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Give Me Women, Wine, And Snuff

(John Keats)

Give me women, wine, and snuff

Until I cry out “hold, enough!”

You may do so sans objection

Till the day of resurrection;

For, bless my beard, they aye shall be

My beloved Trinity.

“26”

(Lawrence Ferlinghetti)

That “sensual phosphorescence

my youth delighted in”

now lies almost behind me

like a land of dreams

wherein an angel

of hot sleep

dances like a diva

in strange veils

thru which desire

looks and cries

And still she dances

dances still

and still she comes

at me

with breathing breasts

and secret lips

and (ah)

bright eyes



RESUMO

Nessa tese apresentamos três diferentes aplicações dos modelos Birnbaum-Saunders. No

capítulo 2 introduzimos um novo método por função-núcleo não-paramétrico para a estima-

ção de densidades assimétricas, baseado nas distribuiçõesBirnbaum-Saunders generalizadas

assimétricas. Funções-núcleo baseadas nessas distribuições têm a vantagem de fornecer fle-

xibilidade nos níveis de assimetria e curtose. Em adição, osestimadores da densidade por

função-núcleo Birnbaum-Saunders gene-ralizadas assimétricas são livres de viés na fronteira

e alcançam a taxa ótima de convergência para o erro quadrático integrado médio dos estima-

dores por função-núcleo-assimétricas-não-negativos da densidade. Realizamos uma análise

de dados consistindo de duas partes. Primeiro, conduzimos uma simulação de Monte Carlo

para avaliar o desempenho do método proposto. Segundo, usamos esse método para estimar

a densidade de três dados reais da concentração de poluentesatmosféricos. Os resultados

numéricos favorecem os estimadores não-paramétricos propostos. No capítulo 3 propomos

uma nova família de modelos autorregressivos de duração condicional baseados nas distribui-

ções misturas de escala Birnbaum-Saunders (SBS). A distribuição Birnbaum-Saunders (BS)

é um modelo que tem recebido considerável atenção recentemente devido às suas boas pro-

priedades. Uma extensão dessa distribuição é a classe de distribuições SBS, a qual (i) herda

várias das boas propriedades da distribuição BS, (ii) permite a estimação de máxima veros-

similhança em uma forma eficiente usando o algoritmo EM, e (iii) possibilita a obtenção de

um procedimento de estimação robusta, entre outras propriedades. O modelo autorregressivo

de duração condicional é a família primária de modelos para analisar dados de duração de

transações de alta frequência. A metodologia estudada aquiinclui estimação dos parâme-

tros pelo algoritmo EM, inferência para esses parâmetros, modelo preditivo e uma análise

residual. Realizamos simulações de Monte Carlo para avaliar o desempenho da metodolo-

gia proposta. Ainda, avalia-mos a utilidade prática dessa metodologia usando dados reais de

transações financeiras da bolsa de valores de Nova Iorque. O capítulo 4 trata de índices de

capacidade do processo (PCIs), os quais são ferramentas utilizadas pelas empresas para de-

terminar a qualidade de um produto e avaliar o desempenho de seus processos de produção.



Estes índices foram desenvolvidos para processos cuja característica de qualidade tem uma

distribuição normal. Na prática, muitas destas ca-racterísticas não seguem esta distribuição.

Nesse caso, os PCIs devem ser modificados considerando a não-normalidade. O uso de PCIs

não-modificados podem levar a resultados inadequados. De maneira a estabelecer políticas de

qualidade para resolver essa inadequação, transformação dos dados tem sido proposta, bem

como o uso de quantis de distribuições não-normais. Um distribuição não-normal assimétrica

o qual tem tornado muito popular em tempos recentes é a distribuição Birnbaum-Saunders

(BS). Propomos, desenvolvemos, implementamos e aplicamosuma metodologia baseada em

PCIs para a distribuição BS. Além disso, realizamos um estudo de simulação para avaliar o

desempenho da metodologia proposta. Essa metodologia foi implementada usando o soft-

ware estatístico chamadoR. Aplicamos essa metodologia para um conjunto de dados reaisde

maneira a ilustrar a sua flexibilidade e potencialidade.

Palavras-chave:Dados de poluição atmosférica. Estimador por função-núcleo. Distribui-

ções Birnbaum-Saunders generalizadas assimétricas. Modelos autorregressivos de duração

condicional. Algoritmo EM. Método ML. Simulações de Monte Carlo. Distribuições mistu-

ras de escala Birnbaum-Saunders. Índices de capacidade do processo.



ABSTRACT

In this thesis, we present three different applications of Birnbaum-Saunders models. In Chap-

ter 2, we introduce a new nonparametric kernel method for estimating asymmetric densities

based on generalized skew-Birnbaum-Saunders distributions. Kernels based on these distri-

butions have the advantage of providing flexibility in the asymmetry and kurtosis levels. In

addition, the generalized skew-Birnbaum-Saunders kerneldensity estimators are boundary

bias free and achieve the optimal rate of convergence for themean integrated squared er-

ror of the nonnegative asymmetric kernel density estimators. We carry out a data analysis

consisting of two parts. First, we conduct a Monte Carlo simulation study for evaluating

the performance of the proposed method. Second, we use this method for estimating the

density of three real air pollutant concentration data sets, whose numerical results favor the

proposed nonparametric estimators. In Chapter 3, we propose a new family of autoregressive

conditional duration models based on scale-mixture Birnbaum-Saunders (SBS) distributions.

The Birnbaum-Saunders (BS) distribution is a model that hasreceived considerable atten-

tion recently due to its good properties. An extension of this distribution is the class of SBS

distributions, which allows (i) several of its good properties to be inherited; (ii) maximum

likelihood estimation to be efficiently formulated via the EM algorithm; (iii) a robust estima-

tion procedure to be obtained; among other properties. The autoregressive conditional dura-

tion model is the primary family of models to analyze high-frequency financial transaction

data. This methodology includes parameter estimation by the EM algorithm, inference for

these parameters, the predictive model and a residual analysis. We carry out a Monte Carlo

simulation study to evaluate the performance of the proposed methodology. In addition, we

assess the practical usefulness of this methodology by using real data of financial transac-

tions from the New York stock exchange. Chapter 4 deals with process capability indices

(PCIs), which are tools widely used by companies to determine the quality of a product and

the performance of their production processes. These indices were developed for processes

whose quality characteristic has a normal distribution. Inpractice, many of these character-

istics do not follow this distribution. In such a case, the PCIs must be modified considering



the non-normality. The use of unmodified PCIs can lead to inadequacy results. In order to

establish quality policies to solve this inadequacy, data transformation has been proposed,

as well as the use of quantiles from non-normal distributions. An asymmetric non-normal

distribution which has become very popular in recent times is the Birnbaum-Saunders (BS)

distribution. We propose, develop, implement and apply a methodology based on PCIs for

the BS distribution. Furthermore, we carry out a simulationstudy to evaluate the performance

of the proposed methodology. This methodology has been implemented in a noncommercial

and open source statistical software calledR. We apply this methodology to a real data set to

illustrate its flexibility and potentiality.

Keywords: Air pollutant data. Kernel estimator. Generalized skew-Birnbaum-Saunders dis-

tributions. Autoregressive conditional duration models.EM algorithm. ML method. Monte

Carlo simulations. Scale-mixture Birnbaum-Saunders distributions. Process capability in-

dices.
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1 INTRODUCTION

Nesta tese apresentamos três trabalhos abordando áreas distintas, a saber, estatística não-

paramétrica, econometria financeira e controle de qualidade. Dessa maneira, cada capítulo

pode ser lido de maneira independente, pois cada um é autocontido. O ponto comum reside

no uso de modelos Birnbaum-Saunders (BS), em particular da distribuição BS e duas de suas

generalizações, isto é, as distribuições BS generalizadasassimétricas (skew-GBS) e misturas

de escala BS (SBS). Abaixo, fornecemos uma derivação sumária da distribuição BS.

Birnbaum e Saunders (1969) introduziram uma nova família dedistribuições para mode-

lar o tempo de vida de materiais e equipamentos sujeitos a cargas dinâmicas. A motivação dos

autores advém de problemas de vibração em aviões comerciaise problemas de falhas de ma-

teriais. Basicamente, a distribuição é derivada a partir deum modelo cuja falhas acontecem

em função do desenvolvimento e o crescimento de uma rachadura dominante. Considere, por

exemplo, um material que é sujeito a um padrão cíclico de tensão e força. Defina um ciclo

comom oscilações onde uma extensão aleatória da rachaduraXi é resultado da aplicação da

i-ésima oscilação. Assim, a extensão da rachadura devido aoj-ésimo ciclo é dada por

Yj =
m∑

i=1

Xi, (1.1)

ondeYj é uma variável aleatória com médiaµ e variânciaσ2, para todoj = 1, 2, 3, . . .Depois

dez ciclos, a extensão total da rachadura é dada por

Wz =
z∑

j=1

Yj, (1.2)

onde a função de distribuição éHz(ω) = P (Wz ≤ ω), paraz = 1, 2, 3, . . . Note que a

falha acontece quando o comprimento da rachadura dominanteultrapassa um certo limiarω.



14

DenotandoC o número de ciclos até a falha, então sua distribuição é dada por

P (C ≤ z) = P

(
z∑

j=1

Yj > ω

)
= 1−Hz(ω). (1.3)

Usando o Teorema Central do Limite e assumindo que osY ′
j s são variáveis aleatórias inde-

pendentes e identicamente distribuídas, temos

P (C ≤ z) = 1− P

(
z∑

j=1

Yj − µ

σ
√
z

≤ ω − zµ

σ
√
z

)
(1.4)

= 1− P

(
z∑

j=1

Yj − µ

σ
√
z

≤ ω

σ
√
z
− µ

√
z

σ

)

∼= Φ

(
µ
√
z

σ
− ω

σ
√
z

)
,

ondeΦ(·) denota a função de distribuição acumulada normal padrão. Aqui z é substituída

por uma variávei aleatória real não-negativat, tal queT seja a extensão contínua da variávei

aleatória discretaC. Logo,T pode ser considerada como o tempo até a falha, e segue uma

sua distribuição BS bi-paramétrica, denotada porT ∼ BS(α, β), cuja função de distribuição

é dada por

FT (t) = P (T ≤ t) = Φ

(
1

α

[(
t

β

)1/2

−
(
β

t

)1/2
])

, t > 0, (1.5)

ondeα = σ/
√
ωµ > 0 e β = ω/µ > 0. α e β são parâmetros de forma e escala, respec-

tivamente. Para qualquer constante realk > 0, temos quekT ∼ BS(α, kβ). Quandoα

tende a zero, a distribuição BS tende para a distribuição normal de médiaβ e variânciaτ ,

ondeτ → 0 quandoα → 0. Por outro lado, comoβ é um parâmetro de escala, segue que

T/β ∼ BS(α, 1). Adicionalmente,β é a mediana da distribuição, i.e.,FT (β) = Φ(0) = 1/2.

A distribuição BS possui a propriedade recíproca, i.e.T−1 ∼ BS(α, β−1). Para mais deta-

lhes ver Birnbaum e Saunders (1969).

A atratividade da distribuição BS para a análise de dados deve-se, entre outras coisas, a

suas propriedades teóricas e sua relação com a distribuiçãonormal. Dentre suas aplicações

práticas, destacam-se as áreas de economia, engenharia, finanças, medicina, meio ambiante e

negócios; ver, por exemplo, Jin e Kawczak (2003), Leiva et al. (2009, 2010, 2012), Ahmed et

al. (2010), Bhatti (2010), Vilca et al. (2010, 2011), Ferreira et al. (2012), Paula et al. (2012),

Marchant et al. (2013) e Leiva et al. (2013).

Recentemente, duas importantes generalizações da distribuição BS foram obtidas por
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Vilca e Leiva (2006) e Balakrishnan et al. (2009) com os modelos skew-GBS e SBS, respecti-

vamente. Por um lado, as distribuições skew-GBS são baseadas nos argumentos apresentados

em Díaz-García e Leiva (2005) e nas distribuições elípticasassimétricas. As distribuições

skew-GBS fornecem um grau maior de flexibilidade em relação àcurtose e assimetria, sendo

a última característica devido a insersão de um parâmetro deassimetria. Por outro lado,

as distribuições SBS são baseadas na relação das distribuições BS e normal. Essa última

generalização fornece propriedades interessantes como o estimação dos parâmetros de má-

xima verossimilhança em uma maneira eficiente, usando o algoritmo esperança-maximização

(EM), e permite o procedimento de estimação robusta dos parâmetros.

Essa tese, como mencionado, explora o uso da distribuição BSe suas generalizações

skew-GBS e SBS nas seguintes áreas: estatística não-paramétrica, econometria financeira e

controle de qualidade. Assim, para cada área, há um respectivo capítulo.

O capítulo 2 tem por objetivo propor estimadores não-paramétricos por função-núcleo

para densidades assimétricas baseados nas distribuições skew-GBS. Esses estimadores forne-

cem uma maior flexibilidade em termos de curtose e assimetria, são livres de viés na fronteira

e alcançam a taxa ótima de convergência para o erro quadrático integrado médio dos estima-

dores por função-núcleo-assimétricas-não-negativos da densidade. Realizamos simulações

de Monte Carlo e fazemos aplicações a dados reais de concentração de poluentes atmosféri-

cos. Em particular, diferentes aspectos ambientais têm sido relacionados ao desenvolvimento

e crescimento econômico, em especial, os efeitos de contaminantes atmosféricos na saúde

humana e suas repercussões sobre a economia. Desse modo, um bom conhecimento, por

exemplo, da distribuição estatística de dados ambientais,permitem descrever a qualidade

atmosférica e por conseguinte seu impacto na economia.

No capítulo 3 propomos uma nova família de modelos autorregressivos de duração con-

dicional (ACD) baseados nas distribuições SBS. Essa classede distribuições (i) herda várias

propriedades da distribuição BS, (ii) permite a estimação de máxima verossimilhança de

forma eficiente usando o algoritmo EM, e (iii) possibilita a obtenção de um procedimento

de estimação robusta. Os modelos ACD têm sido usados para analisar dados de duração de

transações de alta frequência e são de grande relevância em alguns modelos da teoria de mi-

croestrutura, os quais são baseados em elementos da assimetria de informação. Em particu-

lar, uma alta frequência de transações implica transações feitas por negociadores informados.

Realizamos simulações de Monte Carlo para avaliar o desempenho da metodologia proposta.

Por fim, avaliamos a utilidade prática dessa metodologia usando dados reais de transações

financeiras da bolsa de valores de Nova Iorque.

No capítulo 4 propomos índices de capacidade do processo (PCIs) baseados na distribui-

ção BS. Os PCIs são ferramentas utilizadas pelas empresas para determinar a qualidade de



16

um produto e avaliar o desempenho de seus processos de produção. Em última instância, os

PCIs são de extrema relevância para a produtividade de um país, e consequentemente para

a economia. Estes índices foram desenvolvidos para processos cuja característica de quali-

dade tem uma distribuição normal. Na prática, muitas destascaracterísticas não seguem esta

distribuição. Nesse contexto, a distribuição BS se torna uma importante alternativa. Rea-

lizamos um estudo de simulação para avaliar o desempenho da metodologia proposta. Em

adição, aplicamos essa metodologia para um conjunto de dados reais de maneira a ilustrar a

sua flexibilidade e potencialidade.

Por fim, no capítulo 5 apresentamos algumas considerações finais sobre os trabalhos apre-

sentados nessa tese.
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2 A NONPARAMETRIC METHOD FOR ESTIMATING ASYM-

METRIC DENSITIES

2.1 Introduction

Usually, air contaminant concentrations, such as particulate matter measuring less than

10 micrometers (PM10), sulfur dioxide (SO2) and tropospheric ozone (O3), are considered as

continuous non-negative random variables that can be modeled by a probability distribution.

The probability density functions of these random variables (or simply densities) are often

asymmetric and present positive skewness and high kurtosis. Therefore, because for instance

the normal or Gaussian distribution is symmetrical, it is not a good model for describing the

aforementioned environmental random variables.

Density estimation plays an important role in statistics, because it provides an idea about

the shape of the probability distribution of the data. From aparametric density estimation

perspective, one must rely on well-specified models, which depend on the data available.

However, the lack of prior information usually makes nonparametric density estimation a bet-

ter choice, which can be based on kernel methods; see seminalpapers by Rosenblatt (1956)

and Parzen (1962). For applications of the kernel method to environmental data; see Lori-

mer (1986), Haan (1999), Pagnini (2009), and Chang et al. (2012).

Classical kernel methods are based on distributions that are symmetric about zero, as in

the case of the Gaussian kernel. However, a drawback arises when we try to estimate density

functions with bounded supports via classical kernel methods, because this type of methods

assign weight outside the support, when smoothing is performed near the boundary; see Fer-

nandes and Monteiro (2005). Chen (1999, 2000) proposed two asymmetric kernel methods,

which considerably increase the precision of the nonnegative density estimation near the

boundary. He introduced the beta and gamma kernels with supports on [0, 1] and [0,∞),

respectively. Following the same line, Scaillet (2004) introduced kernel estimators based

on inverse Gaussian distributions. All of these kernel estimators are boundary bias free and
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achieve the optimal rate of convergence for the mean integrated squared error (MISE). The

main advantages of the asymmetric kernel methods over the classical methods are that the

formers have varying shape and permit flexibility in the smoothing throughout the support.

In addition, the asymmetric kernel methods never assign weight outside the density support;

see Fernandes and Monteiro (2005). Jin and Kawczak (2003) discussed asymmetric kernel

density estimators based on the Birnbaum-Saunders (BS) andlognormal (LN) distributions;

see Birnbaum and Saunders (1969). The BS and LN kernels possess the same properties as

other asymmetric kernels, i.e., they are boundary bias free, nonnegative, of varying shape

and achieve the optimal rate of convergence for the MISE. Theauthors found evidence that

the BS and LN kernel density estimators outperform all otherestimators based on asymme-

tric kernels. Abadir and Lawford (2004) provided a justification for the use of asymmetric

kernels arguing that density estimators in moderately-sized samples tend to acquire salient

properties of their kernels. Several other methods have been suggested to address the boun-

dary problem in kernel density estimation; see Marchant et al. (2013) for a complete review

about these methods. In view of these antecedents, effectively the use of asymmetric kernels

for estimating densities produces good results. However, all the distributions employed for

the mentioned kernels have little flexibility in their tails.

Díaz-García and Leiva (2005) generalized the BS distribution, obtaining a wider class

of nonnegative densities that possesses either lighter or heavier tails than the BS density, al-

lowing them to provide more flexibility. The generalized Birnbaum-Saunders (GBS) family

has as particular cases the BS-classical, BS-power-exponential (BS-PE) and BS-Student-t

(BS-t) distributions. Recently, Marchant et al. (2013) proposedGBS kernel density estima-

tors, which generalize the BS kernel estimator, obtaining better results than those obtained

by other nonparametric kernel methods proposed for estimating asymmetric densities.

