit netlist, as 
follows. The RTL (Register Transfer Level) description is interpreted as a Boolean 
network not necessarily optimized. This network goes through technology-independent 
optimizations, which use properties of logic functions to generate an optimized Boolean 
network. Next, technology mapping is done. As result of such mapping, the circuit is 
now described as a cell network, which goes through technology-dependent 
optimizations, in order to generate the final, optimized cell network. At this moment, 
logic synthesis happens: based on the optimized cell network, and on the processes of 
floorplanning, placement and routing, all the information needed to completely specify 
the circuit layout is obtained (RABAEY, 2003). 

The main objective of cell based design is to reduce implementation costs, by 
reusing a standard cell library. In this methodology, the cells need to be designed, 
verified, and characterized only once for a given technology. This is a great advantage 
of this methodology, because the cells may be reused, thus reducing design cost 
(RABAEY, 2003). Besides, once the standard cell library is ready to be used, the design 
time of a new circuit is considerably reduced (as compared with full-custom integrated 
circuits). The design time is shortened even further, because placement and routing is 
done automatically in this methodology. 
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Figure 2.5 – Cell based design flow 

 
Source: Schneider (2007). 

2.2 Design Constraints 
Regardless of the design methodology in use, there are design constraints to be taken 

into account. In terms of engineering design, a design constraint refers to a 
characteristic that the design must possess. According to Design (2008), design 
constraints are declarations that define the design goals in terms of measurable 
characteristics of the circuit, such as timing, area, and capacitance. Typically, design 
constraints state that a circuit must have a delay less than or equal to a given maximum 
delay, a maximum input pin capacitance (MFI — Maximum FanIn), and a given load to 
be driven by output pin (Cout). 

In this research work, a design constraint is regarded as an objective or characteristic 
to be attained by the circuit. For instance, if a given circuit path has a delay constraint 
d1, but the circuit is optimized in such a way that this path comes to have a delay 
d2 < d1, then the delay constraint is updated to d2. The same applies to the other design 
constraints. 

Design constraints may also contain directives for the optimization process. These 
directions point to the costs to be reduced in this process. Usually, some constraints 
(e.g., maximum input pin capacitance and maximum delay) must be respected, 
meanwhile some costs (such as area and power consumption) shall be minimized. 

When analyzing or designing a circuit, attention can be focused on a small piece of 
the global circuit, named subcircuit. Just like the global circuit has global design 
constraints, each subcircuit has its own local design constraints. In the same fashion as 
there is a relationship between the subcircuit and the global circuit it belongs to, there is 
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also a relationship between the corresponding global and local design constraints, as 
depicted in Figure 2.6. The global circuit has m primary inputs (in1, in2, ... , inm) and n 
primary outputs (out1, out2, ... , outn). Suppose this circuit is divided into subcircuits, out 
of which ten are emphasized in Figure 2.6. Each subcircuit subj has inputs ij_k and 
outputs oj_l, where j ∈ {1, 2, 3, ... ,T}, k, l ∈ {1, 2, 3, ..., U}, T is the total number of 
subcircuits and U is the maximum number of inputs or outputs of the subcircuits. 

 

Figure 2.6 – Local and global design constraints 

 
Source: Logics (2013). 

 

Figure 2.6 shows that there is a strict relationship between the maximum input pin 
capacitance of the global circuit and the maximum input pin capacitances of the 
subcircuits in the input of the global circuit. This relationship is expressed in the 
following set of equations: 

MFI(in1) = MFI(i1_1)                                          (2-1)  

   MFI(in2) = MFI(i1_2) 

                       MFI(in3) = MFI(i1_3) + MFI(i2_1) 

    MFI(in4) = MFI(i2_2) 

   M  

    MFI(inm) = MFI(i3_1) 

The maximum capacitance of the input pin in3 of the global circuit is given by the 
sum of the maximum capacitances of two inputs of two subcircuits — MFI(i1_3) and 
MFI(i2_1) — due to the bifurcation in in3 that drives these two inputs. The set of 
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equations (2-1) shows that an alteration in the maximum input capacitance of the global 
circuit implies the same alteration in the maximum input capacitance of the subcircuit in 
the input of the global circuit and vice versa. When there is a bifurcation in the input 
signal, a modification in the corresponding maximum input capacitance of the global 
circuit may be spread over the maximum input capacitances of one or more subcircuits. 

With respect to the load to be driven by the output pins, there is always a biunivocal 
correspondence between the capacitances of the output pins of the global circuit and the 
capacitances of the output pins of the subcircuits in the output of the global circuit. Let 
Cx be the capacitance of a generic pin x: 

Cout1 = Co8_1                                                   (2-2) 

      Cout2 = C o8_2 

     M  

     Cout10 = Co9_1 

     Cout11 = Co9_2 

     M  

      Cout n = Co10_1 

The set of equations (2-2) shows that an alteration in the capacitance to be driven by 
the output pin of the global circuit implies the same alteration in the capacitance to be 
driven by the output pin of the subcircuit in the output of the global circuit and vice 
versa. 

In its turn, the global design constraint on maximum delay in every path (connecting 
an input to an output of the global circuit) is equivalent to the sum of the local design 
constraints on maximum delays of the subcircuits that constitute this global path. An 
alteration in the global design constraint on maximum delay implies alterations in one 
or more (or even all) local design constraints on maximum delay. In the same fashion, 
an alteration in a local design constraint on maximum delay implies the same alteration 
in the global design constraint on maximum delay. Mathematically speaking, let Px be 
an arbitrary path between an input and an output of the global circuit; let d(Px) be the 
global design constraint on maximum delay of such path. The relationship between the 
global and local design constraints on maximum delay is given by: 

∑
∈

=
xPi

ix dPd )(                                               (2-3) 

where di denotes the local design constraint on maximum delay of the path within 
subcircuit i that belongs to global path Px. A subcircuit may have several inputs and 
outputs (as seen in Figure 2.7) and therefore several local design constraints on 
maximum delay, but for equation (2-3) only the path within subcircuit i that belongs to 
global path Px matters. 

Now let us suppose that the global path Px has been optimized, its maximum delay 
has changed from d1(Px) to d2(Px), where d2(Px) = d1(Px) – δ and δ > 0. The outcome of 
this optimization is a variation δi > 0 on the local design constraint on maximum delay 
of the subcircuit i that belongs to global path Px, so that 
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∑
∈

=
xPi

i δδ                                                   (2-4) 

That is, the global path optimization may involve the optimization of one or more 
subcircuits that belong to such path. In the case of a subcircuit with more than one 
output, only the path within the subcircuit that belongs to the global path needs to be 
optimized. 

 

Figure 2.7 – Subcircuit with several paths (P1, P2, ..., P6) between input and output 

 
Source: Logics (2013). 

 

With respect to power consumption, an alteration in the power consumption of a 
subcircuit implies the same alteration in the power consumption of the global circuit. As 
for the area, an alteration in the area of a subcircuit is also reflected in the area of the 
global circuit, as long as layout aspects of the global circuit do not dim or even nullify 
this area variation. When the area or power consumption of the global circuit is 
minimized, this minimization is spread over the subcircuits in a similar way to equation 
(2-4). 

2.2.1 Example of design constraint specification format 

The SDC format (Synopsys Design Constraints) is a popular design constraint 
specification format. Several companies use this format in their EDA (Electronic 
Design Automation) tools as a means of communicating design intentions (USING). 

In SDC format, design constraints are divided in two categories: design rule 
constraints and optimization constraints (also known as user specified constraints). 
Design rule constraints are due to the cell-based design methodology. The synthesis tool 
uses a standard cell library, and for every standard cell in the library there is a set of 
design rules that must be rigorously obeyed by this synthesis tool. Examples of design 
rule constraints are: 

- Maximum transition time of the cell input signal, also referred to as slew; 
- Maximum capacitance: maximum capacitive load that a cell output is capable of 

driving; 
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- Cell degradation: some standard cell libraries supply cell degradation tables, which 
indicate the maximum capacitance that a cell is capable of driving as a function of 
the transition time of its input signals (SYNOPSYS-b). 

Optimization constraints are designer-made specifications that define design 
intentions such as timing, area, and power consumption. These constraints act as a guide 
for the synthesis tool to do its task. Examples of optimization constraints are: 

- Input and output delays, which restrict the delays of the external paths in the 
borders of the circuit under design. The input delay specifies the path delay 
between an external input signal and the first register in the circuit, meanwhile the 
output delay specifies the delay between the last register in the circuit and its 
outputs; 

- Minimum and maximum path delays, which specify, for every path between an 
input and an output, its timing constraint; 

- Total circuit area (SYNOPSYS-b). 

The synthesis tool tries to respect both design rule constraints and optimization 
constraints, but the former constraints have precedence over the latter ones. That is, 
some optimization constraints may be sacrificed so that all design rule constraints are 
met. 

Figure 2.8 shows parts of a SDC file for the design of a ripple carry adder (DESIGN 
COMPILER). In this example, the clock signal has a period of 4 ns, pulse ratio 50/50, 
uncertainty 0.1 ns, latency 0.2 ns, and transition time 0.1 ns. The commands (attributes) 
set_dont_touch_network, set_dont_touch, and set_ideal_network are directives 
for the design. The command set_driving_cell specifies the cells that drive the 
adder. The command set_load specifies the load that must be driven by the adder. The 
commands set_input_delay and set_output_delay specify the time the input signal 
takes to arrive at the adder input and the time it takes to pass through the external block 
until the end of the logic path. The difference between these two delays is the amount of 
time available for the adder internal logic. Finally, the last design constraint sets the 
maximum area allowed for the design. 

 

Figure 2.8 – Example of part of SDC file 

create_clock -name "clk" -period 4 -waveform {0 2} {clk} 

set_clock_uncertainty 0.1 clk 

set_clock_latency 0.2 clk 

set_clock_transition 0.1 clk 

set_dont_touch_network clk 

set_dont_touch rst_n 

set_ideal_network rst_n 

set_driving_cell -library umcl18g212t3_tc_180V_25C -lib_cell 

HDDFFPB1 -pin Q [get_ports a] 

set_driving_cell -library umcl18g212t3_tc_180V_25C -lib_cell 

HDINVD1 -pin Z [get_ports b] 

set_load [load_of umcl18g212t3_tc_180V_25C/HDDFFPB1/D] 

[get_ports s] 

set_input_delay 0.67 [get_ports b] -clock clk 

set_output_delay 0.5 [get_ports s] -clock clk 

set_max_area 1000 

 
Source:  DESIGN COMPILER. 
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2.3 Delay 
In this section, the concepts related to signal propagation delay in digital integrated 

circuits are seen. Regardless of the logic path implemented as a digital integrated 
circuit, there is always a delay between the input and output signals, due to the electrical 
charge propagation through resistive and capacitive components of the circuit. In its 
current stage of miniaturization, microelectronics industry delivers integrated circuits 
with transistors whose channel length is equal to 22 nm (e.g., processors Intel Core i5 
and i7). Regarded as semiconductor switching devices, these transistors change state 
very quickly, thanks to their tiny dimensions. Therefore, these devices can deliver a 
very high maximum operation frequency. However, for an integrated circuit to reach a 
good effective operation frequency, signal propagation delay in this circuit must be kept 
under control. The concepts related to delay and timing are seen in this section. Three 
delay models are also reviewed, namely, Elmore delay model, the gain-based logical 
effort delay model and the nonlinear delay model (NLDM). Elmore delay is a classic 
model, still used in recent sizing algorithms — e.g., Hu (2007) —, meanwhile the 
logical effort delay model was adopted in this research work. The NLDM is mentioned 
as an example of an empirical model, for the sake of comparison with the former 
models, which are theoretical delay models. 

2.3.1 Fundamental concepts 

The first concept worth mentioning is transition time, which encompasses the 
concepts of fall time (tf) and rise time (tr). In this research work, fall time corresponds to 
the time a waveform takes to fall from 90% to 10% of its steady value. In its turn, rise 
time corresponds to the time a waveform takes to rise from 10% to 90% of its steady 
value. 

The second concept is propagation delay ( dt ) — or delay (SAPATNEKAR, 2004), 

for short —, which is defined in this research work as the maximum time interval which 
starts when the input signal (whose transition causes a transition in the output) reaches 
VDD/2 to the time the output signal reaches the same voltage VDD/2. VDD is the supply 
voltage, corresponding to logic level 1. 

Since the propagation delay uses to be different for rise and fall transitions of the 
output signal of the cell, there are two distinct propagation delays: tdlh — delay time 

low to high and tdhl — delay time high to low, respectively. 

The arrival time (AT) denotes the time a signal takes to propagate from the primary 
inputs until a given node. In its turn, the required time (RT) represents the time the 
signal must arrive at a given node, so that the local delay design constraint is satisfied. 
The slack S is defined as: 

ATRTS −=                                                                 (2-5) 

The critical path of a circuit is the logic path between a primary input and a primary 
output that shows the largest delay. 

Timing analysis consists in computing the delay in a path of a digital circuit, in order 
to verify if the timing constraints imposed by the remaining of the circuit are satisfied 
(NOWE, 2003). Timing closure represents the timing analysis of an entire circuit 
(RABAEY, 2003). When a circuit path does not comply with the timing constraints, it is 
said that a timing violation occurs. 
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Theoretical delay model denotes the closed form equationing that gives the 
propagation delay of a logic gate, based on the electrical description of this gate. For 
instance, there is the Elmore delay model (ELMORE, 1948) and the logical effort delay 
model (SUTHERLAND, 1999). Besides these theoretical (physical) delay models, there 
are also empirical delay models, based upon experimental data. Initially, the theoretical 
delay models are reviewed. 

