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The model developed here analytically allows to obtain equilibrium quantities of interest from
high-intensity charged particle beams such as the emittance, beam envelope, and the number of
beam halo particles. The results obtained in this work have been particularized to the case of initially
homogeneous beams, with azimuthal symmetry, and focused by a constant magnetic field while
confined in a linear channel. For validation, full self-consistent N-particle beam simulations have
been carried out and its results compared with the predictions supplied by the developed hybrid
numerical-analytical model. The agreement has been reasonable. Also, the model revealed to be
useful to understand the basic physical aspects of the problem. © 2008 American Institute of

Physics. [DOI: 10.1063/1.2949270]

I. INTRODUCTION

Beams with any given initial distribution of charged par-
ticles confined by a magnetic focusing system can relax from
a nonstationary into a stationary state through the increasing
of one of its statistical quantities known as emittance.' This
is the case of the system of interest here: azimuthally sym-
metric beams with initially mismatched envelopes, flowing
along the symmetry axis of the focusing channel permeated
by an axial magnetic field. To better understand the emit-
tance growth above, Jameson® proposed a model in which
the interaction of individual particles with the beam is ana-
lyzed. Gluckstern analytically solved® this particle-core
model and has shown that the physical mechanism possibly
related to this emittance growth is large resonant islands®
beyond the beam border.

The formation of these resonant islands is induced by the
initial mismatch of the beam, which can drive particles re-
siding in the beam vicinity to excursions with high ampli-
tude. From the point of view of energy conservation, the
resonant coupling above progressively converts energy of the
beam macroscopic oscillation into kinetic energy associated
with the microscopic chaotic movement of the outer par-
ticles, causing the decay of the beam envelope and, as a
consequence, the increasing of its emittance. This process
continues until the equilibrium state of the system is reached,
at which moment the emittance saturates. In this situation,
looking at the beam phase-space, the particles that compose
the beam can be mainly classified in two distinct popula-
tions: a dense one, formed by low velocity particles which
compose the beam core, and a tenuous one, surrounding the
previous population and formed by high velocity particles,
which compose what is known as the beam halo. This split-
ting of the beam distribution in these two distinct populations
naturally appears in the full self-consistent N-particle simu-
lations of mismatched beams, as will be shown in the next
sections of this work.

“Electronic mail: rogerpn @if.ufrgs.br.

0021-8979/2008/104(1)/013302/10/$23.00

104, 013302-1

It is important here to explain that the meaning of the
words stationary and equilibrium used until here, and here-
after, is related to the beam phase-space. The stationary or
equilibrium state should be understood as the situation in
which the topology of the beam phase-space is unchanged as
time evolves. In this case, there is no more energy exchange
between the particles that compose the beam halo and the
particles that compose the beam core, indicating that the de-
cay of the beam envelope has ceased due to the inexistence
of free energy in the overall system. This just implies that the
geometry of the beam phase-space is explicitly invariant
with the time. This concept will become clearer in Sec. III B
of this work, where a deeper discussion will take place.

The beam halo formation has implications over engi-
neering aspects of accelerators can cause
radioactivation® of its confinement structure, resulting in a
possible damage of its electronic components and precluding
the human maintenance. Also, these beam losses increase the
costs with maintenance of the experimental apparatus and
degrade the beam quality, which is a requisite for some ap-
plications. In this way, investigations that intend to charac-
terize the beam halo are an important issue to build the next-
generation high-power machines.

From the accelerator engineering point of view, a satis-
factory characterization of the beam halo is achieved with
the determination of its maximum spatial dimension and the
time scale of its formation, as the beam mismatch varies.
With the first information, to say the spatial dimension of the
beam halo, it is possible to better design the conducting pipes
employed in the magnetic confinement system while with the
second information, the time scale of the beam halo forma-
tion, it is possible to design a more efficient collimation sys-
tem for the accelerator. However, considering the physics
point of view, other information such as the density of par-
ticles that composes the beam halo and the beam emittance is
also of interest. These last quantities help to better under-

since it
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stand the mechanisms behind the halo formation, its influ-
ence over the beam core, and as a consequence, its influence
over the overall dynamics of the beam.

The purpose of the current article is to better detail and
to extend previous results firstly introduced in Ref. 6 and
afterward in Ref. 7, which has been mainly dedicated to de-
velop a semianalytical model for estimation of the time
scales of the beam halo formation as function of the initial
beam mismatch. In this article, it will be described in detail a
method to analytically determine beam equilibrium quanti-
ties such as emittance, envelope, and number of halo par-
ticles of an azimuthally symmetric beam with respect to its
initial mismatch. For simplification of the calculations as
well as for a clearer explanation, the beam has been consid-
ered initially homogeneous. Through the model, it has been
found that only with a few assumptions about the geometry
of the initial and the final beam phase-space aided by general
equations for the conserved quantities of the entire system,
composed by the particles and fields, the above commented
quantities can be naturally evaluated as function of the initial
beam mismatch. For validation, the developed model will be
compared with full self-consistent N-particle beam simula-
tions, considering several values of initial beam mismatches.

