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Give Me Women, Wine, And Snuff
(John Keats)

Give me women, wine, and snuff
Until I cry out “hold, enough!”
You may do so sans objection
Till the day of resurrection;
For, bless my beard, they aye shall be
My beloved Trinity.

H26))
(Lawrence Ferlinghetti)

That “sensual phosphorescence
my youth delighted in”
now lies almost behind me
like a land of dreams
wherein an angel
of hot sleep
dances like a diva
in strange veils
thru which desire
looks and cries
And still she dances
dances still
and still she comes
at me
with breathing breasts
and secret lips
and (ah)
bright eyes



RESUMO

Nessa tese apresentamos trés diferentes aplicacdes detomBitnbaum-Saunders. No
capitulo 2 introduzimos um novo método por funcéo-nuclem paramétrico para a estima-
cao de densidades assimétricas, baseado nas distribBigdleaum-Saunders generalizadas
assimétricas. Func¢des-nlcleo baseadas nessas digteibtégn a vantagem de fornecer fle-
xibilidade nos niveis de assimetria e curtose. Em adicaestsmadores da densidade por
funcdo-ndcleo Birnbaum-Saunders gene-ralizadas asgasesao livres de viés na fronteira
e alcancam a taxa 6tima de convergéncia para o erro quadirdttgrado médio dos estima-
dores por funcao-nucleo-assimétricas-ndo-negativogdsidade. Realizamos uma analise
de dados consistindo de duas partes. Primeiro, conduzimassimulagédo de Monte Carlo
para avaliar o desempenho do método proposto. Segundopsigsmse método para estimar
a densidade de trés dados reais da concentracdo de polaanteséricos. Os resultados
numericos favorecem os estimadores nao-paramétricosgiag No capitulo 3 propomos
uma nova familia de modelos autorregressivos de durac@oiomal baseados nas distribui-
cbes misturas de escala Birnbaum-Saunders (SBS). A disgid Birnbaum-Saunders (BS)
€ um modelo que tem recebido consideravel atencéo recemtiehevido as suas boas pro-
priedades. Uma extensdo dessa distribuicéo é a classetdeuiides SBS, a qual (i) herda
véarias das boas propriedades da distribuicdo BS, (ii) geranéstimacdo de maxima veros-
similhanca em uma forma eficiente usando o algoritmo EM))ep(@issibilita a obtencéo de
um procedimento de estimacgao robusta, entre outras pdajies. O modelo autorregressivo
de duracdo condicional € a familia primaria de modelos paatisar dados de duragéo de
transacoes de alta frequéncia. A metodologia estudadaradui estimacao dos parame-
tros pelo algoritmo EM, inferéncia para esses parametrosgefo preditivo e uma analise
residual. Realizamos simulagbes de Monte Carlo para awali@sempenho da metodolo-
gia proposta. Ainda, avalia-mos a utilidade pratica dessadologia usando dados reais de
transacoes financeiras da bolsa de valores de Nova lorquapi@ilo 4 trata de indices de
capacidade do processo (PCIs), os quais séo ferramerizadats pelas empresas para de-
terminar a qualidade de um produto e avaliar o desempenheudgusocessos de producéo.



Estes indices foram desenvolvidos para processos cujat@astica de qualidade tem uma
distribuicdo normal. Na prética, muitas destas ca-ratieas ndo seguem esta distribuicao.
Nesse caso, os PCls devem ser modificados considerando@méalidade. O uso de PCls
nao-modificados podem levar a resultados inadequados. Beiraa estabelecer politicas de
qualidade para resolver essa inadequacao, transformasatados tem sido proposta, bem
como o uso de quantis de distribuicdes ndo-normais. Umhigtéio ndo-normal assimétrica
o qual tem tornado muito popular em tempos recentes € abdigi#io Birnbaum-Saunders
(BS). Propomos, desenvolvemos, implementamos e aplicamasnetodologia baseada em
PCls para a distribuicdo BS. Além disso, realizamos um estiedsimulacao para avaliar o
desempenho da metodologia proposta. Essa metodologiamftementada usando o soft-
ware estatistico chama®® Aplicamos essa metodologia para um conjunto de dadosdeais
maneira a ilustrar a sua flexibilidade e potencialidade.

Palavras-chave: Dados de poluicdo atmosférica. Estimador por funcao-oudbastribui-
¢Oes Birnbaum-Saunders generalizadas assimétricas. |ddoalatorregressivos de duragéo
condicional. Algoritmo EM. Método ML. Simula¢cdes de Montar(®. Distribuicdes mistu-
ras de escala Birnbaum-Saunders. indices de capacidadeasgo.



ABSTRACT

In this thesis, we present three different applicationsioffBaum-Saunders models. In Chap-
ter 2, we introduce a new nonparametric kernel method famesing asymmetric densities
based on generalized skew-Birnbaum-Saunders distritgitidernels based on these distri-
butions have the advantage of providing flexibility in thgrasetry and kurtosis levels. In
addition, the generalized skew-Birnbaum-Saunders kateesity estimators are boundary
bias free and achieve the optimal rate of convergence fomban integrated squared er-
ror of the nonnegative asymmetric kernel density estinsatd¥e carry out a data analysis
consisting of two parts. First, we conduct a Monte Carlo $ation study for evaluating
the performance of the proposed method. Second, we use #tlothfor estimating the
density of three real air pollutant concentration data, set®se numerical results favor the
proposed nonparametric estimators. In Chapter 3, we pecgposw family of autoregressive
conditional duration models based on scale-mixture Bunf&aunders (SBS) distributions.
The Birnbaum-Saunders (BS) distribution is a model thatreasived considerable atten-
tion recently due to its good properties. An extension of thstribution is the class of SBS
distributions, which allows (i) several of its good propestto be inherited; (i) maximum
likelihood estimation to be efficiently formulated via thmElgorithm; (iii) a robust estima-
tion procedure to be obtained; among other properties. Titeregressive conditional dura-
tion model is the primary family of models to analyze highefuency financial transaction
data. This methodology includes parameter estimation &yEtd algorithm, inference for
these parameters, the predictive model and a residualsaasaliye carry out a Monte Carlo
simulation study to evaluate the performance of the praphosethodology. In addition, we
assess the practical usefulness of this methodology by wsad data of financial transac-
tions from the New York stock exchange. Chapter 4 deals wititgss capability indices
(PCls), which are tools widely used by companies to detegrttie quality of a product and
the performance of their production processes. Theseandi@re developed for processes
whose quality characteristic has a normal distributionpriactice, many of these character-
istics do not follow this distribution. In such a case, thd$@ust be modified considering



the non-normality. The use of unmodified PCls can lead toegaecy results. In order to
establish quality policies to solve this inadequacy, dedadformation has been proposed,
as well as the use of quantiles from non-normal distribiioAn asymmetric non-normal
distribution which has become very popular in recent tinsehée Birnbaum-Saunders (BS)
distribution. We propose, develop, implement and apply thoaology based on PCls for
the BS distribution. Furthermore, we carry out a simulasitudy to evaluate the performance
of the proposed methodology. This methodology has beereimgited in a noncommercial
and open source statistical software caledVe apply this methodology to a real data set to
illustrate its flexibility and potentiality.

Keywords: Air pollutant data. Kernel estimator. Generalized skewaBaum-Saunders dis-
tributions. Autoregressive conditional duration mod@&# algorithm. ML method. Monte
Carlo simulations. Scale-mixture Birnbaum-Saundersitigions. Process capability in-
dices.
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1 INTRODUCTION

Nesta tese apresentamos trés trabalhos abordando ate#aslia saber, estatistica ndo-
paramétrica, econometria financeira e controle de qualidBe&ssa maneira, cada capitulo
pode ser lido de maneira independente, pois cada um é atithwo® ponto comum reside
no uso de modelos Birnbaum-Saunders (BS), em particulaisttébdicdo BS e duas de suas
generalizages, isto €, as distribuicdes BS generalizstasétricas (skew-GBS) e misturas
de escala BS (SBS). Abaixo, fornecemos uma deriva¢ao saahcdistribuicao BS.

Birnbaum e Saunders (1969) introduziram uma nova familidistebuicdes para mode-
lar o tempo de vida de materiais e equipamentos sujeitogasdimamicas. A motivacao dos
autores advem de problemas de vibragdo em avides comergieoblemas de falhas de ma-
teriais. Basicamente, a distribuicéo é derivada a partumdenodelo cuja falhas acontecem
em funcao do desenvolvimento e o crescimento de uma rachddminante. Considere, por
exemplo, um material que é sujeito a um padrao ciclico déiteador¢ca. Defina um ciclo
comom oscilacdes onde uma extensao aleatoria da rachadu@aesultado da aplicacéo da
i-ésima oscilacdo. Assim, a extensao da rachadura devig@siono ciclo é dada por

= ZX“ (1.1)

ondeY; é uma variavel aleatéria com mégi@ variancias?, paratodg = 1,2, 3, ... Depois
dez ciclos, a extensdo total da rachadura € dada por

W, = Z Y;, (1.2)
j=1

onde a fungéo de distribuicdo . (w) = P(W, < w), paraz = 1,2,3,... Note que a
falha acontece quando o comprimento da rachadura dominkirggassa um certo limiar.
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Denotandd” o numero de ciclos até a falha, entdo sua distribuicéo é dada p
P(C<z)=P (Zy;- > w) —1—H,(w). (1.3)
j=1

Usando o Teorema Central do Limite e assumindo quE/essdo variaveis aleatorias inde-
pendentes e identicamente distribuidas, temos

P(C<2) = 1—P<Zi_zﬂgwa_zﬂ> (1.4)
j=1
Y, —p_ w /z
— — < —
L=r (;é; oz T oz o )
~og(VE W
N o ovz)’

onde®(-) denota a funcéo de distribuicdo acumulada normal padraai A¢g substituida

por uma variavei aleatéria real ndo-negativial queT’ seja a extensdo continua da variavei
aleatoria discretd’. Logo, T pode ser considerada como o tempo até a falha, e segue uma
sua distribuicdo BS bi-paramétrica, denotada®oer BS(«, ), cuja funcéo de distribuicdo

é dada por
1/2 1/2
Fr(t) = P(T < 1) = ® (é [(%) _ (g) D Lo, (1.5)

ondea = o/\/wp > 0ep3 =w/u > 0. o e sdo parametros de forma e escala, respec-
tivamente. Para qualquer constante reat 0, temos quetT ~ BS(«,kB). Quandoa
tende a zero, a distribuicdo BS tende para a distribuicAmalode médias e varianciar,
onder — 0 quandoa — 0. Por outro lado, com@ é um parametro de escala, segue que
T/B ~ BS(a,1). Adicionalmente é a mediana da distribuicao, i.€%(5) = ¢(0) = 1/2.

A distribuicéo BS possui a propriedade reciproca, Te! ~ BS(«a, 37'). Para mais deta-
Ihes ver Birnbaum e Saunders (1969).

A atratividade da distribuicdo BS para a anélise de dados-gsleventre outras coisas, a
suas propriedades teodricas e sua relacdo com a distribuigatl. Dentre suas aplicacfes
praticas, destacam-se as areas de economia, engenharigainmedicina, meio ambiante e
negocios; ver, por exemplo, Jin e Kawczak (2003), Leiva.€2al09, 2010, 2012), Ahmed et
al. (2010), Bhatti (2010), Vilca et al. (2010, 2011), Femaiest al. (2012), Paula et al. (2012),
Marchant et al. (2013) e Leiva et al. (2013).

Recentemente, duas importantes generalizagfes da uiisiiobBS foram obtidas por
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Vilca e Leiva (2006) e Balakrishnan et al. (2009) com os maslekew-GBS e SBS, respecti-
vamente. Por um lado, as distribuicoes skew-GBS s&o basradargumentos apresentados
em Diaz-Garcia e Leiva (2005) e nas distribuicdes eliptisasmétricas. As distribuicoes
skew-GBS fornecem um grau maior de flexibilidade em relag@otdse e assimetria, sendo
a Ultima caracteristica devido a insersdo de um parametassimetria. Por outro lado,
as distribuicbes SBS sdo baseadas na relacdo das digtebuBS e normal. Essa ultima
generalizacéo fornece propriedades interessantes comsiintaegdo dos parametros de ma-
xima verossimilhanca em uma maneira eficiente, usando a@agoesperanca-maximizacao
(EM), e permite o procedimento de estimacéo robusta dosedraés.

Essa tese, como mencionado, explora o uso da distribuicde 8#s generalizacbes
skew-GBS e SBS nas seguintes areas: estatistica ndo-pacangconometria financeira e
controle de qualidade. Assim, para cada area, ha um reapeapitulo.

O capitulo 2 tem por objetivo propor estimadores néo-patraosé por funcao-nucleo
para densidades assimétricas baseados nas distribuiebe&8S. Esses estimadores forne-
cem uma maior flexibilidade em termos de curtose e assimgfigdivres de viés na fronteira
e alcancam a taxa 6tima de convergéncia para o erro quadirdttgrado médio dos estima-
dores por fungdo-nucleo-assimétricas-nao-negativosedsidade. Realizamos simulagcdes
de Monte Carlo e fazemos aplicacfes a dados reais de camg@mule poluentes atmosféri-
cos. Em patrticular, diferentes aspectos ambientais témrsldcionados ao desenvolvimento
e crescimento econémico, em especial, os efeitos de camates atmosféricos na saude
humana e suas repercussdes sobre a economia. Desse modomucorthecimento, por
exemplo, da distribuicdo estatistica de dados ambiergarsnitem descrever a qualidade
atmosférica e por conseguinte seu impacto na economia.

No capitulo 3 propomos uma nova familia de modelos aut@ssgros de duracédo con-
dicional (ACD) baseados nas distribuicdes SBS. Essa cthesdestribuicbes (i) herda vérias
propriedades da distribuicdo BS, (ii) permite a estimagéiondxima verossimilhanca de
forma eficiente usando o algoritmo EM, e (iii) possibilitalatencdo de um procedimento
de estimagé&o robusta. Os modelos ACD tém sido usados pdiseaniados de duracéo de
transacoes de alta frequéncia e sé@o de grande relevanciguwms enodelos da teoria de mi-
croestrutura, 0s quais sao baseados em elementos da asstteenformacédo. Em particu-
lar, uma alta frequéncia de transa¢des implica transaedas por negociadores informados.
Realizamos simulacdes de Monte Carlo para avaliar o desdgrmoma metodologia proposta.
Por fim, avaliamos a utilidade pratica dessa metodologiadessdados reais de transacdes
financeiras da bolsa de valores de Nova lorque.

No capitulo 4 propomos indices de capacidade do processs)(Pa5eados na distribui-
céo BS. Os PCls séo ferramentas utilizadas pelas emprasadgiarminar a qualidade de
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um produto e avaliar o desempenho de seus processos de wodim Ultima insténcia, os
PCls séo de extrema relevancia para a produtividade de sngpadnsequentemente para
a economia. Estes indices foram desenvolvidos para paxesfa caracteristica de quali-
dade tem uma distribuicdo normal. Na préatica, muitas destasteristicas nao seguem esta
distribuicdo. Nesse contexto, a distribuicdo BS se torna importante alternativa. Rea-
lizamos um estudo de simulacdo para avaliar o desempenheidaoiogia proposta. Em
adicao, aplicamos essa metodologia para um conjunto desdedis de maneira a ilustrar a
sua flexibilidade e potencialidade.

Por fim, no capitulo 5 apresentamos algumas consideracaesdobre os trabalhos apre-
sentados nessa tese.
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2 ANONPARAMETRIC METHOD FOR ESTIMATING ASYM-
METRIC DENSITIES

2.1 Introduction

Usually, air contaminant concentrations, such as padieuinatter measuring less than
10 micrometers (PM), sulfur dioxide (SQ) and tropospheric ozone {J) are considered as
continuous non-negative random variables that can be rddsi a probability distribution.
The probability density functions of these random varialflar simply densities) are often
asymmetric and present positive skewness and high kurfbisesefore, because for instance
the normal or Gaussian distribution is symmetrical, it isagood model for describing the
aforementioned environmental random variables.