Vilca and Leiva (2006) introduced skewed GBS distributions, providing a greater degree

of flexibility due to the incorporation of a skewness or asymmetry parameter. Thus, such as

mentioned by Vilca et al. (2011), data located at the tails (left or right) are accommodated in

a better way by using generalized skew-BS (skew-GBS) distributions. Then, our conjecture

is that, although density nonparametric estimators based on GBS kernels have good proper-

ties, skew-GBS kernel density estimators should provide better results. Another reason for

considering BS distributions as kernels is that such modelshave been largely applied to en-

vironmental data; see Leiva et al. (2009, 2010, 2012), Vilcaet al. (2010, 2011), and Ferreira

et al. (2012).

The main goals of our work are (i) to propose new density estimators based on skew-GBS

kernels, which should hold with the properties of nonnegative kernels, but in addition these

should have a better behavior; and (ii) to apply the proposedkernel density estimators to real
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environmental data, specifically, to O3, PM10 and SO2 air contaminant concentrations.

The remainder of this chapter unfolds as follows. In Section2.2, we define the skew-

GBS distributions. In Section 2.3, we propose new nonparametric kernel estimators asso-

ciated with these distributions. In Section 2.4, we derive some statistical properties of the

proposed estimators. In Section 2.5, we present some identification, selection and validation

methods, and discuss a computational implementation of theproposed results. In Section

2.7, we perform a Monte Carlo (MC) simulation study for evaluating the proposed kernel

density estimators. In Section 2.6, we carry out an empirical application of our method to

the aforementioned environmental data. Finally, in Section 2.8, we provide some concluding

remarks.

2.2 The Birnbaum-Saunders distribution and its generalizations

Birnbaum and Saunders (1969) introduced a two-parameter distribution for a positive

random variable (RV)T with the following representation

T = β
[
αZ/2 + ({αZ/2}2 + 1)1/2

]2
, (2.1)

whereZ ∼ N(0, 1), α > 0 andβ > 0 are shape and scale parameters, butβ is also the

median of this distribution. This is denoted by BS(α, β). The BS distribution holds pro-

portionality and reciprocal properties given byb T ∼ BS(α, b β), with b > 0, and1/T ∼
BS(α, 1/β). Díaz-García and Leiva (2005) postulated and characterized the GBS distribu-

tion assuming thatZ given in (2.1) follows a symmetric distribution inR, which is denoted

by T ∼ GBS(α, β; g), whereg is a density generator associated with a particular symmetric

distribution. Vilca and Leiva (2006) obtained a greater generalization of the GBS distribu-

tion assuming thatZ given in (2.1) follows a skew-symmetric distribution inR, which is

denoted byT ∼ skew-GBS(α, β, λ; g), where nowg is a density generator associated with a

particular skew-symmetric distribution, andλ is a shape parameter, known as asymmetry or

skewness parameter.

Standard skew-symmetric distributions are denoted byZ ∼ SS(0, 1, λ; g), whereλ is a

skewness parameter andg is a density generator. In this case, the density ofZ takes the form

fZ(z;λ, g) = 2fS(z)FS(λz) = 2c g(z)FS(λz), z ∈ R, λ ∈ R, (2.2)

with fS = c g being the density of a symmetric distribution inR andFS its corresponding

distribution function. Note thatg is a real function that generates the density ofZ andc its

normalization constant, such that
∫ +∞
−∞ g(z2)dz = 1/c. The expression given in (2.2) permits
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a large number of skew-symmetric distributions to be obtained. Nadarajah and Kotz (2003)

consideredfS andGS having the Cauchy, Laplace, logistic, normal, Student-t and uniform

distributions. Other classes are the skew-Cauchy, skew-elliptic, skew-normal, skew-slash,

and skew-t distributions; see Azzalini and Capitanio (1999), Arnold and Beaver (2000), Az-

zalini and Capitanio (2003), Wang and Genton (2006) and Gómez et al. (2007). All of these

distributions provide wider asymmetry and kurtosis than the distributions proposed in Nada-

rajah and Kotz (2003).

Vilca and Leiva (2006) considered a RVZ such thatZ = [
√
T/β −

√
β/T ]/α ∼

SS(0, 1, λ; g) and then

T = β
[
αZ/2 + ({αZ/2}2 + 1)1/2

]2 ∼ skew-GBS(α, β, λ; g). (2.3)

From (2.2), the density ofT in (2.3) is given by

f(t;α, β, λ, g) = 2c g
(

1
α2

[
t
β
+ β

t
− 2
])
FS
(
λ
α

[√
t/β −

√
β/t
])t−3/2[t+ β]

2α
√
β

, (2.4)

t > 0, α, β > 0, λ ∈ R.

The mean and variance ofT are, respectively,

E[T ] = β
2

[
2 + α2γ2 + αω1

]
andVar[T ] = β2

4

[
4α2γ2−α2ω2

1+2α3ω3−2α3γ2 ω1−α4γ22+2α4γ4
]
,

(2.5)

whereγr = E[Zr] andωr = E[Zr
√
α2Z2 + 4], with Z ∼ SS(0, 1, λ; g); see Vilca and

Leiva (2006).

Table 2.1 presents density generators and their normalization constants.

Tabela 2.1:constant (c) and density generator (g) for the indicated distribution.
Distribution c g = g(u),u > 0

Normal 1√
2π

exp
(
− 1

2
u
)

PE η

2
1
2η Γ

(

1
2η

)

exp
(
− 1

2
uη

)
, η > 0

t
Γ
(

ν+1

2

)

√
νπ Γ( ν

2 )

[
1 + u

ν

]− ν+1

2 , ν > 0

Based on Table 2.1, expressions for the skew-BS, skew-BS-PEand skew-BS-t densities
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are

fskew-BS(t) = 2√
2π

exp
(
− 1

2α2

[
t
β
+ β

t
− 2
])

Φ
(
λ
α

[√
t/β −

√
β/t
])

t−3/2[t+β]

2α
√
β

,

fskew-BS-PE(t) =
2η

Γ
(

1
2η

)
2

1
2η

exp
(
− 1

2α2η

[
t
β
+ β

t
− 2
]η)

×
[
1
2
+ 1

2Γ
(

1
2η

)Γ
(

1
2η
, 1
2

[
λ
α

]2η[ t
β
+ β

t
− 2
]η)] t−3/2[t+β]

2α
√
β

,

fskew-BS-t(t) =
2Γ
(

ν+1
2

)
√
νπ Γ
(

ν
2

)
[
1 + 1

να2

{
t
β
+ β

t
− 2
}]− ν+1

2

×
(
1− 1

2
Iν/[ν+{λ/α}2{t/β+β/t−2}]

(
ν
2
, 1
2

)) t−3/2[t+β]

2α
√
β

, t > 0, α, β, ν > 0, λ ∈ R,

whereΦ is the N(0, 1) distribution function,Γ(α, y) =
∫ y
0
uα−1 exp(−u)du is the lower

incomplete gamma function, and Iy(a, b) = By(a, b)/B1(a, b) is the incomplete beta ratio,

with By(a, b) =
∫ y
0
ua−1[1 − u]b−1du. Note that ifη = 1 or if ν → ∞, then we obtain the

skew-BS distribution.

2.3 Skew-GBS kernel density estimators

A classical kernel estimate for an unknown densityf with support on[0,∞), at a point

x, based on observationsx1, . . . , xn, takes the formf̂n(x) = [1/(nh)]
∑n

i=1K([x − xi]/h),

whereh is a smoothing parameter (also known as bandwidth) andK is a symmetric kernel

satisfying
∫
K(x)dx = 1. An asymmetric kernel density estimate can be expressed as

f̂n(x) =
1

n

n∑

i=1

KL(h, x) (xi) , x ≥ 0, (2.6)

whereKL(h,x) is an asymmetric kernel associated with the distributionL, againh is the

bandwidth, andx the point where the density is estimated. In general, the class of asymmetric

kernel density estimators is boundary bias free and its biasis of orderO(h); see Chen (1999,

2000). Jin and Kawczak (2003) proposed density estimates based on the BS kernel given by

K
BS(

√
h, x)(t) = 1√

2π
exp

(
− 1

2h

[
t
x
+ x

t
− 2
]) t−3/2[t+x]√

4hx
, (2.7)

KLN(4 log(1+h), log(x))(t) = 1√
8π log(1+h) t

exp
(
− [log(t)−log(x)]2

8 log(1+h)

)
, (2.8)

respectively, whereh satisfies bothh → 0 andnh → ∞, whenn → ∞. By using the esti-

mate presented in (2.6) and the BS kernel provided in (2.7), Marchant et al. (2013) proposed a

density estimate based on the GBS kernel defined byK
GBS(

√
h, x; g)(t) = c g([1/h][t/x+x/t−
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2]) t−3/2[t + x]/
√
4hx, wherec andg are as given in (2.4). We extend the class of asymme-

tric kernel density estimators by proposing a new method based on skew-GBS distributions.

As explained earlier, these distributions provide highly flexible densities with either heavier

or lighter tails and more or less pronounced asymmetry than the BS distribution. From the

density given in (2.4), the kernel estimate proposed in (2.6), and settingα =
√
h andβ = x,

a skew-GBS kernel estimate for the densityf can be written as

f̂skew-GBS(x) =
1

n

n∑

i=1

K
skew-GBS(

√
h, x, λ; g)(xi), (2.9)

whereK
skew-GBS(

√
h, x, λ; g)(t) = 2c g([1/h] [t/x+x/t−2])FS([λ/

√
h][
√
t/x−

√
x/t]) t−3/2[t+

x]/
√
4hx, c, g andFS are as given in (2.4),h is the bandwidth,x the point where the density

is estimated, andλ the skewness parameter. Note that, asn→ ∞, h→ 0 andnh→ ∞.

Specifically, skew-BS, skew-BS-PE and skew-BS-t kernels are given by

K
skew-BS(

√
h, x, λ; g)(t) = 2√

2π
exp

(
− 1

2h

[
t
x
+ x

t
− 2
])
Φ
(

λ√
h

[√
t/x−

√
x/t
]) t−3/2[t+x]√

4hx
,

K
skew-BS-PE(

√
h, x, λ; g)(t) = 2η

Γ
(

1
2η

)
2

1
2η

exp
(
− 1

2hη

[
t
x
+ x

t
− 2
]η)

×
[
1
2
+ 1

2Γ
(

1
2η

)Γ
(

1
2η
, λ

2η

2hη

[
t
x
+ x

t
− 2
]η)] t−3/2[t+x]√

4hx
,

K
skew-BS-t(

√
h, x, λ; g)(t) =

2Γ
(

ν+1
2

)
√
νπ Γ
(

ν
2

)[1 + 1
νh

{
t
x
+ x

t
− 2
}]− ν+1

2

×
[
1− 1

2
Iν/[ν+{λ2/h}{t/x+x/t−2}]

(
ν
2
, 1
2

)] t−3/2[t+x]√
4hx

.

Figure 2.1 shows two kernels comparative shapes forh ∈ {0.05, 0.2}. From this figure, note

that, asx increases, the kernels shapes unfold in a similar way, and these kernels are sensitive

to the choice of the bandwidth.

2.4 Properties of skew-GBS kernel density estimators

Let X1, . . . , Xn be a random sample from a RVX distributed with unknown densityf

and support on[0,∞). For this true densityf , suppose the following conditions: (C1) it is

twice continuously differentiable; (C2) its second derivative is continuous and bounded; (C3)∫∞
0
[xf ′(x)]2dx

< ∞; (C4)
∫∞
0
[x2f ′′(x)]2dx < ∞; and (C5)

∫∞
0
x−1 f(x)dx < ∞. Note that conditions

(C1) and (C2) are common restrictions in many studies of nonparametric estimators. In par-

ticular, condition (C1) is necessary for the Taylor expansion. It is worthwhile to highlight

that, assuming a higher order of regularity forf , does not improve the rate of convergence
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Figura 2.1: plots of the skew-BS (h = 0.05, gray dashed;h = 0.2, gray dotted), skew-BS-PE
(h = 0.05, black solid;h = 0.2, black dashed) and skew-BS-t (h = 0.05, black dotted;h = 0.2, gray
solid) kernels forη = 2, ν = 5, λ = 0.1 andx = 1.0 (a),x = 4.0 (b) andx = 8.0 (c).
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of the skew-GBS kernel estimators, because the bias is of order h. Condition (C2) is quite

restrictive, but we think that such a condition can be satisfied by various types of data, for

example, environmental data. In addition, conditions (C3), (C4) and (C5) are used for com-

puting the MISE of the proposed kernel estimators, and we think that such conditions can

also be satisfied by various types of data. Note that conditions (C1)-(C5) can be verified for

BS distributions, which have been successfully applied to environmental data by using theo-

retical arguments; see, e.g., Vilca et al. (2010). We present some statistical properties of the

skew-GBS kernel density estimator in the following propositions, whose proofs are provided

in the Appendix.

Proposition 2.4.1 Let f̂skew-GBSbe the skew-GBS kernel density estimator. Then, its bias is

Bias[f̂skew-GBS(x)] = h
[
1
2
xf ′(x)γ2 +

1
2
x2f ′′(x)γ2

]
+ o(h),

whereγ2 is given in(2.5).

Proposition 2.4.2 Let f̂skew-GBS be the skew-GBS kernel density estimator. Then, its variance

is

Var[f̂skew-GBS(x)] = 2c2C−1
κ n−1h−1/2x−1f(x) + o(n−1h−1/2),

whereCκ is a normalization constant such that
∫∞
−∞ 2g2(z2)F 2

S(λz)dz = 1/Cκ.

Corollary 2.4.1 Let f̂skew-GBS be the skew-GBS kernel density estimator. Then, its mean squa-
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red error (MSE) and MISE are, respectively,

MSE[f̂skew-GBS(x)] = h2

4
[xf ′(x)γ2 + x2f ′′(x)γ2]

2
+ 2c2C−1

κ n−1h−1/2x−1f(x)

+o(n−1h−1/2 + h2),

MISE[f̂skew-GBS(x)] =

∫ ∞

0

MSE[f̂skew-GBS(x)] dx = h2

4
γ22

∫ ∞

0

[
xf ′(x) + x2f ′′(x)

]2
dx

+2c2C−1
κ n−1h−1/2

∫ ∞

0

x−1f(x)dx+ o(n−1h−1/2 + h2).

The value of the bandwidth that minimizes the MISE given in Corollary 2.4.1 is

h∗skew-GBS=
[2c2C−1

κ

∫∞
0 x−1f(x) dx]

2/5

[γ22
∫∞
0

{xf ′(x)+x2f ′′(x)}2 dx]
2/5n

−2/5. (2.10)

Note that this optimal bandwidth is of orderO(n−2/5) for all the kernels. Inserting (2.10) into

expression for the MISE given in Corollary 2.4.1, we obtain the optimal MISE as

MISE∗[f̂skew-GBS(x)] =
5

4

[
γ22

∫ ∞

0

{
xf ′(x) + x2f ′′(x)

}2
dx
]1/5[

2c2C−1
κ

∫ ∞

0

x−1f(x)dx
]4/5

n−4/5.

(2.11)

2.5 Identification, selection, validation and computational implementa-

tion

Some methods can be used (i) to identify the shape of the hazard rate (HR) function and,

consequently, of the parametric distribution of the environmental data; (ii) to select the pa-

rametersη, ν andλ of the skew-GBS distributions; and (iii) to choose the bandwidth of the

nonparametric method, validating this choice. Then, we discuss a implementation in theR

software of the proposed methods; seewww.R-project.org.

(i) A nice property of the HR is that it allows us to characterize the behavior of distributions.

For example, the HR may have several shapes such as increasing, constant, decreasing, bath-

tub, inverse bathtub approaching to a non-null constant or to zero. An incorrect specification

of the HR could have serious consequences in the analysis; see, e.g., Ferreira et al. (2012) and

references therein. Specifically, leth(t) = f(t)/[1−F (t)] be the HR of a RVT , wheref and

F are the density and distribution functions ofT , respectively. The identification of the shape

of the HR can be done by means of the scaled total time on test (TTT) method, which is given

by W (u) = H−1(u)/H−1(1), for 0 ≤ u ≤ 1, whereH−1(u) =
∫ F−1(u)

0
[1 − F (y)]dy, and

F−1 is the inverse function ofF . Thus,W (u) can be empirically approximated by construc-

ting the empirical scaled TTT plot by depicting the consecutive points[k/n,Wn(k/n)], with
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Wn(k/n) = [
∑k

i=1 t(i) + {n− k}tk]/
∑n

i=1 t(i), for k = 0, . . . , n, andt(i) being the observed

ith order statistic; see Aarset (1987).

(ii) ConsiderZ2 = [T/β + β/T − 2]/α2 ∼ χ2(1), with observationszi = [{ti/β̂(0)}1/2 −
{β̂(0)/ti}1/2]/α̂(0), for i = 1, . . . , n, and starting values forα andβ obtained from the mo-

dified moment estimates given bŷα(0) = [2{s/r}1/2 − 1]1/2 and β̂(0) = [s r]1/2, where

s = [1/n]
∑n

i=1 ti andr = 1/[{1/n}
∑n

i=1{1/ti}]. The maximum likelihood (ML) estimate

of λ can be obtained by the method proposed by Azzalini (1985); see also Vilca et al. (2011).

In order to obtainν, we fix integer values for it within the interval[1, 100], choosing the va-

lue of ν that maximizes the likelihood function, searching its optimal value by means of the

following algorithm: (step 1) forν from ν = 1 to ν = 100 by 1, estimate the parameters of

the GBS or skew-GBS distributions using the profile ML methodat the corresponding value

of ν, and compute the value of the likelihood evaluating it at theML estimates of the GBS or

skew-GBS parameters previously obtained, and at the corresponding value ofν used in the

profile ML method; and (step 2) choose the value ofν that maximizes the likelihood function

and then consider the ML estimates of the GBS or skew-GBS parameters as result. A similar

algorithm is used for the optimal searching ofη.

(iii) The least squares cross validation (LSCV) method can be used to select the bandwidth

h, which chooses it by minimizing the cross validation criterion defined as LSCV(h) =∫∞
0
f̂ 2
h(x)

dx − [2/n]
∑n

i=1f̂h,−i(xi), where f̂h is a nonnegative asymmetric kernel density estimate

of bandwidthh and f̂h,−i the corresponding estimate without theith observation; see Ru-

demo (1982) and Bowman (1984). Note that the plug-in and bootstrapping methods, and

the adaptive varying kernel size selection are not possibleto adapt, because they use a pilot

bandwidth and are symmetric kernel-driven; see Loader (1999) and Jin and Kawczak (2003).