This article is organized in the following form: in Sec. II,
the general equations employed in the analytical model de-
veloped are briefly reviewed. It is interesting here to empha-
size that these equations describe macroscopic quantities of
beams with arbitrary phase-space distributions. In Sec. III,
the analytical model developed is formally described and
presented. For simplicity of the calculation, a beam initially
without emittance (a cold beam) and initially with a homo-
geneous density (step-function profile) has been considered.
In Sec. IV, the results provided by our model, namely, the
beam emittance, the beam envelope, and the number of beam
halo particles at the beam equilibrium state, are compared
with full self-consistent N-particle simulations, based on the
Gauss’ law. To assure the model validity, the previous com-
mented comparison has been done for several values of ini-
tial beam mismatch, such as 20%, 40%, 60%, 80%, and
100%. Finally, in Sec. V, the conclusions of this article and
the perspectives for futures works will be discussed.

Il. GENERAL EQUATIONS

Notwithstanding the complexity of the beam dynamics,
some equations for conserved quantities of the beam distri-
bution can still be obtained. This is the case of charged par-
ticle beams with arbitrary particle distributions flowing in a
linear acceleration channel. The channel is encapsulated by a
conducting pipe with circular cross section, which is perme-
ated by a solenoidal magnetic field aligned to the pipe sym-
metry axis. The presence here of a conducting pipe has key
importance in assuring that the overall beam canonical angu-
lar momentum is conserved, independent of the azimuthal
characteristics of the beam distribution. For the rms beam
radius
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Ry(s) = (x> +yH)'"2, (1)

in which the angular brackets denote phase-space averaging,
one of these above commented equations can be established®

K(1+4y)  &Xs) _
2R,(s)  4R(s)

dsz(S )
ds®

+ Kk ()R(s) = 0, (2)

in which k,(s)=[gB.(s)/2ymBc*]* is the focusing factor and
B.(s) denotes the axial and s-dependent focusing magnetic
field. K=2Ngq?/y’mf3*c? is the constant beam perveance, and
A= 1/27K%[ (2,"(1"(&/ &r)6¢)2|,=,wd6 computes the azimuthal
distortions in the beam distribution represented by angular
fluctuations of the dimensionless scalar electromagnetic po-
tential 8. (s) is the beam emittance, which can depend on
the axial distance s. N is the number of beam particles per
unit axial length (which is constant), ¢ denotes the beam
particles charge, m is the corresponding particle mass, 7y
=(1-8%7"2 is the relativistic factor, B=v_/c, in which v_ is
the constant axial beam velocity, and ¢ denotes the speed of
light. s is the axial coordinate and is directly related to the
time ¢ through s=sy+ Bct. All spatial variables are in the
Larmor frame. For this reason, time and axial distance here
has the same meaning from the point of view of the equa-
tions.
The beam emittance is defined in the form

B <x2+y2>/2)

2 3)

&(s) =4<<xz+y2><x’2 +y'%)
in which the primes indicate derivatives with respect to the
axial distance s. Equation (3) only defines a statistical quan-
tity of the beam distribution. The global balance of the
beam’s energy can be expressed by8

K (s)

;<ﬁ+ﬁwfm)=gf

d(1
£<E<x/2+y/2>+
dx,(s)

s (4)

+5%)
This one will prove useful later to connect the initial nonsta-
tionary beam state with its final stationary state, in the light
of the analytical model developed and subsequently de-
scribed in Sec. III. In Eq. (4), £(s) is the dimensionless self-
field beam energy given by

g(g:#{ f Vo, (5)

in which ¢ is the already above commented dimensionless
scalar electromagnetic potential governed by the Poisson
equation

2;\:Kn(r,s) , (6)

Vig=-

in which n(r,s) represents the beam’s particle density, the
symbol L indicates that the operation is carried out over the
transverse spatial coordinates, and the dimensionless scalar
electromagnetic potential ¢ is scaled with units of

ympB:c?lq.
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It is interesting to emphasize here that the above equa-
tions, namely, Egs. (1)-(6), are valid for any value of s,
during all the beam dynamics, irrespective of the kind of the
beam distribution. This is assured by imposing that the beam
evolves inside a circular conducting pipe.