Density estimation plays an important role in statistie;duse it provides an idea about
the shape of the probability distribution of the data. Fromasametric density estimation
perspective, one must rely on well-specified models, whiepedd on the data available.
However, the lack of prior information usually makes nopaetric density estimation a bet-
ter choice, which can be based on kernel methods; see sepaipaits by Rosenblatt (1956)
and Parzen (1962). For applications of the kernel methoawo@mental data; see Lori-
mer (1986), Haan (1999), Pagnini (2009), and Chang et alLZR0

Classical kernel methods are based on distributions tleasyanmetric about zero, as in
the case of the Gaussian kernel. However, a drawback arlses we try to estimate density
functions with bounded supports via classical kernel mgghbecause this type of methods
assign weight outside the support, when smoothing is peddmear the boundary; see Fer-
nandes and Monteiro (2005). Chen (1999, 2000) proposedswometric kernel methods,
which considerably increase the precision of the nonnegatensity estimation near the
boundary. He introduced the beta and gamma kernels withostgppn [0, 1] and [0, o),
respectively. Following the same line, Scaillet (2004yadtced kernel estimators based
on inverse Gaussian distributions. All of these kernelhestors are boundary bias free and
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achieve the optimal rate of convergence for the mean intedisquared error (MISE). The
main advantages of the asymmetric kernel methods over #ssichl methods are that the
formers have varying shape and permit flexibility in the sthogy throughout the support.
In addition, the asymmetric kernel methods never assigghteiutside the density support;
see Fernandes and Monteiro (2005). Jin and Kawczak (2088)s8ed asymmetric kernel
density estimators based on the Birnbaum-Saunders (BSpgndrmal (LN) distributions;
see Birnbaum and Saunders (1969). The BS and LN kernelsgsodse=same properties as
other asymmetric kernels, i.e., they are boundary bias freenegative, of varying shape
and achieve the optimal rate of convergence for the MISE.alttbors found evidence that
the BS and LN kernel density estimators outperform all odstimators based on asymme-
tric kernels. Abadir and Lawford (2004) provided a justifioa for the use of asymmetric
kernels arguing that density estimators in moderatelgesgamples tend to acquire salient
properties of their kernels. Several other methods have beggested to address the boun-
dary problem in kernel density estimation; see Marchant. €2813) for a complete review
about these methods. In view of these antecedents, efgcthe use of asymmetric kernels
for estimating densities produces good results. HoweVlethe distributions employed for
the mentioned kernels have little flexibility in their tails

Diaz-Garcia and Leiva (2005) generalized the BS distidiotobtaining a wider class
of nonnegative densities that possesses either lightezariér tails than the BS density, al-
lowing them to provide more flexibility. The generalized ibaum-Saunders (GBS) family
has as particular cases the BS-classical, BS-power-erfiahé8S-PE) and BS-Student-
(BS-+t) distributions. Recently, Marchant et al. (2013) propo&&5E kernel density estima-
tors, which generalize the BS kernel estimator, obtainietje results than those obtained
by other nonparametric kernel methods proposed for estimasymmetric densities.

Vilca and Leiva (2006) introduced skewed GBS distributigareviding a greater degree
of flexibility due to the incorporation of a skewness or asyetmy parameter. Thus, such as
mentioned by Vilca et al. (2011), data located at the ta@k @r right) are accommodated in
a better way by using generalized skew-BS (skew-GBS) Higions. Then, our conjecture
is that, although density nonparametric estimators basg@dRS kernels have good proper-
ties, skew-GBS kernel density estimators should provideebeesults. Another reason for
considering BS distributions as kernels is that such mdale been largely applied to en-
vironmental data; see Leiva et al. (2009, 2010, 2012), \élcal. (2010, 2011), and Ferreira
etal. (2012).

The main goals of our work are (i) to propose new density extins based on skew-GBS
kernels, which should hold with the properties of nonnegsiternels, but in addition these
should have a better behavior; and (ii) to apply the prop&sedel density estimators to real
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environmental data, specifically, ta,(PM;, and SQ air contaminant concentrations.

The remainder of this chapter unfolds as follows. In Secfdy we define the skew-
GBS distributions. In Section 2.3, we propose new nonpatiénieernel estimators asso-
ciated with these distributions. In Section 2.4, we derioms statistical properties of the
proposed estimators. In Section 2.5, we present somefigatitn, selection and validation
methods, and discuss a computational implementation optbposed results. In Section
2.7, we perform a Monte Carlo (MC) simulation study for ewding the proposed kernel
density estimators. In Section 2.6, we carry out an empigpalication of our method to
the aforementioned environmental data. Finally, in Sec@®, we provide some concluding
remarks.

2.2 The Birnbaum-Saunders distribution and its generalizéions

Birnbaum and Saunders (1969) introduced a two-paramesénildition for a positive
random variable (RVY" with the following representation

T=3az/2+ ({az/2}*+ 1)/, (2.1)

whereZ ~ N(0,1), « > 0 and > 0 are shape and scale parameters, big also the
median of this distribution. This is denoted by BS3). The BS distribution holds pro-
portionality and reciprocal properties given by’ ~ BS(«,b3), with b > 0, and1/T" ~
BS(a, 1/3). Diaz-Garcia and Leiva (2005) postulated and charactettze GBS distribu-
tion assuming tha given in (2.1) follows a symmetric distribution iR, which is denoted
by T' ~ GBS(«, §; g), whereg is a density generator associated with a particular synicnetr
distribution. Vilca and Leiva (2006) obtained a greateregahzation of the GBS distribu-
tion assuming thaZ given in (2.1) follows a skew-symmetric distribution &y which is
denoted by’ ~ skew-GBS3«, 3, \; g), where nowy is a density generator associated with a
particular skew-symmetric distribution, ands a shape parameter, known as asymmetry or
skewness parameter.

Standard skew-symmetric distributions are denoted’by SS0, 1, \; g), where\ is a
skewness parameter ands a density generator. In this case, the density tdkes the form

fz(z; N, 9) = 2fs(2) Fs(A2) =2cg(z) Fs(A\z), z€R, AeER, (2.2)

with f¢ = c ¢ being the density of a symmetric distributionlfhand Fs its corresponding
distribution function. Note thaj is a real function that generates the densityadndc its
normalization constant, such thﬁﬁ;o g(2?)dz = 1/c. The expression given in (2.2) permits
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a large number of skew-symmetric distributions to be oletdirNadarajah and Kotz (2003)
consideredfs andG s having the Cauchy, Laplace, logistic, normal, Studeaird uniform
distributions. Other classes are the skew-Cauchy, skiptiel skew-normal, skew-slash,
and skewt distributions; see Azzalini and Capitanio (1999), Arnofdi@eaver (2000), Az-
zalini and Capitanio (2003), Wang and Genton (2006) and GGmhal. (2007). All of these
distributions provide wider asymmetry and kurtosis thandtstributions proposed in Nada-
rajah and Kotz (2003).

Vilca and Leiva (2006) considered a RY such thatZ = [\/T/8 — /B/T]/a ~
SS0, 1, \; g) and then

T =8[az/2+ ({az/2} +1)72]° ~ skew-GBSa, 5, \; g). (2.3)

From (2.2), the density ¢f in (2.3) is given by

t32t+ﬁ]

o p.hg) = 2e9(ls+ 7 - ) BGIVIE - VB —5 -5, 24

t>0,a,8>0XeR.
The mean and variance @fare, respectively,

E[T] = g [2 + oy, + ozwl] andVar[T| = %2 [404272—042wf+2oz3w3—2a372 wl—a47§+2a474],

(2.5)
where, = E[Z"] andw, = E[Z"Va2Z2 + 4], with Z ~ SS0,1, ); g); see Vilca and
Leiva (2006).

Table 2.1 presents density generators and their normalizednstants.

Tabela 2.1constant ) and density generatog) for the indicated distribution.

Distribution c g=gu),u>0

1 1
Normal = exp (—zu)
PE ui exp (—zu?),n >0

F23 4l

t +%]72 ,v>0

Based on Table 2.1, expressions for the skew-BS, skew-B&rBEkew-BS-densities
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are

fuosadt) = exp (= gl + 5 —2))2 (3 [VITF ~ VBT ) g,

20 1 [t B 7
skew-BS- t = 16Xp(—an_+__2 )
s BSPE() 1—‘(%)227 22[5 n }
<[3+ 2r(12L)F(§7 215 +2-2]")| S,
n
or( L 41
fskew-BSt(t) = \/V_SFQ(Z)) |:1 _'_ riﬁ{% _'_ ? - 2}] )

v —3/2
$ (1= S psapsonan (5.3)) S, t>0,0,8,0>01€R,
where ® is the N(O, 1) distribution functionl(a.,y) = [/ u* ' exp(—u)du is the lower
incomplete gamma function, angl(&,b) = B,(a,b)/B:(a,b) is the incomplete beta ratio,
with B, (a,b) = [ u*~'[1 — u]’~'du. Note thatify = 1 orif v — oo, then we obtain the
skew-BS distribution.

2.3 Skew-GBS kernel density estimators

A classical kernel estimate for an unknown dengityith support on0, o), at a point
x, based on observations, . . ., x,, takes the fomy?n(x) = [1/(nh)] > K([x — z]/h),
whereh is a smoothing parameter (also known as bandwidth)/nd a symmetric kernel
satisfying [ K (x)dz = 1. An asymmetric kernel density estimate can be expressed as

~ 1 <&
falz) = o ZIKL(h,m) (zi), x>0, (2.6)

where K, .y is an asymmetric kernel associated with the distributioragaint is the

bandwidth, and: the point where the density is estimated. In general, tres@éasymmetric
kernel density estimators is boundary bias free and itsibiakorderO(h); see Chen (1999,
2000). Jin and Kawczak (2003) proposed density estimateehan the BS kernel given by

" —-3/2[ 4
KBS(\/E,x)(t) = \/127r exp ( - % [% +3- 2})t \/45—; }’ (2.7)
log(t)—log(z)]?
Ko, togion () = —=rb—s exp ((— Lol ), (2.8)

respectively, wheré satisfies botth — 0 andnh — oo, whenn — oo. By using the esti-
mate presented in (2.6) and the BS kernel provided in (2.@jchant et al. (2013) proposed a
density estimate based on the GBS kernel definellfy. 7 . ,(t) = cg([1/h][t/z+z/t -
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2))t=3/2[t + x]/v/4hx, wherec andg are as given in (2.4). We extend the class of asymme-
tric kernel density estimators by proposing a new methoédbas skew-GBS distributions.
As explained earlier, these distributions provide highdxitble densities with either heavier
or lighter tails and more or less pronounced asymmetry tharBS distribution. From the
density given in (2.4), the kernel estimate proposed in)(2u6d settingy = v/ andg = z,

a skew-GBS kernel estimate for the dengitgan be written as

n

~

1
fskew-GBix) = E Z [{skew-GBix/E7 z, \;g) (xl)7 (29)

i=1

Wherek . coqvi o 3o (1) = 2¢9([L/R] [t fa+a/t=2]) Fs(N/ V][Vt [a—/x/t]) t*[t+
x]/vV4hx, ¢, g and Fg are as given in (2.4), is the bandwidthy the point where the density
is estimated, and the skewness parameter. Note thatpas oo, h — 0 andnh — oc.

Specifically, skew-BS, skew-BS-PE and skew-Bli&rnels are given by

I(skew-BS(\/E7 x, A;g)(t) = \/% eXp ( o % [% _'_ % - ]) ( |: \% /J}' Y :|> Ujlgzjx]’

Kskew-Bs-Ptéx/ﬁ, z, \; g) (t) = ( 2 , €xp ( - 2;1”1 [% + % - }77)

n
. . —3/244 o
X[%ﬂLQF(Il)P(ﬁ%[%*?_ I~

or (L —yrl
I(skew-BSt(\/E7 z, \; g) (t) = ( v )) [1 + %{% + % - 2}:| ’

1 o1\t 32 [t4a)
X [1 - 5|V/[V+{A2/h}{t/x+x/t—2}] (57 5)] Vahz

Figure 2.1 shows two kernels comparative shapes fer{0.05, 0.2}. From this figure, note
that, ast increases, the kernels shapes unfold in a similar way, awtkernels are sensitive
to the choice of the bandwidth.

2.4 Properties of skew-GBS kernel density estimators

Let X1,..., X, be arandom sample from a RY distributed with unknown density
and support o0, oo). For this true density, suppose the following conditions: (C1) it is
twice continuously differentiable; (C2) its second detiivais continuous and bounded; (C3)
I [ f ()2 da
< o0; (C4) S [ f"(@))Pdz < oo; and (C5) [ ™! f(x)dz < co. Note that conditions
(C1) and (C2) are common restrictions in many studies of acarpetric estimators. In par-
ticular, condition (C1) is necessary for the Taylor expansilt is worthwhile to highlight
that, assuming a higher order of regularity fardoes not improve the rate of convergence
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Figura 2.1: plots of the skew-BS/{ = 0.05, gray dashedf = 0.2, gray dotted), skew-BS-PE
(h = 0.05, black solid;h = 0.2, black dashed) and skew-BS#4 = 0.05, black dotted, = 0.2, gray
solid) kernels fom = 2, v =5, A = 0.1 andx = 1.0 (a),x = 4.0 (b) andz = 8.0 (C).
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of the skew-GBS kernel estimators, because the bias is ef ardCondition (C2) is quite
restrictive, but we think that such a condition can be satilshiy various types of data, for
example, environmental data. In addition, conditions (@3%) and (C5) are used for com-
puting the MISE of the proposed kernel estimators, and waktthat such conditions can
also be satisfied by various types of data. Note that comdit{€1)-(C5) can be verified for
BS distributions, which have been successfully appliechtorenmental data by using theo-
retical arguments; see, e.g., Vilca et al. (2010). We ptesame statistical properties of the
skew-GBS kernel density estimator in the following profiosis, whose proofs are provided
in the Appendix.

Proposition 2.4.1 Let ﬁkew_GBSbe the skew-GBS kernel density estimator. Then, its bias is
Bias| fuewcsd®)] = h [/ ()2 + 322 " (x)] + o(h),
where~, is given in(2.5).

Proposition 2.4.2 Let ﬁkew_GBS be the skew-GBS kernel density estimator. Then, its vagianc
is

Var( fuawcod )] = 22C ™ = 2! f () 4 o(n ),

whereC,, is a normalization constant such thit"_ 2¢?(2?)FZ(\z)dz = 1/C..

Corollary 2.4.1 Let ﬁkew_GBS be the skew-GBS kernel density estimator. Then, its mean squ
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red error (MSE) and MISE are, respectively,
MSE[fuenced@)] = 2 [zf'(x)y2 + 22f"(2)72)" + 22C 'n~ AV 2a 1 f(x)
—l—o(n_lh_1/2 +h2),
MISE|fsencsd )] = / MSE[fueced )] dz = 2242 / (2f'(x) + 22 f"(2)]” da
0 0

+262C It p Y2 / e~ f(z)dx + o(n T h™Y? 4 h?).
0

The value of the bandwidth that minimizes the MISE given indllary 2.4.1 is

20 (-1 1(s 1’2/5
. et ) f( )d2] 2/5n_2/5_ (2.10)
[12 2 {af (2)+22f" (2)}? da]

skew-GBS ~

Note that this optimal bandwidth is of ordén—2/%) for all the kernels. Inserting (2.10) into
expression for the MISE given in Corollary 2.4.1, we obt&ie bptimal MISE as

MISE*[ﬁkeW.GB{{L’)] _ 2[73 /O'Oo {:L'f/(x) + l'zf//(l')}de] 1/5 [2020;1 /OOO o1 (l')dx 4/571_4/5'
(2.11)

2.5 Identification, selection, validation and computatioml implementa-
tion

Some methods can be used (i) to identify the shape of the dheat@ (HR) function and,
consequently, of the parametric distribution of the envinental data; (ii) to select the pa-
rameters), v and A of the skew-GBS distributions; and (iii) to choose the baiitlwof the
nonparametric method, validating this choice. Then, weudis a implementation in tHe
software of the proposed methods; seav. R- pr oj ect . or g.

(i) A nice property of the HR is that it allows us to characterthe behavior of distributions.
For example, the HR may have several shapes such as ingreemnstant, decreasing, bath-
tub, inverse bathtub approaching to a non-null constard peto. An incorrect specification
of the HR could have serious consequences in the analysis g, Ferreira et al. (2012) and
references therein. Specifically, lett) = f(¢)/[1 — F(¢)] be the HR of a RVI", wheref and

F are the density and distribution functionsiafrespectively. The identification of the shape
of the HR can be done by means of the scaled total time on t&3%) {fiethod, which is given
by W(u) = H'(u)/H'(1), for 0 < u < 1, whereH'(u) = [ “[1 = F(y)]dy, and
F~'is the inverse function of". Thus,IW (u) can be empirically approximated by construc-
ting the empirical scaled TTT plot by depicting the conseeupoints(k/n, W, (k/n)], with
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W (k/n) =[5 tw + {n — k}ti]/ S0 tw, fork = 0,...,n, andt, being the observed
ith order statistic; see Aarset (1987).