2.3.2 Elmore delay model 

The Elmore delay model is a classic method for estimating the delay in circuits, 
when the circuit is excited by a step function. It is a not very precise model, in which 
the delay is computed on RC networks, and transistors are modeled as resistances. The 
propagation delay ( dt ) for the response of the circuit to this step function may be 

approximated by the first momentum of the response of the circuit to the impulse 
function: 

                                                          dtttetd )('
0∫
∞

=                                                    (2-6) 

where:  t       –  time. 
)(te   –  response of the circuit to the step function. 

          )(' te   – derivative of the response of the circuit to the step function (i.e., 
response of the circuit to the impulse function). 

This is the formal definition of the Elmore delay. Obtaining the response of a circuit 
to the impulse function, as defined, may be an arduous task. Nevertheless, when the 
objective is to evaluate the delay in an RC tree, the Elmore delay becomes friendlier. 
According to Rubinstein (1983) and Sapatnekar (2004), an RC tree – depicted in  

 

Figure 2.9 – is a connection of resistors structured as a tree, with two restrictions: a) 
a capacitance connected to any node in the tree must be grounded; and b) there is no 
resistor grounded. An RC tree thus defined shows two fundamental characteristics: there 
are no resistive loops and, if a node other than the ground is the input, then there is only 
one path from this input node to any other non-ground node in the tree. Besides, if two 
RC trees with the same ground are connected by a non-ground node, then they form a 
new RC tree. 

The Elmore delay in node ni of an RC tree may be obtained as follows. Let Pi the 
path between input node n0 and ni, which may be any tree node other than ground and 
input node. Analogously, let Pj be the path between n0 and a node nj. Let jiij PPP ∩=  

be the part of the path between n0 and ni that is common with the path between n0 and 
nj. For convenience of notation, Pij also denotes the set of resistances that belong to the 
path Pij. The Elmore delay between the input node n0 and the node ni of the RC tree is 
given by: 
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Figure 2.9 – Example of RC tree 

 
Source: Sapatnekar (2004). 

 

For example, in  

 

Figure 2.9: 

4421321221114 )()()()( CRRRCRRCRRCRnTD +++++++=  
               5421 )( CRRR +++ 817161 CRCRCR +++                   (2-8) 

66151413121118 )()( CRRCRCRCRCRCRnTD ++++++=  

               887617761 )()( CRRRRCRRR +++++++        (2-9) 

2.3.3 Logical effort delay model 

The logical effort (LE) delay model is a gain-based model, which emphasizes the 
linearity between delay and gain (i.e., the ratio between the input and output 
capacitances) in a given logic gate. This model has been used in several papers – e.g., 
Boyd (2005), Hu (2003), Joshi (2008), Karandikar (2004; 2005; 2008), Rezvani (2003), 
and Zeydel (2006). 

The model expresses the delay of a logic gate as a function of four parameters, 
which are defined and explained along the deduction of the model: 

− τ: characteristic delay of the given technology; 
− g: logical effort of the gate; 
− h: electrical effort of the gate; 
− p: parasitic (intrinsic) delay of the logic gate. 

What matters now is that these four parameters allow the designer to obtain the 
delay of any logic gate in a quick, straightforward way. Besides, the logical effort 
differentiates the parasitic delay p (due to the intrinsic parasitic capacitances of the logic 
gate) from the delay due to the load driven by the logic gate (electrical effort h) and 
from the delay due to the topological characteristics of the logic gate (logical effort g). 
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This way, it becomes easy to realize the contribution of each of these factors to the total 
delay of the logic gate. Next, the logical effort is deducted, which better explains the 
four parameters previously mentioned. Examples of obtaining the parameters logical 
effort (g) and parasitic delay (p) for basic logic gates are also given. 

According to Sutherland (1999), a single-input logic gate is modeled according to 
Figure 2.10. Cin represents the capacitance of each input of the logic gate. Cin is given 
by the sum of the gate capacitances of the transistors whose gates are connected to such 
input. Cpi denotes the intrinsic parasitic capacitance of the logic gate. Cpi is given 
basically by the sum of the drain capacitances of the transistors whose drains are 
connected to the output of the logic gate. The capacitance to be driven by the logic gate 
is named Cout. 

 

Figure 2.10 – Logical effort delay model of a logic gate 

 

 

 

 

 

 

 

 

Source: Sutherland (1999). 

 
When the pull-up key is closed, the pull-up network offers a resistance Rui to the 

current between VDD and the logic gate output. When it is the turn for the pull-down key 
to be closed, the pull-down network offers a resistance Rdi to the current between GND 
and the logic gate output (The concepts of pull-up and pull-down network are explained 
in section 3.2). To keep the model simple, it is assumed that Rui = Rdi = Ri, so that the 
logic gate has equal tr and tf. 

In order to assure that Rui is indeed equal to Rdi, it suffices to use the convenient γ 
parameter for the technology, where γ is the ratio between the channel width of the 
PMOS transistor (wp) and the channel width of the NMOS transistor (wn) in a minimum 
sized inverter: 

                                                         np ww=γ                                                    (2-10) 

The logical effort model uses the parameters Cin, Cpi, Cout, and Ri, along with the 
concepts of template and scale factor of a logic gate seen in section 2.1, to determine the 
delay of a generic logic gate, with arbitrary size and topology. In order to obtain the 
transistor sizes of a generic logic gate, the size of each transistor in the corresponding 
template is multiplied by a convenient scale factor x. The template of the logic gate in 
Figure 2.10 has input capacitance Ct, intrinsic parasitic capacitance Cpt and pull-up/pull-
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down resistance Rt. The logic gate parameters and the corresponding template 
parameters obey the following relationship: 

Cin = xCt                                                    (2-11) 

Cpi = xCpt                                                   (2-12) 

Ri = x-1
Rt                                                  (2-13) 

According to Sutherland (1999), the absolute delay (dabs) of the logic gate depicted 
in Figure 2.10 is given by: 

)( pioutiabs CCkRd +=                                 (2-14) 

where k is a dimensionless constant, that is specific to the used technology. Let: 

invinvCkR=τ                                           (2-15) 

invinv

tt

CR

CR
g =                                            (2-16) 

in

out

C
C

h =                                            (2-17) 

invinv

ptt

CR

CR
p =                                           (2-18) 

where:  

− Rinv is the pull-up/pull-down resistance of the minimum-sized inverter (i.e., 
inverter template); 

− Cinv is the input capacitance of the minimum-sized inverter; 
− τ is the characteristic delay of the used technology; 
− g is the logical effort of the logic gate; 
− h is the electrical effort of the logic gate; 
− p is the parasitic delay of the logic gate. 

Rewriting equation (2-14) as a function of (2-11), (2-12), (2-13), (2-15), (2-16), 
(2-17), and (2-18), we have: 

)( pghd abs += τ                                         (2-19) 

The logical effort g depends solely on the topology of the logic gate; it does not 
depend on the size of this logic gate. The logical effort expresses how much the logic 
gate is inferior to the minimum sized inverter of the same technology in delivering 
output current. By definition, the logical effort of an inverter is equal to 1. The electrical 
effort gives the ratio between the fanout and the fanin of the logic gate. Therefore, the 
electrical effort depends on the size of the logic gate and also on the load that it must 
drive. 

The parasitic delay p is so called because it represents the delay due to the intrinsic 
parasitic capacitance Cpt of the logic gate. In the hypothetical situation of the logic gate 
driving no load whatsoever (h = 0), the delay is equal to p. The parasitic delay p denotes 
how much the parasitic delay is greater in a generic logic gate than the parasitic delay of 
the minimum inverter in the given technology. There is no relationship between the size 
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of the logic gate and its parasitic delay, since this delay depends only on the topology of 
the logic gate. 

From equation (2-19), one can see that the characteristic delay τ may be understood 
in two different ways: 1) τ is the delay of an inverter with no intrinsic parasitic 
capacitance (p = 0) driving an identical inverter; or 2) τ is the delay of a loadless 
inverter whose transistors have gate capacitances equal to the drain capacitances. The 
absolute delay dabs may be parameterized as a function of τ: 

τdd abs =                                                    (2-20) 

This parameterization is useful for comparing the dimensionless relative delay d of 
circuits developed in different technologies. 

According to Sutherland (1999), there are two rules to determine the logical effort g 
and the parasitic delay p of a logic gate. The first rule refers to the parameter γ, which is 
obtained based upon the inverter; γ gives the relative sizes of PMOS and NMOS 
transistors, and it is valid for all logic gates in a given technology. The second rule 
refers to series transistors, connected between the output of the logic gate and either VDD 
or GND. If there are n series transistors, then each one must be n times bigger than a 
single transistor, in the same situation. Figure 2.11 exemplifies this procedure for three 
basic logic gates. 

 

Figure 2.11 – Examples of basic logic gates modeled according to logical effort 

VDD

a

OUT

1

1,5

a)

b

c)

b

a

3

1

1

OUT

VDD

32

1,5

1,5

VDD

OUT

2

b)

a

DDV

 
Source: Logics (2013). 

 

For the technology used in Figure 2.11, parameter γ is equal to 1.5. Therefore, the 
inverter (Figure 2.11a) has input capacitance Cin_INV equal to 2.5. The logical effort g of 
the inverter is equal to 1. Parasitic delay p is also equal to 1, as long as the transistors 
have equal gate and drain capacitances. 

In the NAND2 logic gate (Figure 2.11b), the PMOS transistors have the same size as 
the PMOS transistor in the inverter. However, the two NMOS transistors are in series 
and, therefore, they must have twice the size of the NMOS transistor in the inverter. 
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Thus, input capacitance Cin_NAND2 is equal to 3.5. The logical effort g is equal to 1.4 
(g = Cin_NAND2/Cin_INV) and the parasitic delay p is equal to 2 (there are two PMOS 
transistors and one NMOS transistor connected to the output of the logic gate). 

In the NOR2 logic gate (Figure 2.11c), the PMOS transistors are in series and have 
twice the size of the PMOS transistor in the inverter. The input capacitance Cin_NOR2 is 
equal to 4, the logical effort g is equal to 1.6 and the parasitic delay is equal to 2. 

The logical effort delay model is very simple and easy to use. It is especially well 
suited for sizing for minimum delay. Nevertheless, its simplicity causes inaccuracy. 
This model assumes that the gate and drain capacitances of a transistor are equal, but in 
fact the gate capacitance uses to be greater than drain capacitance. This issue may be 
solved via model calibration (SUTHERLAND, 1999). Besides, the sizing of series 
transistors does not take into account the velocity saturation of carriers. This 
phenomenon is more evident in NMOS transistors, since electrons have a greater 
mobility than holes. Moreover, series transistors are less prone to showing this 
phenomenon than single transistors. Therefore, series transistors, especially NMOS 
transistors, must have a smaller size than that predicted by logical effort. An adequate 
calibration solves this problem. 

Furthermore, the logical effort model computes the delay of a logic gate regardless 
of the transition time of the input signal. This behavior does not correspond to the real 
world, since a logic gate shows different delays for different transition times of the input 
signal. Besides, the logical effort model makes no distinction whatsoever between the 
transition time in the output of a logic gate and the propagation delay of this logic gate. 
These problems were solved by Lasbouygues (2006). Other papers also extended the 
logical effort delay model — e.g., Kabbani (2005) and Keane (2006). 

2.3.4 Nonlinear Delay Model – NLDM 

The nonlinear delay model (NLDM) is mentioned here as an example of an 
empirical delay model, in order to show the differences with respect to theoretical 
(Elmore and logical effort) delay models. This research work is based upon the logical 
effort delay model, since both mathematical programming techniques and analytical 
solution of the minimization problem are well suited for solving a problem modeled this 
way. 

The NLDM model, introduced by Synopsys and embodied by the Liberty format 
(SYNOPSYS-a), consists in a discrete lookup table (LUT) filled by pre-
characterization, which gives the delay and the output transition time of a generic cell as 
a function of both the transition time of the input signal and the output load of this cell. 
For values of transition time of the input signal and of output load that do not belong in 
the table, an interpolation is done. A lookup table is empirically constructed for every 
standard cell in the library. 

By construction, the NLDM model is exact in the points of transition time of the 
input signal and output load in which the table was built. It is an accurate model, but its 
complexity turns out the simulation of the logic gates to be very slow. The NLDM 
model demands a high computational effort to simulate the standard cells in order to 
build the lookup tables, especially during the characterization of these cells 
(TRIHY, 2008). 
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There is no consensus in the literature as to which delay model (theoretical or 
empirical) is the most appropriate one. Even though there is a survey showing that 
lookup-table based models are more accurate than theoretical models (MARTINEZ 
apud COUDERT, 1996-b), the interpolation done in the former models may generate 
inaccurate delay values. 

2.3.5 Delay models comparison 

Theoretical and empirical delay models have different characteristics and objectives. 
These differences make each category of delay model more suitable for a specific stage 
of the industrial design flow, as it is explained next. 

Timing analysis is performed twice in an industrial design flow. Initially, an early 
timing estimation is done. This early timing estimation must be fast enough so that it 
can be used in the initial sizing of complete circuits, even though it is not sufficiently 
accurate for timing closure. Theoretical delay models such as Elmore and logical effort 
delay models are well suited for such early timing estimation. 