Thus, it can be observed that if one now supplements
Egs. (1)-(6) with the initial condition at beam entrance,
which consists of establishing the initial beam distribution,
and with additional information about the same beam distri-
bution in its equilibrium, it becomes possible to estimate the
beam quantities desired here such as emittance, envelope,
and the number of halo particles on the stationary state as a
function of the beam’s initial mismatch. This will be the
subject of Sec. III.

lll. THE DEVELOPED MODEL

In order to simplify the calculations done right after in
the next subsections, some definitions about the initial beam
shape and the employed magnetic focusing field will be
made. In this work, it will be considered the case of azimuth-
ally symmetric beams, focalized by a constant solenoidal
magnetic field, which, respectively, implies that

A,=0, and k(s)=k. (7)

Also considering a beam with an initial step-function profile,
it is possible to introduce

ry(s) = 2R, (s). (8)

in which r,(s) designates the beam envelope.
Inserting the conditions presented in Egs. (7) and (8) into
Eq. (2), the following equation for the beam envelope arises,
d*ry(s) K &s)
$) = T3 N
r(s)  ry(s)
In the same way, inserting these Egs. (7) and (8) into Eq. (4)
readily gives the energy conservation equation below

)

1
§<x’2+y'2>+ §<x2+y2>+5(s)=const. (10)

To leave the system depending on just one free param-
eter, namely, the beam initial mismatch, it is interesting to
use a scaling scheme in all previous described equations of
this article. A way to do so is to rescale all transverse coor-
dinateﬂ units of the beam equilibrium radius, defined as
req=\K/k, and rescale the longitudinal coordinate in units of
1/Vk. As a consequence of using this rescaling technique,
the emittance is now given by units of K/ «!2. All of this is
exactly equivalent to set K— 1 and k— 1 in all equations in
which these parameters appear, and that has been enunciated
until here in this article.

As will be possible to infer in the subsections below, the
simplification above will not restrict the application of the
developed model to other beam shapes and magnetic focus-
ing systems. This model is somewhat more general because
it involves conserved quantities of the beam, whose equa-
tions are valid for the overall dynamics inside the focusing
channel. The initial beam distribution is just an initial condi-
tion, and the type of magnetic focusing field is just a param-
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eter, which has to be inserted as an input in the developed
model. However, the assumptions in this section are very
useful to clarify how the model works. Especially is the con-
sideration about the magnetic focusing field, which yields
directly the simple energy conservation equation (10).

With the support of the previous equations, the task re-
sides in just to connect the beam’s initial nonstationary state
with the beam’s final stationary state. This link between the
final and initial beam’s state is crucial to evaluate the station-
ary beam quantities of interest here as functions of the
unique initial free parameter in the model, the beam initial
mismatch.

A. The beam nonstationary state

The system considered here is composed by a beam of
charged particles of radius r.(s), with an initial circular cross
section, and moving along the symmetry axis of an inner
channel of a circular conducting pipe of radius r,,. The beam
is initially cold, which means that its initial emittance can be
neglected. In this case, the beam is space charge dominated,
and since space-charge beams are fairly homogeneous,1 it is
possible to suppose that the initial beam’s distribution satis-
fies a step-function profile

N/’JTVS for r<r,

0 forrp<r=r

n(r,s:O)En():{ (11)

wa

in which r is the radial coordinate measured from the sym-
metry axis of the pipe and ry=r.(s=0) denotes the initial
value for the beam envelope, which under the action of the
rescaling procedure adopted above is nothing more than the
beam initial mismatch.

Defining the initial beam density, which is described by
Eq. (11), it is possible to evaluate its initial scalar electro-
magnetic potential ¢ or its derivatives related to the transver-
sal coordinate r. Inserting Eq. (11) into Eq. (6) and solving
the resulting ordinary differential equation for the self-
consistent electric field E, which depends only on r due to
the problem’s symmetry, one has

2
riry forr<ry

E,(r,s=0) EE,Oz{ (12)

Ur forrp<r=<r,,

in which E, is the radial component of the self-consistent
electric field E.

Knowing the expression for the electric field self-
generated by the beam density of charged particles, its en-
ergy contribution can be computed. Inserting Eq. (12) into
Eq. (5) yields

E(s=0)=Ey=— 3 In(ry) + 3 In(r,) + 5. (13)

Since the emittance of the initial beam distribution has
been set to zero, by a reason that has been previously eluci-
dated, information about the initial kinetic energy of the
beam’s particles can be determined. Imposing £(s=0)=0 in
Eq. (3), using Egs. (1) and (8), and considering that r(s
=0)=r, reads, respectively, that
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(x?+y?)(s=0)=0, and (F+y*)(s=0)=ry2.

(14)

By the possession of Egs. (13) and (14), one is able to evalu-
ate the final expression for the energy conservation equation
(10), which reads

% - % In(r) + % In(r,,) + é =const=E(s=0)=E,. (15)

This is the initial beam energy E,, which has to be con-
served as time evolves, independent of the evolution of the
beam profile and everything else. Note also that this quantity
depends only on the just one free parameter of the developed
model: the initial beam mismatch. The term dependent on r,,
is not a problem. In fact, this one should be canceled out
with its analogous part originated from the calculation of the
final stationary state. The next task resides in analyzing the
beam equilibrium.