(i) Considerz? = [T/B + B/T — 2]/a® ~ (1), with observations; = [{t;/B©}V/2 —
{BO/t;}1/2]/a© fori = 1,...,n, and starting values far and 3 obtained from the mo-
dified moment estimates given B® = [2{s/r}"/2 — 1]V/2 and B© = [s7]'/2, where
s=1[1/n]> " t;andr = 1/[{1/n} > " {1/t;}]. The maximum likelihood (ML) estimate
of \ can be obtained by the method proposed by Azzalini (1988)aks® Vilca et al. (2011).
In order to obtain/, we fix integer values for it within the interval, 100], choosing the va-
lue of v that maximizes the likelihood function, searching its ol value by means of the
following algorithm: (step 1) for from v = 1 to v = 100 by 1, estimate the parameters of
the GBS or skew-GBS distributions using the profile ML methothe corresponding value
of v, and compute the value of the likelihood evaluating it atNHeestimates of the GBS or
skew-GBS parameters previously obtained, and at the gmneling value o, used in the
profile ML method; and (step 2) choose the value tiiat maximizes the likelihood function
and then consider the ML estimates of the GBS or skew-GBSweteas as result. A similar
algorithm is used for the optimal searchingof

(iii) The least squares cross validation (LSCV) method camuged to select the bandwidth
h, which chooses it by minimizing the cross validation cigardefined as LSCWh) =
Jo Fi@) ) )

dz — [2/n]> 0, fr—i(x:), where f;, is a nonnegative asymmetric kernel density estimate
of bandwidthh and fh,_i the corresponding estimate without tfth observation; see Ru-
demo (1982) and Bowman (1984). Note that the plug-in andgb@gping methods, and
the adaptive varying kernel size selection are not possibéelapt, because they use a pilot
bandwidth and are symmetric kernel-driven; see Loaderq)1l88d Jin and Kawczak (2003).
The methods proposed in the article, as well as the seleatidrvalidation tools discussed
above, are implemented R code and available to the interested readers upon request. |
this code, we estimatk using the commandn. il e of anR package namesn, whereas
the parameters, 5 andv are determined by the commantiegbs of anR package named
gbs; see Barros et al. (2009). In addition, we use the adjustegloty which is a modi-
fied version of the usual boxplot for asymmetric data, that e@nstructed by the command
adj box of anR package namedobust base; see Hubert and Vandervieren (2008). The
LSCV and TTT methods are also implemented in the computes.cod
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2.6 Monte Carlo simulation study

We conducted Monte Carlo (MC) experiments and compute thenmim average in-
tegrated squared error (ISE) for evaluating the performarfcthe BS, BS-PE, B%- LN,
skew-BS, skew-BS-PE, skew-BS«ernel estimators. The bandwidthis chosen by mini-
mizing ISEh) = fB[fh(:c) — f(x)]2dz, whereB € [0,00) and f, is a nonnegative asym-
metric kernel density estimate gt We useM = 500 MC replications and sample sizes
n = 100, 200, 500, 1000 from BS(1.5,1), Burr(1,3,1) and GG(3,1,0.9) (generaligadhima)
distributions; see Table 2.2. From this table, note that U(0,1), Z ~ N(0,9/16) and
Y ~ Gamma3,1). The GG distribution has, as special cases, the exponeiizibution
(k = 6 = 1), the gamma distributiord(= 1), the LN distribution § — oc), and the Wei-
bull distribution (< = 1). Hereafter, we use = 2 (BS-PE, skew-BS-PE)y = 5 (BS+,
skew-BSt), and\ = 0.1 (skew-BS-PE, skew-B%-

Tabela 2.2characteristics of the indicated distributions used faregation of random numbers.

Distribution Density Transformation
BS(a = 1.5, 8 = 1) ﬁexp(—ﬁ[%-{-?—?})QS&%, ta,f>0 T=1+222+2Z[1+ 22/2
Ktk =1 v V3
Burr(p = 1,k = 3,r = 1) kT S 0,k > 0 T:[m]
[14rtk]T+T
GG(k = 3,0 = 1,0 = 0.9) it 2] exp (— [5]9)7 t K, 0,0>0 T — y1/0.9

Tables 2.3, 2.4 and 2.5 report the minimum average ISEs arathbdths for the BS(1.5,1),
Burr(1,3,1) and GG(3,1,0.9) distributions, respectivéle can observe that the BS and LN
kernel estimators display similar performance with a gleghvantage of the former over the
latter. Another important point is that the skew-BS kerrstlreator performs better than its
closest competitor, i.e., the BS kernel estimator. An ingoarresult from Tables 2.3, 2.4
and 2.5 is that the skew-BS-PE kernel estimator outperfailiribe other estimators (except
whenn = 500, 1000 for the GG(3,1,0.9) distribution, i.e., the skew-BS keregfimator has
a superior performance) for the sample sizes considereser@ng the achieved bandwidths
in Tables 2.3, 2.4 and 2.5, we see that, in general, and astexh¢he bandwidths decrease
as the sample size increases. Table 2.6 provides the minawmarage ISEs and bandwidths
considering different values for the skewness parametethen the data are generated from
the Burr(1,3,1) distribution. Note that again the skew{BSkernel estimator outperforms all
the other estimators when= 0.1. This suggests that when we introduce a positive skewness
on the GBS kernel, the observations located at the tailsqteight) are accommodated in a
better way, providing better estimates.

We now give particular attention to the simulated data fraeBurr distribution. We ge-
nerate al0000 random samplet(e [0.04, 17.50]) from a Burr(l, 3, 1) distribution, estimate
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Tabela 2.3average ISE (witth in parentheses) of the density estimator for the BS(1.5stijiloution

by using the indicated kernek (= 0.1).

BS LN BS-PE(5) BS¥2) skew-BS  skew-BS-PE(5) skew-B$2)
100 0.021239  0.021430 0.213729 0.217255 0.019382 0.012943 0.018082
(0.177) (0.045) (0.206) (0.086) (0.206) (0.351) (0.156)
200 0.009271 0.009387 0.080318 0.082340 0.008451 0.006350 0.010531
(0.138) (0.037) (0.167) (0.068) (0.156) (0.282) (0.110)
500 0.004016 0.004076  0.023754  0.024753 0.003813 0.003266 0.006189
(0.098) (0.031) (0.131) (0.053) (0.108) (0.196) (0.072)
1000 0.001922 0.001961 0.008262 0.008816  0.001838 0.80167  0.003998
(0.075) (0.030) (0.109) (0.043) (0.081) (0.142) (0.050)

Tabela 2.4:average ISE (withh in parentheses) of the density estimator for the Burr() @igtribu-

tion by using the indicated kernel = 0.1).

n BS LN BS-PE(5) BSH2) skew-BS  skew-BS-PE(5) skew-B$2)
100 0.014887 0.015219 0.012650 0.014310 0.013836 0.010706 0.055511
(0.054) (0.036) (0.107) (0.041) (0.057) (0.113) (0.074)
200 0.008703 0.009003 0.007754 0.008870 0.008209 0.007019 0.052801
(0.043) (0.036) (0.083) (0.031) (0.044) (0.088) (0.065)
500 0.004346 0.004781 0.003811 0.004532 0.004048 0.003566 0.050176
(0.033) (0.032) (0.057) (0.025) (0.031) (0.061) (0.058)
1000 0.002744 0.003345 0.002184 0.002655 0.002346 0.@0206  0.049065
(0.030) (0.030) (0.043) (0.026) (0.029) (0.047) (0.056)

Tabela 2.5average ISE (with averagein parentheses) of the density estimator for the GG(3,11,0.9

distribution by using the indicated kern&l & 0.1).

n BS LN BS-PE(5) BS¥2) skew-BS  skew-BS-PE(5) skew-B$2)
100 0.021711 0.021800 0.214910 1.186278 0.019973 0.015753 0.019785
(0.070) (0.033) (0.194) (0.485) (0.085) (0.141) (0.061)
200 0.013219 0.013291  0.144340 1.031841 0.012058 0.011055 0.014331
(0.044) (0.037) (0.167) (0.499) (0.054) (0.089) (0.037)
500 0.008232 0.008363 0.109601 0.947764 0.007435 0.007737 0.010525
(0.032) (0.031) (0.205) (0.500) (0.035) (0.055) (0.024)
1000 0.006866  0.007075 0.098854 0.913920 0.006139 0.@0672  0.009256
(0.030) (0.030) (0.239) (0.500) (0.030) (0.049) (0.036)

the densities and evaluate the performance of each ketirabésr, computing the point-wise
bias, variance and MSE. The bandwidths are chosen by mimigiike corresponding ISE.
Table 2.7 provides some descriptive measures for Bur() data, which include central
tendency statistics, the standard deviation (SD), andicueefts of variation (CV), of skew-
ness (CS) and of kurtosis (CK), among others. It is notewdtiat the positive asymmetry
and high kurtosis are evidenced by Table 2.3 and Figure Z@ T T plot and the usual and
adjusted boxplots displayed in Figure 2.2(a)-(c) show a HtR vunimodal shape and heavy
tails.

Figure 2.3 depicts the Burr(1,3,1) true density with BS, BS-skew-BS and skew-BS-
PE kernel density estimates. To make the figure less crowagd@nsidering that the BS&-
LN, and skew-BS-kernel estimators have poorer performances, we omit thetses these
kernel estimators throughout this section. The resultsiffogure 2.3 show an excellent
agreement between the true density and its kernel estimiigsre 2.4 presents the point-
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Tabela 2.6:average ISE (withh in parentheses) of the density estimator for the Burr() @igtribu-
tion by using the indicated and kernel.

n A skew-BS  skew-BS-PE(2) skew-B$5)
100 0.01 0.014742 0.010814 0.012269
(0.054) (0.110) (0.043)
0.05 0.014279 0.010746 0.022638
(0.055) (0.112) (0.055)
0.1 0.013836 0.010706 0.055511
(0.057) (0.113) (0.074)
0.5 0.015353 0.012195 0.019935
(0.057) (0.126) (0.221)
1.0 0.022032 0.017358 0.028850
(0.045) (0.143) (0.053)
200 0.01 0.008601 0.007116 0.008148
(0.042) (0.085) (0.034)
0.05 0.008377 0.007052 0.019062
(0.043) (0.086) (0.046)
0.1 0.008209 0.007019 0.052801
(0.044) (0.088) (0.065)
0.5 0.010614 0.008573 0.015187
(0.040) (0.102) (0.168)
1.0 0.015969 0.013823 0.018211
(0.030) (0.120) (0.042)
500 0.01 0.004166 0.003639 0.004401
(0.030) (0.058) (0.026)
0.05 0.004078 0.003595 0.015878
(0.030) (0.060) (0.036)
0.1 0.004048 0.003566 0.050176
(0.031) (0.061) (0.058)
0.5 0.006226 0.005252 0.010976
(0.035) (0.075) (0.117)
1.0 0.009765 0.010637 0.009701
(0.032) (0.095) (0.041)
1000 0.01 0.002386 0.002114 0.002722
(0.025) (0.044) (0.024)
0.05 0.002341 0.002092 0.014562
(0.025) (0.046) (0.033)
0.1 0.002346 0.002064 0.049065
(0.029) (0.047) (0.056)
0.5 0.004047 0.003841 0.009219
(0.061) (0.061) (0.094)
1.0 0.006520 0.009302 0.006060
(0.043) (0.082) (0.045)

Tabela 2.7 descriptive measures for Butg(3, 1) data.
n Min.  Max. Median Mean SD (&Y Cs CK
10000 004 1750 100 121 095 78.76% 4.84 43.62

wise bias, variance and MSE of the four kernel estimatorgifeBurr(1,3,1) density, where
the bandwidths were selected by minimizing the ISE. We ofeséirat most of the point-wise
bias, variance and MSE go to zero, wheis greater than0. We also note that the considered
kernel estimates (except the skew-BS case) present siredalts for the bias, and MSE. A
relevant bias-variance tradeoff can be observed with theeBigel estimator, i.e., the variance
can be reduced at the expense of the bias, and vice versagsee E.4(a)-(c).
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Figura 2.2:TTT plot (a), histogram (b), and usual and adjusted boxgmtsf the Burr(, 3, 1) data.
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Figura 2.3:estimation of Burr(1,3,1) density (black solid) via BS @kadashedh* = 0.011), BS-
PE (black dottedh* = 0.021), skew-BS (gray dashedy* = 0.011), skew-BS-PE (gray dotted,
h* = 0.023) kernels forn = 2 and\ = 0.1 (a), and zoom on the corresponding left tail (b).
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Figura 2.4: point-wise bias (a), variance (b) and MSE (c) of the BS (bldakhed* = 0.011),
BS-PE (black dotted,* = 0.021), skew-BS (gray dashed,” = 0.011), skew-BS-PE (gray dotted,
h* = 0.023) kernel density estimators for the Burr(1,3,1) distribuati
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Application to real environmental data

We estimate the unknown true density of the three followesd environmental data sets.
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e Os: daily tropospheric ozone concentrations (in ppb = ppm000) observed in New
York during May-September, 1973, provided by the New Yor&t&tDepartment of
Conservation; see Nadarajah (2008), Leiva et al. (201@a\ét al. (2011), Ferreira et
al. (2012).

e PMyy: hourly particulate matter concentrations (in microm&teormalized cubic me-
ters,g/m?N) observed in Santiago, Chile, during April, 2003, prowdysy the Chilean
environment commission and metropolitan health authority

e SO,: hourly sulfur dioxide concentrations (in ppb = pptml000) observed in Santiago
during March, 2002, provided by the Chilean environment icassion; see Vilca et
al. (2010).

Table 2.8 provides some descriptive measures foif;, and SQ data. Also, the his-
tograms and (usual and adjusted) boxplots are presenteglireB 2.5, 2.6 and 2.7. The TTT
plots suggest that these data have an increasing HR, sucHieated in Vilca et al. (2011);
see Figures 2.5(a), 2.6(a) and 2.7(a). The descriptive surageffectively show a positive
skewness and a high kurtosis (which is an indication of héans) for these data sets. This is
corroborated by histograms displayed in Figures 2.5(Bfb2 and 2.7(b). Note that the usual
boxplots present some atypical observations lying on tiettiail of the distributions of Q
PM,, and SQ data. However, it is well known that, in cases where the datav a skewed
distribution, a significant number of observations can lbssified as atypical when they are
not. Figures 2.5(c), 2.6(c) and 2.7(c) show boxplots thafiom such a situation, i.e., most
of the observations considered as potential outliers byski@l boxplot are not outliers when
we consider the adjusted boxplot.

Tabela 2.8descriptive statistics for the indicated data.
Dataset n Min. Max. Median  Mean SD CcVv CS CK
O; 116 100 16800 3150 4213 3299 78.30% 121 411
PMig 717 100 23000 66.00 71.72 3930 54.80% 0.64 3.06
SO, 744 100 2500 200 293 202 6887% 432 37.57

Next, we use kernel estimation for determining, ®M,, and SQ data density. Fi-
gures 2.5(b), 2.6(b) and 2.7(b) show the histograms withédegstimates and bandwidths
selected by the LSCV method for;OPM;, and SQ data. Note from these figures that all
the density estimates based on the BS, BS-PE¢,B{, skew-BS, skew-BS-PE and skew-
BS+ kernels seem to be quite reasonable to the environmentgl dizgpite the difficulty of
bandwidth selection; see Loader (1999). We are selecte@andwidth through the LSCV
method, which is somewhat unstable and can underestimaidetisity. However, as high-
lighted by Loader (1999), this instability is not a probldmf a symptom stemmed from the
difficulty of bandwidth selection. This problem is emphasizn the case of Qand PM,
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data, because, in the first bin of the corresponding histogyréew observations are registe-
red, but it is not the case of S@ata.

Figura 2.5:TTT plot (a), density estimation via BS (black solid, = 0.206), BS-PE (black dotted,
h* = 0.368), BS+ (black dotdashp* = 0.159), LN (black dashedh* = 0.051), skew-BS (gray
dotted,h* = 0.219), skew-BS-PE (gray solidi* = 0.370), and skew-BS-(gray dashed,* = 0.159)
kernels forn = 2, v = 5 and\ = 0.1 (b), and usual and adjusted boxplots (c) afdata.
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Figura 2.6:TTT plot (a), density estimation (b) via BS (black solid; = 0.034), BS-PE (black
dotted, h* = 0.046), BS+ (black dotdashp* = 0.027), LN (black dashedh* = 0.009), skew-
BS (gray dottedh* = 0.035), skew-BS-PE (gray solidh* = 0.049), and skew-BS-(gray dashed,
h* = 0.032) kernels forn = 2, v = 5 and X = 0.1, and usual and adjusted boxplots (c) of Mata.
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2.8 Concluding remarks

In this chapter, we have introduced new asymmetric kernabitie estimators based
on generalized skew-Birnbaum-Saunders distributionses&Hdistributions provide densi-
ties with either heavier or lighter tails and more or lessnputnced asymmetry than the
Birnbaum-Saunders distribution. The kernel estimatoaswe have proposed are boundary
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Figura 2.7:TTT plot (a), density estimation via BS (black solid, = 0.040), BS-PE (black dotted,
h* = 0.056), BS+ (black dotdashp* = 0.039), LN (black dashedh* = 0.010), skew-BS (gray
dotted,h* = 0.041), skew-BS-PE (gray solidi* = 0.056), and skew-BS-(gray dashed,* = 0.039)
kernels forn = 2, v = 5 and\ = 0.1 (b), and usual and adjusted boxplots (c) of,Sfata.
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bias free, with shapes that vary according to the data podaattion, and achieving the op-

timal rate of convergence for the mean integrated squared ef nonnegative asymmetric

kernel density estimators. In addition, we have presergetesdentification, selection and

validation methods. A computational implementation in Bhstatistical software of the re-

sults derived in this work has been discussed. Furthermadave compared the proposed
density estimators based on generalized skew-Birnbaumeteas kernels with some non-
parametric density estimators existing in the literativiente Carlo simulation results have
indicated that the skew-Birnbaum-Saunders-power-exmttalekernel density estimator we

have derived outperforms most other estimators, in all $amsiges considered. We have
used our methodology for estimating the density of real allupant concentration data. The
numerical results have shown the flexibility and good pentamce of the proposed nonpara-
metric estimators.
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3 A NEW FAMILY OF AUTOREGRESSIVE CONDITIONAL
DURATION MODELS

3.1 Introduction

High-frequency data have gained an increasing attention the advances in compu-
ter technology and data recording and storage; see Engl®)20 he availability of high-
frequency financial transaction (trade duration —TD-) deta given an impulse to the re-
search in business, economics and finance. The autoregressiditional duration (ACD)
model proposed by Engle and Russell (1998) has been thergrataass of models for analy-
zing TD data, which are irregularly time-spaced and conveyamngful information. The
importance of this type of data, and of its modeling, is steesby the relatively recent mar-
ket microstructure literature; see Diamond and Verrect®87), Easley and O’Hara (1992),
Easley et al. (1997), Meitz and Terasvirta (2006) and Pa¢aes) .

