CORPOS QUADRÁTICOS E ANÉIS DE INTEIROS QUADRÁTICOS

HASELEIN, Walter Mendes – Bolsista POGORELSKY, Barbara Seelig - Orientadora

Neste trabalho, serão apresentados os conceitos de Corpos Quadráticos e Anéis de Inteiros Quadráticos, bem como suas características.

CORPOS QUADRÁTICOS

Todo subcorpo de K dos números complexos C contém o corpo dos racionais Q. Logo, todo subcorpo de C pode ser visto como um espaço vetorial sobre Q.

Definição 1. Um corpo quadrático é todo subcorpo de C de dimensão dois como Q-subespaço vetorial.

Para $\alpha \in \mathbb{C}$, denotaremos $\mathbb{Q}[\alpha] = \{g(\alpha) \in \mathbb{C}; g(x) \in \mathbb{Q}[x]\}$ e dizemos que $f(x) \in \mathbb{Q}[x]$ é seu polinômio mínimo se for mônico, anular α e se for de grau mínimo com essa propriedade.

Se $\alpha \in \mathbb{Q} \subseteq K$, com K subcorpo quadrático, então seu polinômio mínimo é $x-\alpha$.

Se $\alpha \in K \setminus \mathbb{Q}$, então $f(x) = x^2 - qx - r$, com q, $r \in \mathbb{Q}$ é o polinômio mínimo de α .

Proposição 1. Todos os corpos quadráticos são da forma $\mathbb{Q}[\sqrt{m}] = \mathbb{Q} + \mathbb{Q}\sqrt{m}$, com m inteiro e livre de quadrados.

Definição 2. Um corpo quadrático $K = \mathbb{Q}[\sqrt{m}]$ é *real* se $K \subseteq \mathbb{R}$ (\Leftrightarrow m > 0) e *imaginário* se $K \not\subseteq \mathbb{R}$ (\Leftrightarrow m < 0).

Seja $\sigma: \mathbb{Q}[\sqrt{m}] \to \mathbb{Q}[\sqrt{m}]$ definido por $\sigma(1)$ = 1 e $\sigma(\sqrt{m}) = -\sqrt{m}$. Chamaremos $\sigma(\alpha)$ o conjugado de α e denotaremos por α' .

Se $\alpha=r+s\sqrt{m}\in\mathbb{Q}[\sqrt{m}]$, então definimos seu Traço e Norma respectivamente por:

$$Tr(\alpha) = \alpha + \alpha' = 2r.$$

$$N(\alpha) = \alpha \cdot \alpha = p^2 - mr^2.$$

INTEIROS QUADRÁTICOS

Definição 3. Um número complexo é dito *algébrico* se for raiz de um polinômio mônico em $\mathbb{Z}[x]$.

Um anel de inteiros quadráticos, denotado por Θ_k é formado por inteiros algébricos de um corpo quadrático.

Proposição 2. Seja $K = \mathbb{Q}[\sqrt{m}]$. Então:

$$\mathfrak{O}_{k} = \begin{cases}
\mathbb{Z}[\sqrt{m}], se \ m \equiv 2,3 \ (mod \ 4) \\
\mathbb{Z}\left[\frac{1+\sqrt{m}}{2}\right], se \ m \equiv 1 \ (mod \ 4)
\end{cases}$$