B. The beam stationary state

As the beam envelope evolves inside the focusing chan-
nel, particles begin to observe the action of nonlinear forces
that start to transfer energy from the beam envelope oscilla-
tion to the motion of individual particles, which are expelled
from the beam core and initiate to populate an extended hot
halo of radius r,(s), larger than the beam core r.(s). These
high-energetic particles surround the cold beam core, having
their motion coupled with this through Gluckstern’s reso-
nances. At this point, expression (11) is clearly no longer
valid, since not only particles are not restricted to live within
the beam envelope r.(s) but also because the profile of the
beam density changes in such a way that this one becomes
considerably inhomogeneous. This additional complexity can
be included in the beam dynamics as a splitting of the beam
density n(r,s) in two distinct densities, one for the particles
of the beam halo n,(r,s) and other one for the particles of
the beam core n.(r,s).

After this kind of instability is originated, the beam en-
velope suffers an abrupt decay, moving itself toward a new
state, in which it will remain. As a matter of fact, this does
not occur as s goes to the infinity, but in a finite time scale 7,7
which ideally depends on the initial beam mismatch r,. This
new state is an equilibrium one, in such terms as described in
Sec. I, the introduction of this article. In this stationary state,
the geometry of the beam phase-space is explicitly invariant
with the time s and Eq. (11) can be updated to

n.(r) +n,(r) forr<r,
nm(r) forr,<r<r,

0 forr,<r=<r

n(r,s=7=n.=

w?

(16)

in which the time dependence does not have to be explicited
anymore, and 7n.(r) continues to obey a step-function profile
like in Eq. (11).

Such as can be observed in Eq. (16), the problem resides
on just to calculate the halo density 7,(r). To determine this
one, it is necessary to include some external information
about the beam profile at equilibrium. With the help of full
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FIG. 1. Several snapshots of the transverse beam phase-space during its
dynamics for an initial beam mismatch of ry=1.6. Snapshots at (a) s
=337.6, (b) =463, (c) s=640.1, and (d) s=791.2.

self-consistent N-particle beam simulations, it has been re-
marked that, for s= 7, the particles that compose the beam
halo live in a specific region of the beam phase-space. More-
over, this phase-space region has a regular geometry, which
can be readily converted to analytical expression. Addition-
ally, this is expected to be unchanged for every time s= 7, as
has been written in this article.

In Fig. 1, four snapshots of the beam phase-space at
different times of the beam dynamics after s= 1 are shown.
These ones are a result of full self-consistent N-particle beam
simulations carried out until s=800 for N=10 000 particles
and an initial beam mismatch of ry=1.6. The first one of
these snapshots has been captured at s=337.6, and is shown
in Fig. 1(a), right after the beam envelope decay. The other
ones are presented in Fig. 1(b) at s=463.0, in Fig. 1(c) at s
=640.1, and in Fig. 1(d) at s=791.2. From these snapshots it
is possible to observe that the geometry of the beam phase-
space is almost invariant, which is in accordance with the
previous definition of equilibrium done in Sec. I. Also, it is
possible to identify beam particles which lie in two distinct
regions of the beam phase-space: extremely hot particles
over a semicircular branch, which will be named here as
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FIG. 2. The partition of the beam energy between cold, warm, and hot
particles as a function of the time s is shown in panel (a). In panel (b), the
time dependence of the fraction f(s) of the beam halo particles is shown. All
panels have been constructed for an initial beam mismatch of ry=1.6. For
this case, E;=0.5294.

beam halo particles, and cold particles over a horizontal
branch, which will be named here as beam core particles.

In fact, a sharper look at the beam phase-space of Figs.
1(a)-1(d) will identify a cloud of warm particles around the
cold beam core. However, these particles have been ne-
glected in the analytical model developed in this subsection
for the beam stationary state. The reason for this is that its
density is too low when compared with the particle density
of the beam core. Also, although its density is greater than
the one of beam halo particles, it has so much less energy, a
fact that can be explained since these particles do not reso-
nantly interact with the beam core. Without this resonant
coupling, the warm particles are not able to extract energy
from the beam envelope oscillation and convert it to kinetic
energy of its individual motion. This is in accordance with
what is shown in Fig. 2(a), in which the energy carried by the
cold, warm, and hot particles is shown along the time s for
the same previous beam initial mismatch ry=1.6. The energy
for each type of particle has been normalized by the initial
beam energy, which, for the present mismatch, has the value
E(=0.5294. It can be seen that initially all the beam energy is
stored in its cold particles. However, after a time, some par-
ticles become warm, being soon some of these ones imme-
diately captured and excited by the nonlinear resonances.
There is thus a coupling between the movements of the cold
particles with the hot ones. This process is fast and rapidly
drains a large amount of energy from the cold particles, di-
recting the system to its stationary state. In this state, there is
not anymore energy flux between core and halo particles. At
the equilibrium, the cold particles contribute with approxi-
mately 58%, the hot ones with 30%, and the warm ones with
12% of the overall beam energy. This fact justifies the option
previously adopted of not taking into account the contribu-
tion of the warm particles at the equilibrium in the model to
be developed.