Although TD data (i) have usually a unimodal hazard rate (HR) (ii) follow an asym-
metric distribution with heavy tails (see GRAMMIG and MAURE2000; BHATTI, 2010),
generalizations of the original ACD model are based on aptions that do not necessarily
comply with (i) and (ii). Thus, generalizations of the ACD dw®b should be based on as-
sumptions that take into account (Al) the shape of the HR ofiata; (A2) the symmetry or
asymmetry of the distribution of these data; and (A3) theddtmal dynamics established
in terms of the mean or median of TD data, depending of themsgtry or asymmetry; see
Bauwens and Giot (2000), Luca and Zuccolotto (2006), Fetesiand Grammig (2006) and
Allen et al. (2008).

Birnbaum and Saunders (1969) introduced a two-paramettituition for modeling fai-
lure times of a material exposed to fatigue. They assumedthieafailure due to fatigue
follows from the development and growth of a dominant cracddpced by cyclic stress.
The Birnbaum-Saunders (BS) distribution has been wideiglistl because of its interesting
properties and its relation with the normal distributioag Kotz et al. (2010). In addition,



34

although it has its genesis from engineering, its appbecathave been considered in several
other fields, including business, economics and finance;esge Jin and Kawczak (2003),
Ahmed et al. (2010), Bhatti (2010), Paula et al. (2012), Mant et al. (2013) and Leiva et
al. (2013).

The BS distribution is asymmetrical, has positive skewregsa unimodal HR, and has
been successfully applied to model lifetime data. Thusrtlee a good model for describing
TD data. Bhatti (2010) proposed a generalization of the AGRlehbased on the BS distri-
bution (in short BS-ACD model), which provides (B1) a retiddislistributional assumption
(in terms of the shape of its probability density functiamshort PDF, and of its HR); (B2)
an easy parameter estimation (because it is simple and rgasvéast); and (B3) a natural
parameterization in terms of a conditional median duratihich is expected to improve
the model fit, instead of using the conditional mean duratsae (A3). This is because the
median is often considered as a better measure of centddrien than the mean, when the
data follow asymmetric and heavy-tailed distributionglsas is the case of TD data.

Recently, based on the relationship between the BS and hdistabutions, Balakrish-
nan et al. (2009) introduced the scale-mixture BS (SBSyiligions; see also Diaz-Garcia
and Leiva (2005), and Marchant et al. (2013) for a recent Téalhesms using kernel estimation
based on SBS models, with independent data. The class of SB®utions (C1) inherits
the good properties of the BS distribution discussed in{@B); (C2) permits the maximum
likelihood (ML) estimates of the model parameters to be cateq in an efficient way, using
the expectation-maximization (EM) algorithm; and (C3)pal$ a robust estimation proce-
dure of parameters to be obtained, which is not possible thighBS distribution; among
other properties.

The main aim of this work is to propose a new methodology basedCD models
generated from SBS distributions, in short SBS-ACD. Thighmdology includes efficient
estimation of the SBS-ACD model parameters via the EM allgorj inference about these
parameters, the predictive model and a residual analysimddel checking. SBS-ACD mo-
dels should hold with the properties of the BS-ACD model, fouther properties should be
also obtained. We apply the new methodology to TD data, wihéste unique features absent
in data with low frequencies. For example, as mentioned, &ta D1) are collected in irre-
gular time intervals; (D2) possess a large number of obsens (D3) their trading activities
exhibit some diurnal pattern, that is, activity is higheanthe beginning and closing than in
the middle of the trading day; and (D4) present a unimodal $¢#;Engle and Russell (1998)
and Bhatti (2010).

The rest of the chapter unfolds as follows. In Section 3.2intreduce SBS distributions.
In Sections 3.3 and 3.4, we propose a methodology based @B8eACD models, which
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includes formulation, estimation of their parameters byanseof the EM algorithm, the cor-
responding inference, which is useful for obtaining thedpréve model, and a residual for
this model, which can be used for checking model adequacyaictipe. In Section 3.5, we
perform a Monte Carlo (MC) study for evaluating the proposeethodology. In Section
3.6, we present an application of this methodology to sikdata sets of NYSE securities.
Finally, in Section 3.7, we discuss some conclusions anddststudies.

3.2 Scale-mixture Birnbaum-Saunders distributions

In this section, we present some useful results about SB&bdisons.

A random variable (RV)X follows a two-parameter BS distribution if it can be represe
ted by
X =o[kZ/2+ ({rZ/2}* + 1)/?]?, (3.1)

whereZ ~ N(0, 1), andx > 0, o > 0 are shape and scale parameters, respectively.

In this case, the notatio ~ BS(k, o) is used and the corresponding PDF is given by

1
TyR,0) = ———=€X
fBS< ) \/% p (
Note that, as the shape parametgoes to zero, the BS distribution tends to be symmetrical,
degenerating at, whenx = 0 (see KUNDU et al., 2008), whereas the scale parameter
is also the median of the distribution. The BS model holdgpprtionality and reciprocal

properties given by X ~ BS(x,bo), withb > 0, and1/X ~ BS(k, 1/0), respectively.

x > 0.

1 [x U_QD 2732z + o]

2k2 lo =z 2rol/2

A RV Y follows a scale mixture of normal (SMN) distribution (symtme) if it can be
represented by = u + {g(U)}'/?V, whereV ~ N(0,9?), U is a positive RV independent
of V', with cumulative distribution function (CDF)/ (-), andg(-) is a positive function as-
sociated withH (). This is denoted by ~ SMN(u, 9%, H) and the corresponding PDF is
given by .

Pswn(y; 1,0, H) = /0 O(ys p, 9(u)0*) dH (u), 3.2)

whereo(-; i1, g(u)9¥?) denotes the PDF of the normal distribution with meaand variance
g(-)9?. Note that the distribution of givenU is Y|U = u ~ N(pu, g(u)9?).

Following Diaz-Garcia and Leiva (2005), Balakrishnan e{2009) obtained a class of
BS distributions replacing in (3.1) byY = {g(U)}/?Z ~ SMN(0,1, H) = SMN(H),
with Z ~ N(0, 1), such that

X = o[s{g(U)}*Z/2+ {({g(U)}'/*Z/2)* + 1}, (3.3)
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Thus, the RVX given in (3.3) has now a SBS distribution, which is denotedXoy~
SBSk, 0, H), with PDF

fsps(x; k,0, H) = ¢SMN(CL($; K,0);0, 1,H)A(x), x>0,k>0,0 >0, (3.4)

wheregsyn (+) is as given in (3.2), withy = 0 andd? = 1,

. d ( )_x_3/2[x+a]
T T T g

a(x;k,0) = a(r) = % [{x/a}l/2 - {0‘/1'}1/2} and A(x)
(3.5)

Then, the CDF ofX is Fyps(x; K, 0, H) = Psun(a(z)), wheredgyn(+) is the CDF associ-
ated with the PDF given in (3.2). From the SBS CDF, we can alta quantile function
(QF) of X aswsps(q; &, 0, H) = Fpg(q; 5,0, H) = alry(q) /2 + {(ky(q)/2)* + 1}/, for
0 < ¢ < 1, whereFg;s(+) is the inverse SBS CDF anglq) is theqth quantile of the SMN
distribution. Note thatrsgs(0.5; k, 0, H) = o, because, due to the symmetry of the SMN
distributionsy(0.5) = 0, so that the parameteris the median of the distribution. The mean,
variance and coefficients of skewness (CS) and kurtosis (LK) are

o 5 o2K? 0y o
EX] = 5[2+w1ﬁ},V[X]: 1 (w1 + {2wy — wi}K?],
cox) = AelBw —suil+5{2ws —swws +uip]

[4’([]1 + {2’LU2 — w%}/{2]3/2
CK[X] = 16w, + [32ws — 48wy wy + 24wi]k? + [Swy — 16w ws + 12w?w, — 3wi]k?
= [dw, + {2ws — w2} K22 5

respectively, where), = E[{g(U)}"], with ¢(U) being as given in (3.3).

Note that, if X ~ SBSk,o, H), its distribution conditional tdJ is X|U = u ~
BS({g(u)}"/?
k,0), that is,X|U follows a classical BS distribution. Thus, from this resule can obtain
the conditional distribution ot/|.X, allowing the expected value[E/ ¢(U)|X = z| to be
determined, which is useful for implementing the EM aldumtemployed in Section 3.4 of
this work.

Three members of the SBS family are the BS (classical), p@xponential BS (BS-
PE) and Student-BS (BS+) distributions; see Table 3.1 for explicit expressions lditt
PDFs. To obtain the BS distribution, it is assumed in (3.8} $U) = 1, that is,U is a RV
degenerate at this value. For the B@istribution, itis assumed in (3.3) thatU) = 1/U and
U ~ Gammadv/2,v/2), whereas the BS-PE distribution is obtained wiién- St(p), for
0.5 < p < 1, that is, wherlJ follows a positive stable (St) distribution with indey, whose
PDF cannot be analytically expressed, but it is denoteghfly), and, in this casey(U) does
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not have a specific form; see details in West (1987) and Faretial. (2011). In addition,
note that BS-PE and BS&distributions reduce to the BS case wher= 1 andv — oo,
respectively (see FERREIRA et al., 2011; AZEVEDO et al.,20Whereas the BS-PE and
BS-t distributions reduce to the BS-Laplace and BS-Cauchy cakesp = 1/2 andv = 1,
respectively; see Barros et al. (2009). BS-PE and: Bi&stributions are often considered
as alternative models to the BS distribution due to thet Bi&stribution has a kurtosis level
greater (heavier tails) than the BS distribution, wherba®BS-PE distribution has either less
or greater (lighter or heavier tails) kurtosis levels tHamBS distribution, which is useful for
accommodating different types of data. Furthermore, the BiStribution provides a robust
estimation procedure of its parameters; see Paula et d12J20

Tabela 3.1associated PDFs of some members of the SBS family.

Family member PDF associated with(u) PDF of X ~ SBSk, 0, H)
T z73/2[z40
BS 1 \/%exp( o [2+ ——2])#,/9»0
x 32z 40

BS-PE p20(u), \/2_91“( y e exp (— 5 [2 + 2 — 2)°) 52

u>0,1/2<p<1 x>0

[5]2uz"! gt -4 32 a0
BS+ Ty X xp (—%), NV E) y 1+ s+ 5_2}} 25\[F e

u>0,vr>0 x>0

3.3 SBS-ACD models

Let X; = T; — T;_; denote the TD, that is, the time elapsed between two corigediit
nancial transactiong; — 1)th andith transactions say, at tim&sand7;_,, respectively. Con-
sidering serial dependence usually found in financial dematata, Engle and Russell (1998)
assumed that this dependence can be described by a fuggties| X;(€2;_;], denoting the
conditional mean of théeth TD based on the past information $&t ;, which includes all
information available at tim&;_; (past).

The usual ACD class of models assumes that

Xi=1vie, (3.6)

wherey; = a+37"_ | B+ v Xy, fori =1,...,n, whichis called the ACD( s)
model, where- ands refer to the orders of the lags, afé;;i = 1,...,n} is a sequence of
independent and identically distributed positive RVs VIRIDF £ ().

Note that a wide range of ACB(s) models may be defined by switching the distribution
of ¢; and the specification of; given in (3.6); see Fernandes and Grammig (2006) and
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Pathmanathan et al. (2009). For example, an ACE)(model based on the generalized
gamma (GG) distribution with PDF given by

. _ B e (= 2]
faa(z;v,n,w) = oT(0) [w] eXp( [W] ) z,v,n,w >0, (3.7)
can be formulated, with shape, (;) and scale) parameters and(z) = f0°° v texp(—x)dw
being the gamma function.

Special cases of the GG distribution are the exponentiat (n = 1), gammaf = 1),
lognormal ¢ — oo) and Weibull ¢ = 1) distributions. Thus, a GG-ACBR(s) model can be
obtained by the conditional mean of tith TD, E[X;|Q2;_1] = ¢; = wI'(v + 1/n)/T'(v) say,
so that one can reparameterize the GG distribution by, I'(v) /T'(v + 1/n) = ¥ip(v,n),
obtaining from (3.7) the PDF

vn—1 n
. ) — N L X — 7[& 7 = R
foa(@sv,m ) = o S ) L@(%n)@bj ¢ p( L@(%n)@bj ) b
(3.8)

for x;,v,n,; > 0. Note that this way of representing the PDF given in (3.8jjisiealent to
the model given (3.6), with a dynamic structure fjeX;|€2;_,] = v, expressed in a general
fashion, which must be specified.

An alternative approach to the existing ACD models was pseddy Bhatti (2010). This
approach takes into account the scale parameter of the Bi$bdi®n to specify the BS-
ACD(r, s) model in terms of a time-varying conditional median dwmti; = Fi5¢ (0.5[€2;_1)
say, wherel';¢ (-) denotes the inverse CDF or QF of the BS distribution. Thicijgation
has several advantages over the existing ACD models, asanedtin (B1)-(B3). From Ta-
ble 3.1, the PDF associated with the BS-AZDB{ model can be obtained in an analogous
way to that provided for the GG-ACBR(s) model given in (3.8) as

1 i i 82 i i
eXp(——2 |:x_+i—2:|)wl/_;—a]axia’%agi>ovi:1w"vnv
2% oy @y 2K0;
(3.9)

We extend the class of BS-ACB() models by using SBS distributions. As mentioned in
(C1)-(C3), these distributions have good properties. Sschn the BS-ACDX, s) case, the
SBS-ACD(, s) model is not an ACD{, s) model in the usual sense. This model is speci-
fied in terms of a time-varying conditional mediar, = FgBlS(O.S\Qi_l) say, which also
corresponds to the scale parameter of the SBS( H) distribution. Specifically, from the
PDF given in (3.4), the SBS-ACB(s) model can be obtained in an analogous way to that

1
Ty K, 0;) = —=
Jos( ) NoT
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provided for the BS-ACDY{, s) model given in (3.9) with an associated PDF expressed as
fSBS(J;i;Kaai?H) :QbSkiN(a(l’i);O,l,H)A(.Ti), Tiy R, 0; > 07 1= 17"'7”7 (310)

wherea(-) and A(-) are as given in (3.5). Note that (3.10) is equivalent to threnfdation
X; = 0; ¢, such that; = log(o;) + €;, whereY; = log(X;), e; = log(¢;) and

Ui—j

0 = exp (a +Y " Bilogloi) + > v xi_j)v (3.11)
=1 =1

with X; % SBSk,0;, H) ande; '~ SBSk,1,H), fori = 1,...,n; see Bauwens and

Giot (2000). From Table 3.1, the PDFs associated with thePBSACD(, s) and BS¢-
ACD(r, s) models are given by

f ( ) 0 ( 1 |i$2 g; 2:| g) 1’2_3/2 [.TZ + Uz] and
pE(Ti K, 0,0) = —————exp | — Z 2
BS-PE 0 V2T (1/[20]) P\ 792 |0 T 5 2K,/0;

fos-t(xi; K, 04, )_ﬁﬁf(g) 1+

VK2
respectively, for;, k, v, 0, > 0,1/2 < p < 1,andi =1,...,n.

3.4 Estimation, inference and checking

In this section, we use the ML method to estimate the SBS-ACD (parameters. EM
algorithm is used for facilitating the implementation ofsttmethod. Inference and model
checking are also considered here.

Let X = (X1,...,X,)" be asample fronX; ~ SBS(x,0;, H), fori = 1,...,n, with
PDF as given in (3.10), and = (z;,...,7,)' be its observed TDs. As mentioned, we
assume a time-varying conditional median duration giveing8.11). Such as in Engle
and Russell (1998), the simplest member of the ACD familyg aften useful for empirical
applications, is the SBS-ACB(= 1, s = 1) model, that we abbreviate as SBS-ACD model.
Thus, in the sequel, any ACB(= 1,s = 1) model is simply denoted as ACD model. It
is worthwhile to highlight that autoregressive structuoésigher order do not increase the
distributional fit of the residuals; see Bhatti (2010). Wareate the parameters of the SBS-
ACD model by maximizing the log-likelihood function fgf = (6",¢")" obtained from
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(3.10) and expressed as

lsps—acp(&;®) =) {log(¢SMN(a($z; k,0;);0,1, H)) — glOg(xi) + log (xl o ) } ;

- (3.12)
with log(o;) = a + Blog(ci_1) + Y[zi_1/0i_1], whered = («, 8,7, )" and¢ denotes the
additional parameters corresponding to the PDF given itDj3associated witl#/ (-). Note
that the vector of paramete{shat indexes the PDF associated wifli-) can be assumed to
be known or obtained from the data. We select the log-lin@an tr; given as in (3.11) with
r = 1 ands = 1, because it allows an unconstrained parameter estimatiba tonsidered.
Otherwise, one should add constrains in the parameter a&#tim so that one arrives at a
local extreme with positive parameter values; see Bhaitl (2.