The methods proposed in the article, as well as the selectionand validation tools discussed

above, are implemented inR code and available to the interested readers upon request. In

this code, we estimateλ using the commandsn.mle of anR package namedsn, whereas

the parametersα, β andν are determined by the commandmlegbs of anR package named

gbs; see Barros et al. (2009). In addition, we use the adjusted boxplot, which is a modi-

fied version of the usual boxplot for asymmetric data, that was constructed by the command

adjbox of anR package namedrobustbase; see Hubert and Vandervieren (2008). The

LSCV and TTT methods are also implemented in the computer code.
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2.6 Monte Carlo simulation study

We conducted Monte Carlo (MC) experiments and compute the minimum average in-

tegrated squared error (ISE) for evaluating the performance of the BS, BS-PE, BS-t, LN,

skew-BS, skew-BS-PE, skew-BS-t kernel estimators. The bandwidthh is chosen by mini-

mizing ISE(h) =
∫
B
[f̂h(x) − f(x)]2dx, whereB ∈ [0,∞) and f̂h is a nonnegative asym-

metric kernel density estimate off . We useM = 500 MC replications and sample sizes

n = 100, 200, 500, 1000 from BS(1.5,1), Burr(1,3,1) and GG(3,1,0.9) (generalizedgamma)

distributions; see Table 2.2. From this table, note thatU ∼ U(0, 1), Z ∼ N(0, 9/16) and

Y ∼ Gamma(3, 1). The GG distribution has, as special cases, the exponentialdistribution

(κ = θ = 1), the gamma distribution (θ = 1), the LN distribution (κ → ∞), and the Wei-

bull distribution (κ = 1). Hereafter, we useη = 2 (BS-PE, skew-BS-PE),ν = 5 (BS-t,

skew-BS-t), andλ = 0.1 (skew-BS-PE, skew-BS-t).

Tabela 2.2:characteristics of the indicated distributions used for generation of random numbers.
Distribution Density Transformation

BS(α = 1.5, β = 1) 1√
2π

exp
(
− 1

2α2

[
t
β
+ β

t
− 2

]) [t+β]

2α
√

βt3
, t, α, β > 0 T = 1 + 2Z2 + 2Z[1 + Z2]1/2

Burr(µ = 1, k = 3, r = 1) ktk−1

[1+rtk]
1

r+1

, t > 0, k, r > 0 T =
[

U
1−U

]1/3
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σΓ(κ)

[
t
σ

]κθ−1
exp

(
−

[
t
σ

]θ)
, t, κ, σ, θ > 0 T = Y 1/0.9

Tables 2.3, 2.4 and 2.5 report the minimum average ISEs and bandwidths for the BS(1.5,1),

Burr(1,3,1) and GG(3,1,0.9) distributions, respectively. We can observe that the BS and LN

kernel estimators display similar performance with a slight advantage of the former over the

latter. Another important point is that the skew-BS kernel estimator performs better than its

closest competitor, i.e., the BS kernel estimator. An important result from Tables 2.3, 2.4

and 2.5 is that the skew-BS-PE kernel estimator outperformsall the other estimators (except

whenn = 500, 1000 for the GG(3,1,0.9) distribution, i.e., the skew-BS kernelestimator has

a superior performance) for the sample sizes considered. Observing the achieved bandwidths

in Tables 2.3, 2.4 and 2.5, we see that, in general, and as expected, the bandwidths decrease

as the sample size increases. Table 2.6 provides the minimumaverage ISEs and bandwidths

considering different values for the skewness parameterλ, when the data are generated from

the Burr(1,3,1) distribution. Note that again the skew-BS-PE kernel estimator outperforms all

the other estimators whenλ = 0.1. This suggests that when we introduce a positive skewness

on the GBS kernel, the observations located at the tails (left or right) are accommodated in a

better way, providing better estimates.

We now give particular attention to the simulated data from the Burr distribution. We ge-

nerate a10000 random sample (t ∈ [0.04, 17.50]) from a Burr(1, 3, 1) distribution, estimate
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Tabela 2.3:average ISE (withh in parentheses) of the density estimator for the BS(1.5,1) distribution
by using the indicated kernel (λ = 0.1).

n BS LN BS-PE(5) BS-t(2) skew-BS skew-BS-PE(5) skew-BS-t(2)
100 0.021239 0.021430 0.213729 0.217255 0.019382 0.012943 0.018082

(0.177) (0.045) (0.206) (0.086) (0.206) (0.351) (0.156)
200 0.009271 0.009387 0.080318 0.082340 0.008451 0.006350 0.010531

(0.138) (0.037) (0.167) (0.068) (0.156) (0.282) (0.110)
500 0.004016 0.004076 0.023754 0.024753 0.003813 0.003266 0.006189

(0.098) (0.031) (0.131) (0.053) (0.108) (0.196) (0.072)
1000 0.001922 0.001961 0.008262 0.008816 0.001838 0.001678 0.003998

(0.075) (0.030) (0.109) (0.043) (0.081) (0.142) (0.050)

Tabela 2.4:average ISE (withh in parentheses) of the density estimator for the Burr(1,3,1) distribu-
tion by using the indicated kernel (λ = 0.1).

n BS LN BS-PE(5) BS-t(2) skew-BS skew-BS-PE(5) skew-BS-t(2)
100 0.014887 0.015219 0.012650 0.014310 0.013836 0.010706 0.055511

(0.054) (0.036) (0.107) (0.041) (0.057) (0.113) (0.074)
200 0.008703 0.009003 0.007754 0.008870 0.008209 0.007019 0.052801

(0.043) (0.036) (0.083) (0.031) (0.044) (0.088) (0.065)
500 0.004346 0.004781 0.003811 0.004532 0.004048 0.003566 0.050176

(0.033) (0.032) (0.057) (0.025) (0.031) (0.061) (0.058)
1000 0.002744 0.003345 0.002184 0.002655 0.002346 0.002064 0.049065

(0.030) (0.030) (0.043) (0.026) (0.029) (0.047) (0.056)

Tabela 2.5:average ISE (with averageh in parentheses) of the density estimator for the GG(3,1,0.9)
distribution by using the indicated kernel (λ = 0.1).

n BS LN BS-PE(5) BS-t(2) skew-BS skew-BS-PE(5) skew-BS-t(2)
100 0.021711 0.021800 0.214910 1.186278 0.019973 0.015753 0.019785

(0.070) (0.033) (0.194) (0.485) (0.085) (0.141) (0.061)
200 0.013219 0.013291 0.144340 1.031841 0.012058 0.011055 0.014331

(0.044) (0.037) (0.167) (0.499) (0.054) (0.089) (0.037)
500 0.008232 0.008363 0.109601 0.947764 0.007435 0.007737 0.010525

(0.032) (0.031) (0.205) (0.500) (0.035) (0.055) (0.024)
1000 0.006866 0.007075 0.098854 0.913920 0.006139 0.006724 0.009256

(0.030) (0.030) (0.239) (0.500) (0.030) (0.049) (0.036)

the densities and evaluate the performance of each kernel estimator, computing the point-wise

bias, variance and MSE. The bandwidths are chosen by minimizing the corresponding ISE.

Table 2.7 provides some descriptive measures for Burr(1, 3, 1) data, which include central

tendency statistics, the standard deviation (SD), and coefficients of variation (CV), of skew-

ness (CS) and of kurtosis (CK), among others. It is noteworthy that the positive asymmetry

and high kurtosis are evidenced by Table 2.3 and Figure 2.2. The TTT plot and the usual and

adjusted boxplots displayed in Figure 2.2(a)-(c) show a HR with a unimodal shape and heavy

tails.

Figure 2.3 depicts the Burr(1,3,1) true density with BS, BS-PE, skew-BS and skew-BS-

PE kernel density estimates. To make the figure less crowded and considering that the BS-t,

LN, and skew-BS-t kernel estimators have poorer performances, we omit the results of these

kernel estimators throughout this section. The results from Figure 2.3 show an excellent

agreement between the true density and its kernel estimates. Figure 2.4 presents the point-
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Tabela 2.6:average ISE (withh in parentheses) of the density estimator for the Burr(1,3,1) distribu-
tion by using the indicatedλ and kernel.

n λ skew-BS skew-BS-PE(2) skew-BS-t(5)
100 0.01 0.014742 0.010814 0.012269

(0.054) (0.110) (0.043)
0.05 0.014279 0.010746 0.022638

(0.055) (0.112) (0.055)
0.1 0.013836 0.010706 0.055511

(0.057) (0.113) (0.074)
0.5 0.015353 0.012195 0.019935

(0.057) (0.126) (0.221)
1.0 0.022032 0.017358 0.028850

(0.045) (0.143) (0.053)
200 0.01 0.008601 0.007116 0.008148

(0.042) (0.085) (0.034)
0.05 0.008377 0.007052 0.019062

(0.043) (0.086) (0.046)
0.1 0.008209 0.007019 0.052801

(0.044) (0.088) (0.065)
0.5 0.010614 0.008573 0.015187

(0.040) (0.102) (0.168)
1.0 0.015969 0.013823 0.018211

(0.030) (0.120) (0.042)
500 0.01 0.004166 0.003639 0.004401

(0.030) (0.058) (0.026)
0.05 0.004078 0.003595 0.015878

(0.030) (0.060) (0.036)
0.1 0.004048 0.003566 0.050176

(0.031) (0.061) (0.058)
0.5 0.006226 0.005252 0.010976

(0.035) (0.075) (0.117)
1.0 0.009765 0.010637 0.009701

(0.032) (0.095) (0.041)
1000 0.01 0.002386 0.002114 0.002722

(0.025) (0.044) (0.024)
0.05 0.002341 0.002092 0.014562

(0.025) (0.046) (0.033)
0.1 0.002346 0.002064 0.049065

(0.029) (0.047) (0.056)
0.5 0.004047 0.003841 0.009219

(0.061) (0.061) (0.094)
1.0 0.006520 0.009302 0.006060

(0.043) (0.082) (0.045)

Tabela 2.7:descriptive measures for Burr(1, 3, 1) data.
n Min. Max. Median Mean SD CV CS CK

10000 0.04 17.50 1.00 1.21 0.95 78.76% 4.84 43.62

wise bias, variance and MSE of the four kernel estimators forthe Burr(1,3,1) density, where

the bandwidths were selected by minimizing the ISE. We observe that most of the point-wise

bias, variance and MSE go to zero, whenx is greater than10. We also note that the considered

kernel estimates (except the skew-BS case) present similarresults for the bias, and MSE. A

relevant bias-variance tradeoff can be observed with the BSkernel estimator, i.e., the variance

can be reduced at the expense of the bias, and vice versa; see Figure 2.4(a)-(c).
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Figura 2.2:TTT plot (a), histogram (b), and usual and adjusted boxplots(c) of the Burr(1, 3, 1) data.
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Figura 2.3:estimation of Burr(1,3,1) density (black solid) via BS (black dashed,h∗ = 0.011), BS-
PE (black dotted,h∗ = 0.021), skew-BS (gray dashed,h∗ = 0.011), skew-BS-PE (gray dotted,
h∗ = 0.023) kernels forη = 2 andλ = 0.1 (a), and zoom on the corresponding left tail (b).
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Figura 2.4:point-wise bias (a), variance (b) and MSE (c) of the BS (blackdashed,h∗ = 0.011),
BS-PE (black dotted,h∗ = 0.021), skew-BS (gray dashed,h∗ = 0.011), skew-BS-PE (gray dotted,
h∗ = 0.023) kernel density estimators for the Burr(1,3,1) distribution.
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2.7 Application to real environmental data

We estimate the unknown true density of the three following real environmental data sets.
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• O3: daily tropospheric ozone concentrations (in ppb = ppm× 1000) observed in New

York during May-September, 1973, provided by the New York State Department of

Conservation; see Nadarajah (2008), Leiva et al. (2010), Vilca et al. (2011), Ferreira et

al. (2012).

• PM10: hourly particulate matter concentrations (in micrometers/normalized cubic me-

ters,µg/m3N) observed in Santiago, Chile, during April, 2003, provided by the Chilean

environment commission and metropolitan health authority.

• SO2: hourly sulfur dioxide concentrations (in ppb = ppm× 1000) observed in Santiago

during March, 2002, provided by the Chilean environment commission; see Vilca et

al. (2010).

Table 2.8 provides some descriptive measures for O3, PM10 and SO2 data. Also, the his-

tograms and (usual and adjusted) boxplots are presented in Figures 2.5, 2.6 and 2.7. The TTT

plots suggest that these data have an increasing HR, such as indicated in Vilca et al. (2011);

see Figures 2.5(a), 2.6(a) and 2.7(a). The descriptive summaries effectively show a positive

skewness and a high kurtosis (which is an indication of heavytails) for these data sets. This is

corroborated by histograms displayed in Figures 2.5(b), 2.6(b) and 2.7(b). Note that the usual

boxplots present some atypical observations lying on the right-tail of the distributions of O3,

PM10 and SO2 data. However, it is well known that, in cases where the data follow a skewed

distribution, a significant number of observations can be classified as atypical when they are

not. Figures 2.5(c), 2.6(c) and 2.7(c) show boxplots that confirm such a situation, i.e., most

of the observations considered as potential outliers by theusual boxplot are not outliers when

we consider the adjusted boxplot.

Tabela 2.8:descriptive statistics for the indicated data.
Data set n Min. Max. Median Mean SD CV CS CK

O3 116 1.00 168.00 31.50 42.13 32.99 78.30% 1.21 4.11
PM10 717 1.00 230.00 66.00 71.72 39.30 54.80% 0.64 3.06
SO2 744 1.00 25.00 2.00 2.93 2.02 68.87% 4.32 37.57

Next, we use kernel estimation for determining O3, PM10 and SO2 data density. Fi-

gures 2.5(b), 2.6(b) and 2.7(b) show the histograms with kernel estimates and bandwidths

selected by the LSCV method for O3, PM10 and SO2 data. Note from these figures that all

the density estimates based on the BS, BS-PE, BS-t, LN, skew-BS, skew-BS-PE and skew-

BS-t kernels seem to be quite reasonable to the environmental data, despite the difficulty of

bandwidth selection; see Loader (1999). We are selecting the bandwidth through the LSCV

method, which is somewhat unstable and can underestimate the density. However, as high-

lighted by Loader (1999), this instability is not a problem,but a symptom stemmed from the

difficulty of bandwidth selection. This problem is emphasized in the case of O3 and PM10
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data, because, in the first bin of the corresponding histograms, few observations are registe-

red, but it is not the case of SO2 data.

Figura 2.5:TTT plot (a), density estimation via BS (black solid,h∗ = 0.206), BS-PE (black dotted,
h∗ = 0.368), BS-t (black dotdash,h∗ = 0.159), LN (black dashed,h∗ = 0.051), skew-BS (gray
dotted,h∗ = 0.219), skew-BS-PE (gray solid,h∗ = 0.370), and skew-BS-t (gray dashed,h∗ = 0.159)
kernels forη = 2, ν = 5 andλ = 0.1 (b), and usual and adjusted boxplots (c) of O3 data.
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Figura 2.6:TTT plot (a), density estimation (b) via BS (black solid,h∗ = 0.034), BS-PE (black
dotted,h∗ = 0.046), BS-t (black dotdash,h∗ = 0.027), LN (black dashed,h∗ = 0.009), skew-
BS (gray dotted,h∗ = 0.035), skew-BS-PE (gray solid,h∗ = 0.049), and skew-BS-t (gray dashed,
h∗ = 0.032) kernels forη = 2, ν = 5 andλ = 0.1, and usual and adjusted boxplots (c) of PM10 data.
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2.8 Concluding remarks

In this chapter, we have introduced new asymmetric kernel density estimators based

on generalized skew-Birnbaum-Saunders distributions. These distributions provide densi-

ties with either heavier or lighter tails and more or less pronounced asymmetry than the

Birnbaum-Saunders distribution. The kernel estimators that we have proposed are boundary
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Figura 2.7:TTT plot (a), density estimation via BS (black solid,h∗ = 0.040), BS-PE (black dotted,
h∗ = 0.056), BS-t (black dotdash,h∗ = 0.039), LN (black dashed,h∗ = 0.010), skew-BS (gray
dotted,h∗ = 0.041), skew-BS-PE (gray solid,h∗ = 0.056), and skew-BS-t (gray dashed,h∗ = 0.039)
kernels forη = 2, ν = 5 andλ = 0.1 (b), and usual and adjusted boxplots (c) of SO2 data.
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bias free, with shapes that vary according to the data point location, and achieving the op-

timal rate of convergence for the mean integrated squared error of nonnegative asymmetric

kernel density estimators. In addition, we have presented some identification, selection and

validation methods. A computational implementation in theR statistical software of the re-

sults derived in this work has been discussed. Furthermore,we have compared the proposed

density estimators based on generalized skew-Birnbaum-Saunders kernels with some non-

parametric density estimators existing in the literature.Monte Carlo simulation results have

indicated that the skew-Birnbaum-Saunders-power-exponential kernel density estimator we

have derived outperforms most other estimators, in all sample sizes considered. We have

used our methodology for estimating the density of real air pollutant concentration data. The

numerical results have shown the flexibility and good performance of the proposed nonpara-

metric estimators.
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3 A NEW FAMILY OF AUTOREGRESSIVE CONDITIONAL

DURATION MODELS

3.1 Introduction

High-frequency data have gained an increasing attention with the advances in compu-

ter technology and data recording and storage; see Engle (2000). The availability of high-

frequency financial transaction (trade duration –TD–) datahas given an impulse to the re-

search in business, economics and finance. The autoregressive conditional duration (ACD)

model proposed by Engle and Russell (1998) has been the primary class of models for analy-

zing TD data, which are irregularly time-spaced and convey meaningful information. The

importance of this type of data, and of its modeling, is stressed by the relatively recent mar-

ket microstructure literature; see Diamond and Verrechia (1987), Easley and O’Hara (1992),

Easley et al. (1997), Meitz and Teräsvirta (2006) and Pacurar (2008) .

Although TD data (i) have usually a unimodal hazard rate (HR)and (ii) follow an asym-

metric distribution with heavy tails (see GRAMMIG and MAURER, 2000; BHATTI, 2010),

generalizations of the original ACD model are based on assumptions that do not necessarily

comply with (i) and (ii). Thus, generalizations of the ACD model should be based on as-

sumptions that take into account (A1) the shape of the HR of TDdata; (A2) the symmetry or

asymmetry of the distribution of these data; and (A3) the conditional dynamics established

in terms of the mean or median of TD data, depending of their symmetry or asymmetry; see

Bauwens and Giot (2000), Luca and Zuccolotto (2006), Fernandes and Grammig (2006) and

Allen et al. (2008).

Birnbaum and Saunders (1969) introduced a two-parameter distribution for modeling fai-

lure times of a material exposed to fatigue. They assumed that the failure due to fatigue

follows from the development and growth of a dominant crack produced by cyclic stress.

The Birnbaum-Saunders (BS) distribution has been widely studied because of its interesting

properties and its relation with the normal distribution; see Kotz et al. (2010). In addition,
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although it has its genesis from engineering, its applications have been considered in several

other fields, including business, economics and finance; see, e.g., Jin and Kawczak (2003),

Ahmed et al. (2010), Bhatti (2010), Paula et al. (2012), Marchant et al. (2013) and Leiva et

al. (2013).