For the particles that reside on the semicircular branch, it
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is possible to write an analytical expression for the halo’s
density formally given by

Ay(r) = frf olr.r')dr, (17)

in which o(r,r’) is the density of particles lying in the semi-
circular branch of the beam phase-space, and r}—ri’ =w de-
fines the width of the semicircular branch. Again, by a visual
inspection of the beam phase-space, it is possible to approxi-
mate o(r,r’) =~ o and, since w is too small front of the beam
halo dimensions, Eq. (17) can be simply written as

201w
)\h(r) = ’/—h 5 (18)
NI =T

in which r;, is the size of the beam halo obtained from the
beam phase-space with r,=r/(r=0). It should be noted that
N\,(r) is a linear density and must be converted to a superfi-
cial density for solving the Poisson equation (6). With this
last remark in mind and noticing that the quantity 2or,w can
be expressed in terms of the halo fraction f=N,/N through
the equation N, =[(*\,(r)dr, the final expression for the den-
sity of beam halo particles is achieved,

N
= 19
nh(r) Wzr\"ri _ r2 ( )

In this model, the fraction f represents the influences of the
halo particles over the beam dynamics. More specifically,
this fraction is the weight factor of the reaction of the halo
particles over the core particles, which can be associated
with the amount of energy transferred from the beam core to
the beam halo. At the beam equilibrium, this quantity is ex-
pected to be constant. To demonstrate this, the time evolution
of the halo fraction f has been plotted in Fig. 2(b). The
fraction f, as expected, starts with zero at s=0 until s=7
=200, moment when there is a sharp transition in its value.
After this, the fraction f stabilizes again, now at the
asymptotic value in which this will remain: the equilibrium
value. Note the similarity between the time dependence of
the fraction f shown in Fig. 2(b) with the one for the energy
of hot particles shown in Fig. 2(a). The growth of both is
directly related.

With the beam density thus modeled, it is possible,
adopting the same procedure of Sec. III A, to evaluate the
energy stored in the electromagnetic field originated from the
entire beam density of charged particles at its stationary
state. Considering Eq. (16) with the aid of Eq. (19) and in-
serting the resulting expression in the Poisson equation (6),
the electric field is promptly obtained,
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E

e = — > — —— arctan

re ar

(1-pr 2f (
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,
<
m) forr=r.
\r,—r

E(r,s=17=E, = =

wr Nr,—r

E

in which E, . is the electric field in the core region, E, .,
is the electric field in the halo region, and E,__,, is the elec-
tric field in the vacuum region. The energy of the above
electric field is obtained inserting Eq. (20) into Eq. (5),

1 T "h
(c:(S = ’T) = gr: 5(f |Er7',0—c|2rdr+f |Err,c—h|2rdr>

0 T

+ % In(r,,) - % In(ry,), (21)

in which the integrals above are only indicated and must be
solved numerically, since no analytical solution for these ex-
pressions has been found yet.

In the stationary state, the derivatives of beam quantities
in relation to the axial coordinate can be taken as zero. This
fact is a consequence of the criteria adopted in this work
about the geometric invariance of the beam phase-space,
which has been corroborated here in this subsection by the
beam phase-space snapshots shown in Figs. 1(a)-1(d). Thus,
without loss of generality, in the stationary state d/ds{x’
+y2)(s=7)=0 can be taken, which determines that in this
state equation (9) becomes

- r‘g(s =17)+ ri(s =n+eX(s=n=0, (22)
and Eq. (3) becomes
eXs= 1) =2r(s = D+ y (s = 7). (23)

Isolating the emittance &> term in Eq. (22) and inserting
this in Eq. (23), the quantity (x"?+y’?)(s= 7) can be obtained
in terms of ri in the form

r}z,(s =7 -1

W2y s = 0=

(24)

With this last result given by Eq. (24), the energy conserva-
tion equation (10) assumes the following format at equilib-
rium:

2
riis=7 1
e~ 4 &, =const.