In a later stage of the industrial design flow, the back-end timing estimation is 
accomplished. It is too slow for the initial sizing of complete circuits, but its accuracy 
allows it to be used for timing closure. Empirical delay models are appropriate models 
for this back-end timing estimation. In fact, the NLDM model is currently the industry 
standard delay model for timing closure. 

2.4 Sizing 
Circuit sizing is accomplished in order to determine the size of the components of 

the circuit, aiming at optimizing a given objective function, and always respecting the 
design constraints. Within the scope of this research work, the goal is to minimize the 
active area of the circuit, respecting the maximum delay, maximum input pin 
capacitance, as well as the load to be driven in each output pin. Depending on the case, 
the delay constraint may be reduced, and a new sizing is done so that all design 
constraints are fully respected. 

Sizing is of foremost importance in the design flow of digital integrated circuits, 
since it guarantees that the circuit is conceived within the specifications and required 
design constraints. More than that, an adequate sizing is capable of delivering an 
optimized version of the circuit, with more demanding design constraints. In this 
section, the concept of sizing is introduced. Examples and more details about sizing 
algorithms and methods are seen in chapter 3. 

Transistor sizing is the first type of sizing. In it, each transistor in a logic gate (or in 
a circuit as a whole) can have its size modified individually, without necessarily 
provoking modifications in the size of the remaining transistors in the logic gate (or in 
the circuit). Transistor sizing uses to be employed for sizing standard cells in a library. 
Based on this sizing, a table of transistor sizes is generated. Then, this table is used for 
obtaining the template of each standard cell in the library. Transistor sizing was used in 
Kung (1999), Roy (2007), and Shah (2006). 

Once the transistor sizing is done, the next step is cell sizing. This latter sizing aims 
at determining the size of a cell that is used to map a circuit node. This means to find 
the scale factor that will be applied to each transistor in the cell template, in order to 
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obtain the cell with the desired size. In cell sizing, the sizes of all transistors in the cell 
are multiplied by the found scale factor. For the sake of compatibility with the 
terminology adopted in the literature, the expressions ‘cell sizing’ and ‘gate sizing’ are 
used indistinctively in this research work. 

Sizing may also be classified with respect to its scope, which may be either global or 
local. In global sizing, the circuit as a whole is sized. This can be done via either 
transistor sizing or cell sizing. Transistor sizing offers considerable freedom to the 
designer, since the size of each transistor can be adjusted to the design needs. This is the 
sizing used in full custom design. However, technological progress fosters the 
miniaturization and integration in the microelectronics industry, leading to an increase 
in the number of transistors in a circuit. The complexity of sizing transistors 
individually grows the same way. Consequently, cell sizing becomes more and more 
relevant. This kind of sizing handles circuits of high complexity, but this is 
accomplished at the expense of a lesser sizing granularity: it is impossible to change the 
size of a single transistor in one cell without changing the size of all the other transistors 
in the same proportion. 

In Joshi (2008), it is proposed a global sizing method that is capable of optimizing a 
circuit with more than one million logic gates, always finding the global optimum for 
the circuit. Nevertheless, this huge scale is achieved at the expense of using an 
inaccurate delay model, which might compromise the optimality of the solution. In 
order to achieve a high accuracy, local sizing must be used. In local sizing, only a small 
part (subcircuit) of the circuit is sized. Since there are fewer components to be sized, a 
more accurate delay model may be used. Global and local sizing may be used in a 
complementary way. Initially, the entire circuit is globally sized, generating a first 
version of the circuit. Then, this version of the circuit is optimized, one subcircuit at a 
time, via local sizing. 

Local sizing is advantageous when it is known beforehand that the circuit has just a 
few specific bottlenecks, in which design constraints are not met. In this case, there is 
no need to resize globally the entire circuit, it suffices to attack the problematic parts. 
Local sizing is part of the wider concept of local optimization, which is better explained 
in the coming chapter. 

A third criterion to classify the sizing techniques refers to the way the transistor 
dimensions can vary. In continuous scale sizing – or just continuous sizing –, the 
transistor size is free to assume any calculated value. In discrete scale sizing – or 
discrete sizing, for short –, the transistor sizes cannot assume an arbitrary value, but just 
one out of a finite set of allowed values. 

Discrete sizing is used in cell-based design. In this case, the designer (or CAD tool) 
is aware, e.g., that the standard cell library contains a given cell with drive strength 1X, 
2X, and 4X. Therefore, when sizing a circuit, the designer (CAD tool) is aware that, in a 
given node, this cell may have drive strength 2X or 4X, but never an intermediate value. 
Based on this knowledge, the sizing of this node generates a value close enough either 
to 2X or 4X. 

Continuous sizing may also be used in cell-based design, but there is a handicap. 
The designer (CAD tool) sizes the circuit supposing that the standard cells can assume 
any drive strength. Later on, when mapping the circuit to the standard-cell library, the 
designer rounds up the calculated value to a drive strength value available in the library. 
Let us make a comparison with the example in the previous paragraph. Let us suppose 
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that a second designer, when conceiving the same circuit, finds a value of 2.82X for the 
drive strength in the given node. This value must be rounded for either 2X or 4X. No 
matter which rounding is done, there is a considerable inaccuracy in the sizing of such 
node, because the calculated (ideal) value is geometrically equidistant from the two 
values available in the standard cell library. 

2.5 Mathematical Programming 
By mathematical programming, it is meant the resolution techniques for 

optimization problems that can be modeled as a set of equations and inequations. 
Mathematical programming has a wide area of application, including sizing of digital 
integrated circuits.The origin of mathematical programming dates back to the first half 
of the last century, with the pioneer work on linear programming (LP) by George 
Dantzig and Leonid Kantorovich (VANDERBEI, 2008). Since then, with the 
development of new techniques and depending on the kind of problem to be solved, the 
equations and inequations of the mathematical program may have particular 
characteristics, such as: linear functions, nonlinear, convex, integer variables etc. In its 
most generic form, a mathematical program may be defined as follows (BOYD, 2004): 

minimize )(0 xf                                     (2-21) 

 subject to     ii bxf ≤)( , },,1{ mi K∈  

where:   ),,( 1 nxxx K= – vectorial optimization variable; 

            ℜ→ℜn
f :0  – objective function; 

 ℜ→ℜn

if : , },,1{ mi K∈  – constraint functions; 

 mbb ,,1 K  – constants that limit the constraint functions. 

The optimal vector ∗
x  – solution vector to the problem stated in equation (2-21) – is 

the vector for which )(0
∗

xf  has the minimum value, among all vectors that satisfy the 

m constraint functions. 

Linear programming was the first kind of mathematical programming to be 
developed. Diverse problems can be modeled as linear programs, and there are reliable 
solution methods for linear programming (e.g., simplex method and interior-point 
methods) (VANDERBEI, 2008). This made out of linear programming a very popular 
technique, most of all in Economics and Business Administration. However, in Science, 
Technology, and Engineering, nonlinear problems are very common, which lessens the 
use of linear programming. For instance, digital circuit sizing is a nonlinear problem, 
because the delay of a cell is an affine function of the inverse of the scale factor of the 
cell. A standard linear program may be stated as: 

minimize nn xcxcxc +++ L2211                                                        (2-22) 

  subject to   ininii bxaxaxa ≤+++ L2211 , },,1{ mi K∈  

          0≥jx ,                                     },,1{ nj K∈  
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  where:    ),,( 1 nxxx K= – real vectorial optimization variable; 

     ℜ∈jij ca , . 

Convex programming (CP) is a generalization of linear programming, which 
became popular more recently. Convex programming is capable of filling part of the 
gap left behind by linear programming, mainly in Science, Technology, and 
Engineering. A convex program is described as in equation (2-21), in which the 
objective function f0 and the constraint functions fi are convex functions of the vectorial 
optimization variable. A convex function is a continuous function whose value at the 
midpoint of every interval in its domain does not exceed the arithmetic mean of its 
values at the ends of the interval. More generally, in formal terms: 

)()1()())1(( yftxtfyttxf −+≤−+ ,   nyx ℜ∈∀ ,  and ]1,0[∈∀t        (2-23) 

It can be said that geometric programming is a specific type of convex programming 
since, via variable change and rewrite of the objective function and the constraint 
functions, a generic geometric program becomes a convex program. Besides, in some 
sense geometric programming is a generalization of linear programming, even though 
some linear programs cannot be modeled as geometric programs. Geometric 
programming is more appropriate than linear programming for modeling problems in 
Science, Technology, and Engineering, and the programs can be solved efficiently. 

According to Boyd (2004), a geometric program is defined as: 

minimize   )(0 xf                                     (2-24) 

 subject to  1)( ≤xf i , },,1{ mi K∈  

                    1)( =xhi , },,1{ pi K∈  

where:   ),,( 1 nxxx K= – vectorial optimization variable; 

            ℜ→ℜ+

n

f
*

0 :  – posynomial objective functions; 

 ℜ→ℜ+

n

if
*: , },,1{ mi K∈  – posynomial constraint functions; 

 ℜ→ℜ+

n

ih
*: , },,1{ pi K∈  – monomial constraint functions. 

Among all kinds of mathematical programming, nonlinear programming (NLP) is 
the most generic type; i.e., it has the greatest capacity of describing a real world 
problem as equations and inequations. However, nonlinear programs have the most 
difficult resolution. In fact, only some particular types can be solved 
(LUENBERGER, 2008). In mathematical terms, a nonlinear program is a program as 
specified in (2-21), in which the objective function f0 or one or more constraint 
functions fi are nonlinear (BERTSEKAS, 1999). 

Integer programming (IP) is a particular case of linear programming as stated in 
equation (2-22), in which the scalar components of the vectorial optimization variable 
are required to take on integer values only. Unlike the previous categories of 
mathematical programming, integer programming is solved by combinatorial 
optimization techniques, which usually demand more computational resources than 
mathematical programs based on real (continuous) variables (GOLDBARG, 2005). 
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2.6 Analytical Resolution of the Minimization Problem 
Mathematical programming is widely used for solving optimization problems, 

inclusive digital circuit sizing — e.g., Berkelaar (1990), Chen (1996), Joshi (2008), 
Kasamsetty (2000), Mahalingam (2005), Menezes (1995), Nguyen (2003), Pattanaik 
(2003), Roy (2007), Sapatnekar (1995), and Singh (2008). This is due to the fact that 
mathematical programming has a wide area of application, as well as it can deal with 
problems with a large number of variables easily. However, mathematical programming 
is not the only possible approach for optimization problems. Mathematical analysis, a 
technique precedent to mathematical programming, offers an efficient way for sizing 
digital circuits. 

By mathematical analysis, it is meant the study — via infinitesimal calculus — of 
extreme points (local and global maxima and minima) of real functions of real 
variables. These functions shall be piecewise continuous and piecewise differentiable at 
least up to the second order. There are many practical situations in which mathematical 
programming may be used and mathematical analysis may not. Nevertheless, when it 
may be used, mathematical analysis tends to give an answer faster and using less 
computational resources than mathematical programming would. There are two 
conditions that must be satisfied, so that mathematical programming may be used for 
sizing digital circuits: 

- The delay model must express analytically the active area of the digital circuit as a 
function of the scale factors of every logic gate in the circuit; 

- This function must have first and second order derivatives. 

As seen in section 2.3.3, the logical effort delay model provides an analytical 
expression for the active area of the circuit. In chapter 4, it is shown that this expression 
may be manipulated via mathematical analysis, resulting in one univariate equation. The 
solution of this univariate equation gives the value of the scale factor of the last logic 
gate in the logic path. By replacing the value of the scale factor just obtained in other 
equations of the model, it is calculated the value of the penultimate scale factor in the 
logic path, and so forth. 

2.6.1 Minimization of multivariable functions 

Let ),,,( 21 nxxxf K  be a real function of n real variables with continuous second 

order partial derivatives. The local minima of f are the points p = ),,,( 21 nppp K  in 

which we have: 
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That is, the local minima are the critical points p = ),,,( 21 nppp K  in which the 

determinants of all principal submatrices of the Hessian matrix H(f) are strictly positive 
(ROBINSON). 
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3 BIBLIOGRAPHICAL REVIEW 

In this chapter, concepts more intrinsically related to this thesis are reviewed, as well 
as some reference works about digital circuit sizing. Initially, the concept of local 
optimization is reviewed, along with some examples. Next, the kind of logic network 
this research work refers to is seen. After that, modifications and extensions to the 
logical effort delay model are analyzed, in order to evaluate the feasibility of using such 
modifications and extensions within the scope of this research work. This thesis focuses 
on the sizing of logic networks for local optimization. Therefore, the most relevant 
methods for sizing digital circuits are also analyzed in this chapter. 

3.1 Local Optimization 
Local optimization consists in successively replacing specific subcircuits (each 

subcircuit with an approximate size of a few two-input logic gates) of a digital circuit by 
more efficient subcircuits whose logical functionalities are indistinguishable from the 
logical functionalities of the original subcircuits (GOPALAKRISHNAN, 1999). Each 
subcircuit is optimized according to the environment imposed by the remainder of the 
circuit. This environment is characterized by the local design constraints. Figure 3.1 
depicts such idea. 