The EM algorithm is a widely applicable approach for iterattomputation of ML esti-
mates, useful when unobserved data or latent variablesresemt. Because this algorithm
encompasses the expectation step (E-step) and the mationizéep (M-step), Dempster
et al. (1977) coined this name in their seminal paper. Adogrtb Ferreira et al. (2011),
the EM algorithm is popular due to (i) its computational siitipy in the M-step, because
it involves only complete data ML estimation; and (ii) iteiste and straightforward imple-
mentation, because the iterations converge monotoniaalliythere are no need for second
derivatives. Specifically, let = (x1,...,2,)" andu = (us,...,u,)" denote observed
and unobserved data, respectively, &idndU their corresponding random vectors. Then
x, = (z",u")" stands for the original data augmented withs. In general, the two steps
of the EM algorithm are:

Algorithm 1 EM algorithm
1: E-step. ComputeQ(8|6™), forr = 1,2, ...; and
2: M-step. Find 6V such that)(6"+Y|6) = maxsea Q(6]6M), forr =1,2,. ..,
whereQ(6]6) is the expectation of the complete log-likelihood functmmditioned
to the observed data and evaluated at theh estimation 0.

From Theorem 4 in Balakrishnan et al. (2009), note that

Xil(U; =w;) ™ BS(V/g(w)k,0v), (3.13)

ind

U ~ Hw), i1=1,...,n.

Thus, the complete data log-likelihood function for SBSEA@0dels, associated with. =
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(z",u")T, taken from (3.12) and (3.13), is given by

n

1 1 T, O - n
. — Tt Tt 9 1 , N —nl | ,
eim) == 555 oo Z2 ]+§i:1j o (a1 + 73) — nlog(s) — 5 log(cr),
(3.14)

1=

wherec, is a constant that depends on known values ang], &t does not o@.
In order to implement Algorithm 1, we need to state the cood#l expectation of the

-~

complete log-likelihood function given in (3.14),(4|9) say, as

Q(d‘g) = — 1 U; {ﬂ L7 2} +Zlog (x; + 0;) —nlog(k) —glog(ai), (3.15)
i=1

2K2 4 o; X
=1
whereg; is as given in (3.11) withr = 1 ands = 1, and

ﬂi:E[ﬁ

~

Specific expressions fap(4|d) given in (3.5) depend on each SBS-ACD model conside-
red. Thus, the log-likelihood function for the BS-PE-ACD deb, /gs.pe-acp(d; ) say, is
obtained in an analogous way as in (3.14), witlbeing a constant that depends on known
values and on the parameterf U ~ St(2p), but does not od. Then, the conditional
expectation of the complete log-likelihood functisy pe.aco(d; X.) givenx is obtained as

in (3.15), with; defined in (3.16) specified @ = oy a(x;, 7, 0;)%le 1, fori = 1,...,n,
whereX, = (X", U")" andg, as mentioned, can be a known value or obtained from the
data in an optimal way; see details in Saulo et al. (2013) tk@BS¢-ACD model, we have

-~

a similar expression to that given in (3.15) f9(4|d), but nowu; given in (3.16) is

o~
9

Xi:xia(s:g}:E[Ui‘Xi:l’i,(s:g]: w1

1=1,....n,

(3.17)
where, in this case; is a constant that depends on the parametdi/ ~ Gammav/2, v/2),
but does depend not an and, such as fos, of the BS-PE-ACD modely, can be a known
value or obtained from the data in an optimal way. Therefordyoth of these cases (BS-
PE and BSt), based on Algorithm 1, the steps to obtain the ML estimatéseoSBS-ACD
model parameters are summarized in the following algorithm

W + CL(.Ti,/Ii\, 62)7

Algorithm 2 EM algorithm for SBS-ACD models
1: E-step. Computen'” givens = 6™ fori=1,...,n,r =1,2,...;and
2: M-step. Updates”) by maximizing (3.15) ove?.
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Note that the EM approach presented in Algorithm 2 permésvih estimates of the parame-
ters to be computed in an efficient way, such as mentioned2jh (Tote also thafi; given in
(3.17) works in Algorithm 2 as a weight function, such as reergd in (C3), assigning small
values to large values of the data, which allows us to conjedhe robustness proposed of
the estimation procedure; see Paula et al. (2012).

As is well known, under some regularity conditions, ML estors are asymptotically
normal distributed. Thus, based on this, for the case of Bf& ACD model, we have

Vi [6 — 8] B Ny(0,5s), asn — oo, (3.18)

whereXs is the variance-covariance matrix &hand> denotes convergence in distribution.
An approximatel00 x [1 — a]% confidence region foé obtained from (3.18) is

R={6 R :[§—0]'5;'[0 — 8] <% .}, O<a<l, (3.19)

where ., _, denotes theél — a] x 100th percentile of the chi-squared distribution with 4
degrees of freedom arﬁi,; is an estimate of’s.

In order to check the SBS-ACD model for a data set in practisajsual in lifetime and
duration analysis, we propose a generalized Cox-Snellluas{COX and SNELL, 1968)
given by

r® =log(S(z| 1)), i=1,...,n, (3.20)

Where§(xi\§2i_1) is the fitted conditional survival function of théh TD based on the past
information set,_;.

Survival functions for BS, BS-PE, B§-and GG distributions useful for obtaining (3.20)
are given by

Sps(zi;k,00) = 1= (alzy)), xi,k,0 >0,
Sus_pu(Ti K, 00,0) = 1—[1/2] [1 +T (%{a(xi)}%, ;—g) T (1 /29)] ,
Ti, K, 07 > 07 1/2 < QS 17
Sps—t(wi; 5, 05,v) = 1= [1/2] [+ a1 taorzn (1/2,7/2)]
Ti, K, 04, V > 07

Sca(zizv,n, ) = 1 =T [Yie(v,n)] ™" v)/T(v), ziv,n,¢; >0,

where®(-) is the N(0, 1) CDF and'(-), a(xz) andy(v,n) are as given in (3.5), (3.7) and
(3.8), respectively. In additior;(z, v) is the lower incomplete gamma function defined as

L(y,0) = [) v exp(—u)du, and |(a,b) = [ u*'[1 —u]*~ du/ fol w1 — u)~tdu is
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the incomplete beta function ratio. Note that, when the AG&lel is correctly specified, the
Cox-Snell residual has a unit exponential (EXP(1)) disttiitm; see Bhatti (2010).

3.5 Simulation study

In this section, we carry out two simulation studies, onesf@luating the behavior of the
ML estimators of the SBS-ACD models, and other one for detgdhe performance of the
residual proposed.

3.5.1 Estimation

We use the MC method for carrying out this first study. We foesnghe BS-PE-ACD
model, because, as mentioned, it has either less or gréigtee( or heavier tails) kurtosis
levels than the BS distribution. However, in Section 3.6p(egation with real TD data),
we consider BS, BS-PE and BSand GG-ACD models. The scenario of this study is the
following: the simulated sample sizes from the BS-PE-ACDdelcare considered to be
asn = {500, 1000, 3000, 5000} and the vector of true parameters@s= (o, 3,7,k)" =
(0.1,0.9,0.1,1.1) 7, whereas the number of MC replicationsis= 1000. The BS-PE-ACD
samples are generated by the transformation given in (8yidering’; = {g(U;)}'/?Z; ~
PE(0 = 1), with U; ~ St(p = 1) andZ; ~ N(0, 1), fori = 1,...,n; see Leiva et al. (2008)
for details about how generating random numbers from SBi@ilaliions. We estimate the
SBS-ACD model parameters by using Algorithm 2, with staytualues for(«, 3, ) to be
considered ag).01,0.70,0.01), for x asxy = /2 [z/Med[z] — 1], wherez and Medz] are
the sample mean and median based on observations (data)r;,...,z,)", and foro as
0o = Med[z]. For each parameter and each sample size, we report theigahpiean, CS,
CK, relative bias (RB) in absolute value and root of the mearased error{MSE) of the
ML estimators in Table 3.2. The RB is defined as[RB= |(E[7] — 7) /7|, whereT is the ML
estimator of a parametet and the sample CS and CK are, respectively, calculated by

CSz] = Vo =1 w3 o — 1) and CKaz] = n Y —al!

A D SR (I A & [t {232
(3.21)

where, as mentioned, = (z1,...,z,)" denotes the observations from a sample.

The definition of CKz| given in (3.21) is the raw measure, not excess kurtosis, wisic
obtained subtracting 3 from G in (3.21). In Table 3.2, we observe that, as the sample
size increases, the RB andMSE of the all the estimators decrease, tending them to be
unbiased, as expected. From this table, observe also thantpirical distributions of all the
parameter estimators are somewhat skewed and with higbgksirbut tending to the normal
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case, as the sample size increases. This is corroboratedybre$ 3.1, 3.2, 3.3 and 3.4,
which show the empirical distributions of the parameteinestors from the simulation study.
These graphical plots suggest symmetric empirical distiois for these ML estimators as
n increases, as expected. In addition, these figures provadsience intervals (Cls) for the
corresponding parameters, obtained from (3.18), consgleeveral values for the sample
size () and confidence levet).

Figura 3.1:empirical distribution ofv and Clg; [1 — @] x 100%) for the indicatech and.
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Figura 3.2:empirical distribution of3 and CI(3; [1 — w] x 100%) for the indicatedh andw.
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3.5.2 Residuals

Now, we conduct a second MC simulation study to examine thi@peance of the Cox-
Snell residual* defined in (3.20); see Bauwens and Giot (2000). Similarlyubs®&ction
3.5.1, we simulaté8 = 1000 MC samples of sizes = 200 from the BS-PE-ACD model
and, once again, we use Algorithm 2 to estimate the modehpateas. Figure 3.5(a) shows
a plot of the time against the residuél. This figure does not show unusual features. Figure
3.5(b) displays the empirical autocorrelation functiol€@A of the residuat®. Note that the
empirical ACFs are averages, over 1000 samples, of the A€secmted with each sample
of size 200. From Figure 3.5(b), the BS-PE-ACD model seenisetadequately specified,
because the residuef behaves as a sequence of independent and identicallyodisii RVs
and there is no indication of serial correlation. Figurg®.presents a quantile against quan-
tile (QQ) plot with simulated envelope, which allows us torgmare the empirical distribution
of the residuals for a simulated sample and the EXP(1) Higion; for more details on the
envelope plot, see Atkinson (1985). From Figure 3.5(c)e tioat the Cox-Snell residual pre-
sents a linear behavior and has an excellent agreementheitB XP(1) distribution, which
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Figura 3.3:empirical distribution ofy and CI¢y; [1 — @] x 100%) for the indicatedh andw.
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confirms the adequacy of the BS-PE-ACD model.

3.6 Analysis of high frequency financial transaction data

In this section, we apply existing and proposed ACD modelsgh frequency financial
transaction data. We consider here six data sets, studiBdatti (2010), corresponding to
the time elapsed between two consecutive transactionshwbntain forty trading days since
01-January-2002 until 28-February-2002. These data sjoored to General Motors (GM),
International Business Machines (IBM), Johnson & Johngdij) McDonald (MD), Proctor
& Gamble (PG), and Schlumberger Limited (SL) corporatioN®te that, as mentioned in
(D3), this type of data present an active trading in openmdj@osing hours and a dormant
trading around noon. This trading is named the time-of-dégce As explained by Engle
and Russell (1998), it is necessary to transform the dataderdo extract this effect from
the raw durations. We apply the approach suggested in T€82J2o0 obtain the time-of-day
adjusted durations; as

£y

Fi=2t i=1,...,n, (3.22)
¢

wherez; is the raw duration ana is the time-of-day effect. This effect is estimated using a
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Figura 3.4:empirical distribution ofs and Cl; [1 — @] x 100%) for the indicatedh andw.
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set of quadratic functions and indicator variables for daadhhour interval of the trading day
from 9:30am to 4:00pm; for more details on this and altemegtrocedures, see Giot (2000),
Tsay (2002), Drost and Werker (2004) and Bhatti (2010). &fital detrended TD data sets,
we use only observations in the period 10:00am to 4:00pm.
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Tabela 3.2summary statistics from simulated BS-PE-ACD data for tlukciated estimators and
n
Statistic 500 1000 3000 5000
a
True value 0.1000 0.1000 0.1000 0.1000

Mean 0.0964 0.0971 0.0999 0.0995
CS 1.1885 0.8571 0.4547 0.2516
CK 6.5193 4.3830 3.6492 3.2585
RB 0.0361 0.0290 0.0014 0.0049
vMSE 0.0885 0.0608 0.0344 0.0260
g
True value 0.9000 0.9000 0.9000 0.9000
Mean 0.8895 0.8947 0.8979 0.8989
CS —1.0616 —-0.6945 —-0.3834 -0.2153
CK 5.5867 3.6278 3.5492 3.1182
RB 0.0116 0.0058 0.0024 0.0012
vVMSE 0.0372 0.0254 0.0144 0.0110
o
True value 0.1000 0.1000 0.1000 0.1000
Mean 0.1174 0.1097 0.1032 0.1019
CS 0.2109 0.0525 0.0398 0.1968
CK 3.0894 3.1472 3.1859 3.0387
RB 0.1737 0.0966 0.0325 0.0190
vMSE 0.0272 0.0170 0.0079 0.0060

o~

K

True value 1.1000 1.1000 1.1000 1.1000

Mean 1.1263 1.1143 1.1053 1.1029
CS 0.2882 0.1934 0.1094 0.0775
CK 3.7016 3.5011 3.0083 2.9696
RB 0.0239 0.0130 0.0048 0.0027
vMSE 0.0486 0.0316 0.0159 0.0115

3.6.1 Exploratory data analysis

It is well known that high frequency financial data have datependence. Figure 3.6
shows graphical plots of the ACF and partial ACF for the GMMIBnd MD data sets, from
where it is noted the presence of serial correlation. A sinbkehavior is detected for the JJ,

PG and SL data sets (omitted here).

Table 3.3 provides some descriptive measures for TD datsstsdj by (3.22), which
include central tendency statistics, as well as the standiariation (SD), coefficient of vari-
ation (CV), CS and CK, among others. These measures indieafmsitively skewed nature
and the high kurtosis level of the data distribution.
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Figura 3.6:autocorrelation and partial autocorrelation functionshefindicated data set.
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Tabela 3.3summary statistics for the indicated data set.
Data set n Min. Median Mean Max. SD CVv CS CK
GM 56408 0.092 1.008 1.740 26.467 2.020 116.13% 2.782 11.951
IBM 127309 0.169 1.038 1.384 32523 1.252 90.43% 3.023 29.80
JJ 82938 0.131 0976 1.557 33973 1680 107.91% 3.135 18.463
MD 72979 0.121 1.006 1.752 47.163 2.081 118.75% 3.090 19.164
PG 78933 0.121 0985 1.582 26.327 1.718 108.58% 2.865 13.311
SL 90694 0.143 0996 1.708 31.143 2.011 117.72% 2.980 14.571

The HR of a positive RVX is h(z) = f(x)/[1 — F(z)], wheref(-) and F'(-) are the
PDF and CDF ofX, respectively. One simple manner to characterize the HR ikdoscaled
total time on test (TTT) function. We can detect the type of tHi&t the data have and then
choose a suitable distribution. The TTT function is givenibyu) = H~(u)/H~*(1), for
0 <u<1,whereH (u) = fOFfl(“)[l — F(y)]dy, with F~1(-) being the inverse CDF of.

By plotting the pointsk/n, W, (k/n)], with W, (k/n) = [ 2@ + {n—k}a)/ S0, Ty,
fork =1,...,n, andz; being theith observed order statistic, it is possible to approximate
W (-); see Aarset (1987) and Azevedo et al. (2012).

From Figure 3.7, we detect that the TTT plots suggest a uraid® for the GM, IBM

and MD data. The same results are obtained for the other éistéosnitted here). To confirm
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this detection, we did a simple simulation study from the BSrdbution. First, we generate
BS data with a similar framework to that found in real TD dathen, with the generated data,
we plot the theoretical BS HR and the TTT curve. The BS HR piotxged a totally unimodal
shape, whereas the empirical TTT plot was very similar td thand in the GM, IBM, JJ,
MD, PG, and SL data sets. This is an indication that TD dat& h&wally a unimodal HR,
as indicated by several authors; see, e.g., Grammig anddvig00) and Bhatti (2010).
From Figure 3.7, we also observe that the histograms, asasd¢he nonparametric density
estimates based on asymmetric kernels proposed by Saulo(@043) and Marchant et
al. (2013), evidence a positive skewness and heavy tailthéodata PDF. This ratifies the
results shown in Table 3.3. Hubert and Vandervieren (2008jted out that, in cases where
the data follow a skewed distribution, a significant numbetservations can be classified as
atypical when they are not. The boxplots depicted in Figurec8nfirm such a situation, that
is, several of the cases considered as potentially oubietee usual boxplot are not outliers
when we consider the adjusted boxplot, although atypica slidgll remain. In summary, the
conducted exploratory data analysis has shown the diffe@rectures mentioned in (Al)-
(A3), (B1)-(B3) and (D1)-(D4). All these conjectures allow to propose SBS-ACD models
for analyzing the GM, IBM, JJ, MD, PG, and SL data sets.