2 4 @5)

With the beam halo and the beam core densities deter-
mined, it is possible to evaluate in the equilibrium the ex-
pression for the beam envelope r,(s= 7). From the point of
view of the beam phase-space of Fig. 1, and considering Eqs.
(8) and (9), the phase-space average takes the important form

Err,c—h =- z arctan( 4 2) - (1 _f)

r

rr,h—-w —

forr.<r<r, (20)

1
-— forr,<r=r,,
’

ri(s = 1) = (1= N2 + 37+ L2 + 2,
= (1= f)yr2+fry,

in which the averages have been broke up in contributions
from the beam core and beam halo, and evaluated with the
help of the previous determined densities. Equation (26) pro-
pitiates that the emittance &> term and the average kinetic
energy 1/2(x'>+y'?) term in the equilibrium can be deter-
mined as a function of the beam phase-space parameters here
defined as r;, and r, and through Egs. (22) and (23). In Sec.
IIT C, the connection between the stationary and the nonsta-
tionary beam state will be done.

(26)

C. Connection between the nonstationary and the
stationary beam state

After the modeling done for the beam stationary state,
which has propitiated that the energy stored in its field and in
its particles had been computed, it is possible to connect this
state with the initial nonstationary beam state. Crudely, from
the point of view of the expressions of Secs. III A and III B,
this means to relate the initial beam mismatch r, with the
final equilibrium parameters r. and r, of the beam phase-
space. Thus, connecting Eq. (25) to Eq. (15), with the help of
Eq. (26) for the beam envelope r;, and Eq. (21) for the beam
self-field energy &(s), both at the equilibrium, one has

r'e Th
f Eyno Prdr+ f By yPrdr — 172
0 r

c

2
3
=E—r3—r,21+ln(ﬁ>+—, (27)
2 4

To
in which E, (. and E,, ., have been already previously de-
fined in Eq. (20). Note also that the terms depending on the
pipe wall coordinate r,, naturally disappear in this equation
once that its contributions are equal in any connected beam
states. This is valid during the entire beam dynamics.

In Eq. (27) above, the terms depending on the fraction f
of beam halo particles are grouped in the left side while the
terms explicitly depending on the stationary and nonstation-
ary beam state parameters are grouped in the right side. As it
has been commented in Sec. III B, the integrals in Eq. (27)
have to be solved numerically, since no analytical solution
has been found yet. Extracting the parameters r( and (r,,ry,),
respectively, from the nonstationary and stationary beam
state, and making use of these as an input in Eq. (27), one is
able to achieve a second-order polynomial in the fraction f,
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TABLE I. Comparison between the results provided by the developed analytical model and the results obtained

from full self-consistent N-particle beam simulations.

ro=1 ro=1.2 ro=1.4 ro=1.6 ro=1.8 ro=2.0
re =1 =1.05 =1.10 =1.10 =1.20 =1.20
I =0 =15 =1.88 =2.00 =2.13 =225
A(re,ry) =0 =-0.199 51 =-0.375183 =-0.377 568 =-0.404 318 =-0.402 654
B(r,,ry) =1 =-1.46528 =-3.334 149 =-3.974192 =-4.805 143 =-5.505915
C(ro,resry) =0 =0.01267 =(0.156 393 =0.324309 =0.640 634 =(0.985397
Simodel =0 =(0.008 63 =(.046 66 =(0.080 98 =(.13185 =(.176 68
Ssimul =0 =(0.020 80 =(.051 81 =(.083 53 =(.132 86 =(0.17792
€model =0 =(0.276 17 =(.54021 =(0.851 04 =1.18855 =1.57264
Egimul =0 =(0.23535 =0.45312 =(.764 91 =1.12057 =1.504 50
b model =1 =1.03499 =1.11179 =1.21944 =1.33770 =1.466 36
b simul =1 =1.028 93 =1.080 63 =1.167 17 =1.28389 =1.40507

A(rer)f? + B(reny)f + Clro.rery) =0, (28) Eq. (23).

in which the dependence of the polynomial’s coefficients has
been left explicitly as a function of the beam phase-space
parameters rq, r., and r,. Just one solution has physical
meaning, since the fraction of beam halo particles should
satisfy 0=f= 1. Note again that the coefficients A, B, and C
in the above equation must be solved numerically, since the
integrands of Eq. (27) are so complicated. Further efforts
have to be dispensed to solve these integrals analytically.
However, its functional dependence is explicit, once the ex-
pressions for the electric field in the inner region of the fo-
cusing channel are known and described by Eq. (20) at equi-
librium. Further information in this issue will be available in
Ref. 9.

As will be seen in Sec. IV, the geometry of the beam
phase-space remains almost unchanged with respect to the
initial beam mismatch. This suggests that the beam halo dis-
tribution described by Eq. (19), and as a consequence all
calculations done in Secs. III C and III B, can be extended,
with reasonable accuracy, to the determination of the beam
quantities of interest here for all the mismatch values consid-
ered in the next section of this work.