The BS distribution is asymmetrical, has positive skewnessand a unimodal HR, and has

been successfully applied to model lifetime data. Thus, it can be a good model for describing

TD data. Bhatti (2010) proposed a generalization of the ACD model based on the BS distri-

bution (in short BS-ACD model), which provides (B1) a realistic distributional assumption

(in terms of the shape of its probability density function, in short PDF, and of its HR); (B2)

an easy parameter estimation (because it is simple and converges fast); and (B3) a natural

parameterization in terms of a conditional median duration, which is expected to improve

the model fit, instead of using the conditional mean duration; see (A3). This is because the

median is often considered as a better measure of central tendency than the mean, when the

data follow asymmetric and heavy-tailed distributions, such as is the case of TD data.

Recently, based on the relationship between the BS and normal distributions, Balakrish-

nan et al. (2009) introduced the scale-mixture BS (SBS) distributions; see also Díaz-García

and Leiva (2005), and Marchant et al. (2013) for a recent TD analysis using kernel estimation

based on SBS models, with independent data. The class of SBS distributions (C1) inherits

the good properties of the BS distribution discussed in (B1)-(B3); (C2) permits the maximum

likelihood (ML) estimates of the model parameters to be computed in an efficient way, using

the expectation-maximization (EM) algorithm; and (C3) allows a robust estimation proce-

dure of parameters to be obtained, which is not possible withthe BS distribution; among

other properties.

The main aim of this work is to propose a new methodology basedon ACD models

generated from SBS distributions, in short SBS-ACD. This methodology includes efficient

estimation of the SBS-ACD model parameters via the EM algorithm, inference about these

parameters, the predictive model and a residual analysis for model checking. SBS-ACD mo-

dels should hold with the properties of the BS-ACD model, butfurther properties should be

also obtained. We apply the new methodology to TD data, whichhave unique features absent

in data with low frequencies. For example, as mentioned, TD data (D1) are collected in irre-

gular time intervals; (D2) possess a large number of observations; (D3) their trading activities

exhibit some diurnal pattern, that is, activity is higher near the beginning and closing than in

the middle of the trading day; and (D4) present a unimodal HR;see Engle and Russell (1998)

and Bhatti (2010).

The rest of the chapter unfolds as follows. In Section 3.2, weintroduce SBS distributions.

In Sections 3.3 and 3.4, we propose a methodology based on theSBS-ACD models, which
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includes formulation, estimation of their parameters by means of the EM algorithm, the cor-

responding inference, which is useful for obtaining the predictive model, and a residual for

this model, which can be used for checking model adequacy in practice. In Section 3.5, we

perform a Monte Carlo (MC) study for evaluating the proposedmethodology. In Section

3.6, we present an application of this methodology to six real data sets of NYSE securities.

Finally, in Section 3.7, we discuss some conclusions and futures studies.

3.2 Scale-mixture Birnbaum-Saunders distributions

In this section, we present some useful results about SBS distributions.

A random variable (RV)X follows a two-parameter BS distribution if it can be represen-

ted by

X = σ
[
κZ/2 + ({κZ/2}2 + 1)1/2

]2
, (3.1)

whereZ ∼ N(0, 1), andκ > 0, σ > 0 are shape and scale parameters, respectively.

In this case, the notationX ∼ BS(κ, σ) is used and the corresponding PDF is given by

fBS(x; κ, σ) =
1√
2π

exp

(
− 1

2κ2

[x
σ
+
σ

x
− 2
]) x−3/2[x+ σ]

2κσ1/2
, x > 0.

Note that, as the shape parameterκ goes to zero, the BS distribution tends to be symmetrical,

degenerating atσ, whenκ = 0 (see KUNDU et al., 2008), whereas the scale parameterσ

is also the median of the distribution. The BS model holds proportionality and reciprocal

properties given bybX ∼ BS(κ, b σ), with b > 0, and1/X ∼ BS(κ, 1/σ), respectively.

A RV Y follows a scale mixture of normal (SMN) distribution (symmetric) if it can be

represented byY = µ + {g(U)}1/2V , whereV ∼ N(0, ϑ2), U is a positive RV independent

of V , with cumulative distribution function (CDF)H(·), andg(·) is a positive function as-

sociated withH(·). This is denoted byY ∼ SMN(µ, ϑ2, H) and the corresponding PDF is

given by

φSMN(y;µ, ϑ,H) =

∫ ∞

0

φ(y;µ, g(u)ϑ2) dH(u), (3.2)

whereφ(·;µ, g(u)ϑ2) denotes the PDF of the normal distribution with meanµ and variance

g(·)ϑ2. Note that the distribution ofY givenU is Y |U = u ∼ N(µ, g(u)ϑ2).

Following Díaz-García and Leiva (2005), Balakrishnan et al. (2009) obtained a class of

BS distributions replacingZ in (3.1) byY = {g(U)}1/2Z ∼ SMN(0, 1, H) ≡ SMN(H),

with Z ∼ N(0, 1), such that

X = σ
[
κ{g(U)}1/2Z/2 + {(κ{g(U)}1/2Z/2)2 + 1}1/2

]2
. (3.3)
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Thus, the RVX given in (3.3) has now a SBS distribution, which is denoted byX ∼
SBS(κ, σ,H), with PDF

fSBS(x; κ, σ,H) = φSMN

(
a(x; κ, σ); 0, 1, H

)
A(x), x > 0, κ > 0, σ > 0, (3.4)

whereφSMN(·) is as given in (3.2), withµ = 0 andϑ2 = 1,

a(x; κ, σ) = a(x) =
1

κ

[
{x/σ}1/2 − {σ/x}1/2

]
and A(x) =

d
dx
a(x) =

x−3/2[x+ σ]

2κσ1/2
.

(3.5)

Then, the CDF ofX is FSBS(x; κ, σ,H) = ΦSMN(a(x)), whereΦSMN(·) is the CDF associ-

ated with the PDF given in (3.2). From the SBS CDF, we can obtain the quantile function

(QF) ofX asxSBS(q; κ, σ,H) = F−1
SBS(q; κ, σ,H) = σ[κy(q)/2+ {

(
κy(q)/2)2 + 1}1/2]2, for

0 < q < 1, whereF−1
SBS(·) is the inverse SBS CDF andy(q) is theqth quantile of the SMN

distribution. Note thatxSBS(0.5; κ, σ,H) = σ, because, due to the symmetry of the SMN

distributions,y(0.5) = 0, so that the parameterσ is the median of the distribution. The mean,

variance and coefficients of skewness (CS) and kurtosis (CK)of X are

E[X ] =
σ

2

[
2 + w1κ

2
]
,V[X ] =

σ2κ2

4

[
w1 + {2w2 − w2

1}κ2
]
,

CS[X ] =
4κ
[
{3w2 − 3w2

1}+ 1
2
{2w3 − 3w1w2 + w3

1}κ2
]

[4w1 + {2w2 − w2
1}κ2]3/2

and

CK[X ] =
16w2 + [32w3 − 48w1w2 + 24w3

1]κ
2 + [8w4 − 16w1w3 + 12w2

1w2 − 3w4
1]κ

4

[4w1 + {2w2 − w2
1}κ2]2

,

respectively, wherewr = E[{g(U)}r], with g(U) being as given in (3.3).

Note that, ifX ∼ SBS(κ, σ,H), its distribution conditional toU is X|U = u ∼
BS({g(u)}1/2
κ, σ), that is,X|U follows a classical BS distribution. Thus, from this result, we can obtain

the conditional distribution ofU |X, allowing the expected value E[1/g(U)|X = x] to be

determined, which is useful for implementing the EM algorithm employed in Section 3.4 of

this work.

Three members of the SBS family are the BS (classical), powerexponential BS (BS-

PE) and Student-t BS (BS-t) distributions; see Table 3.1 for explicit expressions of their

PDFs. To obtain the BS distribution, it is assumed in (3.3) that g(U) = 1, that is,U is a RV

degenerate at this value. For the BS-t distribution, it is assumed in (3.3) thatg(U) = 1/U and

U ∼ Gamma(ν/2, ν/2), whereas the BS-PE distribution is obtained whenU ∼ St(̺), for

0.5 < ̺ ≤ 1, that is, whenU follows a positive stable (St) distribution with index2̺, whose

PDF cannot be analytically expressed, but it is denoted byp2̺(·), and, in this case,g(U) does
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not have a specific form; see details in West (1987) and Ferreira et al. (2011). In addition,

note that BS-PE and BS-t distributions reduce to the BS case when̺ = 1 andν → ∞,

respectively (see FERREIRA et al., 2011; AZEVEDO et al., 2012), whereas the BS-PE and

BS-t distributions reduce to the BS-Laplace and BS-Cauchy caseswhen̺ = 1/2 andν = 1,

respectively; see Barros et al. (2009). BS-PE and BS-t distributions are often considered

as alternative models to the BS distribution due to the BS-t distribution has a kurtosis level

greater (heavier tails) than the BS distribution, whereas the BS-PE distribution has either less

or greater (lighter or heavier tails) kurtosis levels than the BS distribution, which is useful for

accommodating different types of data. Furthermore, the BS-t distribution provides a robust

estimation procedure of its parameters; see Paula et al. (2012).

Tabela 3.1:associated PDFs of some members of the SBS family.

Family member PDF associated withH(u) PDF ofX ∼ SBS(κ, σ,H)

BS 1 1√
2π

exp
(
− 1

2κ2

[
x
σ + σ

x − 2
]) x−3/2[x+σ]

2κ
√
σ

, x > 0

BS-PE p2̺(u),
̺√

2̺Γ
(

1
2̺

) exp
(
− 1

2κ2̺

[
x
σ + σ

x − 2
]̺) x−3/2[x+σ]

2κ
√
σ

,

u > 0, 1/2 < ̺ ≤ 1 x > 0

BS-t
[ ν
2
]
ν
2 u

ν
2 −1

Γ( ν
2
) exp

(
−νu

2

)
,

Γ( ν+1
2

)√
π
√
νΓ( ν

2
)

[
1 + 1

νκ2

{
x
σ + σ

x − 2
}]− ν+1

2 x−3/2[x+σ]
2κ

√
σ

,

u > 0, ν > 0 x > 0

3.3 SBS-ACD models

LetXi = Ti − Ti−1 denote the TD, that is, the time elapsed between two consecutive fi-

nancial transactions,(i−1)th andith transactions say, at timesTi andTi−1, respectively. Con-

sidering serial dependence usually found in financial duration data, Engle and Russell (1998)

assumed that this dependence can be described by a functionψi = E[Xi|Ωi−1], denoting the

conditional mean of theith TD based on the past information setΩi−1, which includes all

information available at timeTi−1 (past).

The usual ACD class of models assumes that

Xi = ψi εi, (3.6)

whereψi = α+
∑r

j=1 βjψi−j+
∑s

j=1 γjXi−j, for i = 1, . . . , n, which is called the ACD(r, s)

model, wherer ands refer to the orders of the lags, and{εi; i = 1, . . . , n} is a sequence of

independent and identically distributed positive RVs withPDFf(·).
Note that a wide range of ACD(r, s) models may be defined by switching the distribution

of εi and the specification ofψi given in (3.6); see Fernandes and Grammig (2006) and
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Pathmanathan et al. (2009). For example, an ACD(r, s) model based on the generalized

gamma (GG) distribution with PDF given by

fGG(x; υ, η, ω) =
η

ωΓ(υ)

[x
ω

]υη−1

exp
(
−
[x
ω

]η )
, x, υ, η, ω > 0, (3.7)

can be formulated, with shape (υ, η) and scale (ω) parameters andΓ(x) =
∫∞
0
xυ−1 exp(−x)dx

being the gamma function.

Special cases of the GG distribution are the exponential (υ = η = 1), gamma (η = 1),

lognormal (υ → ∞) and Weibull (υ = 1) distributions. Thus, a GG-ACD(r, s) model can be

obtained by the conditional mean of theith TD,E[Xi|Ωi−1] = ψi = ωΓ(υ + 1/η)/Γ(υ) say,

so that one can reparameterize the GG distribution byω = ψiΓ(υ)/Γ(υ + 1/η) = ψiϕ(υ, η),

obtaining from (3.7) the PDF

fGG(xi; υ, η, ψi) =
η

ϕ(υ, η)ψiΓ(υ)

[
xi

ϕ(υ, η)ψi

]υη−1

exp

(
−
[

xi
ϕ(υ, η)ψi

]η)
, i = 1, . . . , n,

(3.8)

for xi, υ, η, ψi > 0. Note that this way of representing the PDF given in (3.8) is equivalent to

the model given (3.6), with a dynamic structure forE[Xi|Ωi−1] = ψi expressed in a general

fashion, which must be specified.

An alternative approach to the existing ACD models was proposed by Bhatti (2010). This

approach takes into account the scale parameter of the BS distribution to specify the BS-

ACD(r, s) model in terms of a time-varying conditional median duration,σi = F−1
BS (0.5|Ωi−1)

say, whereF−1
BS (·) denotes the inverse CDF or QF of the BS distribution. This specification

has several advantages over the existing ACD models, as mentioned in (B1)-(B3). From Ta-

ble 3.1, the PDF associated with the BS-ACD(r, s) model can be obtained in an analogous

way to that provided for the GG-ACD(r, s) model given in (3.8) as

fBS(xi; κ, σi) =
1√
2π

exp

(
− 1

2κ2

[
xi
σi

+
σi
xi

− 2

])
x
−3/2
i [xi + σi]

2κσ
1/2
i

, xi, κ, σi > 0, i = 1, . . . , n,

(3.9)

We extend the class of BS-ACD(r, s) models by using SBS distributions. As mentioned in

(C1)-(C3), these distributions have good properties. Suchas in the BS-ACD(r, s) case, the

SBS-ACD(r, s) model is not an ACD(r, s) model in the usual sense. This model is speci-

fied in terms of a time-varying conditional median,σi = F−1
SBS(0.5|Ωi−1) say, which also

corresponds to the scale parameter of the SBS(κ, σi, H) distribution. Specifically, from the

PDF given in (3.4), the SBS-ACD(r, s) model can be obtained in an analogous way to that
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provided for the BS-ACD(r, s) model given in (3.9) with an associated PDF expressed as

fSBS(xi; κ, σi, H) = φSMN(a(xi); 0, 1, H)A(xi), xi, κ, σi > 0, i = 1, . . . , n, (3.10)

wherea(·) andA(·) are as given in (3.5). Note that (3.10) is equivalent to the formulation

Xi = σi ǫi, such thatYi = log(σi) + εi, whereYi = log(Xi), εi = log(ǫi) and

σi = exp

(
α +

r∑

j=1

βj log(σi−j) +

s∑

j=1

γj
xi−j
σi−j

)
, (3.11)

with Xi
ind∼ SBS(κ, σi, H) and εi

ind∼ SBS(κ, 1, H), for i = 1, . . . , n; see Bauwens and

Giot (2000). From Table 3.1, the PDFs associated with the BS-PE-ACD(r, s) and BS-t-

ACD(r, s) models are given by

fBS-PE(xi; κ, σi, ̺) =
̺√

2̺ Γ (1/[2̺])
exp

(
− 1

2κ2̺

[
xi
σi

+
σi
xi

− 2

]̺)
x
−3/2
i [xi + σi]

2κ
√
σi

and

fBS-t(xi; κ, σi, ν) =
Γ(ν+1

2
)√

π
√
νΓ(ν

2
)

[
1 +

1

νκ2

{
xi
σi

+
σi
xi

− 2

}]− ν+1
2 x

−3/2
i [xi + σi]

2κ
√
σi

,

respectively, forxi, κ, ν, σi > 0, 1/2 < ̺ ≤ 1, andi = 1, . . . , n.

3.4 Estimation, inference and checking

In this section, we use the ML method to estimate the SBS-ACD(r, s) parameters. EM

algorithm is used for facilitating the implementation of this method. Inference and model

checking are also considered here.

Let X = (X1, . . . , Xn)
⊤ be a sample fromXi ∼ SBS(κ, σi, H), for i = 1, . . . , n, with

PDF as given in (3.10), andx = (xi, . . . , xn)
⊤ be its observed TDs. As mentioned, we

assume a time-varying conditional median duration given asin (3.11). Such as in Engle

and Russell (1998), the simplest member of the ACD family, and often useful for empirical

applications, is the SBS-ACD(r = 1, s = 1) model, that we abbreviate as SBS-ACD model.

Thus, in the sequel, any ACD(r = 1, s = 1) model is simply denoted as ACD model. It

is worthwhile to highlight that autoregressive structuresof higher order do not increase the

distributional fit of the residuals; see Bhatti (2010). We estimate the parameters of the SBS-

ACD model by maximizing the log-likelihood function forξ = (δ⊤, ζ⊤)⊤ obtained from
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(3.10) and expressed as

ℓSBS−ACD(ξ;x) =

n∑

i=1

{
log(φSMN(a(xi; κ, σi); 0, 1, H))− 3

2
log(xi) + log

(
xi + σi
2 κ

√
σi

)}
,

(3.12)

with log(σi) = α + β log(σi−1) + γ[xi−1/σi−1], whereδ = (α, β, γ, κ)⊤ andζ denotes the

additional parameters corresponding to the PDF given in (3.10) associated withH(·). Note

that the vector of parametersζ that indexes the PDF associated withH(·) can be assumed to

be known or obtained from the data. We select the log-linear formσi given as in (3.11) with

r = 1 ands = 1, because it allows an unconstrained parameter estimation to be considered.

Otherwise, one should add constrains in the parameter estimation, so that one arrives at a

local extreme with positive parameter values; see Bhatti (2010).

The EM algorithm is a widely applicable approach for iterative computation of ML esti-

mates, useful when unobserved data or latent variables are present. Because this algorithm

encompasses the expectation step (E-step) and the maximization step (M-step), Dempster

et al. (1977) coined this name in their seminal paper. According to Ferreira et al. (2011),

the EM algorithm is popular due to (i) its computational simplicity in the M-step, because

it involves only complete data ML estimation; and (ii) its stable and straightforward imple-

mentation, because the iterations converge monotonicallyand there are no need for second

derivatives. Specifically, letx = (x1, . . . , xn)
⊤ andu = (u1, . . . , un)

⊤ denote observed

and unobserved data, respectively, andX andU their corresponding random vectors. Then

xc = (x⊤,u⊤)⊤ stands for the original datax augmented withu. In general, the two steps

of the EM algorithm are:

Algorithm 1 EM algorithm

1: E-step.ComputeQ(δ|δ̂(r)), for r = 1, 2, . . .; and
2: M-step. Findδ(r+1) such thatQ(δ(r+1)|δ̂(r)) = maxδ∈∆Q(δ|δ̂(r)), for r = 1, 2, . . .,

whereQ(δ|δ̂(r)) is the expectation of the complete log-likelihood functionconditioned
to the observed datax and evaluated at therth estimation ofδ.

From Theorem 4 in Balakrishnan et al. (2009), note that

Xi|(Ui = ui)
ind∼ BS(

√
g(ui)κ, σi), (3.13)

Ui
ind∼ H(ui), i = 1, . . . , n.