 

Figure 3.1 – Local optimization 

 
Source: Logics (2013). 
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In Figure 3.1, both the original and the optimized subcircuits implement the same 
logic function. However, the optimized subcircuit shows at least one local design 
constraint that is optimized with respect to the corresponding local design constraint of 
the original subcircuit, at the same time assuring that the remaining local design 
constraints do not deteriorate. Only when these conditions are fulfilled, the original 
subcircuit is replaced by the optimized one. 

Unlike methods that optimize an entire circuit, with hundreds of thousands or even 
millions of logic gates, local optimization focuses on a small piece of the circuit and, 
consequently, it has more freedom for actuating. Indeed, local optimization can handle 
the logic functions implemented by the subcircuit. This is done by changing the logic 
networks or transistor networks by other ones with the same logic functionality. Besides 
choosing the most appropriate logic network or transistor network, local optimization 
can also perform the local sizing of these networks. To do that, local optimization may 
rely upon delay models more accurate than those used in global sizing. 

In the literature, there can be found works on local optimization that focus 
exclusively on the exchange of logic networks and transistor networks 
(WERBER, 2007; YOSHIDA, 2006), as well as papers that deal solely with the sizing 
of networks previously defined (MAURINE, 2002; PANDA, 1998). 

3.2 Transistor Networks 
As seen in section 2.1, a transistor network is an array of transistors capable of 

implementing a logic function, in which these transistors are not necessarily organized 
into logic gates. Specifically within this research work, only MOS transistor networks 
are studied. 

A specific logic function may be implemented by diverse logic and transistor 
networks, as seen in Figure 2.1. Each network has its own tradeoff between active area 
and delay. This is particularly true after the network has been sized according to the 
design constraints of a particular application context. As examples of transistor network 
generating methods, one can mention Kagaris (2007), Poli (2003), Reis (2009), Rosa 
Junior (2006), and Schneider (2005). 

Transistor networks may be classified in different logic styles (RABAEY, 2003), 
also named circuit families (WESTE, 2006). There are numerous circuit families, each 
of them with its own characteristics and specific properties. Out of these logic styles, 
this research work focuses on static CSP CMOS networks. In static networks, the output 
is always connected to either VDD or GND through a low resistance path. CSP CMOS 
networks represent the most widely used logic style in the microelectronics industry, 
due to its low noise sensitivity, good performance, low power consumption, and no 
static power dissipation (RABAEY, 2003). 

Figure 3.2 shows that a CSP CMOS logic gate is made up of a pull-up network 
(PUN) and a pull-down network (PDN). Each of the n inputs of the logic gates feeds 
both networks. Basically, the role of the PUN is to establish a connection – i.e., a low 
resistance path – between the output OUT and supply voltage VDD whenever the output 
should have a high value (true – ‘1’), according to the values of the n input signals. 
Analogously, the function of the PDN is to make a connection between the output OUT 
and the ground GND whenever the output should have a low value (false – ‘0’), 
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according to the values of the n input signals. The pull-up and pull-down networks are 
conceived in a mutually exclusive way, in order to assure that, in steady state, one and 
only one of the networks is conducting, at any given time. In other words, the output is 
always connected to either VDD or GND, it is never in a high impedance state or 
connected to VDD and GND simultaneously (RABAEY, 2003). 

 

Figure 3.2 – CSP CMOS logic gate seen as a combination of a pull-up and a pull-down network 

 
Source: Rabaey (2003). 

 

The pull-up network is made of PMOS transistors, while the pull-down network is 
made of NMOS transistors. This is that way because a PMOS transistor generates 
strong ‘1’ and weak ‘0’, meanwhile an NMOS transistor generates strong ‘0’ and weak 
‘1’. Hence, each kind of transistor is used in its most efficient way (RABAEY, 2003). 

In pull-up and pull-down networks, the transistors are associated in series-parallel. 
Depending on the association, different logic functions may be implemented. Two 
series NMOS transistors implement the AND function over the transistor gate signals: 
only when both transistor gate signals are equal to ‘1’, the composition conducts. 
Analogously, two parallel NMOS transistors implement the OR function over the 
transistor gate signals: it suffices that one of the transistor gate signals be equal to ‘1’ 
for the composition to conduct. In the same fashion, two series PMOS transistors 
implement the NOR function over the transistor gate signals: only when both transistor 
gate signals are equal to ‘0’, the composition conducts. Analogously, two parallel 
PMOS transistors implement the NAND function over the transistor gate signals: it 
suffices that one of the transistor gate signals be equal to ‘0’ for the composition to 
conduct. 

In static CMOS networks, the transistors work as keys controlled by the input signal 
in their gates. Every input signal is applied to the gate of a PMOS transistor and also to 
the gate of an NMOS transistor. Therefore, an n-input logic gate is made of 2n 
transistors. This is due to the mutually exclusive way in which the PUN and PDN are 
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conceived. These are dual networks, i.e., for every series connection of PMOS 
transistors in the PUN, there is a parallel connection of NMOS transistors in the PDN 
and vice versa. Since PMOS (NMOS) transistors only conduct with a ‘0’ (‘1’) signal in 
its gate, only one of the two transistors driven by an input signal is allowed to conduct 
at a given moment. This fact, along with the duality principle, assures that one and only 
one of the networks is conducting at a given time, except for the transition time. 

The duality principle may be observed in Figure 3.3. For convenience of notation, 
the transistors are identified by the input signals in their gates. In the pull-down plane, 
the NMOS transistors i1 and i2 are in parallel. Therefore, in the pull-up plane, the PMOS 
transistors i1 and i2 are in series. The NMOS transistor i3, in the pull-down plane, is in 
series with the subnetwork composed of the NMOS transistors i1 and i2. Henceforth, in 
the pull-up plane, the PMOS transistor i3 is in parallel with the subnetwork composed of 
the PMOS transistors i1 and i2. 

Since the pull-down network is made of NMOS transistors that conduct with a 
signal ‘1’ in their gates, CSP CMOS logic gates implement negated logic. That is, logic 
functions INV, NAND, NOR etc. may be implemented by only one CSP CMOS logic 
gate. Logic functions AND and OR need an additional inverter to be implemented. 

In order to build a CSP CMOS logic gate that implements a logic function f, it 
suffices to create a pull-down network that implements function !f, and the pull-up 
network is implemented as the dual of the PDN. In other words, the PDN is obtained 
from the off-set of logic function f. By off-set it is meant the set of values of the 
variables of logic function f for which the function is equal to ‘0’. This is the standard 
procedure for the generation of CSP CMOS logic gates. 

 

Figure 3.3 – Series-parallel duality in CSP CMOS logic gate 

 
Source: Logics (2013). 
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3.3 Delay Models 
In the previous section, the logic style of the subcircuits to be optimized in this 

research work was described. For the optimization to be successful, the delay model 
must be at the same time both accurate and capable of generating a system of equations 
and inequations that can be solved by mathematical techniques. The logical effort delay 
model analyzed in subsection 2.3.3 is suited for such use, but it is somewhat inaccurate. 
In this section, delay models that have evolved from the original logical effort delay 
model are analyzed. These models are likely to be used in future works based upon this 
thesis.  

3.3.1 Extension of the logical effort model 

According to Lasbouygues (2006), the logical effort delay model makes no 
distinction between propagation delay and transition time in order to compute the delay 
of a logic gate. The logical effort delay model simply calculates the transition time of 
the output signal of the logic gate and takes this as the propagation delay of the logic 
gate. Besides, this delay is computed without taking into account: a) if the input signal 
is rising or falling; b) transition time of the input signal; and c) coupling capacitance. As 
a result, the logical effort produces inaccurate results, which lead to non-optimal 
sizings, especially when rigorous timing design constraints are at stake. 

In order to solve such problems, Lasbouygues (2006) proposes an extension to the 
logical effort delay model that is capable of considering coupling capacitance effects, as 
well as the transition time of the input signal, in the computation of the delay of the 
logic gate. This is done via modeling the charge and discharge current during the 
switching of a basic logic gate. 

This extension to the logical effort delay model has two different formulations, 
depending on the transition time of the input signal. This fact, as well as the very 
equationing of the extension, must be analyzed to verify the compatibility of this 
extension to the logical effort delay model with mathematical techniques. 

3.3.2 Modified logical effort model 

Another approach to compensate for the deficiencies of the logical effort delay 
model is found in the paper of Kabbani (2005). This work introduces the Modified 
Logical Effort (MLE), a delay model for CSP CMOS logic gates that takes into account 
the behavior of series-connected MOSFET structures (SCMS), the input transition time, 
internodal charges, mobility degradation, and velocity saturation. Since MLE evaluates 
internodal charges, it is capable of dealing with input signals switching in different 
series transistors. This is advantageous over the original logical effort delay model, 
which considers solely the switching of transistors directly connected to the output of 
the logic gate. The properties of the MLE model are reflected into its mathematical 
formulation, which might compromise the feasibility of using it as the delay model of a 
sizing method. 

3.3.3 Logical effort model considering transition time 

In Wang (2009), it is proposed another improvement to the original logical effort 
delay model. Based in one additional experimental parameter, this work manages to 
account for the transition time of the input signal in a more straightforward way than the 
approaches seen in the two previous subsections, while keeping the same accuracy 
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level. Nevertheless, the delay model of Wang (2009) – as well as the models of 
Lasbouygues (2006) and Kabbani (2005) – is not a posynomial model. This fact 
imposes a severe restriction with respect to the mathematical programming techniques 
that may be used with it. 

3.4 Sizing Algorithms 
As seen in the previous chapter, sizing is of foremost importance in the design flow 

of digital integrated circuits. There are diverse approaches for sizing, as described in 
papers about the subject. 

The works of Chu (2001), Kasamsetty (2000), Matson (1986), Otten (2000), 
Pattanaik (2003), Sapatnekar (1993-b; 1995), and Tennakoon (2002) are examples of 
delay models compatible with geometric programming that are applied in the sizing of 
transistors and logic gates. In Berkelaar (1990), a convex delay model is used for sizing 
logic gates, and the problem is solved via linear programming. In Tennakoon (2005), a 
piecewise convex delay model is presented. It is more accurate than a conventional 
convex delay model, but the sizing problem must be solved via lagrangian relaxation, 
since the delay model as a whole is no longer convex. In Shah (2005), dual-Vt is added 
to an originally convex delay model. Since Vt can assume only two different values, the 
problem becomes a mixed integer nonlinear program (MINLP), which is solved 
heuristically. 

The objective of this section is to analyze six algorithms that solve the sizing 
problem via distinct approaches. Based on this analysis, the sizing technique of this 
research work is proposed. The first two algorithms rely on convex optimization and are 
suitable for continuous sizing of digital integrated circuits. The third algorithm is 
popular among designers and may be regarded as the predecessor of the sizing method 
proposed in this research work. The algorithms of subsections 3.4.4 e 3.4.5 perform 
discrete sizing and are adequate for cell-based design. At last, the fifth method to be 
analyzed introduces the concept of flex cells for optimizing digital integrated circuits. 

3.4.1 TILOS: An initial approach in geometric programming 

Fishburn (1985) presents the software TILOS (TImed LOgic Synthesizer), which is 
based on a transistor and interconnection sizing algorithm. TILOS uses convex 
programming techniques, and the delay in each logic gate is modeled according to 
Elmore (1948). The gate, drain, and source capacitances of a transistor are supposed to 
be directly proportional to the size of this transistor, meanwhile the drain–source 
resistance is supposed to be inversely proportional to the size of the transistor. 
Therefore, the delay in the circuit is expressed as a posynomial function – hence, 
convex – of the sizes of the transistors. 

The software TILOS works in an interactive way. Initially, all the transistors in the 
circuit have minimum size. A static timing analysis (STA) is performed, thus detecting 
the path with the greatest timing violation. This path is traversed until the transistor with 
the greatest timing sensitivity with respect to its sizing is found. The size of this 
transistor is increased, therefore diminishing the delay in the path. This process goes on, 
until there are no more timing violations left. 
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TILOS was one of the first proposals based in geometric programming for sizing 
digital circuits. TILOS was capable of sizing circuits with 26,000 transistors, which was 
a large circuit at that time. However, the optimality of the solution of the convex 
program is not granted (BERKELAAR, 1990), due to the greedy way with which the 
highest sensitivity transistor is enlarged. This is done without taking into account the 
circuit as a whole (CHINNERY, 2005). Besides, the modeling of the delay of a logic 
gate with a distributed RC network is not capable of handling input signals with high 
transition time (FISHBURN, 1985). These signals have an equationing that is not 
necessarily convex. It is worthy to remember that TILOS performs just transistor sizing, 
it does not modify the circuit topology. 

3.4.2 A modern approach in geometric programming 

In Boyd (2005), there is a survey about the use of geometric programming (GP) and 
generalized geometric programming (GGP) for sizing semiconductor devices, logic 
gates, and interconnections. The proposed method encompasses the transition time of 
the input signals, as well as robust project, multimode project, statistical project, and 
projects in which the threshold voltage Vt and VDD are variables to be determined. The 
method can optimize the area or power for a given timing constraint, as well as it can 
optimize the delay for a given area or power constraint. 

This method consists in applying GP for the global sizing of digital circuits. It 
performs cell sizing, based on a convex delay model (Elmore, logical effort, or another 
one) for the logic gates. A scale factor is associated to each logic gate, and the 
corresponding delay is expressed as a convex function of this scale factor. The method 
performs continuous sizing: the scale factor may, at principle, assume any real value 
greater than or equal to 1. When the method of Boyd (2005) is used to size a circuit to 
be mapped to a standard-cell library, the rounding problem discussed in section 2.4 
arises. 