Thus, considering that the initial beam mismatch r, and
the final beam phase-space parameters (r,,r,) are known val-
ues to obtain the desired equilibrium quantities such as the
fraction of halo particles f, the beam envelope r,(s= 7), and
the beam emittance (s= 7), one has to follow, as a resume
of all that has been done in this subsection, the algorithm
below:

(1) Solve Eq. (27) for the beam halo fraction f and look for
the positive root of the polynomial of Eq. (28).

(2) Insert the fraction f determined in Step (1) into Eq. (26)
to determine the beam envelope r,(s = 7).

(3) Insert the beam envelope r,(s=7) determined in Step
(2) into Eq. (24) to evaluate the quantity (x'2+y’'?)(s
=7).

(4) Finally, to obtain the beam emittance (s = 7) at equilib-
rium, insert the quantities (x'>+y'®)(s=7) and ry(s
= 7) determined, respectively, in Steps (3) and (2) into

Observe that the (r,,r,) parameters can be acquired directly
from the beam phase-space or simply by visual inspection of
its equivalent particle-core model obtained from a cumula-
tive Poincaré section.® Further useful information will be
found in Ref. 10.

IV. RESULTS AND COMPARISON WITH SIMULATIONS

To assure the validity of the developed model, formally
presented in the previous section, self-consistent N-particle
beam simulations have been carried out for several values of
the initial beam mismatch r,. Due to the azimuthal symmetry
of the beam, the method of simulation employed here has
been through the Gauss’ law: the force observed by a particle
at a radial coordinate r depends just on the number of par-
ticles with radial coordinates smaller than r.” This method is
also suitable here because it includes only collective effects,
since particles interact with each other through just its gen-
erated electromagnetic fields. A total number of N=10 000
particles has been employed in the numerical simulations,
the number of particle this that has been shown to assure
convergence in the results. The total beam energy has been
monitored during all the executed self-consistent N-particle
beam simulations.

All results of the analytical model developed are sum-
marized and compared with the full self-consistent simula-
tions in Table I. In its first two rows, the values of the beam
phase-space parameters (r,,r;) at equilibrium as function of
the initial beam mismatch r, which appears in this same table
as columns, are presented. These values have been obtained
from several snapshots of the beam phase-space generated by
the full self-consistent N-particle beam simulations described
above. They are shown in panel (b) of Fig. 3 for ry=1.2, in
panels (a) and (c) of Fig. 4 for ry=1.4 and ry=1.6, respec-
tively, and also in panels (a) and (c) of Fig. 5, for, respec-
tively, ro=1.8 and ry=2.0. With these (r.,r;) values, it has
been possible to determine the polynomial coefficients of Eq.
(28) for each one of the initial beam mismatch ry, using the
algorithm previously commented at the end of Sec. III C.
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FIG. 3. (a) Comparison between the
fraction of halo particles f computed
through  the full self-consistent
N-particle simulation and the devel-
oped analytical model. In panel (b),
the beam phase-space at s= 1600 for
ro=1.2 is shown. The histogram of
beam halo particles for this mismatch
is shown in panel (c), in which the
analytical model is also plotted for
comparison. A,=0.1390 is the size of
the bins employed in the histogram.

FIG. 4. phase-spaces corresponding to
the full self-consistent N-particle
simulations at s=800 for (a) ry=1.4
and (c¢) ry=1.6. The histograms of
beam halo particles for each one of
these mismatches are, respectively,
shown in panels (b) and (d), in which
the analytical model is also plotted for
comparison. A,=0.1589 is the size of
the bins employed in the histograms.
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These coefficients are shown in the next three rows of Table
I. Considering the previous coefficients, it is possible thus to
evaluate the fraction f of beam halo particles for each one of
the initial beam mismatch values. The results for fraction f
computed through the developed model are shown in the
sixth row of this same table and can be compared with the
results provided by the full simulations, shown in the row
right below.

Being the obtainment of the fraction f the central point
of the developed model, it is also convenient to plot its re-
sults together with the results provided by full simulations.
From Fig. 3(a), it is possible to observe that as the initial
beam mismatch r, decreases toward the equilibrium value
req=1.0, the difference between the results provided by the
analytical model and the full simulations increases. This oc-
curs because, in fact, as the initial mismatch r, assumes
small values, the beam phase-space branch in which the halo
particles lie changes its geometry, migrating from a semicir-
cular to a semielliptical shape. This distortion in the semicir-
cular branch of the beam phase-space can be observed in the
snapshots of Figs. 3-5. For beams a little bit mismatched
(including the case of mismatch values of 0<ry<r,), the
difference between the model predictions and the simulations
should increase considerably. Since all other beam quantities
at equilibrium such as the beam envelope r;, and the beam
emittance ¢ are just functions of the fraction f, it is expected
that, also for these quantities, the large differences between
the analytical model and the full simulations also occur for

small values of r,. The values for the beam envelope r;, and
the emittance £ computed through the analytical model and
the simulations are shown in remaining rows of Table 1. As
can be seen, the agreement shows to be nice.

