UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS

CONTROLES MINERALÓGICOS E GEOQUÍMICOS DO NÍQUEL NÃO SULFETADO EM ROCHAS ULTRAMÁFICAS NO ESCUDO SUL-RIOGRANDENSE.

THAMY LARA DE SOUZA

ORIENTADOR - Prof. Dr. Marcus Vinícius Dorneles Remus

Volume I

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS

CONTROLES MINERALÓGICOS E GEOQUÍMICOS DO NÍQUEL NÃO SULFETADO EM ROCHAS ULTRAMÁFICAS NO ESCUDO SUL-RIOGRANDENSE.

THAMY LARA DE SOUZA

ORIENTADOR – Prof. Dr. Marcus Vinícius Dorneles Remus CO- ORIENTADOR – Prof. Dr. Norberto Dani

BANCA EXAMINADORA

Prof. Dr. Léo Afraneo Hartmann – Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Brasil

Prof. Dr. Wilson Wildner – Companhia de Pesquisa de Recursos Minerais, Serviço Geológico do Brasil

Prof. Dra. Márcia Elisa Boscato Gomes - Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Brasil

Dissertação de Mestrado apresentada como requisito parcial para obtenção do Título de Mestre em Geociências.

"E a coisa mais divina que há no mundo, é viver cada segundo como nunca mais"

Vinícius de Morais

Agradecimentos

Meus agradecimentos são para minha família, especialmente meus pais Íris e Vitor que me incentivaram desde criança a estudar, ler e questionar e que hoje se sentem orgulhosos da minha profissão de geóloga. Ao meu irmão e amigo Victor, que desde o início me incentivou a ser geóloga e que muito me ensinou a trabalhar em equipe, a enxergar o mundo fora da universidade, a valorizar minha profissão e a entender o quanto é importante a nossa contribuição como geólogos para a construção de uma sociedade mais sustentável e planejada. Ao meu companheiro Rodrigo que me acompanha desde a graduação, obrigada pelo apoio, incentivo e paciência de me esperar terminar o trabalho que tanto eu levei para casa, pelas noites mal dormidas, feriados e finais de semana de trabalho. Por muitas viagens e encontros não realizados, mas pela persistência e companhia nos dias mais difíceis. Obrigada aos meus tios e primos que sempre me incentivaram e me fizeram perguntas que muitas vezes não soube responder, mas que pesquisei e tentei explicar da maneira mais simples possível. Obrigada aos meus mentores espirituais que me mantiveram mais tranquila, para que a caminhada fosse mais leve. E a entender que a vida é uma dádiva e que o caminho do bem é sempre o mais fácil.

Obrigada aos meus orientadores Remus e Dani, pela parceria, pelo incentivo, pelas orientações e por me ensinarem a pesquisar, a investigar, questionar e principalmente a manter o foco.

Aos colegas e amigos de sala, pesquisa e laboratório, Deise, Aninha, Gabriel, Saulo, Susan, Venisse e Rafael, por me ajudarem em todos os momentos.

Agradeço a professora Lídia pela paciência e pelos ensinamentos, a professora Márcia pelo apoio e por me ajudar a obter os dados mais importantes para essa pesquisa. Ao professor Ruy pela motivação e pelas ajudas no trabalho. Ao Giba do CECO que com muita paciência me ensinou as técnicas de separação mineral, pela gentileza e motivação. Agradeço ao Professor Formoso pela motivação e pelo interesse pelo projeto e a Carmen por todas as gentiliezas e apoios.

Obrigada as minhas amigas geólogas Manu, Paula, Malu, Dedi e Nati pela amizade e carinho, por tantos almoços, cafés, conversas, ajudas no trabalho, futebóis, capoeiras, hora felizes e demais atividades que só me encheram de vida e felicidades. Aos colegas geólogos Jesus e Rodriguito pelas conversas, cevas artesanais, atividades culturais, ajudas no trabalho, parcerias e viagens. Aos demais colegas geólogos e geólogas... que deixei de encontrar tantas vezes.....Diji, Lê, Carlinha, Elissa, Felipe, Chava, Lua, Mainha, Guga, Jepeto, Fera, Amós, Olavito, Macieira, Piritinha, Guada, Cristão, Lili, Fontana, Daniboy, Mari, Carla, Awilsa, Carla Pará, Anderson.....fica difícil citar um por um, mais cada um teve um momento de luz e alegria para contribuir com a minha persistência no mestrado. Aos espaços utilizados nas horas de descontração, CAEG, R.U, ESEF, DAIB, C.V, CEFAV e CEU.

Aos amigos da Geofísica Unipampa Carol, Katy e Max, obrigada pela motivação e trocas de conhecimento.

Obrigada as minhas amigas de infância Mine e Dani e as minhas amigas Marília, Mel e Fran, por entenderem tantas vezes, a minha ausência, valeu pelas novidades e encontros que só me preencheram de alegrias e vida.

Só tenho a agradecer por ter tantos amigos e colegas queridos e solidários uma família maravilhosa e por ter encontrado na geologia mais um motivo para ser feliz.

Resumo

Este trabalho tem como objetivo investigar os processos controladores da mobilidade e concentração de níquel (Ni) em rochas ultramáficas serpentinizadas no Escudo Sul-Riograndense (ESrg), Rio Grande do Sul (RS), Brasil. A composição primária das rochas ultramáficas hospedeiras de Ni constitui um parâmetro relevante, mas os processos secundários são os controladores mais importantes dessas mineralizações, principalmente a serpentinização, pressupondo-se que o Ni possa migrar da olivina ou metamórfica para os minerais do grupo das serpentinas. a caracterização mineralógica e textural das rochas ultramáficas serpentinizadas da porção oeste do ESrg, foram aplicadas técnicas de petrografia e Microscopia Eletrônica de Varredura. Para a análise química dos elementos em rocha total foi realizada fluorescência de Raios-X, ICP e ICP-MS. Estas técnicas permitiram classificar quimicamente as rochas e relacionar a variação da intensidade dos eventos metassomáticos, metamórficos e hidrotermais que modificaram a mineralogia dos protólitos. No entanto, foram necessárias estudos de detalhe dos minerais individuais, notadamente olivinas e serpentinas com o uso da microssonda eletrônica para determinar as concentrações de Ni e suas variações nos diferentes corpos ultramáficos investigados. Dessa forma, foi possível quantificar e identificar os minerais concentradores de Ni e a relação dos eventos com a mobilidade e concentração dos elementos. Os resultados de microssonda indicam que as olivinas dos peridotitos do Maciço Pedras Pretas possuem baixos teores de níquel que variam de 0,13% a 0,21% e a média é 0,17%, enquanto que as olivinas dos harzburgitos da Sequência Cerro Mantiqueiras possuem teores mais elevados na média de 0,31%. As olivinas do Pedras Pretas possuem composição homogênea enquanto que aquelas do Cerro Mantiqueiras mostram variações composicionais importantes com conteúdo de Fo 92-98 e teores de níquel entre 0,3% e 0,4%. Tais variações no Cerro Mantiqueiras podem estar relacionadas a diferenças na composição do protólito ou a outro fator desconhecido que necessita futuras investigações. As olivinas e serpentinas no Cambaizinho e Serrinha mostram valores de níquel entre 0,19% a 0,3%, comparáveis ao Cerro Mantiqueiras, porém bem mais elevados que o Pedras Pretas. Este estudo mostra que os corpos ultramáficos do Cambaizinho- Serrinha e Cerro Mantiqueiras possuem potencial para desenvolver depósitos de Ni não sulfetado devido as concentrações relativamente elevadas de Ni nas olivinas. Entretanto, tais depósitos não se desenvolveram devido a dois fatores principais: o primeiro está ligado à superposição de eventos de metamorfismo e deformação recorrentes no tempo e no espaço que propiciaram a mobilização do Ni: o segundo fator é atribuído a ausência de agentes supergênicos favoráveis para a formação de depósitos lateríticos como os observados na região norte do Brasil.

Palavras-chave: Níquel; Rochas ultramáficas; Escudo Sul-Riograndense; Serpentinização.

Abstract

This paper investigates the processes controlling the mobility and concentration of nickel (Ni) in serpentinized ultramafic rocks in the Sul-Riograndense Shield (ESrg), Rio Grande do Sul (RS), Brazil. The primary composition of the ultramafic Ni host is a relevant parameter, but the secondary processes are the almost important controllers of these mineralizations, mainly serpentinization, assuming that Ni may migrate from igneous or metamorphic olivine minerals to the group of serpentine this phase. For the mineralogical and textural characterization of the serpentinized ultramafic rocks of the western portion of ESrg, were applied techniques of petrographic and scanning electron microscopy. For chemical analysis of elements in rock whole was performed X-ray fluorescence, ICP and ICP-MS. Although these techniques allow chemically classification of rocks and relate the variation of intensity in which metasomatics. metamorphic and hydrothermal events, changed the that mineralogy of the rock, however analysis of individual mineral detail, notably olivine and serpentine minerals using the electron microprobe detail, were necessary to determine the concentrations of Ni and variations in different ultramafic bodies investigated. Thus, it was possible to quantify and identify the Ni concentrators minerals and the relationship of events with the mobility and concentration of the elements. The microprobe results indicate that the olivine of peridotite Pedras Pretas have low contents of NiO ranging from 0.13% to 0.21% and averaged 0.17%, while the olivine harzburgites Cerro Mantiqueiras have higher levels of NiO averaging 0.31%. The olivine of Pedras Pretas have a homogeneous composition as those of Cerro Mantiqueiras show important compositional variations with a content of forsterite the Fo 92-98 and NiO contents of between 0.20% and 0.40%. Such variations in Cerro Mantiqueiras may be related to differences in the composition of the protolith or another unknown factor that needs further investigation. The olivine and serpentine in Cambaizinho and Serrinha, show NiO values between 0.19 % to 0.3 %, values comparable to the Cerro Mantiqueiras, but higher than the Pedras Pretas. This study shows that the Cambaizinho, Serrinha and Cerro Mantiqueiras have the potential to develop nonsulphide Ni deposits, due high Ni concentrations in olivine. However, these deposits are not developed due two main factors: the first is linked to the superposition of events the metamorphism and deformation applicants in time and space, that enabled the Ni mobilization; the second factor is attributed to lack preservation of profiles suitable for the Ni concentration, due to uplift and erosion lateritic subsequent.

Keywords: Nickel; Ultramafic rocks; Sul-Riograndense Shield; Serpentinization.

LISTA DE FIGURAS

Figura 1: Mapa geológico e de localização	9
Figura 2: Encarte tectônico do ESrg	. 20
Figura 3: Ilustração das rochas ultramáficas	. 26
Figura 4: Ilustração esquemática (Sparks et al, 1984).	. 29
Figura 5: Modelo (Naldrett, 1989)	. 33
Figura 6: Formas de caminhos de reação (Power, 2013)	. 35
Figura 7: Fotografias do Pedras Pretas	. 37
Figura 8: Fotomicrografia do Pedras Pretas	. 38
Figura 9: Fotografias e Fotomicrografias do Serpentinito do Serrinha	. 40
Figura 10: Fotografias e Fotomicrografias do Cerro Mantiqueiras	. 41
Figura 11: Fotografias e Fotomicrografias do Cambaizinho	. 43
Figura 12: Fotografias em Lupa	. 44
Figura 13: Fotografias dos minerais separados em lupa	. 45
Figura 14: Classificação geoquímica (Jensen, 1976)	. 46
Figura 15: Diagrama binário (Coleman, 1977).	. 47
Figura 16: Diagrama ternário (Malpas e Steves, 1977)	. 47
Figura 17: Diagrama binário Ni (ppm) x Cr ₂ O ₃ (%peso)	. 48
Figura 18: Diagrama binário MgO (%peso) x LOI (perda ao fogo % em peso)	.49
Figura 19: Diagrama binário MgO (%peso) x Ni (ppm).	. 50
Figura 20: Spider plot (McDonough e Sun, 1995).	. 51
Figura 21: Spider plot (McDonough e Sun, 1995).	. 52
Figura 22: Imagem de BSE do Pedras Pretas	. 54
Figura 23: Diagrama binário cátions x Si	. 55
Figura 24: Histograma olivinas	. 56
Figura 25: Diagrama binário dos teores de Fo (MgO/FeO+MgO) x NiO	. 57
Figura 26: Diagrama triangular dos teores de NiO x Cr ₂ O ₃ x MnO	. 57
Figura 27: Diagrama binário dos teores de NiO x Cr ₂ O ₃	. 58
Figura 28: Histograma serpentinas	. 59
Figura 29: Diagrama binário dos teores de NiO x MgO	. 60
Figura 30: Diagrama binário dos teores de MgO x Fe ₂ O ₃	. 60
Figura 31: Diagrama binário dos teores de NiO x MgO	. 61
Figura 32: Diagrama binário dos teores de Cr ₂ O ₃ x Fo (MgO/FeO+MgO)	. 62

LISTA DE TABELAS

Tabela 1: Padrões de calibração utilizados para as análises dos minerais de olivina	Э,
serpentinas e piroxênios na Microssonda Elêtronica	17
Tabela 2: Resultados analíticos das olivinas, compilados de rochas ultramáficas de	€
diferentes continentes, conforme referências	63
Tabela 3: Resultados analíticos das serpentinas, compilados de rochas ultramáfica	as
de diferentes continentes, conforme referências	64

LISTA DE ANEXOS

ANEXO 1: Mapa Geológico de Vila Rufino Farias (Szubert, et al.,1978)	73
ANEXO 2: Mapa geológico regional do Ofiolito Cerro Mantiqueiras (Hartmann and	t
Chemalle, 2003)	74
ANEXO 3: Mapa da área do Maciço Pedras Pretas (Lima e Cunha, 2004)	75
ANEXO 4: Mapa geológico do Complexo Cambaizinho. (Remus, 1990)	76
ANEXO 5 Planilha dos pontos de campo	77
ANEXO 6: Resultados analíticos para elementos maiores	78
ANEXO 7: Resultados analíticos para os elementos traço	80
ANEXO 8: Resultados analíticos de química mineral em olivinas	88
ANEXO 9: Resultados analíticos de química mineral em olivinas (Remus, 1990)	89
ANEXO 10: Resultados analíticos de química mineral em serpentinas	97
ANEXO 11: Carta de submissão a Revista Geologia USP: Série Científica	98

SUMÁRIO

I-	INTRODUÇÃO	7
1.1.	LOCALIZAÇÃO DA ÁREA E CARACTERIZAÇÃO DO PROBLEMA	8
1.2.	ESTRUTURA DA DISSERTAÇÃO	10
1.3.	OBJETIVOS	10
1.4.	METODOLOGIA	11
1.4.1.	TRABALHOS DE CAMPO	11
1.4.2.	TÉCNICAS ANALÍTICAS	12
a) Aná	álise petrográfica	12
b) Pre	paração das amostras para separação granulométrica	12
c) Aná	álises químicas por Fluorescência de raios - X, ICP e ICP-MS	14
d) Mic	roscopia eletrônica de varredura (MEV):	15
e) Mic	rossonda eletrônica	16
II.	ESTADO DA ARTE	17
2.1.	Contextualização teórica dos Complexos Ultramáficos no ESrg	17
2.2.	Associações ultramáficas de diferentes ambientes tectônicos	27
2.3.	Serpentinitos, gênese e características mineralógicas	33
III.	ARTIGO SUBMETIDO À REVISTA	1
IV.	RESULTADOS	36
4.1.	Petrografia	36
4.1.1.	Pedras Pretas	36
4.1.3.	Cerro Mantiqueiras	40
4.1.4.	Cambaizinho	42
4.2.	Separação Granulométrica	43
4.3.	Análise química	45
4.4.	Microscopia Eletrônica de Varredura (MEV)	52
4.5.	Microssonda Eletrônica	54
V.	REFERÊNCIAS	64
VI.	ANEXOS	73

I- INTRODUÇÃO

O Escudo Sul-Riograndense (ESrg) possui em seu contexto litológico uma significativa participação de associações de rochas ultramáficas. As rochas ultramáficas se constituem em importante substrato para o desenvolvimento de depósitos minerais (World Class Deposits), notadamente no Brasil de níquel (Ni) a partir da alteração supergênica. Considerando a questão da gênese, o desenvolvimento de uma jazida supergênica depende entre outros fatores da combinação da concentração inicial do elemento químico de interesse e do tipo de estrutura mineral hospedeira deste elemento na rocha. Nas etapas iniciais do estudo do potencial econômico das rochas é fundamental o entendimento da distribuição dos elementos químicos e dos processos que atuaram no sistema rocha responsáveis pela maior ou menor disponibilidade dos elementos durante o processo de alteração subsequente. Apesar do Rio Grande do Sul (RS) possuir extensas áreas com exposição de rochas ultramáficas, a natureza não o beneficiou com jazimentos de Ni supergênicos, porém, no ESrg a associação de rochas ultramáficas apresenta uma variada tipologia, muito propícia para a aplicação de estudos que envolvam a compreensão do comportamento do Ni no sistema rocha entre os processos geológicos metassomáticos, metamórficos e hidrotermais. Desse modo, o objetivo do projeto é identificar e estudar os principais minerais hospedeiros de Ni nos serpentinitos e ultramáficas serpentinizadas, através do detalhamento mineralógico e geoquímico da rocha utilizando técnicas básicas de Petrografia, Microscopia Eletrônica de Varredura e Fluorescência de raios- X, ICP e ICP (MS). Reconhecimento dos minerais do grupo das olivinas e das serpentinas, dentro de uma condição evolutiva que considere desde o estágio magmático inicial até o metamórfico com o uso da Microssonda Eletrônica. Como consequência deste estudo, pretende-se gerar informações sobre o comportamento do Ni no sistema rocha ultramáfica serpentinizada em ambientes não sulfetados, cujos resultados irão favorecer hipóteses sobre os mecanismos de controle do Ni frente aos processos magmáticos e metamórficos com aplicação direta no entendimento da gênese dos depósitos supergênicos de Ni no Brasil.

1.1. LOCALIZAÇÃO DA ÁREA E CARACTERIZAÇÃO DO PROBLEMA

No Escudo Sul-Riograndense (ESrg) situam-se significativas sequências de rochas Neoproterozóicas (700-750 Ma) máficas a ultramáficas compostas por harzburgitos, dunitos, meta-peridotitos, serpentinitos, xistos magnesianos, anfibolitos e gabros (Fig.1). Formam corpos alongados na direção principal NE-SW e interestratificadas com metassedimentos (Complexo Cambaizinho e Serrinha em Santa Margarida e Vila Nova do Sul, respectivamente), associados a gnaisses quartzo-feldspáticos (Seqüência Cerro da Mantiqueiras em Lavras do Sul) ou ainda como intrusões no contato entre epimetamorfitos e granitos (Maciço Pedras Pretas em São Sepé). Apesar da proximidade, estas sequências diferenciam-se entre si com base nas características petrográficas e texturais e diferenciam-se das demais unidades ultramáficas com base nas características genéticas e secundárias. Considera-se que o corpo ultramáfico do Serrinha uma extensão do Complexo Cambaizinho. Até o momento não foram identificados jazimentos de Ni nessas áreas.

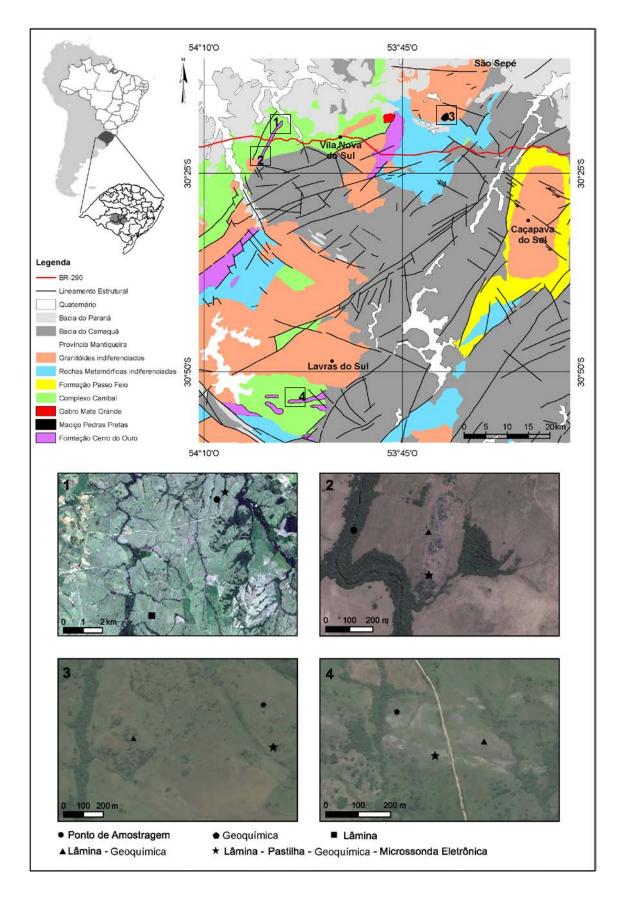


Figura 1: Mapa geológico e de localização dos pontos amostrados no ESrg. A numeração corresponde às áreas de interesse. (1) complexo Cambaizinho, (2) região da Serrinha, (3) Pedras Pretas e (4) Cerro Mantiqueiras Fonte: dados da pesquisa (2013), modificados de Wildner et al (2006) e imagens adquiridas de *Esri, DigitalGlobe*.

1.2. ESTRUTURA DA DISSERTAÇÃO

Esta dissertação de mestrado está estruturada na forma de artigo publicado em periódico ou publicação equivalente. Consequentemente, sua organização em partes principais:

- A) Introdução sobre o tema e descrição do objeto da pesquisa de mestrado, onde estão sumarizados os objetivos e a filosofia de pesquisa desenvolvidos, metodologia utilizada para a obtenção dos resultados
- B) O estado da arte sobre o tema de pesquisa;
- C) Apresentação dos resultados obtidos;
- D) Artigo submetido a periódico com corpo editorial permanente e revisores independentes, ou publicações equivalentes (capítulo de livro de publicação nacional ou internacional com corpo de revisores independentes), escrito pelo autor durante o desenvolvimento de seu Mestrado. No artigo consta as discussões e conclusoões do trabalho.
- E) Anexo: Tabelas químicas de rocha total e química mineral, mapas e Carta de submissão a Revista.

1.3. OBJETIVOS

O foco da dissertação é a investigação do sistema rocha ultramáfica no ESrg voltado para o entendimento da metalogenia do Ni quando a rocha for submetida a diferentes ambientes geológicos. Sendo as rochas ultramáficas protominérios em potencial para o Ni é importante no estudo da gênese deste tipo de mineralização o entendimento da mobilidade do Ni frente a processos endógenos de natureza magmática, hidrotermal e metamórfica. Este trabalho utiliza rochas ultramáficas serpentinizadas do RS com grande potencial para dar respostas em questões como:

a) Concentração do Ni e sua disponibilidade em processos geológicos policíclicos (magmatismo, serpentinização, metamorfismo);

- b) Especiação dos minerais do grupo das serpentinas em relação aos processos geológicos sofridos pela rocha e sua capacidade de reter o Ni liberado pela transformação da olivina;
- c) Diferenças composicionais e petrográficas entre as olivinas magmáticas e metamórficas, especialmente no que se refere à capacidade em acomodar o Ni na sua estrutura;
- d) Diferenças composicionais e petrográficas entre as serpentinas, caracterizando-as texturalmente e estabelecendo filiações entre as espécies identificadas;
- e) Relação entre os processos geológicos, mineralogia e teor de Ni e o consequente potencial para a geração de um protólito em jazidas não sulfetadas de Ni.

1.4. METODOLOGIA

A metodologia de pesquisa utilizada neste projeto é dividida pelas seguintes etapas: levantamento bibliográfico discutido no estado da arte, etapa de escritório, trabalho de campo e laboratório com a interpretação dos resultados gerados através das técnicas de caracterização mineralógica, textural e geoquímica dos materiais amostrados.

Partindo dos conceitos básicos sobre o problema levantado no projeto, foram realizadas atividades preparatórias para o campo.

1.4.1. TRABALHOS DE CAMPO

Após a definição das áreas de interesse para essa pesquisa, uma das atividades preparatórias para o campo foi reunir cartas topográficas confeccionadas pelo Exército Brasileiro, na escala 1/50.000 que abrangem as folhas Passo do Salsinho, Vila Nova do Sul, Rufino Farias e Lavras do Sul. Assim como a aquisição de mapas geológicos de detalhe realizados por trabalhos anteriores (ANEXO 1, 2, 3 e 4) e mapa geológico do Rio Grande do Sul (WILDNER et al., 2006) e do ESrg (LAUX, et al., 2012) modificados no programa ArcMap versão 10.1. O programa Google Earth também foi uma ferramenta de auxílio para a localização das áreas através de imagens. Assim como a aquisição das imagens de terreno do Source: Esri, DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid,

IGN, IGP, swisstopo, para a localização da amostragem realizada em campo.

Foram realizadas expedições para o reconhecimento geral da área que abrange as rochas ultramáficas do ESrg. Com ênfase nos serpentinitos do Complexos Cambaizinho e Serrinha, dos harzburgitos serpentinizados da Sequência Cerro Mantiqueiras e do meta-peridotito do Maciço Pedras Pretas. Os afloramentos foram fotografados, medidos e amostrados (ANEXO 5). Posteriormente à etapa de campo, foram utilizadas as técnicas laboratoriais descritas abaixo.

1.4.2. TÉCNICAS ANALÍTICAS

Nesse tópico serão detalhadas informações sobre as técnicas utilizadas em laboratório, envolvendo as amostras e com o objetivo de adquirir dados mineralógicos, texturais e químicos.

a) Análise petrográfica

As amostras no laboratório foram lavadas e secas naturalmente. Em lupa binocular, foram descritas macroscopicamente, levando em consideração a alteração e coloração, mineralogia, modo de ocorrência, estrutura e fraturamento. Desse modo, foram escolhidas as amostras mais significativas e menos friáveis para a laminação e polimento.

Foram confeccionadas e polidas 20 lâminas no Laboratório de Preparação de Amostras do Centro de Estudos em Petrologia e Geoquímica (CPGq) do Instituto de Geociências (IG) – UFRGS.

A petrografia foi realizada para registrar feições importantes das amostras como a caracterização mineralógica e textural. As lâminas foram analisadas com o auxílio do microscópio modelo *Leica DM4500 P LED* com câmera acoplada, em luz natural, polarizada, convergente e refletida.

b) Preparação das amostras para separação granulométrica

Com a dificuldade de encontrar olivina nas seções polidas, foi realizada a técnica de separação granulométrica, com o objetivo de analisar na Microssonda Eletrônica a composição química e mineral dos grãos selecionados.

Foram separadas frações granulométricas de tamanho areia muito grossa (1 mm) a areia muito fina (0,062 mm) a partir da seleção de amostras com tamanhos de até 10cm. Inicialmente as amostras foram fragmentadas na prensa hidráulica para gerar fragmentos de 2 a 3 cm de diâmetro. Posteriormente os fragmentos selecionados (menos alterados) foram desagregados no britador de mandíbulas, a fim de obter fragmentos com até 1 cm de diâmetro. Para obter frações finais de 1,00 a 0,062 mm, os fragmentos foram moídos no moinho de cilindros. Após a moagem foram retirados aproximadamente 500 g de amostra para posterior caracterização do material através das peneiras. O método das peneiras consiste em montar o conjunto de peneiras de acordo com a sequência MESH Tyler, da base para o topo inicia-se com a peneira de 230 mesh para conter areia muito fina (0,062 mm), 120 mesh para conter areia fina (0,125 mm), 60 mesh para conter areia média (0,250 mm), 35 mesh para conter areia grossa (0,50 mm) e 18 mesh para conter areia muito grossa (1 mm). Os sedimentos foram lavados e peneirados com manqueira, para exclusão do silte, argila e impurezas. O material peneirado foi seco em estufa a 70 °C por 24 horas.

Para a separação magnética foram selecionadas as amostras com tamanhos de partículas de 0,125 e 0,250 mm. Primeiramente o material magnético foi retirado com imã de mão. Posteriormente o material foi selecionado no separador magnético *Frantz* com ângulo vertical de 20° e horizontal de 18°, nos intervalos de 0.2, 0.4 e 0.6 amperes, que separou a amostra em paramagnética, conjunto de minerais fracamente atraídos pelo imã (silicatos de alumínio e magnésio) e diamagnéticos, conjunto de minerais com alta atração magnética (magnetita e ilmenita).

O material paramagnético foi separado com auxílio de agulha e pinça na lupa macroscópica modelo *Leica SED*, com câmera acoplada. Os minerais de interesse foram fotografados e aproximadamente 60 grãos de cada amostra foram utilizados para a montagem das pastilhas. As pastilhas são formadas de 15 partes de resina do tipo *epofix* com cura lenta, misturada com 2 partes de endurecedor, secas na estufa a 50 °C. Finalmente as pastilhas são lixadas na sequência abrasiva de 1200, 2500 e 4000 até a exposição interna dos grãos, lavadas no ultrassom, sendo que o acambamento final é o polimento com pó de diamante de 200 µm.

As amostras foram fragmentadas no Anexo do Laboratório de Preparação de Amostras do CPGq, peneiradas e separadas magneticamente no Laboratório de Sedimentologia do Centro de Estudos Costeiros e as pastilhas foram montadas e

polidas no Laboratório de Geologia Isotópica, todos pertencentes ao Instituto de Geociências (IG) – UFRGS.

c) Análises químicas por Fluorescência de raios - X, ICP e ICP-MS

Técnicas que caracterizam quimicamente as rochas, onde foram analisadas 30 amostras secas, cominuídas no gral de cerâmica e ágata e peneiradas no tamanho de partícula 200 *mesh.* Posteriormente as amostras foram embaladas, etiquetadas e pesadas na balança de precisão, até atingir o valor padrão de 10,00g para as análises. As amostras foram preparadas no *Laboratório de Análise Química de Rochas do CPGq – IGEO*, através da metodologia exigida no *Acme Labs Analytical Laboratories Ltda.* (Canadá), que analisou as amostras por Fluorescência de raios-X (XRF), Espectroscopia de Emissão de Plasma (ICP-ES) para os elementos maiores, com limite de detecção de 0,01% e para Sc, Be, V, Ba, Sr, Y e Zr, com limite de detecção de 1 a 5 ppm. Para os demais elementos traço foi utilizado a técnica Espectroscopia de Emissão de Plasma com espectroscopia de Massa (ICP-MS) com limite de detecção de 0,005 a 2 ppm.

O método analítico da XRF utiliza amostras pulverizadas que são excitadas por raios-X gerados num tubo de Raios-X do equipamento. Neste tubo os elétrons gerados num cátodo são acelerados ao longo do gradiente de potencial elétrico (~100.000 volts) e incidem sobre um anodo metálico, o que resulta na emissão de raios X primários. A amostra excitada pelos raios - X primários emite raios - X secundários. Cada elemento emite uma fluorescência com comprimento de onda específico (λ). A fluorescência emitida pela amostra incide sobre um cristal analisador (com d constante e, portanto, λ função de e). O cristal refrata os diferentes λ dos raios - X secundários com ângulos diferentes, decompondo assim o total da fluorescência nas radiações específicas emitidas pelos diferentes elementos contidos na amostra. O cristal analisador faz, assim, o papel de uma grade de difração. Cada radiação específica isolada é quantificada num detector de radiação denominado de contador cintilométrico que fornece os resultados em número de contagens por segundo (cps), proporcionalmente à concentração do elemento da amostra. A quantificação final se faz pela comparação dos cps de um elemento da amostra com cps do mesmo elemento de uma amostra padronizada. A semelhança composicional entre a amostra e o padrão visa minimizar o "efeito matriz" (interferência na fluorescência). No equipamento de FRX existem vários cristais analisadores com distinto espaçamento reticular o que permite a determinação de um grande número de elementos maiores, menores e traço.

Na Espectroscopia de Emissão de Plasma (ICP _ Inductively Couple Plasma — Atomic Emisson Spectrometry) a metodologia consiste na excitação da amostra em um gerador de frequência de rádio transformando-se em plasma. É uma técnica que usa uma "chama" com temperaturas entre 6000 a 10000 K, onde a amostra necessita de uma abertura ou dissolução por ácidos antes de ser analisada. A amostra em solução é passada como um aerossol através de um nebulizador em um plasma de argônio. O plasma indutivo acoplado consiste de um feixe de átomos de argônio, aquecido pelo calor indutivo de uma bobina de rádio- frequência e inflamado por uma faísca de alta frequência em Tesla. A amostra dissociada no plasma e as linhas espectrais atômicas e iônicas são excitadas. As linhas espectrais são detectadas em uma escala fotomultiplicadora, e posteriormente comparadas com linhas de calibração, dessa forma as intensidades são convertidas em concentrações. É a metodologia de alta produção e sensibilidade para elementos maiores, menores e traço.

d) Microscopia eletrônica de varredura (MEV):

Essa técnica foi utilizada em quatro seções polidas metalizadas com carbono, para uma melhor condução de elétrons pela amostra e teve como objetivo fotografar em detalhe os minerais e as texturas identificadas anteriormente na petrografia. No MEV são realizadas análises quantitativas da composição química das amostras, identificação de texturas, mapas de elementos químicos e especiação dos minerais.

O princípio de funcionamento do MEV consiste na emissão de um feixe de elétrons gerados na coluna de alto vácuo a partir de um filamento termiônico de tungstênio. Por aplicação de corrente, são acelerados por uma diferença de potencial entre cátodo e ânodo de 0,3kV a 30 kV. O feixe gerado passa por lentes condensadoras, que reduzem o seu diâmetro, e por uma lente objetiva que o focaliza sobre a amostra. Logo acima da lente objetiva, existem dois estágios de bobina eletromagnética, que são responsáveis pela varredura do feixe sobre a amostra. O feixe interage com a região de incidência da amostra (volume de interação) até 1µm a 6µm de profundidade, o qual gera contrastes morfológicos e composicionais para a formação da imagem e para a microanálise que se referem ao número atômico de cada elemento.

Desse modo, quando o feixe atinge a lâmina, os elétrons são arrancados dos elementos que estão nas partes mais superficiais da lâmina, gerando a imagem de elétrons secundários, fornecendo dados sobre a topografia da amostra. E os elétrons arrancados da parte mais interna da imagem geram os elétrons retro espalhados, que fornecem imagens da variação de composição. Como os elementos mais pesados exigem uma maior energia para a atração de elétrons do que os de menor número atômico, esta técnica é usada para a identificação de contrastes entre os elementos que demonstram diferenças composicionais na região ionizada do mineral.

As análises foram realizadas no Laboratório de Geologia Isotópica (*LGI*-CPGQ) do Instituto de Geociências da UFRGS. O Microscópio Eletrônico de Varredura utilizado é um Jeol 6610-LV com possibilidade de imageamento com elétron secundários, elétrons retroespalhados e de catodoluminescência, além de análises de EDS.

e) Microssonda eletrônica

O funcionamento é baseado na excitação da amostra polida por um feixe de elétrons, que é gerado num cátodo e modelado por um conjunto de eletroímãs. Os eletroímãs conferem ao feixe um diâmetro muito pequeno, da ordem de 1 *micron*. A amostra reage à excitação eletrônica com a liberação de raios - X primários fazendo, assim, o papel de ânodo de um tubo de raio - X. Esta radiação é decomposta e quantificada, à semelhança do método da FRX, com auxílio de cristais analisadores e contadores cintilométricos. A metodologia serve para análise pontual de minerais e permite caracterizar as variações composicionais em cristais zonados. Entretanto, esta técnica apresenta limitações quanto à precisão dos elementos traço analisados.

As análises foram realizadas nas quatro seções polidas e metalizadas com carbono, na Microssonda Eletrônica modelo *CAMECA SX FIVE do Laboratório de Microssonda Eletrônica* (CPGQ-IGEO-UFRGS). A voltagem da Microssonda utilizada é 15 KV, na condição básica de 15 nA.

O padrão de calibração para as análises dos minerais de olivina, serpentinas e piroxênios, foi realizado para os seguintes elementos: -Mg calibrado com periclásio; -Si e Ca com Wollastonita; -Cr com Cr₂O_{3, -}Mn com rodonita; -Fe com faialita; -Ni com níquel metálico; -Na com albita; -K com ortoclásio; -Ti com rutilo e -Al com anortita. Foram utilizados 5 espectrômetros padronizados conforme tabela 1:

Tabela 1: Padrões de calibração utilizados para as análises dos minerais de olivina, serpentinas e piroxênios na Microssonda Elêtronica.

Espectômetro	1	2	3	4	5
Cristal	TAP	PET	PET	TAP	LIF
Elemento Analisado	Mg	Ca	K	Na	Mn
Padrão Calibração	MgO	CaSiO ₃	Ortoclásio	Albita	Rodonita
Elemento Analisado	Si	Cr	Ti	Al	Fe
Padrão Calibração	CaSiO ₃	CrO ₃	TiO ₂	ANOR	Faialita
Elemento Analisado					Ni
Padrão Calibração					Ni metálico

Fonte: CPGQ - IGEO - UFRGS (2013).

II. ESTADO DA ARTE

O objetivo da revisão bibliográfica para esta pesquisa é organizar as informações de autores que abordam a caracterização geotectônica mineralógicos, geocronológica, aspectos petrográficos, geoquímicos е metalogenéticos, principalmente informações sobre o comportamento do Ni nas rochas ultramáficas serpentinizadas. A revisão sobre os aspectos composicionais e petrográficos é com ênfase nas transformações entre olivinas e serpentinas nos protólitos ultramáficos mais comuns nas áreas de estudo. Também são revisadas pesquisas sobre o comportamento dos serpentinitos nos diferentes ambientes de formação das rochas ultramáficas, como os Complexos Estratiformes, Ofiolitos e Greenstone Belts e os processos e teorias de geração associadas, bem como os processos de hidrotermalismo e metamorfismos secundários.

A seguir são revisados de maneira sucinta os trabalhos já desenvolvidos na área, bem como os relacionados ao tema principal da pesquisa.

2.1. Contextualização teórica dos Complexos Ultramáficos no Escudo Sul-Riograndense (ESrg)

A revisão bibliográfica foi dividida por temas, iniciando-se pela contextualização dos Complexos Ultramáficos no Escudo Sul-Riograndense (ESrg) e enfatizando os trabalhos de maior interesse para esta pesquisa que estão localizados na parte oeste do ESrg, mais especificamente no Bloco São Gabriel.

As primeiras observações sobre geologia do ESrg iniciaram com Carvalho (1932, até 1937) e seguiram com Leinz, Barbosa e Teixeira (1941) que o

denominaram de Escudo (apud Wildner, 1990). Em 1958, Sena Sobrinho sumarizou as informações geológicas no mapa mineiro do Estado do Rio Grande do Sul. Houve uma tendência entre os pesquisadores (Issler, 1983; Horbach, 1986; Naumann et al., 1984; Naumann, 1985) de denominar de Complexo todos os cinturões supracrustais do ESrg que estão associados com as rochas máficas a ultramáficas, unidades granito- gnaisses e migmatitos.

A origem destas associações de rochas é ainda assunto de discussões e de modo geral existem três modelos propostos para explicar a sua evolução geológica:

- a) Ofiolitos: nesse modelo, as associações máficas-ultramáficas e vulcanosedimentares representam sequências ofiolíticas tectonicamente inclusas nos complexos granítico-gnaíssicos (Jost, 1966; Szubert et al., 1977; Ribeiro e Fantinell, 1978; Ribeiro e Lichtemberg, 1978; Hartmann & Chemalle, 2003).
- b) *Greenstone Belts*: as sequências supracrustais corresponderiam a litoestruturas do tipo greenstone belts e, a associação de rochas granito-gnáissicas constituiria os terrenos granite- greenstone (Condie, 1981), de idade Proterozóica inferior a Arqueana (Nardi e Hartmann, 1979; Fragoso César, 1980; Jost e Bittencourt, 1980; Hartmann e Nardi, 1983; Jost e Hartmann, 1984; Zarpelon, 1986; Remus, 1990);
- c) Back Arc ensiálico: baseados em estudos de análise estrutural, geocronologia e petrogênese nas regiões de Vila Nova e Caçapava do Sul, alguns autores sugerem que essas associações teriam sua origem ligada á evolução de uma bacia marginal atrás de um arco magmático, desenvolvida durante o Ciclo Brasiliano (Silva Filho, 1984; Soliani Jr., 1986; Silva Filho e Solani Jr., 1987).

Nesse trabalho utilizamos a nomenclatura estratigráfica e o modelo proposto por Hartmann & Remus (2000). Para os autores, o ESrg é dividido em quatro unidades geotectônicas principais: O Batólito de Pelotas, ao longo da costa e a oeste da planície costeira quartenária; o Cinturão Porongos, que ocorre no limite oeste do Batólito; O Bloco São Gabriel (Jost e Hartmann, 1984) no noroeste do ESrg e o Bloco Taquarembó, no sudoeste do ESrg. Também integra o ESrg a Bacia do Camaquã, que recobre parcialmente as quatro unidades principais em diversos rifts. Conforme os autores, o Bloco São Gabriel contém o maior volume de rochas ultramáficas do ESrg, incluindo a maior unidade, que é o Cerro Mantiqueiras. Ultramafitos metamórficos são freqüentes em todas as unidades estratigráficas do bloco, ocorrem xistos magnesianos na Formação Passo Feio (Caçapava do Sul), na Formação vulcano- sedimentar Campestre, na Formação Cerro do Ouro, incluindo

harzburgitos magmáticos no Gabro Mata Grande, na Formação Cambaizinho, incluindo a região da Palma, na Formação Ibaré e no Complexo Cambaí. Nos limites norte e sul do Cinturão Porongos, também ocorrem rochas ultramáficas, neste caso metamorfizadas em baixo grau metamórfico. No limite norte, as ocorrências de Capané, no sul ocorrem interestratificados de ultramafitos com rochas vulcano-sedimentares de baixo grau. No Bloco Taquarembó ocorrem rochas ultramáficas na fácies granulito, principalmente piroxenitos, mas também foi identificada uma lente de espinélio lherzolito.

O Bloco São Gabriel foi considerado Terreno São Gabriel (Babinski et al., 1996; Hartmann et al., 1999, 2000, 2007) e é constituído por gnaisses cálcico-alcalinos juvenis cortados por metagranitóides, ambos englobados no Complexo Cambaí, intrusivos em uma seqüência vulcanosedimentar — os complexos Palma/Bossoroca. Laux, et al. (2012), também dividiu tectônicamente o ESrg em Terrenos, de acordo com o mapa da figura 2.

Para a fundamentação teórica sobre os Complexos Ultramáficos e rochas associadas que compõe o ESrg são destacadas as seguintes pesquisas realizadas nas áreas de interesse localizadas na figura 1.

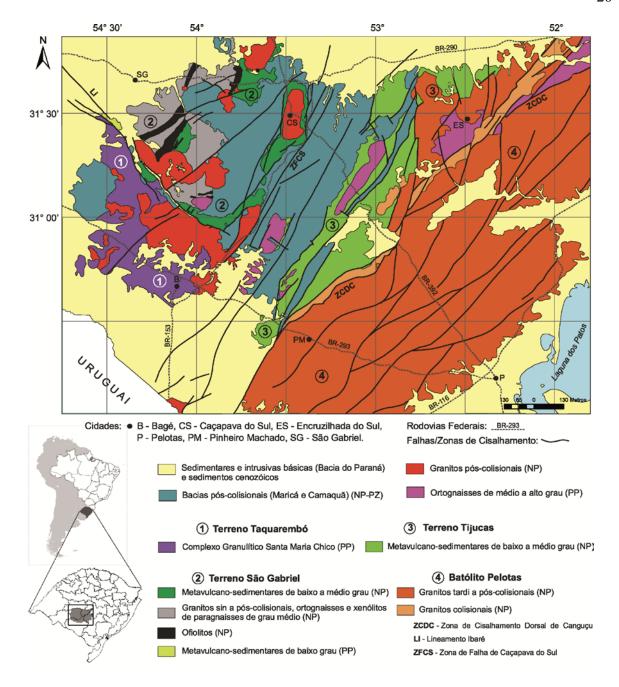


Figura 2: Encarte tectônico do ESrg, com destaque para localização do Terreno São Gabriel (2) na porção oeste do ESrg. Modificado do Mapa Geológico Folha Lagoa da Meia Lua. Fonte: Laux, et al., 2012.

Rêgo (1980) reuniu dados mineralógicos, petrográficos, estruturais e geoquímicos para compreensão da gênese e fenômenos sucedidos no interior do Complexo Ultramáfico Pedras Pretas, localizado na região de Cerrito do Ouro no Município de São Sepé. Classificou a ultramáfica em estratiforme com níveis diferenciados associados aos plagioclásios e com a composição variável entre dunítica, peridotítica, piroxenítica, gabróica e anortosítica. De acordo com Rêgo (1980), os dados geoquímicos indicaram uma composição magnesiana para o magma ultramáfico e uma afinidade toleítica para o magma máfico. Apesar da

ocorrência do metamorfismo fácies anfibolito e xistos verdes e da formação de paragêneses com cummingtonita, antofilita e serpentinas, não houve modificações das estruturas e texturas ígneas. O controle da serpentinização é estrutural e é máxima na periferia da unidade ultramáfica, associada a uma intensa brechação e fraturamentos com veios de crisotilo que é significativa no contato com as unidades máficas e é branda no contato com os granitóides.

Sobre a distribuição dos elementos traço, Rêgo (1980) apresenta correlações positivas entre o Níquel (Ni), Cromo (Cr) e o Cobalto (Co) e propõem que a substituição do Ferro (Fe) e do Magnésio (Mg) pelo Co e Ni ocorre durante a cristalização magmática e que é uma característica desses elementos segundo Turekian e Carr (1960). Segundo esses autores, a presença da cromita no sistema pode restringir o conteúdo de Cr e Ni disponível, mas com o prosseguimento da cristalização são removidos pelos piroxênios. Abdullayev et al. (1967), concluem que o conteúdo de Ni varia mais do que o de Co, e que, as razões entre Ni/Co variam de 5,4 em piroxenitos até 15,4 em dunitos, por que a olivina é o mineral com maior concentração. Em comparação as correlações negativas entre Cr e Ni com zircônio (Zr) são normais, pois o Zr é um elemento que se concentra nos estágios finais da cristalização. Rêgo (1981) concluiu que as datações radiométricas apontam valores superiores a 1.0 Ga, gênese pré-brasiliana e contemporaneidade com outros Complexos do Escudo Sul Riograndense e que o Maciço Pedras Pretas difere em dimensões, continuidade, estratigrafia e mineralogia dos complexos estratiformes clássicos.

O Projeto de mapeamento Passo do Salsinho, Faixa II (Rodrigues et al., 1982) delimitou com maior detalhe o Complexo Pedras Pretas e a petrografia das diferentes unidades máficas e ultramáficas, além de corroborar com os dados obtidos por Rêgo (1981). D'avila et al. (1985) reavalia alguns aspectos petrológicos do maciço e revela texturas e associações mineralógicas da fácies hornblenda-cornubianito, assim como dados geoquímicos que revelam caráter de mega xenólito estratiforme para o maciço, provavelmente a partir de cristalização fracionada de magma komatiítico em pequena profundidade, o que explicaria o desenvolvimento de *crystal settling* e a associação mineralógica entre plagioclásio e olivina.

Vieira (1981) detalhou aspectos mineralógicos, petrográficos e geoquímicos do Complexo Ultramáfico de Serrinha localizado na região de Santa Margarida do Sul. Enfatizou a concentração e a mobilidade dos elementos maiores e menores em relação às condições de alteração, na tentativa de caracterizar a transformação da

rocha ultramáfica em serpentinito. Conforme a autora, o Complexo Serrinha é constituído por serpentinitos e xistos magnesianos encaixados em migmatitos pertencentes ao Grupo Cambaí (Jost & Hartmann, 1984) ao longo de falhas com direção N68W. O magma peridotítico sofreu três processos metamórficos, primeiramente a serpentinização na fácies xisto verde que formou lizardita e crisotilo com texturas pseudomórficas, seguida da alteração do serpentinito na fácies anfibolito que formou paragênese com antigorita, olivina metamórfica, tremolita e texturas não pseudomórficas, e no final um segundo evento na fácies xistos verdes, responsável pela serpentinização parcial da olivina metamórfica e pela formação de lizardita e crisotilo. Conforme a autora, o processo de serpentinização ocorreu com a remobilização de SiO₂, Al₂O₃ e CaO que concentraram nos xistos de borda. O teor de MgO aumentou nas rochas mais serpentinizadas e o Fe oxidou sob forma de Fe³⁺ dentro da estrutura de serpentinas e formou hematita e magnetita. Conforme Vieira (1981) os principais elementos menores que se concentram em rochas ultramáficas são Cr, Ni, Co e Mn, que foram analisados pelo método de espectrografia de emissão, onde os valores obtidos foram considerados acima da média por Vinogradov (1959) e esses elementos apresentaram correlações positivas entre si, características que confirmam o caráter ultramáfico para o Complexo. Porém os valores e a afinidade entre esses elementos diminuíram nos serpentinitos como consequência da remobilização do Ni durante a serpentinização. As concentrações do Ni, em especial, compreendem valores que variam desde 250 a 2500 ppm, embora nenhum mineral de Ni tenha sido observado. Vieira (1981) concluiu que o Ni se encontra preferencialmente distribuído no talco e nas serpentinas substituindo o MgO.

O trabalho de Menegotto (1982) direciona-se para o estudo da evolução mineralógica e geoquímica dos maciços ultramáficos Pedras Pretas, Passo do Ivo e Cerro Mantiqueiras, localizados nos Municípios de São Sepé, São Gabriel e Lavras do Sul, respectivamente. O autor concentra-se no estudo das características mineralógicas e texturais dos perfis de alteração formados sob as sequências ultramáficas em clima subtropical. Nos três maciços ultramáficos foram identificadas paragêneses metamórficas, através da alteração e substituição parcial ou total dos piroxênios por anfibólios e cloritas. A intensa serpentinização no Cerro Mantiqueiras, é comparada com a moderada nos outros maciços, o que evidência um segundo evento metamórfico na área. Conforme o autor, a primeira etapa de serpentinização afetou parcialmente a olivina e originou textura em malha fibrosa e ocorreu

concomitante a anfibolitização dos piroxênios. A segunda etapa se desenvolveu a serpentina microfolheácea dos centros de massa e a bastitização parcial de ortopiroxênio, antofilita e cumingtonita. A terceira etapa originou veios fibrosos de crisotilo que acompanham o fraturamento da rocha. No maciço Pedras Pretas e na Formação Passo do Ivo, ocorrem associados as rochas ultramáficas espinélios verdes e filossilicatos, que sugerem metassomatismo das sequências com os granitóides. Menegotto (1982) caracterizou os processos de alteração por níveis ao longo dos perfis verticais, verificou que inicialmente as ultramáficas sofreram hidrólise nos minerais de olivinas, nos piroxênios, nas serpentinas e nas bastitas e que provavelmente esses minerais foram lixiviados antes de formar o saprólito, pois dessa forma produziram o material residual amorfo (sílico- ferruginoso) e as esmectitas. Nessa fase o carbonato foi solubilizado e a clorita magnesiana totalmente transformada em férrica. Em relação ao comportamento do Ni, foi verificado que o elemento se concentra em pequenas proporções em quase todos os silicatos máficos. O autor conclui que por efeitos do clima subtropical na região, os maciços ultramáficos sofreram o processo de formação de óxidos e hidróxidos (ferrissilicificação).

Remus (1990) realizou a pesquisa geológica e geoquímica do Complexo Cambaizinho, localizado no Município de Santa Margarida do Sul. Interpretou o Complexo como uma associação supracrustal constituída pelas sequências intercaladas da Formação Vacacaí (meta sedimentar) e da Sequência Cerro Mantiqueiras (máfico-ultramáfico). Sendo a sequência máfico-ultramáfico constituída de serpentinitos, xistos magnesianos e anfibolitos, com origem ígnea de derrames ou intrusões rasas (komatiitos e basaltos komatiíticos). O valor de idade mínima encontrada para o Complexo foi de 661 Ma, derivada de isócronas Rb/Sr nos Granitóides Sanga do Jobim, intrusivos na sequência supracrustal. Conforme o autor, essas seguências estão em concordância estrutural com as zonas de cisalhamento transcorrestes e os granitóides e gnaisses do Complexo Cambaí. O autor identificou quatro fases de deformações dúcteis, representadas em dobras F2 assimétricas relacionadas а zonas de cisalhamento. Essas acompanhadas por dois eventos metamórficos, o primeiro atingiu a fácies anfibolito e o segundo, a fácies xistos verdes (com foliações S2 associadas). Zonas de hidrotermalismo com processo de silicificação, carbonatação e turmalinização foram mapeadas dentro da sequência e relacionadas às reativações dos falhamentos desenvolvidos durante a segunda deformação.

Através de dados químicos foi identificado um *gap*-composicional nos teores de MgO entre os anfibolitos e metagabros (toleíticos) e os xistos magnesianos e serpentinitos (komatiitos), sugerindo diferentes graus de fusão parcial do manto e variação composicional pelo fracionamento de piroxênio. Os protólitos dos xistos magnesianos e serpentinitos foram interpretados em um contexto metassomático, de origem extrusiva e afinidade geoquímica komatiítica. O autor analisou os teores de NiO nos serpentinitos compostos por olivina (forsterita) e considerou os valores poucos variáveis entre as amostras (0,17% a 0,30%), apresentam baixos teores, fator que é indicativo de uma origem metamórfica para essas olivinas magnesianas (Evans & Trommsdorff, 1974; Nesbitt & Hartmann, 1986), quando também é considerada as feições petrográficas desses minerais. Remus (1990) concluiu que a composição das sequências ultramáficas a despeito da ação da serpentinização e esteatização, quando comparadas com médias composicionais obtidas em cumulados komatiíticos, peridotitos ofiolíticos e komatiítos com textura spinifex, assemelham- se mais com as rochas cumuláticas. Porém os teores de Ni, e Cr desses serpentinitos assemelham- se ao dos komatiítos e peridotitos ofiolíticos. O autor também afirma que a associação litológica e a afinidade geoquímica da sequência máfico-ultramáfica do Cambaizinho apresenta similariedades com terrenos greenstone belt.

Em 1993, Remus, Hartmann e Formoso divulgaram dados da pesquisa envolvendo padrões de Elementos Terras Raras (REE) e afinidade komatiítica dos xistos magnesianos e rochas ultramáficas associadas do Complexo Cambaizinho. As anomalias negativas dos REE Ce e Eu indicaram que os derrames estiveram em contato com a água do mar e sofreram alterações metassomáticas antes do metamorfismo e deformação regionais que afetaram essas sequências.

Leite (1997)integra dados petrográficos, geoquímicos, geofísicos, geotectônicos e geocronológicos e utiliza os resultados para propor uma possível origem dos harzburgitos da Sequência Cerro Mantiqueiras, localizada em Lavras do Sul. O autor divide a Sequência em três unidades maiores, a Unidade Ultramáfica, a Unidade Vulcânica Máfica e a Unidade de Xistos Miloníticos. A unidade ultramáfica é constituída por harzburgitos ricos em ortopiroxênio com variados graus de serpentinização. As texturas e as estruturas envolvem o processo serpentinização, metamorfismo progressivo/retrogressivo e metassomatismo. Para o autor, os harzburgitos são afetados apenas pelo evento mais antigo de serpentinização em um grau relativamente baixo, fato que associado ao regime estrutural plástico pode qualificar estes harzburgitos como tectonitos mantélicos. Apesar dos dados de química mineral da olivina, ortopiroxênio e da cromita apresentarem influência dos processos secundários, o autor confirma a ocorrência de olivina e ortopiroxênios relictuais nos harzburgitos e serpentinitos e classifica as olivinas em olivina 1 e olivina 2 de acordo com a textura e o conteúdo da molécula de forsterita (Fo). A olivina 1 tem extinção ondulante, teores de Fo variando entre 87.06% e 90.5% e teores de NiO variando entre 0.30% e 0.42%. A olivina 2 não apresenta feições deformacionais e ocorre crescendo sobre a olivina 1, apresenta teores de Fo entre 89.5% e 92.32% e de NiO até 0.33%.

A geoquímica dos elementos maiores e traço apresentados pelo autor evidenciam a transformação parcial dos harzburgitos a partir da mobilidade de alguns elementos. No entanto a geoquímica ainda preserva uma assinatura depletada e permite a avaliação de sua origem a partir dos processos de empobrecimento do manto superior por repetidas retiradas de elementos incompatíveis. O comportamento do Ni foi analisado pelo autor com a fluorescência de raios X em rocha total e no olivina por microssonda eletrônica. Foi encontrado que as olivinas exibem um comportamento linear entre o crescimento dos valores de Ni e de Fo. A química indicou a destruição da olivina durante o processo de serpentinização e a conseqüente entrada do Ni na estrutura das serpentinas. A datação realizada pelo autor através do método de U/Pb em zircões da região da Sequência Cerro Mantiqueiras evidenciou a presença de três eventos tectônicos de acresção de idades neoproterozóicas: Evento Passinho (906-860 Ma) e São Gabriel (750-700 Ma) de caráter juvenil e o Evento Dom Feliciano (610-580 Ma).

Hartmann e Chemalle (2003) evidenciam quatro ciclos orogênicos para o Ofiolito Cerro Mantiqueiras, primeiramente presumem a colocação do manto peridotítico na crosta, e sequencialmente as etapas de serpentinização: (I) peridotito completamente serpentinizado, com a destruição das microestruturas e mineralogia ígnea; (II) formação de rochas monominerálicas e metassomáticas próximas aos contatos com as rochas graníticas, contendo albita, clorita, tremolita/talco e intensa deformação com acréscimo de magma juvenil e ofiolitos; (III) metamorfismo progressivo levando à recristalização de todas as características mantélicas e formação da assembléia mineralógica (M1) na fácies anfibolito médio, contendo olivina, enstatita, tremolita, clorita e cromita. Sendo esse o mais antigo evento crustal registrada no harzburgito; (IV) metamorfismo em zonas de cisalhamento, formando, na fácies anfibolito inferior, a assembleia mineral (M2) com talco, clorita, tremolita,

antofilita e Cr- magnetita; (V) extensa serpentinização do ofiolito (M3) e (6) geração de zonas de cisalhamento estreitas com cristalização de crisotilo (M4). Nesse artigo, os autores apresentam análises de olivinas realizadas com microssonda eletrônica, os conteúdos de Fo variaram entre 87.06% e 92.32% e os teores de NiO entre 0.23% e 0.42%.

Leituras adicionais para fundamentação teórica sobre origem e evolução geoquímica das rochas ultramáficas e serpentinitos do Escudo Sul Rio-grandense são encontradas em Goni (1962), Hartmann (1982), Nilson (1984), Ribeiro (1981) e Villwock (1970). Issler, Dresch e Roisenberg (1973), apresentaram dados de geocronologia do gabro Mata Grande, localizado no Município de Caçapava do Sul. Oliveira (1982) estudou a petrologia do maciço máfico ultramáfico Passo do Ivo.

Inicialmente para a pesquisa formulamos uma teoria, baseada em trabalhos anteriores, para os processos causadores das transformações na maioria das unidades ultramáficas estudadas. Esses processos ocorreram no Complexo Cambaizinho (Remus, 1990 e Souza, 2011) e no Complexo Serrinha (Vieira, 1981). De acordo com Leite, 1997, esses processos ocorrem em menores intensidades na Sequência Cerro Mantiqueiras. Já no maciço Pedras Pretas ocorre fraca serpentinização, apesar de Rêgo, 1980, também descrever os dois eventos metamórficos.

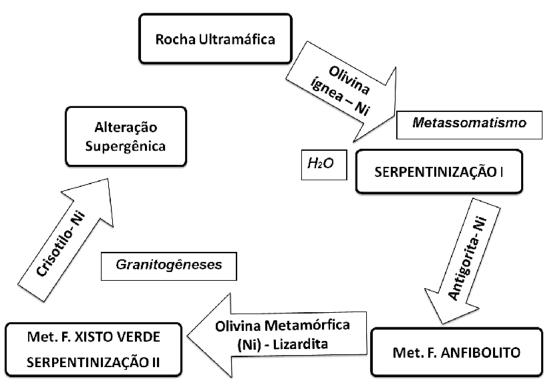


Figura 3: Ilustração representativa das transformações das rochas ultramáficas em serpentinitos e da mobilidade do Ni entre as fases, baseados inicialmente em dados do Complexo Cambaizinho e comparável com as outras unidades em estudo.

2.2. Associações ultramáficas de diferentes ambientes tectônicos

A seguir são discutidas as principais características mineralógicas, geoquímicas e petrográficas de rochas ultramáfica serpentinizadas que ocorrem associadas aos diferentes tipos de depósitos magmáticos, como ocorre nos Complexos Estratiformes, Ofiolitos (Alpinos) e *Greenstone Belts* (Komatiítos).

Os complexos estratiformes ocorrem como grandes intrusões em áreas cratônicas, de estrutura bandada e normalmente do tipo lapolítico-afunilado. Apresentam idades desde arqueanas até terciárias, mas são preferencialmente paleoproterozóicos (2,7 a 2,0 Ga), o magma primitivo tem alto teor de magnésio e fusão mantélica substancial, o magma parental é enriquecido em Elementos Terras Raras (ETR). Nesses complexos é comum ocorrer erosão diferencial por consequência da mudança mineralógica e textural entre as camadas. Os complexos estratiformes são caracterizados pela marcante estratificação interna, onde as rochas ígneas formam camadas geralmente bem definidas, passíveis de mapeamentos. As camadas inferiores são comumente constituídas por variedades de dunitos, peridotitos e piroxenitos, as quais gradam para gabros, noritos e anortositos. As vezes, gradam nas partes superiores, para dioritos e granitos e/ou com camadas de cromitas e magnetitas. As estruturas mais comuns nesses complexos são os bandamentos: rítmico, críptico, de fases, gradativo e laminação ígnea. As texturas são cumuláticas com fases cumulus e intercumulus, ortocumuláticas, adcumuláticas, poiquilítica e em pente.

Segundo Winter (2001), a estratificação modal nos complexos estratiformes, caracteriza-se pela variação nas proporções relativas dos constituintes minerais. Estratificação de fase refere-se aos intervalos em camadas, definidos com base no aparecimento ou desaparecimento de minerais específicos na sequência de cristalização, assim como a repetição de finas camadas compostas de olivina, plagioclásio e algumas vezes por augita podem definir os limites de uma nova camada quando a introdução de augita gera a perda de olivina. Conforme o autor, esses depósitos resultam da segregação de gotas de líquido sulfetado a partir do líquido silicatado, através do processo de contaminação crustal e concentração gravitacional dos sulfetos nas porções basais das câmeras magmáticas ou por fluxos de lavas. A concentração gravitacional pode estar vinculada com oscilações nos parâmetros acima da linha *liquidus* que resultam no caminho em *zig-zag* ou processos de nucleação oscilatória durante o resfriamento, produzem camadas

rítmicas nas câmaras magmáticas (McBirney e Noyes, 1979). A cristalização por gravidade ocorre através da convecção periódica em grande escala, com a deposição de uma única sequência rítmica, onde os cristais mais densos sobrepõem os mais leves, ocorrendo simultaneamente o processo de compactação e os processos de expulsão e ascensão convectiva do líquido *intercumulus* menos denso. A compactação de uma massa acumulada na base de uma câmara, pelo peso adicional de cristais na parte superior, pode resultar na expulsão de líquidos altamente enrriquecidos em elementos e evoluir para reservatórios residuais. Alguns destes líquidos *intercumulus* expulsos podem reagir com outras misturas de líquidomineral acima, resultando em substituições secundárias. Outro processo de cristalização estratiforme ocorre através da recarga periódica da câmara magmática com magmas mais primitivos. A mistura de magmas pode resultar na cristalização monominerálica em camadas.