3.6.2 Estimation

We now estimate the parameters of the new BS-PE-ACD and-BSP models via the
EM algorithm described in Section 3.4; see Algorithm 2. f@stiion of («, 3, ) is initiated
at the same values as in Subsection 3.5.1, whereas staatingsvforoc andq are considered
to be the sample median and mean of TDs respectively, ovgoehed [9:30, 10:00), so
that spillovers of information from one trading day to theinading day are avoided. In
addition, we consider the existing BS-ACD and GG-ACD mogdelkich parameters are
estimated through a sequence of stages (BHATTI, 2010) baisede Nelder-Mead (NM)
and Broyden-Fletcher-Goldfarb-Shanno (BFGS) approacioesmnore details, see Nelder
and Mead (1965) and Mittelhammer et al. (2000, p. 199). Ndtat, in the last reference,
the BFGS quasi Newton approach is considered as the bdstiparg algorithm.

As mentioned earlier, we consider lags of ordere= 1 ands = 1, because a higher
order for ACD models does not improve the model fit. Thus, tDAL,1) specification is
sufficient for capturing the usual dynamics of TD data; seatB(2010).

The standard errors (SEs) of the ML estimators of the ACD rhpdeameters can be
obtained using the White covariance (WC) matrix (see ENGh& RUSSELL, 1998) given
by

WC(s) = (V*(s)) ™ {(VL(<)) (VE(e))  } (V22(s)) (3:23)



51

whereV/(s) and V?/((s) stands respectively for the gradient vector and the Hessian
trix after we replace parameters by estimates of the cooretipg log-likelihood function.
Specifically, the SEs are obtained by the square roots ofidgodal elements of the WC.
HypothesisH,: 7 = 0 againstH;: 7 # 0 can be tested by using the Wald statistic given by
[T — 70] /SET) e N(0, 1), where7 andr, are the corresponding estimator and its proposed
value inHy, respectively.

Estimated SEs can be obtained from (3.23) evaluatinggit @able 3.4 reports the model
parameter estimates and the estimated SEs of the corresgovidl estimators. All the
estimates are statistically significant at a level @f. Note that the ACD parameter estimates
are very similar across the models, independently of thenasd distribution.
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Figura 3.7:TTT plots, histograms with asymmetric kernel, and usual ajdsted boxplots for the
indicated data sets.
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Tabela 3.4:ML estimates (with estimated SEs of the corresponding Minegbrs in parenthesis)
for the indicated parameter, model and data set, whé&ehe maximum value of the log-likelihood

function.
Data set
Parameter GM IBM JJ MD PG SL
BS-ACD model
o -0.018 -0.045 -0.017 -0.017 -0.018 -0.019
(0.0023) (0.0032) (0.0010) (0.0043) (0.0060) (0.0092)
B 0.986 0.939 0.974 0.984 0.985 0.980
(0.0302) (0.0253) (0.0272) (0.0214) (0.0253) (0.0093)
~y 0.010 0.032 0.011 0.010 0.011 0.012
(0.0001) (0.0020) (0.0006) (0.0003) (0.0007) (0.0016)
K 1.213 0.873 1.042 1.204 1.063 1.147
(0.0022) (0.0002) (0.0012) (0.0011) (0.0016) (0.0007)
/ 83518.5 153644.7 112581.4 107508.0 108461.2 130066.5
BS-PE-ACD model
o —-0.026 -0.047 -0.024 -0.024 -0.024 -0.021
(0.0029) (0.0011) (0.0059) (0.0034) (0.0019) (0.0013)
B 0.968 0.923 0.950 0.965 0.968 0.969
(0.0094) (0.0097) (0.0207) (0.0117) (0.0080) (0.0088)
~y 0.008 0.021 0.008 0.008 0.009 0.007
(0.0016) (0.0055) (0.0013) (0.0014) (0.0018) (0.0016)
K 1.046 0.753 0.891 1.032 0.912 0.981
(0.2188) (0.1601) (0.1848) (0.2118) (0.1923) (0.1978)
0 0.592 0.590 0.592 0.592 0.591 0.593
/ 70373.2 123469.9 92717.3 90602.2 89545.1 130066.5
BS-t-ACD model
o -0.018 -0.045 -0.017 -0.017 -0.018 -0.019
(0.0000) (0.0004) (0.0001) (0.0000) (0.0001) (0.0001)
B 0.986 0.938 0.974 0.984 0.985 0.980
(0.0002) (0.0005) (0.0006) (0.0002) (0.0003) (0.0002)
~y 0.010 0.032 0.011 0.010 0.011 0.012
(0.0000) (0.0003) (0.0001) (0.0000) (0.0000) (0.0000)
K 1.209 0.870 1.036 1.201 1.059 1.145
(0.0002) (0.0001) (0.0001) (0.0001) (0.0002) (0.0001)
v 292 246 167 341 242 341
/ 83523.2 153635.7 112581.9 107523 108461.5 130087
GG-ACD model
o -0.015 -0.031 -0.010 -0.013 -0.018 -0.017
(0.0017) (0.0011) (0.0002) (0.0063) (0.0015) (0.0027)
B 0.988 0.939 0.976 0.983 0.980 0.981
(0.0037) (0.0181) (0.0198) (0.0279) (0.0005) (0.0404)
~y 0.022 0.050 0.020 0.022 0.027 0.026
(0.0008) (0.0037) (0.0004) (0.0036) (0.0008) (0.0024)
v 37.671 37.78 38.449 37.791 38.255 38.038
(0.0408) (0.4146) (0.8190) (0.6603) (0.4642) (0.9821)
n 0.152 0.2010 0.170 0.151 0.168 0.156
(0.0000) (0.0001) (0.0006) (0.0001) (0.0005) (0.0000)
/ 84201.8 153818.5 113326.7 109037.1 109025.7 132047.8
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3.6.3 Model checking

We now analyze the goodness-of-fit of the SBS-ACD model taltita through the resi-
dual defined in (3.20); see Section 3.4. We recall that, whemtodel is correctly specified,
the Cox-Snell residual has an EXP(1) distribution. Figu& @epicts the QQ plots of the
Cox-Snell residual for the indicated models and data sdtesd@ QQ plots allow us to check
graphically whether such residuals follow the EXP(1) disttion or not. These graphical
plots show a superiority, in terms of fitting to the data, ¢ 8S-PE-ACD model over the
GG-ACD model, followed by the B&ACD and BS-ACD models, although the GG-ACD
model fits some data well; see Figure 3.8(b). Consideringialieal data sets, the BS-PE-
ACD model fits the data adequately to furnish effective badédnference.

Figura 3.8:QQ plots of Cox-Snell residuals for the indicated fitted mdel data set.
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Table 3.5 reports the Akaike and Bayesian information gatgiven by AIC= —2/+2p
and BIC = —2/ + plog(n), respectively, wheré is the maximum value of the correspon-
ding log-likelihood function,p denotes the number of model parameters arttie num-
ber of observations. Also, the maximum and minimum valuethefsample ACF from
order 1 to 60, and the mean magnitude of autocorrelgtidor the first15 lags, namely
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p = [1/15] 3212, |Pk|, wherep, = cor(r&, v, ), are reported. The statistig is relevant to
separate the influence of the sample size on the measure dégnee of autocorrelation in
the residuals; see Bhatti (2010). From Table 3.5, we obdéate in terms of AIC values,
the BS-PE-ACD model is the best one, whereas theé-BED and BS-ACD models provide
close values, and the GG-ACD model is the worst one. Coriaglére BIC values, we once
again notice that the BS-PE-ACD model outperforms all thesabered models.

Turning now to check for misspecification, we look at the senCF of /th order with
[ varying from 1 to 60. Table 3.5 reports that there is no saraptecorrelation greater than
0.05 (in magnitude) throughout the models and residuals.

Tabela 3.5AIC and BIC values, sample autocorrelations, and the meamituale of autocorrelation
for the indicated data set and model.

Data set
Indicator GM IBM JJ MD PG SL
BS-PE-ACD model
AIC 140754.4 246947.8 185442.7 181212.4 179098.3 218204.2
BIC 140790.2 246986.8 185480.0 181249.2 179135.4 218241.9
max ACF 0.019 0.031 0.024 0.048 0.031 0.026
min ACF —-0.009 -0.000 -0.011 -0.001 -—-0.009 -—0.006
~ 0.009 0.015 0.011 0.017 0.013 0.009
BS-t-ACD model
AIC 167054.4 307279.4 225171.8 215054.0 216931.0 260182.0
BIC 167090.2 307318.4 225209.1 215090.8 216968.1 260219.7
max ACF 0.021 0.026 0.019 0.031 0.039 0.035
min ACF -0.008 -0.007 -0.010 -0.007 -0.014 -—0.003
~ 0.008 0.006 0.007 0.009 0.011 0.011
BS-ACD model
AIC 167045.1 307297.4 225170.8 215024.0 216930.4 260141.0
BIC 167080.9 307336.0 225208.1 215060.8 216967.5 260178.7
max ACF 0.021 0.025 0.019 0.031 0.0396 0.034
min ACF -0.008 -0.007 -0.010 -0.007 -0.014 -0.003
~ 0.008 0.006 0.007 0.009 0.011 0.011
GG-ACD model
AIC 168411.7 307645.0 226661.4 218082.2 218059.4 264103.6
BIC 168447.5 307684.0 226698.7 218119.0 218096.5 264141.3
max ACF 0.017 0.022 0.015 0.028 0.032 0.029
min ACF -0.010 -0.009 -0.014 -0.008 -—-0.014 -—0.006
~ 0.006 0.005 0.006 0.006 0.007 0.007

3.6.4 Predictive model

The analysis performed in Subsection 3.6.3 suggests tadBSPE-ACD model is the
most appropriate for fitting the TD data. Assuming, for exen®M data, the ML es-
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timates of the parameters are (with estimated SEs in pasislha = —0.026(0.0029),

£ = 0.968(0.0094), ¥ = 0.008(0.0016), andx = 1.046(0.2188). All estimates are statisti-
cally significant at the % level. Then, the predictive model is

Toog == exp (—0.018 + 0.9860 log(d;—1) + 0.0100[x;_1/7;-1]) , (3.24)

where the initial valu&, is the median over the period [9:30, 10:00). We may interjiret
expression given in (3.24) as the median TD in seconds. Eig@depicts approximaté %
confidence bands for the median TD based on the BS-PE-ACD Iraoderding to the result
givenin (3.19).

Figura 3.9:approximated5% confidence bands for the predicted median TD based on GM data.
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3.7 Concluding remarks

In this chapter, we have introduced a new methodology basedale-mixture Birnbaum-
Saunders autoregressive conditional duration modelsselh@dels allow us to obtain an
efficient computation of the maximum likelihood estimatofsthe model parameters, by
using the expectation and maximization algorithm. The nesthmdology includes a for-
mulation of the model, estimation of the model parametaferénce for these parameters,
the predictive model and a residual analysis for checkingehadequacy in practice. We
have conducted a Monte Carlo simulation study to evalua@énformance of the proposed
methodology, which indicated its adequacy. We have alsqewned the proposed autoregres-
sive conditional duration models based on the Birnbaum&eus-exponential-power and
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Birnbaum-Saunders-Studendistributions with some of the existing autoregressivedton
tional duration models, through an analysis by using ret d&financial transactions from
the New York stock exchange, which has shown the superiofitile Birnbaum-Saunders-
exponential-power case.

As part of future research, out-of-sample forecastingtstaf the model deserves special
attention. Also, it is important to consider different estition procedures, such as the esti-
mating functions and the method of modified moments, as wedbaiparametric structures
and influence diagnostics.
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4 PROCESS CAPABILITY INDICES FOR THE BIRNBAUM-
SAUNDERS DISTRIBUTION

4.1 Introduction

Quality control is extremely relevant to companies that ttardifferentiate themselves
from competitors in highly competitive markets. When qyatiarameters or specifications
in product manufacture are planned, it is important to ensloat the production process is
capable of maintaining tolerances in the design stage sktpeoducts. In this sense, the
concept of process capability or process ability providgsantitative tool to establish how
suitable a production process can be. The capability of aufaaturing process is the ability
it has to generate a result that meets a set of specificatsbaisliished by the company so that
a product can be considered of quality.

In statistical terms, the process capability is defined esdtio between the allowable va-
riation (based on specifications) and the natural variaifdhe production process (based on
the data) due to non-assignable causes. There are sevgsationaeasure process capability,
including graphical methods, design of experiments, andgss capability indices (PCIs).
These indices were developed for processes whose quaditgatieristic to be studied is nor-
mally distributed; see Montgomery (2005, pp. 334). Howguemany cases, production
processes follow non-normal distributions. In these catbesPCls for the normal distribu-
tion should not be used, because the obtained results iy about the performance of the
process in question, could be inaccuracy, misleading areliahle; see Kane (1986) and So-
merville and Montgomery (1996). Gunter (1989) emphasihediifference between perfect
(when the quality characteristic is normally distributeaid occasionally erratic processes.
Gunter (1989), McCoy (1991), and Johnson (1992) investdy#tte properties of PCls and
their estimators, when the distribution of the data is ndrma

The literature on PCls under non-normality concerning tbestruction of new PCIs
and/or development of new approaches, can be categoritedive groups (see KOTZ
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and JOHNSON, 2002): (G1) data transformation methods GefNFON, 1949; BOX and
COX, 1964; RIVERA et al., 1995; SOMERVILLE and MONTGOMERY996; HOSSEI-

NIFARD et al., 2009); (G2) quality control procedures fornamormal distributions (see
SHORE, 1998; LOVELACE and SWAIN, 2009); (G3) distributiottifig for empirical data
(see CLEMENTS, 1989; KOTZ and JOHNSON, 2002); (G4) distitoufree procedures
(see CHAN et al, 1988); and (G5) construction of new PCls GeEMENTS, 1989; GIL-

CHRIST, 1993; JOHNSON et al., 1994; WRIGHT, 1995; PEARN amtEG!, 1995, 1997,

1998; LIU and CHEN, 2006; VANNMAN and ALBING, 2007; HSU et aR008). For a

review of PCIs, see Tang and Tang (1999), Spiring et al. (28A8 Yum and Kim (2011).

The method introduced by Clements (1989) employs both alalision fitting approach
and a new PCI based on percentiles. In this method, the megmnmt coincide with the
center of the specification limits, when Pearson distrdngiare used. Gilchrist (1993) intro-
duced a quantile transformation similar to the Clementogbtbut based on a standardized
distribution, instead of Pearson curves. Johnson et a®4(18pplied the Clements method
to obtain estimators of two other PCIs. Pearn and Chen (1@®%)duced a new method
for estimating PCIs, which can be viewed as a modificatiorhef€lements method. The
authors found that estimators based on the new method daredifiate on-target processes
from off-target processes better than those obtained aqgpilye Clements method; see Pearn
and Chen (1995). The idea of all these authors was to repedthecproperty of the normal
distribution to yield a nonconformity proportion about 0%2.

The Birnbaum-Saunders (BS) model is a two-parameter, whatndistribution with po-
sitive skewness and non-negative support, which was @tgthfrom a material fatigue pro-
blem; see Birnbaum and Saunders (1969). The BS model desdtie total time elapsed
until a type of cumulative damage induced by stress excdezisesistance threshold of a
material thereby producing its rupture; see Johnson eL885, pp. 651-663). This model
has received considerable attention over the last decagandinly to its properties and re-
cent applications in various fields; see Leiva et al. (20I2)e of these properties is that a
random variable (RV) following a BS model can be seen as afoamation of a normal RV.
Despite the widespread use of the BS distribution, inclgdiome studies applied to quality
(see BALAKRISHNAN et al., 2007; LIO et al., 2010; LEIVA et aR011), there is no study
of process capability when the quality characteristicoiel a BS distribution. Therefore, the
aim of this chapter is to develop and implement computatipmamethodology for process
capability analysis based on the BS distribution and on tleen€nts-type PCls proposed by
Pearn and Chen (1995).

The rest of this chapter unfolds as follows. In Section 42 pnovide a background about
some results that are useful for developing our methodolbggection 4.3, we derive this
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methodology for PCls based on the BS distribution. In Sectiel, we perform a study of
Monte Carlo (MC) simulation for evaluating the proposed moetblogy. In Section 4.5, we
carry out an empirical application of the methodology byhgsieal data and a computational
code implemented in a noncommercial and open source statisbftware calleR. TheR
software can be freely downloaded frommw. r - pr oj ect . or g. Finally, in Section 4.6,
we sketch conclusions and recommendations for futuressvork

4.2 Background

In this section, we provide some results which allow PClstli@r BS distribution to be
developed.

4.2.1 Process capability indices
In general, the PCls, denoted by, @re defined as the ratio between a specification range
and the process variation, that is, as

_ Specification range
~ Statistical variability

P (4.2)
It is common to define the numerator range in (4.1) as therdifige between the upper
specification limit (USL) and the lower specification limit§L), which are predetermined
by the company.