Finally, for each one of the initial beam mismatches ry,
the halo particle density obtained from full simulations with
that of the developed analytical model has also been com-
pared. For this, histograms of the halo particle population
from the full simulations have been calculated for each one
of the initial beam mismatches r, considered in this work.
These comparisons are presented in panel (b) of Fig. 3 and in
panels (b) and (d) of Figs. 4 and 5. Again, it is possible to
observe that a better agreement between the developed
model and the full simulations is achieved for larger values
of ry, since just in these cases, actually, the beam phase-
space region where the halo particles lie has a circular shape.
Also, it can be noted that the developed model also reason-
ably describes the peak at r=r,, which naturally appears in
the full simulations. This is a consequence of the geometrical
aspects of the resonances, in whose separatrix the beam halo
particles predominantly are.

V. CONCLUSIONS

In this work, an analytical approach to obtain beam
quantities such as the emittance, the envelope, and the frac-
tion of particles that compose the halo at the beam’s station-
ary state as a function of its initial mismatch has been pre-
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sented. For simplification in the calculations, the present
study has been restricted to the case of azimuthally symmet-
ric and space-charge dominated beams with an initial step-
function profile, evolving in an inner linear focusing channel
permeated by a constant magnetic field. Nevertheless, the
model can be directly employed to such other system param-
eters, as the type of magnetic focusing field, or system initial
conditions, dictated by the initial beam distribution, without
any consideration of symmetry. In general, the model helps
to understand some basic physical aspects involved in the
halo formation.

The key feature of the developed analytical model is the
determination of the density of halo particles n,(r), math-
ematically expressed in Eq. (19), and which has been ob-
tained through the assumption of phase-space invariance at
the beam equilibrium. This assumption has been corrobo-
rated by the several full self-consistent N-particle simulations
carried out, in which the splitting of the beam particles in at
most two distinct populations of cold and hot particles natu-
rally appears. It is convenient to remember that there is ac-
tually another kind of particle population, a warm one. Al-
though this particle population has some importance in the
understanding of the mechanisms behind the halo formation,
to predict beam stationary quantities it can be neglected,
since its energy contribution is small at the beam equilib-
rium. Also, the full simulations have demonstrated that the
halo particle density n,(r) obtained in this work is also valid
for many values of the initial beam mismatch r,. The density
of halo particles has in a compact manner all the information
about the beam stationary state and thus, the connection with
the nonstationary state can be readily performed with the aid
of the equations for the beam conserved quantities. With this,
the beam quantities of interest here at equilibrium could be
obtained as function of just the initial beam mismatch and
the fraction f of beam halo particles. This is an important
conclusion since, to predict beam quantities at equilibrium,
one does not need to understand the complete dynamics in-
volved in the way particles are ejected from the initial cold
beam, but just its amount f in the halo phase-space region. In
fact, the fraction f is the weight factor of energy transfer
from the macroscopic beam envelope oscillation to the mi-
croscopic chaotic movement of individual particles that com-
poses the beam halo. Full simulations have assured this and
also the model prediction that f is constant at the beam sta-
tionary state, which means, from energy conservation point
of view, that no more energy exchange exists between the
cold core and the hot halo at this time. In this sense, the
fraction f also appears as a good indicator for the beam halo
formation, being an alternative to the statistical quantity
emittance. The physical meaning of f is directly related to
the energy flux between the beam core and the beam halo.

The model results for the beam emittance, beam enve-
lope, and the fraction of halo particles have presented nice
agreement with the results originated from full simulations.
The accordance has shown to be particularly better for higher
beam mismatch values. In this case, the beam phase-space
branch where the halo particles lie is really very close to a
semicircular shape, matching the geometrical aspects consid-
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ered in the construction of n,(r). However, as the mismatch
decreases, the beam phase-space separatrix starts to deform
toward a semielliptical shape, and thus the difference be-
tween the developed model and the full simulations grows.
Yet, this seems not to be critical for ry>1.2.

In this way, future works will contemplate the improve-
ment of the expression for the density of halo particles n,,(r)
in the way of reducing the problem observed above. The
assumption of an elliptical geometry for determining n,(r)
will also expand its application to the case of mismatched
beams without azimuthal symmetry, mathematically de-
scribed by A, # 0. Also, another important result will be the
obtainment of an analytical expression for coefficients of the
polynomial of Eq. (28). This one will eliminate the only
intermediate step in the model that has to be solved numeri-
cally, allowing to establish a closed expression for the frac-
tion f.
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