Conforme (Turner e Campbell, 1986) magmas toleiíticos, são comuns em sequências estratiformes, e tem efeito sobre a convecção composicional. Conforme ilustrado na figura 4, o fracionamento inicial de minerais máficos abaixa a densidade do líquido residual, porém quando o plagioclásio começa a cristalizar concominante aos máficos, a tendência é enriquecer em Fe o magma residual o que pode aumentar a densidade no fracionamento. Uma vez que os óxidos de Fe-Ti começam a fracionar a densidade diminui novamente. Os magmas toleíticos podem formam plumas de magma mais denso que caem no fundo da câmara magmática. Os complexos estratiformes são importantes fontes de cromo, níquel, platinóides, ouro e prata. As principais ocorrências mundias estão na África do Sul, o complexo máfico-ultramáfico de *Bushveld*, na Groelândia, o complexo máfico-ultramáfico de *Skaergaard* e nos Estados Unidos, o complexo máfico-ultramáfico de *Stillwater*.

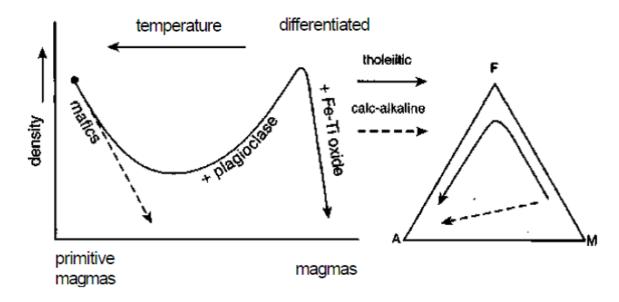


Figura 4: Ilustração esquemática da variação de densidade nas séries magmáticas tholeíticas e calcico- alcalinas (Sparks et al, 1984).

Os complexos Alpinos são de áreas orogênicas, intensamente deformados, falhados serpentinizados, seja, apresentam texturas metamórficas. ou com Frequentemente encontram-se relacionados rochas sedimentares metassedimentos. Os Complexos Alpinos são divididos em ofiolíticos e não ofiolíticos.

Os complexos alpinos não ofiolíticos, quando considerados "corpos quentes" formam pequenos *stocks* de rochas duníticas e peridotíticas, caracterizam-se pelas evidentes auréolas de contatos metamórficos, normalmente bruscos e com foliação nas bordas. A geobarometria indicou paragêneses minerais de altas temperaturas e pressões que foram posteriormente recristalizadas em condições de temperatura e pressão baixas. Esses complexos raramente apresentarem texturas cumuláticas, apesar de serem tidos como rochas do manto que se colocaram em níveis superiores da crosta através de intrusões diápiricas sólidas por fluxo plástico ao longo de extensos falhamentos. Ex.: maciço de Ronda na Espanha. Quando considerados "corpos frios" são caracterizados por não apresentarem auréolas de metamorfismo de contato. São corpos normalmente tabulares compostos por serpentinitos; talco xistos; peridotitos e piroxenitos originados por fluxo de material frio, oriundos do manto. Normalmente estão sob a forma de serpentinitos por apresentarem maior facilidade de ascensão, menor densidade que os peridotitos e maior plasticidade.

Conforme Leite (1997) no início da década de 70 houve um consenso sobre o conceito, a origem e o uso da palavra "ofiolito", como resultado o termo é referido a uma assembléia distintiva de rochas máficas e ultramáficas. Um ofiolito pode ser incompleto e metamorfisado. Ainda que os ofiolitos sejam interpretados como parte da crosta oceânica e manto superior, o uso do termo deve ser independente de sua suposta origem. Desta forma, conforme o autor, um ofiolito completo consiste, da base para o topo de:

a) Complexo ultramáfico, constituído de harzburgito depletados com dunitos associados e lherzolito/peridotitos orogênicos (não depletados) caracterizados por conter Al₂O₃, CaO e álcalis. O complexo normalmente encontra-se serpentinizado e associado a eventos tectono-metamórficos. Em termos mineralógicos, harzburgitos são compostos por olivina e ortopiroxênio comumente deformados (Suhr and Cawood, 1993) indicando temperaturas compatíveis com a deformação do manto superior, espinélio cromífero e menos de 10% de clinopiroxênio. A estrutura comumente encontrada nos harzburgitos é a alternância de camadas ricas em olivinas com camadas ricas em ortopiroxênio, conforme Spray (1989), essa estrutura é a resposta dos minerais frente às deformações no interior do manto. Menzies (1984) classifica os peridotitos oceânicos com base no ambiente tectônico em:

-Peridotitos de Margem Passiva e *Rifts*, considerados como transicionais entre características de manto oceânico e manto sub-continental. Conforme Bonatti et al. (1986) neste grupo predominam os espinélio-lherzolitos, essencialmente mantélicos não depletados, anfibólio-peridotitos, considerados metassomáticos, plagioclásio-peridotitos, rochas híbridas contendo um componente derivado de fusão e em menor proporção dunitos. Também é característico altos teores de Al₂O₃ e FeO e baixos de MgO para estes peridotitos;

-Peridotitos de Cordilheiras Meso-Oceânicas ocorrem como peridotitos abissais nas regiões de dorsais, onde predominam plagioclásio e espinélio-harzburgitos com lherzolitos subordinados, comumente associados a sequências gabróicas e basálticas. Esses peridotitos contêm baixos conteúdos de clinopiroxênios, resultando em baixos teores de Al₂O₃ e FeO e alto de MgO, além dos espinélios serem mais cromíferos, a olivina mais magnesiana e o ortopiroxênio menos aluminoso, quando comparados com os peridotitos de margem passiva e de zonas de *rift*;

-Peridotitos Intra-placa ocorrem primeiramente como xenólitos hospedados em basaltos que extravasam em ilhas oceânicas. Estes peridotitos têm baixas quantidades modais de piroxênios e altas de olivina; -Peridotitos de Margem Ativa são também reconhecidos como peridotitos supra- zona de subducção e comumente encontrados como fragmentos obductados da litosfera oceânica (depletados). São quimicamente distintos dos peridotitos abissais de cordilheiras oceânicas e zonas de fraturas e em alguns casos são semelhantes aos xenólitos encontrados em kimberlitos, que cortam a crosta continental arqueana. Esses peridotitos são harzburgitos com quantidades secundárias de dunitos e lherzolitos. Os peridotitos de margem ativa possuem menores teores de Fe e AI, comparados aos peridotitos de margem passiva e de rift, e tendem a ser magnesianos e depletados.

- b) Complexo Gabróico, usualmente com texturas cumuláticas, contendo peridotitos e piroxenitos cumuláticos e normalmente são menos deformados do que os Complexos Ultramáficos;
 - c) Complexo de diques máficos;
- d) Complexo vulcânico máfico, associados a *chert*s com folhelhos interacamadados e corpos podiformes de cromita associados a dunitos;

Atualmente, os três principais ambientes de formação de rochas máficoultramáficas aceitos são:

- a) Cordilheiras Meso-Oceânicas;
- b) Bacias Marginais;
- c) Arcos de Ilha.

Segundo Winter (2001), os ofiolitos são grandes massas de rochas ultramáficas originárias da crostra oceânica, da porção superior manto que foi empurrado sobre a borda dos continentes e/ou incorporados em cadeias de montanha (Coleman, 1971, 1977; Peters et al., 1991). Ao longo do tempo a erosão expõem os ofiolitos na superfície da terra, com considerável variação de tamanho, espessura e grau de integridade estrutural. São considerados pequenas lascas do manto superior, atualmente desmembradas, incorporadas a superfície e deformadas em meio as cadeias de montanha, são comumente referidos como peridotitos alpinos. As porções ultramáficas dos ofiolitos e peridotitos alpinos contêm uma variedade de peridotitos, predominantemente harzburgito e dunito, com subordinados, wehrlito, Iherzolito e piroxenito. A mineralogia é dominada por olivina, ortopiroxênio e clinopiroxênio, com quantidades menores de plagioclásio e compostos oxidados, incluindo magnetita, ilmenita e ricos em cromo espinélio. Hornblenda e serpentinas são minerais considerados tardios de substituição e hidratados. A composição química é geralmente mais enriquecida em sílica, com

baixo nióbio e tântalo quando associados á ambientes de *back-arc*, entre o arco vulcânico e a placa continental em zonas de subducção. Em alguns casos N-MORB associados com cadeias meso oceânicas.

Conclui-se que as rochas que agora constituem os peridotitos alpinos foram originalmente lherzolitos do manto ou harzburgitos ou dunitos mais refratários. Os dunitos e harzburgitos representam magmas cumuláticos empobrecidos do tipo MORB. A mineralogia inicial do peridotito é de alta temperatura e pressão e comumente retrógradada para serpentina antes ou durante o evento de colisão.

Os Complexos de *Greenstone Belts* (magmas komatiítos) têm desenvolvimento sinvulcânico, ocorrem nos estágios iniciais do processo de formação de um *rifte*, associados com a crosta continental. Existem *Greenstone Belts* arqueanos, tipo *Kambalda* e proterozóicos, tipo *Thompson Belt*, os dois tipos de depósitos são ricos em níquel e cobre (Fig. 5).

Segundo Winter (2001), Komatiítos são lavas ultramáficas com temperatura de erupção de até 1650 °C, ressultantes de grandes porções de fusão do manto. Encontram-se normalmente assentadas sobre o embasamento cristalino na forma de següências vulcano-sedimentares espessas, alongadas, irregulares, com dimensões de dezenas a centenas de kilômetros e quase sempre metamorfizados entre as fácies xisto verde e anfibolito. A mineralogia é composta principalmente por forsterita, augita e plagioclásio nos komatiítos basálticos, com alguns minerais acessórios e secundários. Os komatiítos são subdivididos em: - peridotíticos ou komatiítos propriamente ditos, onde ocorre o predomínio de olivina e clinopiroxênio; komatiítos piroxeníticos, ricos em clinopiroxênios; - komatiítos duníticos, ricos em olivina e - komatiítos basálticos, com plagioclásio. As texturas komatiíticas são classificadas como porfiríticas, hialo- ofíticas, cumuláticas, traquitóide e spinifex. Geoquimicamente os komatiítos são predominantemente ultrabásicos e em menores proporções básicos. Contém teores de óxidos de magnésio maiores do que 40% nos peridotíticos, 25 a 30% nos piroxeníticos e 10 a 20% nos basálticos. Baixos teores de óxido de titânio (entre 0,5 e 0,7%) e baixos teores de potássio, entorno de 0,9%. Os komatiítos são formados diretamente do manto, a partir da alta percentagem de magma fundido em temperaturas no entorno de 1.300 °C, pela ascensão do magma a cerca de 150 km de profundidade.

De acordo com Gulaçar e Delaloye (1976), o Ni se correlaciona positivamente com Fe + Mg + Mn, Co e Mg em dunitos e peridotitos inalterados.

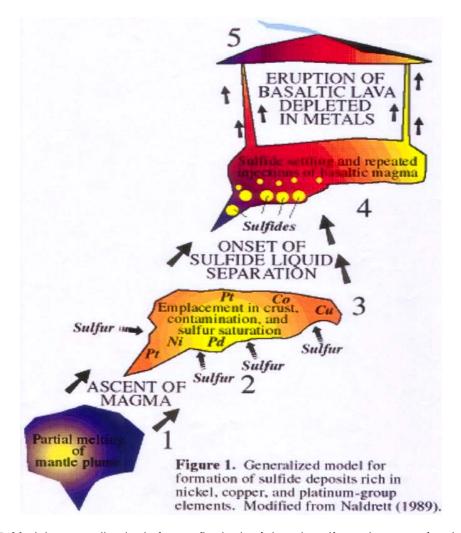


Figura 5: Modelo generalizado da formação de depósitos de sulfetos ricos em níquel, cobre e elementos do grupo da platina. Fonte: Naldrett (1989).

2.3. Serpentinitos, gênese e características mineralógicas

Conforme O´Hanley (1996) os serpentinitos são rochas compostas predominantemente por polimorfos de serpentina: lizardita, crisotilo ou antigorita associados com minerais acessórios de magnetita, brucita e silicatos de Mg e Ca-Al. São formados pela alteração química de peridotitos, dunitos, piroxenitos, gabros, margas e dolomitas silicosas. Os minerais de serpentina são argilominerais trioctaédricos com camadas de silicatos de 1:1 (uma camada tetraédrica: uma camada octaédrica), é comum ocorrer substituições do Al e do Fe³⁺ pela Si na camada tetraédrica e do Fe²⁺, Fe³⁺, Cr, Al, Ni e Mn pelo Mg na camada octaédrica.

Os polimorfos de serpentina diferenciam-se pelo hábito, condições de formação e texturas. A antigorita é fibrolamelar e é formada durante o metamorfismo regional ou de contato, em condições de fácies anfibolito a xisto verde, ou por metassomatismo em rochas ultramáficas, onde a olivina é hidratada e forma

antigorita através de reações exotérmicas com temperaturas no entorno de 500°C. A lizardita é fibrosa e é formada por serpentinização de silicatos magnesianos ou pseudomorfose com recristalização da olivina na fácies xisto verde, com temperaturas no entorno de 300°C. O crisotilo é acicular e também é formado em metamorfismo de fácies xisto verde, ocorre em veios e preenchendo fraturas. A formação de serpentinitos envolve a diminuição da densidade do protólito ultramáfico de 3,3 para 2,7 g/cm³, com aumento simultâneo de 40% no volume de rocha. Essas mudançãs são efeitos diretos da hidratação da assembléia mineral anidra (olivina, piroxênios) ou menos hidratadas (antofilita e talco) e de silicatos ricos em magnésio e carbonatos. As reações exemplificadas na figura 6, representam as reações químicas que ocorrem normalmente durante a serpentinização. Por exemplo, a olivina rica em ferro (faialita) somada ao oxigênio, forma magnetita e sílica, já a forsterita (rica em magnésio) somada a sílica e a água, forma a serpentina. Outras reações comuns é a forsterita (Mg₂SiO₄) somada com a água (H_2O) , formando a serpentina $Mg_3Si_2O_5$ $(OH)_4$ e a brucita $(Mg (OH)_2)$, além de magnésio e sílica dissolvidos (MgO (aq) + SiO2 (aq)). A forsterita reagindo com a água, pode formar a antofilita, o talco, a clorita, a serpentina e a magnetita.

Conforme Nozaka, 2003, a olivina metamórfica normalmente apresenta inclusões de minerais opacos e uma composição altamente magnesiana. É considerada um produto da desidratação da serpentina, através da substituição da olivina primária, que tem uma composição altamente magnesiana e está intimamente associada com os minerais opacos, ricos em Fe₂O₃ como a magnetita. No entanto, inclusões opacas também podem ocorrer dentro dos cristais relativamente ferrosos de olivina nas zonas de baixa temperatura, sugerindo sua origem metamórfica. No sistema MgO -SiO₂- H₂O, as seguintes reações de desidratação, ocorrem em condições relativamente baixas de temperatura (Evans e Trommsdorff 1970): serpentina Mg₃Si₂O₅(OH)₄ + brucita Mg (OH)₂ + 3H₂O = olivina 2Mg₂SiO₄. Serpentina 5Mg₃Si₂O₅ (OH)₄ = olivina 6Mg₂SiO₄ + talco Mg₃Si₄O₁₀(OH)₂ + 9H₂O. As reações correspondem a formação da olivina altamente magnesiana. O desenvolvimento da magnetita durante o metamorfismo é expressa pela reação (Frost, 1985): serpentina 6Mg₃Si₂O₅ (OH)₄ + olivina 2Fe₃O₄ = magnetita 12(Mg, Fe) 2SiO₄ + 12H₂O + O₂.

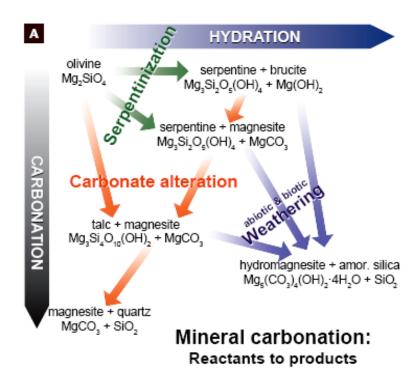


Figura 6: Formas de caminhos de reação em altas e baixas temperaturas que levam a hidratação/carbonatação de peridotitos e serpentinitos. Fonte: Power (2013).

A alteração de serpentinitos envolve a recristalização de minerais do grupo das serpentinas já formados e substitui um ou mais minerais do grupo por alguma variedade de serpentina.

As texturas mais comuns formadas durante a serpentinização da olivina é a mesh (Wicks & Whittaker, 1975, 1977), dividida em mesh rims e mesh centers, e a hourglass. Com a progressão da serpentinização ocorre a formação da ribbon ou band. Para O'Hanley (1996), com o aumento ou a diminuição do grau da serpentinização entrada e saída de íons e consequente aumento da hidratação do sistema ultramáfico, ocorre a recristalização da lizardita por antigorita ou crisotilo mais antigorita, lizardita por crisotilo, crisotilo mais brucita por lizardita, crisotilo mais antigorita por lizardita. A textura mesh ocorre quando a olivina é hidratada para formar a lizardita e os íons de Fe2+ são substituídos na camada octaédrica pelos íons de Mg. O ferro sofre exsolução da estrutura da olivina e forma a magnetita. Conforme O'Hanley, 1993, a textura hourglass é formada posteriormente a mesh, numa transformação da própria lizardita. De acordo com Maltman, 1978, a textura ribbon (em fita) é formada quando a temperatura da serpentinização aumenta e a lizardita é transformada em antigorita, com aumento da hidratação e do Mg no sistema. O crisotilo é mais tardio e se forma com a diminuição progressiva da temperatura, ocorrendo como veios asbestiformes е não asbestiformes,

normalmente preenchendo fraturas macro a microscópicas e cortando os minerais de antigorita e lizardita.

III. ARTIGO SUBMETIDO À REVISTA

CONTROLES MINERALÓGICOS E GEOQUÍMICOS DO NÍQUEL NÃO SULFETADO EM ROCHAS ULTRAMÁFICAS NO ESCUDO SUL-RIOGRANDENSE Mineralogical and geochemical controls of no sulphide nickel in the ultramafic rocks of Sul-Riograndense Shield

Níquel em ultramáficas no Escudo Sul-Riograndense

Thamy Lara de Souza¹, Marcus Vinícius Dorneles Remus¹, Norberto Dani¹
Instituto de Geociências - Campus do Vale - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves 9.500, Caixa Postal 15001, CEP 91500-000, Porto Alegre, RS, BR, 55 51 33086361, (thamylarageo@gmail.com), (marcus.remus@ufrgs.br), (norberto.dani@ufrgs.br)

Resumo

Este trabalho investiga os processos controladores da mobilidade e concentração de níquel em rochas ultramáficas serpentinizadas no Escudo Sul-Riograndense (ESrg), Rio Grande do Sul, Brasil. Foram selecionados quatro unidades ultramáficas: Serrinha, Cerro Mantiqueira, Pedras Pretas e Cambaizinho. Com o uso das técnicas convencionais foi possível classificar quimicamente as rochas e relacionar os aspectos texturais com a variação da intensidade dos eventos que modificaram a mineralogia dos protólitos. Estudos de detalhe de olivina e serpentinas foram realizados na microssonda eletrônica para determinar concentrações de níquel e suas variações nas unidades investigadas. Foi possível identificar os minerais concentradores de níquel e a relação dos eventos com a mobilidade e concentração dos elementos. As olivinas do maciço Pedras Pretas possuem baixos teores de NiO que variam de 0,13% a 0,21%, com um valor médio de 0,17%, enquanto que as olivinas da sequência Cerro Mantiqueiras possuem teores altos de NiO na média de 0,31%. As olivinas do Pedras Pretas possuem composição homogênea enquanto que aquelas do Cerro Mantiqueiras mostram variações composicionais importantes com Fo₉₂₋₉₈ e teores de NiO entre 0,3% e 0,4%. Tais variações no Cerro Mantiqueiras podem estar relacionadas a diferenças na composição do protólito ou a outro fator desconhecido que necessita futuras investigações. As olivinas e serpentinas no Cambaizinho e Serrinha mostram valores de NiO entre 0,16% a 0,42%, comparáveis ao Cerro Mantiqueiras, porém mais elevados que o Pedras Pretas. Este estudo mostra que as unidades do Cambaizinho-Serrinha e Cerro Mantiqueiras se destacam em termos de protólitos com potencial para desenvolver depósitos de níquel não sulfetado apresentando olivinas com maiores concentrações de NiO.

Palavras-chave: Níquel; Rochas ultramáficas; Escudo Sul-Riograndense; Serpentinização.

Abstract

This paper investigates the processes controlling the mobility and concentration of nickel in serpentinized ultramafic rocks in the Sul-Riograndense Shield (ESrg), Rio Grande do Sul, Brazil. Were selected four ultramafic units: Serrinha, Cerro Mantiqueira, Pedras Pretas and Cambaizinho. Conventional techniques allow chemically classify rocks and aspects textural relate the variation of intensity the events that changed the mineralogy of protolith. Detailed studies of olivine and serpentine were performed in electron microprobe to determine the concentrations of nickel and variations in units investigated. Was possible identify the nickel concentrators mineral and relationship of events with the mobility and concentration of elements. The olivine of Pedras Pretas have low NiO content ranging from 0.13% to 0.21% and the average is 0.17%, while olivine of sequence Cerro Mantiqueiras have high NiO

content 0.31% on average. The olivine of Pedras Pretas have homogeneous composition as those of Cerro Mantiqueiras show important compositional variations with a Fo₉₂₋₉₈ and NiO contents between 0,3% and 0,4%. Such variations in Cerro Mantiqueiras may be related to differences in the composition of protolith or another unknown factor that needs further investigation. The NiO in olivine and serpentine the Cambaizinho-Serrinha, show values between 0,16% to 0,42%, comparable to Cerro Mantiqueiras, but higher than the Pedras Pretas. This study shows that the units of Cambaizinho-Serrinha and Cerro Mantiqueiras have potential to develop non-sulphide nickel deposits due to high concentrations of NiO in olivine. However, these deposits aren't developed because of superimposed events that have led to the mobilization of nickel and the absence of lateritic profiles to change the concentration of nickel

Keywords: Nickel; Ultramafic rocks; Sul- Riograndense Shield; Serpentinization.

INTRODUÇÃO

No contexto litológico do Escudo Sul-Riograndense (ESrg) ocorre significativa participação de associações de rochas máfico-ultramáficas. As rochas ultramáficas constituem frequentemente importante substrato para a formação de depósitos minerais de níquel (Ni), a partir do processo de alteração supergênica. O desenvolvimento de uma jazida supergênica depende da combinação da concentração inicial do Ni e do tipo de estrutura mineral hospedeira na rocha. No estudo deste tipo de depósito é fundamental o entendimento da distribuição dos elementos químicos na rocha e dos processos responsáveis pela maior ou menor disponibilidade dos elementos durante a alteração do protólito. Apesar do Rio Grande do Sul (RS) possuir extensas áreas com exposição de rochas ultramáficas, a natureza não o beneficiou com jazimentos de Ni supergênicos. Por outro lado, no ESrg a associação de rochas ultramáficas apresenta uma variada tipologia, muito propícia para a aplicação de estudos que envolvam a compreensão do comportamento do Ni no sistema rocha nos processos geológicos metassomáticos, metamórficos e hidrotermais. Desse modo, o objetivo é identificar e estudar os principais minerais hospedeiros de Ni nas rochas ultramáficas serpentinizadas e nos serpentinitos, através do detalhamento mineralógico e geoquímico da rocha utilizando técnicas básicas de petrografia, microscopia eletrônica de varredura e análise química das rochas e minerais. Como consequência deste estudo, pretende-se gerar conhecimento que auxiliem no entendimento do comportamento do Ni no sistema rocha ultramáfica serpentinizada em ambientes não sulfetados, cujos resultados se aplicam diretamente no entendimento da gênese dos depósitos supergênicos de Ni no Brasil.

CONTEXTO GEOLÓGICO

No ESrg, na porção noroeste, Bloco São Gabriel (Jost & Hartmann, 1984) situam-se sequências Neoproterozóicas (700-800 Ma) com rochas máficas a ultramáficas, compostas por harzburgitos, dunitos, meta-peridotitos, serpentinitos, xistos magnesianos, anfibolitos e gabros, que encontram-se alongados na direção principal NE-SW e interestratificadas com metassedimentos no Complexo Cambaizinho (1) e Serrinha (2), associados a gnaisses quartzo-feldspáticos no Cerro da Mantiqueiras (4) ou ainda como intrusões no contato entre epimetamorfitos e granitos no maciço Pedras Pretas (3). Estas sequências (Figura 1) diferenciam-se entre si com base nas características genéticas e secundárias e até o momento não foram identificados jazimentos de Ni nessas áreas.

O Bloco São Gabriel também foi considerado Terreno São Gabriel por Babinski et al. (1996) e Hartmann et al. (1999, 2000, 2007), constituído por gnaisses cálcico-alcalinos juvenis, cortados por metagranitóides, ambos englobados no complexo Cambaí, intrusivos em uma seqüência vulcano sedimentar do complexo Palma/Bossoroca.

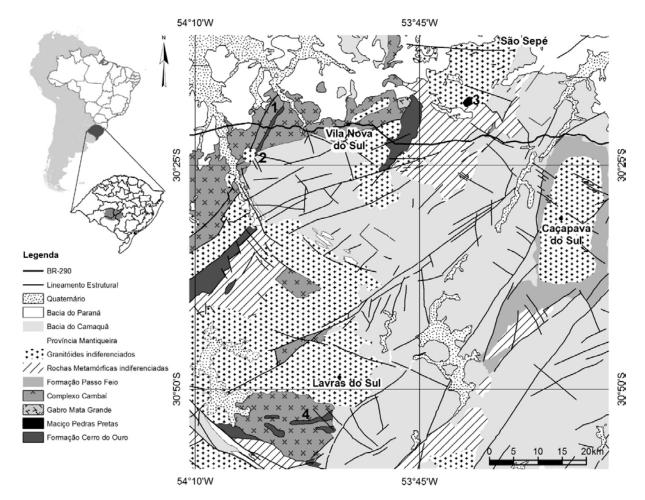


Figura 7: Mapa geológico e de localização das rochas ultramáficas no ESrg. A numeração corresponde às áreas de interesse. (1) complexo Cambaizinho, (2) região da Serrinha, (3) maciço Pedras Pretas e (4) Cerro Mantiqueiras. Fonte: dados da pesquisa (2013), mapa modificado de Wildner et al (2006).

Maciço Pedras Pretas

As rochas ultramáficas do maciço Pedras Pretas foram classificadas como estratiforme por Rêgo (1980), devido a variação composicional entre camadas duníticas, peridotíticas, piroxeníticas, gabróicas e anortosíticas. Os dados geoquímicos indicam composição magnesiana para o protólito ultramáfico. Foram identificados dois eventos metamórficos, um de fácies anfibolito e outro de fácies xistos verdes, que serpentinizaram parcialmente a rocha, formando uma paragênese mineral para o meta-peridotito, composta por cummingtonita, antofilita e lizardita. O controle da serpentinização foi considerado estrutural e com intensidade máxima na borda da unidade, associada a brechação e fraturamentos com preenchimento de veios de crisotilo. Apesar dos eventos terem afetado o protólito ultramáfico, as texturas e a mineralogia ígnea (olivina e enstatita) estão preservadas. São observadas correlações positivas entre os teores de Ni, Cr e Co, sendo proposto que a substituição do Fe e do Mg pelo Co e Ni ocorra durante a cristalização magmática (Rêgo, 1980). O conteúdo de Ni apresenta um intervalo de variação maior que o de Co, sendo a razão Ni/Co em torno de 5,4 nos piroxenitos e até 15,4 nos dunitos. A olivina é o mineral concentrador de Ni no maciço. D'avila et al (1985) revela texturas e associacões mineralógicas da fácies hornblendacornubianito, assim como dados geoquímicos com caráter de mega xenólito estratiforme para o maciço, provavelmente a partir de cristalização fracionada de magma komatiítico em pequena profundidade.

Seqüência Cerro Mantiqueiras

A sequência Cerro Mantiqueiras, segundo Leite (1997) é composta por harzburgitos ricos em ortopiroxênios e serpentinitos. Os dados geoquímicos do autor evidenciam a transformação parcial dos harzburgitos, que preservam uma assinatura depletada, permitindo a avaliação de sua origem a partir dos processos de empobrecimento do manto superior por repetidas retiradas de elementos incompatíveis. Para o autor, os harzburgitos são afetados apenas pelo evento mais antigo de serpentinização em um grau relativamente baixo, fato que associado ao regime estrutural plástico classifica estes harzburgitos como tectonitos mantélicos. O autor confirma a ocorrência de olivina e ortopiroxênios na unidade e classifica as olivinas em olivina 1 e olivina 2 de acordo com a textura e o conteúdo da molécula forsterita. A olivina 1 tem extinção ondulante, teores de Fo₈₇₋₉₀ e de NiO (0.3% a 0.42%). A olivina 2 não apresenta feições deformacionais e ocorre crescendo sobre a olivina 1, apresenta teores de Fo₈₉₋₉₂ e de NiO até 0.33%. O autor conclui que as olivinas exibem correlações positivas entre os teores de NiO e Fo, devido a destruição da olivina durante o processo de serpentinização e a consequente distribuição do Ni para as serpentinas.

Hartmann & Chemalle (2003) evidenciam quatro ciclos orogênicos para o Ofiolito Cerro Mantiqueiras, primeiramente presumem a colocação do manto peridotítico na crosta, e sequencialmente as etapas de serpentinização: (I) peridotito completamente serpentinizado, com a destruição das microestruturas e mineralogia ígnea; (II) formação de rochas monominerálicas e metassomáticas próximas aos contatos com as rochas graníticas, contendo albita, clorita, tremolita/talco e intensa deformação; (III) metamorfismo progressivo levando à recristalização de todas as características mantélicas e formação da assembléia mineralógica (M1) na fácies anfibolito médio, contendo olivina, enstatita, tremolita, clorita e cromita; (IV) metamorfismo em zonas de cisalhamento, formando, na fácies anfibolito inferior, a assembleia mineral (M2) contendo talco, clorita, tremolita, antofilita e Cr- magnetita; (V) extensa serpentinização do ofiolito e (6) geração de zonas de cisalhamento estreitas com cristalização de crisotilo. Nesse trabalho, os autores apresentam análises de olivinas realizadas com microssonda eletrônica com teores de Fo₈₇₋₉₂ e de NiO entre 0.23% a 0.42%.

Complexo Serrinha

O complexo Serrinha, conforme Vieira (1981) é constituído por serpentinitos e xistos magnesianos encaixados em migmatitos, pertencentes ao Grupo Cambaí (Jost & Hartmann, 1984), ao longo de falhas N68W. O processo de serpentinização ocorreu com a remobilização de SiO₂, Al₂O₃ e CaO concentrados nos xistos de borda. O teor de MgO aumenta nas rochas mais serpentinizadas com o Fe²⁺ oxidando para Fe³⁺ dentro da estrutura de serpentinas, formando magnetita e hematita. O magma peridotítico sofreu três processos metamórficos: (I) serpentinização na fácies xisto verde com formação da lizardita e crisotilo, assim como texturas pseudomórficas (Figura 2C); (II) alteração do serpentinito na fácies anfibolito, com paragênese composta por antigorita, olivina metamórfica, tremolita e texturas não pseudomórficas; (III) segundo evento na fácies xistos verdes, responsável pela serpentinização parcial da olivina metamórfica e pela formação da lizardita e do crisotilo. O comportamento do Cr, Ni, Co e Mn (rocha total) mostra que a afinidade entre esses elementos diminui nos serpentinitos, devido à remobilização do Ni durante a serpentinização, com o Ni redistribuído no talco e nas serpentinas, substituindo o Mg (Vieira, 1981).

Complexo Cambaizinho

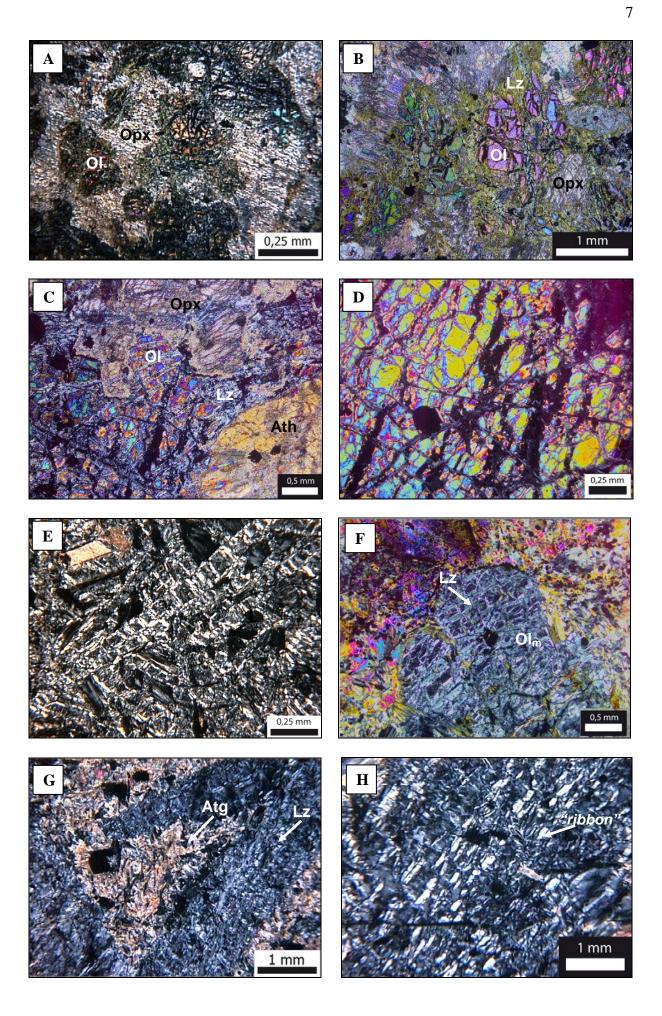
Segundo Remus (1990) e Remus et al. (1993), o complexo Cambaizinho é uma associação supracrustal constituída por uma sequência metasedimentar com rochas máfico-ultramáficas intercaladas. A sequência máfico-ultramáfica é constituída por serpentinitos, xistos

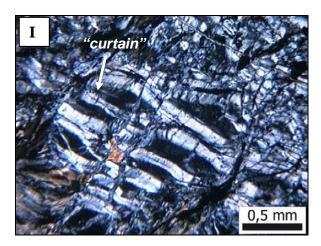
magnesianos e anfibolitos. Foram identificadas quatro fases deformacionais acompanhadas por dois eventos metamórficos, o primeiro na fácies anfibolito e o segundo na fácies xistos verdes. Zonas de hidrotermalismo com processo de silicificação e carbonatação foram relacionadas às reativações dos falhamentos. O autor sugeriu para o complexo diferentes graus de fusão parcial do manto e variação composicional pelo fracionamento de piroxênio. Desse modo, os xistos magnesianos e serpentinitos foram interpretados em um contexto metassomático de origem extrusiva e afinidade geoquímica komatiítica. Os teores de Ni e Cr dos serpentinitos são similares aos dos komatiítos e comparáveis ao dos peridotitos ofiolíticos. O autor compara a associação litológica e a afinidade geoquímica das ultramáficas do Cambaizinho com os terrenos *greenstone belt*. O autor analisa os teores de NiO nas olivinas relictuais e verifica baixos teores e pouca variação entre as amostras, variando entre 0,17% a 0,30%. Essa baixa variação foi um dos indicativos de uma origem metamórfica para essas olivinas magnesianas (Evans & Trommsdorff, 1974; Nesbitt & Hartmann, 1986).

Remus et al. (1993), discutem os conteúdos e padrões dos Elementos Terras Raras da sequencia mafo-ultramafica do Cambaizinho. Os autores interpretam as anomalias negativas de Ce e Eu indicando que os derrames estiveram em contato com a água do mar e sofreram alterações metassomáticas antes do metamorfismo e deformações regionais que afetaram essas rochas.

Figura 8: Aspectos de campo das unidades ultramáficas. (1) afloramento estratiforme do maciço Pedras Pretas. (2) textura *jackstraw* no serpentinito do Serrinha. (3) afloramento do Cerro Mantiqueiras na forma de blocos fraturados e alongados. (4) Textura jack straw com serpentinização da olivina metamórfica (preto) e resquícios de talco (cor clara) no complexo Cambaizinho.

CARACTERIZAÇÃO PETROGRÁFICA


A investigação de lâminas delgadas em microscópio petrográfico de luz transmitida permitiu a caracterização mineralógica e textural das rochas ultramáficas serpentinizadas, na qual se adotou as definições e recomendações de Evans e Trommsdorff (1974), Wicks & Whittaker (1977), O'Hanley (1993) e Evans (2010). Desse modo, foi possível diferenciar as unidades e reconhecer os processos modificadores do protólito ultramáfico em cada caso.


Nos meta-peridotitos do maciço Pedras Pretas os minerais de olivina e enstatita estão presentes nas texturas ígneas, como a cumulática (Figura 3A) e nas texturas pseudomórficas de serpentina, como a textura *mesh*, com zonas centrais compostas por olivina remanescente (Figura 3B) e as bordas ou microfraturas preenchidos por veios de magnetita. Nas porções onde o processo de serpentinização é intenso a textura *mesh* evolui para a *curtain*, onde os núcleos de olivina já foram consumidos e a lizardita é recristalizada. É comum a enstatita aparecer corroída nas bordas e substituída pelos anfibólios. A magnetita é parcialmente substituída pela hematita. A paragênese metamórfica é constituída por clorita, antofilita, cummingtonita, lizardita, crisotilo e magnetita.

Os serpentinitos da sequência Cerro Mantiqueiras apresentam textura remanescente cumulática e *mesh* (Figura 3C). São compostos por olivina (Figura 3D), enstatita, antofilita, tremolita, lizardita, crisotilo, talco, clorita aluminosa, cromita, cromo-magnetita, ferro-cromita e magnetita. Algumas olivinas apresentam núcleos com extinção ondulante. Os ortopiroxênios estão parcialmente intercrescidos com os clinopiroxênios em lamelas de exsolução e são substituídos pelos anfibólios durante os eventos metamórficos.

A mineralogia dos serpentinitos no complexo Cambaizinho é composta principalmente por lizardita. Possuem ainda crisotilo, tremolita, talco, clorita, magnetita, dolomita e antofilita (restritas) e mais raramente olivinas. O talco quando é resistente a serpentinização forma bastitas. A lizardita forma agregados xenomórficos que substituem integralmente a olivina, estando esta ultima raramente preservada. O crisotilo ocorre em veios milimétricos seccionando a rocha. A antigorita também é rara e ocorre na forma de lamelas milimétricas não pseudomórficas, associadas com tremolita e talco. São comuns as texturas *mesh* e *ribbon*. A textura *hourglass* se desenvolve a partir da *mesh* e com a deformação evolui para *ribbon*. A textura *jackstraw* (Figura 3E) é típica de olivina metamórfica que permanece com os núcleos preservados e seus limites originais marcados por trilhas de magnetita.

A paragênese mineral dos serpentinitos da Serrinha é constituída por olivina metamórfica (Figura 3F), antigorita, lizardita, tremolita, talco, clorita, dolomita, crisotilo, magnetita e cromita. Na microscopia é possível identificar as três fases de serpentinização. Com a formação da antigorita em torno de 500°C (Figura 3G), da lizardita a 400-300°C e do crisotilo a 200°C, aproximadamente. A textura *mesh* ocorre na olivina metamórfica associada com magnetita nas zonas de fratura. Assim como no complexo Cambaizinho também ocorre no Serrinha as texturas de serpentinização denominadas *jackstraw*, *ribbon* (Figura 3H), *curtain* (Figura 3J), e *hourglass* (Figura 3J).

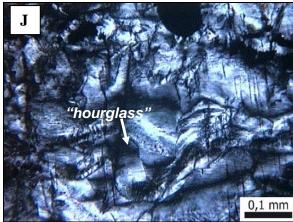
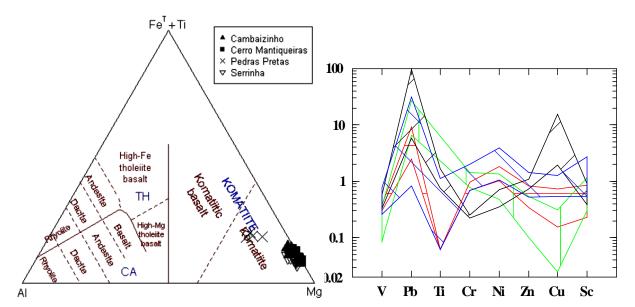


Figura 9: Fotomicrografias. Meta-peridotito do maciço Pedras Pretas, em Luz Polarizada. (A) Textura cumulática entre olivina (OI) e ortopiroxênio (Opx); (B) olivina (OI), ortopiroxênio (Opx) e lizardita (Lz). Serpentinito do Cerro Mantiqueiras em Luz Polarizada. (C) Textura cumulática entre olivina (OI) e ortopiroxênio (Opx), parcialmente substituídos por lizardita (Lz) e antofilita (Ath); (D) olivina com textura *mesh*. Serpentinito do complexo Cambaizinho em Luz Polarizada. (E) Textura *jackstraw*. Serpentinito do Serrinha em Luz Polarizada. (F) olivina metamórfica (OI_m) composta por lizardita (Lz); (G) Detalhe da textura *jackstraw* composta por lizardita (I) e antigorita (Atq); (H) Textura *ribbon*; (I) Textura *curtain*; (J) Textura *hourglass*.

GEOQUÍMICA

As análises dos elementos maiores e traços permitiram classificar quimicamente as unidades ultramáficas e quantificar os elementos. Conforme Jensen, 1976, as amostras situam-se no campo classificatório para magmas komatiíticos, ricos em magnésio (Figura 4).


Devido à baixa concentração dde alguns elementos traços, foram selecionados os elementos detectados pela técnica analítica e de interesse para esta pesquisa. A assinatura dos elementos traço no maciço Pedras Pretas é semelhante ao observado nas demais unidades. No *spider plot* (Figura 5) é possível observar uma evidente anomalia nos teores de Pb e enriquecimento, principalmente nos elementos litófilos em todas as unidades, fator que pode estar relacionado a contaminação crustal do magma mantélico ou retrabalhamento com elementos crustais. Os complexos Cambaizinho e Serrinha são empobrecidos em Ti, ao contrário da sequência Cerro Mantiqueiras. Quanto ao Cr, observa-se um empobrecimento na unidade Pedras Pretas.. O Cu tem assinatura similar no Comabaizinho e Serrinha, no entanto no Pedras Pretas encontra-se enriquecido e depletado no Cerro Mantiqueiras. O Ni também tem assinatura similar em todas as unidades ultramáficas, apesar do Cambaizinho ter um leve enriquecimento e as ultramáficas do Cerro Mantiqueiras, assim como do Pedras Pretas apresentam menores concentrações de Ni disponível em rocha total (Figura 6).

Os complexos Cambaizinho e Serrinha apresentam concentrações de MgO em torno de 30% a 40%, Ni entre 2000 ppm a 4000 ppm, Cr₂O₃ variando de 0,25% a 0,45 % e alta perda ao fogo (LOI). A correlação positiva entre os teores de MgO e LOI (Figura 7) se constitui num parâmetro indicativo de uma serpentinização mais intensa das unidades ultramáficas e de maiores teores de MgO no protólito. De um modo geral, as composições dos complexos estudados apresentam similaridades químicas, entretanto, o Cerro Mantiqueiras se destaca pelos teores mais elevados de Cr₂O₃ e MgO, e acentuada perda ao fogo.

Tabela 2. Resultados analíticos para elementos maiores das unidades ultramáficas.

Local	Amostra	SiO2	AI2O3	Fe2O3	MnO	MgO	CaO	Na2O	K20	P2O5	Cr2O3	TiO2	LOI	Total
PP	UM 2	36,62	7,30	14,59	0,19	27,57	2,08	0,39	0,05	0,04	0,101	0,17	10,3	99,51
PP	UM 3	37,39	6,00	15,59	0,20	27,27	3,05	0,54	0,05	0,04	0,108	0,27	8,9	99,49
PP	UM 6	36,22	6,02	14,73	0,22	27,94	1,36	0,22	0,04	0,04	0,097	0,18	12,2	99,46
PP	UM 8	35,92	4,49	14,84	0,19	29,97	1,38	0,19	0,03	0,04	0,111	0,12	12,1	99,48
SE	UM 10A	40,66	0,89	7,30	0,10	36,60	0,05	0,00	0,00	0,02	0,427	0,01	12,9	99,36
SE	UM 10B	40,05	1,08	6,36	0,10	37,56	0,03	0,00	0,00	0,02	0,307	0,01	13,6	99,35
SE	UM 10D	38,92	0,62	8,82	0,08	37,54	0,00	0,00	0,00	0,01	0,369	0,00	12,8	99,38
SE	UM 23A	37,28	2,03	8,99	0,09	36,82	0,03	0,00	0,00	0,00	0,378	0,0	13,5	99,38
SE	UM 23B	37,55	1,46	9,19	0,07	37,39	0,08	0,00	0,00	0,01	0,328	0,0	13,0	99,38
SE	UM 23C	38,65	1,09	7,91	0,15	37,55	0,04	0,00	0,00	0,02	0,375	0,0	13,3	99,37
SE	UM 23D	38,35	0,80	7,98	0,24	37,44	0,14	0,00	0,00	0,07	0,362	0,0	13,7	99,36
СВ	CCS 9A	39,29	0,60	10,81	0,17	34,04	0,03	0,00	0,01	0,00	0,300	0,01	13,8	99,40
СВ	CCS 9B	38,90	1,12	11,08	0,19	33,44	0,04	0,00	0,02	0,00	0,356	0,02	13,9	99,41
СВ	ccs	39,55	1,46	9,03	0,07	34,98	0,01	0,00	0,00	0,00	0,435	0,01	13,6	99,40
CM	UM 26A	38,31	0,22	8,25	0,08	38,70	0,02	0,00	0,00	0,00	0,639	0,0	12,8	99,33
CM	UM 26B	38,35	0,16	7,47	0,10	38,91	0,00	0,00	0,00	0,00	0,501	0,0	13,6	99,36
CM	UM 26C	38,34	0,21	7,06	0,05	39,42	0,00	0,00	0,00	0,00	0,620	0,0	13,4	99,35
CM	UM 26D	44,30	0,57	10,56	0,17	34,40	0,10	0,00	0,00	0,00	0,560	0,0	8,6	99,42
CM	UM 26E	35,29	0,17	10,48	0,10	37,26	1,19	0,00	0,00	0,00	0,544	0,0	14,2	99,38
CM	UM 26F	43,94	0,82	10,93	0,16	35,50	0,08	0,00	0,00	0,00	0,340	0,0	7,5	99,41

Óxidos em peso%. LOI: perda ao fogo (1000°C); PP: Maciço Pedras Pretas; SE: Complexo Serrinha; CB: Complexo Cambaizinho; CM: Sequência Cerro Mantiqueiras.

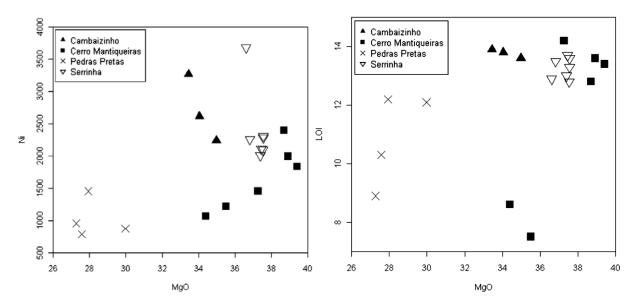
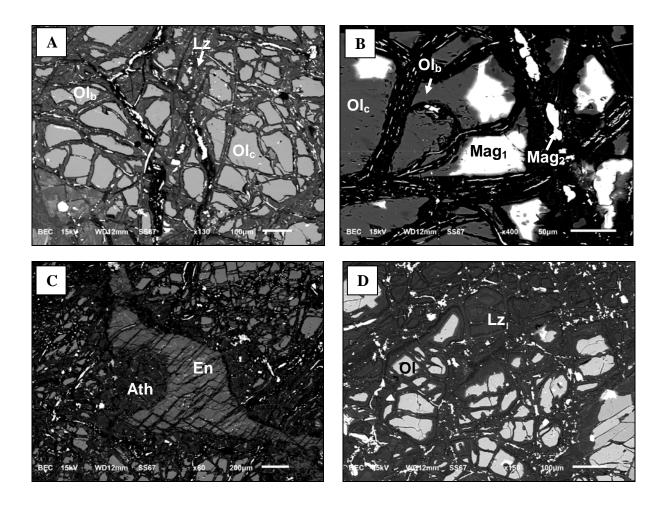

Figura 4: Diagrama geoquímico classificatório, mostrando que todas as unidades ultramáficas estão concentradas no campo dos komatiitos. Modificado de Jensen, 1976.

Figura 5: Spider plot (McDonough e Sun, 1995), mostrando as assinaturas dos elementos traço das unidades ultramáficas. Simbologia do Pedras Pretas em preto, Cerro Mantiqueiras em verde, Cambaizinho em azul e Serrinha em vermelho.

Tabela 3. Resultados analíticos para os principais elementos traço das unidades ultramáficas.

Local	Amostra	Zr	٧	Ва	Sr	Со	Ga	Sc	Sn	Cu	Ni	Pb	Zn	Total
PP	UM 2	2,1	58	18	60,2	110,6	6,0	5	6	54,9	708,4	11,5	47	99,51
PP	UM 3	4,9	73	18	73,3	126,4	5,4	12	2	143,9	882,6	1,1	37	99,49
PP	UM 6	3,0	47	24	34,4	159,1	5,1	8	4	438,3	1408,3	1,7	42	99,46
PP	UM 8	3,1	42	10	25,7	145,2	3,4	5	0	151,1	865,2	0,7	54	99,48
SE	UM 10A	0,0	41	51	4,9	139,9	1,7	3	0	20,3	3622,4	1,1	34	99,36
SE	UM 10B	0,0	41	41	2,0	102,1	2,0	5	2	5,0	2253,0	0,3	17	99,35
SE	UM 10D	0,0	39	10	0,9	101,7	0,8	7	0	5,9	2084,9	1,1	23	99,38
SE	UM 23A	0,0	43	10	0,00	117,2	2,3	11	1,2	10,2	2308,8	1,1	38	99,38
SE	UM 23B	0,2	42	0	0,00	98,2	1,5	11	1,7	20,1	2157,6	0,8	41	99,38
SE	UM 23C	0,0	40	16	0,00	123,5	1,2	9	3,1	4,4	2604,5	0,6	42	99,37
SE	UM 23D	0,0	50	11	0,00	154,9	0,0	8	4,1	9,3	2184,9	0,8	40	99,36
СВ	CCS 9A	4,0	36	31	3,0	254,8	0,9	9	0	36,0	2562,7	0,4	72	99,40
СВ	CCS 9B	14,5	36	28	3,7	248,2	1,5	7	2	19,2	3167,7	0,3	31	99,41
СВ	ccs	0,0	54	36	1,6	127,4	1,3	9	1	27,1	2134,7	0,1	26	99,40
CM	UM 26A	0,0	11	160	0,00	141,8	0,5	4	4,3	2,6	2699,3	1,6	27	99,33
CM	UM 26B	0,0	16	1	0,00	120,3	0,0	7	0,7	0,7	2183,4	2,1	10	99,36
CM	UM 26C	0,0	15	0	0,00	113,8	0,0	5	0,7	0,7	1895,0	0,8	7	99,35
CM	UM 26D	0,0	47	7	0,00	89,3	1,0	14	6,2	8,9	957,4	1,7	24	99,42
CM	UM 26E	0,0	26	0	0,00	109,7	1,4	4	25,4	7,1	1563,3	3,2	5	99,38
CM	UM 26F	0,0	31	0	0,00	114,1	1,2	15	2,1	6,3	1056,0	3,0	25	99,41

Elementos traço em ppm. PP: Maciço Pedras Pretas; SE: Complexo Serrinha; CB: Complexo Cambaizinho; CM: Sequência Cerro Mantiqueiras.



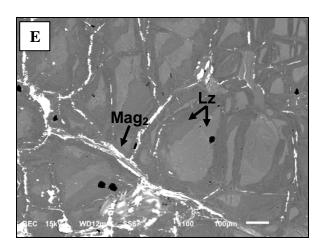

Figura 6: Diagrama binário MgO (%peso) x Ni (ppm), mostrando correlação positiva entre Ni e MgO e o comportamento distinto entre as amostras do Pedras Pretas com baixos teores de Ni e MgO e as amostras das demais unidades, com teores mais elevados.

Figura 7: Diagrama binário MgO (%peso) (perda ao fogo % em peso) mostrando correlação positiva entre MgO e LOI e comportamento distinto entre as amostras do Pedras Pretas com baixos teores de MgO e LOI e as amostras das demais unidades, com altos teores.

MICROSCOPIA ELETRÔNICA DE VARREDURA

Foram obtidas imagens de elétrons retro espalhados (BSE) diretamente em lâminas petrográficas, sendo que a olivina do maciço Pedras Pretas (Figura 8A) está com relevo mais alto e uniforme no centro do mineral, quando comparado com a serpentina (lizardita) que ocorre com feições de corrosão nas bordas. A textura *mesh* é evidenciada através da magnetita primária intercrescida sobre o centro da olivina e magnetita secundária distribuída em veios (Figura 8B). O ortopiroxênio enstatita, apresenta clivagem em duas direções e relevo elevado em relação ao anfibólio que o substitui parcialmente nas bordas (Figura 8C). A olivina da sequência Cerro Mantiqueiras conserva núcleo primário com relevo alto e em partes, a olivina está completamente substituída pela lizardita, apesar de preservar a forma do grão e a textura *mesh* (Fig 8D). Foi possível verificar que a olivina do Serrinha encontra-se completamente serpentinizada, apesar da leve diferença de textura entre o centro e a borda da *mesh* (Figura 8E). Os veios preenchidos por magnetita evidenciam os limites entre os grãos de olivina e a antigorita ocorre como lamelas fibrosas (Figura 8F).

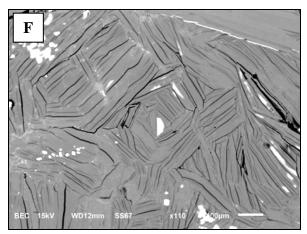
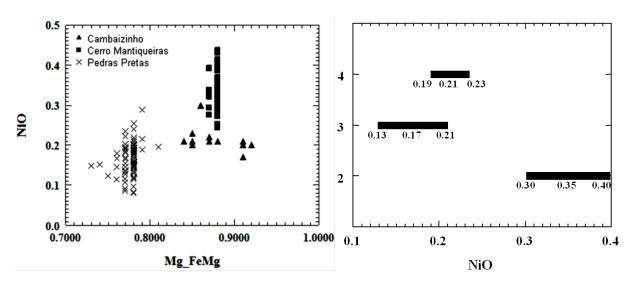


Figura 8: Imagens de BSE. Maciço Pedras Pretas em (A) Detalhe das análises realizadas no centro (Ol_c) e borda (Ol_b) da olivina e ocorrência da lizardita (Lz). (B) Detalhe das análises realizadas no centro (Ol_c) e borda (Ol_b) da olivina e da ocorrência de magnetita primária (Mag₁) e secundária (Mag₂). (C) Textura de substituição da enstatita (En) pela antofilita (Ath). Sequência Cerro Mantiqueiras em (D) Textura *mesh* entre a olivina (Ol) e a olivina substituída por lizardita (Lz). Serrinha em (E) Textura *mesh* preservada na olivina metamórfica substituída por lizardita (Lz) e detalhe dos veios preenchidos por magnetita (Mag₂). (F) Textura lamelar e fibrosa da antigorita.

MICROSSONDA ELETRÔNICA

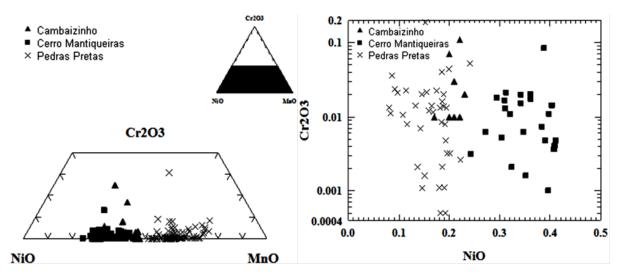
Foram realizadas 250 análises em olivinas e serpentinas em lâminas petrográficas das unidades ultramáficas estudadas. As fórmulas das olivinas foram calculadas em função do número fixo de 4 átomos oxigênios e a das serpentinas com base em 9 oxigênios e 4 grupos OH, desprezando o teor de H_2O , visto que esta não foi avaliada nas análises com a microssonda.

Nos minerais de olivina foram realizadas análises pontuais no centro e na borda e as variações composicionais não foram significantes para definir zonações nesses minerais. Nas serpentinas foram realizadas análises nas espécies identificadas petrograficamente como lizardita (Figuras 8A, 8D e 8F), antigorita (Figura 8 E) e crisotilo. Devido a dificuldade em identificar olivinas no Complexo Cambaizinho nas amostras estudadas, utilizou-se os valores obtidos por Remus (1990) e apresentadas em sua dissertação.


O cálculo do teor da molécula de forsterita e a classificação das olivinas baseou-se na proporção da molécula de forsterita (Fo) para fayalita (Fy) através da fórmula Mg/(Mg+Fe²⁺). Os resultados das análises nos minerais de olivina e das serpentinas foram comparados com os padrões de análises em olivinas ígneas e serpentinas apresentados por Deer et al., 1997. Composicionalmente as olivinas do Cerro Mantiqueiras apresentaram o conteúdo de Fo 92-98 sendo classificadas como forsterita. No Pedras Pretas a participação do ferro é maior, variado entre Fo 70-89 sendo as olivinas classificadas como crisólitas. Nas análises de olivina do Cambaizinho (Remus, 1990) apresentaram Fo 84-91, sendo classificadas com crisólitas e mais raramente deforsterita. A figura 9 representa os teores da molécula de Fo versus os teores de NiO das olivinas analisadas. Os valores de Fo para as análises do Cerro Mantiqueiras estão constantes e os teores de NiO variam entre 0,25% a 0,45%, enquanto que no Cambaizinho os conteúdos de Fo variam de 85-93% e os teores de NiO apresentam-se constantes próximos a 0,2%. No Pedras Pretas os teores de Fo concentram-se no entorno de 80% e os de NiO variam entre 0,1% a 0,3%.

De acordo com os dados apresentados na tabela 3 e figura 10, verifica-se que as olivinas do Cerro Mantiqueiras apresentaram os maiores teores de NiO que variam entre 0,3% a 0,4% com média de 0,31%, as olivinas do Pedras Pretas os teores de NiO variam de 0,13% a 0,21% e média de 0,17% e no Cambaizinho variam entre 0,19% a 0,30% (tabela 3) com média é 0,21%. Na figura 11 observa-se que as olivinas do Pedras Pretas apresentaram os maiores

teores de MnO, com média de 0,3%. As olivinas do Cerro Mantiqueiras apresentaram 0,2% em média e as do Cambaizinho 0,1% em média. A figura 12 confirma o baixo teor de Cr₂O₃ para as olivinas de todas as unidades com médias abaixo de 0,1%.


De acordo com os dados da tabela 4 e da figura 13 é possível verificar que a antigorita do Serrinha apresentou os menores teores de NiO analisados média de 0,1%. As variedades lizardita e crisotilo apresentaram os maiores teores de NiO média de 0,3% na Serrinha e 0,4% no Cambaizinho. Na figura 14 observa-se uma ampla variação entre os valores mínimos e máximos do NiO nas lizarditas do Cerro Mantiqueiras (2), atingindo até 0,54%, com média de 0,2%. Ao contrário das lizarditas do Pedras Pretas (3) que apresentam pequena variação entre os baixos teores (0,05% a 0,16%) de NiO e com média de 0,1%. As análises de lizardita e crisotilo do Cambaizinho e Serrinha apresentaram padrão de variação similar nos teores de NiO com valores variando entre 0,16% e 0,42%. Na figura 15 observa-se que o Cerro Mantiqueiras apresenta os maiores teores de NiO na lizardita e o Pedras Pretas os menores teores, fato que também foi observado na comparação entre as análises das olivinas dessas unidades.

Na figura 16 e tabela 4, observa-se que existe dois campos distintos entre as lizarditas analisadas no Pedras Pretas que apresentam em média as maiores concentrações de Fe₂O₃ (12%), e as serpentinas das demais unidades ultramáficas que concentram os maiores teores de MgO. Essa maior concentração de Fe₂O₃ nas lizarditas do Pedras Pretas também foi verificada nas olivinas.

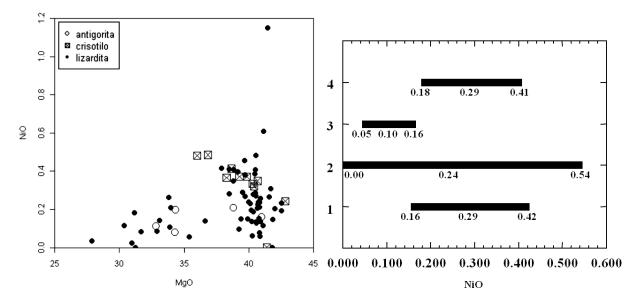

Figura 9: Diagrama binário dos teores de Fo (MgO/FeO+ e MgO) x NiO correspondente as análises de olivinas, mostrando que o Cerro Mantiqueiras apresenta teores de NiO mais elevados que as demais unidades e conteúdo de Fo similar ao Cambaizinho.

Figura 10: Histograma com os valores mínimos máximos de NiO e a média nas olivinas do complexo Cambaizinho (4), maciço Pedras Pretas (3) e Cerro Mantiqueiras (2).

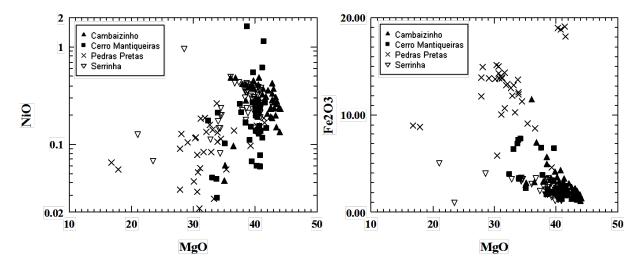

Figura 11: Diagrama triangular dos teores de NiO x Cr_2O_3 Cr_2O_3 x MnO das análises de olivinas, mostrando que os o baixo conteúdo de Cr_2O_3 das três unidades. O maior conteúdo de MnO é nas olivinas do Pedras Pretas.

Figura 12: Diagrama binário dos teores de NiO x das análises realizadas nas olivinas, mostrando maiores teores de NiO estão nas olivinas do o Cerro, Mantiqueiras e os de Cr₂O₃ nas olivinas do Pedras Pretas.

Figura 13: Diagrama binário dos teores de NiO x MgO na lizardita, crisotilo e antigorita, mostrando a maior concentração de NiO na lizardita e a menor na antigorita do Serrinha.

Figura 14: Histograma com os valores mínimos e máximos de NiO e a média nas serpentinas do complexo Cambaizinho (4), maciço Pedras Pretas (3), Cerro Mantiqueiras (2) e Serrinha (1).

Figura 15: Diagrama binário dos teores de NiO x MgO das serpentinas analisadas nas unidades ultramáficas, mostrando correlações positivas e comportamento anomolo das serpentinas do Pedras Pretas com os menores teores de NiO e MgO, quando comparadas com as demais unidades.