Geometric programming may be used for modeling the delay in a logic path, as long 
as the delay model is convex. The delay in a digital circuit is given by the maximum 
delay of all paths between the inputs and outputs of the circuit. This maximum delay 
cannot be modeled by geometric programming, but rather by generalized geometric 
programming (GGP) 

This method, based on GP, has the characteristics inherent to this kind of 
mathematical programming, namely: 

- if there is a local minimum for the sizing objective function, then this minimum is 
found by the method and it is guaranteed to be the global minimum; 

- if this minimum does not exist, this is quickly detected by the method. 

The method of Boyd (2005) can perform the global sizing of large circuits, as long 
as the convex delay model is simple. 

This method preserves the pre-defined topology of the circuit. The only thing to 
change is the drive strength of each logic gate of the circuit. Therefore, the method of 
Boyd (2005) is unable to obtain an optimization that demands changes in the topology. 

3.4.3 The logical effort sizing method 

The logical effort sizing method (SUTHERLAND, 1999) is very popular, due to its 
simplicity and didactic aspects. The groundwork for this sizing method is the 
homonymous gain-based delay model, as seen in subsection 2.3.3. Based on this delay 
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model, the logical effort sizing method may be derived as follows. It is assumed that the 
total delay of a logic path is given by the sum of the delays of every logic gate in such 
path. Taking the derivative of this total delay with respect to the electrical effort h, one 
can see that minimum delay is obtained when the product gh is the same for each logic 
gate in the path. This result is valid regardless of the number of logic gates in the path. 
Therefore, the logic path is sized for minimum delay, regardless of area or power 
considerations. This is the major handicap of this sizing method, but the proposed sizing 
method offers a solution for such problem. 

3.4.4 GS: A well-succeeded discrete sizing algorithm 

In Coudert (1996-a), it is introduced the GS algorithm for sizing of logic gates. It is 
a general purpose optimizer, that can optimize the area or power for given timing 
constraints, as well as it can optimize the delay for given area or power constraints. The 
GS algorithm performs discrete sizing and it was developed aiming at the cell-based 
design methodology. 

This algorithm has a combinatorial optimization approach for the sizing of a circuit 
mapped to a standard cell library, as described next. Let a generic logic path of this 
circuit, and let Celli be the cell in the i-th stage of this path. The GS algorithm 
determines locally which is the standard cell with best timing for the node (Celli’) and 
replaces Celli for Celli’. Since Celli and Celli’ do not necessarily have the same input 
capacitances, propagation delays, and drive strengths, it is necessary to verify the 
impact of this change in the global delay of this logic path. 

In order to compute this change in the delay, the algorithm takes advantage of the 
following fact: the impact of changing a cell decays nearly geometrically, as one moves 
forward or backward in the logic path, taking as reference the replaced cell. Changing 
from cell Celli to cell Celli’, the cell Celli-1 now sees as output capacitance the (new) 
input capacitance of Celli’. Therefore, the propagation delay of Celli-1 may be altered, 
and this must be taken into account to verify the feasibility of replacing Celli by Celli’. 
The propagation delay of Celli-2 does not change, because Celli-1 remains unchanged. 

Now moving forward in the logic path, one can see that, if Celli’ and Celli have 
different drive strengths, then the transition time of the input signal in Celli+1 will 
change accordingly. As mentioned in subsection 2.3.3, the propagation delay of a cell 
depends on the transition time of its input signals. Therefore, the replacement of Celli by 
Celli’ may cause a change in the propagation delay of Celli+1. Besides, according to 
Lasbouygues (2006), the transition time of the output signal of a logic gate depends on 
the transition time of the input signal of this logic gate. Therefore, a modification in the 
transition time of the input signal in Celli+1 will carry out a change in the transition time 
of its output signal, which is the input signal of Celli+2. This, in turn, affects the 
propagation delay of Celli+2. This effect, in principle, propagates until the end of the 
logic path under analysis. However, the algorithm of Coudert (1996-a) takes into 
account the roughly geometric decay of this impact and it supposes that, from cell 
Celli+3 (inclusive) on, this effect is so mitigated that it can be discarded. Hence, only the 
cells Celli+1 and Celli+2 are verified with respect to the change of Celli by Celli’. 

It is worthy to remember that a cell with high drive strength may overload the 
previous cell in the logic path, due to its likely high input capacitance. Therefore, the 
standard cell with best timing for the logic path is not necessarily the fastest one. 
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The GS algorithm proceeds this way, replacing the cell in a given node by a 
candidate cell to better timing. GS verifies the new global delay in the logic path and so 
forth, until coming to the cell that gives the smallest delay for this logic path. The 
algorithm is able to size fairly large circuits, despite its iterative approach. 

The algorithm performs a nonlinear, non-convex, plurimodal (i.e., several minima), 
design constraint bounded optimization. Therefore, GS can handle complex delay 
models (or another cost function). In Coudert (1996-a), a nonlinear delay model 
(NLDM) was used. The algorithm uses a heuristics based on perturbation propagation to 
avoid gradient recomputing and a global perturbation technique to avoid local minima. 
Thence, GS algorithm is better than greedy methods for sizing. 

Nevertheless, despite all the advantages, the GS algorithm is based on a heuristics, 
which may not find the optimal solution. In Hu (2007), it is shown an algorithm with 
better results than Coudert (1996-a). The GS algorithm was presented here as an 
example of an efficient and popular method for performing the global sizing of a cell-
based-designed digital integrated circuit, via combinatorial optimization and discrete 
sizing. 

3.4.5 NEW: A recent discrete sizing algorithm 

In Hu (2007), it is introduced the algorithm NEW for discrete sizing, used in cell-
based design. This algorithm aims at the same objectives as those of Coudert (1996-a), 
but it works in a considerably different manner. NEW performs an approach similar to 
dynamic programming (DP) and guided by a continuous solution, as described next. 

The algorithm performs a breadth-first traversal on the circuit graph, processing one 
node at a time. Instead of verifying every possible cell implementation for a node, it just 
verifies a small number of implementations. These verified implementations are close to 
the optimized continuous solution. By doing so, the search space is drastically reduced, 
but practically without compromising the quality of the solutions found. The algorithm 
also concentrates the efforts in the nodes of greater criticality, i.e., nodes with less slack. 
Since NEW searches for solutions in a more ordered fashion than Coudert (1996-a) 
algorithm, the former is able of obtaining solutions more efficiently. 

In order to preserve the diversity and representativeness of the intermediate 
solutions, as well as to eliminate the solutions of inferior quality, the NEW algorithm 
uses the LSH — Locality Sensitive Hashing (GIONIS, 1999) — technique. 

It is important to emphasize that the NEW algorithm does not perform continuous 
sizing of a circuit. The NEW algorithm is just guided by a continuous solution, 
meanwhile it executes the discrete sizing. This is rather different from algorithms that 
simply perform continuous sizing for cell-based design and, when the sizing is 
concluded, just round up the final continuous results to the cells of closest size. By 
doing so, these algorithms incur in the rounding problem explained in section 2.4. Once 
the NEW algorithm executes a discrete sizing since the beginning, there is no such 
inconvenience. The bigger the gap between the sizes of the standard cells in the library, 
the bigger the rounding error introduced by the continuous sizing and, therefore, the 
better the advantage of using the NEW algorithm. 

For the same timing design constraint, the NEW algorithm designs a circuit with less 
area than that of the circuit conceived by Coudert (1996-a) algorithm, at the expense of 
a longer execution time (HU, 2009). 
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3.4.6 The flex-cell approach for local optimizations 

In Roy (2005), it is introduced the concept of flex cells for optimizing digital 
integrated circuits. This approach arose as a means of improving the performance of 
cell-based digital integrated circuits. According to Chinnery (2005), cell-based digital 
IC’s show inferior performance when compared with full-custom digital IC’s with the 
same functionality. There are several reasons why full-custom circuits overcome cell-
based design IC’s (CHINNERY, 2002), one of which is the limited number of available 
standard cells in a predefined library. The designer – or EDA tool – counts on a limited 
number of cell options to map the circuit, which narrows his/her/its freedom of action. 
Once it is highly unlikely that the cells in a library are optimized for a given digital 
circuit, it is fairly probable that the cell-based design circuit has a non-optimal 
performance. 

Consequently, human intervention in the cell-based design – or any other automatic 
design flow – of integrated circuits became commonplace. This is particularly true in 
the cell-based design of high performance digital circuits, in which the design 
constraints are so demanding that sometimes they cannot be achieved via mere 
automatic execution of CAD tools. 

Tactical cell insertion is a manner to proceed with this human intervention. These 
cells are created manually and are also manually inserted in the manually identified 
nodes in the circuit, in substitution to the existing standard cells (ROY, 2005). Usually, 
the need for manual intervention only happens on isolated nodes in the circuit, in which 
the design constraints are not met. When this is the case, there is no need to redesign the 
entire circuit; it suffices to tackle the problems in the specific nodes where they occur. 
This is the essence of local optimization seen in section 3.1 and is also the approach of 
flex cells.  

In a very succinct way, the flex cell approach proposed by Roy (2005) consists in 
the automatic generation of tactic cells.  Flex cells are generated specifically to the 
design at issue and their characteristics are determined according to the local design 
constraints of the nodes in which they will be inserted. The flex cell approach happens 
in a post-processing stage, when technology mapping is over. The final result is an 
optimized circuit, made up of standard cells from a standard cell library and of flex 
cells. These flex cells are generated in a way to be layout compatible with the standard 
cells. 

The starting point of the flex cell approach is the STA analysis of the circuit to be 
optimized. As a result of such analysis, the regions of the circuit that are prone to go 
through local optimization are detected. Each region is composed of a cluster of one or 
more standard cells. The series of operations for detecting and delimiting each cluster to 
be optimized is named clustering process (ROY, 2005). 

The clusters and their local design constraints are the starting point for the mapping 
process, which generates candidate flex cells to replace such clusters. These flex cells 
may be generated by a new sizing of predefined standard cells or by the generation of 
new transistor networks (with appropriate sizing) with the same logic functionalities of 
the clusters to be replaced (ROY, 2005). In Figure 3.4, there is an example of flex cell 
generation. 
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The clustering process detects the standard cell cluster depicted in Figure 3.4a, from 
which the mapping process generates the flex cell shown in Figure 3.4b. The table in 
Figure 3.4 shows the gain in timing, especially for input ‘a’, which corresponds to the 
critical path of the original cluster. It is worthy to emphasize that the mapping process 
just described is a stage of the flex cell approach, it should not be confused with the 
technology mapping, which is part of every cell-based design. 

 

Figure 3.4 – Example of flex cell generation 

 
Source: Roy (2005). 

 

The flex cell approach, as well as the sizing algorithms seen in subsections 3.4.4 and 
3.4.5, perform the sizing of cell-based design digital integrated circuits. The method of 
Boyd (2005) seen in subsection 3.4.2 may also be used in cell-based design 
methodology, as long as the rounding problem seen in section 2.4 is taken into account. 
However, there is an important difference between the flex cell approach and the three 
other sizing methods just mentioned: meanwhile the latter use just standard cells already 
defined in the library to map the circuit, the former approach generates on the fly the 
flex cells. These newly created cells need to be characterized, which happens in the very 
mapping process. Since each flex cell is used in a specific context – in terms of local 
design constraints and input signal combinations –, its characterization is much simpler 
than that of a conventional standard cell (ROY, 2005). 

The flex cell approach is an example of local optimization in which both the original 
topology and sizing of the circuit may be modified. 
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4 ANALYTICAL METHOD FOR MINIMIZING THE 
ACTIVE AREA OF DIGITAL SUBCIRCUITS UNDER 
DELAY CONSTRAINT 

In this chapter, it is developed the specific contribution of this thesis, namely, a 
method for sizing subcircuits that shall respect the design constraints. As seen in 
section 2.6, mathematical analysis offers a straightforward way to size digital 
subcircuits. The proposed sizing method relies on this mathematical technique and on 
the logical effort delay model to come to a sort of generalization of the logical effort 
sizing method. Meanwhile the logical effort sizing method only delivers circuits with 
minimum achievable delay, the proposed method aims at achieving minimum active 
area for a specific delay D. Therefore, the expression for the total active area of the 
subcircuit is derived with respect to the size of each logic gate. This size can be 
represented either as the input capacitance of the logic gate or as the scale factor 
(BOYD, 2005) of such gate, since the scale factor is the ratio between the input 
capacitance of the logic gate and the input capacitance of the corresponding seed size in 
NANGATE 45nm Open Cell Library (NOCL). When the delay constraint D is made 
equal to the minimum achievable delay of the circuit, the proposed method delivers 
exactly the same results as the logical effort sizing method. 