The PCls are used when it is desired to study the processyatier time, taking into
account the influence of several operation conditions (tangle, shift, batch and raw mate-
rials). The PCls are defined depending on several situatidmish are: (i) whether the mean
coincides with the center of the specification limits (USId&rsL); (ii) by considering only
the USL; (iii) by using just the LSL; and (iv) whether the medwoes not coincides with the
center of the specification limits. In these situations,R#s are defined, respectively, as

_ USL-LSL
- R

 2[0—LSL

2lUSL -6
G- 2lust )

, Cou= , and Gy = min{Cy, Cy,},

whereR is the process variability anttis a parameter that represents the center of it, which is
associated with the distribution that governs the qualiyracteristic or RV under study. We
denote this RV asX, its mean by EX] = g, its standard deviation (SD) by/Var[X] = o,

and its quantile function (QF) by(p), for0 < p < 1.
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4.2.2 PCl under normality

As aforementioned, PCls were originally developed for redrprocess. Therefore, it is
assumed here thaf ~ N(u, 0?). Given the LSL and USL, we have the corresponding PCls
are

_ USL-LSL
n 60

uw— LSL
30

USL —

Cp 30

Assume thaj: ando are estimated from the sample mean and Sp asz = [1/n] > | x;
ando = S = [1/(n —1)] > [x; — Z]?, respectively, for a random sample of sizesay
Xi,...,X,, with observationsy, ..., x,. Therefore, natural estimates for the PClIs given
in (4.2) are obtained by substitutingando by : anda, respectively. The gand Gy are the

most commonly utilized PCls in industry; see Kotz and Johr{2002) and Anis (2008).

4.2.3 PCl under non-normality

If the characteristic of the production procesdollows a non-normal distribution, then
the PClIs should be modified. Although now the process is rmymal, we still use the
notationyu, o andz(p) for the mean, SD and QF, respectively. In this case, a widdbpted
procedure to construct PCIs is to substitGtein expression (4.2) for a rangk covering
a similar percentage to that 6& in a normal distribution, that isiR = U, — L, covering
a 99.73%, such that Js the 99.865th quantile and |, is the 0.135th quantile, from the
corresponding non-normal distribution. The idea behireséhsubstitutions is to mimic the
normal distribution property, so that the output perceatdjing outside the: + 3o limits
is 0.27%. This ensures that, if the process is well centdbed is, the mean coincides with
the midpoint of the specifications), the probability tha firocess is outside the specification
range (LSL, USL) is negligible; see Clements (1989), Peah @hen (1997) and Hsu et
al. (2008).

In the method introduced by Clements (1989), for computipg@ Gy, the center of
the process is based on the medi@f.5), instead of using the mean, because the median is
a robust measure of the central tendency of the process;arly for skewed heavy-tailed
distributions. Thusy — LSL and USL— . given in (4.2) are replaced by0.5) — L, and
U, — 2(0.5), respectively; see Johnson et al. (1994). A modificatiomefG@lements method
to obtain G and G was approached by Pearn and Chen (1995). They replaceddise v
by [Up — Lp|/2, so that G and G can be written as
o USL — LSL o 2[z(0.5) — LSL] o 2[USL — (0.5)]

z(pg) —x(pr) = ™ z(p2) — z(p1)

s and C;)k = min{Ci)h C;)u},
(4.3)
wherep, and p, are fixed percentages, which can be chosen using an optiatstisl

P x(p2) — x(p1)’ P!
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criterion, z(p) is the correspondingth quantile, andc(p;) — z(p;) is responsible for the
non-normality and/or asymmetry of the distribution.

4.2.4 The Birnbaum-Saunders distribution

A RV X with BS distribution has two parameters, one of shapex( 0) and another
of scale 0 > 0), whereg is also the median of the distribution. This is denotedXby~
BS(«a, #). BS and standard normal RVs, denoted respectivel¥tandZ, are related by

X = plaz/2+/{aZ/2)? +1]° and Z = [/X/5 — /5] X] /e

Then, it is possible to obtaii’ = [1/a?][X/8 + 3/X — 2] ~ x*(1), which is useful for
goodness of fit and detecting outliers using the Mahalardibtance. IfX ~ BS(«, /3), the
following properties hold. The probability density furenti (PDF) of X is given by

RS Sy G U N B D s | )
fes(z; a0, B) = mexp( 57 lﬁ + . 2}) Vi x>0,aa>0,8>0. (4.4)
The cumulative distribution function (CDF) of is Fix (z) = P(X < z) = ®([1/a][\/x/5 —
\/B/x]), forz > 0, whered(-) is the CDF ofZ ~ N(0, 1). Therefore, theth quantile or QF
of X is given by

z(p) = Fx'(p) = Blaz(p)/2 + V{az(p) /2P + 1]%, 0 <p < 1, (4.5)

where F!(+) is the inverse function of 'y (-) and z(p) is thepth quantile ofZ ~ N(0, 1).
Hence, from (4.5)z(0.5) = 3, and so it is the median of the BS model, as aforementioned.

Let X1,..., X, be a random sample of sizefrom X ~ BS(«a, ), with observations,
x1,...,x,. Then, the log-likelihood function far andg is given by

la,B) =k + % —nlog(a) — glog(ﬁ) + ; {log(xi + ) — % {% + g] } ., (4.6)
wherek is a constant that does not depend on neither 5. Taking derivatives of (4.6)
with respect to the parametersand 5 and equating them to zero, we obtain the maximum
likelihood (ML) estimates ofx and 3, @ and 3 say, asa = [s/§+ E/r — 2]'/2, wheres
andr are arithmetic and harmonic meansa«f ..., z,,, given bys = [1/n] > ", z; and
r=1/[{1/n}> ", 1/xz;], respectively. Howeverd must be obtained by using an iterative
numerical method, which can employ the sample median asgtaalue or the mean-mean
estimation for3 given by = [sr]/2.
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The asymptotic distribution of the ML estimatcifsandB is normal and therefore

vil(5)-(5)] > nortes). s

where!(a, 3) is the Fisher information matrix and” means “convergence in distribution

to”.

The Fisher information matrix far and can be given by

o 0
](avﬁ)zlzn 62 ]7

0 n[1/4+1/a24P(a)]
where
P()—Q/OO ¥—12d®() a.7)
@ o |1+ h(ax) 2 o '

with h(y) = 1+ y%/2 + y[1 + y?/4]"/2.

4.3 Birnbaum-Saunders process capability

In this section, we propose and develop PCls in cases whergudlity characteristic
follows a BS distribution. We focus on some results for thé €€ which we denote asE.
However, similar results can be obtained for the indicg3 C5; and G

4.3.1 PCI for the BS distribution

We propose a PCI for the BS distribution comparing the spetitin limits with some
range that covers a high percentage, which must be specifiedjp; + p,| say, for the
distribution of X. Consider the QF of the BS distribution given in expressib) and the
PCI presented in (4.3). Then, we propose

ss  USL—LSL USL - LSL 48)

P x(pe) —x(pr) 6@[22{% + m} _Zl{% + (%)2+1H

wherez; = z(p;) andz; = z(p2). Now, in order to compare a product with a LSL, we use

205 —LSL] 2[3 — LSL]
#(p2) = (p1) 5a[z2{%+ (%)2+1}—z1{%+ (%)2+1H

cBS — . (4.9)
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recall thats is the median of the BS distribution, we then have
s _ 2MUSL—p] _ 2[USL — 4]
pu — .
B gl (o /() 01} a5 1]
(4.10)
When the median moves away from the midpoint of the spedificdimits, we consider

Coe = min{C;°, Cos}, where GP° and GF are given in (4.9) and (4.10), respectively. Rewri-

ting expression in (4.8), we have

cos_ USL-LSL 2[USL — LSL]/j
P x(p) —x(p) [a2222 + azm/W} — [azzlz + az \/m] ‘

(4.11)
Figure 4.1 depicts a process for which the quality charetterfollows a BS distribution,

Figura 4.1: upper and lower limits of natural tolerance fa BS distribution.
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4.3.2 Estimation and inference for the BS PCI

This section presents the ML estimator of the BS PCI as watkassymptotic distribu-
tion. Also, interval estimation and hypothesis test ars@néed.
4.3.2.1 ML estimator of the BS PCI

Due to the invariance property of the ML estimators and u¢ingyl), an estimator of the

PCl is given by

a8s _ 2[USL — LSL]/3

P [@%22 + @22\/ {a22}2 -+ 4:| — [azzf + aZl \V {a21}2 + 4]

, (4.12)
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where o andE are the ML estimators ofi and 3, andz; and z, are thep; x 100th and
p2 x 100th quantiles of the N(0O, 1) distribution, respectively.
4.3.2.2 Asymptotic distribution of the ML estimator of tt& BCI

Under some regularity conditions (see COX and HINKLEY, 1)9@ES has a distribution
that is asymptotically normal. Then,
~BS

Vn[C,” - C5¥ 2 N(O,Var[éss]), asn — oo, (4.13)

Wheref:f:S is given in (4.12). Note that, by using the delta method, wesha

2

C on 0 2PCl(a, B
Var(C, ] = ( 4;PCIe. 9 %PCl(a,ﬁ)><2" 52 )("ﬁ;‘ ( )>,
N VZES YRS o) a5PCllev, B)

thatis,

varlC, | = [a%Pu(a, 5)}2§ + [%Pc:l(a, 5)}271[

52
14+ 1/a? + I(a)]

(4.14)

wherel(«) is givenin (4.7) and

2

23(12 Zaﬂ
28~ 1[USL — LSL] |:2az§+22\/{azg}2+4+ 2 7201212 —z1/{az1}2 +4— 1

2 2
iPCl(a,B) _ VA{za}e+4 Vi{az1}e+4 . @1s)
da {azzg + zoay/{aza}2 +4 — (xzzf — zio/{az1}2 + 4}
o 2872 [USL — LSL]
2 pcl(a, ) = — . (4.16)
aB {azzg + zoa/{aza}2 +4 — (xzz% — z1av/{az1}? + 4]

4.3.2.3 Parametric confidence interval for the BS PCI

Based on Equation (4.13), an approxim#ie x [1 — w|% confidence interval (Cl) for
the BS PCl is
BS ~BS =loits
Cloox - (C5%) = |Gy £ 2(1 - w/2)| SHC, 1],

where Sﬂ‘f:?s] = \/Var[ass].

4.3.2.4 Nonparametric confidence interval for the BS PCI

Bootstrap techniques have the advantage of being free fssungptions of the dis-
tribution of the estimator of the PCI; see Efron and Tibahid986) and Franklin and
Gary (1991). Specifically, leX, ..., X, be the original random sample from a process
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with distribution7'(-). A bootstrap sampl&;, ..., X is obtained from a drawn with repla-
cement from the original sample. Here, we set the number afstr@p replications equal to
1000. In order to calculate a ClI forf’, we consider the two following methods:

(i) Normal-approximation bootstrap method: first, we compute the estimator oﬁ@from
(4.12) based on thgth bootstrap sample, name@?S (), with j = 1,..., B. We assume

o BS . : , .

that the distribution OCE - CES is N(0, [SE@BS]2>. Since SEes is unknown, we can estimate
p p

it as

B 2
— 1 ~BS* =BS*
SEags*JBZ [cp (1) -C } ,
j=1
=BS* ~BS* * .
whereC, = [1/B] Ele CSS (7). Thus, aCl of tha 00 x [1 —w]% for CE‘S can be obtained
using a normal approximation

~BS _
Chioox-uj%(Cp>) = [Cp +2(1 —w/2) SEESS*].

(ii) Bootstrap percentile method: let G3>'(1) < --- < C;¥'(B) be the bootstrap estima-
tes in ascending order. Ther§(Blw/2]) and G (B[1 — w/2]) are thelw /2] x 100th and
[1 — w/2] x 100th percentile of the distribution cftss*(j). A Cl of the 100 x [1 — w]% for
Co%'is

Cligoxii-w(C5%) = [€ (Blw/2), € (Bl —w/2])].

4.3.2.5 Hypothesis testing for the BS PCI

Hypothesis H: CE‘S < C (the process is not capable) against EIE’S > Cy (the process
is capable) can be tested by using

~BS

[Cp — O]
= — _8s

SHC, |

whereC is a predetermined capability requirement.

N(O, 1),

4.3.3 Selecting the optimal percentage specified for the BSCIP

Optimum selection of; andp, = [1 — o] + p1, givenp, can be done by minimizing the
variance of the estimator of the BS PCI, that is, by miningzin

~BS
Var[Cp ] = V(ppr)v (417)
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where VafCA:SS] is given in (4.14). We now must find the optimal valueppfandp,. First,
we need the derivatives

_ *P(prpa) O 26w (p1, pa)
a—pr(pl,pz) = Ta—plw(pl,pz) + n[l/4+ 1/a? + I(a)] 8 w(p1, p4#.18)
and
9 _ a2¢(p17p2) 0 2ﬁ2w(p1,p2)
a—sz(pl,pz) = Ta—pzw(m,pz) + n[l/4+ 1/a? + I(a)] 8 w(p1, p#.19)

whereV (p1, p2) is givenin (4.17)1)(p1, p2) = OPCl(«, §) /0 andw(py, po) = OPCl(av, 8) /08,
are as given in (4.15) and (4.16), respectively, and

ozt 4022122
2 oo 2[USL — LSL] |:—4azlz1 + ey - VaZan? +4z;]
¥ (P1,pP2 = -
9p1 B [—a2212 —azivVa?z12 + 44+ 2222 + azov/a?z? + 4]
2 3
+ |2{usL —LsL} {—2az12 - \/% —z1vVa2212 + 44 2az% + \/% + 22V 02292 +4}
aZzy a?zo
9 a3zl2z’
—2a zlz{ — \/27724_ —a\/a2z12+4zi /[6{ a? 21 —azlx/a2z12 +4 +a zz
aZzy
+aza v/ a?zp2 +4} 2] ,
3 2 7
_ _ 2 / _ a"z] Zl _ 2 2 ’
9 ( : 2[USL — LSL] { 2a°217) Jaie av/ a2z +4zli|
—w(p1, =
o1 P1,D2 ]

B2 [—a2z12 —az1\/a?z12 + 44+ a?292 + azon/a2z0? + 4|2

4.4 1 4
2[USL — LSL] {40@25 - {(¥2QZ2222+Z§3/2 i \/c;zzQ 22+24 122 ¥ 44

B [—a2212 —az1\/ 02212 + 44 02292 + azo/a?z92 + 4]

2

3
+ |2{USL — LSL} {—204212 — & —znvVa222+4+2a20%+ 2 o’z + zov/ 2292 + 4}

1o}
a—mw(I’lvlm) = -

VaZzi?2 +4 Va2z? + 4
3..2,1
{2a2zzzé + 0‘227\/27;2 + av/a2z92 +4z§}:| / [B {—a2212 —az1vVa2z12 + 4+ 2292
atzo® +4
+azay/ a?z92 +4} 2] ,
3 2_/
2 az3%z 2.2
9 2[USL — LSL| |:2oz zozh + \/222—21 + av/ a2z +4z’21|
me(m’m) =

B2 [—a 212 —aziVa2212 + 4+ a2292 + azo/a?z02 + 4]

wherez| = 0z(p1)/0p; andzl, = 0z(p2)/0p2. Now, in order to select the optimal values of
p1 andps = [1 — o] + p1, givenp, we must solve the system of two equationgirandp,
formed by (4.18) and (4.19). Note that closed-form expoessfor optimal values g, and
p2 cannot be obtained, so that iterative numerical methodslbeussed for determining them.
We use the built-iopt i mfunction of theR software to solve this minimization problem.
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4.4 Simulation

In this section, we carry out MC simulations to analyze thdgsemance of q;k index
defined in (4.3) (with G = C, = 1, that is, the process is centered at the midpoint of
the specifications) in the case of non-normal distributioe consider the BS distribution
with density (4.4), and the log-normal (LN), three-paraenetamma (3-gamma) and three-
parameter Weibull (3-Weibull) distributions with densgigiven by

1 1 — u)?
fLN(x;M7U) = 5 exXp <_W) ’ _OO</~L<OO7'T7U>07
v ™
— ~)r—1 —
fggA<$;T,)\,’}/) %QXP <_[x)\fy])7 $>00r’}/,’}/ER,T,)\>O,

fswe(z;:0,n,7) = {"(x;i:)n_l] exp <_[$Env]"

) , x>00rv,yeR,nd>0,
respectively, wher€(-) is the gamma function. The latter three distributions areseh due
to a variety of asymmetrical and positively skewed shap@sns@ering the fact tha does
not provide in-built functions for the BS, 3-gamma and 3-blirandom number generators,
ther bs() function in thebs package, and thewei bul | 3() andr gamma3() functions
in the FAdi st package are utilized, respectively. The simulation séeresumes sample
sizesn € {10,25,50,100,200}. For the BS distribution, we consider high, moderate and
low symmetry, that is(«, ) € {(0.2,4.88), (0.5,1.75), (1.0,0.67) }, respectively. Note that
the considered value of constrains the value of to obtain Cﬁf‘ = CE‘S = 1, see BS PCI
givenin (4.11). Figure 4.2 shows a graphical plot for the RDthese three BS distributions,
from which we note that, although all of them havf?C= C3° = 1, the curves of the
corresponding PDFs are very different, and each of themepteg a distinct shape. We
generate 10,000 samples for each of different sizes fromdgSnormal, 3-gamma and 3-
Weibull distributions. For each distribution and each skngize, we report the empirical
mean, bias, SD, and the root of the mean squared eyfhSE) of qk in Table 4.1.