Thus, the complete data log-likelihood function for SBS-ACD models, associated withxc =
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(x⊤,u⊤)⊤, taken from (3.12) and (3.13), is given by

ℓ(ξ;xc) = c1 −
1

2κ2

n∑

i=1

1

g(ui)

[
xi
σi

+
σi
xi

− 2

]
+

n∑

i=1

log (xi + σi)− n log(κ)− n

2
log(σi),

(3.14)

wherec1 is a constant that depends on known values and onζ, but does not onδ.

In order to implement Algorithm 1, we need to state the conditional expectation of the

complete log-likelihood function given in (3.14),Q(δ|δ̂) say, as

Q(δ|δ̂) = c1−
1

2κ2

n∑

i=1

ûi

[
xi
σi

+
σi
xi

− 2

]
+

n∑

i=1

log (xi + σi)−n log(κ)−
n

2
log(σi), (3.15)

whereσi is as given in (3.11) withr = 1 ands = 1, and

ûi = E

[
1

g(Ui)

∣∣∣Xi = xi, δ = δ̂

]
, i = 1, . . . , n. (3.16)

Specific expressions forQ(δ|δ̂) given in (3.5) depend on each SBS-ACD model conside-

red. Thus, the log-likelihood function for the BS-PE-ACD model, ℓBS-PE-ACD(δ;xc) say, is

obtained in an analogous way as in (3.14), withc1 being a constant that depends on known

values and on the parameter̺ of U ∼ St(2̺), but does not onδ. Then, the conditional

expectation of the complete log-likelihood functionℓBS-PE-ACD(δ;Xc) givenx is obtained as

in (3.15), withûi defined in (3.16) specified aŝui = ̺k a(xi, κ̂, σ̂i)
2[̺k−1], for i = 1, . . . , n,

whereXc = (X⊤,U⊤)⊤ and̺k, as mentioned, can be a known value or obtained from the

data in an optimal way; see details in Saulo et al. (2013). Forthe BS-t-ACD model, we have

a similar expression to that given in (3.15) forQ(δ|δ̂), but nowûi given in (3.16) is

ûi = E

[
1

g(Ui)

∣∣∣Xi = xi, δ = δ̂

]
= E[Ui|Xi = xi, δ = δ̂] =

νk + 1

νk + a(xi, κ̂, σ̂i)
, i = 1, . . . , n,

(3.17)

where, in this case,c1 is a constant that depends on the parameterν ofU ∼ Gamma(ν/2, ν/2),

but does depend not onδ, and, such as for̺k of the BS-PE-ACD model,νk can be a known

value or obtained from the data in an optimal way. Therefore,in both of these cases (BS-

PE and BS-t), based on Algorithm 1, the steps to obtain the ML estimates of the SBS-ACD

model parameters are summarized in the following algorithm:

Algorithm 2 EM algorithm for SBS-ACD models

1: E-step.Computêu(r)i givenδ = δ̂(r), for i = 1, . . . , n, r = 1, 2, . . .; and
2: M-step. Updateδ̂(r) by maximizing (3.15) overδ.
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Note that the EM approach presented in Algorithm 2 permits the ML estimates of the parame-

ters to be computed in an efficient way, such as mentioned in (C2). Note also that̂ui given in

(3.17) works in Algorithm 2 as a weight function, such as mentioned in (C3), assigning small

values to large values of the data, which allows us to conjecture the robustness proposed of

the estimation procedure; see Paula et al. (2012).

As is well known, under some regularity conditions, ML estimators are asymptotically

normal distributed. Thus, based on this, for the case of the SBS-ACD model, we have

√
n [δ̂ − δ]

D→ N4(0,Σδ), asn→ ∞, (3.18)

whereΣδ is the variance-covariance matrix ofδ̂ and
D→ denotes convergence in distribution.

An approximate100× [1− a]% confidence region forδ obtained from (3.18) is

R = {δ ∈ R
4 : [δ̂ − δ]⊤Σ̂−1

δ
[δ̂ − δ] ≤ χ2

4;1−a}, 0 < a < 1, (3.19)

whereχ2
4;1−a denotes the[1 − a] × 100th percentile of the chi-squared distribution with 4

degrees of freedom and̂Σδ is an estimate ofΣδ.

In order to check the SBS-ACD model for a data set in practice,as usual in lifetime and

duration analysis, we propose a generalized Cox-Snell residual (COX and SNELL, 1968)

given by

rcsi = log(Ŝ(xi|Ωi−1)), i = 1, . . . , n, (3.20)

whereŜ(xi|Ωi−1) is the fitted conditional survival function of theith TD based on the past

information setΩi−1.

Survival functions for BS, BS-PE, BS-t, and GG distributions useful for obtaining (3.20)

are given by

SBS(xi; κ, σi) = 1− Φ (a(xi)) , xi, κ, σi > 0,

SBS−PE(xi; κ, σi, ̺) = 1− [1/2]
[
1 + Γ

(
1
2
{a(xi)}2̺, 1

2̺

)
/Γ (1/2̺)

]
,

xi, κ, σi > 0, 1/2 < ̺ ≤ 1,

SBS−t(xi; κ, σi, ν) = 1− [1/2]
[
1 + I[{a(xi)}2]/[{a(xi)}2+ν] (1/2, ν/2)

]
,

xi, κ, σi, ν > 0,

SGG(xi; υ, η, ψi) = 1− Γ(xηi [ψiϕ(υ, η)]
−η, υ)/Γ(υ), xi, υ, η, ψi > 0,

whereΦ(·) is the N(0, 1) CDF andΓ(·), a(x) andϕ(υ, η) are as given in (3.5), (3.7) and

(3.8), respectively. In addition,Γ(x, υ) is the lower incomplete gamma function defined as

Γ(y, ι) =
∫ y
0
uι−1 exp(−u)du, and Iy(a, b) =

∫ y
0
ua−1[1 − u]b−1 du/

∫ 1

0
ua−1[1 − u]b−1 du is
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the incomplete beta function ratio. Note that, when the ACD model is correctly specified, the

Cox-Snell residual has a unit exponential (EXP(1)) distribution; see Bhatti (2010).

3.5 Simulation study

In this section, we carry out two simulation studies, one forevaluating the behavior of the

ML estimators of the SBS-ACD models, and other one for detecting the performance of the

residual proposed.

3.5.1 Estimation

We use the MC method for carrying out this first study. We focuson the BS-PE-ACD

model, because, as mentioned, it has either less or greater (lighter or heavier tails) kurtosis

levels than the BS distribution. However, in Section 3.6 (application with real TD data),

we consider BS, BS-PE and BS-t and GG-ACD models. The scenario of this study is the

following: the simulated sample sizes from the BS-PE-ACD model are considered to be

asn = {500, 1000, 3000, 5000} and the vector of true parameters asδ = (α, β, γ, κ)⊤ =

(0.1, 0.9, 0.1, 1.1)⊤, whereas the number of MC replications isB = 1000. The BS-PE-ACD

samples are generated by the transformation given in (3.3),consideringYi = {g(Ui)}1/2Zi ∼
PE(̺ = 1), with Ui ∼ St(̺ = 1) andZi ∼ N(0, 1), for i = 1, . . . , n; see Leiva et al. (2008)

for details about how generating random numbers from SBS distributions. We estimate the

SBS-ACD model parameters by using Algorithm 2, with starting values for(α, β, γ) to be

considered as(0.01, 0.70, 0.01), for κ asκ0 =
√
2 [x/Med[x]− 1], wherex and Med[x] are

the sample mean and median based on observations (data)x = (x1, . . . , xn)
⊤, and forσ as

σ0 = Med[x]. For each parameter and each sample size, we report the empirical mean, CS,

CK, relative bias (RB) in absolute value and root of the mean squared error (
√

MSE) of the

ML estimators in Table 3.2. The RB is defined as RB[τ̂ ] = |(E[τ̂ ]− τ)/τ |, whereτ̂ is the ML

estimator of a parameterτ , and the sample CS and CK are, respectively, calculated by

CS[x] =

√
n[n− 1]

[n− 2]

n−1
∑n

i=1[xi − x̄]3

[n−1
∑n

i=1{xi − x̄}2]3/2
and CK[x] =

n−1
∑n

i=1[xi − x̄]4

[n−1
∑n

i=1{xi − x̄}2]2
,

(3.21)

where, as mentioned,x = (x1, . . . , xn)
⊤ denotes the observations from a sample.

The definition of CK[x] given in (3.21) is the raw measure, not excess kurtosis, which is

obtained subtracting 3 from CK[x] in (3.21). In Table 3.2, we observe that, as the sample

size increases, the RB and
√
MSE of the all the estimators decrease, tending them to be

unbiased, as expected. From this table, observe also that the empirical distributions of all the

parameter estimators are somewhat skewed and with high kurtosis, but tending to the normal
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case, as the sample size increases. This is corroborated by Figures 3.1, 3.2, 3.3 and 3.4,

which show the empirical distributions of the parameter estimators from the simulation study.

These graphical plots suggest symmetric empirical distributions for these ML estimators as

n increases, as expected. In addition, these figures providesconfidence intervals (CIs) for the

corresponding parameters, obtained from (3.18), considering several values for the sample

size (n) and confidence level (̟).

Figura 3.1:empirical distribution of̂α and CI(α; [1 −̟]× 100%) for the indicatedn and̟.
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Figura 3.2:empirical distribution of̂β and CI(β; [1 −̟]× 100%) for the indicatedn and̟.
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3.5.2 Residuals

Now, we conduct a second MC simulation study to examine the performance of the Cox-

Snell residualrcs defined in (3.20); see Bauwens and Giot (2000). Similarly to Subsection

3.5.1, we simulateB = 1000 MC samples of sizen = 200 from the BS-PE-ACD model

and, once again, we use Algorithm 2 to estimate the model parameters. Figure 3.5(a) shows

a plot of the time against the residualrcs. This figure does not show unusual features. Figure

3.5(b) displays the empirical autocorrelation function (ACF) of the residualrcs. Note that the

empirical ACFs are averages, over 1000 samples, of the ACFs associated with each sample

of size 200. From Figure 3.5(b), the BS-PE-ACD model seems tobe adequately specified,

because the residualrcs behaves as a sequence of independent and identically distributed RVs

and there is no indication of serial correlation. Figure 3.5(c) presents a quantile against quan-

tile (QQ) plot with simulated envelope, which allows us to compare the empirical distribution

of the residuals for a simulated sample and the EXP(1) distribution; for more details on the

envelope plot, see Atkinson (1985). From Figure 3.5(c), note that the Cox-Snell residual pre-

sents a linear behavior and has an excellent agreement with the EXP(1) distribution, which
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Figura 3.3:empirical distribution of̂γ and CI(γ; [1 −̟]× 100%) for the indicatedn and̟.
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confirms the adequacy of the BS-PE-ACD model.

3.6 Analysis of high frequency financial transaction data

In this section, we apply existing and proposed ACD models tohigh frequency financial

transaction data. We consider here six data sets, studied inBhatti (2010), corresponding to

the time elapsed between two consecutive transactions, which contain forty trading days since

01-January-2002 until 28-February-2002. These data correspond to General Motors (GM),

International Business Machines (IBM), Johnson & Johnson (JJ), McDonald (MD), Proctor

& Gamble (PG), and Schlumberger Limited (SL) corporations.Note that, as mentioned in

(D3), this type of data present an active trading in opening and closing hours and a dormant

trading around noon. This trading is named the time-of-day effect. As explained by Engle

and Russell (1998), it is necessary to transform the data in order to extract this effect from

the raw durations. We apply the approach suggested in Tsay (2002) to obtain the time-of-day

adjusted durations̄xi as

x̄i =
xi

φ̂
, i = 1, . . . , n, (3.22)

wherexi is the raw duration and̂φ is the time-of-day effect. This effect is estimated using a
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Figura 3.4:empirical distribution of̂κ and CI(κ; [1 −̟]× 100%) for the indicatedn and̟.
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Figura 3.5:Cox-Snell residual against time (a), ACF (b) and QQ plot withenvelope (c).
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set of quadratic functions and indicator variables for eachhalf hour interval of the trading day

from 9:30am to 4:00pm; for more details on this and alternative procedures, see Giot (2000),

Tsay (2002), Drost and Werker (2004) and Bhatti (2010). In the final detrended TD data sets,

we use only observations in the period 10:00am to 4:00pm.
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Tabela 3.2:summary statistics from simulated BS-PE-ACD data for the indicated estimators andn.
n

Statistic 500 1000 3000 5000
α̂

True value 0.1000 0.1000 0.1000 0.1000
Mean 0.0964 0.0971 0.0999 0.0995
CS 1.1885 0.8571 0.4547 0.2516
CK 6.5193 4.3830 3.6492 3.2585
RB 0.0361 0.0290 0.0014 0.0049√

MSE 0.0885 0.0608 0.0344 0.0260

β̂
True value 0.9000 0.9000 0.9000 0.9000
Mean 0.8895 0.8947 0.8979 0.8989
CS −1.0616 −0.6945 −0.3834 −0.2153
CK 5.5867 3.6278 3.5492 3.1182
RB 0.0116 0.0058 0.0024 0.0012√

MSE 0.0372 0.0254 0.0144 0.0110

γ̂
True value 0.1000 0.1000 0.1000 0.1000
Mean 0.1174 0.1097 0.1032 0.1019
CS 0.2109 0.0525 0.0398 0.1968
CK 3.0894 3.1472 3.1859 3.0387
RB 0.1737 0.0966 0.0325 0.0190√

MSE 0.0272 0.0170 0.0079 0.0060

κ̂
True value 1.1000 1.1000 1.1000 1.1000
Mean 1.1263 1.1143 1.1053 1.1029
CS 0.2882 0.1934 0.1094 0.0775
CK 3.7016 3.5011 3.0083 2.9696
RB 0.0239 0.0130 0.0048 0.0027√

MSE 0.0486 0.0316 0.0159 0.0115

3.6.1 Exploratory data analysis

It is well known that high frequency financial data have serial dependence. Figure 3.6

shows graphical plots of the ACF and partial ACF for the GM, IBM and MD data sets, from

where it is noted the presence of serial correlation. A similar behavior is detected for the JJ,

PG and SL data sets (omitted here).

Table 3.3 provides some descriptive measures for TD data adjusted by (3.22), which

include central tendency statistics, as well as the standard deviation (SD), coefficient of vari-

ation (CV), CS and CK, among others. These measures indicatethe positively skewed nature

and the high kurtosis level of the data distribution.
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Figura 3.6:autocorrelation and partial autocorrelation functions ofthe indicated data set.

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

0.
20

A
C

F

lag

(a) GM

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

0.
20

A
C

F
lag

(b) IBM

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

0.
20

A
C

F

lag

(c) MD

0 10 20 30 40

-0
.0

1
0.

00
0.

01
0

0.
03

0
0.

05
pa

rt
ia

lA
C

F

lag

(d) GM

0 10 20 30 40 50

-0
.0

1
0.

00
0.

01
0

0.
03

0
0.

05
pa

rt
ia

lA
C

F

lag

(e) IBM

0 10 20 30 40
-0

.0
1

0.
00

0.
01

0
0.

03
0

0.
05

pa
rt

ia
lA

C
F

lag

(f) MD

Tabela 3.3:summary statistics for the indicated data set.
Data set n Min. Median Mean Max. SD CV CS CK

GM 56408 0.092 1.008 1.740 26.467 2.020 116.13% 2.782 11.951
IBM 127309 0.169 1.038 1.384 32.523 1.252 90.43% 3.023 19.802

JJ 82938 0.131 0.976 1.557 33.973 1.680 107.91% 3.135 18.463
MD 72979 0.121 1.006 1.752 47.163 2.081 118.75% 3.090 19.164
PG 78933 0.121 0.985 1.582 26.327 1.718 108.58% 2.865 13.311
SL 90694 0.143 0.996 1.708 31.143 2.011 117.72% 2.980 14.571

The HR of a positive RVX is h(x) = f(x)/[1 − F (x)], wheref(·) andF (·) are the

PDF and CDF ofX, respectively. One simple manner to characterize the HR is by the scaled

total time on test (TTT) function. We can detect the type of HRthat the data have and then

choose a suitable distribution. The TTT function is given byW (u) = H−1(u)/H−1(1), for

0 ≤ u ≤ 1, whereH−1(u) =
∫ F−1(u)

0
[1−F (y)]dy, with F−1(·) being the inverse CDF ofX.

By plotting the points[k/n,Wn(k/n)], withWn(k/n) = [
∑k

i=1 x(i)+{n−k}xk]/
∑n

i=1 x(i),

for k = 1, . . . , n, andx(i) being theith observed order statistic, it is possible to approximate

W (·); see Aarset (1987) and Azevedo et al. (2012).

From Figure 3.7, we detect that the TTT plots suggest a unimodal HR for the GM, IBM

and MD data. The same results are obtained for the other data sets (omitted here). To confirm
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this detection, we did a simple simulation study from the BS distribution. First, we generate

BS data with a similar framework to that found in real TD data.Then, with the generated data,

we plot the theoretical BS HR and the TTT curve. The BS HR plot showed a totally unimodal

shape, whereas the empirical TTT plot was very similar to that found in the GM, IBM, JJ,

MD, PG, and SL data sets. This is an indication that TD data have usually a unimodal HR,

as indicated by several authors; see, e.g., Grammig and Maurer (2000) and Bhatti (2010).

From Figure 3.7, we also observe that the histograms, as wellas the nonparametric density

estimates based on asymmetric kernels proposed by Saulo et al. (2013) and Marchant et

al. (2013), evidence a positive skewness and heavy tails forthe data PDF. This ratifies the

results shown in Table 3.3. Hubert and Vandervieren (2008) pointed out that, in cases where

the data follow a skewed distribution, a significant number of observations can be classified as

atypical when they are not. The boxplots depicted in Figure 3.7 confirm such a situation, that

is, several of the cases considered as potentially outliersby the usual boxplot are not outliers

when we consider the adjusted boxplot, although atypical data still remain. In summary, the

conducted exploratory data analysis has shown the different conjectures mentioned in (A1)-

(A3), (B1)-(B3) and (D1)-(D4). All these conjectures allowus to propose SBS-ACD models

for analyzing the GM, IBM, JJ, MD, PG, and SL data sets.

3.6.2 Estimation

We now estimate the parameters of the new BS-PE-ACD and BS-t-ACD models via the

EM algorithm described in Section 3.4; see Algorithm 2. Estimation of(α, β, γ) is initiated

at the same values as in Subsection 3.5.1, whereas starting values forσ andψ are considered

to be the sample median and mean of TDs respectively, over theperiod [9:30, 10:00), so

that spillovers of information from one trading day to the next trading day are avoided. In

addition, we consider the existing BS-ACD and GG-ACD models, which parameters are

estimated through a sequence of stages (BHATTI, 2010) basedon the Nelder-Mead (NM)

and Broyden-Fletcher-Goldfarb-Shanno (BFGS) approaches; for more details, see Nelder

and Mead (1965) and Mittelhammer et al. (2000, p. 199). Notice that, in the last reference,

the BFGS quasi Newton approach is considered as the best-performing algorithm.

As mentioned earlier, we consider lags of orderr = 1 and s = 1, because a higher

order for ACD models does not improve the model fit. Thus, the ACD(1,1) specification is

sufficient for capturing the usual dynamics of TD data; see Bhatti (2010).