Figura 16: Diagrama binário dos teores de MgO x Fe_2O_3 nas serpentinas das unidades ultramáficas, confirmando que as lizarditas do maciço Pedras Pretas contêm maiores teores de Fe_2O_3 e as demais unidades de MgO.

Tabela 3. Resultados analíticos das médias nos minerais de olivina das unidades ultramáficas do RS.

Amostra	UM 26C	UM 3	UM 3	MR-25	MR-27D	MR-990	MR-104H	MR- 101
Mineral	olivina	olivina c	olivina b	olivina	olivina	olivina	olivina	olivina
SiO2	41,8	35,4	35,8	38,9	40,5	40,1	39,9	40,58
TiO2	0,01	0,03	0,04	nd	nd	nd	nd	nd
AI2O3	0,07	0,1	0,5	nd	nd	nd	nd	nd
FeO	11	21,4	20,3	12,2	8,5	14,4	12,3	13,41
MnO	0,2	0,3	0,3	0,18	0,15	0,09	0,1	0,14
MgO	45,6	41,1	39,2	47,6	50,8	44,4	46,4	45,56
CaO	0,02	0,01	0,23	0,02	0,01	0,02	0,01	0,03
Na2O	0,005	0,012	0,06	nd	nd	nd	nd	nd
K20	0,005	0,006	0,008	nd	nd	nd	nd	nd
Cr2O3	0,012	0,01	0,01	0,003	0,022	0,007	0,025	nd
NiO	0,31	0,16	0,17	0,21	0,19	0,21	0,23	0,3
Fe2O3	0,23	0,47	0,46	nd	nd	nd	nd	nd
Total	99	98,5	96,5	99,1	100,2	99,4	99,2	100
Si	1	0,9	0,9	0,9	0,9	1	0,9	1
Mg	1,7	1,62	1,57	1,53	1,85	1,66	1,72	1,69
Ni	0,006	0,003	0,004	0,004	0,004	0,004	0,004	0,006
Cations	2,96	3,05	3,03	3,02	3,01	2,99	2,99	2,98
Fe_FeMg	0,12	0,23	0,22	0,12	0,08	0,15	0,13	0,15
Mg_FeMg	0,88	0,77	0,77	0,87	0,91	0,84	0,87	0,85

Conteúdo de Fo (Mg_FeMg). UM 26C: Cerro Mantiqueiras.UM 3: Pedras Pretas; MR-25, MR-27D, MR-990, MR-104H e Mr-101: Complexo Cambaizinho (Remus, 1990). Olivina c: análise de centro. Olivina b: análise de borda.

*nd: não detectado.

Tabela 4. Resultados analíticos das médias dos minerais de serpentina das unidades ultramáficas do RS.

Amostra	CCS 9A	CCS 9A	UM 23D	UM 23D	UM 23D	UM 26D	UM 3
Mineral	lizardita	crisotilo	antigorita	lizardita	crisotilo	lizardita	lizardita
SiO2	44,1	42,6	36,9	42,8	44,5	41,7	39,5
TiO2	0,01	0,03	0,02	0,01	0,01	0,02	0,02
AI2O3	0,09	0,1	9,5	0,04	0,03	0,7	0,6
Cr2O3	0,04	0,05	1,2	0,003	0,03	0,04	0,01
Fe2O3	2,9	7,7	3,3	2	1,6	2,3	12
MnO	0,03	0,05	0,02	0,06	0,07	0,03	0,1
MgO	40,3	37,5	35	40	40	40,4	32,9
NiO	0,3	0,4	0,1	0,3	0,3	0,2	0,1
CaO	0,06	0,08	0,01	0,02	0,04	0,01	0,08
Na2O	0,01	0,02	0,01	0,01	0,01	0,01	0,02
K20	0,006	0,02	0,002	0,004	0,005	0,004	0,01
Total	87,9	88,7	86,3	85,3	86,8	85,5	85,4
H2O*	12	11,3	13,7	14,6	13,3	14,5	14,5
Si	2	2	1,7	2	2	1,9	1,9
AIIV	nd	0,003	0,3	nd	nd	0,02	0,02
AIVI	0,005	0,003	0,2	0,001	0,001	0,01	0,01
Fe3	0,1	0,3	0,1	0,07	0,05	0,08	0,4
Ni	0,01	0,02	0,005	0,01	0,01	0,01	0,003
Mn	0,001	0,002	0,001	0,002	0,003	0,001	0,006
Mg	2,7	2,6	2,5	2,8	2,8	2,8	2,4
Cations	4,9	4,8	4,9	4,9	4,9	4,9	4,8
Fe_FeMg	0,04	0,09	0,04	0,02	0,02	0,03	0,16
Mg_FeMg	0,96	0,9	0,95	0,97	0,98	0,97	0,84

Conteúdo de Fo (Mg_FeMg). CCS 9A Cambaizinho. UM 23D: Serrinha. UM 26C: Cerro Mantiqueiras. UM 3: Pedras Pretas. H₂O: cálculo inferido da molécula de água. AIIV: alumínio na posição tetraédrica. AIVI: alumínio na posição octaédrica. *nd: não detectado.

Comparando as análises de química mineral das olivinas apresentadas no trabalho com alguns exemplos de análises deste mineral na bibliografia e compilados na tabela 5, é possível identificar similaridades nos valores obtidos, principalmente na concentração do NiO. Observa-se uma tendência dos teores de NiO serem mais elevados nas olivinas associadas com depósitos de níquel laterítico chegando a teores de 0,46% (Galí et al., 2012) e 0,43% (Gleeson et al., 2004), enquanto que as análises das olivinas dos peridotitos tectônicos e de olivinas metamórficas apresentam valores relativamente baixos entre 0,1% e 0,2% de NiO (Snoke et al., 1978). As composições das olivinas do complexo ofiolítico de Leka, Noruega (Iyer et al., 2008) apresentaram os maiores teores de NiO no harzburgito, com até 0,42%, enquanto análises no dunito chegaram a 0,3% e no wehrlito a 0,21%. Os teores de NiO do harzburgito de Leka são similares aos teores das olivinas do harzburgito Cerro Mantiqueiras. As análises em olivinas primárias e metamórficas de serpentinitos do Japão (Nozaka, 2003) apresentaram teores entre 0,38% a 0,40% de NiO.

Comparando as análises de química mineral das serpentinas apresentadas no trabalho com alguns exemplos de análises compilados da bibliografia (tabela 6), é possível observar que os teores de NiO das antigoritas do serpentinito do Egito (Azer et al., 2005) são relativamente baixos (0,16%), assim como os teores de NiO da antigorita do harzburgito da Noruega (Iyer et al., 2008), com 0,16%. Esses teores são similares aos teores de NiO analisados na antigorita do Serrinha (0,1%). Tanto os teores de NiO do crisotilo analisado no serpentinito do Egito (Azer et al., 2005) na média de 0,24%, quanto os valores do serpentinito do México (Mancera

et al., 2009) na média de 0,27%, são maiores que os valores observado nas antigoritas. Esses valores também são similares aos valores obtidos no crisotilo do serpentinito do Cambaizinho (0,4%) e no Serrinha (0,3%). Através das comparações entre os dados obtidos e os dados compilados, foi possível verificar que em todas as rochas analisadas, os teores de NiO obtidos nas lizarditas são menores que os obtidos nos crisotilos. De acordo com Quintero et al. (2012) a média de NiO é de 0,17% para as lizarditas do serpentinito de Cuba. Conforme Nozaka (2003) a média dos teores de NiO para as lizarditas do serpentinito do Japão é de 0,14%. O'Hanley et al. (1993) obteve teores de NiO na média de 0,18% para as lizarditas do serpentinito do Canadá e Mancera et al. (2009) obteve na média de 0,2% de NiO para as lizarditas dos serpentinitos do México. Esses valores de NiO para as lizarditas são similares aos valores obtidos nas lizarditas do Cerro Mantiqueiras (0,2%) e Pedras Pretas (0,1%).

Tabela 5: Resultados analíticos das olivinas, compilados de rochas ultramáficas de diferentes continentes, conforme referências.

Referência	Snoke	Snoke	lyer	lyer	lyer	Nozaka	Nozaka	Galí	Gleeson
Local	Califórnia	Califórnia	Noruega	Noruega	Noruega	Japão	Japão	R.D	Colômbia
Amostra	Per. Tect.	Ol. Tlc. Ult.	Harz.	Dun.	Weh.	Serp.	Serp.	Ni lat.	Ni lat.
Mineral	OI	Ol m	OI	OI	OI	Ol m	OI	OI	OI
SiO2	40.4	40.6	40,26	40,78	38,97	40,64	40,79	40,94	40,92
TiO2	nd	nd	0,02	nd	nd	nd	nd	0,02	0,084
AI203	nd	nd	0,02	0,02	nd	nd	nd	nd	0,071
FeO	9.9	10.5	9,78	10,65	18,07	10,25	9,03	9,23	8,98
MnO	0.18	0.16	0,26	0,23	0,43	0,19	0,13	0,17	0,14
MgO	49	48.9	48,46	48,18	42,62	49,13	49,98	49,81	48,62
CaO	0.05	0.03	0,04	0,04	0,02	0,02	0,01	nd	0,157
Na2O	nd	nd	nd	nd	0,03	nd	nd	nd	0,036
K20	nd	nd	0,02	nd	0,02	nd	nd	nd	0,03
Cr2O3	nd	nd	nd	0,01	0,07	nd	nd	0,01	0,07
NiO	0.2	0.1	0,42	0,3	0,21	0,4	0,38	0,46	0,43
Total	99.73	100.29	99,29	100,21	100,43	100.63	100,32	100,64	99,22
Si	0.99	1	1	1	0,9	0,99	0,99	nd	nd
Mn	0.003	0.003	0,01	nd	0,01	0,003	0,003	nd	nd
Mg	1.8	1.79	1,79	1,76	1,62	1,79	1,81	nd	nd
Ca	0,001	0,001	nd	nd	nd	nd	nd	nd	nd
Ni	0,003	0,001	0,01	0,01	nd	0,007	0,007	nd	nd
Cations	2,02	2,02	3	3	3,01	4	4	nd	nd
Mg_FeMg	89,9	89,4	90	89	81	89,5	90,8	nd	nd

Ol m: olivina metamórfica; Per. Tec.: peridotito tectônico; Ol. Tlc. Ult.: olivina talco ultramafito; Harz.: harzburgito; Dun.: dunito; Weh.: Werhlito; Serp.: serpentinito; R. D.: República Dominicana; Ni lat.: níquel laterítico. *nd: não detectado.

Tabela 6: Resultados analíticos das serpentinas, compilados de rochas ultramáficas de diferentes continentes, conforme referências.

Referência	Azer	Azer	Mancera	Mancera	O'Hanley	Nozaka	Quintero	Quintero	lyer
Local	Egito	Egito	México	México	Canadá	Japão	Cuba	Cuba	Noruega
Amostra	Serp.	Serp.	Serp.	Serp.	Serp.	Serp.	Serp.	Serp.	Harz.
Mineral	Atg	Clt	Clt	Lz	Lz	Lz	Atg	Lz	Atg
SiO2	43,99	46,04	42,75	41,22	40,76	43,59	41,58	42,8	44,22
TiO2	nd	nd	0,02	0,01	nd	nd	0,02	0,03	0,02
AI2O3	0,79	0,33	0,01	2,47	2,22	0,32	2,66	2,5	1,07
Cr2O3	0,05	0,03	0,06	0,12	0,29	nd	0,58	0,25	0,1
FeO*	3,64	0,78	1,12	6,94	2,18	1,37	7,08	3,23	2,58
MnO	0,07	nd	0,05	0,04	0,05	0,05	nd	0,06	0,09
MgO	38,91	41,22	43,14	36,61	40,88	42,01	34,74	38,67	39,52
NiO	0,16	0,24	0,27	0,2	0,18	0,14	0,25	0,17	0,12
CaO	0,08	nd	0,01	nd	nd	0,29	nd	0,01	nd
Na2O	nd	0,02	nd	nd	nd	nd	nd	nd	0,01
K20	0,02	0,01	nd	nd	nd	nd	nd	nd	0,01
Total	100,58	101,94	100,38	100,25	98,27	87,57	86,91	87,72	87,73
H2O	12,89	13,28	12,95	12,65	11,69	nd	nd	nd	nd
Si	8,18	8,32	7,92	7,82	3,91	2,01	3,97	3,97	2,04
AIIV	0,17	0,07	nd	0,55	0,23	0,017	0,3	0,27	0,06
Fe3	0,56	0,12	0,17	1,1	0,07	0,053	0,57	0,25	0,1
Cr	0,01	nd	0,01	0,02	0,02	nd	0,4	0,02	nd
Ni	0,02	0,03	0,04	0,03	0,01	0,005	0,04	0,02	nd
Mn	0,01	nd	0,01	0,01	nd	0,002	nd	nd	nd
Mg	10,76	11,1	11,91	10,35	5,84	2,889	4,94	5,34	2,72
Mg_FeMg	nd	nd	99	90	nd	98,2	90	96	96

Atg: antigorita; Clt: crisotilo; Lz: lizardita; Serp.: serpentinito; Harz.: harzburgito; *nd: não detectado.

DISCUSSÕES

Os resultados obtidos permitem caracterizar mineralogicamente, texturalmente e quimicamente as diferentes unidades ultramáficas estudadas. Na petrografia as ultramáficas do maciço Pedras Pretas foram consideradas amostras representativas de uma unidade ultramáfica mais preservada. Na composição química de rocha total foi identificado os maiores teores de FeO da rocha e menores de MgO e de perda ao fogo. As ultramáficas dos complexos Cambaizinho e Serrinha tiveram resultados petrográficos e químicos similares, mostrando através da mineralogia, textura e composição intensa serpentinização do protólito ultramáfico num sistema com maior disponibilidade de água. Nestas unidades é possível identificar petrograficamente através da textura *jackstraw* a olivina metamórfica (Evans e Trommsdorff, 1974), sendo essa a maior evidencia de um sistema onde a serpentinização deixou poucos resquícios do protólito original da rocha ultramáfica. Em análises químicas de rocha total Cambaizinho e Serrinha apresentaram maiores teores de magnésio e perda ao fogo do que as outras unidades. As ultramáficas do Cerro Mantiqueiras contém os melhores resquícios mineralógicos e texturais do protólito original.

Os resultados obtidos com o MEV e microssonda eletrônica estabeleceram detalhadamente as diferenças texturais entre a olivina ígnea e as olivinas metamórficas, além de auxiliar na identificação dos polimorfos de serpentina. As análises de química mineral realizadas na microssonda eletrônica permitiram verificar a distribuição do NiO nas olivinas e nos polimorfos de serpentina. Os resultados mostram que a sequência Cerro Mantiqueiras concentra os maiores teores de NiO nas olivinas e também nas lizarditas. Apesar do Pedras Pretas ser a unidade mais preservada, os teores de NiO são relativamente baixos nas olivinas e

lizarditas em relação aos demais corpos de rochas ultramáficas. Nos complexos Cambaizinho e Serrinha, observou-se que a olivina metamórfica concentrou maiores teores de NiO quando comparados com os teores das olivinas do Pedras Pretas, confirmando mais uma vez, que os teores de Ni na rocha estão relacionados com a disponibilidade do protólito e em todas as unidades analisadas o magma apresenta assinatura mantélica de retrabalhamento ou contaminação crustal.

Os dados de química mineral de olivinas e serpentinas compilados da bibliografia internacional, mostram que as concentrações de NiO das olivinas e serpentinas apresentadas por diversos autores são condizentes com as concentrações obtidas nessa pesquisa. E que as análises de olivinas realizadas em amostras de depósitos lateríticos de níquel (Galí, 2012 e Gleeson, 2004) também não chegam a 0,5%. Apesar das análises compiladas serem de rochas ultramáficas de diferentes ambientes tectônicos, os teores de NiO nas olivinas e serpentinas não apresentam variações importantes. Todos esses fatores mostram que a formação de uma jazida de níquel laterítico não depende apenas dos teores de NiO concentrados nas olivinas e serpentinas da rocha ultramáfica, mas principalmente dos processos posteriores de alteração intempérica.

CONCLUSÕES

Nas unidades ultramáficas do ESrg não ocorrem perfis de alteração preservados como no Norte do Brasil e em consequência, jazidas supergênicas de Ni. Como foi verificado nas unidades ultramáficas estudadas os teores de Ni em rocha total não são muito elevados. Comparando com as ocorrências de rochas ultramáficas da Provincia Mineral do Carajás, situadas no Norte do Brasil onde ocorrem jazidas de Ni, no ESrg ocorrem muitos processos modificadores da rocha original que redistribuem o Ni e que podem ter levado ao empobrecimento deste elemento na rocha. Como não foi possível analisar todas as unidades ultramáficas do ESrg nessa pesquisa, não há uma conclusão generalizada da distribuição do Ni nas rochas ultramáficas do RS, porém nas unidades estudadas foi possível caracterizar a mineralogia e a química das mesmas e com a técnica da microssonda entender um pouco melhor a distribuição dos elementos, principalmente o NiO entre os minerais, durante os processos ígneos e metamórficos.

Os resultados de microssonda indicam que as olivinas dos peridotitos do Pedras Pretas possuem teores de NiO relativamente baixos, na média de 0,17%, enquanto que as olivinas dos harzburgitos do Cerro Mantiqueiras possuem teores de NiO elevados, na média de 0,31%. As olivinas do Pedras Pretas possuem composição homogênea enquanto que aquelas do Cerro Mantiqueiras mostram variações composicionais importantes com conteúdo de Fo₉₂₋₉₈ e teores de NiO entre 0,30% e 0,40%. Tais variações no Cerro Mantiqueiras podem estar relacionadas a diferenças na composição do protólito ou a outro fator desconhecido que necessita futuras investigações. As olivinas e serpentinas no Cambaizinho e Serrinha mostram valores de NiO entre 0,16% a 0,42%, comparáveis ao Cerro Mantiqueiras, porém bem mais elevados que o Pedras Pretas. Este estudo mostra que os corpos ultramáficos do Cambaizinho-Serrinha e Cerro Mantiqueiras possuem potencial para desenvolver depósitos de Ni não sulfetado devido às concentrações relativamente elevadas de Ni nas olivinas.

Entretanto, tais depósitos não se desenvolveram devido a dois fatores principais: o primeiro está ligado à superposição de eventos de metamorfismo e deformação recorrentes no tempo e no espaço que propiciaram a mobilização do Ni; o segundo fator é atribuído a ausência de agentes supergênicos favoráveis para a formação de depósitos lateríticos como os observados na região norte do Brasil.

Agradecimentos

Os autores são gratos aos Laboratórios do Instituto de Geociências (IG) – UFRGS, utilizados nessa pesquisa: Laboratório de Preparação de Amostras do Centro de Estudos em Petrologia e Geoquímica; Laboratório de Sedimentologia do Centro de Estudos Costeiros; Laboratório de Geologia Isotópica e Laboratório de Microssonda Eletrônica. Este trabalho foi financiado por CAPES, FAPERGS e CNPQ.

Referências Bibliográficas

Azer, M. K., Khalil, A. E. S. (2005). Petrological and mineralogical studies of Pan-African serpentinites at Bir Al-Edeid área, central Eastern Desert, Egypt. *Journal of African Earth Sciences*, 43, 525-536.

Babinski, M. et al. (1996). Juvenile accretion at 750-700 Ma in Southern Brazil. *Geology*, 24(5), 439-442.

Coleman, R. G. (1977). Ophiolites- Ancient Oceanic Lithosphere?. Springer; New York.

D'avila, R. S. F. et al. (1985). Reavaliação de Alguns Aspectos Petrológicos e Geoquímicos do Complexo Básico- Ultrabásico Pedras Pretas (RS), Florianópolis. II Simpósio Sul-Brasileiro de Geologia, 277-286. Florianópolis: SBG.

Deer, W. A., Howie, R. A., Zussman, J. (1997). *Rock- Forming Minerals, Orthosilicates* (v. 1). London: Geological Society.

Evans, B. W. & Trommsdorff, V. (1974). Stability of enstatite + talc and CO₂ metasomatism of metaperidotite, Val d'Efra, Lepontine Alps. *American Journal. Sc.*, 274-296.

Evans, B. W. (2010). Lizardite versus antigorite serpentinite: Magnetite, hydrogen, and life (?). *Geology*, 38 (10), 879–882.

Galí, S., Soler, J. M., Proenza, J. A., Lewis, J. F., Cama, J., Tauler, E. (2012). Ni enrichment and satbility of Al-free garnierite solif-solutions: a thermodynamic approach. *Clays and Clay minerals*, 60 (2), 121-135.

Gleeson, S. A., Herrington, R. J., Durango, J., Velásquez, C. A., Koll, G. (2004). The mineralogy and geochemistry of the Cerro Matoso S.A. Ni laterite deposit, Montelíbano, Colombia. *Economic Geology*, 99, 1197-1213.

Hartmann, L. A. et al. (1999). Magmatism and metallogeny in the crustal evolution of Rio Grande do Sul shield, Brazil. *Pesquisas em Geociências*, 26, 45–63.

Hartmann, L. A. & Remus, M. V. D. (2000). Origem e Evolução das rochas ultramáficas do Rio Grande do Sul desde o Arqueano até o Cambriano. In: M. Holtz, L. F. De Ros (Eds.). *Geologia do Rio Grande do Sul.* (v. 1, 53-78). Porto Alegre: Ed. da Universidade/UFRGS.

Hartmann, L. A. & Chemalle JR, F. (2003). Mid amphibolite facies metamorphism of harzburgites in the neoproterozoic Cerro Mantiqueiras Ophiolite, Southern most Brazil. *Anais da Academia Brasileira de Ciências*, 75 (1), 109-128.

Hartmann, L. A. et al. (2007). Time frame of 753-680 Ma juvenile accretion during the São Gabriel orogeny, southern Brazil. *Journal of South American Earth Sciences*.

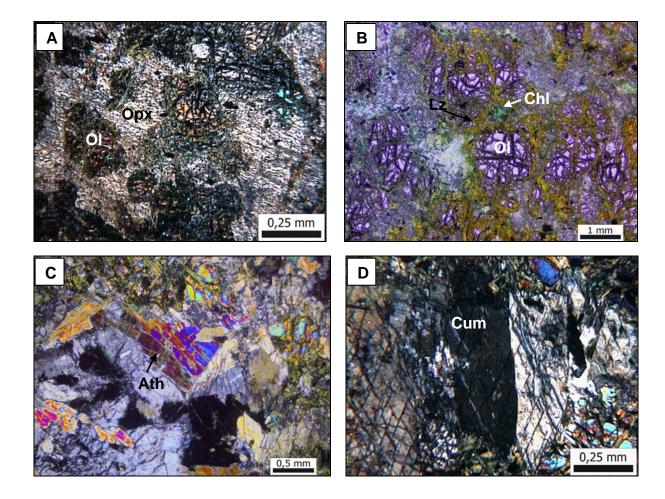
- Iyer, K., Austrheim, T., John, T., Jamtveit, B. (2008). Serpentinization of the oceanic lithosphere and some geochemical consequences: Constraints from the Leka Ophiolite Complex, Norway. *Chemical Geology*, 249, 66-90.
- Jensen, L. S. (1976). A new method of classifying subalkalic volcanic rocks. *Miscelaneous Paper Ontário Divisions Mines*, 66, 0-22.
- Jost, H. & Hartmann, L. A. (1984). Província Mantiqueira—Setor Meridional. In: F. F. M. Almeida, Y. Hasui (coord.), *O Pré-Cambriano do Brasil*. São Paulo.
- Leite, J. A. D. (1997). A origem dos harzburgitos da Sequência Cerro Mantiqueiras e implicações tectônicas para o desenvolvimento do Neoproterozóico na Porção Oeste do Escudo Sul-riograndense. Tese (Doutorado). Porto Alegre: Instituto de Geociências, UFRGS.
- Macera, G. G., Gutiérrez, F. O., Proenza, J. A., Atudorei, V. (2009). Petrology and geochemistry of Tehuitzingo serpentinites (Acatlán Complex, SW Mexico). *Boletín de La Sociedade Geológica Mexicana*, 61 (3), 419-435.
- Nozaka, T. (2003). Compositional heterogeneity of olivine in thermally metamorphosed serpentinite from Southwest Japan. *American Mineralogist*, 88, 1377-1384.
- O'hanley, D. S. and Dyar, M. D. (1993). The composition of lizardite 1T and the formation of magnetite in serpentinites. *American Mineral*, 78, 391-404.
- Quintero, B. I. F., Proenza, J. A., García, C. A., Tauler, E., Galí. S. (2011). Serpentinites and serpentinites within a fóssil subduction channel: La Corea mélange, eastern Cuba. *Geologica Acta*, 9 (3-4), 389-405.
- Rêgo, I. T. S. do. (1980). *Complexo Básico- Ultrabásico de Pedras Pretas, Rio Grande do Sul.* Dissertação (Mestrado). Porto Alegre: Instituto de Geociências, UFRGS.
- Remus, M. V. D. (1990). *Geologia e Geoquímica do Complexo Cambaizinho São Gabriel RS.*. Dissertação (Mestrado). Porto Alegre: Instituto de Geociências, UFRGS.
- Remus, M. V. D. Hartmann, L. A. & Formoso, M. L. L. (1993). Os Padrões de Elementos Terras Raras e a Afinidade Geoquímica Komatiítica dos Xistos Magnesianos e Rochas Associadas do Complexo Cambaizinho, São Gabriel/RS. *Revista Brasileira de Geociências*, 23 (4), 370-387.
- Snoke, A. W.and Calk, L. C. (1978). Jackstraw-textured talc-olivine rocks, Preston Peak area, Klamath Mountains, California. *Geological Society of America Bulletin*, 89, 223-230.
- Vieira, H. M. (1981). *Mineralogia, Petrografia e Geoquímica do Complexo Ultramáfico de Serrinha, São Gabriel, RS.* Dissertação (Mestrado). Porto Alegre: Instituto de Geociências, UFRGS.
- Wicks, F. J., Whittaker, E. J. W (1977). Serpentinite textures and serpentinization. *Canadian Mineralogist*, 15, 459p.

IV. RESULTADOS

4.1. Petrografia

4.1.1. Pedras Pretas

Os meta-peridotitos do Pedras Pretas afloram como corpos maciços acamadados (Fig.7A) e macroscopicamente são compactos, holocristalinas, granulares finos a médios (Fig.7B). Ocorrem fraturas com até 3 mm de espessura, irregulares, preenchidas por serpentina fibrosa, calcedônia e óxidos de ferro. Na seção polida são observados cristais de olivina e ortopiroxênio preservados, parcialmente e totalmente serpentinizados. O processo de serpentinização afeta a mineralogia e a textura da rocha original em diferentes proporções. Os meta-peridotitos têm a estrutura maciça de granulação média, coloração preta a verde escuro. Veios de crisotilo são comuns cortando transversalmente a foliação. Os minerais ígneos como a olivina e ortopiroxênio (enstatita) estão presentes nas texturas ígneas originais como a cumulática (Fig.8A) e nas texturas pseudomórficas de serpentina. O mineral mais abundante do grupo das serpentinas é a lizardita que tem a birrefringência baixa e padrão de extinção ondulante. A paragênese metamórfica é constituída por clorita (Fig.8B), antofilita (Fig.8C), cummingtonita (Fig.8D), lizardita, espinélio verde (Fig.8E), crisotilo e magnetita (Fig.8F).


É comum a textura *mesh*, onde a olivina se altera para serpentina, ao longo dos limites dos grãos e fraturas internas, constituindo uma rede de células poligonais, com as zonas centrais compostas por olivina remanescente. As redes ou bordas *mesh* (Fig.8G) são constituídas por finos veios aproximadamente paralelos e por uma estreita zona preenchida por magnetita, formada através da exsolução do Fe²⁺ da olivina. Nas porções onde o processo de serpentinização é mais intenso a textura *mesh* evolui para *curtain* ou cortina (Wicks & Whittaker, 1977), onde os núcleos de olivina já foram consumidos e a lizardita é recristalizada.

É comum a enstatita aparecer corroída nas bordas e substituída pelos anfibólios que também são corroídos pela clorita (Fig.8H). A magnetita é parcialmente substituída pela hematita.

Figura 10: Fotografias das estruturas macroscópicas do meta- peridotito do Pedras Pretas. (A) Padrão acamadado; (B) Estrutura maciça.

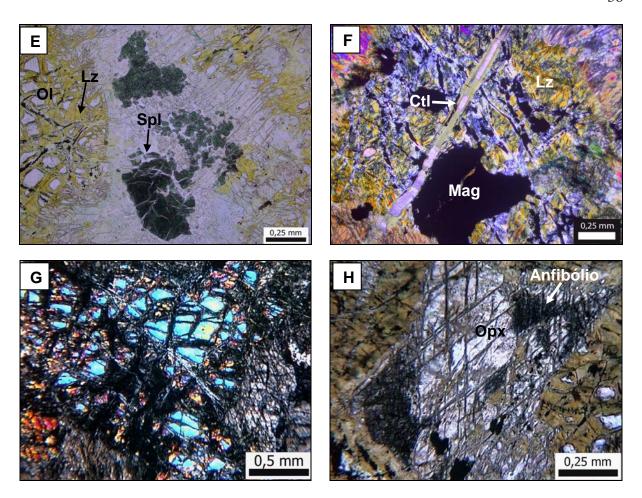
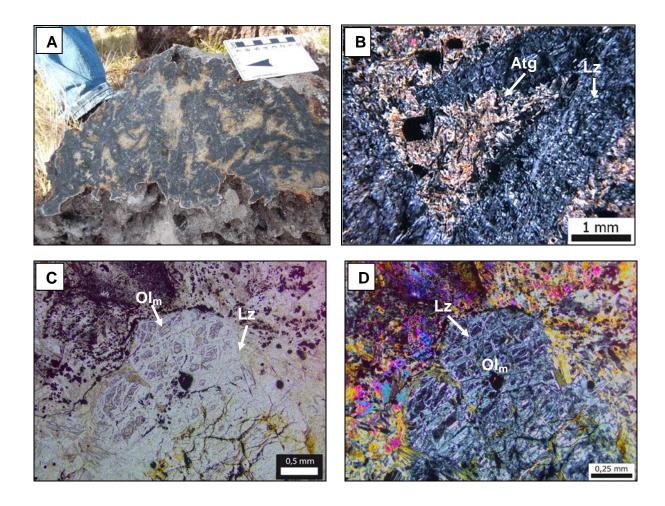


Figura 11: Fotomicrografia do meta-peridotito do Pedras Pretas. (A) Textura cumulática com núcleos de olivina preservados (OI) englobados por ortopiroxênios (Opx), em Luz Polarizada. (B) Serpentinização em amarelo (Lz) e cloritização em verde (ChI), em Luz Polarizada. (C) Textura mesh na olivina com birrefringência e relevo altos, em Luz Natural. (D) Detalhe da Antofilita (Ath) com clivagem marcada e extinção oblíqua, em Luz Natural. (E) Detalhe das bordas corroídas doortopiroxênio (Opx) por anfibólio, em Luz Polarizada. (F) Detalhe da macla na cummingtonita (Cum), em Luz Polarizada. (G) Detalhe do grão de espinélio verde (SpI) e de agregados de grãos menores, em Luz Natural. (H) Veio de crisotilo (CtI) seccionando a textura mesh da lizardita (Lz) e magnetita (Mag), em Luz Polarizada.


4.1.2. Serrinha

Os serpentinitos do Serrinha macroscopicamente estão constituídos por uma matriz de coloração escura e de granulação fina, composta principalmente por minerias do grupo das serpentinas. A textura principal visível em afloramento é a *jackstraw* (Fig.9A). Contidos nessa matriz, aparecem agregados de minerais de cor cinza esverdeado a amarelado, constituídos por clorita, talco e tremolita ou antigorita (Fig.9B). Tanto a matriz como os agregados de minerais são seccionados por veios de crisotilo.

A mineralogia é composta por olivina metamórfica (Fig.9C), antigorita e lizardita (Fig.9D), tremolita, talco, clorita, carbonato, crisotilo, magnetita e cromita. No Serrinha foi possível identificar as três fases de serpentinização. Com a formação da

antigorita em uma temperatura acima de 500°C (Evans, 2010), a formação da lizardita em 400-300°C e do crisotilo em 200°C.

A textura *mesh* ocorre na olivina metamórfica, associada com magnetita nas zonas de fratura. Nas serpentinitos do Serrinha é comum ocorrer a textura *jackstraw* ou falsa spinifex, de acordo com Evans and Trommsdorff, 1974, *ribbon* (Fig.9E), *curtain* (Fig.9F), e *hourglass* (Fig.9G). E as texturas não pseudomórficas dos tipos *interlocking e interpenetrating*.

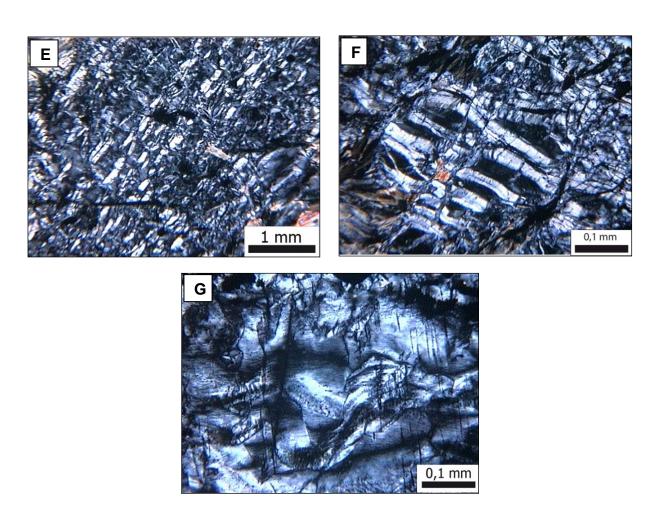


Figura 12: Fotografias do Serpentinito do Serrinha. (A) Foto macroscópica da textura *jackstraw*. Fotomicrografias: (B) textura *jackstraw* com centro composto por antigorita (Atg) e bordas por lizardita (Lz), em luz polarizada; (C) detalhe da olivina metamórfica (Ol_m) e ocorrência de opacos, em luz natural; (D) textura *mesh* na olivina metamórfica (Ol_m) com baixa birrefringência e serpentinização por lizardita (Lz), em luz polarizada; (E) textura em *ribbon* da lizardita, em luz polarizada; (F) textura em *curtain* da lizardita, em luz polarizada.

4.1.3. Cerro Mantiqueiras

Os harzburgitos serpentinizados e serpentinitos do Cerro Mantiqueiras ocorrem como blocos de até 50 m e matacões menores. A alteração permite diferenciar através da cor, cristais de olivina (vermelho) e de piroxênios (branco). Os harzburgitos apresentam-se também bandados, foliados e maciços. Os serpentinitos (Fig. 10A) estão associados com harzburgitos com foliação milonítica e zonas de cisalhamento (E-W).

Os serpentinitos são compostos por olivina relictual (Fig.10B), enstatita, antofilita (Fig.10C), tremolita, lizardita, crisotilo e talco (Fig.10D), clorita aluminosa, cromita, cromo-magnetita, ferro-cromita e magnetita (Fig.10D). Apresentam textura cumulática (Fig.10E).

As olivinas estão serpentinizadas e apresentam em partes extinção ondulante. A enstatita tem extinção ondulante, curvamentos, textura *kink*s e formação de subgrãos ao longo de limites dos grãos. Os ortopiroxênios estão parcialmente intercrescidos com os clinopiroxênios em lamelas de exsolução, os piroxênios durante os eventos metamórficos foram substituídos por anfibólios.

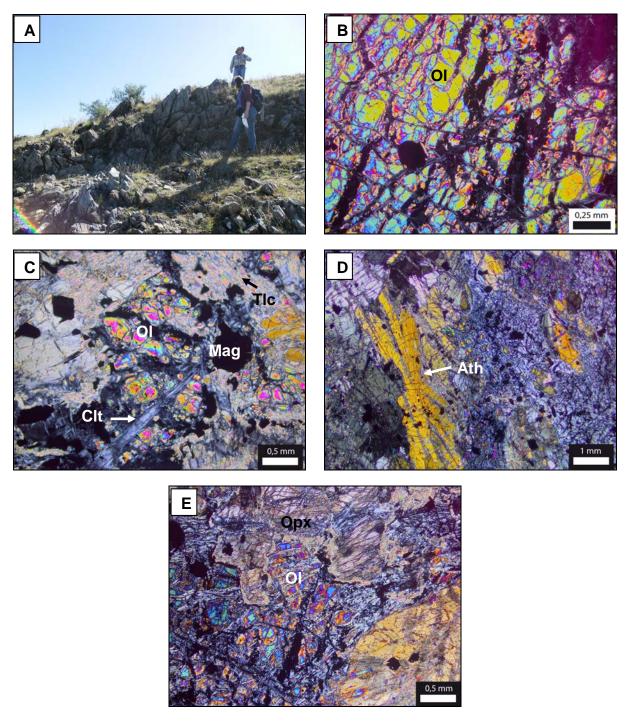


Figura 13: Fotografias do Cerro Mantiqueiras. (A) foto do afloramento em blocos fraturados e alongados. Fotomicrografias: (B) detalhe da olivina relictual (OI) com textura *mesh*, em luz polarizada; (C) olivina no centro, cortada por veio de crisotilo não-asbestiforme (Clt), magnetita (Mag) e talco (Tlc) disseminado nas bordas, em luz polarizada; (D) textura cumulática entre olivina (OI) e ortopiroxênios

(Opx) parcialmente substituídos por anfibólios, em luz polarizada; (E) detalhe da antofilita (Ath) com birrenfrigência baixa e duas direções de clivagem, em luz polarizada.

4.1.4. Cambaizinho

Os serpentinitos do complexo Cambaizinho ocorrem como camadas ou lentes alongadas (NNE) frequentemente boudinadas. São intensamente fraturados e as fraturas preenchidas por crisotilo e talco. Ocorre silicificação relacionada com a alteração hidrotermal junto aos falhamentos locais. Macroscopicamente, os serpentinitos apresentam estrutura maciça e a serpentinização é intensa, consequentemente a olivina é raramente preservada, ao contrário da olivina metamórfica que é reconhecida através da textura *jackstraw* em escala de afloramento (Fig. 11A).

A mineralogia dos serpentinitos no Cambaizinho é composta principalmente por serpentina (lizardita e crisotilo), olivina, tremolita e antofilita (Fig.11C), clorita, magnetita, talco e carbonato de ocorrência restrita.

A matriz dos serpentinitos é resultado de diferentes feições texturais de alteração formados pelo talco e serpentina. As texturas mais comuns são a *mesh* (Fig. 11D) e a *ribbon*. A textura *jackstraw* (Fig. 11B) ocorre como resquício da serpentinização, onde a olivina permanece com os núcleos arredondados preservados e seus limites originais prismáticos são marcados por trilhas de opacos (magnetita). A textura *hourglass* se desenvolve a partir da *mesh* e com a deformação evolui para *ribbon*. O talco (Fig.11E), mais resistente a serpentinização às vezes aparece como bastitas.

A lizardita forma agregados xenomórficos que chegam a substituir 100% da mineralogia original, ocorrem como pseudomorfos sobre a olivina e também na forma de veios milimétricos que cortam a rocha como crisotilo (Fig.11F). Raramente ocorrem lamelas milimétricas não pseudomórficas, associadas com tremolita e talco, identificadas como antigorita. Da mesma forma, as bastitas geradas pela substituição pseudomórfica de talco, anfibólio e clorita são pouco abundantes.

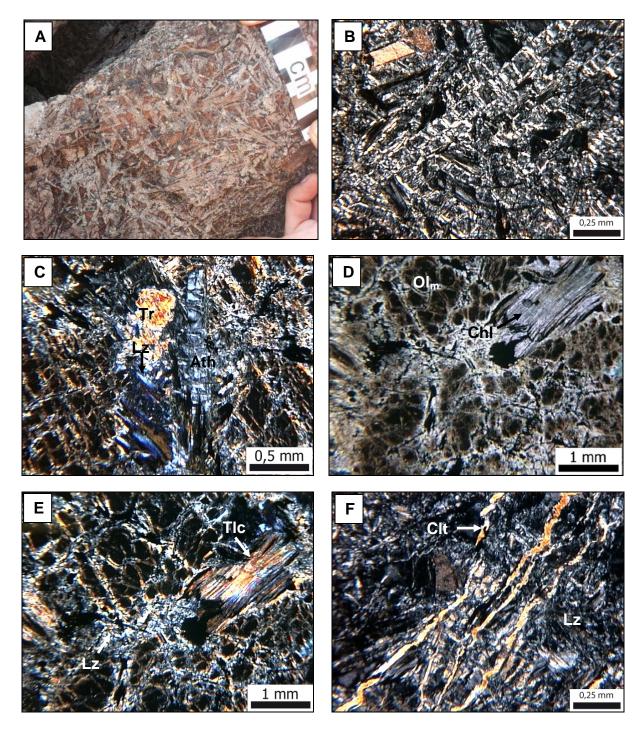


Figura 14: Fotografias do serpentinito do Cambaizinho. (A) Foto macroscópica da textura *jackstraw* na olivina metamórfica. Fotomicrografias: (B) textura *jackstraw*, em luz polarizada; (C) detalhe do intercrescimento entre tremolita (Tr) e antofilita (Ath) parcialmente substituídas por lizardita (Lz), em luz polarizada; (D) textura *mesh* na olivina metamórfica (Ol_m) com exsolução do Fe₂O₃ entre as fraturas e limites dos grãos e detalhe da clorita (Chl), em luz natural; (E) textura *mesh* e detalhe da clorita substituída pelo talco (Tlc) e lizardita (Lz), em luz polarizada; (F) detalhe dos veios de crisotilo asbestiforme (Clt) seccionando a lizardita (Lz), em luz polarizada.

4.2. Separação Granulométrica

O método convencional para separação granulométrica e magnética dos minerais teve restrições para a separação de olivinas e serpentinas. Na parte de separação granulométrica, houve dificuldade de manter o tamanho do grão, pois as amostras foram desmembradas e os grãos fraturados em todas as direções, restando poucos grãos com aspecto original. Por esse motivo houve mistura no tamanho dos grãos nas peneiras. As inclusões de opacos dificultaram a separação magnética dos mesmos. Por fim, os minerais foram separados e fotografados na lupa de acordo com a textura e coloração.

As olivinas do Pedras Pretas em lupa são incolores (Fig.12A), diferenciam-se das serpentinas que apresentam fratura conchoidal e coloração castanha. As olivinas do Serrinha (Fig.12B) encontram-se serpentinizadas o que lhes confere uma coloração verde. São raramente preservadas quando comparadas com as olivinas do meta-peridotito do Pedras Pretas. As olivinas do Cerro Mantiqueiras (Fig.12C) encontram- se com inclusões de opacos e serpentinizadas em microdomínios. A serpentina é verde e com fratura conchoidal. Nos serpentinitos do Cambaizinho (Fig.12D) são muito raras as olivinas preservadas, a maioria está completamente substituída por serpentina e inclusa por opacos.

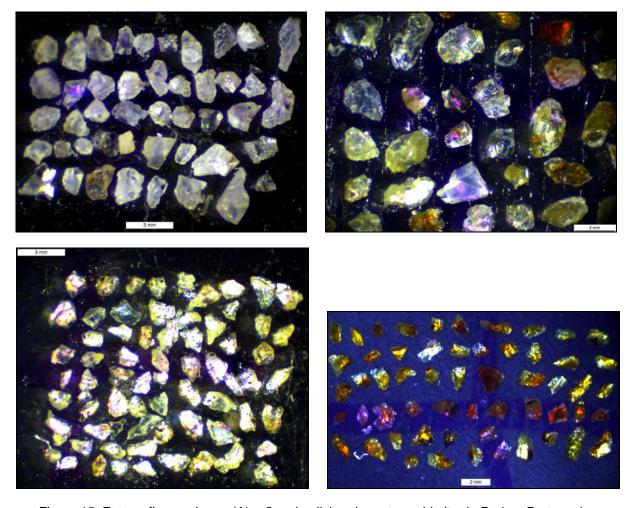


Figura 15: Fotografias em Lupa. (A) grãos de olivina do meta-peridotito do Pedras Pretas a luz polarizada; (B) grãos de olivina do serpentinito do Serrinha a luz polarizada; (C) grãos de olivina do

Cerro Mantiqueiras a luz polarizada; (D) grãos de olivina do serpentinito do Cambaizinho a luz polarizada.

Assim como na lupa, a olivina é incolor a luz natural e apresenta alta birrefringência a luz polarizada, a fratura conchoidal das serpentinas também é um bom indicativo para separação em lupa (Fig.13).

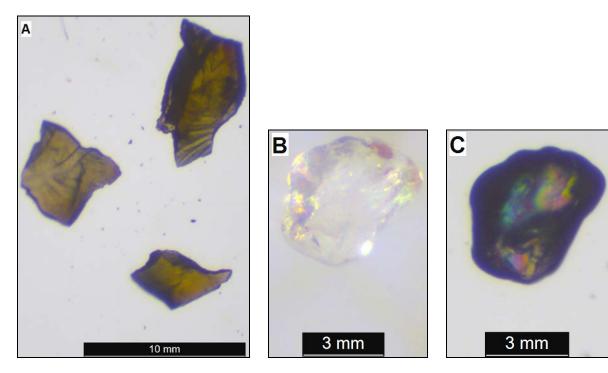


Figura 16: Fotografias dos minerais separados em lupa do meta-peridotito do Pedras Pretas. (A) grão de serpentina com fratura conchoidal, a Luz Natural. (B) grão de olivina incolor a luz natural. (C) grão de olivina com birrefringência alta a luz polarizada.

Devido à textura anédrica dos minerais de olivina, do fraturamento dos minerais de serpentina e da alteração dos minerais de piroxênio, houve problemas no polimento das pastilhas. A exposição dos minerais na superfície das pastilhas é irregular, sobrando alguns poucos grãos onde a superfície foi aplainada completamente.

4.3. Análise química

A análise química de rocha total dos elementos maiores e traço permitiu classificar quimicamente as rochas ultramáficas serpentinizadas e quantificar o teor dos elementos químicos em porcentagem ou em ppm presentes nas rocha. Através dos dados de química de rocha total foi possível fazer comparações entre a amostragem realizada nos diferentes locais. Nas tabelas em ANEXO 6 E 7, é

verificado que os maiores teores de Ni em rocha total concentram-se no complexo Cambaizinho, na região do Serrinha e no Cerro Mantiqueiras.

Quanto à classificação química (Fig. 14), todas as unidades ultramáficas situam-se no campo dos magmas komatiíticos, ricos em magnésio, apesar do Pedras Pretas ter um pequeno deslocamento no campo dos komatiítos em resposta as maiores concentrações de ferro total nessa unidade.

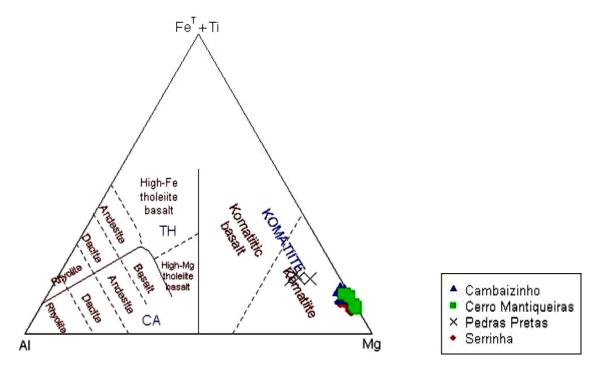


Figura 17: Classificação das rochas estudadas em função dos teores de Fe+Ti, Al e Mg. Modificado de Jensen, 1976.

Quanto à classificação geotectônica, de acordo com os dados de trabalhos anteriores, já era esperado que a maioria das rochas ultramáficas serpentinizadas e os serpentinitos estudados se enquadrassem na composição tipo peridotítica alpina (Fig. 15) e nos peridotitos metamórficos ou serpentinitos (Fig. 16). Os metaperidotitos do Pedras Pretas situam-se no campo classificatório de origem peridotítica acamadada e de cumulados máficos e ultramáficos. As ultramáficas do Cerro Mantiqueiras também situaram-se no campo dos peridotitos acamadados, mas esse fato deve-se aos maiores teores de Cr e menores de Ni quando comparáveis com as outras unidades amostradas.

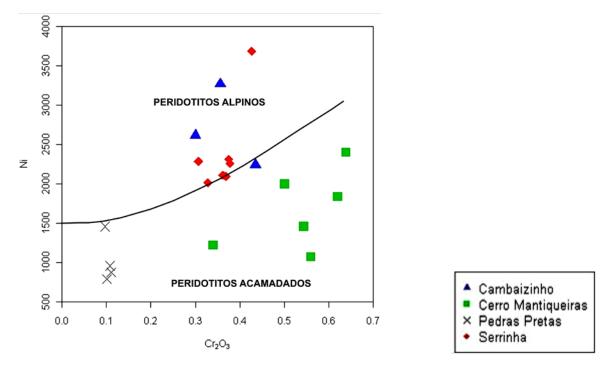


Figura 18: Diagrama binário de ambiente geotectônico de rochas ultramáficas. Observa-se dois campos distintos onde as amostras das unidades Cerro Mantiqueiras e Pedras Pretas situam-se no campos dos peridotitos acamadados e o Cambaizinho e Serrinha no campos dos peridotitos alpinos. Modificado de Coleman, 1977.

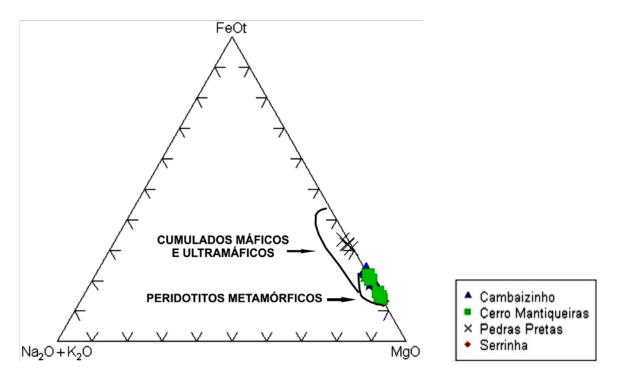


Figura 19: Diagrama ternário de ambiente geotectônico de rochas ultramáficas. Verifica-se dois campos distintos onde as amostras da unidade Pedras Pretas concentra-se no campo dos cumulados máficos e ultramáficos e as demais unidades no campo dos peridotitos metamórficos ou serpentinizados Modificado de Malpas e Steves, 1977.

Comparando os dados analisados com dados similares obtidos por Rêgo (1980), Vieira (1981), Remus (1990) e Leite (1997), podemos observar que os

serpentinitos e demais rochas ultramáficas serpentinizadas seguem o comportamento químico estabelecido por estes autores (Fig. 17, 18 e 19).

No diagrama da figura 17, observa-se que as amostras de cada unidade concentra-se em campos distintos e todas apresentam correlação positiva entre os valores de Ni e Cr₂O₃. Sendo as amostras do Pedras Pretas a unidade com os menores teores de Ni e Cr₂O₃, enquanto as amostras do Cerro Mantiqueiras apresentam os maiores teores. As amostras do Cambaizinho e Serrinha concentram-se no mesmo campo de valores.

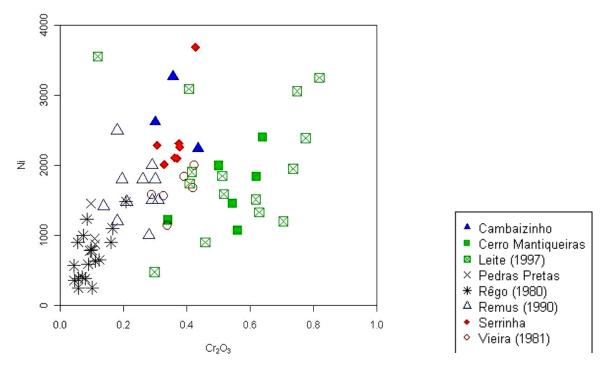


Figura 20: Diagrama binário Ni (ppm) x Cr₂O₃ (%peso) para rocha total. O diagrama mostra a correlação positiva entre os valores correlacionados e campos distintos de concentração das unidades. Legenda da figura no quadro a direita.

No diagrama binário da figura 18, é possível observar a correlação positiva entre os valores de MgO e LOI analisados nas diferentes unidades ultramáficas e a concentração das amostras em campos distintos. A unidade Pedras Pretas apresenta baixos teores de MgO e consequentemente baixos de LOI, ao contrário da unidade Cerro Mantiqueiras que apresenta os maiores teores de MgO e LOI. As unidades Cambaizinho e Serrinha concentram-se no mesmo campo e apresentam teores médios.

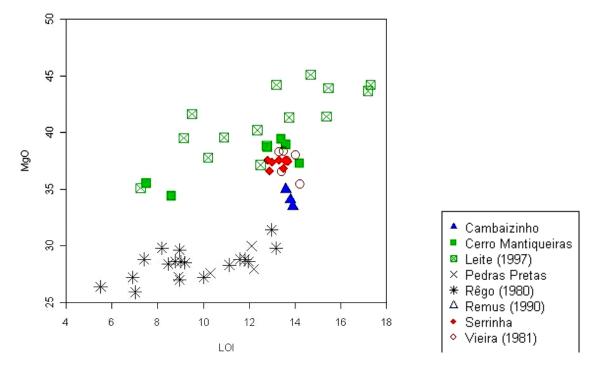


Figura 21: Diagrama binário MgO (%peso) x LOI (perda ao fogo % em peso) mostrando correlação positiva entre MgO e LOI e campos distintos de concentração das amostras das unidades. Legenda da figura no quadro a direita.

No diagrama binário da figura 19, observa-se a correlação positiva entre os teores de Ni e MgO das amostras e a concentração das diferentes unidades ultramáficas em campo distintos. A unidade Pedras Pretas apresenta os menores teores de Ni e MgO, enquanto a unidade Cerro Mantiqueiras apresenta os maiores teores. O Cambaizinho e Serrinha também apresentam teores elevados de Ni em algumas amostras.

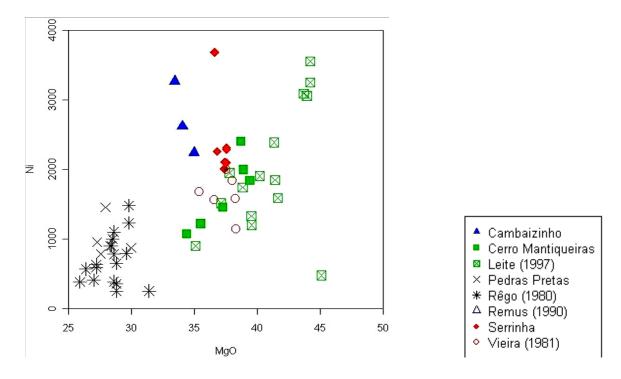


Figura 22: Diagrama binário MgO (%peso) x Ni (ppm) mostrando correlação positiva entre MgO e Ni e campos distintos de concentração das amostras das diferentes unidades ultramáficas Legenda da figura no quadro a direita.

No Pedras Pretas a disponibilidade de água foi mais restrita no sistema. O teor mais baixo de MgO do protólito pode ter contribuído para a menor retenção de água nos minerais secundários quando comparável as demais unidades. A assinatura dos elementos traço no Pedras Pretas é similar a assinatura das demais unidades (Fig. 20), apresentando características de magma retrabalhado, com assinatura crustal. Onde é possível observar uma evidente anomalia nos teores de Pb e enriquecimento principalmente nos elementos litófilos. De acordo com as feições petrográficas apresentadas no item 4.1., acredita-se que as transformações metassomáticas e metamórficas foram de menores proporções no Pedras Pretas, devido a estrutura estratiforme e ao posicionamento do corpo na crosta, porém a assinatura dos elementos traço normalizados segundo McDonough e Sun (1995) indicam um protólito ultramáfico com tendência para retrabalhamento ou contaminação crustal.

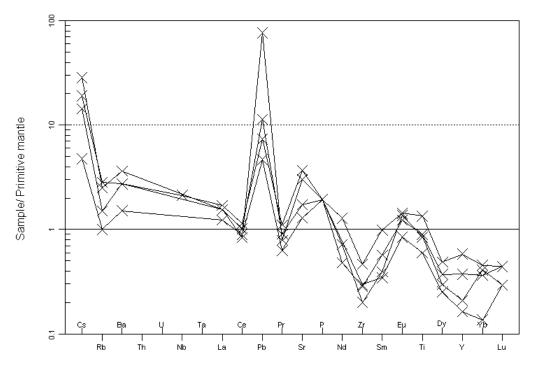
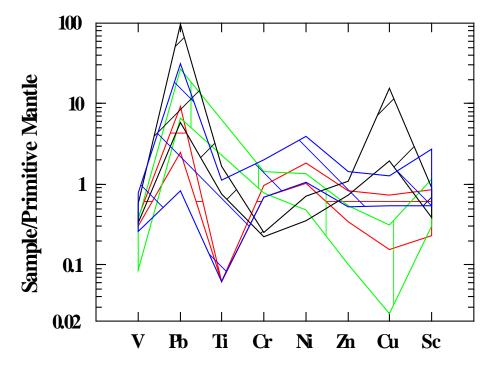
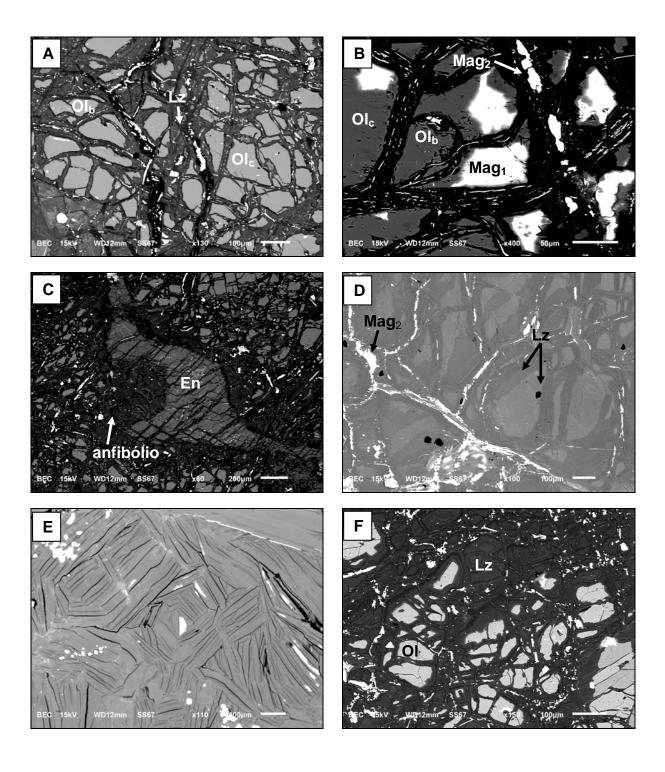


Figura 23: Spider plot representativo das análises do Pedras Pretas e normalizado conforme Manto Primitivo. Modificado de McDonough e Sun, 1995.

O Cambaizinho e Serrinha apresentam assinatura geoquímica de rocha total similar, com teores de MgO no entorno de 30% a 40%, Ni entre 2000 a 4000 ppm, Cr₂O₃ variando de 0,25% a 0,45% e alto LOI. A correlação positiva entre os teores de MgO e LOI para o Cambaizinho e Serrinha demonstra uma maior serpentinização dessas unidades ultramáficas devido aos maiores teores de MgO do protólito. Comparando as composições do Cambaizinho e Serrinha com o Cerro Mantiqueiras observa-se que as três unidades apresentam similaridades químicas. Entretanto, o Cerro Mantiqueiras apresenta teores mais elevados de Ni, Cr₂O₃ e MgO, e acentuada perda ao fogo.

No *Spider plot* (Fig. 21), normalizado conforme manto primitivo (McDonough e Sun, 1995) é possível observar uma evidente anomalia nos teores de Pb e enriquecimento principalmente nos elementos litófilos em todas as unidades, como foi observado anteriormente no *spider plot* do Pedras Pretas. Ao contrário do que é observado no Cerro Mantiqueiras, o Cambaizinho e Serrinha são empobrecidos em Ti. O Cr tem assinatura constante nas unidades, exceto no Pedras Pretas com teores baixos. O Ni também tem assinatura estável nas unidades apesar do Cambaizinho possuir um leve enriquecimento em Ni. O Cu tem assinatura similar no Cambaizinho e Serrinha e no Pedras Pretas encontra-se enriquecido e no Cerro Mantiqueiras depletado.




Figura 24: *Spider plot* normalizado conforme manto primitivo, representando as variações composicionais observadas nas amostras analisadas. Modificado de McDonough e Sun, 1995. Simbologia do Pedras Pretas em preto, Cerro Mantiqueiras em verde, Cambaizinho em azul e Serrinha em vermelho.

4.4. Microscopia Eletrônica de Varredura (MEV)

Foram obtidas imagens de elétrons retro espalhados (BSE) em quatro lâminas polidas e metalizadas com carbono. A olivina do Pedras Pretas (Fig.22A) apresenta uma textura lisa e com uma cor cinza claro no centro do mineral (Ol_c), quando comparado com a lizardita (Lz) que mostra uma textura de crescimento em relação as bordas da olivina (Ol_b). A textura *mesh* está em evidência, com magnetita primária (Mag₁) intercrescida sobre o centro da olivina e magnetita secundária (Mag₂) distribuída em veios (Fig.22B). O ortopiroxênio enstatita, apresenta clivagem em duas direções e relevo elevado em relação ao anfibólio antofilita (Ath) que o substitui parcialmente nas bordas (Fig.22C).

Foi possível verificar que a olivina do Serrinha encontra-se completamente serpentinizada, apesar da leve diferença de textura entre o centro e a borda da textura *mesh* (Fig. 22D). Os veios preenchidos por magnetita (Mag₂) evidenciam os limites entre os grãos de olivina. A antigorita ocorre como lamelas fibrosas (Fig.22E). A olivina do Cerro Mantiqueiras conserva núcleo primário com relevo alto (OI) e em partes, a olivina está completamente substituída pela lizardita (Lz), apesar de preservar a forma e a textura *mesh* (Fig. 22F). No Cambaizinho as olivinas ígneas são raras e nessa amostragem não foi possível verificá-las. Apesar da textura *mesh*

ter sido preservada, os grãos das antigas olivinas estão completamente serpentinizados por lizardita (Lz) e contêm diversas inclusões minerais ainda não analisadas (Fig. 22G).

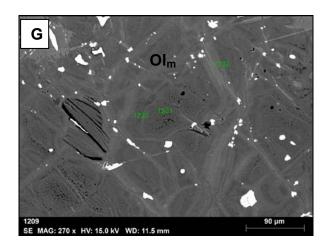


Figura 25: Imagem de BSE do Pedras Pretas. (A) detalhe para os minerais de olivina (OI) e lizardita (Lz). A simbologia "OI_b" representa análises de microssonda realizada na borda e "OI_c" no centro da olivina; (B) detalhe para os minerais de olivina analisados no centro (OI_c) e na borda (OI_b) dos grãos e da magnetita primária (Mag₁) e da secundária (Mag₂) em veios; (C) textura de substituição da enstatita (En) pelo anfibólio. Imagem de BSE do Serrinha. (D) textura *mesh* e detalhe para os minerais de lizardita (Lz) e veios de magnetita (Mag₂); (E) textura lamelar e fibrosa da antigorita textura. Imagem de BSE do Cerro Mantiqueiras. (F) textura *mesh* e detalhe para os minerais de olivina (OI) e lizardita (Lz). Imagem de elétron secundários (SE) do Cambaizinho. (G) textura *mesh* preservada na olivina metamórfica (OI_m).