This chapter is organized as follows. Initially, it is explained how the proposed 
sizing method is positioned in the design flow collectively developed in the laboratory 
in which this thesis was elaborated. Next, the specific contribution of this thesis is 
emphasized. After that, the sizing method is derived. To do so, the digital subcircuits to 
be sized are classified according to three orthogonal criteria, since a specific set of 
equations must be derived for each category. These criteria are as follows: a) fixed or 
variable input capacitance; b) number of stages in the subcircuit; c) fanout free or 
branched subcircuits. Initially, all subcircuits are supposed to be fanout free. These 
subcircuits are then analyzed for fixed input capacitance (section 4.3), considering two-
stage and three-stage subcircuits (sections 4.3.1 and 4.3.2, respectively). Then, in 
section 4.4, the same approach is applied for subcircuits with variable input capacitance. 
Next, in section 4.5, the implications of subcircuits with branching are taken into 
account. Finally, section 4.6 brings a discussion about how the proposed analytical 
method may be used in the evaluation of power delay product. 

 



 

 

 

51

4.1 Sizing Method Contextualization 
As mentioned in the introduction, the proposed sizing method is tailored for local 

optimization. The need for such sizing method arose in the context of the research being 
conducted in the laboratory, as it will be explained in this section. Figure 4.1 shows a 
digital circuit to be optimized. This circuit has already been previously sized, and each 
one of the thirteen boxes represents a standard cell, with the corresponding scale factor 
in it. Despite the previous sizing, there is room for further improvement in this circuit, 
which may be achieved via local optimization. 

 

Figure 4.1 – Laboratory approach for local optimization 

 
Source: Logics (2013). 

 

Initially, a subcircuit is selected, e.g., the three shaded standard cells in Figure 4.1. 
In the laboratory approach, the selection algorithm is the KL–Cuts algorithm described 
by Martinello (2010), which finds a subcircuit with K = 4 inputs and L = 2 outputs. This 
algorithm was chosen since it preserves the logic relationship among circuit inputs, 
which is important for using highly Boolean methods of optimization such as functional 
composition (REIS, 2009; MARTINS, 2012) or read-polarity-once Boolean functions 
(CALLEGARO, 2013). These Boolean optimization methods can rewrite the logic 
functions in several different ways, which eventually leads to a minimal area solution, 
as depicted in Figure 4.2. It is worthy to mention that the subcircuit under remapping in 
Figure 4.2 is distinct from the shaded subcircuit in Figure 4.1, it is a different example.  

The remapped subcircuit in Figure 4.2 has the same logical functionalities as the 
original subcircuit, but its outputs must be buffered before being reinserted again in the 
original circuit. This is exactly the point in which the proposed sizing method fits into 
the laboratory approach for local optimization: the contribution of this thesis is an 
analytical solution for the sizing algorithm needed at the outputs. 
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Figure 4.2 – Example of local remapping 

 

 

 
Source: Logics (2013). 

4.2 Contribution of this Thesis 

The original contribution of this thesis is the development of a subcircuit sizing 
method appropriate for obtaining minimum active area solutions, taking into 
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consideration the maximum input capacitance, the output load to be driven, and the 
imposed delay constraint. 

The method is based on the logical effort formulation, but it was derived for 
obtaining minimum area (under design constraints) rather than minimum delay. The 
original logical effort sizing method solves the delay equation analytically and 
concludes that, in order to achieve minimum delay, all the stages in the logic path must 
bear the same effort. However, this is costly in terms of power and area. 

The proposed method, instead, computes the subcircuit area derivative, and thus 
finds an analytical solution for minimum area. For modern sizing, minimizing area 
under delay constraints is much more important than minimizing delay. 

4.3 Fixed Input Capacitance 
The proposed method was developed so that the input capacitance of the subcircuit 

under design may have either a fixed or a variable value. Each case has its own set of 
equations, and they are shown in different sections. These two approaches can be 
combined, allowing us to size a subcircuit with a variable, yet limited, input 
capacitance. In terms of subcircuit input capacitance, this is the ultimate goal of a 
subcircuit sizing method. 

4.3.1 Two-stage subcircuits 

In this subsection, the proposed method is deducted for a 2-stage fanout free 
subcircuit, with fixed topology, fixed extra parasitic capacitances, and fixed subcircuit 
input capacitance, as depicted in Figure 4.3: 

 

Figure 4.3 – Model of a 2-stage subcircuit with fixed input capacitance 

 
Source: Logics (2013). 

 

In the subcircuit shown, parameters gi, hi, and pi (i = 1, 2) come from the logical 
effort delay model. ni is the ratio between the total input capacitance of gate i and the 
capacitance of the input pin of gate i that belongs to the logic path under analysis. For a 
symmetric gate (SUTHERLAND, 1999), the numerical value of ni is equal to the 
number of input pins of gate i. Cini is the capacitance of the input pin of gate i that 
belongs to the logic path. Since the subcircuit has a fixed input capacitance, it is labeled 

fixed

inC 1 . C1 is a fixed extra parasitic capacitance. Cout is the output capacitance, which 

might encompass another fixed extra parasitic capacitance in the output of gate 2. 
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This is a straightforward case, since there are only two stages, and the input 
capacitance of the first one has already been defined. Therefore, there is just one 
variable left, namely, Cin2, which can be found algebraically. In this particular case, 
there is no need for mathematical analysis. According to the logical effort delay model, 
the delay equation may be expressed as: 
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Equation (4.2) can give either positive or negative results for Cin2. Negative values 
are physically meaningless and, in the case of two distinct positive values, one shall 
choose the smallest one, since the objective is to attain the minimum active area. 

4.3.2 Three-stage subcircuits 

In this subsection, the proposed method is deducted for a 3-stage fanout free 
subcircuit, with fixed topology, fixed extra parasitic capacitances, and fixed subcircuit 
input capacitance, as shown in Figure 4.4: 

 

Figure 4.4 – Model of a 3-stage subcircuit with fixed input capacitance 

 
Source: Logics (2013). 

 

Just like the previous subsection, in the subcircuit shown, parameters gi, hi, and pi 
(i = 1, 2, 3) come from the logical effort delay model. ni is the ratio between the total 
input capacitance of gate i and the capacitance of the input pin of gate i that belongs to 
the logic path under analysis. For a symmetric gate, the numerical value of ni is equal to 
the number of input pins of gate i. Cini is the capacitance of the input pin of gate i that 
belongs to the logic path. C1 and C2 are fixed extra parasitic capacitances. Cout is the 
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output capacitance, which might encompass another fixed extra parasitic capacitance in 
the output of gate 3. 

Following the logical effort delay model, the total relative delay (D) for the 
subcircuit depicted in Figure 4.4 is specified by a delay constraint and is given by: 
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Eliminating the denominators, we have: 
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Equation (4.5) shows the relationship between the variables Cin2 and Cin3 so that all 
design constraints for the subcircuit are fulfilled. Since the input capacitance of the 
subcircuit is fixed ( fixed

inC 1 ), Cin2 and Cin3 are the only variables in this problem. 

Moreover, equation (4.5) may be regarded as a univariate polynomial equation of the 
second degree on Cin2. Therefore, Cin2 may be expressed as a function of Cin3, since all 
the other terms are constant parameters. 
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where: 
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inin CPDCCgCCCg −−+=β                          (4.7) 
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The new variables β and γ were introduced just for the sake of better visualization of 
the equations. According to Boyd (2005), Kasamsetty (2000), Tennakoon (2008), 
Joshi (2008), Lefebvre (1997), and Otten (2000), the active area of the subcircuit in 
Figure 4.4 may be considered as 

33221132 ),( inin
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ininin CnCnCnCCA ++= .                               (4.9) 

I.e., the active area of a logic gate is monotonically related to its total input 
capacitance. Replacing the expression obtained in equation (4.6) for Cin2 into (4.9), 
A(Cin2, Cin3) becomes a univariate equation on Cin3: 
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Now, we find the derivatives of β, γ, and ν (new variable). This was done so in order 
to find the final expression for the derivative of A(Cin3). Otherwise, the equations would 
be too long to fit in the page. 
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Taking the derivative of A(Cin3) in equation (4.10) and introducing the expressions 
in (4.11)-(4.16), we have: 
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At this point, it is straightforward to obtain the minimum active area; it suffices to 
find the zeroes of equation (4.17): 
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Equation (4.18) can be solved numerically, giving 3inC for minimum active area. 

Solving equation (4.6) with 3inC  just obtained, we have the corresponding value of 2inC . 

Eventually, more than one pair of values may be attained, but only one of them 
corresponds to minimum active area. Besides, due to the mathematical formulation of 
the problem, either negative or nonreal values for 2inC  and 3inC  may be obtained from 

equations (4.6) and (4.18). However, discarding these inconsistent results, there is 
always one and only one pair of values for minimum active area. 

4.4 Variable Input Capacitance 
The proposed sizing method is capable of coping with both fixed input capacitance 

and variable input capacitance. In the next two subsections, it is derived the set of 
equations for variable input capacitance. 

4.4.1 Two-stage subcircuits 

In this subsection, the proposed method is deducted for a 2-stage fanout free 
subcircuit, with fixed topology, fixed extra parasitic capacitances, and variable 
subcircuit input capacitance, as depicted in Figure 4.5: 
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Figure 4.5 – Model of a 2-stage subcircuit with variable input capacitance 

 
Source: Logics (2013). 

 

Just like subsection 4.3.1, in the current subcircuit, parameters gi, hi, and pi (i = 1, 2) 
come from the logical effort delay model. ni is the ratio between the total input 
capacitance of gate i and the capacitance of the input pin of gate i that belongs to the 
logic path under analysis. For a symmetric gate, the numerical value of ni is equal to the 
number of input pins of gate i. Cini is the capacitance of the input pin of gate i that 
belongs to the logic path. C1 is a fixed extra parasitic capacitance. Cout is the output 
capacitance, which might include another fixed extra parasitic capacitance in the output 
of gate 2. 

Unlike section 4.3.1, now Cin1 has a variable value. Therefore, there are two 
variables in this problem, namely, Cin1 and Cin2. According to the logical effort delay 
model, the delay equation may be expressed as: 
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Since 1121 /)( inin CCCh += , 22 / inout CCh = , and Ppp =+ 21 , equation (4.19) may be 

rewritten as 
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Rearranging the terms in the last equation, one can express Cin1 as a function of Cin2: 
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According to Boyd (2005), Kasamsetty (2000), Tennakoon (2008), Joshi (2008), 
Lefebvre (1997), and Otten (2000), the active area of the subcircuit in Figure 4.5 may 
be regarded as 

221121 ),( inininin CnCnCCA += .                                    (4.22) 

Replacing the expression obtained in equation (4.21) for Cin1 into equation (4.22), 
A(Cin1, Cin2) becomes a univariate equation on Cin2: 
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as long as 
PD

Cg
C out

in
−

≠ 2
2 . From the definition of the logical effort delay model, it can be 

seen that PD > . Now that we have )( 2inCA , the values of 2inC  that correspond to the 

minimum active area are given by the solutions of the equation 0
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sake of an easier algebraic manipulation, let the functions: 

212112 )()( ininin CCCgnCu +=                                         (4.25) 
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Note that: 
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Replacing equation (4.31) into (4.28) and setting it to zero, we have: 
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Eliminating the denominator, we have: 
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After algebraic manipulation, we have: 
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Written this way, equation (4.32) is a univariate polynomial equation of the second 
degree on Cin2, whose solutions are given by: 
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where: 
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outout CCggnCgn 1211
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The new variables η, κ, and λ were introduced for the sake of better visualization of 
equation (4.33). The pair of equations (4.21) and (4.33) defines the sizing of the 
subcircuit. Since these equations have been algebraically solved, the numerical values 
are obtained by straightforward calculation. Eventually, two pairs of values for 1inC  and 

2inC  may be obtained, but only one of them corresponds to the minimum active area. 

4.4.2 Three-stage subcircuits 

In this subsection, the proposed method is deducted for a 3-stage fanout free 
subcircuit, with fixed topology, fixed extra parasitic capacitances, and variable 
subcircuit input capacitance, as depicted in Figure 4.6: 

 

Figure 4.6 – Model of a 3-stage subcircuit with variable input capacitance 

 
Source: Logics (2013). 

 

Just like subsection 4.3.2, in the subcircuit shown, parameters gi, hi, and pi 
(i = 1, 2, 3) come from the logical effort delay model. ni is the ratio between the total 
input capacitance of gate i and the capacitance of the input pin of gate i that belongs to 
the logic path under analysis. For a symmetric gate, the numerical value of ni is equal to 
the number of input pins of gate i. Cini is the capacitance of the input pin of gate i that 
belongs to the logic path. C1 and C2 are fixed extra parasitic capacitances. Cout is the 
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output capacitance, which might encompass another fixed extra parasitic capacitance in 
the output of gate 3. 