The standard errors (SEs) of the ML estimators of the ACD model parameters can be

obtained using the White covariance (WC) matrix (see ENGLE and RUSSELL, 1998) given

by

WC
(
ς
)
=
(
∇2ℓ

(
ς
))−1 {(∇ℓ

(
ς
))(

∇ℓ
(
ς
))⊤} (∇2ℓ

(
ς
))−1

, (3.23)
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where∇ℓ
(
ς
)

and∇2ℓ
(
ς
)

stands respectively for the gradient vector and the Hessianma-

trix after we replace parameters by estimates of the corresponding log-likelihood function.

Specifically, the SEs are obtained by the square roots of the diagonal elements of the WC.

HypothesisH0: τ = 0 againstH1: τ 6= 0 can be tested by using the Wald statistic given by

[τ̂ − τ0]/SE(τ̂)
H0∼ N(0, 1), whereτ̂ andτ0 are the corresponding estimator and its proposed

value inH0, respectively.

Estimated SEs can be obtained from (3.23) evaluating it atς̂. Table 3.4 reports the model

parameter estimates and the estimated SEs of the corresponding ML estimators. All the

estimates are statistically significant at a level of1%. Note that the ACD parameter estimates

are very similar across the models, independently of the assumed distribution.
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Figura 3.7:TTT plots, histograms with asymmetric kernel, and usual andadjusted boxplots for the
indicated data sets.
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Tabela 3.4:ML estimates (with estimated SEs of the corresponding ML estimators in parenthesis)
for the indicated parameter, model and data set, whereℓ is the maximum value of the log-likelihood
function.

Data set
Parameter GM IBM JJ MD PG SL

BS-ACD model
α −0.018 −0.045 −0.017 −0.017 −0.018 −0.019

(0.0023) (0.0032) (0.0010) (0.0043) (0.0060) (0.0092)
β 0.986 0.939 0.974 0.984 0.985 0.980

(0.0302) (0.0253) (0.0272) (0.0214) (0.0253) (0.0093)
γ 0.010 0.032 0.011 0.010 0.011 0.012

(0.0001) (0.0020) (0.0006) (0.0003) (0.0007) (0.0016)
κ 1.213 0.873 1.042 1.204 1.063 1.147

(0.0022) (0.0002) (0.0012) (0.0011) (0.0016) (0.0007)
ℓ 83518.5 153644.7 112581.4 107508.0 108461.2 130066.5

BS-PE-ACD model
α −0.026 −0.047 −0.024 −0.024 −0.024 −0.021

(0.0029) (0.0011) (0.0059) (0.0034) (0.0019) (0.0013)
β 0.968 0.923 0.950 0.965 0.968 0.969

(0.0094) (0.0097) (0.0207) (0.0117) (0.0080) (0.0088)
γ 0.008 0.021 0.008 0.008 0.009 0.007

(0.0016) (0.0055) (0.0013) (0.0014) (0.0018) (0.0016)
κ 1.046 0.753 0.891 1.032 0.912 0.981

(0.2188) (0.1601) (0.1848) (0.2118) (0.1923) (0.1978)
̺ 0.592 0.590 0.592 0.592 0.591 0.593
ℓ 70373.2 123469.9 92717.3 90602.2 89545.1 130066.5

BS-t-ACD model
α −0.018 −0.045 −0.017 −0.017 −0.018 −0.019

(0.0000) (0.0004) (0.0001) (0.0000) (0.0001) (0.0001)
β 0.986 0.938 0.974 0.984 0.985 0.980

(0.0002) (0.0005) (0.0006) (0.0002) (0.0003) (0.0002)
γ 0.010 0.032 0.011 0.010 0.011 0.012

(0.0000) (0.0003) (0.0001) (0.0000) (0.0000) (0.0000)
κ 1.209 0.870 1.036 1.201 1.059 1.145

(0.0002) (0.0001) (0.0001) (0.0001) (0.0002) (0.0001)
ν 292 246 167 341 242 341
ℓ 83523.2 153635.7 112581.9 107523 108461.5 130087

GG-ACD model
α −0.015 −0.031 −0.010 − 0.013 −0.018 −0.017

(0.0017) (0.0011) (0.0002) (0.0063) (0.0015) (0.0027)
β 0.988 0.939 0.976 0.983 0.980 0.981

(0.0037) (0.0181) (0.0198) (0.0279) (0.0005) (0.0404)
γ 0.022 0.050 0.020 0.022 0.027 0.026

(0.0008) (0.0037) (0.0004) (0.0036) (0.0008) (0.0024)
υ 37.671 37.78 38.449 37.791 38.255 38.038

(0.0408) (0.4146) (0.8190) (0.6603) (0.4642) (0.9821)
η 0.152 0.2010 0.170 0.151 0.168 0.156

(0.0000) (0.0001) (0.0006) (0.0001) (0.0005) (0.0000)
ℓ 84201.8 153818.5 113326.7 109037.1 109025.7 132047.8
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3.6.3 Model checking

We now analyze the goodness-of-fit of the SBS-ACD model to thedata through the resi-

dual defined in (3.20); see Section 3.4. We recall that, when the model is correctly specified,

the Cox-Snell residual has an EXP(1) distribution. Figure 3.8 depicts the QQ plots of the

Cox-Snell residual for the indicated models and data sets. These QQ plots allow us to check

graphically whether such residuals follow the EXP(1) distribution or not. These graphical

plots show a superiority, in terms of fitting to the data, of the BS-PE-ACD model over the

GG-ACD model, followed by the BS-t-ACD and BS-ACD models, although the GG-ACD

model fits some data well; see Figure 3.8(b). Considering allsix real data sets, the BS-PE-

ACD model fits the data adequately to furnish effective based-ML inference.

Figura 3.8:QQ plots of Cox-Snell residuals for the indicated fitted model and data set.

0

0

2

2

4

4

6

6

8

8

10

10

em
pi

ric
al

qu
an

til
e

theoretical quantile

BS-PE-ACD
BS-t-ACD
BS-ACD
GG-ACD
EXP(1)

(a) GM

0

0

2

2

4

4

6

6

8

8

10

10

12

12

em
pi

ric
al

qu
an

til
e

theoretical quantile

BS-PE-ACD
BS-t-ACD
BS-ACD
GG-ACD
EXP(1)

(b) IBM

0

0

2

2

4

4

6

6

8

8

10

10

12
em

pi
ric

al
qu

an
til

e

theoretical quantile

BS-PE-ACD
BS-t-ACD
BS-ACD
GG-ACD
EXP(1)

(c) JJ

0

0

2

2

4

4

6

6

8

8

10

10

12
em

pi
ric

al
qu

an
til

e

theoretical quantile

BS-PE-ACD
BS-t-ACD
BS-ACD
GG-ACD
EXP(1)

(d) MD

0

0

2

2

4

4

6

6

8

8

10

10

em
pi

ric
al

qu
an

til
e

theoretical quantile

BS-PE-ACD
BS-t-ACD
BS-ACD
GG-ACD
EXP(1)

(e) PG

0

0

2

2

4

4

6

6

8

8

10

10

12
em

pi
ric

al
qu

an
til

e

theoretical quantile

BS-PE-ACD
BS-t-ACD
BS-ACD
GG-ACD
EXP(1)

(f) SL

Table 3.5 reports the Akaike and Bayesian information criteria, given by AIC= −2ℓ+2p

and BIC= −2ℓ + p log(n), respectively, whereℓ is the maximum value of the correspon-

ding log-likelihood function,p denotes the number of model parameters andn the num-

ber of observations. Also, the maximum and minimum values ofthe sample ACF from

order 1 to 60, and the mean magnitude of autocorrelationρ̄ for the first 15 lags, namely
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ρ̄ = [1/15]
∑15

i=1 |ρ̂k|, whereρ̂k = ĉor(rcsi , r
cs
i+k), are reported. The statistic̄ρk is relevant to

separate the influence of the sample size on the measure of thedegree of autocorrelation in

the residuals; see Bhatti (2010). From Table 3.5, we observethat, in terms of AIC values,

the BS-PE-ACD model is the best one, whereas the BS-t-ACD and BS-ACD models provide

close values, and the GG-ACD model is the worst one. Considering the BIC values, we once

again notice that the BS-PE-ACD model outperforms all the considered models.

Turning now to check for misspecification, we look at the sample ACF of lth order with

l varying from 1 to 60. Table 3.5 reports that there is no sampleautocorrelation greater than

0.05 (in magnitude) throughout the models and residuals.

Tabela 3.5:AIC and BIC values, sample autocorrelations, and the mean magnitude of autocorrelation
for the indicated data set and model.

Data set
Indicator GM IBM JJ MD PG SL

BS-PE-ACD model
AIC 140754.4 246947.8 185442.7 181212.4 179098.3 218204.2
BIC 140790.2 246986.8 185480.0 181249.2 179135.4 218241.9
max ACF 0.019 0.031 0.024 0.048 0.031 0.026
min ACF −0.009 −0.000 −0.011 −0.001 −0.009 −0.006
γ̄ 0.009 0.015 0.011 0.017 0.013 0.009

BS-t-ACD model
AIC 167054.4 307279.4 225171.8 215054.0 216931.0 260182.0
BIC 167090.2 307318.4 225209.1 215090.8 216968.1 260219.7
max ACF 0.021 0.026 0.019 0.031 0.039 0.035
min ACF −0.008 −0.007 −0.010 −0.007 −0.014 −0.003
γ̄ 0.008 0.006 0.007 0.009 0.011 0.011

BS-ACD model
AIC 167045.1 307297.4 225170.8 215024.0 216930.4 260141.0
BIC 167080.9 307336.0 225208.1 215060.8 216967.5 260178.7
max ACF 0.021 0.025 0.019 0.031 0.0396 0.034
min ACF −0.008 −0.007 −0.010 −0.007 −0.014 −0.003
γ̄ 0.008 0.006 0.007 0.009 0.011 0.011

GG-ACD model
AIC 168411.7 307645.0 226661.4 218082.2 218059.4 264103.6
BIC 168447.5 307684.0 226698.7 218119.0 218096.5 264141.3
max ACF 0.017 0.022 0.015 0.028 0.032 0.029
min ACF −0.010 −0.009 −0.014 −0.008 −0.014 −0.006
γ̄ 0.006 0.005 0.006 0.006 0.007 0.007

3.6.4 Predictive model

The analysis performed in Subsection 3.6.3 suggests that the BS-PE-ACD model is the

most appropriate for fitting the TD data. Assuming, for example, GM data, the ML es-
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timates of the parameters are (with estimated SEs in parenthesis): α̂ = −0.026(0.0029),

β̂ = 0.968(0.0094), γ̂ = 0.008(0.0016), andκ̂ = 1.046(0.2188). All estimates are statisti-

cally significant at the1% level. Then, the predictive model is

x̂BS-PE
pred = exp (−0.018 + 0.9860 log(σ̂i−1) + 0.0100[xi−1/σ̂i−1]) , (3.24)

where the initial valuêσ0 is the median over the period [9:30, 10:00). We may interpretthe

expression given in (3.24) as the median TD in seconds. Figure 3.9 depicts approximate95%

confidence bands for the median TD based on the BS-PE-ACD model according to the result

given in (3.19).

Figura 3.9:approximate95% confidence bands for the predicted median TD based on GM data.
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3.7 Concluding remarks

In this chapter, we have introduced a new methodology based on scale-mixture Birnbaum-

Saunders autoregressive conditional duration models. These models allow us to obtain an

efficient computation of the maximum likelihood estimatorsof the model parameters, by

using the expectation and maximization algorithm. The new methodology includes a for-

mulation of the model, estimation of the model parameters, inference for these parameters,

the predictive model and a residual analysis for checking model adequacy in practice. We

have conducted a Monte Carlo simulation study to evaluate the performance of the proposed

methodology, which indicated its adequacy. We have also compared the proposed autoregres-

sive conditional duration models based on the Birnbaum-Saunders-exponential-power and
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Birnbaum-Saunders-Student-t distributions with some of the existing autoregressive condi-

tional duration models, through an analysis by using real data of financial transactions from

the New York stock exchange, which has shown the superiorityof the Birnbaum-Saunders-

exponential-power case.

As part of future research, out-of-sample forecasting ability of the model deserves special

attention. Also, it is important to consider different estimation procedures, such as the esti-

mating functions and the method of modified moments, as well as semiparametric structures

and influence diagnostics.
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4 PROCESS CAPABILITY INDICES FOR THE BIRNBAUM-

SAUNDERS DISTRIBUTION

4.1 Introduction

Quality control is extremely relevant to companies that want to differentiate themselves

from competitors in highly competitive markets. When quality parameters or specifications

in product manufacture are planned, it is important to ensure that the production process is

capable of maintaining tolerances in the design stage of these products. In this sense, the

concept of process capability or process ability provides aquantitative tool to establish how

suitable a production process can be. The capability of a manufacturing process is the ability

it has to generate a result that meets a set of specifications established by the company so that

a product can be considered of quality.

In statistical terms, the process capability is defined as the ratio between the allowable va-

riation (based on specifications) and the natural variationof the production process (based on

the data) due to non-assignable causes. There are several ways to measure process capability,

including graphical methods, design of experiments, and process capability indices (PCIs).

These indices were developed for processes whose quality characteristic to be studied is nor-

mally distributed; see Montgomery (2005, pp. 334). However, in many cases, production

processes follow non-normal distributions. In these cases, the PCIs for the normal distribu-

tion should not be used, because the obtained results using them, about the performance of the

process in question, could be inaccuracy, misleading and unreliable; see Kane (1986) and So-

merville and Montgomery (1996). Gunter (1989) emphasized the difference between perfect

(when the quality characteristic is normally distributed)and occasionally erratic processes.

Gunter (1989), McCoy (1991), and Johnson (1992) investigated the properties of PCIs and

their estimators, when the distribution of the data is normal.

The literature on PCIs under non-normality concerning the construction of new PCIs

and/or development of new approaches, can be categorized into five groups (see KOTZ
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and JOHNSON, 2002): (G1) data transformation methods (see JOHNSON, 1949; BOX and

COX, 1964; RIVERA et al., 1995; SOMERVILLE and MONTGOMERY, 1996; HOSSEI-

NIFARD et al., 2009); (G2) quality control procedures for non-normal distributions (see

SHORE, 1998; LOVELACE and SWAIN, 2009); (G3) distribution fitting for empirical data

(see CLEMENTS, 1989; KOTZ and JOHNSON, 2002); (G4) distribution-free procedures

(see CHAN et al, 1988); and (G5) construction of new PCIs (seeCLEMENTS, 1989; GIL-

CHRIST, 1993; JOHNSON et al., 1994; WRIGHT, 1995; PEARN and CHEN, 1995, 1997,

1998; LIU and CHEN, 2006; VÄNNMAN and ALBING, 2007; HSU et al., 2008). For a

review of PCIs, see Tang and Tang (1999), Spiring et al. (2003) and Yum and Kim (2011).

The method introduced by Clements (1989) employs both a distribution fitting approach

and a new PCI based on percentiles. In this method, the mean may or not coincide with the

center of the specification limits, when Pearson distributions are used. Gilchrist (1993) intro-

duced a quantile transformation similar to the Clements method, but based on a standardized

distribution, instead of Pearson curves. Johnson et al. (1994) applied the Clements method

to obtain estimators of two other PCIs. Pearn and Chen (1995)introduced a new method

for estimating PCIs, which can be viewed as a modification of the Clements method. The

authors found that estimators based on the new method can differentiate on-target processes

from off-target processes better than those obtained applying the Clements method; see Pearn

and Chen (1995). The idea of all these authors was to reproduce the property of the normal

distribution to yield a nonconformity proportion about 0.27%.

The Birnbaum-Saunders (BS) model is a two-parameter, unimodal distribution with po-

sitive skewness and non-negative support, which was originated from a material fatigue pro-

blem; see Birnbaum and Saunders (1969). The BS model describes the total time elapsed

until a type of cumulative damage induced by stress exceeds the resistance threshold of a

material thereby producing its rupture; see Johnson et al. (1995, pp. 651-663). This model

has received considerable attention over the last decade, due mainly to its properties and re-

cent applications in various fields; see Leiva et al. (2012).One of these properties is that a

random variable (RV) following a BS model can be seen as a transformation of a normal RV.

Despite the widespread use of the BS distribution, including some studies applied to quality

(see BALAKRISHNAN et al., 2007; LIO et al., 2010; LEIVA et al., 2011), there is no study

of process capability when the quality characteristic follows a BS distribution. Therefore, the

aim of this chapter is to develop and implement computationally a methodology for process

capability analysis based on the BS distribution and on the Clements-type PCIs proposed by

Pearn and Chen (1995).

The rest of this chapter unfolds as follows. In Section 4.2, we provide a background about

some results that are useful for developing our methodology. In Section 4.3, we derive this
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methodology for PCIs based on the BS distribution. In Section 4.4, we perform a study of

Monte Carlo (MC) simulation for evaluating the proposed methodology. In Section 4.5, we

carry out an empirical application of the methodology by using real data and a computational

code implemented in a noncommercial and open source statistical software calledR. TheR

software can be freely downloaded fromwww.r-project.org. Finally, in Section 4.6,

we sketch conclusions and recommendations for futures works.

4.2 Background

In this section, we provide some results which allow PCIs forthe BS distribution to be

developed.

4.2.1 Process capability indices

In general, the PCIs, denoted by Cp, are defined as the ratio between a specification range

and the process variation, that is, as

Cp =
Specification range

Statistical variability
. (4.1)

It is common to define the numerator range in (4.1) as the difference between the upper

specification limit (USL) and the lower specification limit (LSL), which are predetermined

by the company.

The PCIs are used when it is desired to study the process ability over time, taking into

account the influence of several operation conditions (for example, shift, batch and raw mate-

rials). The PCIs are defined depending on several situations, which are: (i) whether the mean

coincides with the center of the specification limits (USL and LSL); (ii) by considering only

the USL; (iii) by using just the LSL; and (iv) whether the meandoes not coincides with the

center of the specification limits. In these situations, thePCIs are defined, respectively, as

Cp =
USL− LSL

R
, Cpl =

2[θ − LSL]
R

, Cpu =
2[USL− θ]

R
, and Cpk = min{Cpl,Cpu},

whereR is the process variability andθ is a parameter that represents the center of it, which is

associated with the distribution that governs the quality characteristic or RV under study. We

denote this RV asX, its mean by E[X ] = µ, its standard deviation (SD) by
√

Var[X ] = σ,

and its quantile function (QF) byx(p), for 0 < p < 1.