4.5. Microssonda Eletrônica

Foram analisadas quatro seções polidas representativas das unidades ultramáficas. Os principais minerais analisados foram as olivinas e as serpentinas do meta-peridotito do Pedras Pretas e do harzburgito do Cerro Mantiqueiras e as serpentinas do Cambaizinho e Serrinha. Foram determinadas a percentagem em peso de cada óxido e calculada as fórmulas químicas das serpentinas e olivinas. As fórmulas das olivinas foram calculadas em função do número fixo de 4 átomos oxigênios e a das serpentinas com base em 9 oxigênios e 4 grupos OH, desprezando o teor de H₂O, visto que esta não foi avaliada nas análises com a microssonda.

Nos minerais de olivina foram realizadas análises pontuais no centro e na borda, conforme as figuras 22A e 22B do MEV, as variações composicionais não foram significativas para definir zonações nesses minerais. Nas serpentinas foram realizadas análises tentando identificar as espécies lizardita (Fig.22A, 22D e 22F), antigorita (Fig. 22E) e crisotilo.

As análises realizadas nas lâminas petrográficas das olivinas do Cambaizinho e Serrinha quando utilizadas para a construção da fórmula deste mineral, demonstram a inexistência da olivina ainda preservada. Foram obtidos teores similares ás análises das serpentinas, com fechamento total variando entre 80% a 90%. Esse fechamento provavelmente ocorra por causa da participação da molécula

de H₂O na fórmula das serpentinas, que evidentemente não ocorre nas olivinas. Desta forma, para contornar esta dificuldade, utilizou-se as análises obtidas em olivinas do Complexo Cambaizinho por Remus, 1990, em sua dissertação.

O diagrama da figura 23 representa a quantidade de cátions calculados versus o Si para os minerais de olivina. Para controle das análises, utilizou-se como padrão neste diagrama análises de olivinas disponibilizadas por Deer et al., 1997 (DHZ). Observa-se que as análises de olivina com pouca ou nenhuma influencia da serpentina situam-se na posição de 3 cátions para um átomo de sílicio por fórmula. As olivinas analisadas que preencheram esta condição vieram do Pedras Pretas e Cerro Mantiqueiras, embora algumas análises de olivinas do Cerro Mantiqueiras tenha caído fora da posição. Os teores de SiO₂ das olivinas variaram entre 34% a 41%, embora as olivinas do Pedras Pretas ficaram no grupo daquelas com menores teores de SiO₂, variando entre 34 e 37%. Tanto as olivinas do Cerro Mantiqueiras quanto do Cambaizinho apresentaram teores mais elevados e entre 39% e 41,7%.

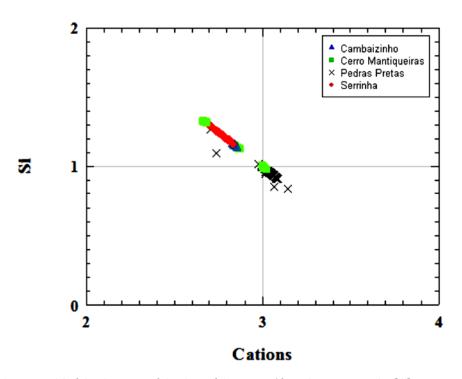


Figura 26: Diagrama binário do somatório dos cátions por fórmula x teores de SiO₂ correspondente as análises dos minerais de olivina, confirmando as análises de olivinas no Pedras Pretas e no Cerro Mantiqueiras Mantiqueiras.

O cálculo do teor da molécula de forsterita e a classificação das olivinas baseou-se na proporção da molécula de forsterita (Fo) para fayalita (Fy) através da fórmula: Mg/(Mg+Fe²⁺). Os resultados das análises nos minerais de olivina e das serpentinas foram comparados com os padrões de análises em olivinas ígneas e

serpentinas apresentados por Deer et al., 1997. As olivinas do Cerro Mantiqueiras apresentaram o conteúdo de Fo ₉₂₋₉₈ e foram classificadas como forsterita (Deer et al., 1997). No Pedras Pretas o teor variou entre Fo ₇₀₋₈₉ e as olivinas foram classificadas como crisólitas (Deer et al., 1997). Nas análises apresentadas por Remus (1990) o conteúdo de Fo ₈₄₋₉₁, sendo a maioria das olivinas classificadas com crisólitas e algumas como forsterita (Deer et al., 1997).

De acordo com os dados apresentados na tabela (ANEXO 8) e representados na figura 24 verifica-se que as olivinas do Cerro Mantiqueiras apresentaram os maiores teores de NiO (0,4%) e a média de 0,35% entre as análises, quando comparados com os teores de NiO das olivina do Pedras Pretas (0,21%) e com média de 0,17% e do Cambaizinho (0,3%), de acordo com o ANEXO 9 e com média de 0,21%.

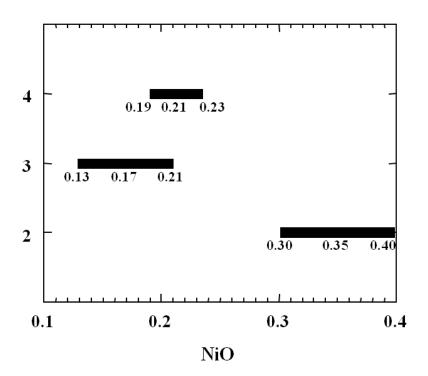


Figura 27: Histograma com os valores mínimos e máximos de NiO e a média nas olivinas do Cambaizinho (4), Pedras Pretas (3) e Cerro Mantiqueiras (2).

A figura 25 representa os teores da molécula de forsterita (Mg_FeMg) versus os teores de NiO das olivinas analisadas. Os valores de Fo para as análises do Cerro Mantiqueiras estão constantes e os teores de NiO variam entre 0,25% a 0,45%, enquanto que no Cambaizinho os conteúdos de Fo variam de 85-93% e os teores de NiO apresentam-se constantes próximos a 0,2%. No Pedras Pretas os teores de Fo concentram-se no entorno de 80% e os de NiO variam entre 0,1% a 0,3%.

Na figura 26 observa-se que as olivinas do Pedras Pretas apresentam maiores teores de MnO (0,3%) do que as olivinas do Cerro Mantiqueiras (0,16%) e Cambaizinho (0,18%). Na figura 27 observa-se que os teores de Cr_2O_3 são baixos para todas as unidades variando entre 0,0004% a 0,2%.

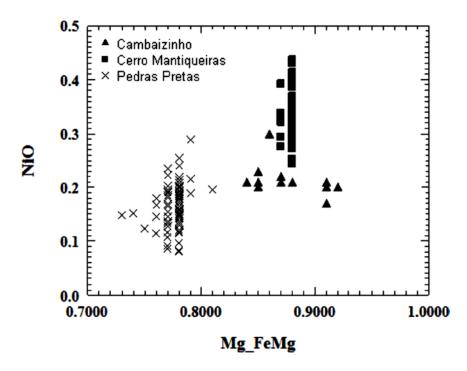


Figura 28: Diagrama binário dos teores de Fo= MgO/(FeO+MgO) x NiO correspondente as análises dos minerais de olivina. Observa-se comportamentos distintos quanto a variação do conteúdo de Fo e teores de NiO entre as unidades ultramáficas.

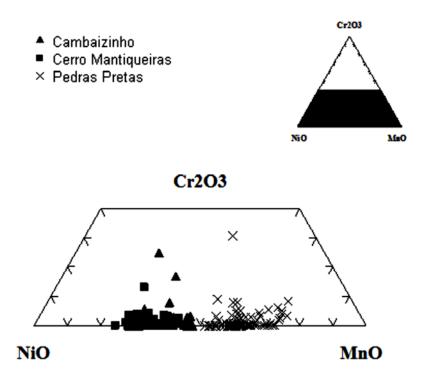


Figura 29: Diagrama triangular dos teores de NiO x Cr₂O₃ x MnO correspondente as análises dos minerais de olivina, mostrando o baixo conteúdo de Cr₂O₃ das olivinas das três unidades, o maior

conteúdo de MnO nas olivinas do Pedras Pretas e o maior de NiO nas olivinas do Cerro Mantiqueiras e Cambaizinho.

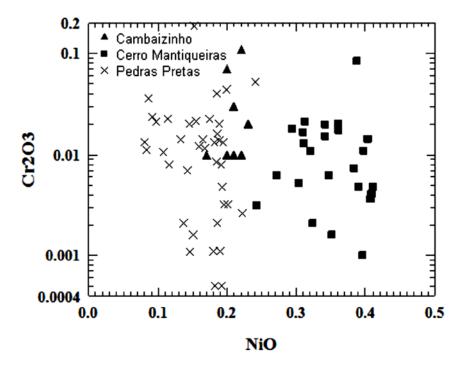


Figura 30: Diagrama binário dos teores de NiO x Cr₂O₃ correspondente as análises realizadas nos minerais de olivina, mostrando que os maiores teores de NiO estão concentrados nas olivinas do Cerro mantiqueiras.

Ao contrário do mineral olivina que costuma ser de ocorrência mais rara nessas unidades ultramáficas serpentinizadas, os minerais do grupo das serpentinas é abundante. Apesar da amostragem limitada foi possível analisar os polimorfos de serpentina, lizardita, crisotilo e antigorita nessas unidades. A lizardita é a serpentina mais abundante entre as unidades, o crisotilo foi analisado no Cambaizinho e Serrinha e a antigorita somente no Serrinha.

De acordo com os dados apresentados na tabela (ANEXO 10) e representados na figura 28 verifica-se uma ampla variação entre os valores minínimos e máximos do NiO nas lizarditas do Cerro Mantiqueiras (2), variando entre 0% a 0,54%, com média de 0,2%. Ao contrário das lizarditas do Pedras Pretas (3) que apresentam pequena variação entre os baixos teores (0,05% a 0,16%) de NiO e com média de 0,1%. As análises de lizardita e crisotilo do Cambaizinho e Serrinha apresentam padrão de variação similar nos teores de NiO com valores mínimos de 0,16% e máximos de 0,42%.

Na figura 29 é possível verificar que a antigorita apresenta os menores teores de NiO (0,16%) analisados e que alguns minerais de lizardita e crisotilo

apresentam os maiores teores de NiO (0,34% a 0,45%), respectivamente. Algumas análises de antigorita e lizardita apresentam teores de MgO baixos, no entorno de 35,8% a 32,9%, respectivamente e também baixos teores de NiO. No entanto as análises de crisotilo apresentam teores constantes entre MgO (37,6%) e NiO.

Na figura 30 verifica-se que as lizarditas analisadas no Pedras Pretas apresentam maiores concentrações de Fe₂O₃ (12%), enquanto as serpentinas das demais unidades ultramáficas concentram maiores teores de MgO. Essa maior concentração de Fe₂O₃ nas lizarditas do Pedrras Pretas também foi verificada nas olivinas.

Na figura 31 observa-se que o Cerro das Mantiqueiras apresenta os maiores teores de NiO na lizardita e o Pedras Pretas os menores teores, fato que também foi observado na comparação entre as análises das olivinas dessas unidades. Os teores de NiO e MgO nas serpentinas do Cambaizinho e Serrinha são similares, com algumas poucas análises de antigorita do Serrinha apresentando menores teores de NiO e MgO.

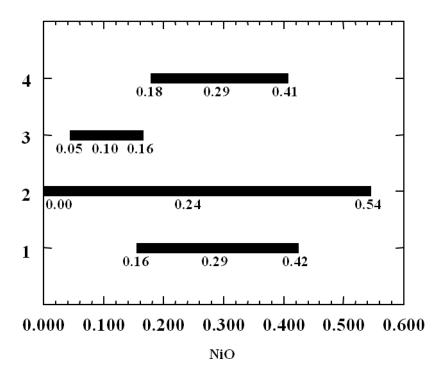


Figura 31: Histograma com os valores mínimos e máximos de NiO e a média nas serpentinas do Cambaizinho (4), Pedras Pretas (3), Cerro Mantiqueiras (2) e Serrinha (1), mostrando variação entre os valores de NiO analisados nas serpentinas.

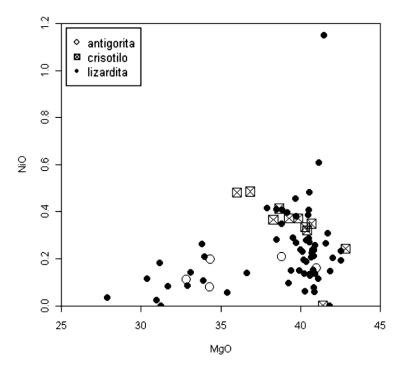


Figura 32: Diagrama binário dos teores de NiO x MgO nos polimorfos de serpentina (lizardita, crisotilo e antigorita), mostrando a maior concentração de NiO na lizardita e a menor na antigorita do Serrinha.

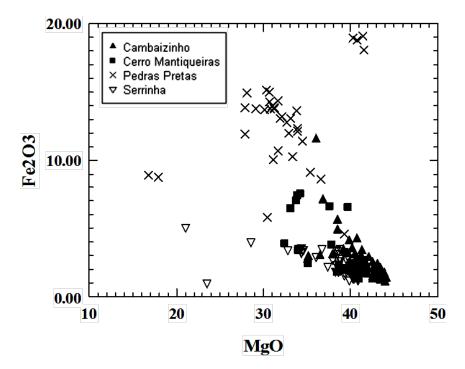


Figura 33: Diagrama binário dos teores de MgO \times Fe $_2$ O $_3$ nas serpentinas analisadas nas unidades ultramáficas, mostrando que as lizarditas do meta-peridotito do Pedras Pretas contêm maiores teores de Fe $_2$ O $_3$ e as demais unidades de MgO.

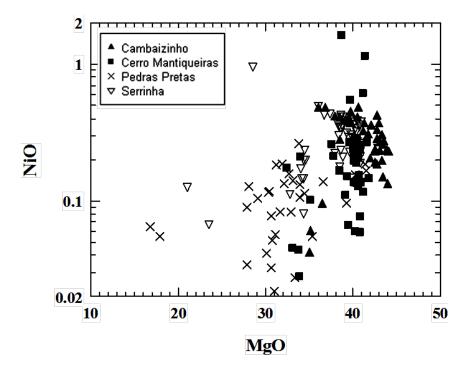


Figura 34: Diagrama binário dos teores de NiO x MgO das serpentinas analisadas nas unidades ultramáficas, mostrando correlações positivas entre os teores de NiO e MgO.

Na figura 32 é possível comparar os teores de Cr_2O_3 entre as serpentinas da unidades ultramáficas analisadas. Observa-se que a maioria das serpentinas de todas as unidades apresentam baixos teores de Cr_2O_3 , assim como foi observado nas análises das olivinas, porém, algumas serpentinas do Cambaizinho, Serrinha e do Cerro Mantiqueiras apresentaram maiores teores de Cr_2O_3 e estão correlacionáveis com os maiores teores de magnésio.

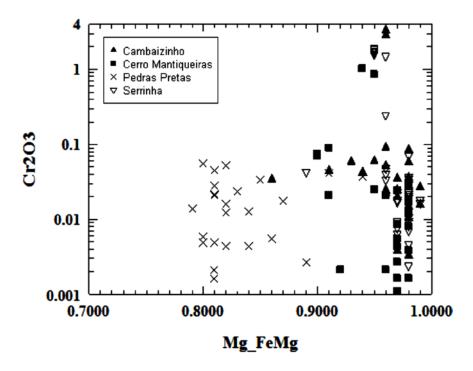


Figura 35: Diagrama binário dos teores de Cr_2O_3 x Fo = MgO/(FeO+MgO) das serpentinas analisadas nas unidades ultramáficas, mostrando que poucas serpentinas concentram teores acima de 1% de Cr_2O_3 .

Comparando as análises de química mineral das olivinas apresentadas no trabalho com alguns exemplos de análises deste mineral na bibliografia e compilados na tabela 5, é possível identificar similaridades nos valores obtidos, principalmente na concentração do NiO. Observa-se uma tendência dos teores de NiO serem mais elevados nas olivinas associadas com depósitos de níquel laterítico chegando a teores de 0,46% (Galí et al., 2012) e 0,43% (Gleeson et al., 2004), enquanto que as análises das olivinas dos peridotitos tectônicos e de olivinas metamórficas apresentam valores relativamente baixos entre 0,1% e 0,2% de NiO (Snoke et al., 1978). As análises realizadas nas olivinas do complexo ofiolítico de Leka, Noruega (Iyer et al., 2008) apresentaram os maiores teores de NiO no harzburgito, com até 0,42%, enquanto análises no dunito chegaram a 0,3% e no wehrlito a 0,21%. Os teores de NiO do harzburgito de Leka são similares com os teores das olivinas do harzburgito Cerro Mantiqueiras. As análises em olivinas primárias e metamórficas de serpentinitos do Japão (Nozaka, 2003) apresentaram teores entre 0,38% a 0,40% de NiO.

Comparando as análises de química mineral das serpentinas apresentadas no trabalho com alguns exemplos de análises compilados da bibliografia (tabela 6), é possível observar que os teores de NiO das antigoritas do serpentinito do Egito (Azer et al., 2005) são relativamente baixos (0,16%), assim como os teores de NiO

da antigorita do harzburgito da Noruega (Iyer et al., 2008), com 0,16%. Esses teores são similares aos teores de NiO analisados na antigorita do Serrinha (0,1%). Tanto os teores de NiO do crisotilo analisado no serpentinito do Egito (Azer et al., 2005) na média de 0,24%, quanto os valores do serpentinito do México (Mancera et al., 2009) na média de 0,27%, são maiores que os valores observado nas antigoritas. Esses valores também são similares aos valores obtidos no crisotilo do serpentinito do Cambaizinho (0,4%) e no Serrinha (0,3%). Os teores de NiO obtidos nas lizarditas são menores que os obtidos no crisotilo. De acordo com Quintero et al. (2012) a média de NiO é de 0,17% para as lizarditas do serpentinito de Cuba. Conforme Nozaka (2003) a média dos teores de NiO para as lizarditas do serpentinito do Japão é de 0,14%. O'Hanley et al. (1993) obteve teores de NiO na média de 0,18% para as lizarditas do serpentinito do Canadá e Mancera et al. (2009) obteve na média de 0,2% de NiO para as lizarditas dos serpentinitos do México. Esses valores de NiO para as lizarditas são similares aos valores obtidos nas lizarditas do Cerro Mantiqueiras (0,2%) e Pedras Pretas (0,1%).

Tabela 3: Resultados analíticos das olivinas, compilados de rochas ultramáficas de diferentes continentes, conforme referências.

Referência	Snoke	Snoke	lyer	lyer	lyer	Nozaka	Nozaka	Galí	Gleeson
Local	Califórnia	Califórnia	Noruega	Noruega	Noruega	Japão	Japão	R.D	Colômbia
Amostra	Per. Tect.	Ol. Tlc. Ult.	Harz.	Dun.	Weh.	Serp.	Serp.	Ni lat.	Ni lat.
Mineral	OI	Ol m	OI	OI	OI	Ol m	OI	OI	OI
SiO2	40.4	40.6	40,26	40,78	38,97	40,64	40,79	40,94	40,92
TiO2	nd	nd	0,02	nd	nd	nd	nd	0,02	0,084
AI203	nd	nd	0,02	0,02	nd	nd	nd	nd	0,071
FeO	9.9	10.5	9,78	10,65	18,07	10,25	9,03	9,23	8,98
MnO	0.18	0.16	0,26	0,23	0,43	0,19	0,13	0,17	0,14
MgO	49	48.9	48,46	48,18	42,62	49,13	49,98	49,81	48,62
CaO	0.05	0.03	0,04	0,04	0,02	0,02	0,01	nd	0,157
Na2O	nd	nd	nd	nd	0,03	nd	nd	nd	0,036
K20	nd	nd	0,02	nd	0,02	nd	nd	nd	0,03
Cr2O3	nd	nd	nd	0,01	0,07	nd	nd	0,01	0,07
NiO	0.2	0.1	0,42	0,3	0,21	0,4	0,38	0,46	0,43
Total	99.73	100.29	99,29	100,21	100,43	100.63	100,32	100,64	99,22
Si	0.99	1	1	1	0,9	0,99	0,99	nd	nd
Mn	0.003	0.003	0,01	nd	0,01	0,003	0,003	nd	nd
Mg	1.8	1.79	1,79	1,76	1,62	1,79	1,81	nd	nd
Ca	0,001	0,001	nd	nd	nd	nd	nd	nd	nd
Ni	0,003	0,001	0,01	0,01	nd	0,007	0,007	nd	nd
Cations	2,02	2,02	3	3	3,01	4	4	nd	nd
Mg_FeMg	89,9	89,4	90	89	81	89,5	90,8	nd	nd

Ol m: olivina metamórfica; Per. Tec.: peridotito tectônico; Ol. Tlc. Ult.: olivina talco ultramafito; Harz.: harzburgito; Dun.: dunito; Weh.: Werhlito; Serp.: serpentinito; R. D.: República Dominicana; Ni lat.: níquel laterítico. *nd: não detectado.

				,					
Referência	Azer	Azer	Mancera	Mancera	O'Hanley	Nozaka	Quintero	Quintero	lyer
Local	Egito	Egito	México	México	Canadá	Japão	Cuba	Cuba	Noruega
Amostra	Serp.	Serp.	Serp.	Serp.	Serp.	Serp.	Serp.	Serp.	Harz.
Mineral	Atg	Clt	Clt	Lz	Lz	Lz	Atg	Lz	Atg
SiO2	43,99	46,04	42,75	41,22	40,76	43,59	41,58	42,8	44,22
TiO2	nd	nd	0,02	0,01	nd	nd	0,02	0,03	0,02
AI2O3	0,79	0,33	0,01	2,47	2,22	0,32	2,66	2,5	1,07
Cr2O3	0,05	0,03	0,06	0,12	0,29	nd	0,58	0,25	0,1
FeO*	3,64	0,78	1,12	6,94	2,18	1,37	7,08	3,23	2,58
MnO	0,07	nd	0,05	0,04	0,05	0,05	nd	0,06	0,09
MgO	38,91	41,22	43,14	36,61	40,88	42,01	34,74	38,67	39,52
NiO	0,16	0,24	0,27	0,2	0,18	0,14	0,25	0,17	0,12
CaO	0,08	nd	0,01	nd	nd	0,29	nd	0,01	nd
Na2O	nd	0,02	nd	nd	nd	nd	nd	nd	0,01
K20	0,02	0,01	nd	nd	nd	nd	nd	nd	0,01
Total	100,58	101,94	100,38	100,25	98,27	87,57	86,91	87,72	87,73
H2O	12,89	13,28	12,95	12,65	11,69	nd	nd	nd	nd
Si	8,18	8,32	7,92	7,82	3,91	2,01	3,97	3,97	2,04
AIIV	0,17	0,07	nd	0,55	0,23	0,017	0,3	0,27	0,06
Fe3	0,56	0,12	0,17	1,1	0,07	0,053	0,57	0,25	0,1
Cr	0,01	nd	0,01	0,02	0,02	nd	0,4	0,02	nd
Ni	0,02	0,03	0,04	0,03	0,01	0,005	0,04	0,02	nd
Mn	0,01	nd	0,01	0,01	nd	0,002	nd	nd	nd
Mg	10,76	11,1	11,91	10,35	5,84	2,889	4,94	5,34	2,72

Tabela 2: Resultados analíticos das serpentinas, compilados de rochas ultramáficas de diferentes continentes, conforme referências.

Atg: antigorita; Clt: crisotilo; Lz: lizardita; Serp.: serpentinito; Harz.: harzburgito; *nd: não detectado.

nd

98,2

90

96

96

90

V. REFERÊNCIAS

nd

99

Mg_FeMg

ABDULLAYEY, A. U. The Devonian bauxite of Sredna Azii. **Lithology and Mineral Resources**, n.3, p.331-339, 1967.

AZER, M. K., KHALIL, A. E. S. Petrological and mineralogical studies of Pan-African serpentinites at Bir Al-Edeid área, central Eastern Desert, Egypt. **Journal of African Earth Sciences**, 43, 525-536, 2005.

BONATTI, E., OTTONELLO, G., HAMLYN, P. R. Peridotites from the island of Zabargad. (st. John's) Red Sea. **Petrology and Geochimistry**, n.91, p. 599-631, 1986.

BABINSKI, M., et al. Juvenile accretion at 750-700 Ma in Southern Brazil. **Geology**, n.24, v.5, p. 439-442. 1996.

CARVALHO, P. F. de. Reconhecimento geológico no estado do Rio Grande do Sul. **Boletim: Serviço Geológico e Mineralógico**, Rio de Janeiro, n. 66, p. 03-73, 1932.

Recursos minerais do estado do Rio Grande do Sul. Boletim: Serviço Geológico e Mineralógico , Rio de Janeiro, n.72, p. 03-38, 1937.
COLEMAN, R. G. Plate tectonic emplacement of upper mantle peridotites along continental edges. Journal Geophys , 1971. v. 76, p. 1212-1222.
Ophiolites- Ancient Oceanic Lithosphere?. 1977. New York. (Springer). CONDIE, K. C. Archean greenstone belts. Elsevier Science Publication Company, Amsterdam, 1981.
D'AVILA, R. S. F. et al. Reavaliação de Alguns Aspectos Petrológicos e Geoquímicos do Complexo Básico- Ultrabásico Pedras Pretas (RS). In: SIMPÓSIO SUL-BRASILEIRO DE GEOLOGIA, II., 1985. Florianópolis, Anais Florianópolis: SBG, 1985 p. 277-286.
DEER, W. A., HOWIE, R. A., ZUSSMAN, J. Rock- Forming Minerals, Orthosilicates. London: Geological Society, v. 1, 1997.
EVANS, B. W. & TROMMSDORFF, V. Regional metamorphism of ultramafic rocks in the Central Alps: paragenesis in the system CaO- MgO- SiO ₂ - H2O. Schweizerisch Mineralogische und Petrographische Mitteilungen , Bern, v. 50, p. 481-492, 1970.
& Stability of enstatite + talc and CO ₂ metasomatism of metaperidotite, Val d'Efra, Lepontine Alps. American Journal. Sc. , p. 274-296, 1974.

EVANS, B. W. Lizardite versus antigorite serpentinite: Magnetite, hydrogen, and life (?). **Geology**, v. 38, n. 10, p. 879–882, 2010.

FRAGOSO- CÉSAR, A. R. S. O Cráton do Rio de La Plata e o Cinturão Dom Feliciano no Escudo Uruguaio Sul Rio-Grandense. In: CONGRESSO BRASILEIRO DE GEOLOGIA, 31., 1980. Balneário de Camboriú, **Anais**... Balneário de Camboriú: SBG, 1980. v. 5, p. 2879-2892.

GALÍ, S., SOLER, J. M., PROENZA, J. A., LEWIS, J. F., CAMA, J., TAULER, E. Ni enrichment and satbility of Al-free garnierite solif-solutions: a thermodynamic approach. **Clays and Clay minerals**, 60 (2), 121-135, 2012.

GLEESON, S. A., HERRINGTON, R. J., DURANGO, J., VELÁSQUEZ, C. A., KOLL, G. The mineralogy and geochemistry of the Cerro Matoso S.A. Ni laterite deposit, Montelíbano, Colombia. **Economic Geology**, 99, 1197-1213, 2004.

GONI, J. Origine des roches ultrabasiques et serpentineuses Du précambrien de Rio Grande do Sul (Brésil). Mode de gisement et minéralisations. **Boletim da Escola de Geologia da Universidade Federal do Rio Grande do Sul**, Porto Alegre, n. 12, p. 05-89, 1962.

GULAÇAR, O. F. and DELALOYE, M. Geochemistry of nickel, cobalt and copper in Alpine – Type Ultramafic Rocks. **Chemical Geology**, v.17, p. 269-280, 1976.

HARTMANN, L. A. Textura metamórfica de olivina em talco- serpentinitos da região de Mata Grande (RS). **Acta Geológica Leopoldensia da Universidade do Vale do Rio dos Sinos**, São Leopoldo, v. 6, n. 16, p. 179-188, 1982.

HARTMANN, L. A. et al. Magmatism and metallogeny in the crustal evolution of Rio Grande do Sul shield, Brazil. **Pesquisas em Geociências**, Porto Alegre, n. 26, p. 45–63, 1999.

HARTMANN, L. A. & NARDI, L. V. S. Contribuição à geologia da região oeste do Escudo Sul-Riograndense. In: SIMPÓSIO SUL-BRASILEIRO DE GEOLOGIA, 1983. Porto Alegre, **Atas**... Porto Alegre: SBG, 1983. v. 1, p. 9-18.

HARTMANN, L. A. & REMUS, M. V. D. Origem e Evolução das rochas ultramáficas do Rio Grande do Sul desde o Arqueano até o Cambriano. In: HOLTZ, M.; DE ROS, L. F. (Ed.). **Geologia do Rio Grande do Sul.** Porto Alegre: Ed. da Universidade/UFRGS, 2000. p. 53-78.

HARTMANN, L. A., PORCHER, C. C. & REMUS, M. V. D. Evolução das rochas metamórficas do Rio Grande do Sul. In: HOLTZ, M.; DE ROS, L. F. (Ed.). **Geologia do Rio Grande do Sul.** Porto Alegre: Ed. da Universidade/UFRGS, 2000. p. 79-118.

HARTMANN, L. A. & CHEMALLE JR, F. Mid amphibolite facies metamorphism of harzburgites in the neoproterozoic Cerro Mantiqueiras Ophiolite, Southern most Brazil. **Anais da Academia Brasileira de Ciências**, v. 75, n. 1, p. 109-128, 2003.

HARTMANN, L. A. et al. Time frame of 753- 680 Ma juvenile accretion during the São Gabriel orogeny, southern Brazil. **Journal of South American Earth Sciences**. 2007.

HORBACH, R. Folha SH-22 - Porto Alegre e parte das folhas SH-21 – Uruguaiana e SI-22 – Lagoa Mirim. In: Projeto RADAMBRASIL (Levantamento de Recursos Naturais), 1986. Rio de Janeiro, v. 33, p. 29-312.

- ISSLER, R. S., DRESH, R. A. C, ROISENBERG, A. Geocronologia do Gabro de Mata Grande, Município de São Sepé, Estado do Rio Grande do Sul. **Revista Brasileira de Geociências**, São Paulo, v. 3, n. 2, p. 124-127, 1973
- ISSLER, R. S. Evolução crustal da faixa Arco– fossa Tijucas e faixa magmática Pedras Grandes: cráton Dom Feliciano. In: SIMPÓSIO SUL BRASILEIRO DE GEOLOGIA, 1983. Porto Alegre, **Atas**...Porto Alegre: SBG, 1983. v. 1, p. 19-36.
- IYER, K., AUSTRHEIM, T., JOHN, T., JAMTVEIT, B. Serpentinization of the oceanic lithosphere and some geochemical consequences: Constraints from the Leka Ophiolite Complex, Norway. **Chemical Geology**, 249, 66-90, 2008.
- JENSEN, L. S. A new method of classifying subalkalic volcanic rocks. 1976. Ontario, 22p. (Miscelaneous Paper Ontário Divisions Mines, v. 66).
- JOST, H. Complexos básico- ultrabásicos do Alto Rio Vacacaí, São Gabriel, Rio Grande do Sul. **Boletim da Escola de Geologia da Universidade Federal do Rio Grande do Sul**, Porto Alegre, v. 1, n. 2, p. 55-61, 1966.
- JOST, H. & HARTMANN, L. A. Província Mantiqueira Setor Meridional. In: ALMEIDA, F. F. M. & HASUI, Y. (coord.). O Pré-Cambriano do Brasil, 1984. São Paulo.
- JOST, H. and BITTENCOURT, M de. F. A. S. estratigrafia e tectônica de uma fração da faixa de dobramentos tijucas no Rio Grande do Sul. Estudos tecnológicos, **Acta Geologica Leopoldinensia**, São Leopoldo, v. 4, n. 7, p. 27-60, 1980.
- LAUX, J. H. et al. **Mapa Geológico Lagoa da Meia Lua.** Porto Alegre: CPRM, 2012. Escala 1:100.000.
- LEITE, J. A. D. A origem dos harzburgitos da Sequência Cerro Mantiqueiras e implicações tectônicas para o desenvolvimento do Neoproterozóico na Porção Oeste do Escudo Sul-Riograndense. 1997. 224 f. Tese (Doutorado em Geociências) Instituto de Geociências, Curso de Pós-Graduação em Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, 1997.
- LEINZ, V., BARBOSA, A. F., TEIXEIRA, E. A. **Mapa geológico Caçapava- Lavras.** Porto Alegre: Boletim da Diretoria da Produção Mineral, 1941.
- LIMA e CUNHA, M. C. et al. Diagnose de Microbiólitos Metálicos em Espécies Vegetais Endêmicas em Solos de Rochas Ultramáficas por Microscopia Eletrônica de Varredura. **Pesquisas em Geociências**, Porto Alegre, v. 31, n. 1, 2004.

MACERA, G. G., GUTIÉRREZ, F. O., PROENZA, J. A., ATUDOREI, V. Petrology and geochemistry of Tehuitzingo serpentinites (Acatlán Complex, SW Mexico). **Boletín de La Sociedade Geológica Mexicana,** 61 (3), 419-435, 2009.

MALPAS, J. & STEVENS, R. K. The origin and emplacement of the ophiolite suite with examples from Western Newfoundland. **Geotectonics**, v. 11, p. 453-466, 1977.

MALTMAN, A. J. Serpentinite Textures in Anglesey, North wales, United Kingdom. **Geological Society of America Bulletin**, v. 89, p. 972-980, 1978.

McBIRNEY, A. and NOYES, R. M. Crystallization and Layering of the Skaergaard Intrusion. **Journal of Petrology**, 1979. v. 20, n. 3, p. 487-554.

McDONOUGH, W. F. and SUN, S. The composition of the Earth. **Chemical Geology**, n. 120, p. 223–253, 1995.

MENEGOTTO, E. Alteração Intempérica de Rochas Ultrabásicas em Clima Subtropical, Evolução Mineralógica e Geoquímica em Alguns Maciços Ultrabásicos do Rio Grande do Sul - Brasil. 1982. 357 f. Tese (Doutorado em Geociências) - Instituto de Geociências, Curso de Pós-Graduação em Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, 1982.

MENZIES, M. A. Chemical and isotopic heterogeneities in orogenic and ophiolitic peridotites. In GASS, I. A., LIPPARD, S. J., SHELTON, A. W. (Ed.). Ophiolites and Oceanic Lithosphere, 1984. London, p. 231-240. (The geological Society of London).

NALDRETT, A. J. **Magmatic sulfide deposits**. New York: Oxford University Press, 1989.

NARDI. L. V. S. & HARTMANN, L. A. O Complexo Granulítico Santa Maria Chico do Escudo Sul-Riograndense. **Acta Geológica Leopoldinensia**, São Leopoldo, v. 6, p. 45-75, 1979.

NAUMANN, M. P. et al. Seqüências supracrustais, gnaisses graníticos, granulitos e granitos intrusivos da região de Ibaré- Palma, RS: geologia, aspectos estratigráficos e considerações geotectônicas. In: CONGRESSO BRASILEIRO DE GEOLOGIA, 33., 1984. Rio de Janeiro, **Anais**... Rio de Janeiro: SBG, p. 2417-2425.

NAUMANN, M. P. O complexo vulcano- sedimentar- ultramáfico e granitóides da região de Ibaré, RS. 1985. 162 f. Dissertação (Mestrado em Geociências) - Instituto de Geociências, Curso de Pós-Graduação em Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, 1985.

NESBITT, R. W. & HARTMANN, L. A. Comments on "A peridotitic komatiite from Dalradian of Shetland" by D. Flinn an D. T. Moffat. **Geological Journal**, Londn, v. 21, p. 201- 205, 1986.

NILSON, A. A. O estágio de conhecimento dos complexos máfico·ultramáficos précambrianos do Brasil. Uma avaliação preliminar. In: CONGRESSO BRASILEIRO DE GEOLOGIA, 33., 1984. Rio de Janeiro, **Anais**... Rio de Janeiro: SBG, 1984. v. 9, p. 4166-4203.

NOZAKA, T. Compositional heterogeneity of olivine in thermally metamorphosed serpentinite from Southwest Japan. **American Mineralogist**, v. 88, p. 1377-1384, 2003.

OLIVEIRA, M. T. Petrologia do Maciço máfico- ultramáfico Passo do Ivo, São Gabriel, RS. **Acta Geológica Leopoldensia**, São Leopoldo, v. 11, p. 131-214, 1982.

O'HANLEY, D. S. and DYAR, M. D. The composition of lizardite 1T and the formation of magnetite in serpentinites. **American Mineral**. v. 78, p. 391-404, 1993.

O'HANLEY, D.S. **Serpentinites: Records of Tectonic and Petrological History.** New York: Oxford University Press, 1996.

QUINTERO, B. I. F., PROENZA, J. A., GARCÍA, C. A., TAULER, E., GALÍ. S. Serpentinites and serpentinites within a fóssil subduction channel: La Corea mélange, eastern Cuba. **Geologica Acta**, 9 (3-4), 389-405, 2011.

PETERS, T. J., NICOLAS, A., COLEMAN, R. G. Ophiolite genesis and evolution of the oceanic lithosphere. **Kluwer Academic Publishers**, Boston, Massachusetts, 1991.

POWER, I. M., WILSON, S. A., GREGORY, M. D. Serpentinite Carbonation for CO₂ Sequestration. **Elements**, v. 9, p. 115-121, 2013.

RÊGO, I. T. S. do. **Complexo Básico-Ultrabásico de Pedras Pretas, Rio Grande do Sul**. 1980. 98 f. Dissertação (Mestrado em Geociências) - Instituto de Geociências, Curso de Pós-Graduação em Geociências, Universidade Federal do Rio Grande do Sul. Porto Alegre. 1980.

_____. Aspectos Petrológicos e Geoquímicos do Complexo Básico- Ultrabásico de Pedras Pretas, RS. **Acta Geológica Leopoldensia**, São Leopoldo, v. 15, p. 197-278, 1981.

REMUS, M. V. D. **Geologia e Geoquímica do Complexo Cambaizinho São Gabriel - RS.** 1990. 267 f. Dissertação (Mestrado em Geociências) - Instituto de Geociências, Curso de Pós-Graduação em Geociências, Universidade Federal do Rio grande do Sul, Porto Alegre, 1990.

REMUS, M. V. D. HARTMANN, L. A. & FORMOSO, M. L. L. Os Padrões de Elementos Terras Raras e a Afinidade Geoquímica Komatiítica dos Xistos Magnesianos e Rochas Associadas do Complexo Cambaizinho, São Gabriel/RS. **Revista Brasileira de Geociências**, São Paulo, v. 23, n.4, p. 370-387, 1993.

RIBEIRO, M. & FANTINELL, L. Associações Petrotectônicas do Escudo Sul-Riograndense: I – tabulação e distribuição das associações petrotectônicas do Escudo Sul-Riograndense. Iheringia, **Série Geológica**, Porto Alegre, v. 5, p. 19-54, 1978.

RIBEIRO, M. & LICHTENBERG, E. Síntese da Geologia do Escudo do Rio Grande do Sul, In: CONGRESSO BRASILEIRO DE GEOLOGIA, 30., 1978. Recife, **Anais**... Recife: SBG, v. 6, p. 2451-2463.

RIBEIRO, M. Ocorrência de komatiítos no Escudo do Rio Grande do Sul. **Iheringia, Série Geológica**, Porto Alegre, n. 6, p. 79-82, 1981.

RODRIGUES, C. R. O. et al. **Projeto Passo do Salsinho:** Geologia da Faixa II. 1982. Monografia (Graduação) – Instituto de Geociências, Curso de Geologia, Universidade Federal do Rio Grande do Sul, Porto Alegre. 1982.

SENA SOBRINHO, M. **Mapa mineiro- geológico do Rio Grande do Sul**. Porto Alegre: Livraria do Globo, 1958. 12 p.

SILVA FILHO, B. C. Geology of the poyphase deformed Precambrian terrane of the Vila Nova region, State of th Rio Grande do Sul, southern Brazil. **Acta Geologica Leopoldensia**, São Leopoldo, v. 27, n. 17, p. 35-152, 1984.

SILVA FILHO, B. C.& SOLIANI JR., E. Origem e evolução dos gnaisses Cambaí: exemplo de estudo integrado de análise estrutural, petroquímica e geocronológica. In: SIMPÓSIO SUL- BRASILEIRO DE GEOLOGIA, 3., 1987. Curitiba. **Atas**... Curitiba: SBG, 1987. v. 1, p. 127-146.

SNOKE, A. W.AND CALK, L. C. (1978). Jackstraw-textured talc-olivine rocks, Preston Peak area, Klamath Mountains, California. **Geological Society of America Bulletin**, 89, 223-230.

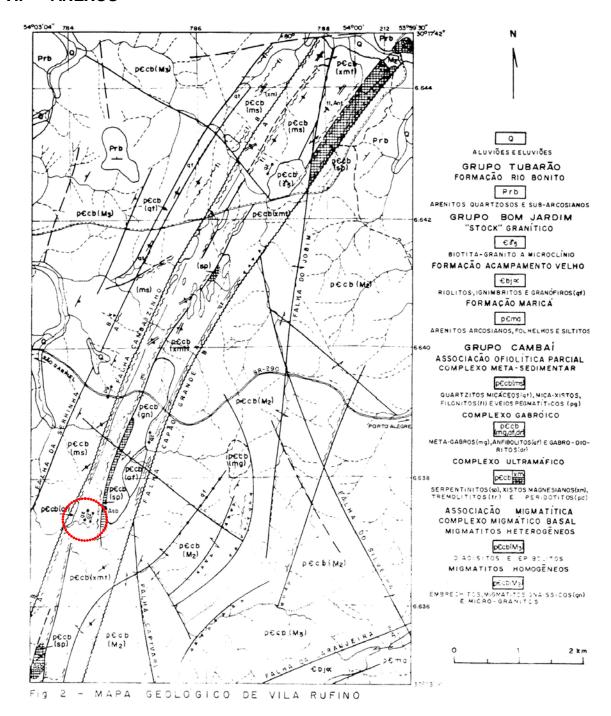
- SPARKS, R. S. J., et al. **The Fluid Dynamics of Evolving Magma Chambers [and Discussion]**. **Mathematical and Physical Sciences**, London, Series A, v. 310, n. 1514, 1984.
- SPRAY, J. G. (1989). Upper mantle segregation process: evidence from alpine peridotites. In A. D SAUNDERS &. M. J. NORRY (Eds.), Magmatism in the Ocean Basins (pp. 29-40). Oxford: The Geological Society.
- SOLIANI JR., E. Os dados geocronológicos do Escudo Sul Rio-Grandense e suas implicações de ordem geotectônica. 1986. 425 f. Tese (Doutorado em Geociências) Instituto de Geociências, Curso de Pós- graduação em Geociências, Universidade de São Paulo, São Paulo 1986.
- SOUZA, T. L., (2011). A distribuição do níquel em perfis de alteração de rochas ultramáficas, Complexo Cambaizinho, Bloco São Gabriel, RS. 2011. 73 f. Monografia (Graduação) Instituto de Geociências, Curso de Geologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2011.
- SUHR, G. and CAWOOD, P. A. Structural history of ophiolite obduction, Bay of Islands, Newfoundland. **Geological Society of America Bulletin**, v. 105. p. 399-410, 1993.
- SZUBERT, C. E. et al. Projeto Cobre nos Corpos Básico Ultrabásicos e Efusivas do Rio Grande do Sul. **Relatório Final, 2ª fase convênio CPRM- DNPM**, Porto Alegre, 113p, 1977.
- _____. et al. Cobre em associações ofiolíticas do bordo ocidental do Escudo Sul-Riograndense. In: CONGRESSO BRASILEIRO DE GEOLOGIA, 30., 1978. Recife, **Anais**... Recife: SBG, 1978. v. 4, p. 1622-1632.
- TUREKIAN, K. K., KAR, H. W. Distribution of the Elements in Some Major Units of the Earth's Crust. **Bulletin The Geological Society of America**. v. 72, n. 2, p. 175-192, 1961.
- TURNER, J. S. & CAMPBELL, I. H. Convection and mixing in magma chambers. **Earth Sci. Rev.**, v. 23, p. 255-352, 1986.
- VIEIRA, H. M. 1981. Mineralogia, Petrografia e Geoquímica do Complexo Ultramáfico de Serrinha, São Gabriel, RS. 1981. 90 f. Dissertação (Mestrado em Geociências) Instituto de Geociências, Curso de Pós-Graduação em Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, 1981.

VINOGRADOV, A. P. The Geochemistry of Rare and Dispersed Chemical Elements in Soil – Consultants Bureau. **Inc,** New York, 210p, 1959.

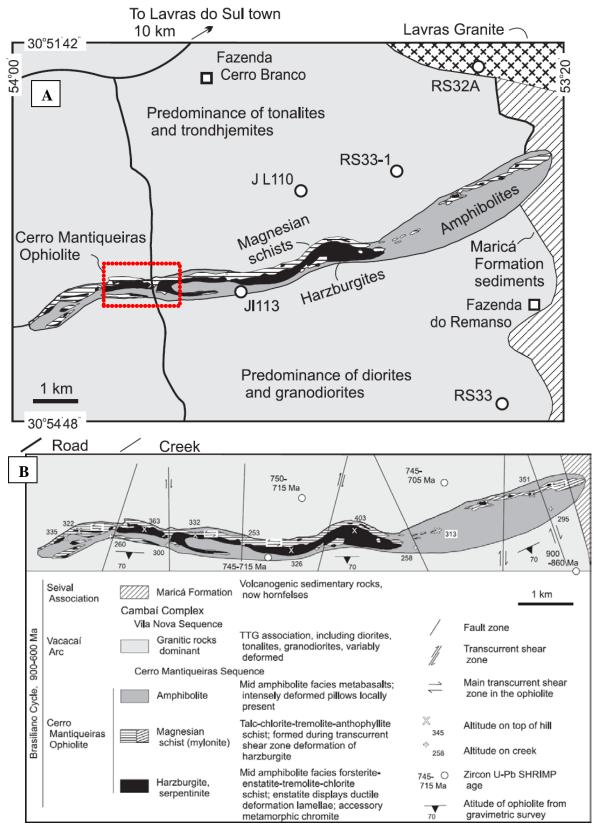
VILLWOCK, J. A. Um novo tipo de complexo básico- ultrabásico na faixa serpentinica do pré-cambriano do Rio Grande do Sul. **Notas e Estudos**, Porto Alegre, v. 2, n.1, p. 15-21, 1970.

WICKS, F. J., WHITTAKER, E. J. W. A Reappraisal of the Structure of the Serpentine Minerals. **Canadian Mineralogist**, v. 13, p. 227-243, 1975.

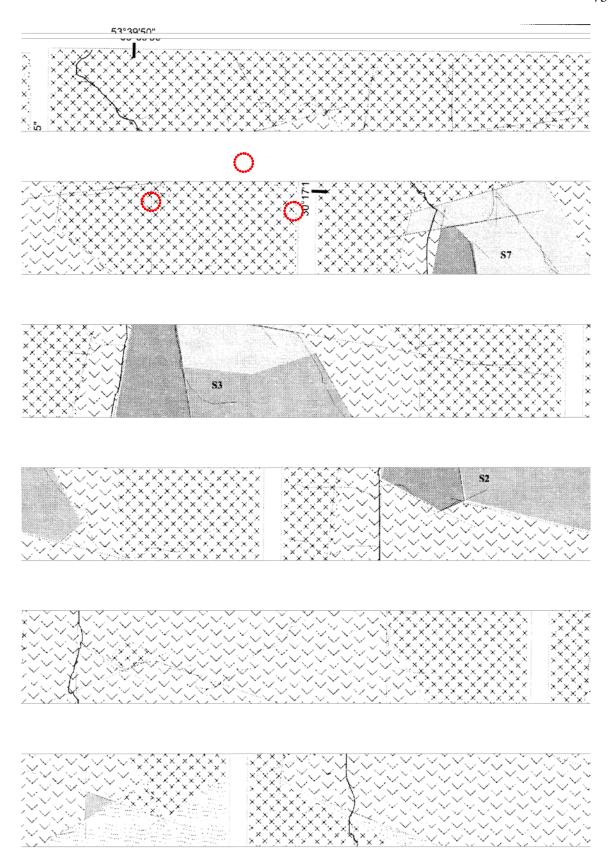
_____&___. Serpentinite textures and serpentinization. **Canadian Mineralogist**, v. 15, 459p, 1977.

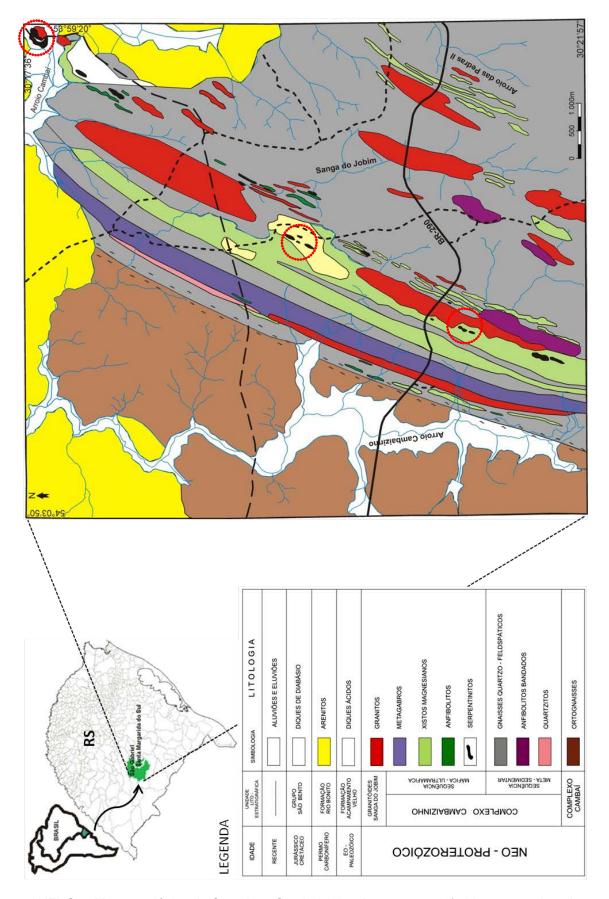

WILDNER, W. Caracterização Geológica e Geoquímica das Sequências Ultramáficas e Vulcano- Sedimentares da Região da Bossoroca- RS. 1990. 170 f. Porto Alegre. Dissertação (Mestrado em Geociências) - Instituto de Geociências, Curso de Pós- graduação em Geociências, Universidade Federal do Rio Grande do Sul, 1990.

WILDNER, W. et al. **Mapa geológico do Estado do Rio Grande do Sul**. Porto Alegre: CPRM, 2006. Escala. 1:750.000.


WINTER, J. D. An Introduction to Igneous and Metamorphic Petrology. New Jersey,. Prentice Hall, 2001. 697 p.

ZARPELON, P. R. Geologia Estrutural, Estratigrafia e Petrologia de uma parte do *Greenstone Belt* Cerrito do Ouro, Município de São Sepé/RS. 1986. 203 f. Dissertação (Mestrado em Geociências) - Instituto de Geociências, Curso de Pós-Graduação em Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, 1986


VI. ANEXOS


ANEXO 1: Mapa Geológico de Vila Rufino Farias. A região da Serrinha situa-se na porção Sul do mapa e está destacado com legenda de hachurada. Amostragem inferida por coordenadas no detalhe em vermelho. Fonte: Szubert, et al. (1978).

ANEXO 2: (A) Mapa geológico regional do Ofiolito Cerro Mantiqueiras. (B) detalhe estratigráfico da área. Amostragem inferida por coordenadas no detalhe em vermelho. Fonte: Hartmann and Chemalle, 2003.

ANEXO 3: Mapa da área do Maciço Pedras Pretas (Menegotto, 2001). Amostragem inferida por coordenadas no detalhe em vermelho. Fonte: Lima e Cunha (2004).

ANEXO 4: Mapa geológico do Complexo Cambaizinho. Amostragem inferida por coordenadas no detalhe em vermelho. Fonte: Modificado de Remus, 1990.

Data
05.09.12 serpentinito
05.10.12 serpentinito
05.10.12 serpentinito
05.10.12 serpentinito
05.10.12 serpentinito alterado
05.10.12 saprólito serpentinito
05.10.12 saprólito serpentinito
05.10.12 serpentinito alterado
16.04.13 serpentinito
16.04.13 serpentinito maciço
16.04.13 serpentinito
01.08.12 serpentinito acamadado
01.08.12 meta-peridotito serpentinizado
meta-peri
02.08.12 serpentinito
02.08.12 serpentinito
16.04.13 serpentinito veios de crisotilo
16.04.13 serpentinito foliado
16.04.13 serpentinito maciço
16.04.13 serpentinito maciço
17.04.13 serpentinito foliado
17.04.13 serpentinito
17.04.13 harzburgito serpentinizado
17.04.13 serpentinito
17.04.13 harzburgito serpentinizado
17.04.13 harzburgito serpentinizado

ANEXO 5 Planilha dos pontos de campo. Locais: Microssonda Eletrônica (ME) e Microscopia Eletrônica de Varredura (MEV).

Local	Amostra	SiO2	AI2O3	Fe2O3	MnO	MgO	CaO	Na2O	K20	P2O5	Cr2O3	TiO2	LOI	Total
PP	UM 2	36,62	7,30	14,59	0,19	27,57	2,08	0,39	0,05	0,04	0,101	0,17	10,3	99,51
PP	UM 3	37,39	6,00	15,59	0,20	27,27	3,05	0,54	0,05	0,04	0,108	0,27	8,9	99,49
PP	UM 6	36,22	6,02	14,73	0,22	27,94	1,36	0,22	0,04	0,04	0,097	0,18	12,2	99,46
PP	UM 8	35,92	4,49	14,84	0,19	29,97	1,38	0,19	0,03	0,04	0,111	0,12	12,1	99,48
SE	UM 10A	40,66	0,89	7,30	0,10	36,60	0,05	0,00	0,00	0,02	0,427	0,01	12,9	99,36
SE	UM 10B	40,05	1,08	6,36	0,10	37,56	0,03	0,00	0,00	0,02	0,307	0,01	13,6	99,35
SE	UM 10D	38,92	0,62	8,82	0,08	37,54	0,00	0,00	0,00	0,01	0,369	0,00	12,8	99,38
SE	UM 23A	37,28	2,03	8,99	0,09	36,82	0,03	0,00	0,00	0,00	0,378	0,0	13,5	99,38
SE	UM 23B	37,55	1,46	9,19	0,07	37,39	0,08	0,00	0,00	0,01	0,328	0,0	13,0	99,38
SE	UM 23C	38,65	1,09	7,91	0,15	37,55	0,04	0,00	0,00	0,02	0,375	0,0	13,3	99,37
SE	UM 23D	38,35	0,80	7,98	0,24	37,44	0,14	0,00	0,00	0,07	0,362	0,0	13,7	99,36
СВ	CCS 9A	39,29	0,60	10,81	0,17	34,04	0,03	0,00	0,01	0,00	0,300	0,01	13,8	99,40
СВ	CCS 9B	38,90	1,12	11,08	0,19	33,44	0,04	0,00	0,02	0,00	0,356	0,02	13,9	99,41
СВ	ccs	39,55	1,46	9,03	0,07	34,98	0,01	0,00	0,00	0,00	0,435	0,01	13,6	99,40
CM	UM 26A	38,31	0,22	8,25	0,08	38,70	0,02	0,00	0,00	0,00	0,639	0,0	12,8	99,33
CM	UM 26B	38,35	0,16	7,47	0,10	38,91	0,00	0,00	0,00	0,00	0,501	0,0	13,6	99,36
CM	UM 26C	38,34	0,21	7,06	0,05	39,42	0,00	0,00	0,00	0,00	0,620	0,0	13,4	99,35
CM	UM 26D	44,30	0,57	10,56	0,17	34,40	0,10	0,00	0,00	0,00	0,560	0,0	8,6	99,42
CM	UM 26E	35,29	0,17	10,48	0,10	37,26	1,19	0,00	0,00	0,00	0,544	0,0	14,2	99,38
CM	UM 26F	43,94	0,82	10,93	0,16	35,50	0,08	0,00	0,00	0,00	0,340	0,0	7,5	99,41

ANEXO 6: Resultados analíticos para elementos maiores das unidades ultramáficas. Óxidos em peso%. LOI: perda ao fogo (1000°C); PP: Pedras Pretas; SE: Serrinha; CB: Complexo Cambaizinho; CM: Cerro Mantiqueiras.

Local	Amostras	Ba	Be	Ce	Co	Cs	Dy	Er	Eu	Ga	Gd	Hf	Но	La
PP	UM 2	18	0	1,4	110,6	0,4	0,20	0,06	0,21	6,0	0,17	0,1	0,03	1,0
PP	UM 3	18	0	1,9	126,4	0,3	0,33	0,23	0,22	5,4	0,39	0,2	0,05	1,1
PP	UM 6	24	0	1,7	159,1	0,6	0,25	0,14	0,19	5,1	0,39	0,0	0,04	1,0
PP	UM 8	10	0	1,5	145,2	0,1	0,17	0,07	0,13	3,4	0,16	0,0	0,00	0,8
SE	UM 10A	51	0	0,5	139,9	0,0	0,13	0,08	0,00	1,7	0,13	0,0	0,00	0,2
SE	UM 10B	41	4	0,2	102,1	0,0	0,00	0,00	0,00	2,0	0,06	0,0	0,00	0,0
SE	UM 10D	10	0	0,0	101,7	0,0	0,00	0,00	0,00	0,8	0,00	0,0	0,00	0,0
SE	UM 23A	10	5	0,4	117,2	0,0	0,15	0,12	0,04	2,3	0,09	0,0	0,00	0,2
SE	UM 23B	0	0	0,5	98,2	0,0	0,10	0,04	0,00	1,5	0,09	0,0	0,03	0,2
SE	UM 23C	16	2	0,2	123,5	0,0	0,08	0,00	0,00	1,2	0,00	0,0	0,00	0,2
SE	UM 23D	11	0	0,0	154,9	0,0	0,07	0,04	0,00	0,0	0,00	0,0	0,00	0,2
СВ	CCS 9A	31	0	0,5	254,8	0,9	0,00	0,10	0,00	0,9	0,11	0,2	0,02	0,4
СВ	CCS 9B	28	0	0,4	248,2	0,8	0,07	0,13	0,03	1,5	0,07	0,4	0,04	0,2
СВ	ccs	36	0	0,2	127,4	0,4	0,00	0,00	0,00	1,3	0,00	0,1	0,00	0,2
CM	UM 26A	160	0	0,2	141,8	0,0	0,06	0,00	0,00	0,5	0,06	0,0	0,00	0,4
CM	UM 26B	1	0	0,0	120,3	0,0	0,00	0,00	0,00	0,0	0,00	0,0	0,00	0,2
CM	UM 26C	0	2	0,0	113,8	0,0	0,00	0,00	0,00	0,0	0,00	0,0	0,00	0,2
CM	UM 26D	7	0	0,3	89,3	0,8	0,00	0,00	0,00	1,0	0,00	0,0	0,00	0,6
CM	UM 26E	0	0	0,0	109,7	0,0	0,00	0,00	0,00	1,4	0,00	0,0	0,00	0,0
CM	UM 26F	0	0	0,2	114,1	0,3	0,00	0,00	0,00	1,2	0,00	0,0	0,00	0,3

Amostras	Lu	Nb	Nd	Ni	Pr	Rb	Sc	Sm	Sn	Sr	Ta	Tb	Th	Tm
UM 2	0,02	0,0	0,9	784	0,20	1,7	5	0,16	6	60,2	0,0	0,02	0,0	0,02
UM 3	0,03	1,4	1,6	955	0,28	0,9	12	0,40	2	73,3	0,0	0,06	0,0	0,04
UM 6	0,03	0,0	0,6	1456	0,23	1,5	8	0,23	4	34,4	0,0	0,03	0,0	0,02
UM 8	0,02	0,0	0,0	874	0,16	0,6	5	0,14	0	25,7	0,0	0,02	0,0	0,02
UM 10A	0,00	0,0	0,0	3686	0,07	0,1	3	0,09	0	4,9	0,0	0,00	0,0	0,01
UM 10B	0,01	0,0	0,0	2284	0,00	0,0	5	0,00	2	2,0	0,0	0,00	0,0	0,00
UM 10D	0,00	0,0	0,0	2096	0,00	0,0	7	0,00	0	0,9	0,0	0,00	0,0	0,00
UM 23A	0,02	0,0	0,0	2258	0,00	0,0	11	0	1,2	0,00	0,0	0,01	0,02	0,02
UM 23B	0,00	0,2	0,0	2011	0,02	0,0	11	1	1,7	0,00	0,0	0,01	0,02	0,02
UM 23C	0,00	0,0	0,0	2311	0,00	0,2	9	0	3,1	0,00	0,0	0,00	0,00	0,00
UM 23D	0,00	0,0	0,0	2109	0,00	0,4	8	0	4,1	0,00	0,0	0,00	0,01	0,01
CCS 9A	0,02	0,4	0,4	2617	0,05	1,0	9	0,07	0	3,0	0,0	0,00	0,0	0,02
CCS 9B	0,03	0,2	0,6	3268	0,06	1,3	7	0,07	2	3,7	0,0	0,00	0,0	0,03
ccs	0,02	0,2	0,0	2236	0,05	0,7	9	0,00	1	1,6	0,0	0,00	0,0	0,01
UM 26A	0,00	0,0	0,0	2400	0,00	0,0	4	0	4,3	0,00	0,0	0,00	0,00	0,00
UM 26B	0,00	0,0	0,0	1996	0,00	0,0	7	0	0,7	0,00	0,0	0,00	0,00	0,00
UM 26C	0,00	0,0	0,0	1836	0,00	0,0	5	0	0,7	0,00	0,0	0,00	0,00	0,00
UM 26D	0,00	0,0	0,0	1069	0,00	1,1	14	2	6,2	0,00	0,0	0,00	0,01	0,00
UM 26E	0,00	0,0	0,0	1456	0,00	0,0	4	0	25,4	0,00	0,0	0,00	0,00	0,00
UM 26F	0,00	0,0	0,0	1218	0,00	0,5	15	0	2,1	0,00	0,0	0,00	0,00	0,00

Amostras	U	٧	W	Υ	Yb	Zr	Ag	As	Au	Bi	Cd	Cu	Hg	Мо
UM 2	0,0	58	0,0	0,9	0,18	2,1	0,0	0,8	4,4	0,0	0,0	54,9	0,00	0,0
UM 3	0,0	73	0,0	2,5	0,20	4,9	0,0	0,7	3,9	0,0	0,0	143,9	0,00	0,2
UM 6	0,0	47	0,0	1,6	0,16	3,0	0,0	0,7	16,2	0,0	0,0	438,3	0,03	0,2
UM 8	0,0	42	0,0	0,7	0,06	3,1	0,0	0,7	0,0	0,0	0,0	151,1	0,00	0,0
UM 10A	0,0	41	0,7	0,9	0,00	0,0	0,0	8,3	0,0	3,0	0,0	20,3	0,02	0,2
UM 10B	0,0	41	1,0	0,2	0,00	0,0	0,0	4,3	0,0	0,9	0,0	5,0	0,01	0,0
UM 10D	0,0	39	0,0	0,1	0,00	0,0	0,0	1,4	0,0	0,3	0,0	5,9	0,01	0,0
UM 23A	0,0	43	2,5	0,8	0,15	0,0	0,0	1,7	0,0	1,4	0,0	10,2	0,00	0,0
UM 23B	0,0	42	1,4	0,6	0,09	0,2	0,0	1,8	0,0	0,4	0,0	20,1	0,03	0,2
UM 23C	0,0	40	0,8	0,4	0,08	0,0	0,0	0,8	0,0	0,1	0,0	4,4	0,01	0,0
UM 23D	0,0	50	1,2	0,4	0,00	0,0	0,0	1,1	0,9	0,0	0,0	9,3	0,00	0,0
CCS 9A	0,1	36	0,8	1,3	0,11	4,0	0,0	2,4	1,6	1,3	0,1	36,0	0,03	0,0
CCS 9B	0,1	36	0,7	1,3	0,06	14,5	0,0	2,2	5,5	1,7	0,0	19,2	0,03	0,0
ccs	0,2	54	0,8	0,7	0,11	0,0	0,0	3,2	0,8	0,9	0,0	27,1	0,00	0,1
UM 26A	0,0	11	0,0	0,2	0,00	0,0	0,0	0,8	0,6	0,0	0,0	2,6	0,02	0,0
UM 26B	0,0	16	0,0	0,0	0,00	0,0	0,0	0,0	0,0	0,0	0,0	0,7	0,00	0,1
UM 26C	0,0	15	2,5	0,0	0,00	0,0	0,0	0,9	0,6	0,0	0,0	0,7	0,02	0,0
UM 26D	0,0	47	0,0	0,0	0,00	0,0	0,0	0,0	0,0	0,0	0,0	8,9	0,01	0,4
UM 26E	0,0	26	0,0	0,0	0,00	0,0	0,0	2,2	0,0	0,0	0,0	7,1	0,02	0,0
UM 26F	0,0	31	0,5	0,0	0,00	0,0	0,0	0,0	0,0	0,0	0,0	6,3	0,02	0,3

Amostras	Ni	Pb	Sb	Se	Τĺ	Zn	Total
UM 2	708,4	11,5	0,0	0,0	0,0	47	99,51
UM 3	882,6	1,1	0,0	0,0	0,0	37	99,49
UM 6	1408,3	1,7	0,0	0,0	0,0	42	99,46
UM 8	865,2	0,7	0,0	0,0	0,0	54	99,48
UM 10A	3622,4	1,1	0,0	0,0	0,0	34	99,36
UM 10B	2253,0	0,3	0,0	0,0	0,0	17	99,35
UM 10D	2084,9	1,1	0,0	0,0	0,0	23	99,38
UM 23A	2308,8	1,1	0,0	0,0	0,0	38	99,38
UM 23B	2157,6	0,8	0,0	0,0	0,0	41	99,38
UM 23C	2604,5	0,6	0,0	0,0	0,0	42	99,37
UM 23D	2184,9	0,8	0,0	0,0	0,0	40	99,36
CCS 9A	2562,7	0,4	0,0	0,0	0,6	72	99,40
CCS 9B	3167,7	0,3	0,0	0,0	0,7	31	99,41
CCS	2134,7	0,1	0,0	0,0	0,0	26	99,40
UM 26A	2699,3	1,6	0,0	0,0	0,0	27	99,33
UM 26B	2183,4	2,1	0,0	0,0	0,0	10	99,36
UM 26C	1895,0	0,8	0,0	0,0	0,0	7	99,35
UM 26D	957,4	1,7	0,0	0,0	0,0	24	99,42
UM 26E	1563,3	3,2	0,0	0,0	0,0	5	99,38
UM 26F	1056,0	3,0	0,0	0,0	0,0	25	99,41

ANEXO 7: Resultados analíticos para os elementos traço das unidades ultramáficas. Elementos traço em ppm. PP: Pedras Pretas; SE: Serrinha; CB: Complexo Cambaizinho; CM: Cerro Mantiqueiras.