Unlike subsection 4.3.2, now Cin1 has a variable value. Therefore, there are three 
variables in this problem, namely, Cin1, Cin2, and Cin3. According to the logical effort 
delay model, the delay equation for each stage may be expressed as: 

3,2,1, =+= iphgd iiii                                           (4.37) 
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Since 1121 /)( inin CCCh += , 2232 /)( inin CCCh += , 33 / inout CCh = , and Pppp =++ 321 , 

equation (4.38) may be rewritten as 
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Isolating 1inC  in the last equation: 
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As stated before, according to Boyd (2005), Kasamsetty (2000), Tennakoon (2008), 
Joshi (2008), Lefebvre (1997), and Otten (2000), the active area of the subcircuit in 
Figure 4.6 is given by: 
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Replacing the expression obtained in equation (4.40) for Cin1 into equation (4.41), 
A(Cin1, Cin2, Cin3) becomes a bivariate equation: 
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Therefore, after some algebraic manipulation: 
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According to subsection 2.6.1, the minimum active area is attained when the partial 
derivatives of ),( 32 inin CCA  are zero. That is, 
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For the sake of an easier algebraic manipulation, let the functions: 
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It is easy to notice that )( 2inCu corresponds to the numerator of the ratio in equation 

(4.42), meanwhile )( 2inCv corresponds to the denominator in this fraction. In a truly 

rigorous notation, the functions )( 2inCu  and )( 2inCv  should be written as ),( 32 inin CCu  

and ),( 32 inin CCv  respectively, since they are functions of both 2inC  and 3inC . However, 

when dealing with partial derivatives with respect to one specific variable, the other 
variables may be considered as constant values, which justifies the current notation. 
Later on, these same functions are regarded as )( 3inCu  and )( 3inCv . Replacing equations 

(4.45) and (4.46) into (4.42), the partial derivative of ),( 32 inin CCA  with respect to 2inC  

may be expressed as: 
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Note that 
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Rearranging the terms: 
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Expanding the terms: 
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Expressing as a polynomial equation of the second degree on Cin2: 
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In the same fashion, 
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Expanding the terms: 

2313112
2

3111

2
23311

2
2

2
31122

)(

)()()(

ininoutinin

ininoutinininin

CCCCggnCCPDCgn

CCCggnCCPDgnCvCu

−−+

−−=′
 

 

Expressing as a polynomial equation of the second degree on Cin2: 
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Merging equations (4.51) and (4.52), we have: 
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Putting the result just obtained into equation (4.48), we have: 
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In order to find the values of 2inC  and 3inC  that satisfy equation (4.43), two 

conditions must be satisfied: a) the denominator in the right-hand side of equation 
(4.54) must be different from zero; and b) the corresponding numerator must be equal to 
zero. The first condition can be checked. The second condition leads to the following 
equation, after conveniently reordering the constants and variables: 
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(4.55) 

Expressed in such a suitable way, equation (4.55) may be regarded as if it were a 
univariate polynomial equation of the second degree on 2inC . Doing so, the variable 

2inC  can be isolated from 3inC  and its values are given by: 
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The three new variables a, b, and c have been introduced for the sake of an easier 
algebraic manipulation. At this point, out of the three variables in the problem, 1inC  has 

already been expressed as a function of 2inC  and 3inC  in equation (4.40), and 2inC  has 

been expressed as a function of 3inC  in equation (4.56). Therefore, 3inC  is the only 

variable that remains to be determined. This can be done as follows. Equation (4.45) 
may now be expressed as: 
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Replacing equations (4.60) and (4.61) into (4.42), the partial derivative of 
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and 
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we have: 

2
212311

322212211

2
312221133

)(

]))[((

)()()(

inoutin

inininin

ininininin

CCCCggn

CCgCPDCCCgn

CCCCggnCvCu

+−

−−++

+−=′

     (4.66) 

and 

312222211

2
312221133

)(])[(

)(2)()(

inininin

ininininin

CCCCCgCPDgn

CCCCggnCvCu

+−−+

+−=′
     (4.67) 

Therefore, merging equations (4.66) and (4.67): 
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Consequently, inserting equation (4.68) into (4.63), we have: 
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In order to find the values of 2inC  and 3inC  that satisfy equation (4.44), two 

conditions shall be obeyed: a) the denominator in the right-hand side of equation (4.69) 
must be non-null; and b) the corresponding numerator must be null. The first condition 
can be verified. The second condition takes us to the coming equation, after 
conveniently reordering the constants and variables: 
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                (4.70) 

The triple of equations (4.40), (4.56), and (4.70) defines the sizing of the subcircuit. 
By replacing the expression for 2inC  – equation (4.56) – into equation (4.70), we end up 

with a univariate equation for 3inC . This equation must be solved numerically, giving 

the value of 3inC corresponding to minimum active area. This value of 3inC  allows to 

calculate 2inC , via equation (4.56). Finally, equation (4.40) gives the value of 1inC  for 
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minimum active area. Eventually, more than one triple of values is attained, but only 
one of them corresponds to minimum active area. Besides, due to the mathematical 
formulation of the problem, either negative or complex values for 2inC  and 3inC  may be 

obtained from equations (4.56) and (4.70). However, after rejecting these inconsistent 
results, there is always one and only one triple of values for minimum active area. 

4.5 Branching Subcircuits 
In the previous sections, all the circuits analyzed were fanout free. However, the 

proposed sizing method is also suitable for branching subcircuits. In this section, the 
proposed method is deducted for a 2-stage branching subcircuit, with fixed topology, 
fixed extra parasitic capacitance, and variable subcircuit input capacitance, as depicted 
in Figure 4.7. 

Just like subsection 4.3.2, in the subcircuit shown, parameters gi, hi, and pi 
(i = 1, 2, 3) come from the logical effort delay model. ni is the ratio between the total 
input capacitance of gate i and the capacitance of the input pin of gate i that belongs to 
the logic path under analysis. For a symmetric gate, the numerical value of ni is equal to 
the number of input pins of gate i. Cini is the capacitance of the input pin of gate i that 
belongs to the logic path. C1 is a fixed extra parasitic capacitance. Cout1 is the output 
capacitance seen by gate 2, which might encompass another fixed extra parasitic 
capacitance in the output of such gate. Cout2 is the output capacitance seen by gate 3, 
which might encompass another fixed extra parasitic capacitance in the output of such 
gate. It is worthy to mention that now there are two delay constraints: D1, corresponding 
to the logic path formed by gates 1 and 2, and D2, corresponding to the logic path 
formed by gates 1 and 3. 

 

Figure 4.7 – Model of a 2-stage branching subcircuit with variable input capacitance 

 
Source: Logics (2013). 

 



 

 

 

 

 

 

 

66 

There are three variables in this problem, namely, Cin1, Cin2, and Cin3. According to 
the logical effort delay model, the delay equation for each logic path may be expressed 
as: 

)( 2221111 phgphgD +++=                                     (4.71) 

)( 3331112 phgphgD +++=                                     (4.72) 

Since 11321 /)( ininin CCCCh ++= , 212 / inout CCh = , and 323 / inout CCh = , equations (4.71) 

and (4.72) may be rewritten respectively as 
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Isolating 1inC  in equation (4.73): 
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Replacing the expression for 1inC  – equation (4.75) – into equation (4.74): 
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Isolating 2inC  in equation (4.76): 
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Now replacing the expression for 2inC  – equation (4.77) – into equation (4.75), we 

obtain 1inC  as a function of solely 3inC : 
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In this case, the active area of the subcircuit in Figure 4.7 is given by: 

332211321 ),,( inininininin CnCnCnCCCA ++= .                           (4.79) 

Merging equations (4.77), (4.78), and (4.79): 
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(4.80) 

That is, the active area is now a univariate function of 3inC . By taking the derivative 

of )( 3inCA  and setting it to zero, the value of 3inC for minimum active area is attained. 

For the sake of an easier algebraic manipulation, let the functions: 
2
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))()(()( 232321313312113 outinininoutin CgppDDCCCCCggnCw +−+−+=                     (4.83) 

31223)( inoutin CCgnCx =                                                                                                (4.84) 

23232133 )()( outinin CgppDDCCy +−+−=                                                                (4.85) 

It is easy to notice that )( 3inCu is the numerator of the first fraction in the right-hand 

side of equation (4.80), meanwhile )( 3inCv  is the denominator of the two first fractions 

in the right-hand side of this same equation. In the same fashion, )( 3inCw is the 

numerator of the second fraction, and the numerator and denominator of the third 
fraction are given by )( 3inCx and )( 3inCy , respectively. Therefore, )( 3inCA  may be 

expressed as: 

33
3

3

3

3

3

3
3 )(

)(

)(

)(

)(

)(
)( in

in

in

in

in

in

in
in Cn

Cy

Cx

Cv

Cw

Cv

Cu
CA +++=                         (4.86) 

Hence, 
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Rearranging equation (4.87): 
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This is a sixth degree univariate (on 3inC ) polynomial equation, whose solutions 

may be obtained numerically. Among these solutions, one corresponds to the minimum 
active area. Therefore, the triple of equations (4.77), (4.78), and (4.88) defines the 
sizing of the branching subcircuit. 
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4.6 Power Delay Product 
In the design of power-efficient circuits, an important figure of merit is the power-

delay (P – D) tradeoff. In its simplest form, it is expressed as the product PD. In order 
to achieve a thorough analysis in the P – D space, this tradeoff may also be considered 
as 0,, ≥jiDP ji  (ALIOTO, 2011). The correct understanding of this tradeoff is 
essential for designing either high-speed or low-power circuits (DAO, 2006; 
MARKOVIC, 2004). One way of doing this analysis is based upon a power-efficient 
curve, which consists of the minimum points of each ji DP  curve, for several 
combinations of the exponents i and j. The minimum points of these curves use to be 
obtained via iterative optimization procedures (ALIOTO, 2011), which is a time-
demanding task. In this section, it is shown that the proposed sizing method is suited for 
finding analytically the minimum points for power-delay product. 

As an example, it is obtained analytically the minimum point of PD product for a 
3-stage fanout free subcircuit, with fixed topology, fixed extra parasitic capacitances, 
and fixed subcircuit input capacitance, as shown in Figure 4.4. The delay and active 
area of this subcircuit are given respectively by equations (4.3) and (4.9). According to 
Weste (2006), the dynamic power P dissipated by the subcircuit is given by: 

fCVP DD

2α=                                                   (4.89) 

where f is the clock frequency, C is the total input capacitance (i.e., active area A), and α 
is an activity factor, which can be empirically determined (WESTE, 2006). 
Consequently, equation (4.89) may be rewritten as: 

kAP =                                                        (4.90) 

where k is a constant. Hence, the PD product is given by: 

),(),( 3232 inininin CCDCCAkDPPD ××=×=                          (4.91) 

Even though the same expression for the delay – equation (4.3) – is valid throughout 
this thesis, in this section there is a remarkable difference in its interpretation. 
Previously, the delay of the subcircuit was a design constraint, i.e., a fixed value. 
However, the objective now is to do an analysis in the PD space. Therefore, the delay is 
not only variable, but also a function of 2inC  and 3inC . Merging equations (4.3) and 

(4.90) into (4.91), it follows that the PD product may be expressed as: 
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equation (4.92) may be rewritten as 
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Expanding the terms in equation (4.93) and finding the two partial derivatives: 
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Setting these two partial derivatives equal to zero: 
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Rearranging conveniently the terms in equation (4.97), it can be expressed as if it 
were a univariate polynomial equation of the second degree on 2inC : 
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Therefore, the variable 2inC  can be expressed as a function of 3inC : 
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The variables a, b, and c have been introduced for the sake of an easier algebraic 
manipulation. Replacing equation (4.99) into (4.96), we have a univariate nonlinear 
equation on 3inC , which can be solved numerically. Replacing the value thus obtained 

for 3inC  into equation (4.99), we have the corresponding value of 2inC . Eventually, 

either negative or nonreal values may be found, but there will always be one and only 
one pair of values for 2inC  and 3inC  that correspond to the minimum PD product. 



 

 

 

71

5 EXPERIMENTAL RESULTS 

In this section we investigate the validity of the method compared with results 
obtained with electrical simulations. The subcircuit used for validation is shown in 
Figure 5.1. Even though the proposed method is capable of coping with fixed extra 
parasitic capacitances, they are not taken into account in this validation. The 
comparison is based on the Nangate Open Cell Library (NOCL) library, and the specific 
values of logical effort parameters g and p for the logic gates are obtained by simulation 
according to the logical effort original method (SUTHERLAND, 1999). The 
formulation proposed herein is developed so that the input capacitance of the subcircuit 
under design may have either a fixed or a maximum value. Working with a variable – 
albeit limited – input capacitance would give an additional degree of freedom to the 
problem, making it easier to come to a global optimum. However, in this chapter, for 
the sake of comparison with the logical effort sizing method, the input capacitance of 
the subcircuit is made equal to the X1 NAND2 cell in NOCL. 

 

Figure 5.1 – Subcircuit to be sized 

 
Source: Logics (2013). 

 

The proposed method is used to size the subcircuit of Figure 5.1 for 20 different 
configurations of output load and delay constraints, which are shown in Table 5.1. The 
four columns under the Experiment Configuration title specify the conditions under 
which each experiment was carried out. The column labeled Case presents the 
configuration identifier label, ranging from C1 to C20. The column labeled Load 
represents the output load used in the configuration. Xi expresses a load whose value is 
i times the input capacitance of the X1 inverter in NOCL. The third column (Const.) 
represents the delay constraint of the experiment configuration, given in picoseconds 
(ps). The column entitled LE ratio explains how the delay constraint is obtained from 
the minimum achievable delay. These delay constraints are obtained as follows. First, 
we calculate the minimum possible delay for every load Xi, namely, LEi, given by the 
logical effort sizing method (SUTHERLAND, 1999). Then, the minimum achievable 
LE delay is augmented by a factor within the range 0.9-1 to 0.5-1, thus introducing a 
slack in the minimum achievable delay constraint. This slack is increased as long as the 
logic gates of the corresponding optimized subcircuit are not sized to scale factors 
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smaller than 1. In this case, the scale factors would be automatically set to 1, and 
therefore any sizing comparison would be meaningless. 