From Table 4.1, we observe that, as the sample size increifiesmpirical bias and
VMSE of all the estimators decrease as expected. BS distritaigth parameteréo, 3) €
{(0.2,4.88), (0.5,1.75)}, which are the low and moderate asymmetric cases, resplgtiv
present the lowest empiricalMSEs (» € {50, 100,200}) in relation to the other distribu-
tions considered. In particular, the Weibull case has a gmytbrmance for small sample
sizes @ € {10,25}).



69

Figura 4.2:PDF of the indicated BS distributions foffg= Cp° = 1.
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Tabela 4.1simulation results for the indicated distributions

log-normal  3-Weibull 3-gamma BS
a=020 a=050 a=1.00
n f=488 pB=175 p=0.67

Mean 10 2.1720 1.8423 2.1319 2.2180 2.0565 4.7586
25 1.6428 1.4501 1.6138 1.5262 1.4458 2.6209

50 1.4179 1.2950 1.4004 1.2265 1.2102 1.9512

100 1.2625 1.1830 1.2516 1.0481 1.0616 1.5584

200 1.1537 1.1044 1.1466 0.9405 0.9593 1.3264

Bias 10 1.1720 0.8423 1.1319 1.2180 1.0565 3.7586
25 0.6428 0.4501 0.6138 0.5262 0.4458 1.6209

50 0.4179 0.2950 0.4004 0.2265 0.2102 0.9512

100 0.2625 0.1830 0.2516 0.0481 0.0616 0.5584

200 0.1537 0.1044 0.1466 0.0594 0.0406 0.3264

SD 10 0.7386 0.6049 0.7872 0.9627 0.8570 3.4667
25 0.3914 0.3099 0.4034 0.4540 0.3937 1.3526

50 0.2750 0.2190 0.2839 0.2707 0.2623 0.7316

100 0.2069 0.1669 0.2128 0.1705 0.1900 0.4501

200 0.1608 0.1256 0.1635 0.1176 0.1444 0.3102

MSE 10 1.3853 1.0371 1.3787 1.5525 1.3604 5.1133
25 0.7527 0.5465 0.7345 0.6950 0.5947 2.1111

50 0.5003 0.3675 0.4909 0.3529 0.3361 1.2000

100 0.3343 0.2477 0.3295 0.1772 0.1998 0.7172

200 0.2225 0.1634 0.2196 0.1318 0.1500 0.4503

4.5 Application to real data

To illustrate the methodology developed in this work, welgpipto a real data set pre-
sented in Hsu et al. (2008).
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4.5.1 Problem: manufacture of integrated circuits

Below, we detail the problem upon study, present the dataaatyze them.

4.5.1.1 Description of the problem

The manufacture of integrated circuits comprises theahtiocess of wafer and the final
process of packaging. In an integrated circuit packagiotpfg, the manufacturing process
generally includes the following principal steps: die sagyidie mounting, wire bonding,
molding, trimming and forming, marking, plating and tegtirThe wire bonding is the most
common way to provide an electrical connection from thegrdated circuit apparatus to the
lead-frame. It is done by using an ultra-thin gold or alunmmarire to form the electrical in-
terconnection between the chip and package leads. Thespiggd wire bonding equipment
consists of a control system to feed the lead frame towardw/trk area. The image recog-
nition system guarantees that the die is oriented to ma&hdhding diagram for a particular
device. The wires are bonded one at a time with two bonds fdr eannection: one in the
die (first bond) and the other in the lead frame (second bofg.first bond requires a ball
formation that is put within the bond pad opening on the dmglar load and ultrasonic energy
for a few milliseconds, forming a ball bond to the bond padahdnh the wire bonding pro-
cess, one of the most important factors that is directlyteelao the quality level, is the ball
size. Because the process can be interrupted and shut dosyntivdawidth between the two
bond balls is too small, the bond ball size must be consid@rkd goal of this application is
to determine the production process capability of ballsfectrical connections. To achieve
this objective, it is established that the proposed LSL a&dl. fbr the ball size are 0.5 mil
and 8 mil (1 mil =1/1000 in. = 0.0254 mm), respectively.

45.1.2 Data

The quality characteristi& under study to determine the production process capability
is the ball size (in mm). A portion of historical data has beeliected and shown in Table
4.2.

4.5.1.3 Data analysis

In order to implement the PCls for the BS distribution, wedtthat the data of Table 4.2
fits this distribution. First, we provide a descriptive &tts of the data using the function
descri pti veSummar y() ofthebs 2.0 package. Descriptive statistics displayed in Table
4.3 allows a BS distribution to be reasonably assumed foretiugl ball size data, due to
their asymmetric nature and their level of kurtosis. Figdii@ shows graphical plots of the
autocorrelation function (ACF) and partial ACF for the bsilte data set, from where is not
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Tabela 4.2: 100 observations collected from historicah adthe ball size (in mm) for elec-

trical connections.
2.891 4.035 4495 2.890 2.312 3.158 5.228 3.334 5.896 5.639

3.842 1590 1954 1.842 0.680 2.752 1.301 2.260 0.889 2.381
0.619 2.788 1.050 3.750 3.508 6.123 6.549 5.954 2.207 4.417
4805 1516 2.227 2.797 1.636 1.066 0.940 4.101 4.542 1.295
1.770 3.492 5.706 3.722 6.644 2472 1.383 4.494 1.694 2.892
2.111 3591 2.093 3.222 2891 2582 0.665 3.234 1.102 1.083
1508 1.811 2.803 6.659 0.923 6.229 3.177 2.333 1.311 4.419
2495 0.921 4.061 9.725 1600 4.281 3.360 1.131 1.618 4.489
3.696 1.982 2413 5480 1992 2573 1845 4.620 6.221 1.694
4882 1.380 3.982 2260 2366 2.899 3.782 2336 1.175 3.055

noted the presence of serial correlation.

Tabela 4.3: descriptive statistics of the ball size for &leal connections (in mm).
Median Mean SD CS CK Min  Max n
2.77 3.036 1.715 0.984 4.048 0.619 9.725 100

Figura 4.3: autocorrelation and partial autocorrelatiamctions of the ball size data set.

ACF
0.20.0 0.2 0.4 0.6 0.8 1.0
partial ACF
0.2 -0.1 0.0 0.1 0.2

Second, in order to detect adequacy of the model to the datapply the Kolmogorov-
Smirnov (KS) goodness-of-fit test by using the functkebs () of thebs 2.0 package. The
result of the application of the KS test by using the packagwesented next:

One- sanpl e Kol nogor ov- Smi rnov test
data: X

D = 0. 0591,

p-val ue = 0. 8758

alternative hypothesis: two-sided
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The KS test indicates that there is not sufficient statiskewadence as for supporting that
the data do not follow a BS distributiop-alue= 0.8758). Thus, the BS distribution is

a very good option to model these data. In Figure 4.4, we gdeoai histogram with the
nonparametric density estimate based on asymmetric lsgpngbosed by Saulo et al. (2013)
and Marchant et al. (2013), and a probability plot with eopel obtained with the function
envel opeBS() of thebs 2.0 package. These graphical goodness-of-fit methods guppo
the result obtained by the KS test.

Figura 4.4: histogram and envelope of the data set undey stud
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Third, the parameters of the BS distribution are estimaiadthve functionm ebs()
from thebs 2.0 package. Using this function, we have the followingreates ofx and:

$al pha

[1] 0.6144122
$bet a

[1] 2.55106

With the estimated parameters and the information proviiéite description of the problem
given in Section 4.5.1.1, we compute the PClIs for the BSiligion using the expression
givenin (4.3). In addition, we compute the Cl bootstrap ascdbed in Section 4.3.2.4 using
the functionboot . ci () from theboot package. Note thaﬁ‘:ss = 2.847 and its Cls are
given by

Intervals :

Level Nor mal Percentile
95% ( 2.528, 3.157) ( 2.551, 3.176)
Cal cul ations and Intervals on Original Scale
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Note, however, that the production process is not centelative to the specifications. For
. . ~BS ~BS ~BS . ~BS

this reason, we must estima@s, = min{C, ,C,, }, thatis,C, = 1.734. The correspon-

ding Cls are given by

Interval s :

Level Nor mal Percentil e
95% ( 1.684, 1.784) ( 1.681, 1.784)
Calculations and Intervals on Original Scale

Note also that a gauge of how off-center the process is apgrist given by the magnitude
of éﬁf relative to@SS. According to Table 4.4, which presents some recommendeiimaim
values of the PCI (see MONTGOMERY, 2005, p. 337), we can calethat the integrated
circuit manufacturing process is capable, since the lowefidence limit is greater than5,
thatis, the recommended minimum value for existing praeessth two-sided specifications
and involving critical parameters.

Tabela 4.4: recommended minimum values of the PCI.
Two-sided One-sided

Situation specifications  specifications
Existing process 1.33 1.25
New process 1.50 1.45
Existing process including 1.50 1.45
safety, strength, or critical parameters
New process including 1.67 1.60

safety, strength, or critical parameters

4.6 Conclusions and future works

Process capability analysis has become an important ttegrial to applications of sta-
tistical process control for continuous improvement oflggyand productivity. The use of
process capability indices under normality as adequatedssithe ignorance of the effect of
asymmetric distributions can lead to misinterpretatioprafcess capability. It is known that
the use of symmetric distributions is common in practicilaions, but the asymmetric dis-
tribution must also be considered in the manufacturing strgu That is why several authors
have proposed indices for non-normal processes. Sevgradaghes have been analyzed to
address the problem of process capability for non-norndiiyributed data. In this chap-
ter, we proposed a methodology to analyze productive psocagability indices when the
quality characteristic follows a Birnbaum-Saunders dhstion. These indices are based on
the interquartile process rather than the process vaitiglais is the case for symmetric data.
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We also proposed a technique for obtaining the optimum geardlues used to minimize

the estimation error. In addition, we have performed a st study using presented pro-
cess capability indices and the results showed that thegzemare better for processes with
higher asymmetric. Moreover, we have implemented a codlanguage to calculate the
four proposed indices. In order to illustrate the developtoéthese indices we performed an
application using real data. This application showed thesenience of using the proposed
methodology.
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5 CONCLUDING REMARKS

No decorrer dessa tese exploramos algumas aplica¢fesriauiigio Birnbaum-Saunders
e duas de suas generalizagfes, isto €, as distribuicGdsaBmmSaunders generalizadas as-
simétricas e misturas de escala Birnbaum-Saunders. Defsutinta, nossos principais
resultados sdo elencados abaixo.

1. Estudos de Monte Carlo indicaram que dentre os estimsaahd@®@-paramétricos por
funcdo-nucleo estudados, aquele baseado na distribxipgoential poténcia Birnbaum-
Saunders assimétrica apresenta os melhores resultados.

2. Uma analise usando dados reais de transacdes financebatsd de valores de Nova
lorque mostrou que o modelo autoregressivo de duracaoaondl baseado na distri-
buicao exponential poténcia Birnbaum-Saunders é supBdemais modelos.

3. Estudos de simulagdo mostraram que indices de capaadau®cesso baseado em
uma distribuicdo mais assimétrica, nesse caso a distfibignbaum-Saunders, apre-
senta um melhor desempenho.

Considerando o que foi desenvolvido nessa tese, surgepegéiss de desenvolvimento
de algumas linhas de pesquisa, as quais sao expostas abaixo.

1. O uso da funcdo-nucleo, basedo nas distribuicdes Bimiaunders generalizadas
assimétricas, para estimacao da funcao de risco. Tal peiRsp@ esta sendo elabo-
rada.

2. E importante considerar modelos autorregressivos @gdarcondicional ndo-lineares,
em que a duracdo mediana depende nao-linearmente de imédade informacdes
passadas.

3. O uso da metodologia proposta a diferentes caractasdiic processo, tal como pro-
cessos com apenas limite inferior (superior). Também, odesdistribuicbes mais
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robustas, como a Birnbaum-Saundeftudent, para os indices de capacidade do pro-
cesso. Tais perspectivas também ja estdo sendo elaboradas.
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APPENDIX

Proof of Proposition 2.4.1

Considerf is the density to be estimated ay{t,jew_ess is its skew-GBS kernel estimator.
Then,

E|faencad®)] = /0 K woesv/h, o, g) (W) ] (w)du = B[ (&)], (5.1)

where¢, ~ skew-GB$v/h, z, \; g). Taking the expressions for the mean and variance of a
skew-GBS distributed RV given in Vilca and Leiva (2006) angressed in (2.5), we obtain

pe, = E[&,] = o+ DE[Z%] + 2R [Z{nZ? + 4}1/7],
oe, = Varle,] = 2?hE[Z%] — £k (B [Z2{h2* + 4}'/2])" + 22F [73{h 22 + 4}(8]2)
—“f;”E[ZQ]E [Z{hZz +4}1/2] N %(E[Zz]ﬂ + #E [Z4],

whereZ ~ SS0,1, \; ¢%). Applying a Taylor-Lagrange expansion in (5.2) for the dgns
f. we haveE[f(&,)] = f(ne,) + 5f"(ue.)oe, + A, whered € (0,1) andA = E[{¢, —

Lemmal

Under conditions (C1) and (C2), we have= E[{¢, — pe, 2 {f" (e, + 0 [&x — pe,]) —
f"(pe, )} = o(h). Then, since the densitfyis a twice differentiable function with continuous
derivatives, we obtain

Elf(&)] = f(@)+hl[5af (2)E[Z°] + 322" (2)E[Z%]] + o(h). (5.3)

Hence, (5.1) and (5.3) leads Bias| fuecsd )] = Elfaenced®)] — f(z) = h[Laf'(z)y, +
12? f"(2)72] + o(h), wherey, is givenin (2.5). W
Proof of Lemma 1

Let A(h) = E[{& — pe, }* {f" (e, +0[& — ne.]) — f"(1e,)}], whered € (0,1). First,
using (5.2), we have thafar[¢,] = E[{& — we, }?] — 0, ash — 0. This implies that
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{& — pe, } converges in probability to zero, i.e{§, — e, } 5 0, ash — 0, or more
specifically,v € > 0, limy,_,o P(|§, — pe, | > €) = 0.

& = pe,|- Then, 0 < Plpe, + 0{& — pe.} — pe.| > €) < P(|& — pe,| > €) = 0,
ash — 0, and, thereforeye, + 6 {& — e, } RN te,, ash — 0. Using (C1) and (C2) and

as f" is continuousf” (e, + 0 [£x — pe,]) LN f"(pe,), ash — 0. Let againe > 0 and

P> (e, + 060 — pe,]) — ["(ne,)| > €) — 0, ash — 0, andBe = {|f"(ue, + 6 & —
pe ) — f"(1e,)| > €}. Then, we have

A(h) < E[{& — pe 1" (e, + 016 — ne.]) = f"(1e.) ] 1]
+E{& — pe, Y [ (he, +01& — ne,)) — f" (ne,)| 1e].

Sincef” is bounded, i.e/f”(x)| < M, we deduce that
A(h) < 2ME[{& — pe, Y 1] + €E[{& — pe, ) 15e] <2M E[{&, — pie, }* 18] + ceh.

Using the Cauchy-Schwarz inequality, we have that ho and E[{¢, — e, }?15.] <

(E[{¢ — pe, }1)Y? < chP(B,). Then,V h < hg, we get thatd(h)/h < € e, with ¢ > 0.
Thereforelimy,_,0 A(h)/h=0. R

Proof of Proposition 2.4.2

Considerf is the density to be estimated ay{t,jew_ess is its skew-GBS kernel estimator.
Then, Vat fuevcsd®)] = (1/n)E[K2 | o (X)) + O(n"). Note that

2

BUR ca o e (X)) = v Bz 1] + e Bl ()] (64)

We point out that the integral needed for computifigcannot be solved analytically and then
numerical integration must be applied. Using Taylor expams the first expectation of (5.4)
and assuming that the functieny,) = _1/2f(wm) is continuous and bounded, we obtain

By 2 f(1h,)] = 2~ 2f(x) + O(h), wherey, ~ skew-GBSV'h, z, A; g%). Therefore, we
have

po, =El] = 3 2+ hE[Z%) + VRE[Z{hZ* + 4}'/%]]
z2h o a2h?/?
oy, = Var[yy,] = 2’hE[Z%] - - (E[Z{hZ? + 4}'/])" + TE[Z‘"’{hZz + 41172
2 h3/2 T2h2 r2h2

E[Z*|E[Z{hZ® + 4}'/?] = ——(E[Z%))* + ——E[Z"],

2
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whereZ ~ S0, 1, \; ¢%). Once again, using Taylor expansion now in the second expect
tion of (5.4) and assuming that the functiof),) = v; >/ f(1,) is continuous and bounded,
we obtainE[y; /2 f(1,)] = 273/2f () + O(h). Therefore, we prove that Vge.csd )] =
2c2CIn T h V207 f(2) + o(nTthY2). W