UM 26C

UM 26C

Alliostia	OW ZOO	OW ZOC	OW ZOC	OW ZOO	OW ZOO	OW ZOO	OW ZOO	OWI ZOO	OW ZOC
Mineral	olivina	olivina	olivina	olivina	olivina	olivina	olivina	olivina	olivina
SiO2	41,043	41,210	40,904	40,352	40,452	40,181	39,577	39,631	39,788
TiO2	0,002	0,000	0,015	0,011	0,009	0,000	0,012	0,019	0,001
AI203	0,000	0,003	0,006	0,009	0,006	0,047	0,050	0,091	0,027
FeO	11,449	11,429	11,464	11,496	11,527	11,947	11,980	12,064	11,461
MnO	0,181	0,237	0,207	0,204	0,160	0,192	0,164	0,220	0,178
MgO	48,696	48,770	47,995	47,411	48,329	49,143	47,971	47,128	47,554
CaO	0,018	0,000	0,032	0,000	0,006	0,017	0,000	0,020	0,003
Na2O	0,003	0,000	0,000	0,027	0,000	0,000	0,026	0,000	0,000
K20	0,008	0,000	0,008	0,015	0,004	0,010	0,000	0,000	0,000
Cr2O3	0,003	0,006	0,000	0,000	0,021	0,000	0,004	0,000	0,000
NiO	0,243	0,272	0,253	0,280	0,314	0,351	0,409	0,330	0,336
Total	101,650	101,930	100,880	99,810	100,830	101,890	100,190	99,500	99,350
Si	0,997	0,998	1,001	1,000	0,992	0,979	0,982	0,989	0,991
AI	0,000	0,000	0,000	0,000	0,000	0,001	0,001	0,003	0,001
Ti	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe2	0,233	0,232	0,235	0,238	0,237	0,243	0,248	0,252	0,239
Mn	0,004	0,005	0,004	0,004	0,003	0,004	0,003	0,005	0,004
Mg	1,764	1,761	1,752	1,751	1,768	1,785	1,774	1,753	1,766
Ca	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,001	0,000
Na	0,000	0,000	0,000	0,001	0,000	0,000	0,001	0,000	0,000
K	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ni	0,005	0,005	0,005	0,006	0,006	0,007	0,008	0,007	0,007
Cations	3,003	3,001	2,998	3,000	3,006	3,019	3,017	3,010	3,008
Fe_FeMg	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,13	0,12
Mg_FeMg	0,88	0,88	0,88	0,88	0,88	0,88	0,88	0,87	0,88
Amostra	LIM 26C	LIM 26C	LIM 26C	LIM 26C	LIM 26C	LIM 26C	LIM 26C	LIM 26C	LIM 26C
Amostra Mineral	UM 26C olivina	UM 26C olivina	UM 26C olivina	UM 26C olivina	UM 26C	UM 26C	UM 26C	UM 26C	UM 26C
Mineral	olivina	olivina	olivina	olivina	olivina	olivina	olivina	olivina	olivina
Mineral SiO2	olivina 39,702	olivina 40,004	olivina 39,588	olivina 39,852	olivina 39,615	olivina 39,556	olivina 40,165	olivina 40,335	olivina 40,426
Mineral SiO2 TiO2	olivina 39,702 0,000	olivina 40,004 0,031	olivina 39,588 0,005	olivina 39,852 0,020	olivina 39,615 0,020	olivina 39,556 0,000	olivina 40,165 0,010	olivina 40,335 0,016	olivina 40,426 0,035
SiO2 TiO2 Al2O3	39,702 0,000 0,044	olivina 40,004 0,031 0,021	olivina 39,588 0,005 0,042	olivina 39,852 0,020 0,046	39,615 0,020 0,047	39,556 0,000 0,002	olivina 40,165 0,010 0,000	olivina 40,335 0,016 0,021	olivina 40,426 0,035 0,000
Mineral SiO2 TiO2 Al2O3 FeO	olivina 39,702 0,000 0,044 11,487	olivina 40,004 0,031 0,021 12,120	olivina 39,588 0,005 0,042 11,669	olivina 39,852 0,020 0,046 12,001	olivina 39,615 0,020 0,047 12,067	olivina 39,556 0,000 0,002 11,955	olivina 40,165 0,010 0,000 12,058	olivina 40,335 0,016 0,021 11,837	olivina 40,426 0,035 0,000 11,822
SiO2 TiO2 Al2O3 FeO MnO	olivina 39,702 0,000 0,044 11,487 0,136	olivina 40,004 0,031 0,021 12,120 0,183	olivina 39,588 0,005 0,042 11,669 0,139	olivina 39,852 0,020 0,046 12,001 0,246	olivina 39,615 0,020 0,047 12,067 0,173	olivina 39,556 0,000 0,002 11,955 0,141	olivina 40,165 0,010 0,000 12,058 0,159	olivina 40,335 0,016 0,021 11,837 0,184	olivina 40,426 0,035 0,000 11,822 0,153
SiO2 TiO2 Al2O3 FeO MnO	olivina 39,702 0,000 0,044 11,487 0,136 47,504	olivina 40,004 0,031 0,021 12,120 0,183 47,784	olivina 39,588 0,005 0,042 11,669 0,139 47,368	olivina 39,852 0,020 0,046 12,001 0,246 48,122	olivina 39,615 0,020 0,047 12,067 0,173 47,630	olivina 39,556 0,000 0,002 11,955 0,141 47,901	olivina 40,165 0,010 0,000 12,058 0,159 47,577	olivina 40,335 0,016 0,021 11,837 0,184 48,070	olivina 40,426 0,035 0,000 11,822 0,153 48,099
SiO2 TiO2 Al2O3 FeO MnO MgO CaO	olivina 39,702 0,000 0,044 11,487 0,136 47,504 0,023	olivina 40,004 0,031 0,021 12,120 0,183 47,784 0,005	olivina 39,588 0,005 0,042 11,669 0,139 47,368 0,000	olivina 39,852 0,020 0,046 12,001 0,246 48,122 0,000	olivina 39,615 0,020 0,047 12,067 0,173 47,630 0,000	olivina 39,556 0,000 0,002 11,955 0,141 47,901 0,003	olivina 40,165 0,010 0,000 12,058 0,159 47,577 0,000	olivina 40,335 0,016 0,021 11,837 0,184 48,070 0,000	olivina 40,426 0,035 0,000 11,822 0,153 48,099 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O	olivina 39,702 0,000 0,044 11,487 0,136 47,504 0,023 0,000	olivina 40,004 0,031 0,021 12,120 0,183 47,784 0,005 0,000	olivina 39,588 0,005 0,042 11,669 0,139 47,368 0,000 0,000	olivina 39,852 0,020 0,046 12,001 0,246 48,122 0,000 0,000	olivina 39,615 0,020 0,047 12,067 0,173 47,630 0,000 0,000	olivina 39,556 0,000 0,002 11,955 0,141 47,901 0,003 0,014	olivina 40,165 0,010 0,000 12,058 0,159 47,577 0,000 0,000	olivina 40,335 0,016 0,021 11,837 0,184 48,070 0,000 0,005	olivina 40,426 0,035 0,000 11,822 0,153 48,099 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O	olivina 39,702 0,000 0,044 11,487 0,136 47,504 0,023 0,000 0,000	olivina 40,004 0,031 0,021 12,120 0,183 47,784 0,005 0,000 0,000	olivina 39,588 0,005 0,042 11,669 0,139 47,368 0,000 0,000 0,000	olivina 39,852 0,020 0,046 12,001 0,246 48,122 0,000 0,000 0,000	olivina 39,615 0,020 0,047 12,067 0,173 47,630 0,000 0,000 0,010	olivina 39,556 0,000 0,002 11,955 0,141 47,901 0,003 0,014 0,008	olivina 40,165 0,010 0,000 12,058 0,159 47,577 0,000 0,000 0,000	olivina 40,335 0,016 0,021 11,837 0,184 48,070 0,000 0,005 0,004	olivina 40,426 0,035 0,000 11,822 0,153 48,099 0,000 0,000 0,005
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3	olivina 39,702 0,000 0,044 11,487 0,136 47,504 0,023 0,000 0,000	olivina 40,004 0,031 0,021 12,120 0,183 47,784 0,005 0,000 0,000 0,011	olivina 39,588 0,005 0,042 11,669 0,139 47,368 0,000 0,000 0,000 0,001	olivina 39,852 0,020 0,046 12,001 0,246 48,122 0,000 0,000 0,000 0,009 0,007	olivina 39,615 0,020 0,047 12,067 0,173 47,630 0,000 0,000 0,010 0,000	olivina 39,556 0,000 0,002 11,955 0,141 47,901 0,003 0,014 0,008 0,000	olivina 40,165 0,010 0,000 12,058 0,159 47,577 0,000 0,000 0,000 0,000	olivina 40,335 0,016 0,021 11,837 0,184 48,070 0,000 0,005 0,004 0,000	olivina 40,426 0,035 0,000 11,822 0,153 48,099 0,000 0,000 0,005 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO	olivina 39,702 0,000 0,044 11,487 0,136 47,504 0,023 0,000 0,000 0,000 0,000	olivina 40,004 0,031 0,021 12,120 0,183 47,784 0,005 0,000 0,000 0,011 0,398	olivina 39,588 0,005 0,042 11,669 0,139 47,368 0,000 0,000 0,000 0,001 0,002 0,015 0,343	olivina 39,852 0,020 0,046 12,001 0,246 48,122 0,000 0,000 0,000 0,007 0,384	olivina 39,615 0,020 0,047 12,067 0,173 47,630 0,000 0,000 0,010 0,000 0,0430	olivina 39,556 0,000 0,002 11,955 0,141 47,901 0,003 0,014 0,008 0,000 0,326	olivina 40,165 0,010 0,000 12,058 0,159 47,577 0,000 0,000 0,000 0,000 0,000 0,300	olivina 40,335 0,016 0,021 11,837 0,184 48,070 0,000 0,005 0,004 0,000 0,413	olivina 40,426 0,035 0,000 11,822 0,153 48,099 0,000 0,000 0,005 0,000 0,391
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total	olivina 39,702 0,000 0,044 11,487 0,136 47,504 0,023 0,000 0,000 0,000 0,282 99,180	olivina 40,004 0,031 0,021 12,120 0,183 47,784 0,005 0,000 0,000 0,011 0,398 100,560	olivina 39,588 0,005 0,042 11,669 0,139 47,368 0,000 0,000 0,000 0,002 0,015 0,343 99,170	olivina 39,852 0,020 0,046 12,001 0,246 48,122 0,000 0,000 0,000 0,007 0,384 100,690	olivina 39,615 0,020 0,047 12,067 0,173 47,630 0,000 0,000 0,010 0,000 0,430 99,990	olivina 39,556 0,000 0,002 11,955 0,141 47,901 0,003 0,014 0,008 0,000 0,326 99,910	olivina 40,165 0,010 0,000 12,058 0,159 47,577 0,000 0,000 0,000 0,000 0,000 0,300 100,270	olivina 40,335 0,016 0,021 11,837 0,184 48,070 0,000 0,005 0,004 0,000 0,413 100,880	olivina 40,426 0,035 0,000 11,822 0,153 48,099 0,000 0,000 0,005 0,000 0,391 100,930
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si	olivina 39,702 0,000 0,044 11,487 0,136 47,504 0,023 0,000 0,000 0,000 0,282 99,180 0,991	olivina 40,004 0,031 0,021 12,120 0,183 47,784 0,005 0,000 0,000 0,011 0,398 100,560 0,988	olivina 39,588 0,005 0,042 11,669 0,139 47,368 0,000 0,000 0,000 0,002 0,015 0,343 99,170 0,989	olivina 39,852 0,020 0,046 12,001 0,246 48,122 0,000 0,000 0,000 0,009 0,007 0,384 100,690 0,983	olivina 39,615 0,020 0,047 12,067 0,173 47,630 0,000 0,000 0,010 0,000 0,430 99,990 0,985	olivina 39,556 0,000 0,002 11,955 0,141 47,901 0,003 0,014 0,008 0,000 0,326 99,910 0,983	olivina 40,165 0,010 0,000 12,058 0,159 47,577 0,000 0,000 0,000 0,000 0,000 100,270 0,993	olivina 40,335 0,016 0,021 11,837 0,184 48,070 0,000 0,005 0,004 0,000 0,413 100,880 0,991	olivina 40,426 0,035 0,000 11,822 0,153 48,099 0,000 0,000 0,005 0,000 0,391 100,930 0,992
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total	olivina 39,702 0,000 0,044 11,487 0,136 47,504 0,023 0,000 0,000 0,000 0,282 99,180 0,991 0,001	olivina 40,004 0,031 0,021 12,120 0,183 47,784 0,005 0,000 0,000 0,011 0,398 100,560 0,988 0,001	olivina 39,588 0,005 0,042 11,669 0,139 47,368 0,000 0,000 0,000 0,002 0,015 0,343 99,170 0,989 0,001	olivina 39,852 0,020 0,046 12,001 0,246 48,122 0,000 0,000 0,000 0,007 0,384 100,690 0,983 0,001	olivina 39,615 0,020 0,047 12,067 0,173 47,630 0,000 0,000 0,010 0,000 0,430 99,990 0,985 0,001	olivina 39,556 0,000 0,002 11,955 0,141 47,901 0,003 0,014 0,008 0,000 0,326 99,910 0,983 0,000	olivina 40,165 0,010 0,000 12,058 0,159 47,577 0,000 0,000 0,000 0,000 0,000 0,000 100,270 0,993 0,000	olivina 40,335 0,016 0,021 11,837 0,184 48,070 0,000 0,005 0,004 0,000 0,413 100,880 0,991 0,001	olivina 40,426 0,035 0,000 11,822 0,153 48,099 0,000 0,005 0,000 0,391 100,930 0,992 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti	olivina 39,702 0,000 0,044 11,487 0,136 47,504 0,023 0,000 0,000 0,000 0,282 99,180 0,991 0,001 0,000	olivina 40,004 0,031 0,021 12,120 0,183 47,784 0,005 0,000 0,001 0,398 100,560 0,988 0,001 0,001	olivina 39,588 0,005 0,042 11,669 0,139 47,368 0,000 0,000 0,000 0,001 0,343 99,170 0,989 0,001 0,000	olivina 39,852 0,020 0,046 12,001 0,246 48,122 0,000 0,000 0,009 0,007 0,384 100,690 0,983 0,001 0,000	olivina 39,615 0,020 0,047 12,067 0,173 47,630 0,000 0,000 0,010 0,000 0,430 99,990 0,985 0,001 0,000	olivina 39,556 0,000 0,002 11,955 0,141 47,901 0,003 0,014 0,008 0,000 0,326 99,910 0,983 0,000 0,000	olivina 40,165 0,010 0,000 12,058 0,159 47,577 0,000 0,000 0,000 0,000 0,300 100,270 0,993 0,000 0,000	olivina 40,335 0,016 0,021 11,837 0,184 48,070 0,000 0,005 0,004 0,000 0,413 100,880 0,991 0,001 0,000	olivina 40,426 0,035 0,000 11,822 0,153 48,099 0,000 0,005 0,000 0,391 100,930 0,992 0,000 0,001
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2	olivina 39,702 0,000 0,044 11,487 0,136 47,504 0,023 0,000 0,000 0,000 0,282 99,180 0,991 0,001 0,000 0,240	olivina 40,004 0,031 0,021 12,120 0,183 47,784 0,005 0,000 0,000 0,011 0,398 100,560 0,988 0,001 0,001 0,250	olivina 39,588 0,005 0,042 11,669 0,139 47,368 0,000 0,000 0,002 0,015 0,343 99,170 0,989 0,001 0,000 0,244	olivina 39,852 0,020 0,046 12,001 0,246 48,122 0,000 0,000 0,009 0,007 0,384 100,690 0,983 0,001 0,000 0,248	olivina 39,615 0,020 0,047 12,067 0,173 47,630 0,000 0,000 0,010 0,000 0,430 99,990 0,985 0,001 0,000 0,251	olivina 39,556 0,000 0,002 11,955 0,141 47,901 0,003 0,014 0,008 0,000 0,326 99,910 0,983 0,000 0,000 0,000 0,249	olivina 40,165 0,010 0,000 12,058 0,159 47,577 0,000	olivina 40,335 0,016 0,021 11,837 0,184 48,070 0,000 0,005 0,004 0,000 0,413 100,880 0,991 0,001 0,000 0,243	olivina 40,426 0,035 0,000 11,822 0,153 48,099 0,000 0,005 0,000 0,391 100,930 0,992 0,000 0,001 0,243
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn	olivina 39,702 0,000 0,044 11,487 0,136 47,504 0,023 0,000 0,000 0,000 0,282 99,180 0,991 0,001 0,000 0,240 0,003	olivina 40,004 0,031 0,021 12,120 0,183 47,784 0,005 0,000 0,000 0,011 0,398 100,560 0,988 0,001 0,001 0,250 0,004	olivina 39,588 0,005 0,042 11,669 0,139 47,368 0,000 0,000 0,002 0,015 0,343 99,170 0,989 0,001 0,000 0,244 0,003	olivina 39,852 0,020 0,046 12,001 0,246 48,122 0,000 0,000 0,009 0,007 0,384 100,690 0,983 0,001 0,000 0,248 0,005	olivina 39,615 0,020 0,047 12,067 0,173 47,630 0,000 0,000 0,010 0,000 0,430 99,990 0,985 0,001 0,000 0,251 0,004	olivina 39,556 0,000 0,002 11,955 0,141 47,901 0,003 0,014 0,008 0,000 0,326 99,910 0,983 0,000 0,000 0,000 0,249 0,003	olivina 40,165 0,010 0,000 12,058 0,159 47,577 0,000 0,000 0,000 0,000 0,000 100,270 0,993 0,000 0,000 0,000 0,249 0,003	olivina 40,335 0,016 0,021 11,837 0,184 48,070 0,000 0,005 0,004 0,000 0,413 100,880 0,991 0,001 0,000 0,243 0,004	olivina 40,426 0,035 0,000 11,822 0,153 48,099 0,000 0,005 0,000 0,391 100,930 0,992 0,000 0,001 0,243 0,003
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg	olivina 39,702 0,000 0,044 11,487 0,136 47,504 0,023 0,000 0,000 0,000 0,282 99,180 0,991 0,001 0,000 0,240 0,003 1,767	olivina 40,004 0,031 0,021 12,120 0,183 47,784 0,005 0,000 0,001 0,398 100,560 0,988 0,001 0,001 0,250 0,004 1,759	olivina 39,588 0,005 0,042 11,669 0,139 47,368 0,000 0,000 0,002 0,015 0,343 99,170 0,989 0,001 0,000 0,244 0,003 1,765	olivina 39,852 0,020 0,046 12,001 0,246 48,122 0,000 0,000 0,009 0,007 0,384 100,690 0,983 0,001 0,000 0,248 0,005 1,770	olivina 39,615 0,020 0,047 12,067 0,173 47,630 0,000 0,000 0,010 0,000 0,430 99,990 0,985 0,001 0,000 0,251 0,004 1,765	olivina 39,556 0,000 0,002 11,955 0,141 47,901 0,003 0,014 0,008 0,000 0,326 99,910 0,983 0,000 0,983 0,000 0,000 0,249 0,003 1,775	olivina 40,165 0,010 0,000 12,058 0,159 47,577 0,000 0,249 0,003 1,754	olivina 40,335 0,016 0,021 11,837 0,184 48,070 0,000 0,005 0,004 0,000 0,413 100,880 0,991 0,001 0,000 0,243 0,004 1,761	olivina 40,426 0,035 0,000 11,822 0,153 48,099 0,000 0,005 0,000 0,391 100,930 0,992 0,000 0,001 0,243 0,003 1,760
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca	olivina 39,702 0,000 0,044 11,487 0,136 47,504 0,023 0,000 0,000 0,000 0,282 99,180 0,991 0,001 0,000 0,240 0,003 1,767 0,001	olivina 40,004 0,031 0,021 12,120 0,183 47,784 0,005 0,000 0,001 0,398 100,560 0,988 0,001 0,001 0,250 0,004 1,759 0,000	olivina 39,588 0,005 0,042 11,669 0,139 47,368 0,000 0,000 0,002 0,015 0,343 99,170 0,989 0,001 0,000 0,244 0,003 1,765 0,000	olivina 39,852 0,020 0,046 12,001 0,246 48,122 0,000 0,000 0,009 0,007 0,384 100,690 0,983 0,001 0,000 0,248 0,005 1,770 0,000	olivina 39,615 0,020 0,047 12,067 0,173 47,630 0,000 0,000 0,010 0,000 0,430 99,990 0,985 0,001 0,000 0,251 0,004 1,765 0,000	olivina 39,556 0,000 0,002 11,955 0,141 47,901 0,003 0,014 0,008 0,000 0,326 99,910 0,983 0,000 0,000 0,000 0,249 0,003 1,775 0,000	olivina 40,165 0,010 0,000 12,058 0,159 47,577 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,249 0,003 1,754 0,000	olivina 40,335 0,016 0,021 11,837 0,184 48,070 0,000 0,005 0,004 0,000 0,413 100,880 0,991 0,001 0,000 0,243 0,004 1,761 0,000	olivina 40,426 0,035 0,000 11,822 0,153 48,099 0,000 0,005 0,000 0,391 100,930 0,992 0,000 0,001 0,243 0,003 1,760 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg	olivina 39,702 0,000 0,044 11,487 0,136 47,504 0,023 0,000 0,000 0,000 0,282 99,180 0,991 0,001 0,000 0,240 0,003 1,767	olivina 40,004 0,031 0,021 12,120 0,183 47,784 0,005 0,000 0,001 0,398 100,560 0,988 0,001 0,001 0,250 0,004 1,759	olivina 39,588 0,005 0,042 11,669 0,139 47,368 0,000 0,000 0,002 0,015 0,343 99,170 0,989 0,001 0,000 0,244 0,003 1,765 0,000 0,000	olivina 39,852 0,020 0,046 12,001 0,246 48,122 0,000 0,000 0,009 0,007 0,384 100,690 0,983 0,001 0,000 0,248 0,005 1,770	olivina 39,615 0,020 0,047 12,067 0,173 47,630 0,000 0,000 0,010 0,000 0,430 99,990 0,985 0,001 0,000 0,251 0,004 1,765	olivina 39,556 0,000 0,002 11,955 0,141 47,901 0,003 0,014 0,008 0,000 0,326 99,910 0,983 0,000 0,983 0,000 0,000 0,249 0,003 1,775	olivina 40,165 0,010 0,000 12,058 0,159 47,577 0,000 0,249 0,003 1,754	olivina 40,335 0,016 0,021 11,837 0,184 48,070 0,000 0,005 0,004 0,000 0,413 100,880 0,991 0,001 0,000 0,243 0,004 1,761	olivina 40,426 0,035 0,000 11,822 0,153 48,099 0,000 0,005 0,000 0,391 100,930 0,992 0,000 0,001 0,243 0,003 1,760
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na	olivina 39,702 0,000 0,044 11,487 0,136 47,504 0,023 0,000 0,000 0,000 0,282 99,180 0,991 0,001 0,000 0,240 0,003 1,767 0,001 0,000	olivina 40,004 0,031 0,021 12,120 0,183 47,784 0,005 0,000 0,000 0,011 0,398 100,560 0,988 0,001 0,001 0,250 0,004 1,759 0,000 0,000	olivina 39,588 0,005 0,042 11,669 0,139 47,368 0,000 0,000 0,002 0,015 0,343 99,170 0,989 0,001 0,000 0,244 0,003 1,765 0,000	olivina 39,852 0,020 0,046 12,001 0,246 48,122 0,000 0,009 0,007 0,384 100,690 0,983 0,001 0,000 0,248 0,005 1,770 0,000 0,000	olivina 39,615 0,020 0,047 12,067 0,173 47,630 0,000 0,000 0,010 0,000 0,430 99,990 0,985 0,001 0,000 0,251 0,004 1,765 0,000 0,000	olivina 39,556 0,000 0,002 11,955 0,141 47,901 0,003 0,014 0,008 0,000 0,326 99,910 0,983 0,000 0,000 0,000 0,249 0,003 1,775 0,000 0,001	olivina 40,165 0,010 0,000 12,058 0,159 47,577 0,000 0,000 0,000 0,000 0,300 100,270 0,993 0,000 0,000 0,249 0,003 1,754 0,000 0,000	olivina 40,335 0,016 0,021 11,837 0,184 48,070 0,000 0,005 0,004 0,000 0,413 100,880 0,991 0,001 0,000 0,243 0,004 1,761 0,000 0,000	olivina 40,426 0,035 0,000 11,822 0,153 48,099 0,000 0,005 0,000 0,391 100,930 0,992 0,000 0,001 0,243 0,003 1,760 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K	olivina 39,702 0,000 0,044 11,487 0,136 47,504 0,023 0,000 0,000 0,000 0,282 99,180 0,991 0,001 0,000 0,240 0,003 1,767 0,001 0,000 0,000	olivina 40,004 0,031 0,021 12,120 0,183 47,784 0,005 0,000 0,000 0,011 0,398 100,560 0,988 0,001 0,001 0,250 0,004 1,759 0,000 0,000 0,000	olivina 39,588 0,005 0,042 11,669 0,139 47,368 0,000 0,000 0,002 0,015 0,343 99,170 0,989 0,001 0,000 0,244 0,003 1,765 0,000 0,000 0,000 0,000	olivina 39,852 0,020 0,046 12,001 0,246 48,122 0,000 0,000 0,009 0,007 0,384 100,690 0,983 0,001 0,000 0,248 0,005 1,770 0,000 0,000 0,000	olivina 39,615 0,020 0,047 12,067 0,173 47,630 0,000 0,000 0,010 0,000 0,430 99,990 0,985 0,001 0,000 0,251 0,000 1,765 0,000 0,000 0,000	olivina 39,556 0,000 0,002 11,955 0,141 47,901 0,003 0,014 0,008 0,000 0,326 99,910 0,983 0,000 0,000 0,249 0,000 1,775 0,000 0,001 0,000	olivina 40,165 0,010 0,000 12,058 0,159 47,577 0,000 0,000 0,000 0,000 0,300 100,270 0,993 0,000 0,000 0,249 0,003 1,754 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 40,335 0,016 0,021 11,837 0,184 48,070 0,000 0,005 0,004 0,000 0,413 100,880 0,991 0,001 0,000 0,243 0,004 1,761 0,000 0,000 0,000	olivina 40,426 0,035 0,000 11,822 0,153 48,099 0,000 0,005 0,000 0,391 100,930 0,992 0,000 0,001 0,243 0,003 1,760 0,000 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K Cr	olivina 39,702 0,000 0,044 11,487 0,136 47,504 0,023 0,000 0,000 0,000 0,282 99,180 0,991 0,001 0,000 0,240 0,003 1,767 0,001 0,000 0,000 0,000 0,000	olivina 40,004 0,031 0,021 12,120 0,183 47,784 0,005 0,000 0,001 0,398 100,560 0,988 0,001 0,001 0,250 0,004 1,759 0,000 0,000 0,000 0,000 0,000	olivina 39,588 0,005 0,042 11,669 0,139 47,368 0,000 0,000 0,002 0,015 0,343 99,170 0,989 0,001 0,000 0,244 0,003 1,765 0,000 0,000 0,000	olivina 39,852 0,020 0,046 12,001 0,246 48,122 0,000 0,000 0,009 0,007 0,384 100,690 0,983 0,001 0,000 0,248 0,005 1,770 0,000 0,000 0,000 0,000 0,000	olivina 39,615 0,020 0,047 12,067 0,173 47,630 0,000 0,000 0,010 0,000 0,430 99,990 0,985 0,001 0,000 0,251 0,000 1,765 0,000 0,000 0,000 0,000 0,000	olivina 39,556 0,000 0,002 11,955 0,141 47,901 0,003 0,014 0,008 0,000 0,326 99,910 0,983 0,000 0,000 0,249 0,003 1,775 0,000 0,001 0,000 0,000 0,000	olivina 40,165 0,010 0,000 12,058 0,159 47,577 0,000	olivina 40,335 0,016 0,021 11,837 0,184 48,070 0,000 0,005 0,004 0,000 0,413 100,880 0,991 0,001 0,000 0,243 0,004 1,761 0,000 0,000 0,000 0,000 0,000	olivina 40,426 0,035 0,000 11,822 0,153 48,099 0,000 0,005 0,000 0,391 100,930 0,992 0,000 0,001 0,243 0,003 1,760 0,000 0,000 0,000 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K Cr Ni	olivina 39,702 0,000 0,044 11,487 0,136 47,504 0,023 0,000 0,000 0,000 0,282 99,180 0,991 0,001 0,000 0,240 0,003 1,767 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 40,004 0,031 0,021 12,120 0,183 47,784 0,005 0,000 0,001 0,398 100,560 0,988 0,001 0,001 0,250 0,004 1,759 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 39,588 0,005 0,042 11,669 0,139 47,368 0,000 0,000 0,002 0,015 0,343 99,170 0,989 0,001 0,000 0,244 0,003 1,765 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 39,852 0,020 0,046 12,001 0,246 48,122 0,000 0,000 0,009 0,007 0,384 100,690 0,983 0,001 0,000 0,248 0,005 1,770 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 39,615 0,020 0,047 12,067 0,173 47,630 0,000 0,000 0,010 0,000 0,430 99,990 0,985 0,001 0,000 0,251 0,000 1,765 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 39,556 0,000 0,002 11,955 0,141 47,901 0,003 0,014 0,008 0,000 0,326 99,910 0,983 0,000 0,000 0,249 0,003 1,775 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000	olivina 40,165 0,010 0,000 12,058 0,159 47,577 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,249 0,003 1,754 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 40,335 0,016 0,021 11,837 0,184 48,070 0,000 0,005 0,004 0,000 0,413 100,880 0,991 0,001 0,000 0,243 0,004 1,761 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 40,426 0,035 0,000 11,822 0,153 48,099 0,000 0,005 0,000 0,391 100,930 0,992 0,000 0,001 0,243 0,003 1,760 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K Cr Ni Cations	olivina 39,702 0,000 0,044 11,487 0,136 47,504 0,023 0,000 0,000 0,000 0,282 99,180 0,991 0,001 0,000 0,240 0,003 1,767 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 40,004 0,031 0,021 12,120 0,183 47,784 0,005 0,000 0,000 0,011 0,398 100,560 0,988 0,001 0,001 0,250 0,004 1,759 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,008 3,011	olivina 39,588 0,005 0,042 11,669 0,139 47,368 0,000 0,000 0,002 0,015 0,343 99,170 0,989 0,001 0,000 0,244 0,003 1,765 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 39,852 0,020 0,046 12,001 0,246 48,122 0,000 0,000 0,009 0,007 0,384 100,690 0,983 0,001 0,000 0,248 0,005 1,770 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,008 3,015	olivina 39,615 0,020 0,047 12,067 0,173 47,630 0,000 0,000 0,010 0,000 0,430 99,990 0,985 0,001 0,000 0,251 0,004 1,765 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,009 3,015	olivina 39,556 0,000 0,002 11,955 0,141 47,901 0,003 0,014 0,008 0,000 0,326 99,910 0,983 0,000 0,000 0,000 0,249 0,003 1,775 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 40,165 0,010 0,000 12,058 0,159 47,577 0,000 0,000 0,000 0,000 0,300 100,270 0,993 0,000 0,000 0,249 0,003 1,754 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 40,335 0,016 0,021 11,837 0,184 48,070 0,000 0,005 0,004 0,000 0,413 100,880 0,991 0,001 0,000 0,243 0,004 1,761 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,008 3,008	olivina 40,426 0,035 0,000 11,822 0,153 48,099 0,000 0,005 0,000 0,391 100,930 0,992 0,000 0,001 0,243 0,003 1,760 0,000

Amostra UM 26C UM 26C

UM 26C

UM 26C

UM 26C

UM 26C

UM 26C

Amostra	UM 26C	UM 26C	UM 26C	UM 26C	UM 26C	UM 26C	UM 26C	UM 26C	UM 26C
Mineral	olivina	olivina	olivina	olivina	olivina	olivina	olivina	olivina	olivina
SiO2	40,537	39,637	41,101	39,243	39,899	40,418	40,097	39,616	39,087
TiO2	0,000	0,018	0,001	0,011	0,043	0,021	0,025	0,020	0,007
AI2O3	0,026	0,030	0,029	0,021	0,017	0,012	0,036	0,000	0,046
FeO	11,950	11,906	12,028	11,960	11,934	11,581	11,972	11,951	11,665
MnO	0,206	0,246	0,183	0,178	0,165	0,240	0,158	0,171	0,141
MgO	48,091	46,861	48,909	47,480	47,418	48,277	47,977	48,372	47,546
CaO	0,007	0,002	0,023	0,021	0,013	0,000	0,000	0,000	0,000
Na2O	0,005	0,000	0,006	0,000	0,000	0,000	0,008	0,000	0,000
K20	0,000	0,000	0,000	0,021	0,014	0,010	0,000	0,000	0,002
Cr2O3	0,014	0,004	0,000	0,000	0,017	0,020	0,000	0,084	0,005
NiO	0,404	0,408	0,357	0,395	0,362	0,362	0,396	0,388	0,305
Total	101,240	99,110	102,640	99,330	99,880	100,940	100,670	100,600	98,800
Si	0,993	0,993	0,992	0,982	0,991	0,991	0,988	0,979	0,982
AI	0,001	0,001	0,001	0,001	0,001	0,000	0,001	0,000	0,001
Ti	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000
Fe2	0,245	0,249	0,243	0,250	0,248	0,238	0,247	0,247	0,245
Mn	0,004	0,005	0,004	0,004	0,003	0,005	0,003	0,004	0,003
Mg	1,756	1,750	1,760	1,771	1,756	1,765	1,763	1,781	1,780
Ca	0,000	0,000	0,001	0,001	0,000	0,000	0,000	0,000	0,000
Na	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
K	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ni	0,008	0,008	0,007	0,008	0,007	0,007	0,008	0,008	0,006
Cations	3,007	3,006	3,008	3,018	3,007	3,006	3,010	3,019	3,017
Fe_FeMg	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12
Mg_FeMg	0,88	0,88	0,88	0,88	0,88	0,88	0,88	0,88	0,88
Amostra	UM 26C	UM 26C	UM 26C	UM 26C	UM 26C	UM 26C	UM 26C	UM 26C	UM 26C
Amostra Mineral	UM 26C olivina	UM 26C olivina	UM 26C olivina	UM 26C olivina	UM 26C olivina	UM 26C olivina	olivina	UM 26C olivina	UM 26C olivina
Mineral SiO2								olivina 38,940	
Mineral SiO2 TiO2	olivina 38,968 0,006	olivina 38,677 0,008	olivina 39,417 0,018	olivina 39,586 0,003	olivina 39,275 0,018	olivina 39,778 0,006	olivina 39,606 0,020	olivina	olivina 39,169 0,000
Mineral SiO2	olivina 38,968 0,006 0,029	38,677 0,008 0,030	olivina 39,417	olivina 39,586	olivina 39,275 0,018 0,042	39,778 0,006 0,003	39,606 0,020 0,056	olivina 38,940	39,169 0,000 0,071
Mineral SiO2 TiO2 Al2O3 FeO	olivina 38,968 0,006 0,029 11,810	olivina 38,677 0,008 0,030 11,767	olivina 39,417 0,018 0,061 11,964	olivina 39,586 0,003 0,028 12,258	olivina 39,275 0,018 0,042 11,995	olivina 39,778 0,006 0,003 12,020	olivina 39,606 0,020 0,056 12,119	olivina 38,940 0,000 0,000 11,975	olivina 39,169 0,000 0,071 11,728
Mineral SiO2 TiO2 Al2O3 FeO MnO	olivina 38,968 0,006 0,029 11,810 0,140	olivina 38,677 0,008 0,030 11,767 0,150	olivina 39,417 0,018 0,061 11,964 0,194	olivina 39,586 0,003 0,028 12,258 0,165	olivina 39,275 0,018 0,042 11,995 0,141	olivina 39,778 0,006 0,003 12,020 0,181	olivina 39,606 0,020 0,056 12,119 0,171	olivina 38,940 0,000 0,000 11,975 0,221	olivina 39,169 0,000 0,071 11,728 0,184
Mineral SiO2 TiO2 Al2O3 FeO MnO	olivina 38,968 0,006 0,029 11,810 0,140 47,723	olivina 38,677 0,008 0,030 11,767 0,150 46,639	olivina 39,417 0,018 0,061 11,964 0,194 47,361	olivina 39,586 0,003 0,028 12,258 0,165 47,652	olivina 39,275 0,018 0,042 11,995 0,141 47,421	olivina 39,778 0,006 0,003 12,020 0,181 47,133	olivina 39,606 0,020 0,056 12,119 0,171 47,604	olivina 38,940 0,000 0,000 11,975 0,221 47,347	olivina 39,169 0,000 0,071 11,728 0,184 47,555
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO	olivina 38,968 0,006 0,029 11,810 0,140 47,723 0,000	olivina 38,677 0,008 0,030 11,767 0,150 46,639 0,000	olivina 39,417 0,018 0,061 11,964 0,194 47,361 0,000	olivina 39,586 0,003 0,028 12,258 0,165 47,652 0,000	olivina 39,275 0,018 0,042 11,995 0,141 47,421 0,010	olivina 39,778 0,006 0,003 12,020 0,181 47,133 0,022	olivina 39,606 0,020 0,056 12,119 0,171 47,604 0,005	olivina 38,940 0,000 0,000 11,975 0,221 47,347 0,018	olivina 39,169 0,000 0,071 11,728 0,184 47,555 0,007
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O	olivina 38,968 0,006 0,029 11,810 0,140 47,723 0,000 0,035	olivina 38,677 0,008 0,030 11,767 0,150 46,639 0,000 0,021	olivina 39,417 0,018 0,061 11,964 0,194 47,361 0,000 0,014	olivina 39,586 0,003 0,028 12,258 0,165 47,652 0,000 0,003	olivina 39,275 0,018 0,042 11,995 0,141 47,421 0,010 0,003	olivina 39,778 0,006 0,003 12,020 0,181 47,133 0,022 0,011	olivina 39,606 0,020 0,056 12,119 0,171 47,604 0,005 0,000	olivina 38,940 0,000 0,000 11,975 0,221 47,347 0,018 0,002	olivina 39,169 0,000 0,071 11,728 0,184 47,555 0,007 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O	olivina 38,968 0,006 0,029 11,810 0,140 47,723 0,000 0,035 0,000	olivina 38,677 0,008 0,030 11,767 0,150 46,639 0,000 0,021 0,000	olivina 39,417 0,018 0,061 11,964 0,194 47,361 0,000 0,014 0,008	olivina 39,586 0,003 0,028 12,258 0,165 47,652 0,000 0,003 0,006	olivina 39,275 0,018 0,042 11,995 0,141 47,421 0,010 0,003 0,004	olivina 39,778 0,006 0,003 12,020 0,181 47,133 0,022 0,011 0,002	olivina 39,606 0,020 0,056 12,119 0,171 47,604 0,005 0,000 0,011	olivina 38,940 0,000 0,000 11,975 0,221 47,347 0,018 0,002 0,000	olivina 39,169 0,000 0,071 11,728 0,184 47,555 0,007 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3	olivina 38,968 0,006 0,029 11,810 0,140 47,723 0,000 0,035 0,000 0,019	olivina 38,677 0,008 0,030 11,767 0,150 46,639 0,000 0,021 0,000 0,020	olivina 39,417 0,018 0,061 11,964 0,194 47,361 0,000 0,014 0,008 0,002	olivina 39,586 0,003 0,028 12,258 0,165 47,652 0,000 0,003 0,006 0,000	olivina 39,275 0,018 0,042 11,995 0,141 47,421 0,010 0,003 0,004 0,000	olivina 39,778 0,006 0,003 12,020 0,181 47,133 0,022 0,011 0,002 0,000	olivina 39,606 0,020 0,056 12,119 0,171 47,604 0,005 0,000 0,011 0,000	olivina 38,940 0,000 0,000 11,975 0,221 47,347 0,018 0,002 0,000 0,005	olivina 39,169 0,000 0,071 11,728 0,184 47,555 0,007 0,000 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO	olivina 38,968 0,006 0,029 11,810 0,140 47,723 0,000 0,035 0,000 0,019 0,362	olivina 38,677 0,008 0,030 11,767 0,150 46,639 0,000 0,021 0,000 0,020 0,343	olivina 39,417 0,018 0,061 11,964 0,194 47,361 0,000 0,014 0,008 0,002 0,352	olivina 39,586 0,003 0,028 12,258 0,165 47,652 0,000 0,003 0,006 0,000 0,294	olivina 39,275 0,018 0,042 11,995 0,141 47,421 0,010 0,003 0,004 0,000 0,437	olivina 39,778 0,006 0,003 12,020 0,181 47,133 0,022 0,011 0,002 0,000 0,392	olivina 39,606 0,020 0,056 12,119 0,171 47,604 0,005 0,000 0,011 0,000 0,396	olivina 38,940 0,000 0,000 11,975 0,221 47,347 0,018 0,002 0,000 0,005 0,410	olivina 39,169 0,000 0,071 11,728 0,184 47,555 0,007 0,000 0,000 0,000 0,344
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total	olivina 38,968 0,006 0,029 11,810 0,140 47,723 0,000 0,035 0,000 0,019 0,362 99,090	olivina 38,677 0,008 0,030 11,767 0,150 46,639 0,000 0,021 0,000 0,020 0,343 97,650	olivina 39,417 0,018 0,061 11,964 0,194 47,361 0,000 0,014 0,008 0,002 0,352 99,390	olivina 39,586 0,003 0,028 12,258 0,165 47,652 0,000 0,003 0,006 0,000 0,294 99,990	olivina 39,275 0,018 0,042 11,995 0,141 47,421 0,010 0,003 0,004 0,000 0,437 99,350	olivina 39,778 0,006 0,003 12,020 0,181 47,133 0,022 0,011 0,002 0,000 0,392 99,550	olivina 39,606 0,020 0,056 12,119 0,171 47,604 0,005 0,000 0,011 0,000 0,396 99,990	olivina 38,940 0,000 0,000 11,975 0,221 47,347 0,018 0,002 0,000 0,005 0,410 98,920	olivina 39,169 0,000 0,071 11,728 0,184 47,555 0,007 0,000 0,000 0,000 0,344 99,060
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si	olivina 38,968 0,006 0,029 11,810 0,140 47,723 0,000 0,035 0,000 0,019 0,362 99,090 0,977	olivina 38,677 0,008 0,030 11,767 0,150 46,639 0,000 0,021 0,000 0,020 0,343 97,650 0,984	olivina 39,417 0,018 0,061 11,964 0,194 47,361 0,000 0,014 0,008 0,002 0,352 99,390 0,985	olivina 39,586 0,003 0,028 12,258 0,165 47,652 0,000 0,003 0,006 0,000 0,294 99,990 0,984	olivina 39,275 0,018 0,042 11,995 0,141 47,421 0,010 0,003 0,004 0,000 0,437 99,350 0,983	olivina 39,778 0,006 0,003 12,020 0,181 47,133 0,022 0,011 0,002 0,000 0,392 99,550 0,992	olivina 39,606 0,020 0,056 12,119 0,171 47,604 0,005 0,000 0,011 0,000 0,396 99,990 0,984	olivina 38,940 0,000 0,000 11,975 0,221 47,347 0,018 0,002 0,000 0,005 0,410 98,920 0,979	olivina 39,169 0,000 0,071 11,728 0,184 47,555 0,007 0,000 0,000 0,000 0,344 99,060 0,982
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al	olivina 38,968 0,006 0,029 11,810 0,140 47,723 0,000 0,035 0,000 0,019 0,362 99,090 0,977 0,001	olivina 38,677 0,008 0,030 11,767 0,150 46,639 0,000 0,021 0,000 0,020 0,343 97,650 0,984 0,001	olivina 39,417 0,018 0,061 11,964 0,194 47,361 0,000 0,014 0,008 0,002 0,352 99,390 0,985 0,002	olivina 39,586 0,003 0,028 12,258 0,165 47,652 0,000 0,003 0,006 0,000 0,294 99,990 0,984 0,001	olivina 39,275 0,018 0,042 11,995 0,141 47,421 0,010 0,003 0,004 0,000 0,437 99,350 0,983 0,001	olivina 39,778 0,006 0,003 12,020 0,181 47,133 0,022 0,011 0,002 0,000 0,392 99,550 0,992 0,000	olivina 39,606 0,020 0,056 12,119 0,171 47,604 0,005 0,000 0,011 0,000 0,396 99,990 0,984 0,002	olivina 38,940 0,000 0,000 11,975 0,221 47,347 0,018 0,002 0,000 0,005 0,410 98,920 0,979 0,000	olivina 39,169 0,000 0,071 11,728 0,184 47,555 0,007 0,000 0,000 0,000 0,344 99,060 0,982 0,002
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti	olivina 38,968 0,006 0,029 11,810 0,140 47,723 0,000 0,035 0,000 0,019 0,362 99,090 0,977 0,001 0,000	olivina 38,677 0,008 0,030 11,767 0,150 46,639 0,000 0,021 0,000 0,020 0,343 97,650 0,984 0,001 0,000	olivina 39,417 0,018 0,061 11,964 0,194 47,361 0,000 0,014 0,008 0,002 0,352 99,390 0,985 0,002 0,000	olivina 39,586 0,003 0,028 12,258 0,165 47,652 0,000 0,003 0,006 0,000 0,294 99,990 0,984 0,001 0,000	olivina 39,275 0,018 0,042 11,995 0,141 47,421 0,010 0,003 0,004 0,000 0,437 99,350 0,983 0,001 0,000	olivina 39,778 0,006 0,003 12,020 0,181 47,133 0,022 0,011 0,002 0,000 0,392 99,550 0,992 0,000 0,000	olivina 39,606 0,020 0,056 12,119 0,171 47,604 0,005 0,000 0,011 0,000 0,396 99,990 0,984 0,002 0,000	olivina 38,940 0,000 0,000 11,975 0,221 47,347 0,018 0,002 0,000 0,005 0,410 98,920 0,979 0,000 0,000	olivina 39,169 0,000 0,071 11,728 0,184 47,555 0,007 0,000 0,000 0,000 0,344 99,060 0,982 0,002 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2	olivina 38,968 0,006 0,029 11,810 0,140 47,723 0,000 0,035 0,000 0,019 0,362 99,090 0,977 0,001 0,000 0,248	olivina 38,677 0,008 0,030 11,767 0,150 46,639 0,000 0,021 0,000 0,020 0,343 97,650 0,984 0,001 0,000 0,250	olivina 39,417 0,018 0,061 11,964 0,194 47,361 0,000 0,014 0,008 0,002 0,352 99,390 0,985 0,002 0,000 0,250	olivina 39,586 0,003 0,028 12,258 0,165 47,652 0,000 0,003 0,006 0,000 0,294 99,990 0,984 0,001 0,000 0,255	olivina 39,275 0,018 0,042 11,995 0,141 47,421 0,010 0,003 0,004 0,000 0,437 99,350 0,983 0,001 0,000 0,251	olivina 39,778 0,006 0,003 12,020 0,181 47,133 0,022 0,011 0,002 0,000 0,392 99,550 0,992 0,000 0,000 0,251	olivina 39,606 0,020 0,056 12,119 0,171 47,604 0,005 0,000 0,011 0,000 0,396 99,990 0,984 0,002 0,000 0,252	olivina 38,940 0,000 0,000 11,975 0,221 47,347 0,018 0,002 0,000 0,005 0,410 98,920 0,979 0,000 0,000 0,000 0,000 0,252	olivina 39,169 0,000 0,071 11,728 0,184 47,555 0,007 0,000 0,000 0,000 0,344 99,060 0,982 0,002 0,000 0,246
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn	olivina 38,968 0,006 0,029 11,810 0,140 47,723 0,000 0,035 0,000 0,019 0,362 99,090 0,977 0,001 0,000 0,248 0,003	olivina 38,677 0,008 0,030 11,767 0,150 46,639 0,000 0,021 0,000 0,020 0,343 97,650 0,984 0,001 0,000 0,250 0,003	olivina 39,417 0,018 0,061 11,964 0,194 47,361 0,000 0,014 0,008 0,002 0,352 99,390 0,985 0,002 0,000 0,250 0,0004	olivina 39,586 0,003 0,028 12,258 0,165 47,652 0,000 0,003 0,006 0,000 0,294 99,990 0,984 0,001 0,000 0,255 0,003	olivina 39,275 0,018 0,042 11,995 0,141 47,421 0,010 0,003 0,004 0,000 0,437 99,350 0,983 0,001 0,000 0,251 0,003	olivina 39,778 0,006 0,003 12,020 0,181 47,133 0,022 0,011 0,002 0,000 0,392 99,550 0,992 0,000 0,000 0,251 0,004	olivina 39,606 0,020 0,056 12,119 0,171 47,604 0,005 0,000 0,011 0,000 0,396 99,990 0,984 0,002 0,000 0,252 0,0004	olivina 38,940 0,000 0,000 11,975 0,221 47,347 0,018 0,002 0,000 0,005 0,410 98,920 0,979 0,000 0,000 0,052 0,000 0,005	olivina 39,169 0,000 0,071 11,728 0,184 47,555 0,007 0,000 0,000 0,000 0,344 99,060 0,982 0,002 0,000 0,246 0,004
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg	olivina 38,968 0,006 0,029 11,810 0,140 47,723 0,000 0,035 0,000 0,019 0,362 99,090 0,977 0,001 0,000 0,248 0,003 1,784	olivina 38,677 0,008 0,030 11,767 0,150 46,639 0,000 0,021 0,000 0,020 0,343 97,650 0,984 0,001 0,000 0,250 0,003 1,769	olivina 39,417 0,018 0,061 11,964 0,194 47,361 0,000 0,014 0,008 0,002 0,352 99,390 0,985 0,002 0,000 0,250 0,004 1,765	olivina 39,586 0,003 0,028 12,258 0,165 47,652 0,000 0,003 0,006 0,000 0,294 99,990 0,984 0,001 0,000 0,255 0,003 1,766	olivina 39,275 0,018 0,042 11,995 0,141 47,421 0,010 0,003 0,004 0,000 0,437 99,350 0,983 0,001 0,000 0,251 0,003 1,769	olivina 39,778 0,006 0,003 12,020 0,181 47,133 0,022 0,011 0,002 0,000 0,392 99,550 0,992 0,000 0,000 0,000 0,251 0,004 1,752	olivina 39,606 0,020 0,056 12,119 0,171 47,604 0,005 0,000 0,011 0,000 0,396 99,990 0,984 0,002 0,000 0,252 0,004 1,764	olivina 38,940 0,000 0,000 11,975 0,221 47,347 0,018 0,002 0,000 0,005 0,410 98,920 0,979 0,000 0,000 0,005 0,252 0,005 1,775	olivina 39,169 0,000 0,071 11,728 0,184 47,555 0,007 0,000 0,000 0,000 0,344 99,060 0,982 0,002 0,000 0,246 0,004 1,777
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca	olivina 38,968 0,006 0,029 11,810 0,140 47,723 0,000 0,035 0,000 0,019 0,362 99,090 0,977 0,001 0,000 0,248 0,003 1,784 0,000	olivina 38,677 0,008 0,030 11,767 0,150 46,639 0,000 0,021 0,000 0,020 0,343 97,650 0,984 0,001 0,000 0,250 0,003 1,769 0,000	olivina 39,417 0,018 0,061 11,964 0,194 47,361 0,000 0,014 0,008 0,002 0,352 99,390 0,985 0,002 0,000 0,250 0,000 1,765 0,000	olivina 39,586 0,003 0,028 12,258 0,165 47,652 0,000 0,003 0,006 0,000 0,294 99,990 0,984 0,001 0,000 0,255 0,003 1,766 0,000	olivina 39,275 0,018 0,042 11,995 0,141 47,421 0,010 0,003 0,004 0,000 0,437 99,350 0,983 0,001 0,000 0,251 0,003 1,769 0,000	olivina 39,778 0,006 0,003 12,020 0,181 47,133 0,022 0,011 0,002 0,000 0,392 99,550 0,992 0,000 0,000 0,000 0,251 0,004 1,752 0,001	olivina 39,606 0,020 0,056 12,119 0,171 47,604 0,005 0,000 0,011 0,000 0,396 99,990 0,984 0,002 0,000 0,252 0,000 1,764 0,000	olivina 38,940 0,000 0,000 11,975 0,221 47,347 0,018 0,002 0,000 0,005 0,410 98,920 0,979 0,000 0,000 0,252 0,005 1,775 0,000	olivina 39,169 0,000 0,071 11,728 0,184 47,555 0,007 0,000 0,000 0,000 0,344 99,060 0,982 0,002 0,000 0,246 0,004 1,777 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na	olivina 38,968 0,006 0,029 11,810 0,140 47,723 0,000 0,035 0,000 0,019 0,362 99,090 0,977 0,001 0,000 0,248 0,003 1,784 0,000 0,002	olivina 38,677 0,008 0,030 11,767 0,150 46,639 0,000 0,021 0,000 0,020 0,343 97,650 0,984 0,001 0,000 0,250 0,003 1,769 0,000 0,001	olivina 39,417 0,018 0,061 11,964 0,194 47,361 0,000 0,014 0,008 0,002 0,352 99,390 0,985 0,002 0,000 0,250 0,000 1,765 0,000 0,001	olivina 39,586 0,003 0,028 12,258 0,165 47,652 0,000 0,003 0,006 0,000 0,294 99,990 0,984 0,001 0,000 0,255 0,003 1,766 0,000 0,000	olivina 39,275 0,018 0,042 11,995 0,141 47,421 0,010 0,003 0,004 0,000 0,437 99,350 0,983 0,001 0,000 0,251 0,003 1,769 0,000 0,000	olivina 39,778 0,006 0,003 12,020 0,181 47,133 0,022 0,011 0,002 0,000 0,392 99,550 0,992 0,000 0,000 0,000 0,251 0,004 1,752 0,001 0,001	olivina 39,606 0,020 0,056 12,119 0,171 47,604 0,005 0,000 0,011 0,000 0,396 99,990 0,984 0,002 0,000 0,252 0,000 1,764 0,000 0,000	olivina 38,940 0,000 0,000 11,975 0,221 47,347 0,018 0,002 0,000 0,005 0,410 98,920 0,979 0,000 0,000 0,252 0,005 1,775 0,000 0,000	olivina 39,169 0,000 0,071 11,728 0,184 47,555 0,007 0,000 0,000 0,000 0,344 99,060 0,982 0,002 0,000 0,246 0,004 1,777 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K	olivina 38,968 0,006 0,029 11,810 0,140 47,723 0,000 0,035 0,000 0,019 0,362 99,090 0,977 0,001 0,000 0,248 0,003 1,784 0,000 0,002 0,000	olivina 38,677 0,008 0,030 11,767 0,150 46,639 0,000 0,021 0,000 0,020 0,343 97,650 0,984 0,001 0,000 0,250 0,003 1,769 0,000 0,001 0,000	olivina 39,417 0,018 0,061 11,964 0,194 47,361 0,000 0,014 0,008 0,002 0,352 99,390 0,985 0,002 0,000 0,250 0,000 1,765 0,000 0,001 0,000	olivina 39,586 0,003 0,028 12,258 0,165 47,652 0,000 0,003 0,006 0,000 0,294 99,990 0,984 0,001 0,000 0,255 0,003 1,766 0,000 0,000 0,000	olivina 39,275 0,018 0,042 11,995 0,141 47,421 0,010 0,003 0,004 0,000 0,437 99,350 0,983 0,001 0,000 0,251 0,000 1,769 0,000 0,000 0,000	olivina 39,778 0,006 0,003 12,020 0,181 47,133 0,022 0,011 0,002 0,000 0,392 99,550 0,992 0,000 0,000 0,251 0,004 1,752 0,001 0,001 0,000	olivina 39,606 0,020 0,056 12,119 0,171 47,604 0,005 0,000 0,011 0,000 0,396 99,990 0,984 0,002 0,000 0,252 0,000 1,764 0,000 0,000 0,000 0,000	olivina 38,940 0,000 0,000 11,975 0,221 47,347 0,018 0,002 0,000 0,005 0,410 98,920 0,979 0,000 0,000 0,252 0,005 1,775 0,000 0,000 0,000 0,000	olivina 39,169 0,000 0,071 11,728 0,184 47,555 0,007 0,000 0,000 0,344 99,060 0,982 0,002 0,000 0,246 0,004 1,777 0,000 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K Cr	olivina 38,968 0,006 0,029 11,810 0,140 47,723 0,000 0,035 0,000 0,019 0,362 99,090 0,977 0,001 0,000 0,248 0,003 1,784 0,000 0,002 0,000 0,000	olivina 38,677 0,008 0,030 11,767 0,150 46,639 0,000 0,021 0,000 0,020 0,343 97,650 0,984 0,001 0,000 0,250 0,003 1,769 0,000 0,000 0,000 0,000	olivina 39,417 0,018 0,061 11,964 0,194 47,361 0,000 0,014 0,008 0,002 0,352 99,390 0,985 0,002 0,000 0,250 0,000 1,765 0,000 0,001 0,000 0,000	olivina 39,586 0,003 0,028 12,258 0,165 47,652 0,000 0,003 0,006 0,000 0,294 99,990 0,984 0,001 0,000 0,255 0,003 1,766 0,000 0,000 0,000 0,000 0,000	olivina 39,275 0,018 0,042 11,995 0,141 47,421 0,010 0,003 0,004 0,000 0,437 99,350 0,983 0,001 0,000 0,251 0,000 1,769 0,000 0,000 0,000 0,000 0,000	olivina 39,778 0,006 0,003 12,020 0,181 47,133 0,022 0,011 0,002 0,000 0,392 99,550 0,992 0,000 0,000 0,251 0,004 1,752 0,001 0,000 0,000 0,000 0,000	olivina 39,606 0,020 0,056 12,119 0,171 47,604 0,005 0,000 0,011 0,000 0,396 99,990 0,984 0,002 0,000 0,252 0,000 1,764 0,000 0,000 0,000 0,000 0,000	olivina 38,940 0,000 0,000 11,975 0,221 47,347 0,018 0,002 0,000 0,005 0,410 98,920 0,979 0,000 0,000 0,252 0,005 1,775 0,000 0,000 0,000 0,000 0,000 0,000	olivina 39,169 0,000 0,071 11,728 0,184 47,555 0,007 0,000 0,000 0,344 99,060 0,982 0,002 0,000 0,246 0,004 1,777 0,000 0,000 0,000 0,000 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K Cr Ni	olivina 38,968 0,006 0,029 11,810 0,140 47,723 0,000 0,035 0,000 0,019 0,362 99,090 0,977 0,001 0,000 0,248 0,003 1,784 0,000 0,002 0,000 0,000 0,000 0,000	olivina 38,677 0,008 0,030 11,767 0,150 46,639 0,000 0,021 0,000 0,020 0,343 97,650 0,984 0,001 0,000 0,250 0,003 1,769 0,000 0,001 0,000 0,001 0,000 0,000 0,000 0,000	olivina 39,417 0,018 0,061 11,964 0,194 47,361 0,000 0,014 0,008 0,002 0,352 99,390 0,985 0,002 0,000 0,250 0,000 1,765 0,000 0,001 0,000 0,000 0,000 0,000	olivina 39,586 0,003 0,028 12,258 0,165 47,652 0,000 0,003 0,006 0,000 0,294 99,990 0,984 0,001 0,000 0,255 0,003 1,766 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 39,275 0,018 0,042 11,995 0,141 47,421 0,010 0,003 0,004 0,000 0,437 99,350 0,983 0,001 0,000 0,251 0,003 1,769 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 39,778 0,006 0,003 12,020 0,181 47,133 0,022 0,011 0,002 0,000 0,392 99,550 0,992 0,000 0,000 0,251 0,004 1,752 0,001 0,001 0,000 0,000 0,000 0,000 0,000 0,000	olivina 39,606 0,020 0,056 12,119 0,171 47,604 0,005 0,000 0,011 0,000 0,396 99,990 0,984 0,002 0,000 0,252 0,000 1,764 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 38,940 0,000 0,000 11,975 0,221 47,347 0,018 0,002 0,000 0,005 0,410 98,920 0,979 0,000 0,000 0,252 0,005 1,775 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 39,169 0,000 0,071 11,728 0,184 47,555 0,007 0,000 0,000 0,000 0,344 99,060 0,982 0,002 0,000 0,246 0,004 1,777 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K Cr Ni Cations	olivina 38,968 0,006 0,029 11,810 0,140 47,723 0,000 0,035 0,000 0,019 0,362 99,090 0,977 0,001 0,000 0,248 0,003 1,784 0,000 0,002 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 38,677 0,008 0,030 11,767 0,150 46,639 0,000 0,021 0,000 0,020 0,343 97,650 0,984 0,001 0,000 0,250 0,003 1,769 0,000 0,001 0,000 0,001 0,000 0,007 3,015	olivina 39,417 0,018 0,061 11,964 0,194 47,361 0,000 0,014 0,008 0,002 0,352 99,390 0,985 0,002 0,000 0,250 0,000 1,765 0,000 0,001 0,000 0,000 0,000 0,007 3,014	olivina 39,586 0,003 0,028 12,258 0,165 47,652 0,000 0,003 0,006 0,000 0,294 99,990 0,984 0,001 0,000 0,255 0,003 1,766 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,006 3,015	olivina 39,275 0,018 0,042 11,995 0,141 47,421 0,010 0,003 0,004 0,000 0,437 99,350 0,983 0,001 0,000 0,251 0,003 1,769 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 3,016	olivina 39,778 0,006 0,003 12,020 0,181 47,133 0,022 0,011 0,002 0,000 0,392 99,550 0,992 0,000 0,000 0,000 0,251 0,004 1,752 0,001 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 39,606 0,020 0,056 12,119 0,171 47,604 0,005 0,000 0,011 0,000 0,396 99,990 0,984 0,002 0,000 0,252 0,000 1,764 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,008 3,014	olivina 38,940 0,000 0,000 11,975 0,221 47,347 0,018 0,002 0,000 0,005 0,410 98,920 0,979 0,000 0,000 0,252 0,005 1,775 0,000	olivina 39,169 0,000 0,071 11,728 0,184 47,555 0,007 0,000 0,000 0,000 0,344 99,060 0,982 0,002 0,000 0,246 0,004 1,777 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,007 3,018
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K Cr Ni	olivina 38,968 0,006 0,029 11,810 0,140 47,723 0,000 0,035 0,000 0,019 0,362 99,090 0,977 0,001 0,000 0,248 0,003 1,784 0,000 0,002 0,000 0,000 0,000 0,000	olivina 38,677 0,008 0,030 11,767 0,150 46,639 0,000 0,021 0,000 0,020 0,343 97,650 0,984 0,001 0,000 0,250 0,003 1,769 0,000 0,001 0,000 0,001 0,000 0,000 0,000 0,000	olivina 39,417 0,018 0,061 11,964 0,194 47,361 0,000 0,014 0,008 0,002 0,352 99,390 0,985 0,002 0,000 0,250 0,000 1,765 0,000 0,001 0,000 0,000 0,000 0,000	olivina 39,586 0,003 0,028 12,258 0,165 47,652 0,000 0,003 0,006 0,000 0,294 99,990 0,984 0,001 0,000 0,255 0,003 1,766 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 39,275 0,018 0,042 11,995 0,141 47,421 0,010 0,003 0,004 0,000 0,437 99,350 0,983 0,001 0,000 0,251 0,003 1,769 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 39,778 0,006 0,003 12,020 0,181 47,133 0,022 0,011 0,002 0,000 0,392 99,550 0,992 0,000 0,000 0,251 0,004 1,752 0,001 0,001 0,000 0,000 0,000 0,000 0,000 0,000	olivina 39,606 0,020 0,056 12,119 0,171 47,604 0,005 0,000 0,011 0,000 0,396 99,990 0,984 0,002 0,000 0,252 0,000 1,764 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 38,940 0,000 0,000 11,975 0,221 47,347 0,018 0,002 0,000 0,005 0,410 98,920 0,979 0,000 0,000 0,252 0,005 1,775 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 39,169 0,000 0,071 11,728 0,184 47,555 0,007 0,000 0,000 0,000 0,344 99,060 0,982 0,002 0,000 0,246 0,004 1,777 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

Amostra	UM 26C	UM 26C	UM 26C	UM 26C	UM 26C	UM 26C	UM 26C	UM 26C	UM 26C
Mineral	olivina	olivina	olivina	olivina	olivina	olivina	olivina	olivina	olivina
SiO2	39,030	38,839	39,408	39,654	39,126	39,421	38,898	39,037	40,123
TiO2	0,007	0,015	0,000	0,003	0,048	0,014	0,007	0,000	0,007
AI2O3	0,028	0,051	0,049	0,000	0,029	0,068	0,000	0,033	0,008
FeO	11,240	11,642	12,147	11,868	11,945	11,987	11,859	11,695	11,473
MnO	0,142	0,173	0,177	0,190	0,177	0,176	0,185	0,171	0,216
MgO	47,330	46,533	47,254	48,171	46,961	47,523	46,939	47,055	47,726
CaO	0,000	0,009	0,018	0,025	0,026	0,028	0,038	0,000	0,004
Na2O	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
K20	0,016	0,013	0,005	0,000	0,000	0,000	0,000	0,000	0,000
Cr2O3	0,002	0,000	0,011	0,000	0,000	0,001	0,018	0,006	0,000
NiO	0,324	0,368	0,321	0,370	0,339	0,397	0,294	0,347	0,354
Total	98,120	97,640	99,390	100,280	98,650	99,610	98,240	98,340	99,910
Si	0,985	0,987	0,986	0,982	0,985	0,983	0,984	0,985	0,994
AI	0,001	0,002	0,001	0,000	0,001	0,002	0,000	0,001	0,000
Ti	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000
Fe2	0,237	0,247	0,254	0,246	0,252	0,250	0,251	0,247	0,238
Mn	0,003	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,005
Mg	1,781	1,763	1,762	1,778	1,763	1,767	1,770	1,770	1,762
Ca	0,000	0,000	0,000	0,001	0,001	0,001	0,001	0,000	0,000
Na	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
K	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ni	0,007	0,008	0,006	0,007	0,007	0,008	0,006	0,007	0,007
Cations	3,015	3,011	3,013	3,018	3,014	3,015	3,016	3,014	3,006
Fe_FeMg	0,12	0,12	0,13	0,12	0,13	0,12	0,12	0,12	0,12
Mg_FeMg	0,88	0,88	0,87	0,88	0,87	0,88	0,88	0,88	0,88
Amostra	UM 26C	UM 26C	UM 26C	UM 26C	UM 26C	UM 3	UM 3	UM 3	UM 3
Amostra Mineral	UM 26C olivina	UM 26C olivina	UM 26C olivina	UM 26C olivina	UM 26C olivina	UM 3 olivina c	UM 3 olivina c	UM 3 olivina c	UM 3 olivina c
Mineral	olivina	olivina	olivina	olivina	olivina	olivina c	olivina c	olivina c	olivina c
Mineral SiO2	olivina 39,231	olivina 39,671	olivina 39,221	olivina 39,815	olivina 39,550	olivina c 36,304	olivina c 36,612	olivina c 36,215	olivina c 36,447
Mineral SiO2 TiO2	olivina 39,231 0,000	olivina 39,671 0,000	olivina 39,221 0,065	olivina 39,815 0,026	olivina 39,550 0,000	olivina c 36,304 0,009	olivina c 36,612 0,000	olivina c 36,215 0,013	olivina c 36,447 0,000
SiO2 TiO2 Al2O3	olivina 39,231 0,000 0,037	olivina 39,671 0,000 0,028	39,221 0,065 0,064	39,815 0,026 0,056	olivina 39,550 0,000 0,024	36,304 0,009 0,000	36,612 0,000 0,009	36,215 0,013 0,040	36,447 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO	olivina 39,231 0,000 0,037 11,229 0,240 47,495	olivina 39,671 0,000 0,028 11,616 0,150 47,596	olivina 39,221 0,065 0,064 12,067 0,147 46,875	olivina 39,815 0,026 0,056 11,911 0,145 47,576	olivina 39,550 0,000 0,024 12,166 0,180 47,216	36,304 0,009 0,000 20,835 0,241 42,066	olivina c 36,612 0,000 0,009 20,969 0,277 42,351	olivina c 36,215 0,013 0,040 20,799 0,306 41,612	olivina c 36,447 0,000 0,000 20,791 0,338 41,558
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO	olivina 39,231 0,000 0,037 11,229 0,240 47,495 0,000	olivina 39,671 0,000 0,028 11,616 0,150 47,596 0,000	olivina 39,221 0,065 0,064 12,067 0,147 46,875 0,017	olivina 39,815 0,026 0,056 11,911 0,145 47,576 0,000	olivina 39,550 0,000 0,024 12,166 0,180 47,216 0,003	36,304 0,009 0,000 20,835 0,241 42,066 0,000	36,612 0,000 0,009 20,969 0,277 42,351 0,009	olivina c 36,215 0,013 0,040 20,799 0,306 41,612 0,005	olivina c 36,447 0,000 0,000 20,791 0,338 41,558 0,022
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O	olivina 39,231 0,000 0,037 11,229 0,240 47,495 0,000 0,000	olivina 39,671 0,000 0,028 11,616 0,150 47,596 0,000 0,005	olivina 39,221 0,065 0,064 12,067 0,147 46,875 0,017 0,006	olivina 39,815 0,026 0,056 11,911 0,145 47,576 0,000 0,002	olivina 39,550 0,000 0,024 12,166 0,180 47,216 0,003 0,002	olivina c 36,304 0,009 0,000 20,835 0,241 42,066 0,000 0,016	olivina c 36,612 0,000 0,009 20,969 0,277 42,351 0,009 0,009	olivina c 36,215 0,013 0,040 20,799 0,306 41,612 0,005 0,000	olivina c 36,447 0,000 0,000 20,791 0,338 41,558 0,022 0,009
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O	olivina 39,231 0,000 0,037 11,229 0,240 47,495 0,000 0,000 0,007	olivina 39,671 0,000 0,028 11,616 0,150 47,596 0,000 0,005 0,009	olivina 39,221 0,065 0,064 12,067 0,147 46,875 0,017 0,006 0,007	olivina 39,815 0,026 0,056 11,911 0,145 47,576 0,000 0,002 0,015	olivina 39,550 0,000 0,024 12,166 0,180 47,216 0,003 0,002 0,005	olivina c 36,304 0,009 0,000 20,835 0,241 42,066 0,000 0,016 0,019	olivina c 36,612 0,000 0,009 20,969 0,277 42,351 0,009 0,009	olivina c 36,215 0,013 0,040 20,799 0,306 41,612 0,005 0,000 0,007	olivina c 36,447 0,000 0,000 20,791 0,338 41,558 0,022 0,009 0,009
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3	olivina 39,231 0,000 0,037 11,229 0,240 47,495 0,000 0,000 0,007 0,013	olivina 39,671 0,000 0,028 11,616 0,150 47,596 0,000 0,005 0,009 0,017	olivina 39,221 0,065 0,064 12,067 0,147 46,875 0,017 0,006 0,007 0,005	olivina 39,815 0,026 0,056 11,911 0,145 47,576 0,000 0,002 0,015 0,000	olivina 39,550 0,000 0,024 12,166 0,180 47,216 0,003 0,002 0,005 0,000	36,304 0,009 0,000 20,835 0,241 42,066 0,000 0,016 0,019 0,008	olivina c 36,612 0,000 0,009 20,969 0,277 42,351 0,009 0,009 0,000 0,023	olivina c 36,215 0,013 0,040 20,799 0,306 41,612 0,005 0,000 0,007 0,000	olivina c 36,447 0,000 0,000 20,791 0,338 41,558 0,022 0,009 0,009 0,002
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO	olivina 39,231 0,000 0,037 11,229 0,240 47,495 0,000 0,000 0,000 0,001 0,013 0,311	olivina 39,671 0,000 0,028 11,616 0,150 47,596 0,000 0,005 0,009 0,017 0,310	olivina 39,221 0,065 0,064 12,067 0,147 46,875 0,017 0,006 0,007 0,005 0,391	olivina 39,815 0,026 0,056 11,911 0,145 47,576 0,000 0,002 0,015 0,000 0,327	olivina 39,550 0,000 0,024 12,166 0,180 47,216 0,003 0,002 0,005 0,000 0,277	36,304 0,009 0,000 20,835 0,241 42,066 0,000 0,016 0,019 0,008 0,191	36,612 0,000 0,009 20,969 0,277 42,351 0,009 0,009 0,000 0,023 0,174	olivina c 36,215 0,013 0,040 20,799 0,306 41,612 0,005 0,000 0,007 0,000 0,120	olivina c 36,447 0,000 0,000 20,791 0,338 41,558 0,022 0,009 0,009 0,002 0,137
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total	olivina 39,231 0,000 0,037 11,229 0,240 47,495 0,000 0,000 0,007 0,013 0,311 98,560	olivina 39,671 0,000 0,028 11,616 0,150 47,596 0,000 0,005 0,009 0,017 0,310 99,400	olivina 39,221 0,065 0,064 12,067 0,147 46,875 0,017 0,006 0,007 0,005 0,391 98,860	olivina 39,815 0,026 0,056 11,911 0,145 47,576 0,000 0,002 0,015 0,000 0,327 99,870	olivina 39,550 0,000 0,024 12,166 0,180 47,216 0,003 0,002 0,005 0,000 0,277 99,420	36,304 0,009 0,000 20,835 0,241 42,066 0,000 0,016 0,019 0,008 0,191 99,690	36,612 0,000 0,009 20,969 0,277 42,351 0,009 0,009 0,000 0,023 0,174 100,430	olivina c 36,215 0,013 0,040 20,799 0,306 41,612 0,005 0,000 0,007 0,000 0,120 99,120	36,447 0,000 0,000 20,791 0,338 41,558 0,022 0,009 0,009 0,002 0,137 99,310
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si	olivina 39,231 0,000 0,037 11,229 0,240 47,495 0,000 0,000 0,007 0,013 0,311 98,560 0,986	olivina 39,671 0,000 0,028 11,616 0,150 47,596 0,000 0,005 0,009 0,017 0,310 99,400 0,989	olivina 39,221 0,065 0,064 12,067 0,147 46,875 0,017 0,006 0,007 0,005 0,391 98,860 0,986	olivina 39,815 0,026 0,056 11,911 0,145 47,576 0,000 0,002 0,015 0,000 0,327 99,870 0,989	olivina 39,550 0,000 0,024 12,166 0,180 47,216 0,003 0,002 0,005 0,000 0,277 99,420 0,988	36,304 0,009 0,000 20,835 0,241 42,066 0,000 0,016 0,019 0,008 0,191 99,690 0,948	36,612 0,000 0,009 20,969 0,277 42,351 0,009 0,009 0,000 0,023 0,174 100,430 0,949	olivina c 36,215 0,013 0,040 20,799 0,306 41,612 0,005 0,000 0,007 0,000 0,120 99,120 0,951	olivina c 36,447 0,000 0,000 20,791 0,338 41,558 0,022 0,009 0,009 0,009 0,002 0,137 99,310 0,955
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al	olivina 39,231 0,000 0,037 11,229 0,240 47,495 0,000 0,000 0,007 0,013 0,311 98,560 0,986 0,001	olivina 39,671 0,000 0,028 11,616 0,150 47,596 0,000 0,005 0,009 0,017 0,310 99,400 0,989 0,001	olivina 39,221 0,065 0,064 12,067 0,147 46,875 0,017 0,006 0,007 0,005 0,391 98,860 0,986 0,002	olivina 39,815 0,026 0,056 11,911 0,145 47,576 0,000 0,002 0,015 0,000 0,327 99,870 0,989 0,002	olivina 39,550 0,000 0,024 12,166 0,180 47,216 0,003 0,002 0,005 0,000 0,277 99,420 0,988 0,001	36,304 0,009 0,000 20,835 0,241 42,066 0,000 0,016 0,019 0,008 0,191 99,690 0,948 0,000	36,612 0,000 0,009 20,969 0,277 42,351 0,009 0,009 0,000 0,023 0,174 100,430 0,949 0,000	olivina c 36,215 0,013 0,040 20,799 0,306 41,612 0,005 0,000 0,007 0,000 0,120 99,120 0,951 0,001	olivina c 36,447 0,000 0,000 20,791 0,338 41,558 0,022 0,009 0,009 0,002 0,137 99,310 0,955 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti	olivina 39,231 0,000 0,037 11,229 0,240 47,495 0,000 0,000 0,007 0,013 0,311 98,560 0,986 0,001 0,000	olivina 39,671 0,000 0,028 11,616 0,150 47,596 0,000 0,005 0,009 0,017 0,310 99,400 0,989 0,001 0,000	olivina 39,221 0,065 0,064 12,067 0,147 46,875 0,017 0,006 0,007 0,005 0,391 98,860 0,986 0,002 0,001	olivina 39,815 0,026 0,056 11,911 0,145 47,576 0,000 0,002 0,015 0,000 0,327 99,870 0,989 0,002 0,000	olivina 39,550 0,000 0,024 12,166 0,180 47,216 0,003 0,002 0,005 0,000 0,277 99,420 0,988 0,001 0,000	36,304 0,009 0,000 20,835 0,241 42,066 0,000 0,016 0,019 0,008 0,191 99,690 0,948 0,000 0,000	36,612 0,000 0,009 20,969 0,277 42,351 0,009 0,000 0,023 0,174 100,430 0,949 0,000 0,000	olivina c 36,215 0,013 0,040 20,799 0,306 41,612 0,005 0,000 0,007 0,000 0,120 99,120 0,951 0,001 0,000	olivina c 36,447 0,000 0,000 20,791 0,338 41,558 0,022 0,009 0,009 0,009 0,002 0,137 99,310 0,955 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2	olivina 39,231 0,000 0,037 11,229 0,240 47,495 0,000 0,007 0,013 0,311 98,560 0,986 0,001 0,000 0,236	olivina 39,671 0,000 0,028 11,616 0,150 47,596 0,000 0,005 0,009 0,017 0,310 99,400 0,989 0,001 0,000 0,242	olivina 39,221 0,065 0,064 12,067 0,147 46,875 0,017 0,006 0,007 0,005 0,391 98,860 0,986 0,002 0,001 0,254	olivina 39,815 0,026 0,056 11,911 0,145 47,576 0,000 0,002 0,015 0,000 0,327 99,870 0,989 0,002 0,000 0,247	olivina 39,550 0,000 0,024 12,166 0,180 47,216 0,003 0,002 0,005 0,000 0,277 99,420 0,988 0,001 0,000 0,254	36,304 0,009 0,000 20,835 0,241 42,066 0,000 0,016 0,019 0,008 0,191 99,690 0,948 0,000 0,000 0,000	36,612 0,000 0,009 20,969 0,277 42,351 0,009 0,000 0,023 0,174 100,430 0,949 0,000 0,000 0,000	olivina c 36,215 0,013 0,040 20,799 0,306 41,612 0,005 0,000 0,007 0,000 0,120 99,120 0,951 0,001 0,000 0,457	olivina c 36,447 0,000 0,000 20,791 0,338 41,558 0,022 0,009 0,009 0,002 0,137 99,310 0,955 0,000 0,000 0,456
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn	olivina 39,231 0,000 0,037 11,229 0,240 47,495 0,000 0,007 0,013 0,311 98,560 0,986 0,001 0,000 0,236 0,005	olivina 39,671 0,000 0,028 11,616 0,150 47,596 0,000 0,005 0,009 0,017 0,310 99,400 0,989 0,001 0,000 0,242 0,003	olivina 39,221 0,065 0,064 12,067 0,147 46,875 0,017 0,006 0,007 0,005 0,391 98,860 0,986 0,002 0,001 0,254 0,003	olivina 39,815 0,026 0,056 11,911 0,145 47,576 0,000 0,002 0,015 0,000 0,327 99,870 0,989 0,002 0,000 0,247 0,003	olivina 39,550 0,000 0,024 12,166 0,180 47,216 0,003 0,002 0,005 0,000 0,277 99,420 0,988 0,001 0,000 0,254 0,004	olivina c 36,304 0,009 0,000 20,835 0,241 42,066 0,000 0,016 0,019 0,008 0,191 99,690 0,948 0,000 0,000 0,455 0,005	36,612 0,000 0,009 20,969 0,277 42,351 0,009 0,000 0,023 0,174 100,430 0,949 0,000 0,000 0,455 0,006	olivina c 36,215 0,013 0,040 20,799 0,306 41,612 0,005 0,000 0,007 0,000 0,120 99,120 0,951 0,001 0,000 0,457 0,007	olivina c 36,447 0,000 0,000 20,791 0,338 41,558 0,022 0,009 0,009 0,002 0,137 99,310 0,955 0,000 0,000 0,456 0,008
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg	olivina 39,231 0,000 0,037 11,229 0,240 47,495 0,000 0,007 0,013 0,311 98,560 0,986 0,001 0,000 0,236 0,005 1,779	olivina 39,671 0,000 0,028 11,616 0,150 47,596 0,000 0,005 0,009 0,017 0,310 99,400 0,989 0,001 0,000 0,242 0,003 1,769	olivina 39,221 0,065 0,064 12,067 0,147 46,875 0,017 0,006 0,007 0,005 0,391 98,860 0,986 0,002 0,001 0,254 0,003 1,757	olivina 39,815 0,026 0,056 11,911 0,145 47,576 0,000 0,002 0,015 0,000 0,327 99,870 0,989 0,002 0,000 0,247 0,003 1,762	olivina 39,550 0,000 0,024 12,166 0,180 47,216 0,003 0,002 0,005 0,000 0,277 99,420 0,988 0,001 0,000 0,254 0,004 1,759	olivina c 36,304 0,009 0,000 20,835 0,241 42,066 0,000 0,016 0,019 0,008 0,191 99,690 0,948 0,000 0,000 0,455 0,005 1,638	olivina c 36,612 0,000 0,009 20,969 0,277 42,351 0,009 0,000 0,023 0,174 100,430 0,949 0,000 0,000 0,000 0,455 0,006 1,636	olivina c 36,215 0,013 0,040 20,799 0,306 41,612 0,005 0,000 0,007 0,000 0,120 99,120 0,951 0,001 0,000 0,457 0,007 1,629	olivina c 36,447 0,000 0,000 20,791 0,338 41,558 0,022 0,009 0,009 0,002 0,137 99,310 0,955 0,000 0,000 0,456 0,008 1,623
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca	olivina 39,231 0,000 0,037 11,229 0,240 47,495 0,000 0,007 0,013 0,311 98,560 0,986 0,001 0,000 0,236 0,005 1,779 0,000	olivina 39,671 0,000 0,028 11,616 0,150 47,596 0,000 0,005 0,009 0,017 0,310 99,400 0,989 0,001 0,000 0,242 0,003 1,769 0,000	olivina 39,221 0,065 0,064 12,067 0,147 46,875 0,017 0,006 0,007 0,005 0,391 98,860 0,986 0,002 0,001 0,254 0,003 1,757 0,000	olivina 39,815 0,026 0,056 11,911 0,145 47,576 0,000 0,002 0,015 0,000 0,327 99,870 0,989 0,002 0,000 0,247 0,003 1,762 0,000	olivina 39,550 0,000 0,024 12,166 0,180 47,216 0,003 0,002 0,005 0,000 0,277 99,420 0,988 0,001 0,000 0,254 0,004 1,759 0,000	olivina c 36,304 0,009 0,000 20,835 0,241 42,066 0,000 0,016 0,019 0,008 0,191 99,690 0,948 0,000 0,000 0,455 0,005 1,638 0,000	olivina c 36,612 0,000 0,009 20,969 0,277 42,351 0,009 0,000 0,023 0,174 100,430 0,949 0,000 0,000 0,055 0,006 1,636 0,000	olivina c 36,215 0,013 0,040 20,799 0,306 41,612 0,005 0,000 0,007 0,000 0,120 99,120 0,951 0,001 0,000 0,457 0,007 1,629 0,000	olivina c 36,447 0,000 0,000 20,791 0,338 41,558 0,022 0,009 0,009 0,002 0,137 99,310 0,955 0,000 0,000 0,456 0,008 1,623 0,001
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na	olivina 39,231 0,000 0,037 11,229 0,240 47,495 0,000 0,000 0,007 0,013 0,311 98,560 0,986 0,001 0,000 0,236 0,005 1,779 0,000 0,000	olivina 39,671 0,000 0,028 11,616 0,150 47,596 0,000 0,005 0,009 0,017 0,310 99,400 0,989 0,001 0,000 0,242 0,003 1,769 0,000 0,000	olivina 39,221 0,065 0,064 12,067 0,147 46,875 0,017 0,006 0,007 0,005 0,391 98,860 0,986 0,002 0,001 0,254 0,003 1,757 0,000 0,000	olivina 39,815 0,026 0,056 11,911 0,145 47,576 0,000 0,002 0,015 0,000 0,327 99,870 0,989 0,002 0,000 0,247 0,003 1,762 0,000 0,000	olivina 39,550 0,000 0,024 12,166 0,180 47,216 0,003 0,002 0,005 0,000 0,277 99,420 0,988 0,001 0,000 0,254 0,004 1,759 0,000 0,000	36,304 0,009 0,000 20,835 0,241 42,066 0,000 0,016 0,019 0,008 0,191 99,690 0,948 0,000 0,000 0,455 0,005 1,638 0,000 0,001	36,612 0,000 0,009 20,969 0,277 42,351 0,009 0,000 0,023 0,174 100,430 0,949 0,000 0,000 0,455 0,006 1,636 0,000 0,000	olivina c 36,215 0,013 0,040 20,799 0,306 41,612 0,005 0,000 0,007 0,000 0,120 99,120 0,951 0,001 0,000 0,457 0,007 1,629 0,000 0,000	olivina c 36,447 0,000 0,000 20,791 0,338 41,558 0,022 0,009 0,009 0,002 0,137 99,310 0,955 0,000 0,000 0,456 0,008 1,623 0,001 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K	olivina 39,231 0,000 0,037 11,229 0,240 47,495 0,000 0,007 0,013 0,311 98,560 0,986 0,001 0,000 0,236 0,005 1,779 0,000 0,000 0,000	olivina 39,671 0,000 0,028 11,616 0,150 47,596 0,000 0,005 0,009 0,017 0,310 99,400 0,989 0,001 0,000 0,242 0,003 1,769 0,000 0,000 0,000	olivina 39,221 0,065 0,064 12,067 0,147 46,875 0,017 0,006 0,007 0,005 0,391 98,860 0,986 0,002 0,001 0,254 0,003 1,757 0,000 0,000	olivina 39,815 0,026 0,056 11,911 0,145 47,576 0,000 0,002 0,015 0,000 0,327 99,870 0,989 0,002 0,000 0,247 0,000 1,762 0,000 0,000 0,000	olivina 39,550 0,000 0,024 12,166 0,180 47,216 0,003 0,002 0,005 0,000 0,277 99,420 0,988 0,001 0,000 0,254 0,004 1,759 0,000 0,000 0,000	36,304 0,009 0,000 20,835 0,241 42,066 0,000 0,016 0,019 0,008 0,191 99,690 0,948 0,000 0,000 0,455 0,005 1,638 0,000 0,001	36,612 0,000 0,009 20,969 0,277 42,351 0,009 0,000 0,023 0,174 100,430 0,949 0,000 0,000 0,455 0,006 1,636 0,000 0,000	olivina c 36,215 0,013 0,040 20,799 0,306 41,612 0,005 0,000 0,007 0,000 0,120 99,120 0,951 0,001 0,000 0,457 0,007 1,629 0,000 0,000 0,000	olivina c 36,447 0,000 0,000 20,791 0,338 41,558 0,022 0,009 0,009 0,002 0,137 99,310 0,955 0,000 0,000 0,456 0,008 1,623 0,001 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K Cr	olivina 39,231 0,000 0,037 11,229 0,240 47,495 0,000 0,000 0,007 0,013 0,311 98,560 0,986 0,001 0,000 0,236 0,005 1,779 0,000 0,000 0,000 0,000 0,000	olivina 39,671 0,000 0,028 11,616 0,150 47,596 0,000 0,005 0,009 0,017 0,310 99,400 0,989 0,001 0,000 0,242 0,003 1,769 0,000 0,000 0,000 0,000 0,000	olivina 39,221 0,065 0,064 12,067 0,147 46,875 0,017 0,006 0,007 0,005 0,391 98,860 0,986 0,002 0,001 0,254 0,003 1,757 0,000 0,000 0,000	olivina 39,815 0,026 0,056 11,911 0,145 47,576 0,000 0,002 0,015 0,000 0,327 99,870 0,989 0,002 0,000 0,247 0,003 1,762 0,000 0,000 0,000 0,000 0,000	olivina 39,550 0,000 0,024 12,166 0,180 47,216 0,003 0,002 0,005 0,000 0,277 99,420 0,988 0,001 0,000 0,254 0,004 1,759 0,000 0,000 0,000 0,000 0,000	36,304 0,009 0,000 20,835 0,241 42,066 0,000 0,016 0,019 0,008 0,191 99,690 0,948 0,000 0,455 0,005 1,638 0,000 0,001 0,001	olivina c 36,612 0,000 0,009 20,969 0,277 42,351 0,009 0,000 0,023 0,174 100,430 0,949 0,000 0,000 0,455 0,006 1,636 0,000 0,000 0,000 0,000 0,000 0,000	olivina c 36,215 0,013 0,040 20,799 0,306 41,612 0,005 0,000 0,007 0,000 0,120 99,120 0,951 0,001 0,000 0,457 0,007 1,629 0,000 0,000 0,000 0,000 0,000	olivina c 36,447 0,000 0,000 20,791 0,338 41,558 0,022 0,009 0,009 0,002 0,137 99,310 0,955 0,000 0,000 0,456 0,008 1,623 0,001 0,000 0,000 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K Cr Ni	olivina 39,231 0,000 0,037 11,229 0,240 47,495 0,000 0,000 0,007 0,013 0,311 98,560 0,986 0,001 0,000 0,236 0,005 1,779 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 39,671 0,000 0,028 11,616 0,150 47,596 0,000 0,005 0,009 0,017 0,310 99,400 0,989 0,001 0,000 0,242 0,003 1,769 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 39,221 0,065 0,064 12,067 0,147 46,875 0,017 0,006 0,007 0,005 0,391 98,860 0,986 0,002 0,001 0,254 0,003 1,757 0,000 0,000 0,000 0,000 0,000	olivina 39,815 0,026 0,056 11,911 0,145 47,576 0,000 0,002 0,015 0,000 0,327 99,870 0,989 0,002 0,000 0,247 0,003 1,762 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 39,550 0,000 0,024 12,166 0,180 47,216 0,003 0,002 0,005 0,000 0,277 99,420 0,988 0,001 0,000 0,254 0,004 1,759 0,000 0,000 0,000 0,000 0,000 0,000 0,000	36,304 0,009 0,000 20,835 0,241 42,066 0,000 0,016 0,019 0,008 0,191 99,690 0,948 0,000 0,000 0,455 0,005 1,638 0,000 0,001 0,001 0,001 0,000	olivina c 36,612 0,000 0,009 20,969 0,277 42,351 0,009 0,000 0,023 0,174 100,430 0,949 0,000 0,000 0,455 0,006 1,636 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina c 36,215 0,013 0,040 20,799 0,306 41,612 0,005 0,000 0,007 0,000 0,120 99,120 0,951 0,001 0,000 0,457 0,007 1,629 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina c 36,447 0,000 0,000 20,791 0,338 41,558 0,022 0,009 0,009 0,002 0,137 99,310 0,955 0,000 0,000 0,456 0,008 1,623 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K Cr Ni Cations	olivina 39,231 0,000 0,037 11,229 0,240 47,495 0,000 0,000 0,007 0,013 0,311 98,560 0,986 0,001 0,000 0,236 0,005 1,779 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,006 3,013	olivina 39,671 0,000 0,028 11,616 0,150 47,596 0,000 0,005 0,009 0,017 0,310 99,400 0,989 0,001 0,000 0,242 0,003 1,769 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,006 3,010	olivina 39,221 0,065 0,064 12,067 0,147 46,875 0,017 0,006 0,007 0,005 0,391 98,860 0,986 0,002 0,001 0,254 0,003 1,757 0,000 0,000 0,000 0,000 0,000 0,000 0,008 3,011	olivina 39,815 0,026 0,056 11,911 0,145 47,576 0,000 0,002 0,015 0,000 0,327 99,870 0,989 0,002 0,000 0,247 0,003 1,762 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 39,550 0,000 0,024 12,166 0,180 47,216 0,003 0,002 0,005 0,000 0,277 99,420 0,988 0,001 0,000 0,254 0,004 1,759 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,006 3,012	olivina c 36,304 0,009 0,000 20,835 0,241 42,066 0,000 0,016 0,019 0,008 0,191 99,690 0,948 0,000 0,000 0,455 0,005 1,638 0,000 0,001 0,001 0,001 0,001 0,001 0,000 0,004 3,052	olivina c 36,612 0,000 0,009 20,969 0,277 42,351 0,009 0,000 0,023 0,174 100,430 0,949 0,000 0,000 0,455 0,006 1,636 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina c 36,215 0,013 0,040 20,799 0,306 41,612 0,005 0,000 0,007 0,000 0,120 99,120 0,951 0,001 0,000 0,457 0,007 1,629 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,003 3,048	olivina c 36,447 0,000 0,000 20,791 0,338 41,558 0,022 0,009 0,009 0,002 0,137 99,310 0,955 0,000 0,000 0,456 0,008 1,623 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K Cr Ni	olivina 39,231 0,000 0,037 11,229 0,240 47,495 0,000 0,000 0,007 0,013 0,311 98,560 0,986 0,001 0,000 0,236 0,005 1,779 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 39,671 0,000 0,028 11,616 0,150 47,596 0,000 0,005 0,009 0,017 0,310 99,400 0,989 0,001 0,000 0,242 0,003 1,769 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 39,221 0,065 0,064 12,067 0,147 46,875 0,017 0,006 0,007 0,005 0,391 98,860 0,986 0,002 0,001 0,254 0,003 1,757 0,000 0,000 0,000 0,000 0,000	olivina 39,815 0,026 0,056 11,911 0,145 47,576 0,000 0,002 0,015 0,000 0,327 99,870 0,989 0,002 0,000 0,247 0,003 1,762 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina 39,550 0,000 0,024 12,166 0,180 47,216 0,003 0,002 0,005 0,000 0,277 99,420 0,988 0,001 0,000 0,254 0,004 1,759 0,000 0,000 0,000 0,000 0,000 0,000 0,000	36,304 0,009 0,000 20,835 0,241 42,066 0,000 0,016 0,019 0,008 0,191 99,690 0,948 0,000 0,000 0,455 0,005 1,638 0,000 0,001 0,001 0,001 0,000	olivina c 36,612 0,000 0,009 20,969 0,277 42,351 0,009 0,000 0,023 0,174 100,430 0,949 0,000 0,000 0,455 0,006 1,636 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina c 36,215 0,013 0,040 20,799 0,306 41,612 0,005 0,000 0,007 0,000 0,120 99,120 0,951 0,001 0,000 0,457 0,007 1,629 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina c 36,447 0,000 0,000 20,791 0,338 41,558 0,022 0,009 0,009 0,002 0,137 99,310 0,955 0,000 0,000 0,456 0,008 1,623 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000

Amostra	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3
Mineral	olivina c	olivina c	olivina b	olivina b	olivina b	olivina b	olivina c	olivina c	olivina c
SiO2	36,089	36,213	35,046	36,510	37,182	35,656	34,557	35,553	34,122
TiO2	0,022	0,013	0,031	0,031	0,007	0,028	0,000	0,009	0,023
AI2O3	0,000	0,000	0,005	0,000	0,013	0,000	0,000	0,000	0,005
FeO	21,084	20,867	20,773	20,787	20,718	20,427	20,775	21,263	21,081
MnO	0,289	0,288	0,326	0,200	0,239	0,302	0,321	0,303	0,276
MgO	41,646	41,840	40,295	41,883	42,578	41,107	41,720	42,018	41,727
CaO	0,015	0,000	0,006	0,011	0,023	0,005	0,021	0,000	0,019
Na2O	0,000	0,039	0,049	0,000	0,002	0,019	0,037	0,030	0,035
K20	0,006	0,000	0,006	0,000	0,000	0,000	0,006	0,012	0,014
Cr2O3	0,014	0,000	0,000	0,000	0,000	0,052	0,013	0,000	0,011
NiO	0,189	0,213	0,218	0,177	0,215	0,241	0,194	0,153	0,083
Total	99,350	99,470	96,760	99,600	100,980	97,840	97,640	99,340	97,400
Si	0,947	0,948	0,947	0,953	0,956	0,949	0,927	0,936	0,919
AI	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ti	0,000	0,000	0,001	0,001	0,000	0,001	0,000	0,000	0,000
Fe2	0,463	0,457	0,469	0,454	0,445	0,455	0,466	0,468	0,475
Mn	0,006	0,006	0,007	0,004	0,005	0,007	0,007	0,007	0,006
Mg	1,630	1,634	1,622	1,630	1,632	1,631	1,668	1,649	1,676
Ca	0,000	0,000	0,000	0,000	0,001	0,000	0,001	0,000	0,001
Na	0,000	0,002	0,003	0,000	0,000	0,001	0,002	0,002	0,002
K	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ni	0,004	0,004	0,005	0,004	0,004	0,005	0,004	0,003	0,002
Cations	3,050	3,051	3,054	3,046	3,043	3,049	3,075	3,065	3,081
Fe_FeMg	0,22	0,22		0,22	0,21	0,22		0,22	0,22
Mg_FeMg	0,78	0,78	0,22 0,78	0,78	0,79	0,78	0,22 0,78	0,78	0,78
Mg_reMg	0,76	0,76	0,76	0,70	0,79	0,70	0,70	0,70	0,70
Amostra	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3
Amostra Mineral	UM 3 olivina b	UM 3 olivina b	UM 3 olivina b	UM 3 olivina b	UM 3 olivina b	UM 3 olivina c	UM 3 olivina c	UM 3 olivina c	UM 3 olivina c
Mineral	olivina b	olivina b	olivina b	olivina b	olivina b	olivina c	olivina c	olivina c	olivina c
Mineral SiO2	olivina b 36,168	olivina b 31,624	olivina b 32,936	olivina b 36,474	olivina b 35,207	olivina c 36,465	olivina c 35,889	olivina c 36,365	olivina c 36,601
Mineral SiO2 TiO2	olivina b 36,168 0,029	olivina b 31,624 0,049	olivina b 32,936 0,006	olivina b 36,474 0,008	olivina b 35,207 0,021	olivina c 36,465 0,000	olivina c 35,889 0,000	olivina c 36,365 0,012	olivina c 36,601 0,023
Mineral SiO2 TiO2 Al2O3	olivina b 36,168 0,029 0,026	olivina b 31,624 0,049 2,227	olivina b 32,936 0,006 0,021	olivina b 36,474 0,008 0,000	olivina b 35,207 0,021 0,000	olivina c 36,465 0,000 0,029	35,889 0,000 0,068	olivina c 36,365 0,012 0,000	olivina c 36,601 0,023 0,009
Mineral SiO2 TiO2 Al2O3 FeO	olivina b 36,168 0,029 0,026 20,699	olivina b 31,624 0,049 2,227 20,995	olivina b 32,936 0,006 0,021 19,536	olivina b 36,474 0,008 0,000 20,985	olivina b 35,207 0,021 0,000 19,582	olivina c 36,465 0,000 0,029 21,104	olivina c 35,889 0,000 0,068 21,357	olivina c 36,365 0,012 0,000 21,047	olivina c 36,601 0,023 0,009 21,066
SiO2 TiO2 Al2O3 FeO MnO	olivina b 36,168 0,029 0,026 20,699 0,293	olivina b 31,624 0,049 2,227 20,995 0,301	olivina b 32,936 0,006 0,021 19,536 0,289	olivina b 36,474 0,008 0,000 20,985 0,301	olivina b 35,207 0,021 0,000 19,582 0,297	olivina c 36,465 0,000 0,029 21,104 0,307	olivina c 35,889 0,000 0,068 21,357 0,270	olivina c 36,365 0,012 0,000 21,047 0,319	olivina c 36,601 0,023 0,009 21,066 0,290
SiO2 TiO2 AI2O3 FeO MnO MgO	olivina b 36,168 0,029 0,026 20,699 0,293 43,694	olivina b 31,624 0,049 2,227 20,995 0,301 32,449	olivina b 32,936 0,006 0,021 19,536 0,289 36,573	olivina b 36,474 0,008 0,000 20,985 0,301 40,606	olivina b 35,207 0,021 0,000 19,582 0,297 38,095	olivina c 36,465 0,000 0,029 21,104 0,307 40,939	olivina c 35,889 0,000 0,068 21,357 0,270 41,171	olivina c 36,365 0,012 0,000 21,047 0,319 41,154	olivina c 36,601 0,023 0,009 21,066 0,290 40,837
Mineral SiO2 TiO2 AI2O3 FeO MnO MgO CaO	olivina b 36,168 0,029 0,026 20,699 0,293 43,694 0,000	olivina b 31,624 0,049 2,227 20,995 0,301 32,449 0,101	olivina b 32,936 0,006 0,021 19,536 0,289 36,573 0,048	olivina b 36,474 0,008 0,000 20,985 0,301 40,606 0,025	olivina b 35,207 0,021 0,000 19,582 0,297 38,095 0,033	olivina c 36,465 0,000 0,029 21,104 0,307 40,939 0,000	olivina c 35,889 0,000 0,068 21,357 0,270 41,171 0,004	olivina c 36,365 0,012 0,000 21,047 0,319 41,154 0,000	36,601 0,023 0,009 21,066 0,290 40,837 0,014
Mineral SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O	olivina b 36,168 0,029 0,026 20,699 0,293 43,694 0,000 0,040	olivina b 31,624 0,049 2,227 20,995 0,301 32,449 0,101 0,047	olivina b 32,936 0,006 0,021 19,536 0,289 36,573 0,048 0,060	olivina b 36,474 0,008 0,000 20,985 0,301 40,606 0,025 0,007	olivina b 35,207 0,021 0,000 19,582 0,297 38,095 0,033 0,023	olivina c 36,465 0,000 0,029 21,104 0,307 40,939 0,000 0,000	olivina c 35,889 0,000 0,068 21,357 0,270 41,171 0,004 0,005	olivina c 36,365 0,012 0,000 21,047 0,319 41,154 0,000 0,030	olivina c 36,601 0,023 0,009 21,066 0,290 40,837 0,014 0,023
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O	olivina b 36,168 0,029 0,026 20,699 0,293 43,694 0,000 0,040 0,000	olivina b 31,624 0,049 2,227 20,995 0,301 32,449 0,101 0,047 0,033	olivina b 32,936 0,006 0,021 19,536 0,289 36,573 0,048 0,060 0,040	olivina b 36,474 0,008 0,000 20,985 0,301 40,606 0,025 0,007 0,000	olivina b 35,207 0,021 0,000 19,582 0,297 38,095 0,033 0,023 0,004	olivina c 36,465 0,000 0,029 21,104 0,307 40,939 0,000 0,000 0,007	olivina c 35,889 0,000 0,068 21,357 0,270 41,171 0,004 0,005 0,004	olivina c 36,365 0,012 0,000 21,047 0,319 41,154 0,000 0,030 0,000	olivina c 36,601 0,023 0,009 21,066 0,290 40,837 0,014 0,023 0,013
Mineral SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O K2O Cr2O3	olivina b 36,168 0,029 0,026 20,699 0,293 43,694 0,000 0,040 0,000 0,000	olivina b 31,624 0,049 2,227 20,995 0,301 32,449 0,101 0,047 0,033 0,000	olivina b 32,936 0,006 0,021 19,536 0,289 36,573 0,048 0,060 0,040 0,000	olivina b 36,474 0,008 0,000 20,985 0,301 40,606 0,025 0,007 0,000 0,008	olivina b 35,207 0,021 0,000 19,582 0,297 38,095 0,033 0,023 0,004 0,001	olivina c 36,465 0,000 0,029 21,104 0,307 40,939 0,000 0,000 0,000	olivina c 35,889 0,000 0,068 21,357 0,270 41,171 0,004 0,005 0,004 0,000	olivina c 36,365 0,012 0,000 21,047 0,319 41,154 0,000 0,030 0,000 0,000	olivina c 36,601 0,023 0,009 21,066 0,290 40,837 0,014 0,023 0,013 0,014
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO	olivina b 36,168 0,029 0,026 20,699 0,293 43,694 0,000 0,040 0,000 0,000 0,189	olivina b 31,624 0,049 2,227 20,995 0,301 32,449 0,101 0,047 0,033 0,000 0,149	olivina b 32,936 0,006 0,021 19,536 0,289 36,573 0,048 0,060 0,040 0,000 0,203	olivina b 36,474 0,008 0,000 20,985 0,301 40,606 0,025 0,007 0,000 0,008 0,184	olivina b 35,207 0,021 0,000 19,582 0,297 38,095 0,033 0,023 0,004 0,001 0,183	olivina c 36,465 0,000 0,029 21,104 0,307 40,939 0,000 0,000 0,007 0,000 0,166	olivina c 35,889 0,000 0,068 21,357 0,270 41,171 0,004 0,005 0,004 0,000 0,136	olivina c 36,365 0,012 0,000 21,047 0,319 41,154 0,000 0,030 0,000 0,000 0,170	36,601 0,023 0,009 21,066 0,290 40,837 0,014 0,023 0,013 0,014 0,132
Mineral SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total	olivina b 36,168 0,029 0,026 20,699 0,293 43,694 0,000 0,040 0,000 0,000 0,189 101,140	olivina b 31,624 0,049 2,227 20,995 0,301 32,449 0,101 0,047 0,033 0,000 0,149 87,970	olivina b 32,936 0,006 0,021 19,536 0,289 36,573 0,048 0,060 0,040 0,000 0,203 89,710	0livina b 36,474 0,008 0,000 20,985 0,301 40,606 0,025 0,007 0,000 0,008 0,184 98,600	olivina b 35,207 0,021 0,000 19,582 0,297 38,095 0,033 0,023 0,004 0,001 0,183 93,450	olivina c 36,465 0,000 0,029 21,104 0,307 40,939 0,000 0,000 0,007 0,000 0,166 99,020	olivina c 35,889 0,000 0,068 21,357 0,270 41,171 0,004 0,005 0,004 0,000 0,136 98,900	olivina c 36,365 0,012 0,000 21,047 0,319 41,154 0,000 0,030 0,000 0,000 0,170 99,100	36,601 0,023 0,009 21,066 0,290 40,837 0,014 0,023 0,013 0,014 0,132 99,020
Mineral SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si	olivina b 36,168 0,029 0,026 20,699 0,293 43,694 0,000 0,040 0,000 0,000 0,189 101,140 0,931	olivina b 31,624 0,049 2,227 20,995 0,301 32,449 0,101 0,047 0,033 0,000 0,149 87,970 0,946	olivina b 32,936 0,006 0,021 19,536 0,289 36,573 0,048 0,060 0,040 0,000 0,203 89,710 0,959	olivina b 36,474 0,008 0,000 20,985 0,301 40,606 0,025 0,007 0,000 0,008 0,184 98,600 0,963	olivina b 35,207 0,021 0,000 19,582 0,297 38,095 0,033 0,023 0,004 0,001 0,183 93,450 0,977	olivina c 36,465 0,000 0,029 21,104 0,307 40,939 0,000 0,000 0,007 0,000 0,166 99,020 0,959	olivina c 35,889 0,000 0,068 21,357 0,270 41,171 0,004 0,005 0,004 0,000 0,136 98,900 0,948	olivina c 36,365 0,012 0,000 21,047 0,319 41,154 0,000 0,030 0,000 0,000 0,170 99,100 0,956	olivina c 36,601 0,023 0,009 21,066 0,290 40,837 0,014 0,023 0,013 0,014 0,132 99,020 0,962
Mineral SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si AI	olivina b 36,168 0,029 0,026 20,699 0,293 43,694 0,000 0,040 0,000 0,000 0,189 101,140 0,931 0,001	olivina b 31,624 0,049 2,227 20,995 0,301 32,449 0,101 0,047 0,033 0,000 0,149 87,970 0,946 0,078	olivina b 32,936 0,006 0,021 19,536 0,289 36,573 0,048 0,060 0,040 0,000 0,203 89,710 0,959 0,001	olivina b 36,474 0,008 0,000 20,985 0,301 40,606 0,025 0,007 0,000 0,008 0,184 98,600 0,963 0,000	olivina b 35,207 0,021 0,000 19,582 0,297 38,095 0,033 0,023 0,004 0,001 0,183 93,450 0,977 0,000	olivina c 36,465 0,000 0,029 21,104 0,307 40,939 0,000 0,000 0,000 0,000 0,166 99,020 0,959 0,001	olivina c 35,889 0,000 0,068 21,357 0,270 41,171 0,004 0,005 0,004 0,000 0,136 98,900 0,948 0,002	olivina c 36,365 0,012 0,000 21,047 0,319 41,154 0,000 0,030 0,000 0,000 0,170 99,100 0,956 0,000	36,601 0,023 0,009 21,066 0,290 40,837 0,014 0,023 0,013 0,014 0,132 99,020 0,962 0,000
Mineral SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si AI Ti	olivina b 36,168 0,029 0,026 20,699 0,293 43,694 0,000 0,040 0,000 0,000 0,189 101,140 0,931 0,001 0,001	olivina b 31,624 0,049 2,227 20,995 0,301 32,449 0,101 0,047 0,033 0,000 0,149 87,970 0,946 0,078 0,001	olivina b 32,936 0,006 0,021 19,536 0,289 36,573 0,048 0,060 0,040 0,000 0,203 89,710 0,959 0,001 0,000	olivina b 36,474 0,008 0,000 20,985 0,301 40,606 0,025 0,007 0,000 0,008 0,184 98,600 0,963 0,000 0,000	olivina b 35,207 0,021 0,000 19,582 0,297 38,095 0,033 0,023 0,004 0,001 0,183 93,450 0,977 0,000 0,000	olivina c 36,465 0,000 0,029 21,104 0,307 40,939 0,000 0,007 0,000 0,166 99,020 0,959 0,001 0,000	olivina c 35,889 0,000 0,068 21,357 0,270 41,171 0,004 0,005 0,004 0,000 0,136 98,900 0,948 0,002 0,000 0,472	olivina c 36,365 0,012 0,000 21,047 0,319 41,154 0,000 0,030 0,000 0,000 0,170 99,100 0,956 0,000 0,000	36,601 0,023 0,009 21,066 0,290 40,837 0,014 0,023 0,013 0,014 0,132 99,020 0,962 0,000 0,000
Mineral SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si AI Ti Fe2 Mn	olivina b 36,168 0,029 0,026 20,699 0,293 43,694 0,000 0,040 0,000 0,189 101,140 0,931 0,001 0,001 0,446	olivina b 31,624 0,049 2,227 20,995 0,301 32,449 0,101 0,047 0,033 0,000 0,149 87,970 0,946 0,078 0,001 0,525 0,008	olivina b 32,936 0,006 0,021 19,536 0,289 36,573 0,048 0,060 0,040 0,000 0,203 89,710 0,959 0,001 0,000 0,476 0,007	olivina b 36,474 0,008 0,000 20,985 0,301 40,606 0,025 0,007 0,000 0,008 0,184 98,600 0,963 0,000 0,000 0,463 0,007	olivina b 35,207 0,021 0,000 19,582 0,297 38,095 0,033 0,023 0,004 0,001 0,183 93,450 0,977 0,000 0,000 0,455 0,007	olivina c 36,465 0,000 0,029 21,104 0,307 40,939 0,000 0,007 0,000 0,166 99,020 0,959 0,001 0,000 0,464 0,007	olivina c 35,889 0,000 0,068 21,357 0,270 41,171 0,004 0,005 0,004 0,000 0,136 98,900 0,948 0,002 0,000 0,472 0,006	olivina c 36,365 0,012 0,000 21,047 0,319 41,154 0,000 0,030 0,000 0,170 99,100 0,956 0,000 0,000 0,463 0,007	olivina c 36,601 0,023 0,009 21,066 0,290 40,837 0,014 0,023 0,013 0,014 0,132 99,020 0,962 0,000 0,000 0,463
Mineral SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si AI Ti Fe2 Mn Mg	olivina b 36,168 0,029 0,026 20,699 0,293 43,694 0,000 0,040 0,000 0,000 0,189 101,140 0,931 0,001 0,001 0,001 0,446 0,006 1,678	olivina b 31,624 0,049 2,227 20,995 0,301 32,449 0,101 0,047 0,033 0,000 0,149 87,970 0,946 0,078 0,001 0,525 0,008 1,447	olivina b 32,936 0,006 0,021 19,536 0,289 36,573 0,048 0,060 0,040 0,000 0,203 89,710 0,959 0,001 0,000 0,476 0,007 1,588	olivina b 36,474 0,008 0,000 20,985 0,301 40,606 0,025 0,007 0,000 0,008 0,184 98,600 0,963 0,000 0,000 0,000 0,463 0,007 1,598	olivina b 35,207 0,021 0,000 19,582 0,297 38,095 0,033 0,023 0,004 0,001 0,183 93,450 0,977 0,000 0,000 0,455 0,007 1,577	olivina c 36,465 0,000 0,029 21,104 0,307 40,939 0,000 0,000 0,000 0,000 0,166 99,020 0,959 0,001 0,000 0,464 0,007 1,605	olivina c 35,889 0,000 0,068 21,357 0,270 41,171 0,004 0,005 0,004 0,000 0,136 98,900 0,948 0,002 0,000 0,472 0,006 1,621	olivina c 36,365 0,012 0,000 21,047 0,319 41,154 0,000 0,030 0,000 0,170 99,100 0,956 0,000 0,000 0,463 0,007 1,613	olivina c 36,601 0,023 0,009 21,066 0,290 40,837 0,014 0,023 0,013 0,014 0,132 99,020 0,962 0,000 0,000 0,463 0,006 1,600
Mineral SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si AI Ti Fe2 Mn Mg Ca	olivina b 36,168 0,029 0,026 20,699 0,293 43,694 0,000 0,040 0,000 0,000 0,189 101,140 0,931 0,001 0,001 0,001 0,446 0,006 1,678 0,000	olivina b 31,624 0,049 2,227 20,995 0,301 32,449 0,101 0,047 0,033 0,000 0,149 87,970 0,946 0,078 0,001 0,525 0,008 1,447 0,003	olivina b 32,936 0,006 0,021 19,536 0,289 36,573 0,048 0,060 0,040 0,000 0,203 89,710 0,959 0,001 0,000 0,476 0,007 1,588 0,002	olivina b 36,474 0,008 0,000 20,985 0,301 40,606 0,025 0,007 0,000 0,008 0,184 98,600 0,963 0,000 0,000 0,463 0,007 1,598 0,001	olivina b 35,207 0,021 0,000 19,582 0,297 38,095 0,033 0,023 0,004 0,001 0,183 93,450 0,977 0,000 0,000 0,455 0,007 1,577 0,001	olivina c 36,465 0,000 0,029 21,104 0,307 40,939 0,000 0,000 0,007 0,000 0,166 99,020 0,959 0,001 0,000 0,464 0,007 1,605 0,000	olivina c 35,889 0,000 0,068 21,357 0,270 41,171 0,004 0,005 0,004 0,000 0,136 98,900 0,948 0,002 0,000 0,472 0,006 1,621 0,000	olivina c 36,365 0,012 0,000 21,047 0,319 41,154 0,000 0,030 0,000 0,170 99,100 0,956 0,000 0,000 0,463 0,007 1,613 0,000	0livina c 36,601 0,023 0,009 21,066 0,290 40,837 0,014 0,023 0,013 0,014 0,132 99,020 0,962 0,000 0,000 0,463 0,006 1,600 0,000
Mineral SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si AI Ti Fe2 Mn Mg	olivina b 36,168 0,029 0,026 20,699 0,293 43,694 0,000 0,040 0,000 0,189 101,140 0,931 0,001 0,001 0,001 0,446 0,006 1,678 0,000 0,002	olivina b 31,624 0,049 2,227 20,995 0,301 32,449 0,101 0,047 0,033 0,000 0,149 87,970 0,946 0,078 0,001 0,525 0,008 1,447 0,003 0,003	olivina b 32,936 0,006 0,021 19,536 0,289 36,573 0,048 0,060 0,040 0,000 0,203 89,710 0,959 0,001 0,000 0,476 0,007 1,588 0,002 0,003	olivina b 36,474 0,008 0,000 20,985 0,301 40,606 0,025 0,007 0,000 0,008 0,184 98,600 0,963 0,000 0,000 0,000 0,463 0,007 1,598 0,001 0,000	olivina b 35,207 0,021 0,000 19,582 0,297 38,095 0,033 0,023 0,004 0,001 0,183 93,450 0,977 0,000 0,000 0,455 0,007 1,577 0,001 0,001	olivina c 36,465 0,000 0,029 21,104 0,307 40,939 0,000 0,000 0,007 0,000 0,166 99,020 0,959 0,001 0,000 0,464 0,007 1,605 0,000 0,000	olivina c 35,889 0,000 0,068 21,357 0,270 41,171 0,004 0,005 0,004 0,000 0,136 98,900 0,948 0,002 0,000 0,472 0,006 1,621 0,000 0,000	olivina c 36,365 0,012 0,000 21,047 0,319 41,154 0,000 0,030 0,000 0,000 0,170 99,100 0,956 0,000 0,000 0,463 0,007 1,613 0,000 0,002	0livina c 36,601 0,023 0,009 21,066 0,290 40,837 0,014 0,023 0,013 99,020 0,962 0,000 0,000 0,463 0,006 1,600 0,000 0,001
Mineral SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si AI Ti Fe2 Mn Mg Ca Na K	olivina b 36,168 0,029 0,026 20,699 0,293 43,694 0,000 0,040 0,000 0,189 101,140 0,931 0,001 0,001 0,446 0,006 1,678 0,000 0,002 0,000	olivina b 31,624 0,049 2,227 20,995 0,301 32,449 0,101 0,047 0,033 0,000 0,149 87,970 0,946 0,078 0,001 0,525 0,008 1,447 0,003 0,003 0,001	olivina b 32,936 0,006 0,021 19,536 0,289 36,573 0,048 0,060 0,040 0,000 0,203 89,710 0,959 0,001 0,000 0,476 0,007 1,588 0,002 0,003 0,002	olivina b 36,474 0,008 0,000 20,985 0,301 40,606 0,025 0,007 0,000 0,008 0,184 98,600 0,963 0,000 0,000 0,463 0,007 1,598 0,001 0,000 0,000	olivina b 35,207 0,021 0,000 19,582 0,297 38,095 0,033 0,023 0,004 0,001 0,183 93,450 0,977 0,000 0,000 0,455 0,007 1,577 0,001 0,001 0,000	olivina c 36,465 0,000 0,029 21,104 0,307 40,939 0,000 0,000 0,007 0,000 0,166 99,020 0,959 0,001 0,000 0,464 0,007 1,605 0,000 0,000	olivina c 35,889 0,000 0,068 21,357 0,270 41,171 0,004 0,005 0,004 0,000 0,136 98,900 0,948 0,002 0,000 0,472 0,006 1,621 0,000 0,000 0,000	olivina c 36,365 0,012 0,000 21,047 0,319 41,154 0,000 0,030 0,000 0,170 99,100 0,956 0,000 0,000 0,463 0,007 1,613 0,000 0,002 0,000	olivina c 36,601 0,023 0,009 21,066 0,290 40,837 0,014 0,023 0,013 0,014 0,132 99,020 0,962 0,000 0,000 0,463 0,006 1,600 0,000 0,001 0,000
Mineral SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si AI Ti Fe2 Mn Mg Ca Na K Cr	olivina b 36,168 0,029 0,026 20,699 0,293 43,694 0,000 0,040 0,000 0,189 101,140 0,931 0,001 0,001 0,446 0,006 1,678 0,000 0,000 0,000 0,000	olivina b 31,624 0,049 2,227 20,995 0,301 32,449 0,101 0,047 0,033 0,000 0,149 87,970 0,946 0,078 0,001 0,525 0,008 1,447 0,003 0,003 0,001 0,000	olivina b 32,936 0,006 0,021 19,536 0,289 36,573 0,048 0,060 0,040 0,000 0,203 89,710 0,959 0,001 0,000 0,476 0,007 1,588 0,002 0,003 0,002 0,000	olivina b 36,474 0,008 0,000 20,985 0,301 40,606 0,025 0,007 0,000 0,008 0,184 98,600 0,963 0,000 0,000 0,463 0,007 1,598 0,001 0,000 0,000 0,000 0,000	olivina b 35,207 0,021 0,000 19,582 0,297 38,095 0,033 0,023 0,004 0,001 0,183 93,450 0,977 0,000 0,455 0,007 1,577 0,001 0,000 0,000 0,000 0,000 0,000	olivina c 36,465 0,000 0,029 21,104 0,307 40,939 0,000 0,000 0,007 0,000 0,166 99,020 0,959 0,001 0,000 0,464 0,007 1,605 0,000 0,000 0,000 0,000	olivina c 35,889 0,000 0,068 21,357 0,270 41,171 0,004 0,005 0,004 0,000 0,136 98,900 0,948 0,002 0,000 0,472 0,006 1,621 0,000 0,000 0,000 0,000 0,000	olivina c 36,365 0,012 0,000 21,047 0,319 41,154 0,000 0,030 0,000 0,170 99,100 0,956 0,000 0,463 0,007 1,613 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina c 36,601 0,023 0,009 21,066 0,290 40,837 0,014 0,023 0,013 0,014 0,132 99,020 0,962 0,000 0,000 0,463 0,006 1,600 0,000 0,001 0,000 0,000
Mineral SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si AI Ti Fe2 Mn Mg Ca Na K Cr Ni	olivina b 36,168 0,029 0,026 20,699 0,293 43,694 0,000 0,040 0,000 0,000 0,189 101,140 0,931 0,001 0,001 0,046 0,006 1,678 0,000 0,002 0,000 0,000 0,000 0,000	olivina b 31,624 0,049 2,227 20,995 0,301 32,449 0,101 0,047 0,033 0,000 0,149 87,970 0,946 0,078 0,001 0,525 0,008 1,447 0,003 0,003 0,001 0,000 0,004	olivina b 32,936 0,006 0,021 19,536 0,289 36,573 0,048 0,060 0,040 0,000 0,203 89,710 0,959 0,001 0,000 0,476 0,007 1,588 0,002 0,003 0,002 0,003 0,002 0,000	olivina b 36,474 0,008 0,000 20,985 0,301 40,606 0,025 0,007 0,000 0,008 0,184 98,600 0,963 0,000 0,000 0,463 0,007 1,598 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 35,207 0,021 0,000 19,582 0,297 38,095 0,033 0,003 0,004 0,001 0,183 93,450 0,977 0,000 0,000 0,455 0,007 1,577 0,001 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina c 36,465 0,000 0,029 21,104 0,307 40,939 0,000 0,000 0,007 0,000 0,166 99,020 0,959 0,001 0,000 0,464 0,007 1,605 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina c 35,889 0,000 0,068 21,357 0,270 41,171 0,004 0,005 0,004 0,000 0,136 98,900 0,948 0,002 0,000 0,472 0,006 1,621 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina c 36,365 0,012 0,000 21,047 0,319 41,154 0,000 0,030 0,000 0,000 0,170 99,100 0,956 0,000 0,000 0,463 0,007 1,613 0,000 0,002 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina c 36,601 0,023 0,009 21,066 0,290 40,837 0,014 0,023 0,013 0,014 0,132 99,020 0,962 0,000 0,000 0,463 0,006 1,600 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000
Mineral SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si AI Ti Fe2 Mn Mg Ca Na K Cr Ni Cations	olivina b 36,168 0,029 0,026 20,699 0,293 43,694 0,000 0,040 0,000 0,189 101,140 0,931 0,001 0,001 0,001 0,446 0,006 1,678 0,000 0,002 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 31,624 0,049 2,227 20,995 0,301 32,449 0,101 0,047 0,033 0,000 0,149 87,970 0,946 0,078 0,001 0,525 0,008 1,447 0,003 0,003 0,001 0,000 0,004 3,016	olivina b 32,936 0,006 0,021 19,536 0,289 36,573 0,048 0,060 0,040 0,000 0,203 89,710 0,959 0,001 0,000 0,476 0,007 1,588 0,002 0,003 0,002 0,003 0,002 0,000 0,005 3,043	olivina b 36,474 0,008 0,000 20,985 0,301 40,606 0,025 0,007 0,000 0,008 0,184 98,600 0,963 0,000 0,000 0,000 0,463 0,007 1,598 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 35,207 0,021 0,000 19,582 0,297 38,095 0,033 0,023 0,004 0,001 0,183 93,450 0,977 0,000 0,000 0,455 0,007 1,577 0,001 0,001 0,000	olivina c 36,465 0,000 0,029 21,104 0,307 40,939 0,000 0,007 0,000 0,166 99,020 0,959 0,001 0,000 0,464 0,007 1,605 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,004 3,040	olivina c 35,889 0,000 0,068 21,357 0,270 41,171 0,004 0,005 0,004 0,000 0,136 98,900 0,948 0,002 0,000 0,472 0,006 1,621 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,003 3,052	olivina c 36,365 0,012 0,000 21,047 0,319 41,154 0,000 0,030 0,000 0,000 0,170 99,100 0,956 0,000 0,000 0,463 0,007 1,613 0,000 0,002 0,000	olivina c 36,601 0,023 0,009 21,066 0,290 40,837 0,014 0,023 0,013 0,014 0,132 99,020 0,962 0,000 0,000 0,463 0,006 1,600 0,000 0,000 0,001 0,000 0,000 0,000 0,003 3,035
Mineral SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si AI Ti Fe2 Mn Mg Ca Na K Cr Ni	olivina b 36,168 0,029 0,026 20,699 0,293 43,694 0,000 0,040 0,000 0,000 0,189 101,140 0,931 0,001 0,001 0,046 0,006 1,678 0,000 0,002 0,000 0,000 0,000 0,000	olivina b 31,624 0,049 2,227 20,995 0,301 32,449 0,101 0,047 0,033 0,000 0,149 87,970 0,946 0,078 0,001 0,525 0,008 1,447 0,003 0,003 0,001 0,000 0,004	olivina b 32,936 0,006 0,021 19,536 0,289 36,573 0,048 0,060 0,040 0,000 0,203 89,710 0,959 0,001 0,000 0,476 0,007 1,588 0,002 0,003 0,002 0,003 0,002 0,000	olivina b 36,474 0,008 0,000 20,985 0,301 40,606 0,025 0,007 0,000 0,008 0,184 98,600 0,963 0,000 0,000 0,463 0,007 1,598 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 35,207 0,021 0,000 19,582 0,297 38,095 0,033 0,003 0,004 0,001 0,183 93,450 0,977 0,000 0,000 0,455 0,007 1,577 0,001 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina c 36,465 0,000 0,029 21,104 0,307 40,939 0,000 0,000 0,007 0,000 0,166 99,020 0,959 0,001 0,000 0,464 0,007 1,605 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina c 35,889 0,000 0,068 21,357 0,270 41,171 0,004 0,005 0,004 0,000 0,136 98,900 0,948 0,002 0,000 0,472 0,006 1,621 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina c 36,365 0,012 0,000 21,047 0,319 41,154 0,000 0,030 0,000 0,000 0,170 99,100 0,956 0,000 0,000 0,463 0,007 1,613 0,000 0,002 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina c 36,601 0,023 0,009 21,066 0,290 40,837 0,014 0,023 0,013 0,014 0,132 99,020 0,962 0,000 0,000 0,463 0,006 1,600 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000

Amostra	UM 3	UM 3	UM 3	C MU	UM 3	UM 3	UM 3	UM 3	UM 3
Mineral	olivina c	olivina c	olivina c	olivina c	olivina c	olivina c	olivina c	olivina c	olivina c
SiO2	36,886	36,457	35,618	36,382	36,515	37,185	35,715	36,945	37,165
TiO2	0,000	0,009	0,035	0,000	0,005	0,000	0,003	0,016	0,014
AI2O3	0,008	0,037	0,000	0,000	0,000	0,017	0,000	0,000	0,012
FeO	21,392	21,177	21,147	20,846	21,645	21,477	21,194	20,962	21,186
MnO	0,273	0,305	0,218	0,317	0,279	0,274	0,316	0,296	0,273
MgO	41,465	41,342	39,994	41,102	41,262	41,145	39,883	40,943	41,698
CaO	0,015	0,000	0,005	0,023	0,000	0,016	0,011	0,010	0,004
Na2O	0,000	0,032	0,000	0,009	0,012	0,011	0,018	0,014	0,000
K20	0,007	0,000	0,000	0,014	0,014	0,002	0,003	0,000	0,003
Cr2O3	0,000	0,021	0,000	0,003	0,000	0,024	0,014	0,007	0,002
NiO	0,186	0,097	0,155	0,202	0,195	0,091	0,165	0,143	0,150
Total	100,230	99,480	97,170	98,900	99,930	100,240	97,320	99,340	100,510
Si	0,959	0,955	0,957	0,958	0,954	0,965	0,958	0,967	0,962
AI	0,000	0,001	0,000	0,000	0,000	0,001	0,000	0,000	0,000
Ti	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000
Fe2	0,465	0,464	0,475	0,459	0,473	0,466	0,476	0,459	0,458
Mn	0,006	0,007	0,005	0,007	0,006	0,006	0,007	0,007	0,006
Mg	1,607	1,614	1,602	1,613	1,607	1,593	1,595	1,597	1,608
Ca	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000
Na	0,000	0,002	0.000	0,000	0,001	0,001	0,001	0,001	0,000
K	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ni	0,004	0,002	0,003	0,004	0,004	0,002	0,004	0,003	0,003
Cations	3,041	3,045	3,043	3,042	3,045	3,034	3,041	3,034	3,037
Fe_FeMg	0,22	0,22	0,23	0,22	0,23	0,23	0,23	0,22	0,22
Mg_FeMg	0,78	0,78	0,77	0,78	0,77	0,77	0,77	0,78	0,78
<u> </u>						,	,		
ATTENDED TO STREET	and the second second		colleges and				22.22	22 TO 1827	or to water our w
Amostra	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3
Mineral	olivina c	olivina c	olivina b	olivina b	olivina b	olivina b	olivina b	olivina b	olivina b
Mineral SiO2	olivina c 36,994	olivina c 36,338	olivina b 37,072	olivina b 31,977	olivina b 33,202	olivina b 37,923	olivina b 35,544	olivina b 34,787	olivina b 36,214
Mineral SiO2 TiO2	olivina c 36,994 0,000	olivina c 36,338 0,012	olivina b 37,072 0,035	olivina b 31,977 0,052	33,202 0,026	olivina b 37,923 0,022	olivina b 35,544 0,009	olivina b 34,787 0,028	36,214 0,000
Mineral SiO2 TiO2 Al2O3	36,994 0,000 0,000	36,338 0,012 0,003	37,072 0,035 0,000	31,977 0,052 0,000	33,202 0,026 0,039	olivina b 37,923 0,022 0,984	35,544 0,009 0,000	34,787 0,028 0,000	olivina b 36,214 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO	olivina c 36,994 0,000 0,000 20,972	olivina c 36,338 0,012 0,003 21,162	olivina b 37,072 0,035 0,000 21,103	olivina b 31,977 0,052 0,000 18,605	olivina b 33,202 0,026 0,039 17,980	olivina b 37,923 0,022 0,984 21,078	olivina b 35,544 0,009 0,000 21,112	olivina b 34,787 0,028 0,000 20,396	olivina b 36,214 0,000 0,000 20,884
SiO2 TiO2 Al2O3 FeO MnO	olivina c 36,994 0,000 0,000 20,972 0,250	olivina c 36,338 0,012 0,003 21,162 0,326	olivina b 37,072 0,035 0,000 21,103 0,299	olivina b 31,977 0,052 0,000 18,605 0,246	olivina b 33,202 0,026 0,039 17,980 0,279	olivina b 37,923 0,022 0,984 21,078 0,282	olivina b 35,544 0,009 0,000 21,112 0,329	olivina b 34,787 0,028 0,000 20,396 0,257	olivina b 36,214 0,000 0,000 20,884 0,311
SiO2 TiO2 Al2O3 FeO MnO MgO	olivina c 36,994 0,000 0,000 20,972 0,250 41,478	olivina c 36,338 0,012 0,003 21,162 0,326 40,699	olivina b 37,072 0,035 0,000 21,103 0,299 41,293	olivina b 31,977 0,052 0,000 18,605 0,246 33,692	olivina b 33,202 0,026 0,039 17,980 0,279 35,354	olivina b 37,923 0,022 0,984 21,078 0,282 41,343	olivina b 35,544 0,009 0,000 21,112 0,329 39,119	olivina b 34,787 0,028 0,000 20,396 0,257 37,743	olivina b 36,214 0,000 0,000 20,884 0,311 40,944
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO	olivina c 36,994 0,000 0,000 20,972 0,250 41,478 0,024	olivina c 36,338 0,012 0,003 21,162 0,326 40,699 0,006	olivina b 37,072 0,035 0,000 21,103 0,299 41,293 0,000	olivina b 31,977 0,052 0,000 18,605 0,246 33,692 0,000	olivina b 33,202 0,026 0,039 17,980 0,279 35,354 0,014	olivina b 37,923 0,022 0,984 21,078 0,282 41,343 0,013	olivina b 35,544 0,009 0,000 21,112 0,329 39,119 0,004	olivina b 34,787 0,028 0,000 20,396 0,257 37,743 0,006	36,214 0,000 0,000 20,884 0,311 40,944 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O	olivina c 36,994 0,000 0,000 20,972 0,250 41,478 0,024 0,000	olivina c 36,338 0,012 0,003 21,162 0,326 40,699 0,006 0,000	olivina b 37,072 0,035 0,000 21,103 0,299 41,293 0,000 0,012	olivina b 31,977 0,052 0,000 18,605 0,246 33,692 0,000 0,009	olivina b 33,202 0,026 0,039 17,980 0,279 35,354 0,014 0,011	olivina b 37,923 0,022 0,984 21,078 0,282 41,343 0,013 0,000	olivina b 35,544 0,009 0,000 21,112 0,329 39,119 0,004 0,000	olivina b 34,787 0,028 0,000 20,396 0,257 37,743 0,006 0,000	olivina b 36,214 0,000 0,000 20,884 0,311 40,944 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O	olivina c 36,994 0,000 0,000 20,972 0,250 41,478 0,024 0,000 0,022	olivina c 36,338 0,012 0,003 21,162 0,326 40,699 0,006 0,000	olivina b 37,072 0,035 0,000 21,103 0,299 41,293 0,000 0,012 0,000	olivina b 31,977 0,052 0,000 18,605 0,246 33,692 0,000 0,009 0,000	olivina b 33,202 0,026 0,039 17,980 0,279 35,354 0,014 0,011 0,000	olivina b 37,923 0,022 0,984 21,078 0,282 41,343 0,013 0,000 0,015	olivina b 35,544 0,009 0,000 21,112 0,329 39,119 0,004 0,000 0,000	olivina b 34,787 0,028 0,000 20,396 0,257 37,743 0,006 0,000 0,003	36,214 0,000 0,000 20,884 0,311 40,944 0,000 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3	olivina c 36,994 0,000 0,000 20,972 0,250 41,478 0,024 0,000 0,022 0,000	olivina c 36,338 0,012 0,003 21,162 0,326 40,699 0,006 0,000 0,000	olivina b 37,072 0,035 0,000 21,103 0,299 41,293 0,000 0,012 0,000 0,001	olivina b 31,977 0,052 0,000 18,605 0,246 33,692 0,000 0,009 0,000 0,000	olivina b 33,202 0,026 0,039 17,980 0,279 35,354 0,014 0,011 0,000 0,000	olivina b 37,923 0,022 0,984 21,078 0,282 41,343 0,013 0,000 0,015 0,001	olivina b 35,544 0,009 0,000 21,112 0,329 39,119 0,004 0,000 0,000 0,005	olivina b 34,787 0,028 0,000 20,396 0,257 37,743 0,006 0,000 0,003 0,000	olivina b 36,214 0,000 0,000 20,884 0,311 40,944 0,000 0,000 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO	olivina c 36,994 0,000 0,000 20,972 0,250 41,478 0,024 0,000 0,022 0,000 0,208	olivina c 36,338 0,012 0,003 21,162 0,326 40,699 0,006 0,000 0,000 0,000 0,184	olivina b 37,072 0,035 0,000 21,103 0,299 41,293 0,000 0,012 0,000 0,001 0,180	0livina b 31,977 0,052 0,000 18,605 0,246 33,692 0,000 0,009 0,000 0,000 0,146	olivina b 33,202 0,026 0,039 17,980 0,279 35,354 0,014 0,011 0,000 0,000 0,158	olivina b 37,923 0,022 0,984 21,078 0,282 41,343 0,013 0,000 0,015 0,001 0,193	olivina b 35,544 0,009 0,000 21,112 0,329 39,119 0,004 0,000 0,000 0,000 0,005 0,193	olivina b 34,787 0,028 0,000 20,396 0,257 37,743 0,006 0,000 0,003 0,000 0,117	olivina b 36,214 0,000 0,000 20,884 0,311 40,944 0,000 0,000 0,000 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total	olivina c 36,994 0,000 0,000 20,972 0,250 41,478 0,024 0,000 0,022 0,000 0,208 99,950	olivina c 36,338 0,012 0,003 21,162 0,326 40,699 0,006 0,000 0,000 0,000 0,184 98,730	olivina b 37,072 0,035 0,000 21,103 0,299 41,293 0,000 0,012 0,000 0,010 0,180 99,990	0livina b 31,977 0,052 0,000 18,605 0,246 33,692 0,000 0,009 0,000 0,000 0,146 84,730	olivina b 33,202 0,026 0,039 17,980 0,279 35,354 0,014 0,011 0,000 0,000 0,158 87,060	olivina b 37,923 0,022 0,984 21,078 0,282 41,343 0,013 0,000 0,015 0,001 0,193 101,850	0livina b 35,544 0,009 0,000 21,112 0,329 39,119 0,004 0,000 0,000 0,005 0,193 96,310	olivina b 34,787 0,028 0,000 20,396 0,257 37,743 0,006 0,000 0,003 0,000 0,117 93,340	0livina b 36,214 0,000 0,000 20,884 0,311 40,944 0,000 0,000 0,000 0,000 0,203 98,560
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si	olivina c 36,994 0,000 0,000 20,972 0,250 41,478 0,024 0,000 0,022 0,000 0,208 99,950 0,962	olivina c 36,338 0,012 0,003 21,162 0,326 40,699 0,006 0,000 0,000 0,000 0,184 98,730 0,959	olivina b 37,072 0,035 0,000 21,103 0,299 41,293 0,000 0,012 0,000 0,001 0,180 99,990 0,964	0livina b 31,977 0,052 0,000 18,605 0,246 33,692 0,000 0,009 0,000 0,000 0,146 84,730 0,983	olivina b 33,202 0,026 0,039 17,980 0,279 35,354 0,014 0,011 0,000 0,000 0,158 87,060 0,986	olivina b 37,923 0,022 0,984 21,078 0,282 41,343 0,013 0,000 0,015 0,001 0,193 101,850 0,964	olivina b 35,544 0,009 0,000 21,112 0,329 39,119 0,004 0,000 0,000 0,005 0,193 96,310 0,964	olivina b 34,787 0,028 0,000 20,396 0,257 37,743 0,006 0,000 0,003 0,000 0,117 93,340 0,971	olivina b 36,214 0,000 0,000 20,884 0,311 40,944 0,000 0,000 0,000 0,000 0,000 0,203 98,560 0,957
Mineral SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si AI	olivina c 36,994 0,000 0,000 20,972 0,250 41,478 0,024 0,000 0,022 0,000 0,208 99,950 0,962 0,000	olivina c 36,338 0,012 0,003 21,162 0,326 40,699 0,006 0,000 0,000 0,000 0,184 98,730 0,959 0,000	olivina b 37,072 0,035 0,000 21,103 0,299 41,293 0,000 0,012 0,000 0,001 0,180 99,990 0,964 0,000	0livina b 31,977 0,052 0,000 18,605 0,246 33,692 0,000 0,009 0,000 0,000 0,146 84,730 0,983 0,000	olivina b 33,202 0,026 0,039 17,980 0,279 35,354 0,014 0,011 0,000 0,000 0,158 87,060 0,986 0,001	olivina b 37,923 0,022 0,984 21,078 0,282 41,343 0,013 0,000 0,015 0,001 0,193 101,850 0,964 0,029	olivina b 35,544 0,009 0,000 21,112 0,329 39,119 0,004 0,000 0,005 0,193 96,310 0,964 0,000	olivina b 34,787 0,028 0,000 20,396 0,257 37,743 0,006 0,000 0,003 0,000 0,117 93,340 0,971 0,000	0livina b 36,214 0,000 0,000 20,884 0,311 40,944 0,000 0,000 0,000 0,000 0,000 0,203 98,560 0,957 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti	olivina c 36,994 0,000 0,000 20,972 0,250 41,478 0,024 0,000 0,022 0,000 0,208 99,950 0,962 0,000 0,000	olivina c 36,338 0,012 0,003 21,162 0,326 40,699 0,006 0,000 0,000 0,000 0,184 98,730 0,959 0,000 0,000	olivina b 37,072 0,035 0,000 21,103 0,299 41,293 0,000 0,012 0,000 0,001 0,180 99,990 0,964 0,000 0,001	0livina b 31,977 0,052 0,000 18,605 0,246 33,692 0,000 0,009 0,000 0,000 0,146 84,730 0,983 0,000 0,001	0livina b 33,202 0,026 0,039 17,980 0,279 35,354 0,014 0,011 0,000 0,000 0,158 87,060 0,986 0,001 0,001	olivina b 37,923 0,022 0,984 21,078 0,282 41,343 0,013 0,000 0,015 0,001 0,193 101,850 0,964 0,029 0,000	0livina b 35,544 0,009 0,000 21,112 0,329 39,119 0,004 0,000 0,000 0,005 0,193 96,310 0,964 0,000 0,000	olivina b 34,787 0,028 0,000 20,396 0,257 37,743 0,006 0,000 0,003 0,000 0,117 93,340 0,971 0,000 0,001	0livina b 36,214 0,000 0,000 20,884 0,311 40,944 0,000 0,000 0,000 0,000 0,000 0,203 98,560 0,957 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2	olivina c 36,994 0,000 0,000 20,972 0,250 41,478 0,024 0,000 0,022 0,000 0,208 99,950 0,962 0,000 0,000 0,000 0,456	olivina c 36,338 0,012 0,003 21,162 0,326 40,699 0,006 0,000 0,000 0,184 98,730 0,959 0,000 0,000 0,000	olivina b 37,072 0,035 0,000 21,103 0,299 41,293 0,000 0,012 0,000 0,001 0,180 99,990 0,964 0,000 0,001 0,459	0livina b 31,977 0,052 0,000 18,605 0,246 33,692 0,000 0,009 0,000 0,146 84,730 0,983 0,000 0,001 0,478	olivina b 33,202 0,026 0,039 17,980 0,279 35,354 0,014 0,011 0,000 0,000 0,158 87,060 0,986 0,001 0,001 0,447	olivina b 37,923 0,022 0,984 21,078 0,282 41,343 0,013 0,000 0,015 0,001 0,193 101,850 0,964 0,029 0,000 0,448	0livina b 35,544 0,009 0,000 21,112 0,329 39,119 0,004 0,000 0,000 0,005 0,193 96,310 0,964 0,000 0,000 0,000 0,000 0,000	olivina b 34,787 0,028 0,000 20,396 0,257 37,743 0,006 0,000 0,003 0,000 0,117 93,340 0,971 0,000 0,001 0,476	0livina b 36,214 0,000 0,000 20,884 0,311 40,944 0,000 0,000 0,000 0,000 0,203 98,560 0,957 0,000 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn	olivina c 36,994 0,000 0,000 20,972 0,250 41,478 0,024 0,000 0,022 0,000 0,208 99,950 0,962 0,000 0,456 0,006	olivina c 36,338 0,012 0,003 21,162 0,326 40,699 0,006 0,000 0,000 0,184 98,730 0,959 0,000 0,000 0,000 0,467 0,007	olivina b 37,072 0,035 0,000 21,103 0,299 41,293 0,000 0,012 0,000 0,010 0,180 99,990 0,964 0,000 0,001 0,459 0,007	0livina b 31,977 0,052 0,000 18,605 0,246 33,692 0,000 0,009 0,000 0,146 84,730 0,983 0,000 0,001 0,478 0,006	olivina b 33,202 0,026 0,039 17,980 0,279 35,354 0,014 0,011 0,000 0,158 87,060 0,986 0,001 0,001 0,447 0,007	olivina b 37,923 0,022 0,984 21,078 0,282 41,343 0,013 0,000 0,015 0,001 0,193 101,850 0,964 0,029 0,000 0,448 0,006	0livina b 35,544 0,009 0,000 21,112 0,329 39,119 0,004 0,000 0,005 0,193 96,310 0,964 0,000 0,000 0,000 0,479 0,008	olivina b 34,787 0,028 0,000 20,396 0,257 37,743 0,006 0,000 0,003 0,000 0,117 93,340 0,971 0,000 0,001 0,476 0,006	0livina b 36,214 0,000 0,000 20,884 0,311 40,944 0,000 0,000 0,000 0,203 98,560 0,957 0,000 0,000 0,462 0,007
Mineral SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si AI Ti Fe2 Mn Mg	olivina c 36,994 0,000 0,000 20,972 0,250 41,478 0,004 0,000 0,022 0,000 0,208 99,950 0,962 0,000 0,000 0,000 0,456 0,006 1,608	olivina c 36,338 0,012 0,003 21,162 0,326 40,699 0,006 0,000 0,000 0,184 98,730 0,959 0,000 0,000 0,000 0,000 0,467 0,007 1,602	olivina b 37,072 0,035 0,000 21,103 0,299 41,293 0,000 0,012 0,000 0,001 0,180 99,990 0,964 0,000 0,001 0,459 0,007 1,601	0livina b 31,977 0,052 0,000 18,605 0,246 33,692 0,000 0,009 0,000 0,000 0,146 84,730 0,983 0,000 0,001 0,478 0,006 1,544	olivina b 33,202 0,026 0,039 17,980 0,279 35,354 0,014 0,011 0,000 0,000 0,158 87,060 0,986 0,001 0,001 0,001 0,447 0,007 1,566	olivina b 37,923 0,022 0,984 21,078 0,282 41,343 0,013 0,000 0,015 0,001 0,193 101,850 0,964 0,029 0,000 0,448 0,006 1,567	olivina b 35,544 0,009 0,000 21,112 0,329 39,119 0,004 0,000 0,005 0,193 96,310 0,964 0,000 0,000 0,000 0,000 0,479 0,008 1,581	olivina b 34,787 0,028 0,000 20,396 0,257 37,743 0,006 0,000 0,003 0,000 0,117 93,340 0,971 0,000 0,001 0,476 0,006 1,571	olivina b 36,214 0,000 0,000 20,884 0,311 40,944 0,000 0,000 0,000 0,000 0,000 0,957 0,000 0,000 0,462 0,007 1,613
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca	olivina c 36,994 0,000 0,000 20,972 0,250 41,478 0,024 0,000 0,022 0,000 0,208 99,950 0,962 0,000 0,000 0,456 0,006 1,608 0,001	olivina c 36,338 0,012 0,003 21,162 0,326 40,699 0,006 0,000 0,000 0,184 98,730 0,959 0,000 0,000 0,000 0,467 0,007 1,602 0,000	olivina b 37,072 0,035 0,000 21,103 0,299 41,293 0,000 0,012 0,000 0,001 0,180 99,990 0,964 0,000 0,001 0,459 0,007 1,601 0,000	olivina b 31,977 0,052 0,000 18,605 0,246 33,692 0,000 0,009 0,000 0,000 0,146 84,730 0,983 0,000 0,001 0,478 0,006 1,544 0,000	olivina b 33,202 0,026 0,039 17,980 0,279 35,354 0,014 0,011 0,000 0,000 0,158 87,060 0,986 0,001 0,001 0,447 0,007 1,566 0,000	olivina b 37,923 0,022 0,984 21,078 0,282 41,343 0,013 0,000 0,015 0,001 0,193 101,850 0,964 0,029 0,000 0,448 0,006 1,567 0,000	olivina b 35,544 0,009 0,000 21,112 0,329 39,119 0,004 0,000 0,005 0,193 96,310 0,964 0,000 0,000 0,000 0,479 0,008 1,581 0,000	olivina b 34,787 0,028 0,000 20,396 0,257 37,743 0,006 0,000 0,003 0,000 0,117 93,340 0,971 0,000 0,001 0,476 0,006 1,571 0,000	0livina b 36,214 0,000 0,000 20,884 0,311 40,944 0,000 0,000 0,000 0,000 0,000 0,000 0,957 0,000 0,000 0,462 0,007 1,613 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na	olivina c 36,994 0,000 0,000 20,972 0,250 41,478 0,024 0,000 0,022 0,000 0,208 99,950 0,962 0,000 0,000 0,456 0,006 1,608 0,001 0,000	olivina c 36,338 0,012 0,003 21,162 0,326 40,699 0,006 0,000 0,000 0,000 0,184 98,730 0,959 0,000 0,000 0,467 0,007 1,602 0,000 0,000	olivina b 37,072 0,035 0,000 21,103 0,299 41,293 0,000 0,012 0,000 0,001 0,180 99,990 0,964 0,000 0,001 0,459 0,007 1,601 0,000 0,001	0livina b 31,977 0,052 0,000 18,605 0,246 33,692 0,000 0,000 0,000 0,000 0,146 84,730 0,983 0,000 0,001 0,478 0,006 1,544 0,000 0,001	olivina b 33,202 0,026 0,039 17,980 0,279 35,354 0,014 0,011 0,000 0,000 0,158 87,060 0,986 0,001 0,001 0,047 0,007 1,566 0,000 0,001	olivina b 37,923 0,022 0,984 21,078 0,282 41,343 0,013 0,000 0,015 0,001 0,193 101,850 0,964 0,029 0,000 0,448 0,006 1,567 0,000 0,000	olivina b 35,544 0,009 0,000 21,112 0,329 39,119 0,004 0,000 0,005 0,193 96,310 0,964 0,000 0,000 0,479 0,008 1,581 0,000 0,000	olivina b 34,787 0,028 0,000 20,396 0,257 37,743 0,006 0,000 0,003 0,000 0,117 93,340 0,971 0,000 0,001 0,476 0,006 1,571 0,000 0,000	0livina b 36,214 0,000 0,000 20,884 0,311 40,944 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,462 0,007 1,613 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K	olivina c 36,994 0,000 0,000 20,972 0,250 41,478 0,024 0,000 0,022 0,000 0,208 99,950 0,962 0,000 0,000 0,456 0,006 1,608 0,001 0,000 0,001	olivina c 36,338 0,012 0,003 21,162 0,326 40,699 0,006 0,000 0,000 0,184 98,730 0,959 0,000 0,000 0,467 0,007 1,602 0,000 0,000 0,000	olivina b 37,072 0,035 0,000 21,103 0,299 41,293 0,000 0,012 0,000 0,001 0,180 99,990 0,964 0,000 0,001 0,459 0,007 1,601 0,000 0,001 0,000	0livina b 31,977 0,052 0,000 18,605 0,246 33,692 0,000 0,000 0,000 0,146 84,730 0,983 0,000 0,001 0,478 0,006 1,544 0,000 0,001 0,000	olivina b 33,202 0,026 0,039 17,980 0,279 35,354 0,014 0,011 0,000 0,158 87,060 0,986 0,001 0,001 0,447 0,007 1,566 0,000 0,000 0,000	olivina b 37,923 0,022 0,984 21,078 0,282 41,343 0,013 0,000 0,015 0,001 0,193 101,850 0,964 0,029 0,000 0,448 0,006 1,567 0,000 0,000 0,000	olivina b 35,544 0,009 0,000 21,112 0,329 39,119 0,004 0,000 0,005 0,193 96,310 0,964 0,000 0,000 0,479 0,008 1,581 0,000 0,000 0,000 0,000	olivina b 34,787 0,028 0,000 20,396 0,257 37,743 0,006 0,000 0,003 0,000 0,117 93,340 0,971 0,000 0,001 0,476 0,006 1,571 0,000 0,000 0,000	0livina b 36,214 0,000 0,000 20,884 0,311 40,944 0,000 0,000 0,000 0,000 0,203 98,560 0,957 0,000 0,000 0,462 0,007 1,613 0,000 0,000 0,000
Mineral SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si AI Ti Fe2 Mn Mg Ca Na K Cr	olivina c 36,994 0,000 0,000 20,972 0,250 41,478 0,024 0,000 0,022 0,000 0,208 99,950 0,962 0,000 0,456 0,000 1,608 0,001 0,000 0,001 0,000	olivina c 36,338 0,012 0,003 21,162 0,326 40,699 0,006 0,000 0,000 0,184 98,730 0,959 0,000 0,467 0,007 1,602 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 37,072 0,035 0,000 21,103 0,299 41,293 0,000 0,012 0,000 0,001 0,180 99,990 0,964 0,000 0,001 0,459 0,007 1,601 0,000 0,001 0,000 0,001	0livina b 31,977 0,052 0,000 18,605 0,246 33,692 0,000 0,009 0,000 0,146 84,730 0,983 0,000 0,001 0,478 0,006 1,544 0,000 0,001 0,000 0,000	olivina b 33,202 0,026 0,039 17,980 0,279 35,354 0,014 0,011 0,000 0,158 87,060 0,986 0,001 0,001 0,447 0,007 1,566 0,000 0,000 0,000 0,000	olivina b 37,923 0,022 0,984 21,078 0,282 41,343 0,013 0,000 0,015 0,001 0,193 101,850 0,964 0,029 0,000 0,448 0,006 1,567 0,000 0,000 0,000 0,000	0livina b 35,544 0,009 0,000 21,112 0,329 39,119 0,004 0,000 0,005 0,193 96,310 0,964 0,000 0,000 0,479 0,008 1,581 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 34,787 0,028 0,000 20,396 0,257 37,743 0,006 0,000 0,003 0,000 0,117 93,340 0,971 0,000 0,001 0,476 0,006 1,571 0,000 0,000 0,000 0,000 0,000	0livina b 36,214 0,000 0,000 20,884 0,311 40,944 0,000 0,000 0,000 0,203 98,560 0,957 0,000 0,000 0,462 0,007 1,613 0,000 0,000 0,000 0,000 0,000 0,000
Mineral SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si AI Ti Fe2 Mn Mg Ca Na K Cr Ni	olivina c 36,994 0,000 0,000 20,972 0,250 41,478 0,024 0,000 0,022 0,000 0,208 99,950 0,962 0,000 0,000 0,456 0,006 1,608 0,001 0,000 0,001 0,000 0,001 0,000 0,004	olivina c 36,338 0,012 0,003 21,162 0,326 40,699 0,006 0,000 0,000 0,000 0,184 98,730 0,959 0,000 0,000 0,467 0,007 1,602 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 37,072 0,035 0,000 21,103 0,299 41,293 0,000 0,012 0,000 0,001 0,180 99,990 0,964 0,000 0,001 0,459 0,007 1,601 0,000 0,001 0,000 0,001 0,000 0,001	0livina b 31,977 0,052 0,000 18,605 0,246 33,692 0,000 0,009 0,000 0,000 0,146 84,730 0,983 0,000 0,001 0,478 0,006 1,544 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000	0livina b 33,202 0,026 0,039 17,980 0,279 35,354 0,014 0,011 0,000 0,000 0,158 87,060 0,986 0,001 0,001 0,447 0,007 1,566 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 37,923 0,022 0,984 21,078 0,282 41,343 0,013 0,000 0,015 0,001 0,193 101,850 0,964 0,029 0,000 0,448 0,006 1,567 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 35,544 0,009 0,000 21,112 0,329 39,119 0,004 0,000 0,005 0,193 96,310 0,964 0,000 0,000 0,479 0,008 1,581 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 34,787 0,028 0,000 20,396 0,257 37,743 0,006 0,000 0,003 0,000 0,117 93,340 0,971 0,000 0,001 0,476 0,006 1,571 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 36,214 0,000 0,000 20,884 0,311 40,944 0,000 0,000 0,000 0,000 0,000 0,000 0,462 0,007 1,613 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K Cr Ni Cations	olivina c 36,994 0,000 0,000 20,972 0,250 41,478 0,024 0,000 0,022 0,000 0,208 99,950 0,962 0,000 0,000 0,456 0,006 1,608 0,001 0,000 0,001 0,000 0,001 0,000 0,004 3,038	olivina c 36,338 0,012 0,003 21,162 0,326 40,699 0,006 0,000 0,000 0,000 0,184 98,730 0,959 0,000 0,000 0,000 0,467 0,007 1,602 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 37,072 0,035 0,000 21,103 0,299 41,293 0,000 0,012 0,000 0,001 0,180 99,990 0,964 0,000 0,001 0,459 0,007 1,601 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001	0livina b 31,977 0,052 0,000 18,605 0,246 33,692 0,000 0,009 0,000 0,000 0,146 84,730 0,983 0,000 0,001 0,478 0,006 1,544 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001	olivina b 33,202 0,026 0,039 17,980 0,279 35,354 0,014 0,011 0,000 0,000 0,158 87,060 0,986 0,001 0,001 0,047 0,007 1,566 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,004 3,013	olivina b 37,923 0,022 0,984 21,078 0,282 41,343 0,013 0,000 0,015 0,001 0,193 101,850 0,964 0,029 0,000 0,448 0,006 1,567 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 35,544 0,009 0,000 21,112 0,329 39,119 0,004 0,000 0,005 0,193 96,310 0,964 0,000 0,000 0,000 0,479 0,008 1,581 0,000	olivina b 34,787 0,028 0,000 20,396 0,257 37,743 0,006 0,000 0,003 0,000 0,117 93,340 0,971 0,000 0,001 0,476 0,006 1,571 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 3,028	olivina b 36,214 0,000 0,000 20,884 0,311 40,944 0,000
Mineral SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si AI Ti Fe2 Mn Mg Ca Na K Cr Ni	olivina c 36,994 0,000 0,000 20,972 0,250 41,478 0,024 0,000 0,022 0,000 0,208 99,950 0,962 0,000 0,000 0,456 0,006 1,608 0,001 0,000 0,001 0,000 0,001 0,000 0,004	olivina c 36,338 0,012 0,003 21,162 0,326 40,699 0,006 0,000 0,000 0,000 0,184 98,730 0,959 0,000 0,000 0,467 0,007 1,602 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 37,072 0,035 0,000 21,103 0,299 41,293 0,000 0,012 0,000 0,001 0,180 99,990 0,964 0,000 0,001 0,459 0,007 1,601 0,000 0,001 0,000 0,001 0,000 0,001	0livina b 31,977 0,052 0,000 18,605 0,246 33,692 0,000 0,009 0,000 0,000 0,146 84,730 0,983 0,000 0,001 0,478 0,006 1,544 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000	0livina b 33,202 0,026 0,039 17,980 0,279 35,354 0,014 0,011 0,000 0,000 0,158 87,060 0,986 0,001 0,001 0,447 0,007 1,566 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 37,923 0,022 0,984 21,078 0,282 41,343 0,013 0,000 0,015 0,001 0,193 101,850 0,964 0,029 0,000 0,448 0,006 1,567 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 35,544 0,009 0,000 21,112 0,329 39,119 0,004 0,000 0,005 0,193 96,310 0,964 0,000 0,000 0,479 0,008 1,581 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 34,787 0,028 0,000 20,396 0,257 37,743 0,006 0,000 0,003 0,000 0,117 93,340 0,971 0,000 0,001 0,476 0,006 1,571 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 36,214 0,000 0,000 20,884 0,311 40,944 0,000 0,000 0,000 0,000 0,000 0,000 0,462 0,007 1,613 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

Amostra	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3
Mineral	olivina b	olivina b	olivina b	olivina b	olivina c	olivina c	olivina c	olivina c	olivina c
SiO2	34,596	36,879	37,588	34,469	35,182	35,489	35,988	35,422	35,376
TiO2	0,018	0,085	0,000	0,000	0,102	0,028	0,020	0,041	0,000
AI2O3	0,048	0,180	0,000	0,489	0,024	0,022	0,000	0,038	0,012
FeO	18,078	15,552	21,182	19,207	22,642	21,046	21,301	21,294	21,541
MnO	0,303	0,125	0,283	0,248	0,265	0,276	0,287	0,298	0,316
MgO	37,014	38,172	41,910	37,564	41,052	42,004	41,710	41,071	41,416
CaO	0,038	0,154	0,001	0,008	0,012	0,007	0,009	0,000	0,016
Na2O	0,016	0,015	0,000	0,026	0,000	0,009	0,018	0,004	0,000
K20	0,010	0,013	0,008	0,002	0,000	0,012	0,000	0,010	0,000
Cr2O3	0,000	0,000	0,012	0,013	0,012	0,016	0,001	0,000	0,001
NiO	0,288	0,196	0,159	0,080	0,167	0,186	0,147	0,133	0,190
Total	90,410	91,370	101,140	92,110	99,460	99,090	99,480	98,310	98,870
Si	0,987	1,020	0,965	0,970	0,931	0,936	0,945	0,942	0,937
AI	0,002	0,006	0,000	0,016	0,001	0,001	0,000	0,001	0,000
Ti	0,000	0,002	0,000	0,000	0,002	0,001	0,000	0,001	0,000
Fe2	0,431	0,360	0,455	0,452	0,501	0,464	0,468	0,474	0,477
Mn	0,007	0,003	0,006	0,006	0,006	0,006	0,006	0,007	0,007
Mg	1,575	1,574	1,605	1,575	1,620	1,651	1,632	1,629	1,636
Ca	0,001	0,005	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,001	0,001	0,000	0,001	0,000	0,000	0,001	0,000	0,000
K	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ni	0,007	0,004	0,003	0,002	0,004	0,004	0,003	0,003	0,004
Cations	3,011	2,975	3,034	3,022	3,065	3,063	3,055	3,057	3,061
Fe_FeMg	0,21	0,19	0,22	0,22	0,24	0,22	0,22	0,23	0,23
Mg_FeMg	0,79	0,81	0,78	0,78	0,76	0,78	0,78	0,77	0,77
Amostra	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3
Amostra Mineral	UM 3 olivina b	UM 3 olivina b	UM 3 olivina b	UM 3 olivina b	UM 3 olivina b	UM 3 olivina b	UM 3 olivina b	UM 3 olivina b	UM 3 olivina b
Mineral	olivina b	olivina b	olivina b	olivina b	olivina b	olivina b	olivina b	olivina b	olivina b
Mineral SiO2	olivina b 36,362	olivina b 36,208	olivina b 37,665	olivina b 36,033	olivina b 36,269	olivina b 37,314	olivina b 36,197	olivina b 34,300	olivina b 34,709
Mineral SiO2 TiO2	olivina b 36,362 0,000	olivina b 36,208 0,023	olivina b 37,665 0,057	olivina b 36,033 0,015	olivina b 36,269 0,023	olivina b 37,314 0,015	olivina b 36,197 0,000	olivina b 34,300 0,032	34,709 0,043
SiO2 TiO2 Al2O3	olivina b 36,362 0,000 0,021	36,208 0,023 0,026	37,665 0,057 0,034	36,033 0,015 0,025	36,269 0,023 0,000	37,314 0,015 0,001	36,197 0,000 0,029	34,300 0,032 0,011	34,709 0,043 0,023
Mineral SiO2 TiO2 Al2O3 FeO	olivina b 36,362 0,000 0,021 21,485	olivina b 36,208 0,023 0,026 21,339	olivina b 37,665 0,057 0,034 21,296	olivina b 36,033 0,015 0,025 20,904	olivina b 36,269 0,023 0,000 21,029	olivina b 37,314 0,015 0,001 21,198	olivina b 36,197 0,000 0,029 21,125	olivina b 34,300 0,032 0,011 20,266	olivina b 34,709 0,043 0,023 21,248
Mineral SiO2 TiO2 Al2O3 FeO MnO	olivina b 36,362 0,000 0,021 21,485 0,315	olivina b 36,208 0,023 0,026 21,339 0,262	olivina b 37,665 0,057 0,034 21,296 0,311	olivina b 36,033 0,015 0,025 20,904 0,261	olivina b 36,269 0,023 0,000 21,029 0,287	olivina b 37,314 0,015 0,001 21,198 0,270	36,197 0,000 0,029 21,125 0,327	34,300 0,032 0,011 20,266 0,320	olivina b 34,709 0,043 0,023 21,248 0,284
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO	olivina b 36,362 0,000 0,021 21,485 0,315 41,228	olivina b 36,208 0,023 0,026 21,339 0,262 41,678	olivina b 37,665 0,057 0,034 21,296 0,311 42,330	olivina b 36,033 0,015 0,025 20,904 0,261 41,817	olivina b 36,269 0,023 0,000 21,029 0,287 41,766	37,314 0,015 0,001 21,198 0,270 41,955	36,197 0,000 0,029 21,125 0,327 41,450	34,300 0,032 0,011 20,266 0,320 38,226	olivina b 34,709 0,043 0,023 21,248 0,284 38,959
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO	olivina b 36,362 0,000 0,021 21,485 0,315 41,228 0,021	olivina b 36,208 0,023 0,026 21,339 0,262 41,678 0,013	olivina b 37,665 0,057 0,034 21,296 0,311 42,330 0,000	olivina b 36,033 0,015 0,025 20,904 0,261 41,817 0,028	36,269 0,023 0,000 21,029 0,287 41,766 0,008	37,314 0,015 0,001 21,198 0,270 41,955 0,035	36,197 0,000 0,029 21,125 0,327 41,450 0,003	34,300 0,032 0,011 20,266 0,320 38,226 0,030	34,709 0,043 0,023 21,248 0,284 38,959 0,021
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O	olivina b 36,362 0,000 0,021 21,485 0,315 41,228 0,021 0,023	olivina b 36,208 0,023 0,026 21,339 0,262 41,678 0,013 0,000	olivina b 37,665 0,057 0,034 21,296 0,311 42,330 0,000 0,000	olivina b 36,033 0,015 0,025 20,904 0,261 41,817 0,028 0,000	olivina b 36,269 0,023 0,000 21,029 0,287 41,766 0,008 0,002	olivina b 37,314 0,015 0,001 21,198 0,270 41,955 0,035 0,025	36,197 0,000 0,029 21,125 0,327 41,450 0,003 0,007	34,300 0,032 0,011 20,266 0,320 38,226 0,030 0,000	34,709 0,043 0,023 21,248 0,284 38,959 0,021 0,016
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O	olivina b 36,362 0,000 0,021 21,485 0,315 41,228 0,021 0,023 0,000	olivina b 36,208 0,023 0,026 21,339 0,262 41,678 0,013 0,000 0,002	olivina b 37,665 0,057 0,034 21,296 0,311 42,330 0,000 0,000	olivina b 36,033 0,015 0,025 20,904 0,261 41,817 0,028 0,000 0,000	0livina b 36,269 0,023 0,000 21,029 0,287 41,766 0,008 0,002 0,000	0livina b 37,314 0,015 0,001 21,198 0,270 41,955 0,035 0,025 0,000	36,197 0,000 0,029 21,125 0,327 41,450 0,003 0,007 0,014	34,300 0,032 0,011 20,266 0,320 38,226 0,030 0,000	34,709 0,043 0,023 21,248 0,284 38,959 0,021 0,016 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3	olivina b 36,362 0,000 0,021 21,485 0,315 41,228 0,021 0,023 0,000 0,011	olivina b 36,208 0,023 0,026 21,339 0,262 41,678 0,013 0,000 0,002 0,000	olivina b 37,665 0,057 0,034 21,296 0,311 42,330 0,000 0,000 0,000 0,000	olivina b 36,033 0,015 0,025 20,904 0,261 41,817 0,028 0,000 0,000 0,002	0livina b 36,269 0,023 0,000 21,029 0,287 41,766 0,008 0,002 0,000 0,041	0livina b 37,314 0,015 0,001 21,198 0,270 41,955 0,035 0,025 0,000 0,002	36,197 0,000 0,029 21,125 0,327 41,450 0,003 0,007 0,014 0,044	34,300 0,032 0,011 20,266 0,320 38,226 0,030 0,000 0,000	0livina b 34,709 0,043 0,023 21,248 0,284 38,959 0,021 0,016 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO	0livina b 36,362 0,000 0,021 21,485 0,315 41,228 0,021 0,023 0,000 0,011 0,107	olivina b 36,208 0,023 0,026 21,339 0,262 41,678 0,013 0,000 0,002 0,000 0,146	olivina b 37,665 0,057 0,034 21,296 0,311 42,330 0,000 0,000 0,000 0,000 0,000 0,129	olivina b 36,033 0,015 0,025 20,904 0,261 41,817 0,028 0,000 0,000 0,002 0,156	36,269 0,023 0,000 21,029 0,287 41,766 0,008 0,002 0,000 0,041 0,185	37,314 0,015 0,001 21,198 0,270 41,955 0,035 0,025 0,000 0,002 0,185	36,197 0,000 0,029 21,125 0,327 41,450 0,003 0,007 0,014 0,044 0,200	34,300 0,032 0,011 20,266 0,320 38,226 0,030 0,000 0,000 0,036 0,086	0livina b 34,709 0,043 0,023 21,248 0,284 38,959 0,021 0,016 0,000 0,000 0,127
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total	olivina b 36,362 0,000 0,021 21,485 0,315 41,228 0,021 0,023 0,000 0,011 0,107 99,570	olivina b 36,208 0,023 0,026 21,339 0,262 41,678 0,013 0,000 0,002 0,000 0,146 99,700	olivina b 37,665 0,057 0,034 21,296 0,311 42,330 0,000 0,000 0,000 0,000 0,129 101,820	olivina b 36,033 0,015 0,025 20,904 0,261 41,817 0,028 0,000 0,000 0,002 0,156 99,260	0livina b 36,269 0,023 0,000 21,029 0,287 41,766 0,008 0,002 0,000 0,041 0,185 99,610	0livina b 37,314 0,015 0,001 21,198 0,270 41,955 0,035 0,025 0,000 0,002 0,185 101,000	36,197 0,000 0,029 21,125 0,327 41,450 0,003 0,007 0,014 0,044 0,200 99,390	34,300 0,032 0,011 20,266 0,320 38,226 0,030 0,000 0,000 0,036 0,086 93,310	34,709 0,043 0,023 21,248 0,284 38,959 0,021 0,016 0,000 0,000 0,127 95,430
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si	olivina b 36,362 0,000 0,021 21,485 0,315 41,228 0,021 0,023 0,000 0,011 0,107 99,570 0,953	olivina b 36,208 0,023 0,026 21,339 0,262 41,678 0,013 0,000 0,002 0,000 0,146 99,700 0,948	olivina b 37,665 0,057 0,034 21,296 0,311 42,330 0,000 0,000 0,000 0,000 0,129 101,820 0,961	olivina b 36,033 0,015 0,025 20,904 0,261 41,817 0,028 0,000 0,000 0,000 0,022 0,156 99,260 0,946	36,269 0,023 0,000 21,029 0,287 41,766 0,008 0,002 0,000 0,041 0,185 99,610 0,949	0livina b 37,314 0,015 0,001 21,198 0,270 41,955 0,035 0,025 0,000 0,002 0,185 101,000 0,961	36,197 0,000 0,029 21,125 0,327 41,450 0,003 0,007 0,014 0,044 0,200 99,390 0,950	34,300 0,032 0,011 20,266 0,320 38,226 0,030 0,000 0,000 0,036 0,086 93,310 0,959	34,709 0,043 0,023 21,248 0,284 38,959 0,021 0,016 0,000 0,000 0,127 95,430 0,953
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al	olivina b 36,362 0,000 0,021 21,485 0,315 41,228 0,021 0,023 0,000 0,011 0,107 99,570 0,953 0,001	olivina b 36,208 0,023 0,026 21,339 0,262 41,678 0,013 0,000 0,002 0,000 0,146 99,700 0,948 0,001	olivina b 37,665 0,057 0,034 21,296 0,311 42,330 0,000 0,000 0,000 0,000 0,129 101,820 0,961 0,001	olivina b 36,033 0,015 0,025 20,904 0,261 41,817 0,028 0,000 0,000 0,002 0,156 99,260 0,946 0,001	36,269 0,023 0,000 21,029 0,287 41,766 0,008 0,002 0,000 0,041 0,185 99,610 0,949 0,000	0livina b 37,314 0,015 0,001 21,198 0,270 41,955 0,035 0,025 0,000 0,002 0,185 101,000 0,961 0,000	36,197 0,000 0,029 21,125 0,327 41,450 0,003 0,007 0,014 0,044 0,200 99,390 0,950 0,001	34,300 0,032 0,011 20,266 0,320 38,226 0,030 0,000 0,000 0,036 0,086 93,310 0,959 0,000	0livina b 34,709 0,043 0,023 21,248 0,284 38,959 0,021 0,016 0,000 0,000 0,127 95,430 0,953 0,001
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti	0livina b 36,362 0,000 0,021 21,485 0,315 41,228 0,021 0,023 0,000 0,011 0,107 99,570 0,953 0,001 0,000	0livina b 36,208 0,023 0,026 21,339 0,262 41,678 0,013 0,000 0,002 0,000 0,146 99,700 0,948 0,001 0,000	olivina b 37,665 0,057 0,034 21,296 0,311 42,330 0,000 0,000 0,000 0,000 0,129 101,820 0,961 0,001	olivina b 36,033 0,015 0,025 20,904 0,261 41,817 0,028 0,000 0,000 0,022 0,156 99,260 0,946 0,001 0,000	36,269 0,023 0,000 21,029 0,287 41,766 0,008 0,002 0,000 0,041 0,185 99,610 0,949 0,000 0,000	37,314 0,015 0,001 21,198 0,270 41,955 0,035 0,025 0,000 0,002 0,185 101,000 0,961 0,000	36,197 0,000 0,029 21,125 0,327 41,450 0,003 0,007 0,014 0,044 0,200 99,390 0,950 0,001 0,000	34,300 0,032 0,011 20,266 0,320 38,226 0,030 0,000 0,000 0,036 0,086 93,310 0,959 0,000 0,001	0livina b 34,709 0,043 0,023 21,248 0,284 38,959 0,021 0,016 0,000 0,000 0,127 95,430 0,953 0,001 0,001
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2	0livina b 36,362 0,000 0,021 21,485 0,315 41,228 0,021 0,023 0,000 0,011 0,107 99,570 0,953 0,001 0,000 0,471	0livina b 36,208 0,023 0,026 21,339 0,262 41,678 0,013 0,000 0,002 0,000 0,146 99,700 0,948 0,001 0,000 0,467	olivina b 37,665 0,057 0,034 21,296 0,311 42,330 0,000 0,000 0,000 0,129 101,820 0,961 0,001 0,001 0,454	olivina b 36,033 0,015 0,025 20,904 0,261 41,817 0,028 0,000 0,000 0,002 0,156 99,260 0,946 0,001 0,000 0,459	36,269 0,023 0,000 21,029 0,287 41,766 0,008 0,002 0,000 0,041 0,185 99,610 0,949 0,000 0,000 0,000	0livina b 37,314 0,015 0,001 21,198 0,270 41,955 0,035 0,025 0,000 0,002 0,185 101,000 0,961 0,000 0,000 0,456	36,197 0,000 0,029 21,125 0,327 41,450 0,003 0,007 0,014 0,200 99,390 0,950 0,001 0,000 0,464	34,300 0,032 0,011 20,266 0,320 38,226 0,030 0,000 0,000 0,036 0,086 93,310 0,959 0,000 0,001	0livina b 34,709 0,043 0,023 21,248 0,284 38,959 0,021 0,016 0,000 0,127 95,430 0,953 0,001 0,001 0,488
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn	olivina b 36,362 0,000 0,021 21,485 0,315 41,228 0,021 0,023 0,000 0,011 0,107 99,570 0,953 0,001 0,000 0,471 0,007	0livina b 36,208 0,023 0,026 21,339 0,262 41,678 0,013 0,000 0,002 0,000 0,146 99,700 0,948 0,001 0,000 0,467 0,006	olivina b 37,665 0,057 0,034 21,296 0,311 42,330 0,000 0,000 0,000 0,129 101,820 0,961 0,001 0,001 0,454 0,007	olivina b 36,033 0,015 0,025 20,904 0,261 41,817 0,028 0,000 0,000 0,002 0,156 99,260 0,946 0,001 0,000 0,459 0,006	36,269 0,023 0,000 21,029 0,287 41,766 0,008 0,002 0,000 0,041 0,185 99,610 0,949 0,000 0,000 0,460 0,006	0livina b 37,314 0,015 0,001 21,198 0,270 41,955 0,035 0,025 0,000 0,002 0,185 101,000 0,961 0,000 0,000 0,456 0,006	36,197 0,000 0,029 21,125 0,327 41,450 0,003 0,007 0,014 0,200 99,390 0,950 0,001 0,000 0,464 0,007	0livina b 34,300 0,032 0,011 20,266 0,320 38,226 0,030 0,000 0,000 0,036 0,086 93,310 0,959 0,000 0,001 0,474 0,008	0livina b 34,709 0,043 0,023 21,248 0,284 38,959 0,021 0,016 0,000 0,127 95,430 0,953 0,001 0,001 0,488 0,007
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg	olivina b 36,362 0,000 0,021 21,485 0,315 41,228 0,021 0,023 0,000 0,011 0,107 99,570 0,953 0,001 0,000 0,471 0,007 1,611	olivina b 36,208 0,023 0,026 21,339 0,262 41,678 0,013 0,000 0,002 0,000 0,146 99,700 0,948 0,001 0,000 0,467 0,006 1,626	olivina b 37,665 0,057 0,034 21,296 0,311 42,330 0,000 0,000 0,000 0,000 0,129 101,820 0,961 0,001 0,001 0,001 0,454 0,007 1,610	olivina b 36,033 0,015 0,025 20,904 0,261 41,817 0,028 0,000 0,000 0,022 0,156 99,260 0,946 0,001 0,000 0,459 0,006 1,637	36,269 0,023 0,000 21,029 0,287 41,766 0,008 0,002 0,000 0,041 0,185 99,610 0,949 0,000 0,000 0,000 0,460 0,006 1,629	0livina b 37,314 0,015 0,001 21,198 0,270 41,955 0,035 0,025 0,000 0,002 0,185 101,000 0,961 0,000 0,000 0,456 0,006 1,610	36,197 0,000 0,029 21,125 0,327 41,450 0,003 0,007 0,014 0,044 0,200 99,390 0,950 0,001 0,000 0,464 0,007 1,622	olivina b 34,300 0,032 0,011 20,266 0,320 38,226 0,030 0,000 0,000 0,036 0,086 93,310 0,959 0,000 0,001 0,474 0,008 1,594	0livina b 34,709 0,043 0,023 21,248 0,284 38,959 0,021 0,016 0,000 0,127 95,430 0,953 0,001 0,001 0,488 0,007 1,594
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca	olivina b 36,362 0,000 0,021 21,485 0,315 41,228 0,021 0,023 0,000 0,011 0,107 99,570 0,953 0,001 0,000 0,471 0,007 1,611 0,001	olivina b 36,208 0,023 0,026 21,339 0,262 41,678 0,013 0,000 0,002 0,000 0,146 99,700 0,948 0,001 0,000 0,467 0,006 1,626 0,000	olivina b 37,665 0,057 0,034 21,296 0,311 42,330 0,000 0,000 0,000 0,000 0,129 101,820 0,961 0,001 0,001 0,454 0,007 1,610 0,000	olivina b 36,033 0,015 0,025 20,904 0,261 41,817 0,028 0,000 0,000 0,022 0,156 99,260 0,946 0,001 0,000 0,459 0,006 1,637 0,001	0livina b 36,269 0,023 0,000 21,029 0,287 41,766 0,008 0,002 0,000 0,041 0,185 99,610 0,949 0,000 0,000 0,460 0,006 1,629 0,000	0livina b 37,314 0,015 0,001 21,198 0,270 41,955 0,035 0,025 0,000 0,002 0,185 101,000 0,961 0,000 0,000 0,456 0,006 1,610 0,001	36,197 0,000 0,029 21,125 0,327 41,450 0,003 0,007 0,014 0,044 0,200 99,390 0,950 0,001 0,000 0,464 0,007 1,622 0,000	olivina b 34,300 0,032 0,011 20,266 0,320 38,226 0,030 0,000 0,000 0,036 0,086 93,310 0,959 0,000 0,001 0,474 0,008 1,594 0,001	0livina b 34,709 0,043 0,023 21,248 0,284 38,959 0,021 0,016 0,000 0,000 0,127 95,430 0,953 0,001 0,001 0,488 0,007 1,594 0,001
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na	olivina b 36,362 0,000 0,021 21,485 0,315 41,228 0,021 0,023 0,000 0,011 0,107 99,570 0,953 0,001 0,000 0,471 0,007 1,611 0,001 0,001	olivina b 36,208 0,023 0,026 21,339 0,262 41,678 0,013 0,000 0,002 0,000 0,146 99,700 0,948 0,001 0,000 0,467 0,006 1,626 0,000 0,000	olivina b 37,665 0,057 0,034 21,296 0,311 42,330 0,000 0,000 0,000 0,000 0,129 101,820 0,961 0,001 0,001 0,454 0,007 1,610 0,000 0,000	olivina b 36,033 0,015 0,025 20,904 0,261 41,817 0,028 0,000 0,000 0,022 0,156 99,260 0,946 0,001 0,000 0,459 0,006 1,637 0,001 0,000	36,269 0,023 0,000 21,029 0,287 41,766 0,008 0,002 0,000 0,041 0,185 99,610 0,949 0,000 0,000 0,460 0,006 1,629 0,000 0,000	0livina b 37,314 0,015 0,001 21,198 0,270 41,955 0,035 0,025 0,000 0,002 0,185 101,000 0,961 0,000 0,000 0,456 0,006 1,610 0,001	36,197 0,000 0,029 21,125 0,327 41,450 0,003 0,007 0,014 0,044 0,200 99,390 0,950 0,001 0,000 0,464 0,007 1,622 0,000 0,000	34,300 0,032 0,011 20,266 0,320 38,226 0,030 0,000 0,000 0,036 0,086 93,310 0,959 0,000 0,001 0,474 0,008 1,594 0,001 0,000	0livina b 34,709 0,043 0,023 21,248 0,284 38,959 0,021 0,016 0,000 0,000 0,127 95,430 0,953 0,001 0,001 0,488 0,007 1,594 0,001 0,001
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K	olivina b 36,362 0,000 0,021 21,485 0,315 41,228 0,021 0,023 0,000 0,011 0,107 99,570 0,953 0,001 0,000 0,471 0,007 1,611 0,001 0,000	olivina b 36,208 0,023 0,026 21,339 0,262 41,678 0,013 0,000 0,002 0,000 0,146 99,700 0,948 0,001 0,000 0,467 0,006 1,626 0,000 0,000 0,000	olivina b 37,665 0,057 0,034 21,296 0,311 42,330 0,000 0,000 0,000 0,129 101,820 0,961 0,001 0,001 0,454 0,007 1,610 0,000 0,000 0,000	olivina b 36,033 0,015 0,025 20,904 0,261 41,817 0,028 0,000 0,000 0,002 0,156 99,260 0,946 0,001 0,000 0,459 0,006 1,637 0,001 0,000 0,000	36,269 0,023 0,000 21,029 0,287 41,766 0,008 0,002 0,000 0,041 0,185 99,610 0,949 0,000 0,000 0,460 0,006 1,629 0,000 0,000 0,000 0,000	0livina b 37,314 0,015 0,001 21,198 0,270 41,955 0,035 0,025 0,000 0,002 0,185 101,000 0,961 0,000 0,456 0,006 1,610 0,001 0,001 0,000	36,197 0,000 0,029 21,125 0,327 41,450 0,003 0,007 0,014 0,200 99,390 0,950 0,001 0,000 0,464 0,007 1,622 0,000 0,000	34,300 0,032 0,011 20,266 0,320 38,226 0,030 0,000 0,000 0,036 0,086 93,310 0,959 0,000 0,001 0,474 0,008 1,594 0,000 0,000	0livina b 34,709 0,043 0,023 21,248 0,284 38,959 0,021 0,016 0,000 0,127 95,430 0,953 0,001 0,001 0,488 0,007 1,594 0,001 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K Cr	olivina b 36,362 0,000 0,021 21,485 0,315 41,228 0,021 0,023 0,000 0,011 0,107 99,570 0,953 0,001 0,000 0,471 0,007 1,611 0,001 0,000 0,000 0,000	olivina b 36,208 0,023 0,026 21,339 0,262 41,678 0,013 0,000 0,002 0,000 0,146 99,700 0,948 0,001 0,000 0,467 0,006 1,626 0,000 0,000 0,000 0,000 0,000	olivina b 37,665 0,057 0,034 21,296 0,311 42,330 0,000 0,000 0,000 0,129 101,820 0,961 0,001 0,001 0,454 0,007 1,610 0,000 0,000 0,000 0,000 0,000	olivina b 36,033 0,015 0,025 20,904 0,261 41,817 0,028 0,000 0,000 0,002 0,156 99,260 0,946 0,001 0,000 0,459 0,006 1,637 0,001 0,000 0,000 0,000	36,269 0,023 0,000 21,029 0,287 41,766 0,008 0,002 0,000 0,041 0,185 99,610 0,949 0,000 0,000 0,460 0,006 1,629 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0livina b 37,314 0,015 0,001 21,198 0,270 41,955 0,035 0,025 0,000 0,002 0,185 101,000 0,961 0,000 0,456 0,006 1,610 0,001 0,001 0,000 0,000 0,000 0,000	36,197 0,000 0,029 21,125 0,327 41,450 0,003 0,007 0,014 0,200 99,390 0,950 0,001 0,000 0,464 0,007 1,622 0,000 0,000 0,000	0livina b 34,300 0,032 0,011 20,266 0,320 38,226 0,030 0,000 0,000 0,036 0,086 93,310 0,959 0,000 0,001 0,474 0,008 1,594 0,001 0,000 0,000 0,000	0livina b 34,709 0,043 0,023 21,248 0,284 38,959 0,021 0,016 0,000 0,127 95,430 0,953 0,001 0,001 0,488 0,007 1,594 0,001 0,000 0,000 0,000
Mineral SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si AI Ti Fe2 Mn Mg Ca Na K Cr Ni	olivina b 36,362 0,000 0,021 21,485 0,315 41,228 0,021 0,023 0,000 0,011 0,107 99,570 0,953 0,001 0,000 0,471 0,007 1,611 0,001 0,000 0,001 0,000 0,000 0,000 0,000	olivina b 36,208 0,023 0,026 21,339 0,262 41,678 0,013 0,000 0,002 0,000 0,146 99,700 0,948 0,001 0,000 0,467 0,006 1,626 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 37,665 0,057 0,034 21,296 0,311 42,330 0,000 0,000 0,000 0,000 0,129 101,820 0,961 0,001 0,001 0,454 0,007 1,610 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 36,033 0,015 0,025 20,904 0,261 41,817 0,028 0,000 0,000 0,022 0,156 99,260 0,946 0,001 0,000 0,459 0,006 1,637 0,001 0,000 0,000 0,000 0,000 0,000 0,000	36,269 0,023 0,000 21,029 0,287 41,766 0,008 0,002 0,000 0,041 0,185 99,610 0,949 0,000 0,000 0,460 0,006 1,629 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0livina b 37,314 0,015 0,001 21,198 0,270 41,955 0,035 0,025 0,000 0,002 0,185 101,000 0,961 0,000 0,006 1,610 0,001 0,001 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000	36,197 0,000 0,029 21,125 0,327 41,450 0,003 0,007 0,014 0,044 0,200 99,390 0,950 0,001 0,000 0,464 0,007 1,622 0,000 0,000 0,000 0,000 0,000	34,300 0,032 0,011 20,266 0,320 38,226 0,030 0,000 0,000 0,036 0,086 93,310 0,959 0,000 0,001 0,474 0,008 1,594 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0livina b 34,709 0,043 0,023 21,248 0,284 38,959 0,021 0,016 0,000 0,000 0,127 95,430 0,953 0,001 0,001 0,488 0,007 1,594 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K Cr Ni Cations	olivina b 36,362 0,000 0,021 21,485 0,315 41,228 0,021 0,023 0,000 0,011 0,107 99,570 0,953 0,001 0,000 0,471 0,007 1,611 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,002 3,047	olivina b 36,208 0,023 0,026 21,339 0,262 41,678 0,013 0,000 0,002 0,000 0,146 99,700 0,948 0,001 0,000 0,467 0,006 1,626 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,003 3,051	olivina b 37,665 0,057 0,034 21,296 0,311 42,330 0,000 0,000 0,000 0,000 0,129 101,820 0,961 0,001 0,001 0,454 0,007 1,610 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,003 3,037	olivina b 36,033 0,015 0,025 20,904 0,261 41,817 0,028 0,000 0,000 0,022 0,156 99,260 0,946 0,001 0,000 0,459 0,006 1,637 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,003 3,053	36,269 0,023 0,000 21,029 0,287 41,766 0,008 0,002 0,000 0,041 0,185 99,610 0,949 0,000 0,000 0,000 0,460 0,006 1,629 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,004 3,048	0livina b 37,314 0,015 0,001 21,198 0,270 41,955 0,035 0,025 0,000 0,002 0,185 101,000 0,961 0,000 0,000 0,456 0,006 1,610 0,001 0,001 0,001 0,000	36,197 0,000 0,029 21,125 0,327 41,450 0,003 0,007 0,014 0,044 0,200 99,390 0,950 0,001 0,000 0,464 0,007 1,622 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	34,300 0,032 0,011 20,266 0,320 38,226 0,030 0,000 0,000 0,036 0,086 93,310 0,959 0,000 0,001 0,474 0,008 1,594 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0livina b 34,709 0,043 0,023 21,248 0,284 38,959 0,021 0,016 0,000 0,000 0,127 95,430 0,953 0,001 0,001 0,001 0,488 0,007 1,594 0,001 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 3,049