For each of the case studies (C01 to C20), the subcircuit is sized with the proposed 
method, and the corresponding results are shown in the three columns in Table 5.1 
under the Proposed method title. The column labeled ΣW shows the sum of the scale 
factors of the two inverters (stages 2 and 3) in the subcircuit obtained with the method. 
The columns entitled Delay (in picoseconds) and Pow.(parameterized), respectively, 
show the corresponding delay and dynamic power obtained by HSPICE simulations for 
the subcircuit obtained with the method. Pow. is parameterized by the dynamic power 
consumption of a subcircuit with ΣW = 2.9 under load X1. 

Table 5.1 – Sizing results compared with HSPICE reference and Kabbani (2010) 

Experiment Configuration  Proposed method Reference Proposed method (% ) Kabbani [7] (%) 
Case Load Const. LE Ratio ∑ W Delay Pow. ∑ W Pow. ∑ W(%) D(%) Pw(%) ∑ W(%) D(%) Pw(%) 

C01 X4 42.7 (LE4/0.9) 2.02 43.603 1.21 2.2 1.26 -8.0 +2.00 -4.0 +70,90 -8,38 +26,90 

C02 X16 56.2 (LE16/0.9) 4.01 58.210 3.24 4.6 3.38 -12.8 +3.45 -4.1 +77,59 -7,21 +23,40 

C03 X16 63.2 (LE16/0.8) 3.00 64.703 3.03 3.2 3.07 -6.3 +2.29 -1.3 +155,29 -17,48 +35,86 

C04 X16 72.3 (LE16/0.7) 2.49 72.769 2.92 2.6 2.94 -4.3 +0.70 -0.68 +214,20 -27,87 +41,87 

C05 X32 65.7 (LE32/0.9) 6.14 68.041 5.83 7.1 6.05 -13.5 +3.50 -3.6 +72,40 -6,76 +19,01 

C06 X32 73.9 (LE32/0.8) 4.49 75.669 5.47 4.8 5.54 -6.4 +2.38 -1.3 +155,01 -17,10 +29,96 

C07 X32 84.4 (LE32/0.7) 3.51 84.816 5.26 3.6 5.28 -2.4 +0.47 -0.38 +240,01 -27,42 +36,36 

C08 X32 98.5 (LE32/0.6) 2.90 96.865 5.14 2.9 5.14 +0.1 -1.67 0.0 +322,08 -37,81 +40,08 

C09 X40 69.2 (LE40/0.9) 7.05 71.711 7.08 8.1 7.33 -12.9 +3.50 -3.4 +72,48 -6,59 +17,98 

C10 X40 77.8 (LE40/0.8) 5.18 79.677 6.69 5.5 6.75 -5.9 +2.29 -0.89 +154,02 -16,92 +28,12 

C11 X40 89.0 (LE40/0.7) 3.99 89.349 6.43 4.1 6.45 -2.7 +0.42 -0.31 +240,75 -27,37 +34,08 

C12 X64 77.6 (LE64/0.9) 9.44 80.381 10.8 10.9 11.1 -13.4 +3.49 -2.7 +69,85 -6,26 +15,77 

C13 X64 87.3 (LE64/0.8) 6.81 90.203 10.2 7.4 10.3 -8.0 +3.25 -0.97 +150,19 -16,68 +24,76 

C14 X64 99.7 (LE64/0.7) 5.35 99.945 9.90 5.4 9.90 -0.9 +0.20 0.0 +242,85 -27,04 +29,80 

C15 X64 116 (LE64/0.6) 4.21 113.78 9.65 4.1 9.63 +2.7 -2.27 +0.21 +351,56 -37,29 +33,44 

C16 X100 86.8 (LE100/0.9) 12.5 90.002 16.2 14.4 16.7 -13.3 +3.51 -3.0 +68,56 -5,78 +13,29 

C17 X100 97.7 (LE100/0.8) 9.26 99.562 15.5 9.8 15.6 -5.5 +1.87 -0.64 +147,68 -16,29 +21,28 

C18 X100 112 (LE100/0.7) 7.14 111.47 15.0 7.1 15.1 +0.6 -0.16 -0.67 +241,87 -26,98 +25,30 

C19 X100 130 (LE100/0.6) 5.54 126.98 14.7 5.3 14.6 +4.4 -2.58 +0.68 +357,98 -37,09 +29,59 

C20 X100 156 (LE100/0.5) 4.37 148.00 14.5 4.1 14.4 +6.6 -5.62 +0.69 +492,03 -47,58 +31,39 

Source: Author. 

 

Table 5.1 also presents two columns used as reference, listed under the title 
Reference. In order to generate the reference data, an exhaustive set of HSPICE 
simulations – level 6, using Predictive Technology Model 45 nm technology (PTM) – is 
performed for each output load (ranging from X4 to X100). The goal is to compare the 
results given by the sizing method with the minimum active area obtained by exhaustive 
electrical simulations. The results of the delay obtained by electrical simulations form a 
surface, as illustrated for the load X16 in Figure 5.2 for delay and in Figure 5.3 for 
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power. These data sets can be used to discover minimum active area respecting the 
delay constraint and minimum power respecting the delay constraint for cases C02 to 
C04, which have load X16. Similar surfaces are produced for loads X4 (case C01), X32 
(cases C05 to C08), X40 (cases C09 to C11), X64 (cases C12 to C15) and X100 (cases 
C16 to C20). The columns under the title Reference labeled ΣW and Pow., respectively, 
show the minimum possible ΣW and power respecting the design constraints, as 
obtained empirically from the dataset forming the surfaces. 

 

Figure 5.2 – Delay vs. sizing of a subcircuit for minimum active area via exhaustive search 
(electrical simulation) 

 
Source: Logics (2013). 

 

Figure 5.2 plots the delay of the subcircuit for a range of scale factors for the two 
inverters, with an output load of X16. The delay is parameterized by LE16. For any 
given delay constraint greater than the minimum possible delay, there are several 
possible pairs of scale factors. However, only one specific point corresponds to either 
minimum active area (sum of widths) or power consumption. Figure 5.3 plots the power 
consumption of the subcircuit for the same previous range of scale factors for the two 
inverters and load. Notice that, for better visualization, the horizontal scales in the plot 
are not the same as in Figure 5.2. The dynamic power consumption is parameterized by 
that of the minimum inverter. Comparing these plots, it is clear that the fastest circuit is 
not the most power consumer, as well as the slowest circuit is not the least power 
consumer. This summarizes the importance of appropriate sizing for optimizing a 
circuit. Figure 5.3 also shows a good correlation between the total input capacitances of 
the logic gates of a circuit and its power consumption. This can be inferred from the fact 
that the surface plotted is nearly a plane. 
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The comparison of the results from the method with HSPICE references is presented 
in three columns of Table 5.1, under the title Proposed Method (%). The column labeled 
ΣW(%) gives the percentage difference between the sum of widths (i.e., scale factors of 
the two inverters) obtained by the proposed method and the minimum reference 
obtained from HSPICE simulation datasets. The subcircuit can be oversized by 6.6% in 
the worst case, but producing a better delay at a small power penalty. The column 
entitled D(%) gives the percentage difference between the delay for the subcircuit 
obtained by the proposed method and the delay constraint. Sometimes the delay is 
slightly larger than the delay constraint (by 3.5%), which is acceptable for a first fast 
computation. The column labeled Pw(%) gives the percentage difference between the 
dynamic power obtained by the proposed method and the minimum reference obtained 
from electrical simulation datasets. Notice that, in all cases but one (C18), the delay 
difference has opposite signs with respect to both power and sum of width differences, 
as expected. This exception is explained by the fact that the minimum value obtained 
from electrical simulation is not necessarily the minimum minimorum, since this value 
was obtained with a discrete simulation step (0.1 of scale factor). In case C18, the real 
minimum value was found by using a simulation step ten times smaller (0.01 of scale 
factor). This happens for reference ΣW = 7.14. In this situation, the delay difference has 
positive sign, while the power difference has negative sign. 

Using 0.1 as simulation step, a total of 5,000 simulations have been performed. It 
would be unfeasible to use 0.01 as simulation step to fill in the table, since 500,000 
simulations would be necessary. 

 

Figure 5.3 – Power consumption of the subcircuit under design 

 
Source: Logics (2013). 
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The proposed method presents improvements over previous approaches. According 
to Kabbani (2010), the efforts (SUTHERLAND, 1999) of the logic gates in the 
subcircuit should have the same value for attaining minimum area. In mathematical 
terms, for the subcircuit under design, we would have: 
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Nevertheless, electrical simulations show that, for the load X16 and delay constraint 
LE16/0.9, the efforts (SUTHERLAND, 1999) for the first, second, and third stages are 
given by 1.60, 2.54, and 4.85, respectively. The proposed method finds 1.39, 2.56, and 
5.55, respectively. This verification is conducted for several combinations of loads and 
delay constraints, and the discrepancy between HSPICE results and equation (5.1) – as 
stated by Kabbani (2010) – is always present. In turn, the results given by the proposed 
method, for all experiments fulfilled, are much closer to the optimal results obtained by 
electrical simulations. This happens because, unlike Kabbani (2010), the proposed 
method takes into account the following facts: a) the input capacitance of the subcircuit 
may have either fixed or variable – although limited – value; b) the number of stages in 
the subcircuit may differ from the ideal number predicted by the logical effort sizing 
method (SUTHERLAND, 1999); c) the cost function for the subcircuit active area in 
equation (4.8) encompasses each logic gate in its entireness, not just the capacitance of 
the input pin that belongs to the logic path under design. 
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6 CONCLUSION AND FUTURE WORK 

This thesis presented a new method for sizing subcircuits based on the logical effort 
delay model. The method is able to find the minimum active area of a subcircuit 
analytically, thus dismissing the use of iterative methods such as mathematical 
programming or algorithmic approaches. An analytical solution – rather than an 
iterative one – has some advantages. The minimum active area is achieved by solving a 
one-variable equation, which tends to be faster than iterative methods. Since power 
consumption is closely related to active area, this method is also capable of minimizing 
power. 

Besides, an analytical solution offers a better understanding of the problem, which 
may be the starting point for future works. As seen in section 4.6, the method may be 
generalized in order to optimize power delay product. More specifically, the minimum 
point for the PD  curve was obtained. It is likely that the minimum points for ji DP , for 
small values of i and j, may also be obtained with the proposed method. 

Another extension of the proposed method is related to branching circuits. In section 
4.5, the method was developed for two-stage branching subcircuits. It is very likely that 
branching circuits may be treated to the same extension – in terms of the number of 
stages – that fanout free circuits may be treated by the proposed method. 

The model accuracy has been validated with respect to electrical simulations, which 
showed that the proposed method was very precise for a first order approach, as it 
presented average errors of 1.48% in power dissipation, 2.28% in propagation delay, 
and 6.5% in transistor sizes. 

The maximum delay error was 3.5%. This inaccuracy is inherent to the logical effort 
delay model. In order to minimize such error, the usage of more accurate versions of the 
logical effort delay model – such as Lasbouygues (2006), Wang (2009), and Masry 
(2011) – is under study. Such model version should consider the impact of the input 
signal slope on the delay of a logic gate. This way, the new sizing method would be able 
to cope with non-posynomial delay models. Such models cannot be solved by convex 
programming (TENNAKOON, 2008), and their solution by non-convex programming 
is not granted. 

Just like many other cases in engineering, there is a tradeoff relationship between 
analytical solutions and numerical solutions. The former gives more elegant and less 
computing power consuming solutions, meanwhile the latter relies on iterative methods 
that may be computationally expensive. However, it is not always that analytical 
solutions for sizing may be applied with precise, non-trivial delay models. In this case, 
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numerical solutions may be more appropriate. This is the challenge to be faced when 
applying the proposed method with more accurate delay models. 

Another future work is related to the generalization of the proposed sizing method 
for subcircuits with an arbitrary number of stages. Currently, the method is derived for a 
finite set of logic path lengths. Initially, it seems very likely that the method may be 
applied to subcircuits with up to five stages. It depends on the system of polynomial 
equations to be solved analytically, which may not always be possible. The next step 
would be to find the solution of the proposed method for an arbitrary number of stages. 
It is not granted that such problem has a closed-form solution. Therefore, for the sake of 
simplicity, the investigation would start by analyzing fanout free buffers. For every 
number of stages – up to a limit –, for every load – within a range –, and for every delay 
constraint – as long as the inverters are not sized to a scale factor smaller than 1 –, a 
buffer will be sized via exhaustive electrical simulations. The data set thus obtained 
might reveal a pattern in the sizing of buffers with minimum active area, which might 
lead to a new sizing formulation. 

A somewhat peripheral future work is as follows. In Sutherland (1999), an analysis 
is conducted about the wp/wn ratio that gives the smallest average delay (rise and fall 
transitions) of a logic gate. Within the scope of the proposed method, an analogous 
analysis may be conducted to determine the wp/wn ratio that gives the logic gates with 
smallest active area. 

To the best knowledge of the doctor’s degree candidate, this is the first approach for 
analytical sizing under delay constraints based on the logical effort delay model. It 
differs considerably from the existing sizing methods, since its main contribution is to 
compute the area derivative to obtain minimum area, instead of making the delay 
derivative to obtain minimum delay, as it is done in the traditional logical effort 
formulation. At the same time, the proposed method shows a good precision – when 
compared to electrical simulations – and superior results to other sizing method 
(KABBANI, 2010) that has the same objectives. Equally important, the proposed 
method paves way for consistent future works. 
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