61

4.2.2 PCI under normality

As aforementioned, PCIs were originally developed for normal process. Therefore, it is

assumed here thatX ∼ N(µ, σ2). Given the LSL and USL, we have the corresponding PCIs

are

Cp =
USL− LSL

6σ
, Cpl =

µ− LSL
3σ

, Cpu =
USL− µ

3σ
, and Cpk = min{Cpl,Cpu}. (4.2)

Assume thatµ andσ are estimated from the sample mean and SD asµ̂ = x̄ = [1/n]
∑n

i=1 xi

and σ̂ = S = [1/(n − 1)]
∑n

i=1[xi − x̄]2, respectively, for a random sample of sizen, say

X1, . . . , Xn, with observations,x1, . . . , xn. Therefore, natural estimates for the PCIs given

in (4.2) are obtained by substitutingµ andσ by µ̂ andσ̂, respectively. The Cp and Cpk are the

most commonly utilized PCIs in industry; see Kotz and Johnson (2002) and Anis (2008).

4.2.3 PCI under non-normality

If the characteristic of the production processX follows a non-normal distribution, then

the PCIs should be modified. Although now the process is non-normal, we still use the

notationµ, σ andx(p) for the mean, SD and QF, respectively. In this case, a widely adopted

procedure to construct PCIs is to substitute6σ in expression (4.2) for a rangeR covering

a similar percentage to that of6σ in a normal distribution, that is,R = Up − Lp covering

a 99.73%, such that Up is the99.865th quantile and Lp is the 0.135th quantile, from the

corresponding non-normal distribution. The idea behind these substitutions is to mimic the

normal distribution property, so that the output percentage falling outside theµ ± 3σ limits

is 0.27%. This ensures that, if the process is well centered (that is, the mean coincides with

the midpoint of the specifications), the probability that the process is outside the specification

range (LSL, USL) is negligible; see Clements (1989), Pearn and Chen (1997) and Hsu et

al. (2008).

In the method introduced by Clements (1989), for computing Cp and Cpk, the center of

the process is based on the medianx(0.5), instead of using the mean, because the median is

a robust measure of the central tendency of the process, particularly for skewed heavy-tailed

distributions. Thus,µ − LSL and USL− µ given in (4.2) are replaced byx(0.5) − Lp and

Up − x(0.5), respectively; see Johnson et al. (1994). A modification of the Clements method

to obtain Cp and Cpk was approached by Pearn and Chen (1995). They replaced the two 3σ’s

by [Up − Lp]/2, so that Cp and Cpk can be written as

C′
p =

USL− LSL
x(p2)− x(p1)

, C′
pl =

2[x(0.5) − LSL]
x(p2)− x(p1)

, C′
pu =

2[USL− x(0.5)]

x(p2)− x(p1)
, and C′pk = min{C′

pl,C
′
pu},

(4.3)

wherep1 and p2 are fixed percentages, which can be chosen using an optimal statistical
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criterion, x(p) is the correspondingpth quantile, andx(p2) − x(p1) is responsible for the

non-normality and/or asymmetry of the distribution.

4.2.4 The Birnbaum-Saunders distribution

A RV X with BS distribution has two parameters, one of shape (α > 0) and another

of scale (β > 0), whereβ is also the median of the distribution. This is denoted byX ∼
BS(α, β). BS and standard normal RVs, denoted respectively byX andZ, are related by

X = β
[
αZ/2 +

√
{αZ/2}2 + 1

]2
and Z =

[√
X/β −

√
β/X

]
/α.

Then, it is possible to obtainW = [1/α2][X/β + β/X − 2] ∼ χ2(1), which is useful for

goodness of fit and detecting outliers using the Mahalanobisdistance. IfX ∼ BS(α, β), the

following properties hold. The probability density function (PDF) ofX is given by

fBS(x;α, β) =
1√
2π

exp

(
− 1

2α2

[
x

β
+
β

x
− 2

])
x−

3
2 [x+ β]

2α
√
β

, x > 0, α > 0, β > 0. (4.4)

The cumulative distribution function (CDF) ofX isFX(x) = P(X ≤ x) = Φ([1/α][
√
x/β−√

β/x]), for x > 0, whereΦ(·) is the CDF ofZ ∼ N(0, 1). Therefore, thepth quantile or QF

of X is given by

x(p) = F−1
X (p) = β

[
αz(p)/2 +

√
{αz(p)/2}2 + 1

]2
, 0 < p < 1, (4.5)

whereF−1
X (·) is the inverse function ofFX(·) andz(p) is thepth quantile ofZ ∼ N(0, 1).

Hence, from (4.5),x(0.5) = β, and so it is the median of the BS model, as aforementioned.

Let X1, . . . , Xn be a random sample of sizen from X ∼ BS(α, β), with observations,

x1, . . . , xn. Then, the log-likelihood function forα andβ is given by

ℓ(α, β) = k +
n

α2
− n log(α)− n

2
log(β) +

n∑

i=1

{
log(xi + β)− 1

2α2

[
xi
β

+
β

xi

]}
, (4.6)

wherek is a constant that does not depend on neitherα or β. Taking derivatives of (4.6)

with respect to the parametersα andβ and equating them to zero, we obtain the maximum

likelihood (ML) estimates ofα andβ, α̂ and β̂ say, asα̂ = [s/β̂ + β̂/r − 2]1/2, wheres

and r are arithmetic and harmonic means ofx1, . . . , xn, given bys = [1/n]
∑n

i=1 xi and

r = 1/[{1/n}
∑n

i=1 1/xi], respectively. However,̂β must be obtained by using an iterative

numerical method, which can employ the sample median as starting value or the mean-mean

estimation forβ given byβ = [sr]1/2.
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The asymptotic distribution of the ML estimatorsα̂ andβ̂ is normal and therefore

√
n

[(
α̂

β̂

)
−
(
α

β

)]
D→ N

(
0, I−1(α, β)

)
, asn→ ∞,

whereI(α, β) is the Fisher information matrix and “
D→” means “convergence in distribution

to”.

The Fisher information matrix forα andβ can be given by

I(α, β) =

[
α2

2n
0

0 β2

n[1/4+1/α2+P (α)]

]
,

where

P (α) = 2

∫ ∞

0

[
1

1 + h(αx)
− 1

2

]2
dΦ(x), (4.7)

with h(y) = 1 + y2/2 + y[1 + y2/4]1/2.

4.3 Birnbaum-Saunders process capability

In this section, we propose and develop PCIs in cases where the quality characteristic

follows a BS distribution. We focus on some results for the PCI Cp, which we denote as CBS
p .

However, similar results can be obtained for the indices CBS
pl , CBS

pu and CBS
pk .

4.3.1 PCI for the BS distribution

We propose a PCI for the BS distribution comparing the specification limits with some

range that covers a high percentage, which must be specified,1 − [p1 + p2] say, for the

distribution ofX. Consider the QF of the BS distribution given in expression (4.5) and the

PCI presented in (4.3). Then, we propose

CBS
p =

USL− LSL
x(p2)− x(p1)

=
USL− LSL

βα
[
z2

{
αz2
2

+
√(

αz2
2

)2
+ 1
}
− z1

{
αz1
2

+
√(

αz1
2

)2
+ 1
}] , (4.8)

wherez1 = z(p1) andz2 = z(p2). Now, in order to compare a product with a LSL, we use

CBS
pl =

2[β − LSL]
x(p2)− x(p1)

=
2[β − LSL]

βα
[
z2

{
αz2
2

+
√(

αz2
2

)2
+ 1
}
− z1

{
αz1
2

+
√(

αz1
2

)2
+ 1
}] , (4.9)



64

recall thatβ is the median of the BS distribution, we then have

CBS
pu =

2[USL− β]

x(p2)− x(p1)
=

2[USL− β]

βα
[
z2

{
αz2
2

+
√(

αz2
2

)2
+ 1
}
− z1

{
αz1
2

+
√(

αz1
2

)2
+ 1
}] .

(4.10)

When the median moves away from the midpoint of the specification limits, we consider

CBS
pk = min{CBS

pl ,C
BS
pu}, where CBS

pl and CBS
pu are given in (4.9) and (4.10), respectively. Rewri-

ting expression in (4.8), we have

CBS
p =

USL− LSL
x(p2)− x(p1)

=
2[USL− LSL]/β[

α2z22 + αz2
√

{αz2}2 + 4
]
−
[
α2z12 + αz1

√
{αz1}2 + 4

] .

(4.11)

Figure 4.1 depicts a process for which the quality characteristic follows a BS distribution,

with [1− p1 − p2]× 100% = 99.73% andp1 = p2 = 0.00135.

Figura 4.1: upper and lower limits of natural tolerance for the BS distribution.
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4.3.2 Estimation and inference for the BS PCI

This section presents the ML estimator of the BS PCI as well asits asymptotic distribu-

tion. Also, interval estimation and hypothesis test are presented.

4.3.2.1 ML estimator of the BS PCI

Due to the invariance property of the ML estimators and using(4.11), an estimator of the

PCI is given by

Ĉ
BS

p =
2[USL− LSL]/β̂[

α̂2z22 + α̂z2
√

{α̂z2}2 + 4
]
−
[
α̂2z21 + α̂z1

√
{α̂z1}2 + 4

] , (4.12)
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whereα̂ and β̂ are the ML estimators ofα andβ, andz1 and z2 are thep1 × 100th and

p2 × 100th quantiles of the N(0, 1) distribution, respectively.

4.3.2.2 Asymptotic distribution of the ML estimator of the BS PCI

Under some regularity conditions (see COX and HINKLEY, 1974), Ĉ
BS

p has a distribution

that is asymptotically normal. Then,

√
n
[
Ĉ

BS

p − CBS
p

]
D→ N

(
0,Var[Ĉ

BS

p ]
)
, asn→ ∞, (4.13)

whereĈ
BS

p is given in (4.12). Note that, by using the delta method, we have

Var[Ĉ
BS

p ] =
(

∂
∂α

PCI(α, β) ∂
∂β

PCI(α, β)
)( α2

2n
0

0 β2

n[1/4+1/α2+I(α)]

)(
∂
∂α

PCI(α, β)
∂
∂β

PCI(α, β)

)
,

that is,

Var[Ĉ
BS

p ] =
[ ∂
∂α

PCI(α, β)
]2α2

2n
+
[ ∂
∂β

PCI(α, β)
]2 β2

n[1/4 + 1/α2 + I(α)]
, (4.14)

whereI(α) is given in (4.7) and

∂

∂α
PCI(α, β) = −

2β−1[USL − LSL]

[

2αz22 + z2
√

{αz2}2 + 4 +
z3
2
α2

√

{αz2}
2+4

− 2αz21 − z1
√

{αz1}2 + 4 − z3
1
α2

√

{αz1}
2+4

]

[

α2z2
2
+ z2α

√

{αz2}2 + 4 − α2z2
1
− z1α

√

{αz1}2 + 4
] , (4.15)

∂

∂β
PCI(α, β) = −

2β−2[USL − LSL]
[

α2z2
2
+ z2α

√

{αz2}2 + 4 − α2z2
1
− z1α

√

{αz1}2 + 4
] . (4.16)

4.3.2.3 Parametric confidence interval for the BS PCI

Based on Equation (4.13), an approximate100 × [1 − ω]% confidence interval (CI) for

the BS PCI is

CI100×[1−ω]%(C
BS
p ) =

[
Ĉ

BS

p ± z(1 − ω/2)] ŜE[Ĉ
BS

p ]
]
,

where SE[Ĉ
BS

p ] =

√
Var[Ĉ

BS

p ].

4.3.2.4 Nonparametric confidence interval for the BS PCI

Bootstrap techniques have the advantage of being free from assumptions of the dis-

tribution of the estimator of the PCI; see Efron and Tibshirani (1986) and Franklin and

Gary (1991). Specifically, letX1, . . . , Xn be the original random sample from a process
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with distributionF (·). A bootstrap sampleX∗
1 , . . . , X

∗
n is obtained from a drawn with repla-

cement from the original sample. Here, we set the number of bootstrap replications equal to

1000. In order to calculate a CI for CBS*
p , we consider the two following methods:

(i) Normal-approximation bootstrap method: first, we compute the estimator of CBS
p from

(4.12) based on thejth bootstrap sample, namely,Ĉ
BS*

p (j), with j = 1, . . . , B. We assume

that the distribution of̂C
BS

p −CBS
p is N(0, [SÊ

C
BS
p
]2). Since SÊ

C
BS
p

is unknown, we can estimate

it as

ŜÊ
C

BS*
p

=

√√√√ 1

B

B∑

j=1

[
Ĉ

BS*

p (j)− ¯̂C
BS*

p

]2
,

where¯̂C
BS*

p = [1/B]
∑B

j=1 Ĉ
BS*

p (j). Thus, a CI of the100×[1−ω]% for CBS*
p can be obtained

using a normal approximation

CI100×[1−ω]%(C
BS
p ) =

[
Ĉ

BS

p ± z(1− ω/2) ŜÊ
C

BS*
p

]
.

(ii) Bootstrap percentile method: let CBS*
p (1) ≤ · · · ≤ CBS*

p (B) be the bootstrap estima-

tes in ascending order. Then, CBS*
p (B[ω/2]) and CBS*

p (B[1− ω/2]) are the[ω/2]× 100th and

[1 − ω/2]× 100th percentile of the distribution of̂C
BS*

p (j). A CI of the100 × [1 − ω]% for

CBS*
p is

CI100×[1−ω]%(C
BS
p ) =

[
Ĉ

BS*

p (B[ω/2]), Ĉ
BS*

p (B[1− ω/2])
]
.

4.3.2.5 Hypothesis testing for the BS PCI

Hypothesis H0: CBS
p ≤ C0 (the process is not capable) against H1: CBS

p > C0 (the process

is capable) can be tested by using

W =
[Ĉ

BS

p − C0]

ŜE[Ĉ
BS

p ]

H0∼ N(0, 1),

whereC0 is a predetermined capability requirement.

4.3.3 Selecting the optimal percentage specified for the BS PCI

Optimum selection ofp1 andp2 = [1 − ̺] + p1, given̺, can be done by minimizing the

variance of the estimator of the BS PCI, that is, by minimizing

Var[Ĉ
BS

p ] = V (p1, p2), (4.17)
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where Var[Ĉ
BS

p ] is given in (4.14). We now must find the optimal values ofp1 andp2. First,

we need the derivatives

∂

∂p1
V (p1, p2) =

α2ψ(p1, p2)

n

∂

∂p1
ψ(p1, p2) +

2β2ω(p1, p2)

n[1/4 + 1/α2 + I(α)]

∂

∂p1
ω(p1, p2),(4.18)

and

∂

∂p2
V (p1, p2) =

α2ψ(p1, p2)

n

∂

∂p2
ψ(p1, p2) +

2β2ω(p1, p2)

n[1/4 + 1/α2 + I(α)]

∂

∂p2
ω(p1, p2),(4.19)

whereV (p1, p2) is given in (4.17),ψ(p1, p2) = ∂PCI(α, β)/∂α andω(p1, p2) = ∂PCI(α, β)/∂β,
are as given in (4.15) and (4.16), respectively, and

∂

∂p1
ψ(p1, p2) = −

2[USL− LSL]

[
−4αz1z′1 +

α4z1
4z′1

{α2z12+4}3/2 − 4α2z1
2z′1√

α2z12+4
−

√
α2z12 + 4z′1

]

β
[
−α2z12 − αz1

√
α2z12 + 4 + α2z22 + αz2

√
α2z22 + 4

]

+

[

2{USL− LSL}
{

−2αz1
2 − α2z13√

α2z12 + 4
− z1

√
α2z12 + 4 + 2αz2

2 +
α2z23√
α2z22 + 4

+ z2
√
α2z22 + 4

}

{

−2α2z1z
′
1 − α3z12z′1√

α2z12 + 4
− α

√
α2z12 + 4z′1

}]/[
β
{
−α2z1

2 − αz1
√
α2z12 + 4 + α2z2

2

+αz2
√
α2z22 + 4

}
2
]
,

∂

∂p1
ω(p1, p2) =

2[USL− LSL]

[
−2α2z1z′1 − α3z1

2z′1√
α2z12+4

− α
√
α2z12 + 4z′1

]

β2
[
−α2z12 − αz1

√
α2z12 + 4 + α2z22 + αz2

√
α2z22 + 4

]
2
,

∂

∂p2
ψ(p1, p2) = −

2[USL− LSL]

[
4αz2z′2 − α4z2

4z′2
{α2z22+4}3/2 +

4α2z2
2z′2√

α2z22+4
+

√
α2z22 + 4z′2

]

β
[
−α2z12 − αz1

√
α2z12 + 4 + α2z22 + αz2

√
α2z22 + 4

]

+

[

2{USL− LSL}
{

−2αz1
2 − α2z13√

α2z12 + 4
− z1

√
α2z12 + 4 + 2αz2

2 +
α2z23√
α2z22 + 4

+ z2
√
α2z22 + 4

}

{

2α2z2z
′
2 +

α3z22z′2√
α2z22 + 4

+ α
√
α2z22 + 4z′2

}]/[
β
{
−α2z1

2 − αz1
√
α2z12 + 4 + α2z2

2

+αz2
√
α2z22 + 4

}
2
]
,

∂

∂p2
ω(p1, p2) =

2[USL− LSL]

[
2α2z2z′2 +

α3z2
2z′2√

α2z22+4
+ α

√
α2z22 + 4z′2

]

β2
[
−α2z12 − αz1

√
α2z12 + 4 + α2z22 + αz2

√
α2z22 + 4

]
2
,

wherez′1 = ∂z(p1)/∂p1 andz′2 = ∂z(p2)/∂p2. Now, in order to select the optimal values of

p1 andp2 = [1 − ̺] + p1, given̺, we must solve the system of two equations inp1 andp2
formed by (4.18) and (4.19). Note that closed-form expressions for optimal values ofp1 and

p2 cannot be obtained, so that iterative numerical methods must be used for determining them.

We use the built-inoptim function of theR software to solve this minimization problem.
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4.4 Simulation

In this section, we carry out MC simulations to analyze the performance of C′pk index

defined in (4.3) (with C′pk = C′
p = 1, that is, the process is centered at the midpoint of

the specifications) in the case of non-normal distributions. We consider the BS distribution

with density (4.4), and the log-normal (LN), three-parameter gamma (3-gamma) and three-

parameter Weibull (3-Weibull) distributions with densities given by

fLN(x;µ, υ) =
1

xυ
√
2π

exp

(
− [ln(x)− µ]2

2υ2

)
, −∞ < µ <∞, x, υ > 0,

f3GA(x; r, λ, γ) =
[(x− γ)r−1]

λrΓ(r)
exp

(
− [x − γ]

λ

)
, x > 0 or γ, γ ∈ R, r, λ > 0,

f3WE(x; δ, η, γ) =

[
η(x− γ)η−1

δη

]
exp

(
− [x− γ]η

δη

)
, x > 0 or γ, γ ∈ R, η, δ > 0,

respectively, whereΓ(·) is the gamma function. The latter three distributions are chosen due

to a variety of asymmetrical and positively skewed shapes. Considering the fact thatR does

not provide in-built functions for the BS, 3-gamma and 3-Weibull random number generators,

therbs() function in thebs package, and therweibull3() andrgamma3() functions

in theFAdist package are utilized, respectively. The simulation scenario assumes sample

sizesn ∈ {10, 25, 50, 100, 200}. For the BS distribution, we consider high, moderate and

low symmetry, that is,(α, β) ∈ {(0.2, 4.88), (0.5, 1.75), (1.0, 0.67)}, respectively. Note that

the considered value ofα constrains the value ofβ to obtain CBS
pk = CBS

p = 1; see BS PCI

given in (4.11). Figure 4.2 shows a graphical plot for the PDFof these three BS distributions,

from which we note that, although all of them have CBS
pk = CBS

p = 1, the curves of the

corresponding PDFs are very different, and each of them presenting a distinct shape. We

generate 10,000 samples for each of different sizes from BS,log-normal, 3-gamma and 3-

Weibull distributions. For each distribution and each sample size, we report the empirical

mean, bias, SD, and the root of the mean squared error (
√

MSE) of Ĉ
′
pk in Table 4.1.

