

Comportamento Eletrônico de Aerogéis de Óxido de Estanho

GABRIELE HORN TOFFOLO¹, CARLO REQUIÃO DA CUNHA².

1 Autor, Física – Materiais e nanotecnologia, Universidade Federal do Rio Grande do Sul, UFRRGS
2 Orientador.

INTRODUÇÃO

Aerogéis de óxido de estanho são espumas sólidas, mesoporosas e de célula aberta que apresentam área superficial extremamente alta e baixa densidade. Mas, ainda se conhece pouco sobre o comportamento eletrônico de tal material. O presente estudo propõe-se a observar o comportamento eletrônico dos aerogéis para aplicações e possível aperfeiçoamento no processo de sintetização do aerogel.

METODOLOGIA

1. Síntese

Baseia-se na técnica epóxido e consiste na solubilização de 0,65g de tetracloreto de estanho penta hidratado em uma solução de 3mL de H2O:EtOH. Adiciona-se 0,8mL de óxido de propileno como catalizador, gota a gota. Em seguida a solução é colocada em moldes de vidro onde rapidamente geleifica.

Após a geleificação, os géis são colocados em uma solução de etanol para envelhecer por 24 horas e então troca-se o solvente por acetona por sete dias seguidos.

2. Secagem

Os géis passam por uma secagem supercrítica com CO2 para trocar sua fase líquida por uma fase gasosa. Este processo transforma o gel em um aerogel (figura 1) que agora está pronto para as análises.

3. Análises

Foram feitas medidas de fotoluminescência (PL), de adsorção de nitrogênio (BET), de espectroscopia de infravermelho por transformada de Fourier (FTIR), de microscopia de transmissão eletrônica (TEM) e de emissão de raios-X induzida por partículas (PIXE).

Figura 1. Aerogéis após a secagem

RESULTADOS

As medidas de BET indicam que os aerogéis depois da secagem supercrítica possuem uma área superficial de aproximadamente 800m2/g, um raio médio dos poros de 1,8nm e uma densidade de 65mg/cm3. A microscopia de transmissão

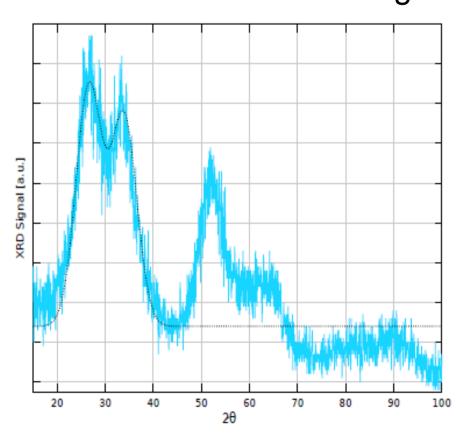


Figura 2. Difratograma

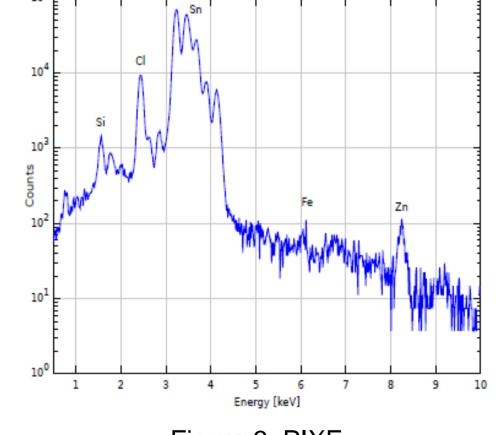


Figura 3. PIXE

eletrônica mostrou uma rede de nanocristais interligados e a difração de raios-X (figura 2) que eles crescem na fase cassiterita com cristalitos de aproximadamente 2,5nm. As medidas de PIXE (figura 3) indicaram a presença de algumas impurezas, incluindo Silício, Cloro e traços de Ferro, Enxofre, Cobre e Zinco. O espectro de FTIR (figura 4) mostrou um grande pico próximo à 565cm-1 o qual se associa ao estiramento da ligação entre Sn-O e alguns picos associados à existência de Carbono. Com as medidas de espectroscopia UV/vis e PL (figura 5) observou-se que o bandgap do material está em 3,5eV e que há impurezas superficiais dentro do mesmo.

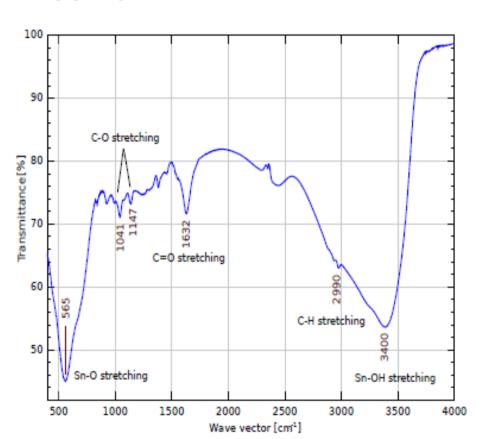


Figura 4. Espectrograma de transmitância FTIR

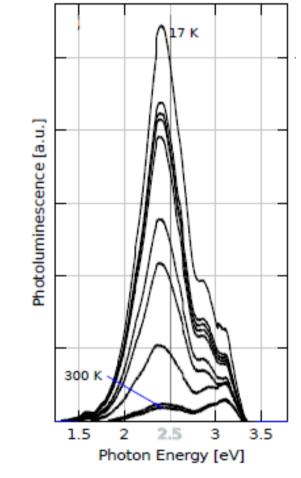


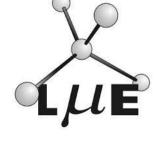
Figura 5. Sinal de fotoluminescência

CONCLUSÃO

Usando-se a técnica epóxido para a produção de géis de óxido de estanho e após uma secagem supercrítica obtém-se um aerogel com alta área superficial. O material cristaliza na fase cassiterita com cristalitos de aproximadamente 2,5nm incorporados em uma matriz amorfa.

Percebe-se, analisando a existência de átomos de cloro e íons de hidróxido, que a reação não é completa. No PIXE foram identificadas impurezas que ocorrem naturalmente, como ferro, cobre, zinco e enxofre.

Mesmo depois de várias trocas de solvente, no processo de envelhecimento, os íons de hidróxido e átomos de cloro permanecem na estrutura do aerogel o que acaba por produzir vacâncias de oxigênio carregadas positivamente. Essas vacâncias acabam por compensar a presença de íons de estanho intersticiais e prendem os elétrons não permitindo condução elétrica.


A técnica epóxido é uma boa rota para a obtenção dos géis, mas ainda se faz necessário melhorar a qualidade do material obtido para aplicações em óptica e eletrônica.

REFERÊNCIAS

C. R. DA CUNHA, G. H. TOFFOLO, C. E. I. DOS SANTOS, Rr. P. pezzi, Structural, optical and chemical characterizations of sol–gel grown tin oxide aerogels. *Journal of Non-Crystalline Solids*, Volume 380, 15 November 2013, Pages 48–52.