Amostra	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3
Mineral	olivina c	olivina c	olivina c	olivina c	olivina c	olivina b	olivina b	olivina b	olivina b
SiO2	35,679	35,693	35,655	32,901	33,328	37,407	37,933	32,596	32,690
TiO2	0,000	0,011	0,011	0,025	0,054	0,026	0,067	0,000	0,038
AI2O3	0,000	0,000	0,008	0,014	0,000	0,000	0,124	0,662	0,000
FeO	20,942	21,414	21,261	21,255	21,364	21,605	25,202	21,621	21,553
MnO	0,347	0,317	0,328	0,287	0,308	0,322	0,275	0,290	0,259
MgO	40,606	40,891	40,874	40,683	39,231	41,334	41,053	39,201	40,252
CaO	0,000	0,000	0,034	0,030	0,000	0,019	0,000	0,000	0,008
Na2O	0,009	0,032	0,000	0,000	0,000	0,009	0,015	0,018	0,018
K20	0,000	0,000	0,000	0,004	0,010	0,025	0,006	0,000	0,011
Cr2O3	0,000	0,020	0,000	0,000	0,000	0,000	0,188	0,000	0,000
NiO	0,148	0,145	0,203	0,235	0,170	0,223	0,152	0,179	0,181
Total	97,730	98,520	98,370	95,430	94,460	100,970	105,010	94,570	95,010
Si	0,953	0,947	0,947	0,909	0,929	0,965	0,954	0,910	0,909
AI	0,000	0,000	0,000	0,000	0,000	0,000	0,004	0,022	0,000
Ti	0,000	0,000	0,000	0,001	0,001	0,001	0,001	0,000	0,001
Fe2	0,468	0,475	0,472	0,491	0,498	0,466	0,530	0,505	0,501
Mn	0,008	0,007	0,007	0,007	0,007	0,007	0,006	0,007	0,006
Mg	1,616	1,618	1,619	1,676	1,630	1,590	1,539	1,631	1,668
Ca	0,000	0,000	0,001	0,001	0,000	0,001	0,000	0,000	0,000
Na	0,000	0,002	0,000	0,000	0,000	0,000	0,001	0,001	0,001
K	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ni	0,003	0,003	0,004	0,005	0,004	0,005	0,003	0,004	0,004
Cations	3,048	3,052	3,050	3,090	3,069	3,036	3,038	3,080	3,090
Fe_FeMg	0,22	0,23	0,23	0,23	0,23	0,23	0,26	0,24	0,23
Mg_FeMg	0,78	0,77	0,77	0,77	0,77	0,77	0,74	0,76	0,77
W100200 000000	11110	1100.0							1100.0
Amostra	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3	UM 3
Mineral	olivina c	olivina c	olivina c	olivina c	olivina b	olivina b	olivina b	olivina b	olivina b
Mineral SiO2	olivina c 34,346	olivina c 33,998	olivina c 34,818	olivina c 35,622	olivina b 34,660	olivina b 35,298	olivina b 32,262	olivina b 35,881	olivina b 32,497
Mineral SiO2 TiO2	olivina c 34,346 0,000	olivina c 33,998 0,051	34,818 0,000	olivina c 35,622 0,025	34,660 0,001	olivina b 35,298 0,055	olivina b 32,262 0,000	olivina b 35,881 0,007	olivina b 32,497 0,004
SiO2 TiO2 Al2O3	34,346 0,000 0,003	33,998 0,051 0,000	34,818 0,000 0,052	35,622 0,025 0,000	34,660 0,001 0,028	olivina b 35,298 0,055 0,000	32,262 0,000 0,022	olivina b 35,881 0,007 0,051	olivina b 32,497 0,004 0,000
SiO2 TiO2 Al2O3 FeO	olivina c 34,346 0,000 0,003 21,245	olivina c 33,998 0,051 0,000 20,895	olivina c 34,818 0,000 0,052 21,296	olivina c 35,622 0,025 0,000 21,088	olivina b 34,660 0,001 0,028 21,350	olivina b 35,298 0,055 0,000 21,499	olivina b 32,262 0,000 0,022 21,598	olivina b 35,881 0,007 0,051 21,149	olivina b 32,497 0,004 0,000 20,814
Mineral SiO2 TiO2 Al2O3 FeO MnO	olivina c 34,346 0,000 0,003 21,245 0,222	olivina c 33,998 0,051 0,000 20,895 0,202	olivina c 34,818 0,000 0,052 21,296 0,331	olivina c 35,622 0,025 0,000 21,088 0,314	olivina b 34,660 0,001 0,028 21,350 0,306	olivina b 35,298 0,055 0,000 21,499 0,271	olivina b 32,262 0,000 0,022 21,598 0,278	olivina b 35,881 0,007 0,051 21,149 0,301	olivina b 32,497 0,004 0,000 20,814 0,289
Mineral SiO2 TiO2 Al2O3 FeO MnO	olivina c 34,346 0,000 0,003 21,245 0,222 41,994	olivina c 33,998 0,051 0,000 20,895 0,202 41,147	olivina c 34,818 0,000 0,052 21,296 0,331 41,160	olivina c 35,622 0,025 0,000 21,088 0,314 40,922	olivina b 34,660 0,001 0,028 21,350 0,306 40,209	olivina b 35,298 0,055 0,000 21,499 0,271 41,636	olivina b 32,262 0,000 0,022 21,598 0,278 37,282	olivina b 35,881 0,007 0,051 21,149 0,301 42,903	32,497 0,004 0,000 20,814 0,289 37,484
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO	olivina c 34,346 0,000 0,003 21,245 0,222 41,994 0,006	olivina c 33,998 0,051 0,000 20,895 0,202 41,147 0,003	olivina c 34,818 0,000 0,052 21,296 0,331 41,160 0,014	35,622 0,025 0,000 21,088 0,314 40,922 0,028	olivina b 34,660 0,001 0,028 21,350 0,306 40,209 0,000	olivina b 35,298 0,055 0,000 21,499 0,271 41,636 0,011	olivina b 32,262 0,000 0,022 21,598 0,278 37,282 0,000	olivina b 35,881 0,007 0,051 21,149 0,301 42,903 0,021	32,497 0,004 0,000 20,814 0,289 37,484 0,003
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O	olivina c 34,346 0,000 0,003 21,245 0,222 41,994 0,006 0,000	olivina c 33,998 0,051 0,000 20,895 0,202 41,147 0,003 0,011	olivina c 34,818 0,000 0,052 21,296 0,331 41,160 0,014 0,000	olivina c 35,622 0,025 0,000 21,088 0,314 40,922 0,028 0,000	olivina b 34,660 0,001 0,028 21,350 0,306 40,209 0,000 0,000	olivina b 35,298 0,055 0,000 21,499 0,271 41,636 0,011 0,028	olivina b 32,262 0,000 0,022 21,598 0,278 37,282 0,000 0,000	olivina b 35,881 0,007 0,051 21,149 0,301 42,903 0,021 0,000	32,497 0,004 0,000 20,814 0,289 37,484 0,003 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O	olivina c 34,346 0,000 0,003 21,245 0,222 41,994 0,006 0,000 0,016	olivina c 33,998 0,051 0,000 20,895 0,202 41,147 0,003 0,011 0,000	olivina c 34,818 0,000 0,052 21,296 0,331 41,160 0,014 0,000 0,010	olivina c 35,622 0,025 0,000 21,088 0,314 40,922 0,028 0,000 0,004	olivina b 34,660 0,001 0,028 21,350 0,306 40,209 0,000 0,000 0,000	olivina b 35,298 0,055 0,000 21,499 0,271 41,636 0,011 0,028 0,012	olivina b 32,262 0,000 0,022 21,598 0,278 37,282 0,000 0,000 0,000	olivina b 35,881 0,007 0,051 21,149 0,301 42,903 0,021 0,000 0,000	32,497 0,004 0,000 20,814 0,289 37,484 0,003 0,000 0,014
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3	olivina c 34,346 0,000 0,003 21,245 0,222 41,994 0,006 0,000 0,016 0,013	olivina c 33,998 0,051 0,000 20,895 0,202 41,147 0,003 0,011 0,000 0,000	0livina c 34,818 0,000 0,052 21,296 0,331 41,160 0,014 0,000 0,010 0,008	35,622 0,025 0,000 21,088 0,314 40,922 0,028 0,000 0,004 0,000	olivina b 34,660 0,001 0,028 21,350 0,306 40,209 0,000 0,000 0,000 0,000	olivina b 35,298 0,055 0,000 21,499 0,271 41,636 0,011 0,028 0,012 0,000	0livina b 32,262 0,000 0,022 21,598 0,278 37,282 0,000 0,000 0,000 0,000	olivina b 35,881 0,007 0,051 21,149 0,301 42,903 0,021 0,000 0,000 0,000	32,497 0,004 0,000 20,814 0,289 37,484 0,003 0,000 0,014 0,023
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO	olivina c 34,346 0,000 0,003 21,245 0,222 41,994 0,006 0,000 0,016 0,013 0,182	olivina c 33,998 0,051 0,000 20,895 0,202 41,147 0,003 0,011 0,000 0,000 0,132	olivina c 34,818 0,000 0,052 21,296 0,331 41,160 0,014 0,000 0,010 0,008 0,116	35,622 0,025 0,000 21,088 0,314 40,922 0,028 0,000 0,004 0,000 0,159	olivina b 34,660 0,001 0,028 21,350 0,306 40,209 0,000 0,000 0,000 0,000 0,003 0,222	olivina b 35,298 0,055 0,000 21,499 0,271 41,636 0,011 0,028 0,012 0,000 0,209	0livina b 32,262 0,000 0,022 21,598 0,278 37,282 0,000 0,000 0,000 0,000 0,000 0,123	olivina b 35,881 0,007 0,051 21,149 0,301 42,903 0,021 0,000 0,000 0,000 0,115	olivina b 32,497 0,004 0,000 20,814 0,289 37,484 0,003 0,000 0,014 0,023 0,114
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total	34,346 0,000 0,003 21,245 0,222 41,994 0,006 0,000 0,016 0,013 0,182 98,030	olivina c 33,998 0,051 0,000 20,895 0,202 41,147 0,003 0,011 0,000 0,000 0,132 96,440	olivina c 34,818 0,000 0,052 21,296 0,331 41,160 0,014 0,000 0,010 0,008 0,116 97,810	35,622 0,025 0,000 21,088 0,314 40,922 0,028 0,000 0,004 0,000 0,159 98,160	olivina b 34,660 0,001 0,028 21,350 0,306 40,209 0,000 0,000 0,000 0,003 0,222 96,780	olivina b 35,298 0,055 0,000 21,499 0,271 41,636 0,011 0,028 0,012 0,000 0,209 99,020	32,262 0,000 0,022 21,598 0,278 37,282 0,000 0,000 0,000 0,000 0,123 91,570	0livina b 35,881 0,007 0,051 21,149 0,301 42,903 0,021 0,000 0,000 0,000 0,115 100,430	32,497 0,004 0,000 20,814 0,289 37,484 0,003 0,000 0,014 0,023 0,114 91,240
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si	olivina c 34,346 0,000 0,003 21,245 0,222 41,994 0,006 0,000 0,016 0,013 0,182 98,030 0,919	olivina c 33,998 0,051 0,000 20,895 0,202 41,147 0,003 0,011 0,000 0,000 0,132 96,440 0,924	0livina c 34,818 0,000 0,052 21,296 0,331 41,160 0,014 0,000 0,010 0,008 0,116 97,810 0,933	olivina c 35,622 0,025 0,000 21,088 0,314 40,922 0,028 0,000 0,004 0,000 0,159 98,160 0,948	olivina b 34,660 0,001 0,028 21,350 0,306 40,209 0,000 0,000 0,000 0,000 0,003 0,222 96,780 0,939	olivina b 35,298 0,055 0,000 21,499 0,271 41,636 0,011 0,028 0,012 0,000 0,209 99,020 0,934	olivina b 32,262 0,000 0,022 21,598 0,278 37,282 0,000 0,000 0,000 0,000 0,123 91,570 0,931	olivina b 35,881 0,007 0,051 21,149 0,301 42,903 0,021 0,000 0,000 0,000 0,115 100,430 0,933	32,497 0,004 0,000 20,814 0,289 37,484 0,003 0,000 0,014 0,023 0,114 91,240 0,937
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al	0livina c 34,346 0,000 0,003 21,245 0,222 41,994 0,006 0,000 0,016 0,013 0,182 98,030 0,919 0,000	0livina c 33,998 0,051 0,000 20,895 0,202 41,147 0,003 0,011 0,000 0,000 0,132 96,440 0,924 0,000	0livina c 34,818 0,000 0,052 21,296 0,331 41,160 0,014 0,000 0,010 0,008 0,116 97,810 0,933 0,002	35,622 0,025 0,000 21,088 0,314 40,922 0,028 0,000 0,004 0,000 0,159 98,160 0,948 0,000	olivina b 34,660 0,001 0,028 21,350 0,306 40,209 0,000 0,000 0,000 0,000 0,003 0,222 96,780 0,939 0,001	olivina b 35,298 0,055 0,000 21,499 0,271 41,636 0,011 0,028 0,012 0,000 0,209 99,020 0,934 0,000	0livina b 32,262 0,000 0,022 21,598 0,278 37,282 0,000 0,000 0,000 0,000 0,123 91,570 0,931 0,001	olivina b 35,881 0,007 0,051 21,149 0,301 42,903 0,021 0,000 0,000 0,000 0,115 100,430 0,933 0,002	32,497 0,004 0,000 20,814 0,289 37,484 0,003 0,000 0,014 0,023 0,114 91,240 0,937 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti	0livina c 34,346 0,000 0,003 21,245 0,222 41,994 0,006 0,000 0,016 0,013 0,182 98,030 0,919 0,000 0,000	0livina c 33,998 0,051 0,000 20,895 0,202 41,147 0,003 0,011 0,000 0,000 0,132 96,440 0,924 0,000 0,001	0livina c 34,818 0,000 0,052 21,296 0,331 41,160 0,014 0,000 0,010 0,008 0,116 97,810 0,933 0,002 0,000	35,622 0,025 0,000 21,088 0,314 40,922 0,028 0,000 0,004 0,000 0,159 98,160 0,948 0,000 0,001	olivina b 34,660 0,001 0,028 21,350 0,306 40,209 0,000 0,000 0,000 0,003 0,222 96,780 0,939 0,001 0,000	olivina b 35,298 0,055 0,000 21,499 0,271 41,636 0,011 0,028 0,012 0,000 0,209 99,020 0,934 0,000 0,001	0livina b 32,262 0,000 0,022 21,598 0,278 37,282 0,000 0,000 0,000 0,000 0,123 91,570 0,931 0,001 0,000	olivina b 35,881 0,007 0,051 21,149 0,301 42,903 0,021 0,000 0,000 0,000 0,115 100,430 0,933 0,002 0,000	32,497 0,004 0,000 20,814 0,289 37,484 0,003 0,000 0,014 0,023 0,114 91,240 0,937 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2	34,346 0,000 0,003 21,245 0,222 41,994 0,006 0,000 0,016 0,013 0,182 98,030 0,919 0,000 0,000 0,000	0livina c 33,998 0,051 0,000 20,895 0,202 41,147 0,003 0,011 0,000 0,132 96,440 0,924 0,000 0,001 0,475	0livina c 34,818 0,000 0,052 21,296 0,331 41,160 0,014 0,000 0,010 0,008 0,116 97,810 0,933 0,002 0,000 0,477	35,622 0,025 0,000 21,088 0,314 40,922 0,028 0,000 0,004 0,000 0,159 98,160 0,948 0,000 0,001 0,001	0livina b 34,660 0,001 0,028 21,350 0,306 40,209 0,000 0,000 0,000 0,003 0,222 96,780 0,939 0,001 0,000 0,484	olivina b 35,298 0,055 0,000 21,499 0,271 41,636 0,011 0,028 0,012 0,000 0,209 99,020 0,934 0,000 0,001 0,476	0livina b 32,262 0,000 0,022 21,598 0,278 37,282 0,000 0,000 0,000 0,000 0,123 91,570 0,931 0,001 0,000 0,000 0,521	olivina b 35,881 0,007 0,051 21,149 0,301 42,903 0,021 0,000 0,000 0,000 0,115 100,430 0,933 0,002 0,000 0,000 0,460	32,497 0,004 0,000 20,814 0,289 37,484 0,003 0,000 0,014 0,023 0,114 91,240 0,937 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn	olivina c 34,346 0,000 0,003 21,245 0,222 41,994 0,006 0,000 0,016 0,013 0,182 98,030 0,919 0,000 0,000 0,476 0,005	olivina c 33,998 0,051 0,000 20,895 0,202 41,147 0,003 0,011 0,000 0,132 96,440 0,924 0,000 0,001 0,475 0,005	olivina c 34,818 0,000 0,052 21,296 0,331 41,160 0,014 0,000 0,010 0,008 0,116 97,810 0,933 0,002 0,000 0,477 0,008	35,622 0,025 0,000 21,088 0,314 40,922 0,028 0,000 0,004 0,000 0,159 98,160 0,948 0,000 0,001 0,469 0,007	olivina b 34,660 0,001 0,028 21,350 0,306 40,209 0,000 0,000 0,000 0,003 0,222 96,780 0,939 0,001 0,000 0,484 0,007	olivina b 35,298 0,055 0,000 21,499 0,271 41,636 0,011 0,028 0,012 0,000 0,209 99,020 0,934 0,000 0,001 0,476 0,006	0livina b 32,262 0,000 0,022 21,598 0,278 37,282 0,000 0,000 0,000 0,123 91,570 0,931 0,001 0,000 0,521 0,007	olivina b 35,881 0,007 0,051 21,149 0,301 42,903 0,021 0,000 0,000 0,115 100,430 0,933 0,002 0,000 0,460 0,007	32,497 0,004 0,000 20,814 0,289 37,484 0,003 0,000 0,014 0,023 0,114 91,240 0,937 0,000 0,000 0,502 0,007
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg	olivina c 34,346 0,000 0,003 21,245 0,222 41,994 0,006 0,000 0,016 0,013 0,182 98,030 0,919 0,000 0,000 0,476 0,005 1,676	olivina c 33,998 0,051 0,000 20,895 0,202 41,147 0,003 0,011 0,000 0,000 0,132 96,440 0,924 0,000 0,001 0,475 0,005 1,667	olivina c 34,818 0,000 0,052 21,296 0,331 41,160 0,014 0,000 0,010 0,008 0,116 97,810 0,933 0,002 0,000 0,477 0,008 1,644	olivina c 35,622 0,025 0,000 21,088 0,314 40,922 0,028 0,000 0,004 0,000 0,159 98,160 0,948 0,000 0,001 0,469 0,007 1,623	olivina b 34,660 0,001 0,028 21,350 0,306 40,209 0,000 0,000 0,000 0,003 0,222 96,780 0,939 0,001 0,000 0,484 0,007 1,624	olivina b 35,298 0,055 0,000 21,499 0,271 41,636 0,011 0,028 0,012 0,000 0,209 99,020 0,934 0,000 0,001 0,476 0,006 1,642	0livina b 32,262 0,000 0,022 21,598 0,278 37,282 0,000 0,000 0,000 0,000 0,123 91,570 0,931 0,001 0,000 0,521 0,007 1,605	olivina b 35,881 0,007 0,051 21,149 0,301 42,903 0,021 0,000 0,000 0,000 0,115 100,430 0,933 0,002 0,000 0,460 0,007 1,663	0livina b 32,497 0,004 0,000 20,814 0,289 37,484 0,003 0,000 0,014 0,023 0,114 91,240 0,937 0,000 0,000 0,502 0,007 1,612
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca	olivina c 34,346 0,000 0,003 21,245 0,222 41,994 0,006 0,000 0,016 0,013 0,182 98,030 0,919 0,000 0,000 0,476 0,005 1,676 0,000	olivina c 33,998 0,051 0,000 20,895 0,202 41,147 0,003 0,011 0,000 0,000 0,132 96,440 0,924 0,000 0,001 0,475 0,005 1,667 0,000	olivina c 34,818 0,000 0,052 21,296 0,331 41,160 0,014 0,000 0,010 0,008 0,116 97,810 0,933 0,002 0,000 0,477 0,008 1,644 0,000	olivina c 35,622 0,025 0,000 21,088 0,314 40,922 0,028 0,000 0,004 0,000 0,159 98,160 0,948 0,000 0,001 0,469 0,007 1,623 0,001	olivina b 34,660 0,001 0,028 21,350 0,306 40,209 0,000 0,000 0,000 0,003 0,222 96,780 0,939 0,001 0,000 0,484 0,007 1,624 0,000	olivina b 35,298 0,055 0,000 21,499 0,271 41,636 0,011 0,028 0,012 0,000 0,209 99,020 0,934 0,000 0,001 0,476 0,006 1,642 0,000	0livina b 32,262 0,000 0,022 21,598 0,278 37,282 0,000 0,000 0,000 0,000 0,123 91,570 0,931 0,001 0,000 0,521 0,007 1,605 0,000	olivina b 35,881 0,007 0,051 21,149 0,301 42,903 0,021 0,000 0,000 0,115 100,430 0,933 0,002 0,000 0,460 0,007 1,663 0,001	0livina b 32,497 0,004 0,000 20,814 0,289 37,484 0,003 0,000 0,014 0,023 0,114 91,240 0,937 0,000 0,000 0,502 0,007 1,612 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na	olivina c 34,346 0,000 0,003 21,245 0,222 41,994 0,006 0,000 0,016 0,013 0,182 98,030 0,919 0,000 0,000 0,476 0,005 1,676 0,000 0,000	olivina c 33,998 0,051 0,000 20,895 0,202 41,147 0,003 0,011 0,000 0,000 0,132 96,440 0,924 0,000 0,001 0,475 0,005 1,667 0,000 0,001	0livina c 34,818 0,000 0,052 21,296 0,331 41,160 0,014 0,000 0,010 0,008 0,116 97,810 0,933 0,002 0,000 0,477 0,008 1,644 0,000 0,000	35,622 0,025 0,000 21,088 0,314 40,922 0,028 0,000 0,004 0,000 0,159 98,160 0,948 0,000 0,001 0,469 0,007 1,623 0,001 0,000	olivina b 34,660 0,001 0,028 21,350 0,306 40,209 0,000 0,000 0,000 0,003 0,222 96,780 0,939 0,001 0,000 0,484 0,007 1,624 0,000 0,000	olivina b 35,298 0,055 0,000 21,499 0,271 41,636 0,011 0,028 0,012 0,000 0,209 99,020 0,934 0,000 0,001 0,476 0,006 1,642 0,000 0,001	0livina b 32,262 0,000 0,022 21,598 0,278 37,282 0,000 0,000 0,000 0,000 0,123 91,570 0,931 0,001 0,000 0,521 0,007 1,605 0,000 0,000	olivina b 35,881 0,007 0,051 21,149 0,301 42,903 0,021 0,000 0,000 0,115 100,430 0,933 0,002 0,000 0,460 0,007 1,663 0,001 0,000	0livina b 32,497 0,004 0,000 20,814 0,289 37,484 0,003 0,000 0,014 0,023 0,114 91,240 0,937 0,000 0,000 0,502 0,007 1,612 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K	olivina c 34,346 0,000 0,003 21,245 0,222 41,994 0,006 0,000 0,016 0,013 0,182 98,030 0,919 0,000 0,000 0,476 0,005 1,676 0,000 0,000 0,000 0,000	olivina c 33,998 0,051 0,000 20,895 0,202 41,147 0,003 0,011 0,000 0,132 96,440 0,924 0,000 0,001 0,475 0,005 1,667 0,000 0,001 0,000	0livina c 34,818 0,000 0,052 21,296 0,331 41,160 0,014 0,000 0,010 0,008 0,116 97,810 0,933 0,002 0,000 0,477 0,008 1,644 0,000 0,000 0,000	35,622 0,025 0,000 21,088 0,314 40,922 0,028 0,000 0,004 0,000 0,159 98,160 0,948 0,000 0,001 0,469 0,007 1,623 0,000 0,000	olivina b 34,660 0,001 0,028 21,350 0,306 40,209 0,000 0,000 0,000 0,003 0,222 96,780 0,939 0,001 0,000 0,484 0,007 1,624 0,000 0,000 0,000	olivina b 35,298 0,055 0,000 21,499 0,271 41,636 0,011 0,028 0,012 0,000 0,209 99,020 0,934 0,000 0,001 0,476 0,006 1,642 0,000 0,001 0,000	0livina b 32,262 0,000 0,022 21,598 0,278 37,282 0,000 0,000 0,000 0,123 91,570 0,931 0,001 0,000 0,521 0,007 1,605 0,000 0,000 0,000	olivina b 35,881 0,007 0,051 21,149 0,301 42,903 0,021 0,000 0,000 0,115 100,430 0,933 0,002 0,000 0,460 0,007 1,663 0,001 0,000 0,000	olivina b 32,497 0,004 0,000 20,814 0,289 37,484 0,003 0,000 0,014 91,240 0,937 0,000 0,502 0,007 1,612 0,000 0,000 0,000 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K Cr	olivina c 34,346 0,000 0,003 21,245 0,222 41,994 0,006 0,000 0,016 0,013 0,182 98,030 0,919 0,000 0,476 0,005 1,676 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina c 33,998 0,051 0,000 20,895 0,202 41,147 0,003 0,011 0,000 0,132 96,440 0,924 0,000 0,001 0,475 0,005 1,667 0,000 0,001 0,000 0,000	0livina c 34,818 0,000 0,052 21,296 0,331 41,160 0,014 0,000 0,010 0,008 0,116 97,810 0,933 0,002 0,000 0,477 0,008 1,644 0,000 0,000 0,000 0,000 0,000	35,622 0,025 0,000 21,088 0,314 40,922 0,028 0,000 0,004 0,000 0,159 98,160 0,948 0,000 0,001 0,469 0,007 1,623 0,001 0,000 0,000	olivina b 34,660 0,001 0,028 21,350 0,306 40,209 0,000 0,000 0,000 0,003 0,222 96,780 0,939 0,001 0,000 0,484 0,007 1,624 0,000 0,000 0,000 0,000 0,000	olivina b 35,298 0,055 0,000 21,499 0,271 41,636 0,011 0,028 0,012 0,000 0,209 99,020 0,934 0,000 0,001 0,476 0,006 1,642 0,000 0,001 0,000 0,001 0,000	0livina b 32,262 0,000 0,022 21,598 0,278 37,282 0,000 0,000 0,000 0,123 91,570 0,931 0,001 0,000 0,521 0,007 1,605 0,000 0,000 0,000 0,000 0,000	olivina b 35,881 0,007 0,051 21,149 0,301 42,903 0,021 0,000 0,000 0,115 100,430 0,933 0,002 0,000 0,460 0,007 1,663 0,001 0,000 0,000 0,000 0,000	0livina b 32,497 0,004 0,000 20,814 0,289 37,484 0,003 0,000 0,014 0,023 0,114 91,240 0,937 0,000 0,502 0,007 1,612 0,000 0,001 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K Cr Ni	olivina c 34,346 0,000 0,003 21,245 0,222 41,994 0,006 0,000 0,016 0,013 0,182 98,030 0,919 0,000 0,000 0,476 0,005 1,676 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0livina c 33,998 0,051 0,000 20,895 0,202 41,147 0,003 0,011 0,000 0,000 0,132 96,440 0,924 0,000 0,001 0,475 0,005 1,667 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001	0livina c 34,818 0,000 0,052 21,296 0,331 41,160 0,014 0,000 0,010 0,008 0,116 97,810 0,933 0,002 0,000 0,477 0,008 1,644 0,000 0,000 0,000 0,000 0,000 0,000 0,000	35,622 0,025 0,000 21,088 0,314 40,922 0,028 0,000 0,004 0,000 0,159 98,160 0,948 0,000 0,001 0,469 0,007 1,623 0,001 0,000 0,000 0,000 0,000	olivina b 34,660 0,001 0,028 21,350 0,306 40,209 0,000 0,000 0,000 0,003 0,222 96,780 0,939 0,001 0,000 0,484 0,007 1,624 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 35,298 0,055 0,000 21,499 0,271 41,636 0,011 0,028 0,012 0,000 0,209 99,020 0,934 0,000 0,001 0,476 0,006 1,642 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001	0livina b 32,262 0,000 0,022 21,598 0,278 37,282 0,000 0,000 0,000 0,000 0,123 91,570 0,931 0,001 0,000 0,521 0,007 1,605 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 35,881 0,007 0,051 21,149 0,301 42,903 0,021 0,000 0,000 0,115 100,430 0,933 0,002 0,000 0,460 0,007 1,663 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 32,497 0,004 0,000 20,814 0,289 37,484 0,003 0,000 0,014 0,023 0,114 91,240 0,937 0,000 0,000 0,502 0,007 1,612 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K Cr Ni Cations	olivina c 34,346 0,000 0,003 21,245 0,222 41,994 0,006 0,000 0,016 0,013 0,182 98,030 0,919 0,000 0,000 0,000 0,476 0,005 1,676 0,000 0,0	olivina c 33,998 0,051 0,000 20,895 0,202 41,147 0,003 0,011 0,000 0,000 0,132 96,440 0,924 0,000 0,001 0,475 0,005 1,667 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0livina c 34,818 0,000 0,052 21,296 0,331 41,160 0,014 0,000 0,010 0,008 0,116 97,810 0,933 0,002 0,000 0,477 0,008 1,644 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,003 3,067	35,622 0,025 0,000 21,088 0,314 40,922 0,028 0,000 0,004 0,000 0,159 98,160 0,948 0,000 0,001 0,469 0,007 1,623 0,001 0,000 0,000 0,000 0,000 0,000	olivina b 34,660 0,001 0,028 21,350 0,306 40,209 0,000 0,000 0,000 0,003 0,222 96,780 0,939 0,001 0,000 0,484 0,007 1,624 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,005 3,060	olivina b 35,298 0,055 0,000 21,499 0,271 41,636 0,011 0,028 0,012 0,000 0,209 99,020 0,934 0,000 0,001 0,476 0,006 1,642 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001	0livina b 32,262 0,000 0,022 21,598 0,278 37,282 0,000 0,000 0,000 0,000 0,123 91,570 0,931 0,001 0,000 0,521 0,007 1,605 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,003 3,068	olivina b 35,881 0,007 0,051 21,149 0,301 42,903 0,021 0,000 0,000 0,115 100,430 0,933 0,002 0,000 0,460 0,007 1,663 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,002 3,068	olivina b 32,497 0,004 0,000 20,814 0,289 37,484 0,003 0,000 0,014 91,240 0,937 0,000 0,000 0,502 0,007 1,612 0,000
Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Si Al Ti Fe2 Mn Mg Ca Na K Cr Ni	olivina c 34,346 0,000 0,003 21,245 0,222 41,994 0,006 0,000 0,016 0,013 0,182 98,030 0,919 0,000 0,000 0,476 0,005 1,676 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0livina c 33,998 0,051 0,000 20,895 0,202 41,147 0,003 0,011 0,000 0,000 0,132 96,440 0,924 0,000 0,001 0,475 0,005 1,667 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001	0livina c 34,818 0,000 0,052 21,296 0,331 41,160 0,014 0,000 0,010 0,008 0,116 97,810 0,933 0,002 0,000 0,477 0,008 1,644 0,000 0,000 0,000 0,000 0,000 0,000 0,000	35,622 0,025 0,000 21,088 0,314 40,922 0,028 0,000 0,004 0,000 0,159 98,160 0,948 0,000 0,001 0,469 0,007 1,623 0,001 0,000 0,000 0,000 0,000	olivina b 34,660 0,001 0,028 21,350 0,306 40,209 0,000 0,000 0,000 0,003 0,222 96,780 0,939 0,001 0,000 0,484 0,007 1,624 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 35,298 0,055 0,000 21,499 0,271 41,636 0,011 0,028 0,012 0,000 0,209 99,020 0,934 0,000 0,001 0,476 0,006 1,642 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001	0livina b 32,262 0,000 0,022 21,598 0,278 37,282 0,000 0,000 0,000 0,000 0,123 91,570 0,931 0,001 0,000 0,521 0,007 1,605 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 35,881 0,007 0,051 21,149 0,301 42,903 0,021 0,000 0,000 0,115 100,430 0,933 0,002 0,000 0,460 0,007 1,663 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	olivina b 32,497 0,004 0,000 20,814 0,289 37,484 0,003 0,000 0,014 0,023 0,114 91,240 0,937 0,000 0,000 0,502 0,007 1,612 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

Amostra	UM 3					
Mineral	olivina c	olivina b	olivina b	olivina b	olivina c	olivina c
SiO2	34,502	35,113	34,243	33,070	33,122	33,506
TiO2	0,015	0,010	0,014	0,000	0,012	0,032
AI2O3	0,000	0,000	0,016	0,015	0,000	0,028
FeO	21,152	21,626	21,086	21,026	21,039	21,000
MnO	0,315	0,295	0,304	0,331	0,256	0,272
MgO	41,681	42,752	42,704	40,842	40,681	41,351
CaO	0,020	0,009	0,014	0,024	0,000	0,000
Na2O	0,030	0,000	0,028	0,000	0,051	0,021
K20	0,003	0,006	0,012	0,002	0,000	0,002
Cr2O3	0,000	0,000	0,020	0,000	0,003	0,000
NiO	0,186	0,254	0,189	0,201	0,196	0,194
Total	97,900	100,070	98,630	95,510	95,360	96,410
Si	0,924	0,921	0,911	0,912	0,914	0,913
ΑI	0,000	0,000	0,001	0,000	0,000	0,001
Ti	0,000	0,000	0,000	0,000	0,000	0,001
Fe2	0,474	0,474	0,469	0,485	0,486	0,479
Mn	0,007	0,007	0,007	0,008	0,006	0,006
Mg	1,665	1,671	1,694	1,678	1,674	1,681
Ca	0,001	0,000	0,000	0,001	0,000	0,000
Na	0,002	0,000	0,001	0,000	0,003	0,001
K	0,000	0,000	0,000	0,000	0,000	0,000
Cr	0,000	0,000	0,000	0,000	0,000	0,000
Ni	0,004	0,005	0,004	0,004	0,004	0,004
Cations	3,077	3,078	3,087	3,088	3,087	3,086
Fe_FeMg	0,22	0,22	0,22	0,22	0,23	0,22
Mg_FeMg	0,78	0,78	0,78	0,78	0,77	0,78

ANEXO 8: Resultados analíticos de química mineral em olivinas do meta-peridotito do Pedras Pretas, amostra UM 3, olivinas do harzburgito do Cerro Mantiqueiras, amostra UM 26.

Amostra	MR-25	MR-27D	MR-990	MR-104H	MR- 101
Mineral	olivina	olivina	olivina	olivina	olivina
SiO2	38,9	40,5	40,1	39,9	40,58
TiO2	_	_	_	_	_
AI2O3	_	_	_	_	_
FeO	12,2	8,5	14,4	12,3	13,41
MnO	0,18	0,15	0,09	0,1	0,14
MgO	47,6	50,8	44,4	46,4	45,56
CaO	0,02	0,01	0,02	0,01	0,03
Na2O	_	_	_	_	_
K20	_	_	_	_	_
Cr2O3	0,003	0,022	0,007	0,025	0
NiO	0,21	0,19	0,21	0,23	0,3
Fe2O3	_	_	_	_	_
Total	99,1	100,2	99,4	99,2	100
Si	0,9	0,9	1	0,9	1
Mg	1,53	1,85	1,66	1,72	1,69
Ni	0,004	0,004	0,004	0,004	0,006
Cations	3,02	3,01	2,99	2,99	2,98
Fe_FeMg	0,12	0,08	0,15	0,13	0,15
Mg_FeMg	0,87	0,91	0,84	0,87	0,85

ANEXO 9: Resultados analíticos de química mineral em olivinas do Complexo Cambaizinho (Remus, 1990), média calculada para as análises realizadas nas amostras MR-25, 27-D, MR-990, MR-104H e MR-101.

Amostra	CCS 9A								
Mineral	lizardita	lizardita	lizardita	lizardita	crisotilo	crisotilo	crisotilo	lizardita	lizardita
SiO2	44,843	43,224	43,953	44,292	43,895	43,855	40,194	44,633	44,272
TiO2	0,049	0,000	0,024	0,000	0,051	0,027	0,024	0,000	0,009
AI2O3	0,135	0,110	0,101	0,164	0,077	0,097	0,143	0,098	0,204
Cr2O3	0,024	0,026	0,043	0,095	0,047	0,063	0,035	0,038	0,088
Fe2O3	3,534	3,183	4,961	3,144	7,184	4,172	11,609	1,358	1,713
MnO	0,021	0,040	0,076	0,028	0,034	0,054	0,071	0,000	0,000
MgO	39,154	40,501	38,481	37,897	36,836	39,842	35,999	42,554	42,013
NiO	0,395	0,407	0,280	0,415	0,486	0,372	0,482	0,193	0,204
CaO	0,051	0,048	0,089	0,081	0,117	0,043	0,081	0,037	0,020
Na2O	0,021	0,030	0,000	0,018	0,000	0,027	0,036	0,000	0,000
K20	0,031	0,000	0,000	0,006	0,043	0,005	0,024	0,001	0,001
Total	88,260	87,570	88,010	86,140	88,770	88,560	88,700	88,910	88,520
H2O*	11,740	12,430	11,990	13,860	11,230	11,440	11,300	11,090	11,480
Si	2,054	2,003	2,031	2,074	2,026	2,013	1,900	2,020	2,015
AIIV	0,000	0,000	0,000	0,000	0,000	0,000	0,008	0,000	0,000
AIVI	0,007	0,006	0,005	0,009	0,004	0,005	0,000	0,005	0,011
Ti	0,002	0,000	0,001	0,000	0,002	0,001	0,001	0,000	0,000
Fe3	0,122	0,111	0,172	0,111	0,249	0,144	0,413	0,046	0,059
Cr	0,001	0,001	0,002	0,004	0,002	0,002	0,001	0,001	0,003
Ni	0,010	0,020	0,010	0,020	0,020	0,010	0,020	0,010	0,010
Mn	0,001	0,002	0,003	0,001	0,001	0,002	0,003	0,000	0,000
Mg	2,674	2,797	2,650	2,645	2,535	2,726	2,537	2,871	2,851
Ca	0,003	0,002	0,004	0,004	0,006	0,002	0,004	0,002	0,001
Na	0,002	0,003	0,000	0,002	0,000	0,002	0,003	0,000	0,000
K	0,002	0,000	0,000	0,000	0,003	0,000	0,001	0,000	0,000
Cations	4,878	4,945	4,878	4,870	4,848	4,907	4,891	4,955	4,950
Fe_FeMg	0,04	0,04	0,06	0,04	0,09	0,05	0,14	0,02	0,02
Mg_FeMg	0,96	0,96	0,94	0,96	0,91	0,95	0,86	0,98	0,98

Amostra	CCS 9A	UM 23D	UM 23D	UM 23D	UM 23D				
Mineral	lizardita	lizardita	lizardita	lizardita	lizardita	antigorita	antigorita	antigorita	antigorita
SiO2	44,146	44,772	43,609	44,265	43,656	35,851	34,372	44,794	32,696
TiO2	0,031	0,000	0,014	0,022	0,020	0,057	0,015	0,000	0,005
AI2O3	0,024	0,036	0,051	0,022	0,103	13,779	11,341	0,062	12,981
Cr2O3	0,030	0,000	0,004	0,036	0,061	1,458	1,532	0,046	1,779
Fe2O3	1,496	2,351	2,502	2,227	5,646	3,182	3,258	3,466	3,384
MnO	0,000	0,048	0,034	0,061	0,002	0,000	0,000	0,066	0,021
MgO	42,523	40,564	39,704	41,714	38,478	34,337	34,310	38,814	32,843
NiO	0,232	0,482	0,455	0,309	0,410	0,199	0,080	0,209	0,111
CaO	0,069	0,052	0,058	0,044	0,089	0,007	0,000	0,032	0,006
Na2O	0,004	0,000	0,000	0,029	0,018	0,008	0,000	0,023	0,005
K20	0,011	0,016	0,000	0,003	0,000	0,000	0,000	0,000	0,007
Total	88,570	88,320	86,430	88,730	88,480	88,880	84,910	87,510	83,840
H2O*	11,430	11,680	13,570	11,270	11,520	11,120	15,090	12,490	16,160
Si	2,010	2,045	2,038	2,016	2,013	1,642	1,653	2,065	1,596
AIIV	0,000	0,000	0,000	0,000	0,000	0,358	0,347	0,000	0,404
AIVI	0,001	0,002	0,003	0,001	0,006	0,385	0,295	0,003	0,342
Ti	0,001	0,000	0,001	0,001	0,001	0,002	0,001	0,000	0,000
Fe3	0,051	0,081	0,088	0,076	0,196	0,110	0,118	0,120	0,124
Cr	0,001	0,000	0,000	0,001	0,002	0,053	0,058	0,002	0,069
Ni	0,010	0,020	0,020	0,010	0,020	0,010	0,000	0,010	0,000
Mn	0,000	0,002	0,001	0,002	0,000	0,000	0,000	0,003	0,001
Mg	2,886	2,763	2,766	2,832	2,646	2,345	2,460	2,668	2,391
Ca	0,003	0,003	0,003	0,002	0,004	0,000	0,000	0,002	0,000
Na	0,000	0,000	0,000	0,003	0,002	0,001	0,000	0,002	0,000
K	0,001	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Cations	4,964	4,917	4,920	4,944	4,890	4,906	4,932	4,875	4,927
Fe_FeMg	0,02	0,03	0,03	0,03	0,07	0,04	0,05	0,04	0,05
Mg_FeMg	0,98	0,97	0,97	0,97	0,93	0,96	0,95	0,96	0,95

Amostra	UM 23D								
Mineral	lizardita	lizardita	lizardita	lizardita	crisotilo	crisotilo	crisotilo	crisotilo	crisotilo
SiO2	46,358	44,150	43,168	43,691	42,761	42,457	43,141	43,273	47,078
TiO2	0,018	0,004	0,019	0,001	0,012	0,008	0,038	0,012	0,000
AI2O3	0,037	0,045	0,032	0,032	0,073	0,000	0,000	0,029	0,028
Cr2O3	0,000	0,000	0,000	0,000	0,022	0,036	0,019	0,000	0,068
Fe2O3	2,733	2,583	2,792	1,797	1,514	1,335	1,300	1,700	1,756
MnO	0,072	0,064	0,096	0,074	0,058	0,054	0,063	0,118	0,102
MgO	38,846	38,823	39,726	40,484	42,810	40,393	40,284	40,684	39,270
NiO	0,407	0,348	0,380	0,385	0,243	0,321	0,334	0,349	0,371
CaO	0,032	0,043	0,030	0,012	0,019	0,016	0,035	0,048	0,028
Na2O	0,000	0,006	0,018	0,016	0,003	0,000	0,000	0,000	0,019
K20	0,017	0,000	0,000	0,000	0,008	0,010	0,003	0,006	0,000
Total	88,520	86,070	86,260	86,490	87,520	84,630	85,220	86,220	88,720
H2O*	11,480	13,930	13,740	13,510	12,480	15,370	14,780	13,780	11,280
Si	2,104	2,066	2,025	2,036	1,976	2,021	2,037	2,025	2,123
AIIV	0,000	0,000	0,000	0,000	0,004	0,000	0,000	0,000	0,000
AIVI	0,002	0,003	0,002	0,002	0,000	0,000	0,000	0,002	0,001
Ti	0,001	0,000	0,001	0,000	0,000	0,000	0,001	0,000	0,000
Fe3	0,093	0,091	0,098	0,063	0,053	0,048	0,046	0,060	0,060
Cr	0,000	0,000	0,000	0,000	0,001	0,001	0,001	0,000	0,002
Ni	0,010	0,010	0,010	0,010	0,010	0,010	0,010	0,010	0,010
Mn	0,003	0,003	0,004	0,003	0,002	0,002	0,003	0,005	0,004
Mg	2,628	2,709	2,778	2,812	2,949	2,867	2,836	2,838	2,640
Ca	0,002	0,002	0,001	0,001	0,001	0,001	0,002	0,002	0,001
Na	0,000	0,001	0,002	0,001	0,000	0,000	0,000	0,000	0,002
K	0,001	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000
Cations	4,844	4,885	4,921	4,928	4,996	4,951	4,936	4,942	4,843
Fe_FeMg	0,03	0,03	0,03	0,02	0,02	0,02	0,02	0,02	0,02
Mg_FeMg	0,97	0,97	0,97	0,98	0,98	0,98	0,98	0,98	0,98

Amostra	UM 23D								
Mineral	crisotilo	crisotilo	lizardita						
SiO2	47,066	46,016	43,448	43,604	41,917	42,186	41,694	41,176	41,670
TiO2	0,004	0,022	0,001	0,019	0,000	0,015	0,012	0,026	0,020
AI2O3	0,055	0,008	0,008	0,045	0,029	0,032	0,071	0,033	0,022
Cr2O3	0,033	0,020	0,000	0,000	0,000	0,009	0,022	0,000	0,000
Fe2O3	1,791	1,835	2,076	1,661	1,709	1,637	2,632	1,148	1,745
MnO	0,050	0,073	0,087	0,000	0,015	0,009	0,106	0,029	0,061
MgO	38,645	38,285	40,364	40,731	40,753	40,561	39,529	40,817	39,919
NiO	0,413	0,366	0,277	0,223	0,237	0,271	0,288	0,212	0,148
CaO	0,063	0,057	0,000	0,023	0,000	0,019	0,028	0,037	0,021
Na2O	0,022	0,042	0,004	0,000	0,010	0,000	0,028	0,000	0,000
K20	0,006	0,003	0,009	0,006	0,000	0,003	0,000	0,003	0,011
Total	88,150	86,730	86,270	86,310	84,670	84,740	84,410	83,480	83,620
H2O*	11,850	13,270	13,730	13,690	15,330	15,260	15,590	16,520	16,380
Si	2,134	2,123	2,031	2,033	1,999	2,009	2,001	1,990	2,010
AIIV	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,002	0,000
AIVI	0,003	0,000	0,000	0,002	0,001	0,002	0,004	0,000	0,001
Ti	0,000	0,001	0,000	0,001	0,000	0,001	0,000	0,001	0,001
Fe3	0,061	0,064	0,073	0,058	0,061	0,059	0,095	0,042	0,063
Cr	0,001	0,001	0,000	0,000	0,000	0,000	0,001	0,000	0,000
Ni	0,020	0,010	0,010	0,010	0,010	0,010	0,010	0,010	0,010
Mn	0,002	0,003	0,003	0,000	0,001	0,000	0,004	0,001	0,003
Mg	2,612	2,633	2,813	2,831	2,897	2,879	2,829	2,941	2,871
Ca	0,003	0,003	0,000	0,001	0,000	0,001	0,001	0,002	0,001
Na	0,002	0,004	0,000	0,000	0,001	0,000	0,003	0,000	0,000
K	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,001
Cations	4,838	4,842	4,931	4,936	4,971	4,961	4,948	4,989	4,961
Fe_FeMg	0,02	0,02	0,03	0,02	0,02	0,02	0,03	0,01	0,02
Mg_FeMg	0,98	0,98	0,97	0,98	0,98	0,98	0,97	0,99	0,98

Amostra	UM 23D	UM 26D							
Mineral	lizardita								
SiO2	41,182	42,566	42,770	40,008	42,396	43,180	43,194	43,025	33,400
TiO2	0,028	0,040	0,009	0,017	0,000	0,000	0,002	0,033	0,045
AI2O3	0,054	0,048	0,065	0,097	0,073	0,097	0,086	0,064	15,068
Cr2O3	0,000	0,009	0,013	0,002	0,003	0,001	0,000	0,000	0,859
Fe2O3	1,846	2,120	1,300	6,495	2,646	2,168	1,590	1,964	3,384
MnO	0,058	0,013	0,000	0,000	0,000	0,035	0,107	0,082	0,029
MgO	40,124	40,530	40,908	39,727	41,604	41,866	40,881	41,123	33,990
NiO	0,230	0,285	0,137	0,266	0,266	0,146	0,059	0,115	0,207
CaO	0,000	0,008	0,009	0,021	0,034	0,041	0,015	0,006	0,000
Na2O	0,010	0,000	0,000	0,000	0,006	0,000	0,033	0,023	0,000
K20	0,008	0,000	0,001	0,000	0,010	0,014	0,005	0,016	0,000
Total	83,540	85,620	85,210	86,630	87,040	87,550	85,970	86,450	86,980
H2O*	16,460	14,380	14,790	13,370	12,960	12,450	14,030	13,550	13,020
Si	1,993	2,008	2,019	1,905	1,976	1,994	2,023	2,009	1,567
AIIV	0,003	0,000	0,000	0,005	0,004	0,005	0,000	0,000	0,433
AIVI	0,000	0,003	0,004	0,000	0,000	0,000	0,005	0,003	0,399
Ti	0,001	0,001	0,000	0,001	0,000	0,000	0,000	0,001	0,002
Fe3	0,067	0,075	0,046	0,233	0,093	0,075	0,056	0,069	0,119
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,032
Ni	0,010	0,010	0,010	0,010	0,010	0,010	0,000	0,000	0,010
Mn	0,002	0,001	0,000	0,000	0,000	0,001	0,004	0,003	0,001
Mg	2,895	2,851	2,879	2,820	2,891	2,882	2,854	2,862	2,377
Ca	0,000	0,000	0,000	0,001	0,002	0,002	0,001	0,000	0,000
Na	0,001	0,000	0,000	0,000	0,001	0,000	0,003	0,002	0,000
K	0,000	0,000	0,000	0,000	0,001	0,001	0,000	0,001	0,000
Cations	4,972	4,949	4,958	4,975	4,978	4,970	4,946	4,950	4,940
Fe_FeMg	0,02	0,03	0,02	0,08	0,03	0,03	0,02	0,02	0,05
Mg_FeMg	0,98	0,97	0,98	0,92	0,97	0,97	0,98	0,98	0,95

Amostra	UM 26D								
Mineral	lizardita								
SiO2	42,437	42,193	41,714	41,984	41,811	42,095	41,590	41,526	41,651
TiO2	0,033	0,048	0,040	0,020	0,000	0,000	0,000	0,018	0,000
AI2O3	0,028	0,049	0,092	0,135	0,048	0,088	0,065	0,101	0,029
Cr2O3	0,000	0,000	0,002	0,008	0,002	0,000	0,000	0,000	0,021
Fe2O3	1,325	1,745	1,893	1,926	2,348	1,852	2,241	2,627	3,205
MnO	0,000	0,002	0,037	0,059	0,000	0,061	0,042	0,021	0,129
MgO	40,843	41,449	40,344	40,225	40,919	40,611	40,782	41,143	39,414
NiO	0,077	1,148	0,188	0,135	0,256	0,127	0,152	0,609	0,150
CaO	0,005	0,000	0,018	0,011	0,013	0,021	0,027	0,002	0,030
Na2O	0,000	0,000	0,000	0,018	0,006	0,012	0,010	0,000	0,015
K20	0,000	0,009	0,007	0,000	0,011	0,002	0,000	0,015	0,006
Total	84,750	86,640	84,330	84,520	85,410	84,870	84,910	86,060	84,650
H2O*	15,250	13,360	15,670	15,480	14,590	15,130	15,090	13,940	15,350
Si	2,015	1,979	1,998	2,005	1,983	2,002	1,983	1,963	1,997
AIIV	0,000	0,003	0,002	0,000	0,003	0,000	0,004	0,006	0,002
AIVI	0,002	0,000	0,003	0,008	0,000	0,005	0,000	0,000	0,000
Ti	0,001	0,002	0,001	0,001	0,000	0,000	0,000	0,001	0,000
Fe3	0,047	0,062	0,068	0,069	0,084	0,066	0,080	0,093	0,116
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001
Ni	0,000	0,040	0,010	0,010	0,010	0,000	0,010	0,020	0,010
Mn	0,000	0,000	0,002	0,002	0,000	0,002	0,002	0,001	0,005
Mg	2,891	2,898	2,881	2,864	2,893	2,880	2,899	2,899	2,816
Ca	0,000	0,000	0,001	0,001	0,001	0,001	0,001	0,000	0,002
Na	0,000	0,000	0,000	0,002	0,001	0,001	0,001	0,000	0,001
K	0,000	0,001	0,000	0,000	0,001	0,000	0,000	0,001	0,000
Cations	4,956	4,985	4,966	4,962	4,976	4,957	4,980	4,984	4,950
Fe_FeMg	0,02	0,02	0,02	0,02	0,03	0,02	0,03	0,03	0,04
Mg_FeMg	0,98	0,98	0,98	0,98	0,97	0,98	0,97	0,97	0,96

Amostra	UM 26D	UM 3	UM 3						
Mineral	lizardita	lizardit							
SiO2	41,830	41,751	41,474	42,633	41,985	41,760	41,445	39,153	37,585
TiO2	0,000	0,047	0,012	0,051	0,025	0,015	0,000	0,019	0,000
AI2O3	0,088	0,072	0,155	0,032	0,052	0,104	0,042	0,197	0,868
Cr2O3	0,018	0,004	0,024	0,017	0,012	0,000	0,000	0,005	0,012
Fe2O3	1,601	2,283	2,457	1,897	1,886	2,646	2,474	13,943	12,007
MnO	0,026	0,045	0,023	0,000	0,042	0,025	0,060	0,302	0,112
MgO	40,549	40,661	40,208	40,816	40,266	40,847	40,012	30,978	32,911
NiO	0,134	0,206	0,194	0,234	0,060	0,238	0,237	0,022	0,084
CaO	0,019	0,018	0,020	0,028	0,034	0,000	0,005	0,228	0,062
Na2O	0,015	0,038	0,029	0,003	0,013	0,000	0,013	0,038	0,024
K20	0,000	0,005	0,001	0,003	0,003	0,000	0,000	0,049	0,015
Total	84,280	85,130	84,600	85,710	84,380	85,630	84,290	84,930	83,680
H2O*	15,720	14,870	15,400	14,290	15,620	14,370	15,710	15,070	16,320
Si	2,002	1,986	1,986	2,008	2,007	1,978	1,992	1,941	1,885
AIIV	0,000	0,004	0,009	0,000	0,000	0,006	0,002	0,011	0,051
AIVI	0,005	0,000	0,000	0,002	0,003	0,000	0,000	0,000	0,000
Ti	0,000	0,002	0,000	0,002	0,001	0,001	0,000	0,001	0,000
Fe3	0,058	0,082	0,088	0,067	0,068	0,094	0,089	0,520	0,453
Cr	0,001	0,000	0,001	0,001	0,000	0,000	0,000	0,000	0,000
Ni	0,010	0,010	0,010	0,010	0,000	0,010	0,010	0,000	0,000
Mn	0,001	0,002	0,001	0,000	0,002	0,001	0,002	0,013	0,005
Mg	2,893	2,883	2,870	2,866	2,870	2,884	2,866	2,290	2,460
Ca	0,001	0,001	0,001	0,001	0,002	0,000	0,000	0,012	0,003
Na	0,001	0,004	0,003	0,000	0,001	0,000	0,001	0,004	0,002
K	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,003	0,001
Cations	4,972	4,974	4,969	4,957	4,954	4,974	4,962	4,795	4,860
Fe_FeMg	0,02	0,03	0,03	0,02	0,02	0,03	0,03	0,19	0,16
Mg FeMg	0,98	0,97	0,97	0,98	0,98	0,97	0,97	0,81	0,84

Amostra	UM 3								
Mineral	lizardita								
SiO2	37,653	41,402	37,046	36,845	40,234	38,932	43,696	37,231	39,226
TiO2	0,025	0,001	0,019	0,097	0,038	0,034	0,024	0,005	0,037
AI2O3	1,448	0,165	0,120	0,137	1,265	0,069	2,609	0,025	0,110
Cr2O3	0,052	0,016	0,000	0,000	0,003	0,000	0,004	0,024	0,021
Fe2O3	13,812	13,750	12,344	13,078	9,092	15,088	11,930	13,637	14,336
MnO	0,161	0,221	0,136	0,118	0,094	0,233	0,275	0,098	0,163
MgO	31,184	31,244	33,922	33,111	35,417	30,363	27,876	33,818	31,690
NiO	0,182	0,000	0,106	0,140	0,055	0,114	0,034	0,262	0,083
CaO	0,123	0,021	0,053	0,064	0,095	0,120	0,109	0,046	0,064
Na2O	0,064	0,052	0,000	0,022	0,000	0,000	0,005	0,022	0,017
K20	0,003	0,000	0,000	0,015	0,016	0,017	0,003	0,014	0,000
Total	84,700	86,870	83,750	83,630	86,310	84,970	86,570	85,180	85,750
H2O*	15,300	13,130	16,250	16,370	13,690	15,030	13,430	14,820	14,250
Si	1,876	1,992	1,864	1,862	1,928	1,936	2,074	1,852	1,928
AIIV	0,085	0,008	0,007	0,008	0,071	0,004	0,000	0,001	0,006
AIVI	0,000	0,001	0,000	0,000	0,000	0,000	0,146	0,000	0,000
Ti	0,001	0,000	0,001	0,004	0,001	0,001	0,001	0,000	0,001
Fe3	0,517	0,497	0,467	0,497	0,328	0,564	0,426	0,510	0,530
Cr	0,002	0,001	0,000	0,000	0,000	0,000	0,000	0,001	0,001
Ni	0,010	0,000	0,000	0,010	0,000	0,000	0,000	0,010	0,000
Mn	0,007	0,009	0,006	0,005	0,004	0,010	0,011	0,004	0,007
Mg	2,316	2,241	2,545	2,495	2,530	2,251	1,973	2,508	2,322
Ca	0,007	0,001	0,003	0,003	0,005	0,006	0,006	0,002	0,003
Na	0,006	0,005	0,000	0,002	0,000	0,000	0,000	0,002	0,002
K	0,000	0,000	0,000	0,001	0,001	0,001	0,000	0,001	0,000
Cations	4,827	4,755	4,893	4,887	4,868	4,773	4,637	4,891	4,800
Fe_FeMg	0,18	0,18	0,16	0,17	0,11	0,2	0,18	0,17	0,19
Mg_FeMg	0,82	0,82	0,84	0,83	0,89	0,8	0,82	0,83	0,81

	UM 3 zardita 41,126
	41,126
SiO2 43 568	
,	
TiO2 0,014	0,000
Al2O3 0,268	0,000
Cr2O3 0,037	0,000
Fe2O3 4,617	8,581
MnO 0,028	0,045
MgO 39,259	36,634
NiO 0,096	0,138
CaO 0,027	0,033
Na2O 0,000	0,015
K2O 0,006	0,002
Total 87,920	86,570
H2O * 12,080	13,430
Si 2,012	1,962
AIIV 0,000	0,000
AIVI 0,015	0,000
T i 0,001	0,000
Fe3 0,160	0,308
Cr 0,001	0,000
Ni 0,000	0,010
Mn 0,001	0,002
Mg 2,703	2,605
Ca 0,001	0,002
Na 0,000	0,001
K 0,000	0,000
Cations 4,894	4,890
Fe_FeMg 0,06	0,11
Mg_FeMg 0,94	0,89

ANEXO 10: Resultados analíticos de química mineral em serpentinas do serpentinito do Cambaizinho (CCS 9A), serpentinito do Serrinha (UM 23D), harzburgito do Cerro Mantiqueiras (UM 26C) e metaperidotito do Pedras Pretas (UM 3).

[GUSPSC] Agradecimento pela submissão

Entrada x

.

Nanci lurico Assakura <publigc@usp.br>

para mim 🖃

Thamy Lara Souza,

Agradecemos a submissão do trabalho "CONTROLES MINERALÓGICOS E GEOQUÍMICOS DO NÍQUEL NÃO SULFETADO EM ROCHAS ULTRAMÁFICAS NO ESCUDO SUL-RIOGRANDENSE" para a revista Geologia USP. Série Científica. Acompanhe o progresso da sua submissão por meio da interface de administração do sistema, disponível em:

URL da submissão:

http://submission.ppegeo.igc.usp.br/index.php/guspsc/author/submission/177

Login: thamy

Em caso de dúvidas, entre em contato via e-mail.

Agradecemos mais uma vez considerar nossa revista como meio de compartilhar seu trabalho.

* * *

ANEXO 11: Carta de submissão a Revista Geologia USP: Série Científica