From Table 4.1, we observe that, as the sample size increases, the empirical bias and√
MSE of all the estimators decrease as expected. BS distributions with parameters(α, β) ∈

{(0.2, 4.88), (0.5, 1.75)}, which are the low and moderate asymmetric cases, respectively,

present the lowest empirical
√
MSEs (n ∈ {50, 100, 200}) in relation to the other distribu-

tions considered. In particular, the Weibull case has a goodperformance for small sample

sizes (n ∈ {10, 25}).
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Figura 4.2:PDF of the indicated BS distributions for CBS
pk = CBS

p = 1.
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Tabela 4.1:simulation results for the indicated distributions
log-normal 3-Weibull 3-gamma BS

α = 0.20 α = 0.50 α = 1.00
n β = 4.88 β = 1.75 β = 0.67

Mean 10 2.1720 1.8423 2.1319 2.2180 2.0565 4.7586
25 1.6428 1.4501 1.6138 1.5262 1.4458 2.6209
50 1.4179 1.2950 1.4004 1.2265 1.2102 1.9512
100 1.2625 1.1830 1.2516 1.0481 1.0616 1.5584
200 1.1537 1.1044 1.1466 0.9405 0.9593 1.3264

Bias 10 1.1720 0.8423 1.1319 1.2180 1.0565 3.7586
25 0.6428 0.4501 0.6138 0.5262 0.4458 1.6209
50 0.4179 0.2950 0.4004 0.2265 0.2102 0.9512
100 0.2625 0.1830 0.2516 0.0481 0.0616 0.5584
200 0.1537 0.1044 0.1466 0.0594 0.0406 0.3264

SD 10 0.7386 0.6049 0.7872 0.9627 0.8570 3.4667
25 0.3914 0.3099 0.4034 0.4540 0.3937 1.3526
50 0.2750 0.2190 0.2839 0.2707 0.2623 0.7316
100 0.2069 0.1669 0.2128 0.1705 0.1900 0.4501
200 0.1608 0.1256 0.1635 0.1176 0.1444 0.3102√

MSE 10 1.3853 1.0371 1.3787 1.5525 1.3604 5.1133
25 0.7527 0.5465 0.7345 0.6950 0.5947 2.1111
50 0.5003 0.3675 0.4909 0.3529 0.3361 1.2000
100 0.3343 0.2477 0.3295 0.1772 0.1998 0.7172
200 0.2225 0.1634 0.2196 0.1318 0.1500 0.4503

4.5 Application to real data

To illustrate the methodology developed in this work, we apply it to a real data set pre-

sented in Hsu et al. (2008).
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4.5.1 Problem: manufacture of integrated circuits

Below, we detail the problem upon study, present the data andanalyze them.

4.5.1.1 Description of the problem

The manufacture of integrated circuits comprises the initial process of wafer and the final

process of packaging. In an integrated circuit packaging factory, the manufacturing process

generally includes the following principal steps: die sawing, die mounting, wire bonding,

molding, trimming and forming, marking, plating and testing. The wire bonding is the most

common way to provide an electrical connection from the integrated circuit apparatus to the

lead-frame. It is done by using an ultra-thin gold or aluminum wire to form the electrical in-

terconnection between the chip and package leads. The high-speed wire bonding equipment

consists of a control system to feed the lead frame towards the work area. The image recog-

nition system guarantees that the die is oriented to match the bonding diagram for a particular

device. The wires are bonded one at a time with two bonds for each connection: one in the

die (first bond) and the other in the lead frame (second bond).The first bond requires a ball

formation that is put within the bond pad opening on the die, under load and ultrasonic energy

for a few milliseconds, forming a ball bond to the bond pad metal. In the wire bonding pro-

cess, one of the most important factors that is directly related to the quality level, is the ball

size. Because the process can be interrupted and shut down when the width between the two

bond balls is too small, the bond ball size must be considered. The goal of this application is

to determine the production process capability of balls forelectrical connections. To achieve

this objective, it is established that the proposed LSL and USL for the ball size are 0.5 mil

and 8 mil (1 mil = 1/1000 in. = 0.0254 mm), respectively.

4.5.1.2 Data

The quality characteristicX under study to determine the production process capability

is the ball size (in mm). A portion of historical data has beencollected and shown in Table

4.2.

4.5.1.3 Data analysis

In order to implement the PCIs for the BS distribution, we check that the data of Table 4.2

fits this distribution. First, we provide a descriptive statistics of the data using the function

descriptiveSummary()of thebs 2.0 package. Descriptive statistics displayed in Table

4.3 allows a BS distribution to be reasonably assumed for modeling ball size data, due to

their asymmetric nature and their level of kurtosis. Figure4.3 shows graphical plots of the

autocorrelation function (ACF) and partial ACF for the ballsize data set, from where is not
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Tabela 4.2: 100 observations collected from historical data of the ball size (in mm) for elec-
trical connections.

2.891 4.035 4.495 2.890 2.312 3.158 5.228 3.334 5.896 5.639
3.842 1.590 1.954 1.842 0.680 2.752 1.301 2.260 0.889 2.381
0.619 2.788 1.050 3.750 3.508 6.123 6.549 5.954 2.207 4.417
4.805 1.516 2.227 2.797 1.636 1.066 0.940 4.101 4.542 1.295
1.770 3.492 5.706 3.722 6.644 2.472 1.383 4.494 1.694 2.892
2.111 3.591 2.093 3.222 2.891 2.582 0.665 3.234 1.102 1.083
1.508 1.811 2.803 6.659 0.923 6.229 3.177 2.333 1.311 4.419
2.495 0.921 4.061 9.725 1.600 4.281 3.360 1.131 1.618 4.489
3.696 1.982 2.413 5.480 1.992 2.573 1.845 4.620 6.221 1.694
4.882 1.380 3.982 2.260 2.366 2.899 3.782 2.336 1.175 3.055

noted the presence of serial correlation.

Tabela 4.3: descriptive statistics of the ball size for electrical connections (in mm).
Median Mean SD CS CK Min Max n

2.77 3.036 1.715 0.984 4.048 0.619 9.725 100

Figura 4.3: autocorrelation and partial autocorrelation functions of the ball size data set.
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Second, in order to detect adequacy of the model to the data, we apply the Kolmogorov-

Smirnov (KS) goodness-of-fit test by using the functionksbs() of thebs 2.0 package. The

result of the application of the KS test by using the package is presented next:

One-sample Kolmogorov-Smirnov test

data: x

D = 0.0591,

p-value = 0.8758

alternative hypothesis: two-sided
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The KS test indicates that there is not sufficient statistical evidence as for supporting that

the data do not follow a BS distribution (p-value= 0.8758). Thus, the BS distribution is

a very good option to model these data. In Figure 4.4, we provide a histogram with the

nonparametric density estimate based on asymmetric kernels proposed by Saulo et al. (2013)

and Marchant et al. (2013), and a probability plot with envelope obtained with the function

envelopeBS() of thebs 2.0 package. These graphical goodness-of-fit methods support

the result obtained by the KS test.

Figura 4.4: histogram and envelope of the data set under study
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Third, the parameters of the BS distribution are estimated via the functionmlebs()

from thebs 2.0 package. Using this function, we have the following estimates ofα andβ:

$alpha

[1] 0.6144122

$beta

[1] 2.55106

With the estimated parameters and the information providedin the description of the problem

given in Section 4.5.1.1, we compute the PCIs for the BS distribution using the expression

given in (4.3). In addition, we compute the CI bootstrap as described in Section 4.3.2.4 using

the functionboot.ci() from theboot package. Note that̂C
BS

p = 2.847 and its CIs are

given by

Intervals :

Level Normal Percentile

95% ( 2.528, 3.157 ) ( 2.551, 3.176 )

Calculations and Intervals on Original Scale
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Note, however, that the production process is not centered relative to the specifications. For

this reason, we must estimateĈ
BS

pk = min{Ĉ
BS

pl , Ĉ
BS

pu}, that is,Ĉ
BS

pk = 1.734. The correspon-

ding CIs are given by

Intervals :

Level Normal Percentile

95% ( 1.684, 1.784 ) ( 1.681, 1.784 )

Calculations and Intervals on Original Scale

Note also that a gauge of how off-center the process is operating is given by the magnitude

of Ĉ
BS

pk relative toĈ
BS

p . According to Table 4.4, which presents some recommended minimum

values of the PCI (see MONTGOMERY, 2005, p. 337), we can conclude that the integrated

circuit manufacturing process is capable, since the lower confidence limit is greater than1.5,

that is, the recommended minimum value for existing processes with two-sided specifications

and involving critical parameters.

Tabela 4.4: recommended minimum values of the PCI.
Two-sided One-sided

Situation specifications specifications
Existing process 1.33 1.25
New process 1.50 1.45
Existing process including 1.50 1.45

safety, strength, or critical parameters
New process including 1.67 1.60

safety, strength, or critical parameters

4.6 Conclusions and future works

Process capability analysis has become an important tool integral to applications of sta-

tistical process control for continuous improvement of quality and productivity. The use of

process capability indices under normality as adequate as well as the ignorance of the effect of

asymmetric distributions can lead to misinterpretation ofprocess capability. It is known that

the use of symmetric distributions is common in practical situations, but the asymmetric dis-

tribution must also be considered in the manufacturing industry. That is why several authors

have proposed indices for non-normal processes. Several approaches have been analyzed to

address the problem of process capability for non-normallydistributed data. In this chap-

ter, we proposed a methodology to analyze productive process capability indices when the

quality characteristic follows a Birnbaum-Saunders distribution. These indices are based on

the interquartile process rather than the process variability, as is the case for symmetric data.
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We also proposed a technique for obtaining the optimum quantile values used to minimize

the estimation error. In addition, we have performed a simulation study using presented pro-

cess capability indices and the results showed that these indices are better for processes with

higher asymmetric. Moreover, we have implemented a code inR language to calculate the

four proposed indices. In order to illustrate the development of these indices we performed an

application using real data. This application showed the convenience of using the proposed

methodology.
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5 CONCLUDING REMARKS

No decorrer dessa tese exploramos algumas aplicações da distribuição Birnbaum-Saunders

e duas de suas generalizações, isto é, as distribuições Birnbaum-Saunders generalizadas as-

simétricas e misturas de escala Birnbaum-Saunders. De forma sucinta, nossos principais

resultados são elencados abaixo.

1. Estudos de Monte Carlo indicaram que dentre os estimadores não-paramétricos por

função-núcleo estudados, aquele baseado na distribuição exponential potência Birnbaum-

Saunders assimétrica apresenta os melhores resultados.

2. Uma análise usando dados reais de transações financeiras da bolsa de valores de Nova

Iorque mostrou que o modelo autoregressivo de duração condicional baseado na distri-

buição exponential potência Birnbaum-Saunders é superioraos demais modelos.

3. Estudos de simulação mostraram que índices de capacidadedo processo baseado em

uma distribuição mais assimétrica, nesse caso a distribuição Birnbaum-Saunders, apre-

senta um melhor desempenho.

Considerando o que foi desenvolvido nessa tese, surgem perspectivas de desenvolvimento

de algumas linhas de pesquisa, as quais são expostas abaixo.

1. O uso da função-núcleo, basedo nas distribuições Birnbaum-Saunders generalizadas

assimétricas, para estimação da função de risco. Tal perspectiva já está sendo elabo-

rada.

2. É importante considerar modelos autorregressivos de duração condicional não-lineares,

em que a duração mediana depende não-linearmente de variáveis ââde informações

passadas.

3. O uso da metodologia proposta a diferentes características do processo, tal como pro-

cessos com apenas limite inferior (superior). Também, o usode distribuições mais
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robustas, como a Birnbaum-Saunderst-Student, para os índices de capacidade do pro-

cesso. Tais perspectivas também já estão sendo elaboradas.
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APPENDIX

Proof of Proposition 2.4.1

Considerf is the density to be estimated and̂fskew-GBS is its skew-GBS kernel estimator.

Then,

E[f̂skew-GBS(x)] =

∫ ∞

0

K
skew-GBS(

√
h, x, λ; g)(u)f(u)du = E[f(ξx)], (5.1)

whereξx ∼ skew-GBS(
√
h, x, λ; g). Taking the expressions for the mean and variance of a

skew-GBS distributed RV given in Vilca and Leiva (2006) and expressed in (2.5), we obtain

µξx = E[ξx] = x+ xh
2
E[Z2] + x

√
h

2
E
[
Z{hZ2 + 4}1/2

]
,

σξx = Var[ξx] = x2hE[Z2]− x2h
4

(
E
[
Z{hZ2 + 4}1/2

])2
+ x2h3/2

2
E
[
Z3{hZ2 + 4}1/2

]
(5.2)

−x2h3/2

2
E[Z2]E

[
Z{hZ2 + 4}1/2

]
− x2h2

4
(E[Z2])2 + x2h2

2
E [Z4] ,

whereZ ∼ SS(0, 1, λ; g2). Applying a Taylor-Lagrange expansion in (5.2) for the density

f , we haveE[f(ξx)] = f(µξx) +
1
2
f ′′(µξx)σξx + A, whereθ ∈ (0, 1) andA = E[{ξx −

µξx}2 {f ′′(µξx + θ [ξx − µξx ])− f ′′(µξx)}].
Lemma 1

Under conditions (C1) and (C2), we haveA = E[{ξx − µξx}2{f ′′(µξx + θ [ξx − µξx ]) −
f ′′(µξx)}] = o(h). Then, since the densityf is a twice differentiable function with continuous

derivatives, we obtain

E[f(ξx)] = f(x) + h
[
1
2
xf ′(x)E[Z2] + 1

2
x2f ′′(x)E[Z2]

]
+ o(h). (5.3)

Hence, (5.1) and (5.3) leads toBias[f̂skew-GBS(x)] = E[f̂skew-GBS(x)] − f(x) = h[1
2
xf ′(x)γ2 +

1
2
x2f ′′(x)γ2] + o(h), whereγ2 is given in (2.5). �

Proof of Lemma 1

LetA(h) = E[{ξx − µξx}2 {f ′′(µξx + θ [ξx − µξx]) − f ′′(µξx)}], whereθ ∈ (0, 1). First,

using (5.2), we have thatVar[ξx] = E[{ξx − µξx}2] → 0, ash → 0. This implies that



86

{ξx − µξx} converges in probability to zero, i.e.,{ξx − µξx}
P−→ 0, ash → 0, or more

specifically,∀ ǫ > 0, limh→0 P(|ξx − µξx| > ǫ) = 0.

Let ǫ > 0, |θ {ξx−µξx}| ≤ |θ||ξx−µξx |, and|µξx + θ {ξx−µξx}−µξx | ≤ |θ||ξx−µξx | ≤
|ξx − µξx|. Then,0 < P(|µξx + θ {ξx − µξx} − µξx | > ǫ) ≤ P(|ξx − µξx| > ǫ) → 0,

ash → 0, and, therefore,µξx + θ {ξx − µξx}
P−→ µξx, ash → 0. Using (C1) and (C2) and

asf ′′ is continuous,f ′′(µξx + θ [ξx − µξx ])
P−→ f ′′(µξx), ash → 0. Let againǫ > 0 and

P(|f ′′(µξx + θ [ξx − µξx ]) − f ′′(µξx)| > ǫ) → 0, ash → 0, andBǫ = {|f ′′(µξx + θ [ξx −
µξx])− f ′′(µξx)| > ǫ}. Then, we have

A(h) ≤ E[{ξx − µξx}2 |f ′′(µξx + θ [ξx − µξx ])− f ′′(µξx)| 1Bǫ]

+ E[{ξx − µξx}2 |f ′′(µξx + θ [ξx − µξx ])− f ′′(µξx)| 1Bc
ǫ
].

Sincef ′′ is bounded, i.e.,|f ′′(x)| ≤M , we deduce that

A(h) ≤ 2M E[{ξx − µξx}2 1Bǫ] + ǫE[{ξx − µξx}2 1Bc
ǫ
] ≤ 2M E[{ξx − µξx}2 1Bǫ] + c ǫ h.

Using the Cauchy-Schwarz inequality, we have thath ≤ h0 and E[{ξx − µξx}21Bǫ] ≤
(E[{ξx − µξx}4])1/2 ≤ c hP(Bǫ). Then,∀ h ≤ h0, we get thatA(h)/h ≤ c̃ ǫ, with c̃ > 0.

Therefore,limh→0A(h)/h = 0. �

Proof of Proposition 2.4.2

Considerf is the density to be estimated and̂fskew-GBS is its skew-GBS kernel estimator.

Then, Var[f̂skew-GBS(x)] = (1/n)E[K2
skew-GBS(

√
h, x, λ; g)

(Xi)] + O(n−1). Note that

E[K2
skew-GBS(

√
h, x, λ; g)

(Xi)] =
c2

Cκ

√
hx

E[ψ
−1/2
x f(ψx)] +

c2

Cκ

√
h/x

E[ψ
−3/2
x f(ψx)]. (5.4)

We point out that the integral needed for computingCk cannot be solved analytically and then

numerical integration must be applied. Using Taylor expansion in the first expectation of (5.4)

and assuming that the functionκ(ψx) = ψ
−1/2
x f(ψx) is continuous and bounded, we obtain

E[ψ
−1/2
x f(ψx)] = x−1/2f(x) + O(h), whereψx ∼ skew-GBS(

√
h, x, λ; g2). Therefore, we

have

µψx = E[ψx] =
x

2

[
2 + hE[Z2] +

√
hE[Z{hZ2 + 4}1/2]

]
,

σψx = Var[ψx] = x2hE[Z2]− x2h

4

(
E[Z{hZ2 + 4}1/2]

)2
+
x2h3/2

2
E[Z3{hZ2 + 4}1/2]

−x
2h3/2

2
E[Z2]E[Z{hZ2 + 4}1/2]− x2h2

4
(E[Z2])2 +

x2h2

2
E[Z4],



87

whereZ ∼ SS(0, 1, λ; g2). Once again, using Taylor expansion now in the second expecta-

tion of (5.4) and assuming that the functionρ(ψx) = ψ
−3/2
x f(ψx) is continuous and bounded,

we obtainE[ψ−3/2
x f(ψx)] = x−3/2f(x) + O(h). Therefore, we prove that Var[f̂skew-GBS(x)] =

2c2C−1
κ n−1h−1/2x−1f(x) + o(n−1h−1/2). �


