
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

ANTONIO SOARES DE AZEVEDO TERCEIRO

Semantics for an Algebraic Specification
Language

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Prof. Dr. Daltro José Nunes
Advisor

Porto Alegre, May 2006



CIP – CATALOGING-IN-PUBLICATION

Azevedo Terceiro, Antonio Soares de

Semantics for an Algebraic Specification Language / Antonio
Soares de Azevedo Terceiro. – Porto Alegre: PPGC da UFRGS,
2006.

87 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2006. Advisor: Daltro José Nunes.

1. Prosoft Environment. 2. Algebraic Specification. 3. Deno-
tational Semantics. 4. Operational Semantics. 5. Semantic Proto-
typing. 6. Haskell Programming Language. I. Nunes, Daltro José.
II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. José Carlos Ferraz Hennemann
Pró-Reitor de Coordenação Acadêmica: Prof. Pedro Cezar Dutra Fonseca
Pró-Reitora de Pós-Graduação: Profa. Valquíria Linck Bassani
Diretor do Instituto de Informática: Prof. Philippe Olivier Alexandre Navaux
Coordenador do PPGC: Prof. Carlos Alberto Heuser
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro



ACKNOWLEDGEMENTS

To Professor Daltro Nunes, who was a great advisor and contributed with all his ex-
perience and practice to my advance in the technical, professional and personal fields.

To my colleagues at the Prosoft research group for the friendship and academic coop-
eration.

To the Brazilian people, for funding my work through The National Council of Scien-
tific and Technological Development (CNPq).

To Tânia, Günther, Ricardo, Rodrigo, Wally and Mrs. Fanny, for being my family in
Porto Alegre.

To Machado and Lucas, for being my reference of Bahia and for being so great friends.
To my family and friends in Salvador, who missed me and who I missed so much.
To the Free Software community, for providing all that great software, without which

this work wouldn’t be possible, and for showing that the knowledge is much more useful
for all society when it’s shared.

To the people from Associação Software Livre.Org, for all the things I learned with
them.

To all the trolls who feel as part of the Free Software community, for always remem-
bering me of the “do more, talk less” principle.

To Josy, for the greatest love one can experiment and for supporting me during the
realization of this work.



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

RESUMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 FOUNDATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Algebraic Specification Methods . . . . . . . . . . . . . . . . . . . . . . 10
2.1.1 Algebraic Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 The Prosoft Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Albebraic Prosoft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Prosoft Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Formal Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Denotational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Axiomatic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Action semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 ALGEBRAIC PROSOFT BASICS . . . . . . . . . . . . . . . . . . . . . 16
3.1 An overview of Algebraic Prosoft . . . . . . . . . . . . . . . . . . . . . . 16
3.1.1 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Graphical representation for Composite data types . . . . . . . . . . . . 19
3.2.1 Built-in data types representation and instantiation . . . . . . . . . . . . . 19
3.2.2 Instantiating built-in types in user-defined data types . . . . . . . . . . . . 21
3.2.3 Semantics’ informal notions . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Term Reduction and the ICS . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 PROSOFT FORMAL SEMANTICS . . . . . . . . . . . . . . . . . . . . 24
4.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Relating graphical representation of ATO’s and syntax . . . . . . . . . . 25
4.2.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.2 Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.3 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



4.2.4 Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.5 Unions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.6 Multi-level trees and their instantiation . . . . . . . . . . . . . . . . . . . 26
4.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Semantic domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Semantic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6 Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.7 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8 Auxiliary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.9 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 SEMANTICS-BASED LANGUAGE PROTOTYPING WITH HASKELL . 39
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 The Haskell programming language and semantic prototyping . . . . . 40
5.3 Developing semantics-based prototype implementations . . . . . . . . . 40
5.3.1 Abstract syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.2 Basic semantic domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.3 A denotational semantics for toy . . . . . . . . . . . . . . . . . . . . . . 43
5.3.4 An operational semantics for toy . . . . . . . . . . . . . . . . . . . . . . 47
5.4 More elaborated prototypes . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.6 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 THE DEVELOPMENT OF A SEMANTICS-BASED PROTOTYPE FOR
ALGEBRAIC PROSOFT . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1 Literate Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Literate Programming and the Haskell Programming Language . . . . 54
6.3 The prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.4 A Semantic Prototype Framework . . . . . . . . . . . . . . . . . . . . . 57
6.5 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

APPENDIX A PROSOFT-REDUCE SIMPLIFIED REFERENCE MANUAL . 65

APPENDIX B BUILT-IN ATO’S . . . . . . . . . . . . . . . . . . . . . . . . 69

APPENDIX C THE VIDEOCLUB EXAMPLE, REVISITED . . . . . . . . . 77



ABSTRACT

Prosoft is a research project at Instituto de Informática da UFRGS, developed by the
research group with the same name and coordinated by Professor Daltro José Nunes.
The project’s goal is to develop a full software development environment, the Prosoft
Environment, based on the concepts of Models, Lambda Calculus, Abstract Data Types
and Object orientation.

One of the components of the Prosoft Environment is its algebraic specification lan-
guage: Algebraic Prosoft. Although being the basis and theme of several works in the
Prosoft research group, Algebraic Prosoft doesn’t have its semantics properly defined.
Works done up to now were based on operational notions and presented different inter-
pretations of Algebraic Prosoft.

This thesis presents a denotational semantics specification for Algebraic Prosoft, com-
prising, among other features, its “inter-data type” communication primitive, called ICS,
and its graphical notation for representing instantiations of abstract data types.

This thesis also presents a study of semantic prototyping using the Haskell program-
ming language. The concept of Literate Programing and the proximity between lambda
calculus and Haskell were crucial to the rapid development of a prototype implementation
of Algebraic Prosoft, based on its specified semantics.

This thesis’ main contributions include: a precise and unambiguous interpretation
of Algebraic Prosoft, through a semantics specification; the definition of semantics to
the ICS, a unique (to the best of our knowledge) concept that provides a message-
passing mechanism between algebraic data types; a prototype implementation of Alge-
braic Prosoft, which can actually be used to experiment and test the Algebraic Prosoft
language definition and semantics specification; results regarding semantics prototyping
of both denotational and operational semantics specifications using the Haskell program-
ming language for rapid development of semantics-based prototypes of languages.

Since a large portion of Prosoft Environment’s development is done through interna-
tional cooperation projects and this thesis will strongly influence its future development,
the text was written in English in order to facilitate the information exchange between the
Prosoft research group and its foreign partners.

Keywords: Prosoft Environment, Algebraic Specification, Denotational Semantics, Op-
erational Semantics, Semantic Prototyping, Haskell Programming Language.



RESUMO

Semântica para uma Linguagem de Especificação Algébrica

Prosoft é um grupo de pesquisa do Instituto de Informática da UFRGS, desenvolvido
pelo grupo de pesquisa homônimo e coordenado pelo Professor Daltro José Nunes. O
objetivo do projeto é desenvolver um ambiente de desenvolvimento de software completo,
o Ambiente Prosoft, que é baseado nos conceitos de Modelos, Cálculo Lambda, Tipos
Abstratos de Dados e Orientação a Objetos.

Um dos componentes do Ambiente Prosoft é sua linguagem de especificação algé-
brica: o Prosoft Algébrico. Apesar de ser base e tema de diversos trabalhos no grupo de
pesquisa Prosoft, o Prosoft Algébrico não tem sua semântica devidamente definida. Os
trabalhos desenvolvidos até agora foram baseados em noções operacionais, e apresentam
diferentes interpretações do Prosoft Algébrico.

Esta dissertação apresenta uma especificação de semântica denotacional para o Prosoft
Algébrico, compreendendo, entre outras características, sua primitiva de comunicação en-
tre tipos de dados, chamada ICS, e sua notação gráfica para representação de instanciação
de tipos abstratos de dados.

Essa dissertação apresenta também um estudo sobre prototipação semântica usando a
linguagem de programação Haskell. O conceito de Literate Programming e a proximi-
dade entre Cálculo Lambda e Haskell foram cruciais no rápido desenvolvimento de uma
implementação protótipo do Prosoft Algébrico, baseada na sua semântica especificada.

As principais contribuições dessa dissertação incluem: uma interpretação precisa e
sem ambiguidades do Prosoft Algébrico, através da especificação da sua semântica; a de-
finição de semântica para a ICS, um conceito único (até o limite do nosso conhecimento)
que fornece um mecanismo de passagem de mensagens entre tipos de dados algébricos;
uma implementação protótipo do Prosoft Algébrico, que pode realmente ser utilizada para
experimentar e testar a definição da linguagem e a especificação da semântica do Prosoft
Algébrico; resultados sobre prototipação semântica de especificações tanto de semântica
denotacional quanto de semântica operacional usando a linguagem de programação Has-
kell para desenvolvimento rápido de protótipos de linguagens baseados na sua semântica.

Como grande parte do desenvolvimento do Ambiente Prosoft é realizado através de
projetos de cooperação internacional e essa dissertação irá influenciar fortemente o seu
desenvolvimento futuro, o texto foi escrito em inglês para facilitar a troca de informação
entre o grupo Prosoft e seus parceiros estrangeiros.

Palavras-chave: Ambiente Prosoft, Esperificação Algébrica, Semântica Denotacional,
Semântica Operacional, Prototipação Semântica, Linguagem de Programação Haskell .



8

1 INTRODUCTION

In this chapter, the fundamental motivations and goals for this work are presented.
Section 1.1 discusses motivations for this work, and section 1.2 states the goals aimed
with it.

1.1 Motivation

Prosoft is a research project at Instituto de Informática da UFRGS, developed by the
research group with the same name and coordinated by Professor Daltro José Nunes.

The project’s goal is to build a full Software Development Environment supporting
the Software Engineer from the earliest phase of requirements gathering, to the imple-
mentation phase.

An important component of the Prosoft environment is its algebraic notation, a pow-
erful notation for specifying Abstract Data Types, called Algebraic Prosoft.

The Algebraic Prosoft language passed through an evolutionary process. It was ini-
tially proposed by Professor Daltro Nunes in his doctoral thesis for representing program
control structures in a graphical fashion, when it was called just “Prosoft”. Later it was
adapted to represent algebraic data types, and has being used for that purpose until the
curent date. This algebraic branch of Prosoft became the base of a long-term research
initiative, comprising several projects, on Data-Driven Software Engineering. Later, a
primitive for inter–data type operations was added to Prosoft. More recently, this primi-
tive for inter–data type operation was restricted to applying only monadic operations.

Although being the basis and the theme of several works in the Prosoft research group,
Algebraic Prosoft doesn’t have its semantics properly defined. Work done until now have
been done based on operational notions, and presented different interpretations of Alge-
braic Prosoft. This was caused both by the natural evolution of the language and the lack
of a proper formal semantics.

Formalizing Algebraic Prosoft’s semantics will improve the Prosoft Environment as
a whole, since as soon as one has an exact meaning for the language’s constructions,
Algebraic Prosoft will have adequate mathematical foundations, allowing:

• precise interpretation of its notation;

• rapid specification prototyping through a semantics-based term reduction tool;

• proof of properties over specifications.



9

1.2 Goals

This work proposes the construction of a denotational semantics for Algebraic Prosoft,
fulfilling the existing gap in formalizing the language’s constructs. This way, the specific
goals of this work are:

• Specify and document a syntax for Algebraic Prosoft;

• Formalize and document an unique interpretation of Algebraic Prosoft, to serve as
a “user guide” to upcoming work on the Prosoft Environment.

• Create a denotational semantics for Algebraic Prosoft comprehending its core con-
cepts (NUNES, 2003).

• Develop a semantics-based prototyping tool for Algebraic Prosoft, featuring term
reduction over user-created specifications.

Algebraic Prosoft formalization will drastically improve the Prosoft Environment,
since it opens the possibility for property proving inside the Prosoft Environment, what
will lead to a quality enhancement both in the development process and in the developed
products.

Although proof of properties is very important, it’s outside the scope of this work.
Giving semantics for Algebraic Prosoft, however, is a first step towards property proving
over Prosoft specifications. The author hopes that this work can act as a solid base to
future work aiming property proving inside the Prosoft Environment.



10

2 FOUNDATIONS

This chapter presents foundation topics that were studied during the development of
this thesis.

Section 2.1 introduces Algebraic Specification Methods. Section 2.2 presents the
Prosoft Environment. Section 2.3 discusses Formal Semantics and give a brief overview
of the most common methods. Section 2.4 summarizes this chapter.

2.1 Algebraic Specification Methods

Algebraic Specification Methods are formalisms that aim at representing the solutions
for problems through algebras. Algebraic approaches privilege representing input and
output of programs, rather than other concerns in software development, such as concur-
rency or distribution.

In Algebraic Methods, a solution to a problem consists on the definition of a many-
sorted algebra: a collection of sets of data to represent program data, and opera-
tions(functions) over those sets representing programs’ data transformation.

Algebraic specifications are formalisms to describe problems in terms of those alge-
bras. They represent problems using sets of objects (terms) for problem data, and opera-
tions between those sets. Operations can either query the state of objects or create other
objects based on their state.

Classical problems in Algebraic Specification (SANNELLA; TARLECKI, 1999) in-
clude:

• What is a specification?

• What does a specification mean?

• When does a program satisfy a specification?

• When does a specification guarantee a property that it does not state explicitly?

• How does one prove that?

• How are specifications structured?

• How does the structure of specifications relate to the structure of programs?

• When does one specification correctly refine another specification?

• How does one prove correctness of refinement steps?



11

• When do refinement steps compose?

• What is the role of information hiding?

This work focuses on answering the two first questions in the context of Algebraic
Prosoft, namely:

• Define in a precise way the syntax for Algebraic Prosoft specifications.

• Give precise meaning to Algebraic Prosoft specifications.

2.1.1 Algebraic Specifications

Algebraic specifications is a broad subject. This section presents the concepts regard-
ing Algebraic Specifications, constrained to the notions relevant to this thesis.

As said before, Algebraic Specifications describe data types in terms of algebras: pos-
sible values and operations over those values. They have two main parts: operation sig-
natures and equations.

Signatures define the form of operations. They exhibit the operation symbol, its
domain and its range:

op (_, _, . . . , _) : s1, s2, . . . , sn → s

In the above signature, op is the operation symbol, si the domain sorts, and s the
range sort. _ are placeholders for the operation arguments, and there are as many of them
as sorts in the operation’s domain. The form of the operation can vary from the prefixed
form shown above: we can have post-fixed forms, as well as infixed ones (like in the
signature if _ then _ else _ : Bool, X, X → X), but in this work we’ll stick to the
prefixed form in order to keep simplicity.

If the domain of an operation is empty, it’s called a constant.
For a given sort s, the set of its terms is defined as follows:

• Every constant c with s as its range is a term of sort s.

• Every variable v, denoting some value of the sort s, is a term of sort s.

• For all operations op (_, _, . . . , _) : s1, s2, . . . , sn → s, op (t1, t2, . . . , tn) is a term
of sort s if each ti is a term of sort si.

Equations define the meaning of operations, by giving the equality of two terms, in
the form lhs = rhs, where lhs is often a term that matches the operation signature. lhs
may contain variables, and they can be referenced in rhs: as a general rule, all variables
present in rhs must be present in lhs: rhs can be thought as a function of the variables
present in lhs.

When an operation has no associated equations, its a generator operation: it represents
a value of the sort in its range. 1

The semantics of an algebraic specification is an algebra.
Algebraic specifications are often represented as Rewriting Systems. Given a set of

equations, a Rewriting System transforms terms using the equations: whenever a term t
matches the left-hand side (lhs) of an equation, it is replaced by the equation’s right-hand
side (rhs), substituting in rhs all variables present in lhs that matched subterms of t by
those subterms.

1The reciprocal is not necessarily true: generator operations can have associated equations.



12

2.2 The Prosoft Environment

The Prosoft project’s goal is to build a full Software Development Environment sup-
porting the Software Engineer from the earliest phase of requirements gathering to the
implementation phase: the Prosoft Environment.

The Prosoft Environment acts as a rich laboratory for research on Software Engineer-
ing, specifically in the fields of Formal Methods, Software Process Technology, Distance
Education and Computer Supported Cooperative Work.

The Prosoft Environment comprises several components. The most important of them
are Algebraic Prosoft and Prosoft Java. Several other components are built on top of
Prosoft Java, extending the Prosoft Environment to specific domains (REIS, 1998a,b;
SOUSA, 2003; REIS, 2002, 2003; RANGEL, 2003; FREITAS, 2005; MAIA, 2005;
DAHMER, 2006).

The following subsections describe the two main components in more detail.

2.2.1 Albebraic Prosoft

The principles leading to the choice of an algebraic method as the foundation for the
Prosoft Environment (NUNES, 1994) are:

• Data-driven strategy. Software Development is based on data structures defini-
tions representing the data relevant to the problem. The solution is given defining
operations over those data. (NUNES, 1992)

• The concept of model. A solution to some problem is the model of some theory.

• Lamdba Calculus. In Lamdba Calculus, operations with more than one argu-
ment are represented as higher-order functions. Lambda Calculus’s influence can
be noted in Algebraic Prosoft’s semantics description.

• Abstract Data Types. In data structures definitions, one can use predefined com-
posite types to build more complex and problem-specific ones.

• Object orientation. Reusability, provided by the concepts of messages, inheritance
and polymorphism, is a characteristic that is goal of any Software Development
Environment.

In Algebraic Prosoft, the main construction block is the ATO 2. One ATO contains
one specification, defining one or more sorts and operations over those sorts (i.e. a data
type). An ATO can only handle objects from the sorts defined by it.

Whenever an ATO needs to operate on objects from sorts defined in other ATO’s, it
uses an special operation named ICS. The ICS is responsible for “calling” operations
defined in other ATO’s over objects that are elements of one of their sorts. We’re used to
define the ICS as a message bus that “connects” the different ATO’s (as seen in figure
3.6).

Chapter 3 presents Algebraic Prosoft in more detail, together with an informal de-
scription of it.

2Portuguese acronym for Object Handling Environment (“Ambiente de Tratamento de Objetos”)



13

2.2.2 Prosoft Java

The concept of the Prosoft Environment has been focus of research since early 90’s.
There were several implementations of the Prosoft Environment, and each of them pre-
sented considerable enhancements compared to the previous one.

Prosoft’s first version was a single-user implementation written in Solaris-Pascal
(NUNES, 1992). ATO’s were implemented by writing Pascal functions, and the system
as a whole needed to be compiled into a monolithic program.

After that, Distributed Prosoft was develop in a mix of Pascal and C, as described
in (SCHLEBBE, 1994) and (GRANVILLE; GASPARY, 1996). This version supported
distributed and cooperative work on the Prosoft Environment.

Prosoft’s current implementation — Prosoft Java — was written in Java (SCHLEBBE;
SCHIMPF, 1997) and features a more modern design. New ATO’s can be added without
the need to recompile its kernel. Distributed and cooperative work are supported through
Java’s standard technologies for distribution.

Prosoft Java provides a visual environment for designing Prosoft specifications, em-
bedding ATO’s implemented in Java, and creating suitable user interfaces for those ATO’s.
Prosoft Java is the base of several of the current research works in the Prosoft research
group.

2.3 Formal Semantics

Semantics is concerned with the meaning of phrases in a language.
(WATT, 1991)

Formal semantics, or simply semantics, is concerned with assigning precise meaning
to phrases in a language, achieving a mathematical model of the language, in terms of
which one can reason about its programs. Phrases are often associated with mathematical
entities, such as functions, sets, set elements, terms, tuples, etc: this way, the underly-
ing mathematical theories of these entities can be used for reasoning about programs.
Depending on the methodology applied for giving semantics, the kind of mathematical
entities will vary.

Semantics is often given in terms of abstract syntax trees, which represent the structure
of programs in an abstract way. In abstract syntax, we are concerned only in the structure
of the program, and not in the actual syntax that would be used by a programmer to write
that program. An abstract syntax is defined by a grammar, which produces the (probably
infinite) set of possible programs that can be written in that language.

For each kind of node in the program’s abstract syntax tree (productions in the cor-
responding grammar), it is given some meaning in terms of mathematical entities, as we
shall see for each methodology described below. A desirable aspect of semantics is that
compound constructs’ semantics can be defined in terms of their components’ semantics.

The following subsections describe briefly the major semantics methodologies that
were studied for the development on this thesis.

2.3.1 Denotational Semantics

In Denotational Semantics, programs have their meaning expressed in terms of sets
and functions. Thus, giving a denotational semantics to a language consists of associating
each language construct to a number, a set, a function, etc. We say that each language
construct is denoted by one of those mathematical entities.



14

An important property of denotational semantics is that the denotation of a composite
construct is given in terms of the denotations of its components. This allows us, among
other things, to specify precisely and concisely the semantics of languages that allow
combination of several of its primitive constructs to build more complex ones.

For example, the semantics for commands can be defined in terms of a function
execute, whose definition for loops of the type while E do C could be given as in
figure 2.1 (WATT, 1991): the semantics of a while statement consists of first evaluating
the condition, and if it is true, execute the body and re-execute the whole while statement.

e x e c u t e Jw h i l e E do CK =
l e t e x e c u t e −w h i l e env s t o =

l e t t r u t h −v a l u e t r = e v a l u a t e JEK env s t o in
i f t r

then e x e c u t e −w h i l e env ( e x e c u t e JCK env s t o )
e l s e s t o

in
e x e c u t e −w h i l e

Figure 2.1: semantics definition for the while E do C construct

A great advantage of denotational semantics is that its notation can be almost translit-
erated into a modern functional programming language (as shown in chapter 5), what
makes possible the rapid prototyping of semantics specifications.

More information on denotational semantics can be found in chapters 3, 4 and 5 of
(WATT, 1991), in (SCHMIDT, 1986), and in the literature referenced on these books.

2.3.2 Axiomatic Semantics

Axiomatic semantics was initially created to proof correction of programs, and it is
based on predicate logic. Only later it was shown that axiomatic semantics techniques
— which at that times wasn’t called this way — could be used to specify semantics of
programming language constructs. (WATT, 1991)

An axiomatic semantics for language consists in a set of assertions about its properties.
If we consider that in a given program written in some language, the execution of its
parts changes the state of the system, then the language’s axiomatic semantics is a set of
invariants on the state that is preserved through the execution of the program.

More information on axiomatic semantics can be found in (GRIES, 1981) and in the
literature referenced there. In (DIJKSTRA, 1976), the roots of axiomatic semantics are
presented.

2.3.3 Operational Semantics

Operational semantics represents the execution of a program as a transition system,
in order to model how the state of an abstract (but realistic) machine changes during the
execution of programs. For that, one defines a set Γ of machine configurations, and a tran-
sition relation →⊆ Γ × Γ, where γ → γ ′ means “there is a transition from configuration
γ to configuration γ ′”.

The structure of the configurations γ ∈ Γ vary depending on each language to which
one is giving semantics. It often represents the structure of the program (which suffers
transformations while the program is “run”), plus every relevant aspect of the abstract



15

machine that is updated during execution of programs: memory, bindings, scope, etc.
Depending on the type of language — functional, imperative, object-oriented, with static
bindings, with dynamic bindings, ... — to which is being given an operational semantics,
the particular structure of the configurations becomes more or less complex.

For each type of language construct (expressions, commands, declarations, etc) the
corresponding machine transitions are defined through natural deduction rules. Chapter
5) shows an example of operational semantics for a toy language, together with its imple-
mentation in a modern functional programming language.

More information about denotational semantics can be found in (PLOTKIN, 1981)
and in the literature referenced there.

2.3.4 Action semantics

Action semantics represents a compromise between the mathematical formalism of
denotational semantics and the operational notions (in terms of which most of us has the
intuitive notion of a language’s semantics) of operational semantics. Defined in terms of
abstract data types — whose semantics is given by mathematics’ algebras — and using a
naming scheme for its sorts and operators that is very close to English, action semantics
tries to make semantics specifications more natural.

In action semantics, the semantics of language constructs is given in terms of an ab-
stract data type Action, which has several subtypes.

An advantage of using action semantics is that having the axioms of the data types
used in the semantics, one can submit the term representing a program to a term rewriting
system, allowing a simulation of the program’s execution through the term’s reduction.

More information about action semantics can be found in (WATT, 1991) and in the
literature referenced there.

2.4 Final remarks

This chapter presented a short overview of the underlying theories hat serve as foun-
dation of this work, and were object for study during the preparation of this thesis.

• Algebraic Specification methods are used to build solutions for problems in terms
of algebras. They comprise operations signatures and equations.

• The Prosoft Environment is a software development environment, aiming to support
the entire software development process. It uses Algebraic Prosoft as its specifica-
tion notation.

• Formal Semantics is concerned with giving precise meaning to language constructs,
in order to allow verifications, proofs and reasoning about programs.

Next chapter presents Algebraic Prosoft’s main characteristics: the syntax of its spec-
ifications, its graphical notation for representing instantiations of data types. Near to its
end, the next chapter also presents an informal notion of Algebraic Prosoft’s semantics.



16

3 ALGEBRAIC PROSOFT BASICS

As seen is chapter 2, Algebraic Prosoft is the language used for algebraic specification
in the Prosoft Environment.

This chapter presents the main principles of Algebraic Prosoft. Section 3.1 gives an
overview of the language, by showing some examples of its use. Section 3.2 describes
Algebraic Prosoft’s graphical notation for data types, together with an informal interpre-
tation of its semantics. Section 3.3 presents an informal notion of Algebraic Prosoft by
describing how term reduction works in it. Section 3.4 summarizes the chapter.

3.1 An overview of Algebraic Prosoft

To present Algebraic Prosoft’s features, this section first shows a commented example
of a Prosoft specification. Later in this section, we’ll present the foundations for the
Algebraic Prosoft notation.

3.1.1 An example

Suppose we are specifying an academic management system. A basic element of it
would be courses: they have a maximum number of attendants, as well as a set of those
attendants (which must contain no more elements than the course’s maximum).

specification Courses

operations
create_course: Integer → Course
add_attendant: Course → Course
attendance_list: Courses → List
. . .

In Prosoft, a specification has three parts:
The instantiation defines the structure of the data type. In this case, a Course is a

record, whose fields are the number of available slots (an integer), and some attendants,
which form a set. Those attendants are Students, whose data type structure is specified
in some other specification.

In the operations section, the specifier can extend the type (a record, in this case) by



17

adding new operations and their functionality, specifying the interface for the type. In
our example, the operations create_course, add_attendant and attendance_list were
defined.

equations
create_course(n) = make_course(n,emptySet)

add_attendant(make_course(slots,attendants)) =
if eq(length(attendant),slots)
then error
else make_course(slots,insert(attendants,s?))

attendance_list(make_course(_,attendants)) =
process_attendance_list(attendants)

process_attendance_list(emptySet) = emptyList
process_attendance_list(insert(set,attendant)) =
cons(ICS(Students,get_name,attendant),

process_attendance_list(set))

The equations section specify the semantics of each of the operations defined for
the type. In our example, all the operations defined as part of the type’s interface
(create_course,add_attendant and attendance_list are specified, as well
as an auxiliary one (process_attendance_list), that wasn’t declared as part of
the interface. Note the use of the ICS operation. It is used to refer to an operation in
another specification.

3.1.2 Foundations

The basic building block in Algebraic Prosoft is the ATO 1. An ATO defines one
(maybe abstract) data type, by indicating the sorts that participate in the type, an interface
for the type (operations and their signatures) and the semantics of operations through
algebraic equations.

In Prosoft, abstract data types are specified using a graphical notation. The instantia-
tion defines, based on the built-in composite types, a new sort. Figure 3.1(a), for example,
shows the graphical representation of an instantiation of the Map abstract data type, using
Code as its domain, ProductInfo as its range. The whole sort is called Catalogue. Code
belongs to the sort Integer, while ProductInfo is an external sort, defined elsewhere.

Figure 3.1(b) shows another example: Employees is an instantiation of the abstract
data type Set, and its elements belong to the sort Employee.

The operations section defines the ATO’s interface: what operations are available,
an the signature of each operation. For example, the following definition specifies an
operation op, with sorts E1, E2, . . . , En as its domain, and the sort E as its range.

op : E1, E2, . . . , En → E
When a new specification is instantiated, the base types operations are imported, and

are made available in that ATO. The specifier can extend this standard definition through
the definition of new operations.

1Portuguese acronym for “Object Handling Environment”



18

(a) A mapping with Code as domain
and ProductInfo as range

(b) Employees is a set, whose elements
belong to the sort Employee (defined
elsewhere)

Figure 3.1: Examples of instantiation using Prosoft graphical language

Each new operation is given a signature in the operations section, and can have its
semantics specified in the equations section. Operations to which no semantics is given
(through equations) are generators of its range sort.

The equations section defines the operations’ semantics.
Each equation has the form lhs = rhs, where both lhs and rhs are terms. Each

equation’s lhs must match the signature of some operation in the operations section.
In Prosoft, operations can be monadic 2 . An operation op : E1, E2, . . . , En → E is

interpreted as op : E1 → (E2, . . . , En → E), as in lambda calculus. This means that op
results are operations with signature E2, . . . , En → E. Those operations are defined in
the same ATO that defines the sort E2.

Lets say that the sort E2 is defined in ATO2. The equations for op, in this example,
would define, based on the state of some term t1, from sort E1, what operation in ATO2

must be applied to carry on the rest of the computation, with arguments t2, . . . , tn.
In the special case where n = 1 (i.e., op : E1 → E), the equations for op can be

defined in terms of E’s constructor operations (the simplest case), or in terms of other
operations of the ATO or of other ATO’s .

In the right side of the equations, it is often needed to reference operations defined in
other ATO’s; to do that, Prosoft provides a special operation, called ICS 3 . ICS has
two forms:

• ICS(ATO, op)

• ICS(ATO, op, 〈t1, t2, . . . , tn〉)

The first form is reserved for n-ary operations (with n > 1), and represents a ref-
erence to an operation in another ATO. For example, the following equation defines
op : E1, E2, . . . , En → E in terms of op′ : E2, . . . , En → E:

op(t(v1, v2, . . . , vm)) = ICS(ATO2, op
′)

The second form is used for explicit call to operations in other ATO’s. For example,
the following equation defines op : E1 → E2 in terms of op′ : E ′ → E2 (where E ′ is the
sort of the subterm v1)

op(t(v1, v2, . . . , vm)) = ICS(ATO2, op
′, v1)

Section 3.3 gives a informal notion on ICS semantics.

2They are not required to be monadic, but as it will be seen later, being monadic is a requisite for being
accessible through ICS.

3Portuguese acronym for “System Communication Interface”.



19

3.2 Graphical representation for Composite data types

Algebraic Prosoft uses a powerful graphical notation for representing composite ab-
stract data types. Through this language, one can instantiate the available built-in com-
posite abstract data types, as well as reuse other user-defined types.

The graphical notation represents data types in the form of trees: intermediate nodes
represent existing abstract data types that are being instantiated, and their subtrees the
actual parameters used in the instantiation.

The leaves represent either primitive types or non-primitive sorts defined in other
ATO’s. A label under the corresponding leaf indicates its sort. When no such label is
present under a leaf node, an external sort with the same name as the node is assumed.

3.2.1 Built-in data types representation and instantiation

Primitive data types (Integer, Real, String, Boolean, Char, etc) are represented by
single boxes. They are always the leaves in the instantiation of composite data types.

Composite data types are represented by trees with a specific layout for each data type.
Follows the representation used in Algebraic Prosoft for the built-in composite abstract
data types. Those built-in composite data types are described, highlighting their graphical
representation.

In each composite data type description, we list the sorts generated by the instantiation
of that data type (sorts), as well as the parameter sorts needed for the instantiation (formal
sorts).

(a) Sets graphical rep-
resentation

(b) Maps graphical represen-
tation

(c) Lists graphical rep-
resentation

Figure 3.2: Set, Map and List representations

3.2.1.1 Set

This is the abstract data type for sets. The most common set operations are available,
as well as membership operations. As seen in figure 3.2(a), sets are represented by a
single-child tree, where there is a small “s” above the child node.

• Sorts: Set.

• Formal sorts: Component.

3.2.1.2 Map

Map is the type for function-like objects, where for each input value (called “key”),
there is one and only one associated object (that can be itself a set or list, but is still unique
regarding that key). As seen in figure 3.2(b), maps are represented by a Map node, and



20

two child nodes linked by an arrow: the left one for the Domain (values used as keys),
and the right one for the Range.

• Sorts: Map.

• Formal sorts: Domain, Range.

3.2.1.3 List

List is the type for sequences of objects. Differently from Set, in a List duplicated
elements are allowed, and the order of the elements is relevant. List is represented as in
figure 3.2(c).

• Sorts: List.

• Formal sorts: Component.

(a) Records graphical representation (b) Unions graphical representation

Figure 3.3: Record and Union representations

3.2.1.4 Record

A Record is a composite, non-homogeneous type. Each field is declared as being of
its own sort. In the case of records, the name of each field (the name inside the box, see
figure 3.3(a)) is used in the name of the corresponding operation that fetches the value of
that field in a term from sort Record (see section B in appendix).

• Sorts: Record.

• Formal sorts: Field1, F ield2, . . . , F ieldn.

3.2.1.5 Union

Union represent the union of n types, each prefixed with a tag. A term from Union
is either a term from Sort1 tagged with Alt1, or a term from Sort2 tagged with Alt2, ...,
or a term from Sortn tagged with Altn. In Prosoft, the node names (see figure 3.3(b)) are
used as the tags. The alternatives’ names are used to build constructor operations for each
one of the alternatives (see section B in appendix).

• Sorts: Union.

• Formal sorts: Sort1, Sort2, . . . , Sortn.



21

(a) First one built-in data type is
chosen

(b) Then we rename a ter-
minal node

(c) Nodes can be ex-
panded as needed.

. . .

(d) The process is repeated for
each child node...

(e) ... until we have
a fully specified new
type.

Figure 3.4: User-defined type: instantiation explained in a few steps.

3.2.2 Instantiating built-in types in user-defined data types

The creation of user-defined types is supported through instantiation of one or more
built-in types. Users can create types that are lists of sets of maps, or maps from Integers
to sets of records, and so on.

In general, a user-defined type is created following the criteria below:

a) Choose a built-in type and rename the main sort (the root of the tree) to reflect the
new type. (figure 3.4(a))

b) For each child node (formal parameters):

• Rename its box according to the new type. (figure 3.4(a))

• If the node is a primitive or a sort defined elsewhere, specify as a label below
it which sort it represents (alternatively the label can be blank to refer to a sort
with the same name as the node). (figure 3.4(b))

• If the node must be itself a composite type, just “create” the corresponding
tree under it and proceed to b). (figure 3.4(c))

3.2.3 Semantics’ informal notions

Suppose a built-in type Type1, specified in an ATO named ATO1. If we instantiate
Type1 as Type2 inside a new specification ATO2, using Sorti for FormalSorti, this
instantiation makes every operation (and its associated equations) in ATO1 be inherited
by ATO2 under the following rules:



22

• Every occurrence of Type1 in the operation’s signature is replaced by Type2.

• Every occurrence of FormalSorti in the operations signature is replaced by Sorti.

3.3 Term Reduction and the ICS

In Algebraic Prosoft reduction can occur in two contexts: local reduction, where
both the operations defined by the user and the operations inherited from the instantiated
built-in types (as seen in section 3.2) are available; and ICS reduction, for references to
external operations through the ICS operation.

Local reduction is used whenever an ATO specifies its equations in terms of local
operations:

• equations are tested from top to bottom, for matching the term being reduced against
each equation’s left-hand side.

• when the term being reduced matches equation i’s left-hand side, the term is re-
placed by the equation’s right-hand side, replacing variables by the correspondent
sub-terms in the original term, according to the matching. Then this new term is
reduced again.

• If no equation matches the term being reduced, we then try to reduce each one of
its sub-terms. If at least one is reduced, then we try to reduce the whole term again.
Otherwise the reduction stops.

Within ICS, reduction is somewhat more complicated. The semantics of the applica-
tion ICS(ATOi, op, 〈t1, t2, . . . , tn〉), with op defined as op : E1, E2, . . . , En → E, is as
follows:

• apply operation op, defined in ATOi, to the term t1 (in other words, reduce op(t1)
in the context of ATOi)

• when n > 1:
the op application’s result must have the form ICS(ATOj, op

′), where op′ :
E2, . . . , En → E; in this case, apply ICS(ATOj, op

′, 〈t2, . . . , tn〉). Optionally,
there can be intermediate results in terms of local operations, which should eventu-
ally reduce to something in the form ICS(ATOj, op

′).

• when n = 1:
op application’s result must be: either a term t from sort E, in this case the fi-
nal result; or a term in the form ICS(ATOE, op′′, 〈t′1, t

′

2, . . . , t
′

m〉), which is then
reduced by this same process.

This semantics notion highlights one strong characteristics for ICS reduction: as seen
in section 3.1, operations reduced by ICS must be monadic. This restriction limits what
operations can be “called” through ICS.

Operations, however, don’t need to be monadic. For example, most of operations in
built-in data types that manipulate or operate objects won’t be monadic: they can still be
used in user-specified ATO’s that include those built-in ATO’s.

The ICS behavior can be illustrated by figure 3.5: each ICS call triggers a “jump”
to another ATO to proceed reduction in that context. Is some sense, ICS acts like an
system bus through which ATO’s can exchange messages, as illustrated in figure 3.6.



23

Figure 3.5: ATO’s and ICS: ICS reduction in Prosoft

Figure 3.6: The ICS acts as a message bus between the ATO’s

3.4 Final remarks

This chapter presented an overview of Algebraic Prosoft: how it can be used to model
real-world problems, how to use its graphical notation in the definition of data types in
Prosoft, as well as an informal notion of the semantics for the graphical notation (the
instantiation of data types) and term reduction.

Next chapter presents Algebraic Prosoft’s formal semantics.



24

4 PROSOFT FORMAL SEMANTICS

This chapter presents Algebraic Prosoft’s formal semantics, using the denotational
method as presented by Watt (WATT, 1991). Section 4.1 presents Algebraic Prosoft’s
syntax; section 4.2 relates the graphical representation of ATO’s to their corresponding
syntactic form in Algebraic Prosoft’s syntax. section 4.3 introduces the notation used in
the semantics definition. section 4.4 states the semantic domains used in the semantics;
section 4.5 presents the core parts of the semantics; section 4.6 presents the semantics
for instantiation of ATO’s; section 4.7 presents the semantics for term matching; section
4.8 presents the auxiliary functions used in the earlier parts of semantics; section 4.9
summarizes the chapter.

4.1 Syntax

Most of semantics definitions rely on an abstract syntax for describing the language,
but for Algebraic Prosoft we’ll present its concrete semantics. Algebraic Prosoft’s syntax
is already very simple and easy to understand, and making it simpler would prejudice
readability.

This way, presenting the actual syntax used in specifications won’t distract the reader
from what really matters here, the semantics definitions.

Specification ::=
specification Id

Includes

FormalSorts

Sorts

Operations

Variables

Equations

end

Includes ::= IncludeDecl∗

IncludeDecl ::= include Id ∗








include instantiation of Id

RenameFormalSpec∗

renamed using Id for Id

RenameFormalSpec ::= using Id for Id



25

FormalSorts ::= ε
| formal sort Id

| formal sorts Id ∗

Sorts ::= ε
| sort Id

| sorts Id∗

Operations ::= ε
| operations Operation∗

Operation ::= Id : SortName∗ → SortName

SortName ::= Id

| ExternalSort Id Id

Variables ::= ε
| variables Variable∗

Variable ::= Id : SortName

Equations ::= ε
| equations Equation∗

Equation ::= Term = Term

| Term = Term if Term

Term ::= Id

| Id ?
| Id (Term∗)
| ICS (Id , Id)
| ICS (Id , Id , [Term∗])
| if Term then Term else Term

4.2 Relating graphical representation of ATO’s and syntax

Every predefined ATO together with its graphical representation (as shown in sec-
tion 3.2) has a corresponding syntax. This section associates the trees in their graphical
representation with their corresponding syntactic form in the syntax used for semantics
definitions, aiming to help the development of a future graphical tool for ATO’s design
and its integration with the presented semantics.

4.2.1 Sets

include instantiation of Sets
using B for Element

renamed using A for Set



26

4.2.2 Maps

include instantiation of Maps
using B for Domain,
using C for Range

renamed using A for Map

4.2.3 Lists

include instantiation of Lists
using B for Component

renamed using A for List

4.2.4 Records

include instantiation of Records_N
using B1 for Field_1,
using C1 for Sort_1,

using B2 for Field_2,
using C2 for Sort_2,
...
using BN for Field_N,
using CN for Sort_N

renamed using A for Record_N

4.2.5 Unions

include instantiation of Unions_N
using B1 for Tag_1,
using C1 for Sort_1,

using B2 for Tag_2,
using C2 for Sort_2,
...
using BN for Tag_N,
using CN for Sort_N

renamed using A for Union_N

4.2.6 Multi-level trees and their instantiation

In the case of multi-level instantiation (e.g. sets of records, or lists of maps), the
corresponding syntactic form must be created by sequencing the instantiations of each
subtree in a bottom–up fashion. There is an example below:



27

include instantiation of Maps
using C for Domain,
using D for Range

renamed using B for Map

include instantiation of Lists
using B for Component

renamed using A for List

4.3 Notation

In this section, we introduce the notation used in Algebraic Prosoft’s semantics defini-
tion. At principle, the notation is the one used by (WATT, 1991) and (SCHMIDT, 1986),
with some additions.

Since we’ll be using = for definition of variables, we’ll represent equality as ≡. This
way, x = y is read “x is defined as y”. x ≡ y reads as “x equals to y”.

Other notation worth to mention is the representation of lists:

• A∗ represents the domain of lists whose elements are of type A.

• x • xs represents a list that has x as its first element, and the list xs as its remainder.

• [x ] represents a list that consists of only one element x .

• ++ is the lists (and strings) concatenation operator.

Some functions on lists are commonly used: they are map, foldl , init and last .

map : (A → B) → A∗ → B∗

map f [ ] = [ ]
map f (x • xs) = (f x ) • (map f xs)

map applies a function f to every element of a list and yields another list with the
results of the applications. Example: map (+1) [1, 2, 3] = [2, 3, 4]

foldl : (A → B → A) → A → B ∗ → A

foldl f z [ ] = z

foldl f z (x • xs) = foldl f (f z x ) xs

foldl operates z with the first element of a list, through the function f . This is repeated
with the result of the previous operation and the rest of the list, until its end. For example:
foldl (++) "a" ["b","c"] = "abc".

init yields all the elements of a list, except for the last one.

init : A∗ → A∗

init [x ] = [ ]
init (x • xs) = x • (init xs)

last yields the last element of a list.

last : A∗ → A

last [x ] = x

last (x • xs) = last xs



28

Another domain largely used are maps. A
m
−→ B is the domain of maps from A to

B . If m is a map, m (x ) is the value at the key x . {} is the empty map. m ∪ {x 7→ y}
represents a map that is just like m, except for mapping x to y . In general:

(a ∪ b)(x) =

{
b(x), if x ∈ domain(b)
a(x), otherwise

Syntactic elements are represented inside double brackets, like Jif t1 then t2 else t3K.
Sets and functions use the regular notation.

4.4 Semantic domains

The Prosoft domain represents instances of the Prosoft Environment: they hold all
available ATO’s, indexed by their names. Prosoft is a mapping from identifiers to ATO’s.

Prosoft = Id
m
−→ ATO

We represent an ATO by a triple with its operations, variables and equations. ATO

is a Cartesian-product domain, in which each element is a list of, respectively, operations,
variables, and equations.

ATO = Operation∗ × Variable∗ × Equation∗

4.5 Semantic functions

specify is the semantic function for a series of ATO’s specifications. It takes the se-
quence of specifications and produces an environment of ATO’s, in which we can search
ATO’s by their names.

Since we expect that specifications presented later override earlier ones, recursion is
done from the end of the specifications sequence instead of being done from the begin-
ning.

specify : Specification∗ → Prosoft

specify specs = specify ′ specs specs where

specify ′ : Specification∗ → Specification∗ → Prosoft

specify ′ [ ] = {}
specify ′ allSpecs specs =

(specify ′ allSpecs (init specs)) ∪ {id 7→ ato}

where

u
wwwwwwwwwwv

specification id

end

}
����������~

= (last specs)

ato = instantiate allSpecs noRename (last specs)

reduce is the generic reduction semantic function.

reduce : Term → ATO → Prosoft → Term



29

The definition of reduce is based on cases, one for each type of term.
In the case of a ICS call, reduce dispatches to the ics semantic function.

reduce JICS (atoname, op, [args])K env =
ics atoname op args env

For the other form of ICS (operation reference) JICS (atoname, op)K, we just try to
reduce the term op in the context of the ATO atoname. In the case when there is no ATO
with that name, we don’t reduce.

reduce JICS (atoname, op)K env =
case env (atoname) of

⊥ → JICS (atoname, op)K
ato → let ( , , eqs) = ato

in reduce JopK ato env

The next reduce cases represent local reduction.
The reduction of terms in the form Jif cond then t1 else t2K consists in first reducing

cond . If cond reduces to J"true"K, then we yield the reduction of t1. If cond reduces
to J"false"K, then we yield the reduction of t2. If cond reduces to something else, we
yield a partially-reduced term. 1

reduce Jif cond then t1 else t2K ato env =
let cond ′ = reduce cond ato env

t ′1 = reduce t1 ato env

t ′2 = reduce t2 ato env

in if (cond ′ ≡ J"true"K)
then t ′1
else if (cond ′ ≡ J"false"K)

then t ′2
else Jif cond ′ then t ′1 else t ′2K

All other types of term are reduced by reduce ′, which iterates on the equations defined
in the ATO ato looking for a match (see section 4.7 for term matching).

reduce t

ato

︷ ︸︸ ︷

( , , eqs) env = reduce ′ ato eqs eqs env t

ics , the semantic function for ICS reduction, is as follows:

ics : String → String → Term∗ → Prosoft → Term

ics ato op (t • ts) env =
let found = env (ato)
in case found of

⊥ → JICS (ato, op, [(t • ts)])K
ato → let term = Jop ([t ])K

result = reduce term ato env

in if (ts ≡ [ ])

1Note that as we are using lambda calculus, no assumption is made regarding the actual order of evalu-
ation of cond

′, t ′
1

and t
′

2
.



30

then case result of

JICS (ato ′, op ′, [ts ′])K → ics ato ′ op ′ ts ′ env

→ result

else let JICS (ato ′, op ′)K = result

in ics ato ′ op ′ ts env

The reduce ′ auxiliary function receives the equations twice, in order to keep both the
full equations list and the list of remaining equations available in the reduction try.

reduce ′ : ATO → Equation∗ → Equation∗ → Prosoft → Term → Term

When there are no more equations to try, atoms reduce to themselves:

reduce ′ ato eqs [ ] env

t

︷︸︸︷

JidK = t

Input variables are always reduced to themselves (that is, they are not reduced at all)2.

reduce ′

t

︷ ︸︸ ︷

Jid ?K = t

When applying an operator over some terms and there are no more equations to try
(because all others were already tried), maybe we can first reduce every argument, and
then try to reduce the whole term. When none of the subterms reduce, we stop the reduc-
tion.

reduce ′ ato eqs [ ] env

t

︷ ︸︸ ︷

Jop (args)K =
let rargs = map (λ t . reduce t ato env) args

in if args 6≡ rargs

then reduce Jop (rargs)K ato env

else t

For direct equations in the form t1 = t2, we just try to match the term t with t1,
producing the term environment env ′. If this matching succeeds, we then reduce t do t2
(substituted by env ′). Otherwise we try reduce ′ with the next equation.

reduce ′ ato eqs (Jt1 = t2K • eqsR) env t =
let (tv , env ′) = match t1 t ato {}
in if tv

then reduce (subs t2 env ′) ato env

else reduce ′ ato eqs eqsR env t

For equations in the form Jt1 = t2 if condK, we first try to match the given term against
t1, producing the term environment env . If that succeeds, we then reduce cond substituted
by env . If cond reduces to true , then we reduce t to t2 substituted with env . Otherwise
we continue the reduction, trying reduce ′ with the next/ equation.

2Transforming input variables into actual terms is left to the user interface, and not considered as part of
the semantics for Algebraic Prosoft.



31

reduce ′ ato eqs (Jt1 = t2 if condK • eqsR) env t =
let (matches, env ′) = match t1 t ato {}
in if (matches ∧

(reduce (subs cond env ′) ato env ≡ J"true"K)
)

then reduce (subs t2 env ′) ato env

else reduce ′ ato eqs eqsR env t

The substitution function subs substitutes the variables in a term by the corresponding
term in a term environment, and is used when there is a match of a term against some
equation’s left-hand side. The variables in the left-hand side that matches subterms in the
reducing term are put in a term environment, and the equation’s right-hand side gets its
variables substituted with that environment.

subs is defined as following:

subs : Term → (Id
m
−→ Term) → Term

subs JidK env = findTerm env id

subs Jop (args)K env = Jop ((map (λ t . subs t env) args))K
subs Jif cond then t1 else t2K env =

Jif (subs cond env) then (subs t1 env) else (subs t2 env)K
subs JICS (ato, op, [terms])K env =

JICS (ato, op, [(map (λ x . subs x env) terms)])K

subs

t

︷ ︸︸ ︷

JICS ( , )K = t

subs

t

︷ ︸︸ ︷

J ?K = t

The findTerm function yields the term corresponding to id in the term environment
env , if there is such term in env . Otherwise it yields id itself.

findTerm : (Id
m
−→ Term) → Id → Term

findTerm env id =
case (env (id)) of

⊥ → JidK
x → x

4.6 Instantiation

Instantiation if the process of creating ATO’s from specifications. It consists of col-
lecting its operations, variables and equations.

A special case is when an ATO instantiates another ATO. This normally happens when
an ATO (say, a1) includes an instantiation of another ATO (say, a2), where a2 has formal
sort parameters. All the operations present in a2 are included in a1, with the formal sort
parameters replaced by the actual sort parameters. This is the case when the built-in
ATO’s that define composite abstract data types are instantiated in user-defined ATO’s.

In this section we develop the semantics for ATO instantiation.
First, we define a function domain for renaming functions. Renaming functions take

a SortName and supply another SortName, supposed to substitute the first one in the
specification.



32

Renaming = SortName → SortName

noRename is the identity renaming function. It returns just the same argument that it
receives.

noRename = λ x . x

rename creates a new renaming function based on another one, adding a new renam-
ing pair.

rename : Renaming → SortName → SortName → Renaming

rename r old new = λ x . if x ≡ old then new else r x

The instantiate function builds an ATO from its textual specification, adding all the
included specifications from their respective specification.

It takes the whole list of available specifications, a renaming function and the specifi-
cation to be instantiated.

instantiate : Specification∗ → Renaming → Specification → ATO

instantiate specs renaming spec =
let included = foldl (++) [ ] (map (λ i . include i specs) incs)

included_as_ato = joinATOs included

(ops ′, vars ′, eqs ′) = included_as_ato

in (map (instantiateOperation renaming) (getOperations ops) ++ ops ′,
map (instantiateVariable renaming) (getVariables vars) ++ vars ′,
map (instantiateEquation renaming) (getEquations eqs) ++ eqs ′

)

where

u
wwwwwwwwwwv

specification
incs

ops

vars

eqs

end

}
����������~

= spec

The getOperations , getVariables and getEquations functions build lists of their re-
spective entities from their syntactic representation.

getOperations : Operations → Operation∗

getOperations JεK = [ ]
getOperations Joperations opsK = ops

getVariables : Variables → Variable∗

getVariables JεK = [ ]
getVariables Jvariables varsK = vars

getEquations : Equations → Equation∗

getEquations JεK = [ ]
getEquations Jequations eqsK = eqs



33

The joinATOs function simply does the “fusion” of a list of ATO’s in just one, con-
catenating operations, variables and equations lists.

joinATOs : ATO∗ → ATO

joinATOs [ ] = ([ ], [ ], [ ])
joinATOs ((o1, v1, e1) • as) =

let (o2, v2, e2) = joinATOs as

in (o1 ++ o2, v1 ++ v2, e1 ++ e2)

Given an include declaration in one specification, the include function instantiates the
referenced ATO’s:

include : IncludeDecl → Specification∗ → ATO∗

In the case of the Jinclude idsK declaration, we simply instantiate all the referenced
ATO’s, without any renaming.

include Jinclude idsK specs =
let referenced = map (findSpec specs) ids

in map (λ spec. instantiate specs noRename spec)
referenced

In the case of an actual instantiation, we must build a renaming function, then use it
to instantiate the referenced ATO (just one, in this case).

Since Records and Unions have a variable number of fields/choices, and depending on
this number we have different specifications, when the instantiated specification is called
"Records" or "Unions", we need to create such specification dynamically using the
functions createRecordSpec and createUnionSpec. These functions are omitted: they
yield unary lists (see include’s signature), whose element is an ATO corresponding to the
desired specification. See section 6.3 for a deeper explanation of this issue.

include

u
v

include instantiation of specname

renameFormals

renamed using new for old

}
~ specs =

let spec ′ = case specname of

"Records"→ (createRecordSpec renameFormals new old)
"Unions"→ (createUnionSpec renameFormals new old)
x → findSpec specs specname

in case spec ′
of

⊥ → ⊥
spec → let pairs = map renamePair renameFormals

in let renaming = rename (pairsToRenaming pairs)
JoldK
JnewK

in [instantiate specs renaming spec ]

The instantiateOperation, instantiateVariable, instantiateEquation and
instantiateTerm functions apply the renaming to the corresponding elements, and
are as follows:



34

instantiateOperation : Renaming → Operation → Operation

instantiateOperation renaming Jid : domain → rangeK =
Jid : (map renaming domain) → (renaming range)K

instantiateVariable : Renaming → Variable → Variable

instantiateVariable renaming Jid : sortK = Jid : (renaming sort)K

instantiateEquation : Renaming → Equation → Equation

instantiateEquation r Jt1 = t2K =
J(instantiateTerm r t1) = (instantiateTerm r t2)K

instantiateEquation r Jt1 = t2 if t3K =
J(instantiateTerm r t1) = (instantiateTerm r t2) if (instantiateTerm r t3)K

instantiateTerm : Renaming → Term → Term

instantiateTerm r JICS (ato, op)K =
JICS ((f (r JatoK)), op)K

where f JnewK = new

instantiateTerm r JICS (ato, op, [terms])K =
JICS ((f (r JatoK)), op, [(map (instantiateTerm r) terms)])K

where f JnewK = new

instantiateTerm r Jif t1 then t2 else t3K =
Jif (instantiateTerm r t1) then (instantiateTerm r t2) else (instantiateTerm r t3)K

instantiateTerm t = t

The renamePair and pairsToRenaming functions are reponsible for transforming the
syntatic representation of renaming clauses into a renaming function.

renamePair : RenameFormalSpec → (SortName, SortName)
renamePair Jusing newname for oldnameK =

(JnewnameK , JoldnameK)

pairsToRenaming : [(SortName, SortName)] → Renaming

pairsToRenaming [ ] = noRename

pairsToRenaming ps =
let (new , old) = last ps

in rename (pairsToRenaming (init ps)) old new

4.7 Matching

Term matching in Prosoft is always done in the context of one specific ATO, and
respects the following rules for each type of term (regarding the abstract syntax):

1. Term in the forms JICS (ato, op)K and JICS (ato, op, [terms])K don’t match with
any other terms. In fact, matching of terms in those forms doesn’t make any sense
at all.

2. An atom JiK matches with a given term t under the following conditions:

• If i is the name a 0-ary constructor in the current ATO (i.e., a constant), i

matches with t if and only if i ≡ t , producing no bindings.



35

• If i is a variable in the current ATO, them there are two cases:

(a) if the identifier i already matched with some term (say, t ′) before the
current matching, then t must be the same as t ′.

(b) if the identifier i din’t match with any other term, then it matches with
any term t , producing a binding {i 7→ t}.

3. An input variable Ji ?K doesn’t match with any other term. 3

4. op(t1, t2, . . . ) matches with op′(t′1, t
′

2, . . . ) if:

• op ≡ op ′

• ∀i, ti matches with t′i, generating a binding envi.

In this case, the binding generated in the matching is the combination of all the
generated envi bindings.

5. There is no other matching possibility.

That said, to match two terms and check if they match, we need:

1. the ATO in which the matching is occurring.

2. the currently produced bindings, so we can (i) check for previous matchings and
(ii) add new bindings that may be produced.

Thus, the matching function has the following type:

match : Term → Term → ATO → (Id
m
−→ Term) →

(Bool × (Id
m
−→ Term))

The first applicable situation is for atoms JidK:

match

t

︷︸︸︷

JidK t ′ ato env =
if isConstant ato id

then (t ≡ t ′, env)
else case (findOperation ato id) of

x → (t ≡ t ′, env)
⊥ → case (env (id)) of

term → (t ′ ≡ term, env)
⊥ → (True, insert id t ′ env)

The second applicable situation is for operators in the form Jop (terms)K:

match Jop1 (args1)K Jop2 (args2)K ato env =
if op1 ≡ op2

then (matchList args1 args2 ato env)
else (False, env)

3After being substituted by its actual input, however, the term for which Ji ?K is a placeholder can match
with some other term in further reduction steps.



36

There are no other possibilities for matching:

match env = (False, env)

The function matchList determines recursively if the operator arguments match and
combines the produced bindings. Is is defined as follows:

matchList : Term∗ → Term∗ → ATO → (Id
m
−→ Term) →

(Bool × (Id
m
−→ Term))

matchList (t • ts) [ ] env = (False, env)
matchList [ ] [ ] env = (True, env)
matchList [ ] (t • ts) env = (False, env)
matchList (t • ts) (t ′ • ts ′) ato env =

let (tv , env ′) = match t t ′ ato env

in if tv

then matchList ts ts ′ ato env ′

else (False, env ′)

4.8 Auxiliary Functions

This section define auxiliary functions used in the other parts of Algebraic Prosoft’s
semantics definition. Some of them are only used in the prototype implementation, but
were kept here in favor or some organization.

The findOperation and findVariable functions are helpers that encapsulate looking
for, respectively, operations and variables by their names.

findOperation : ATO → Id → Operation⊥

findOperation (ops, , ) id =
findOperation ′ ops id where

findOperation ′ : Operation∗ → Id → Operation⊥

findOperation ′ [ ] id = ⊥
findOperation ′ (op • ops) id =

let Jopid : → K = op

in if opid ≡ id

then op

else findOperation ′ ops id

findVariable : ATO → Id → Variable⊥

findVariable ( , vars, ) id =
findVariable ′ vars id where

findVariable ′ : Variable∗ → Id → Variable⊥

findVariable ′ [ ] id = ⊥
findVariable ′ (var • vars) id =

let Jvid : K = var

in if vid ≡ id

then var

else findVariable ′ vars id

The isConstructor function tells if id names a constructor operation in the ATO ato,
i.e., if it has no definition among ATO’s equations.



37

isConstructor : ATO → Id → Bool

isConstructor ato id =
case findOperation ato id of

⊥ → False

→ let ( , , eqs) = ato

in isConstructor ′ eqs id where

isConstructor ′ : Equation∗ → Id → Bool

isConstructor ′ [ ] = True

isConstructor ′ (eq • eqs) id =
case eq of

JJid ′K = K → (id 6≡ id ′ ∧ isConstructor ′ eqs id)
JJid ′ ( )K = K → (id 6≡ id ′ ∧ isConstructor ′ eqs id)
JJid ′K = if K → (id 6≡ id ′ ∧ isConstructor ′ eqs id)
JJid ′ ( )K = if K → (id 6≡ id ′ ∧ isConstructor ′ eqs id)
→ isConstructor ′ eqs id

The isConstant function tells if id is the name of a constant in a given ATO ato.

isConstant : ATO → Id → Bool

isConstant ato id =
case (findOperation ato id) of

⊥ → False

Jid : range → domainK → ((range ≡ [ ]) ∧ isConstructor ato id)

The join function takes a string sep and a list of strings ss , and yields an string with
all elements of ss concatenated, interspersed by sep.

join : String → String∗ → String

join sep ss = foldl (++) "" (intersperse sep ss)

The findSpec auxiliary function just finds a specification by its id among all specifi-
cations:

findSpec : Specification∗ → Id → Specification⊥

findSpec [ ] id = ⊥
findSpec (s • ss) id =

let

u
wwwwwwwwwwv

specification theId

end

}
����������~

= s

in if theId ≡ id

then s

else findSpec ss id

The getInputs function takes a term and returns the set of input variables (Jx ?K)
present in that term.



38

getInputs : Term → P(String)
getInputs J K = ∅
getInputs JICS ( , )K = ∅
getInputs J (terms)K =

foldl (λ a. λ b. a ∪ b) ∅ (map getInputs terms)
getInputs JICS ( , , [terms])K =

foldl (λ a. λ b. a ∪ b) ∅ (map getInputs terms)
getInputs Jid ?K = {id}
getInputs Jif cond then t1 else t2K =

foldl (λ a. λ b. a ∪ b) ∅ (map getInputs [cond , t1, t2 ])

The insertInputs functions takes a mapping inputs , from identifiers to terms, and a
term t , and replaces all the input variables in t by the corresponding term in inputs .

insertInputs : (String
m
−→ Term) → Term → Term

insertInputs inputs

t

︷ ︸︸ ︷

Jid ?K =
case (inputs (id)) of

⊥ → t

term → term

insertInputs inputs Jop (terms)K =
Jop ((map (insertInputs inputs) terms))K

insertInputs inputs JICS (ato, op, [terms])K =
JICS (ato, op, [(map (insertInputs inputs) terms)])K

insertInputs inputs Jif cond then t1 else t2K = Jif cond ′ then t ′1 else t ′2K
where cond ′ = insertInputs inputs cond

t ′1 = insertInputs inputs t1
t ′2 = insertInputs inputs t2

insertInputs

t

︷︸︸︷

J K = t

insertInputs

t

︷ ︸︸ ︷

JICS ( , )K = t

4.9 Final remarks

This chapter presented Algebraic Prosoft’s formal semantics, using the denotational
method.

Algebraic Prosoft’s syntax was presented, together with a relation between the graph-
ical representation of ATO’s and their corresponding declarations in the presented syntax.
Algebraic Prosoft’s semantics was presented, divided in distinct sections for the core se-
mantics (the semantics of term reduction), instantiation (the semantics of ATO’s instantia-
tion), matching (the semantics of term matching). Finally, all the used auxiliary functions
were presented.

Next chapter presents research work done in semantic prototyping with the Haskell
programming language, which guided Algebraic Prosoft’s prototyping presented in chap-
ter 6.



39

5 SEMANTICS-BASED LANGUAGE PROTOTYPING
WITH HASKELL

This chapter presents the result of research done in semantic prototyping with the
Haskell programming language.

5.1 Introduction

In software projects, the later an error is discovered, the higher is the cost for fixing
it (BOEHM, 1981). When the software is a programming language implementation, the
requirements are described in the language definition and its semantics. This way, the
faster we can have feedback about the language basic constructs and their semantics, the
better for its development.

Particular implementations — and hardware — can always improve all kinds of non-
functional aspects, like performance and security, for instance. But after a language spec-
ification is ready, its first implementation is released, and it is widely used, changing the
semantics of its core concepts becomes harder as there is software already written based
on the original semantics. Next language versions can’t break that previously written
software.

Prototyping is a technique that is widely used in the context of software development,
as a way of discovering early the unavoidable errors in the requirements. Those errors
in the requirements can be omissions, inconsistencies, ambiguity or even wrong informa-
tion. In (RANGEL, 2003), there is a good survey on prototyping and its benefits for the
software development activity.

This chapter presents a method for prototyping languages based on their semantic
specification, using the Haskell programming language to rapidly build a working proto-
type of the language. Furthermore, it is shown that denotational semantics can even be
expressed directly in Haskell, which is a way of keeping the semantics definition and its
prototype implementation synchronized to each other, and bringing some benefits, that
are shown in this chapter. Although denotational semantics is the perfect choice for this
technique, it is shown that operational semantics specifications can also be used to derive
working prototypes, by mapping systematically their rules to Haskell functions.

The remainder of this chapter is organized as follows: Section 5.2 introduces the
Haskell programming language; section 5.3 presents a method for deriving prototype
implementations from semantics specifications using Haskell; section 5.4 discuss how to
make those prototypes closer to what users expect; section 5.5 enumerates related work;
section 5.6 ends the chapter discussing results and future work.



40

5.2 The Haskell programming language and semantic prototyping

Haskell (JONES et al., 2003) is a purely functional programming language. It has
static, polymorphic typing and lazy evaluation, among other important features.

What makes Haskell specially suitable for the task of semantics-based prototyping
is that its syntax and semantics are very close to those of the lambda calculus. Indeed,
Haskell is based on the lambda calculus, and can even be translated into lambda calculus,
as shown in (DAVIE, 1992).

Writing a Haskell program that implements a denotational semantics (as shown in
(WATT, 1991; SCHMIDT, 1986)) is straightforward: it’s almost just transliterating the
specification into Haskell. In fact, an experienced Haskell programming starting to study
denotational semantics, when reading one of those books, would think “hey, this seman-
tics thing is just Haskell programming!”. Prototyping operational semantics in Haskell is
not as direct as denotational semantics, but it is not difficult.

To illustrate the applicability of Haskell on rapid prototyping of denotational seman-
tics, consider the following denotational definition:

eval Je1; e2K env sto =
let ( , env ′, sto ′) = eval e1 env sto

in eval e2 env ′ sto ′

The definition can be implemented in Haskell as follows:

1 eval (Seq e1 e2) env sto =
2 let (_, env’, sto’) = eval e1 env sto
3 in eval e2 env’ sto’

As one can see, implementing a mathematical semantics definition is quite direct. In
the case of denotational semantics, it involves mainly minor syntactic transformation.

In the case of operational semantics, as we shall see, things get a little bit more com-
plicated. In this chapter we present a sistematic way of going from operational semantics
definition to Haskell code, that works for simpler (i.e. deterministic) operational seman-
tics.

5.3 Developing semantics-based prototype implementations

This section illustrates semantics-based prototyping with Haskell by defining a toy
language, in terms of its abstract syntax and semantics, and developing prototype imple-
mentations for it in Haskell, using both denotational and operational semantics. Complete
source code for presented definitions and implementations is available on the internet
(AZEVEDO TERCEIRO, 2006).

At the risk of boring the reader, after each block of definitions, we show the Haskell
code that implements them, with the goal of illustrating how that implementation can be
derived from the mathematical definitions.

Without any creativity, our toy language will be called toy. It is a dynamically-typed
imperative language, whose types are nil, natural numbers and functions. All these types
are first-class values: they can be assigned to variables, passed to and returned from
functions.

toy is kept simple to the extreme, so functions are always unary. But since functions
are first-class values, multiple parameters can be simulated by using higher-order func-
tions.



41

As experienced Lua users may note, toy is based on Lua (IERUSALIMSCHY, 2003),
with several simplifications and omissions.

5.3.1 Abstract syntax

As said before, in toy values can be nil (representing no value at all), integer numbers
or functions, and all of them are first-class values.

Value → nil | N | λx.e

The basic building block in toy are expressions. They can be values, variables, func-
tion calls, assignments, conditionals, sequencings (an expression followed by another
expression), and binary operations.

Exp → Value | x | e1e2 | x = e
| if e1 then e2 else e3 end | e1; e2 | e1 ⊕ e2

In the above definition, ⊕ ∈ Operator stands for binary operators. For now, we’ll
stick to just sum and multiplication as the possible binary operations:

Operator → + | ∗

What we’ve seen so far gives us toy’s abstract syntax. The above definitions fully
specify the main elements that can be used to build toy programs. As most abstract syntax
definitions, it is ambiguous (WATT, 1991). But for now, what’s important is the structural
relation between the elements of the language: what elements are part of the others, and
what other elements one element is composed of.

This abstract syntax definition can be easily coded in Haskell as follows (where Id is
a type synonym for String):

1 data Value = Nil | Number Int | Function Id Exp
2 data Exp = Val Value | Var Id | Call Exp Exp | Assign Id Exp
3 | Cond Exp Exp Exp | Seq Exp Exp | Op Operator Exp Exp
4 data Operator = Sum | Mult

In line 1 is created a data type for values, defined as a tagged union of the singleton
nil value, integer numbers, and functions (Function). As stated before, functions are
unary. Lines 2–3 define the data type for expressions and line 4 does the same for binary
operators.

We highlight here how straightforward this implementation is, given the mathematical
definition.

5.3.2 Basic semantic domains

As a first step, we have to define some semantic domains, in terms of which — to-
gether with the abstract syntax definition — we’ll give semantics to our language.

Our first semantic domain is a model for storage. This domain aims to model mem-
ory in a (very) simplified way: Store is a Cartesian product domain of functions from
Location to Value (Location → Value) and Location, where Location is just a meaning-
ful name for integer numbers. We use that second component as an indicator of the next
available empty memory cell.

Store = (Location → Value) × (Location)



42

Location = N

S0, the empty store, has undefined values in all locations.

S0 : Store

S0 = (λx .⊥, 0)

Now we have to define semantic functions that we’ll use to manipulate stores. Our
first semantic function is fetch: it returns the value stored in a particular location:

fetch : Store → Location → Value

fetch (f , n) l = f l

update stores a particular value in a particular location:

update : Store → Location → Value → Store

update (f , n) l v = ((λloc.if loc ≡ l then v else f loc), n)

Our last function is alloc: it allocates a new location to be used, and yields that location
together with an modified store:

alloc : Store → Location × Store

alloc (f , n) = (n, (f , n + 1))

Note that the function component of the new store is just equal to that of the old one.
The newly allocated cell, although being reserved for use, has no associated value.

The Store domain is, as said before, a very simplified model of memory. It does not
feature deallocation, for example. Also, the memory amount needed for storing each type
of value is not considered: we just assume they all fit in a “memory cell”. It also does
not consider any implementation concerns that would show up when writing an actual
implementation of a memory management system.

In spite of those simplifications, this definition is functional enough for defining a
proper semantic specification for our language, while abstracting low-level details of an
actual implementation.

After having a suitable model for memory, we need a model for names and scopes. A
common model for scope of variables – and names in general – are environments, func-
tions from identifiers to language entities, such as variables, functions, classes, modules,
etc.

As in toy all values are first-class, we can take environments to be just functions from
identifiers to locations, allowing an undefined value as an outcome of such functions
(that’s the case, for example, when we try to access an inexistent variable x ).

Environment = Id → Location⊥

E0, the empty environment, maps all identifiers to an undefined value.

E0 : Environment

E0 = λx .⊥



43

Given an environment e, e [x 7→ v ] represents an environment that is exactly equal to
e, except that it maps (or binds) x to v . e [x 7→ v ] can be defined as:

e [x 7→ v ] = λy .if x ≡ y then v else e y

It’s worth to note that in this definition, we are interpreting ⊥ as an undefined value,
and not considering the possibility of nontermination. Thus, we can always test if some
value yielded by an Environment function is ⊥ or not. Unless caught by such a test, a
Environment function yielding ⊥ means a runtime error (what should be expect as the
outcome of trying to reference an undefined variable).

The definitions for the presented semantic domains can be implemented in Haskell as
follows:

1 type Store = Pair (Location -> Value) (Location)
2 type Location = Int
3 emptyStore :: Store
4 emptyStore = (\ x -> error "invalid location", 0)
5 fetch :: Store -> Location -> Value
6 fetch (f,n) l = f l
7 update :: Store -> Location -> Value -> Store
8 update (f,n) l v = ((\ loc -> if loc == l then v else f loc), n)
9 alloc :: Store -> Pair Location Store

10 alloc (f,n) = (n, (f, n+1))
11 type Environment = Id -> Maybe Location
12 emptyEnv :: Environment
13 emptyEnv = \ x -> Nothing
14 bind x v e = \ y -> if x == y then Just v else e y

Again we highlight how straightforward this implementation is, based on the mathe-
matical notation.

Lines 1–10 implement the Store domain. As before, the Haskell code is almost the
same as the mathematical definition, with just some minor syntax issues. Lines 11–14
implement the Environment domain. The binding operation e [x 7→ v ] is represented as
bind x v e and implemented by the bind function.

5.3.3 A denotational semantics for toy

Now that we have both an abstract syntax definition and suitable semantic domains,
we can specify toy’s actual semantics, i.e., give meaning for the language elements. For
this we’ll use an enriched version of the lambda calculus, with if and case expressions.
As shown in (WATT, 1991; DAVIE, 1992), those constructs can be defined in terms of
the core lambda calculus. Thus, despite our somewhat richer syntax, we’re still in lambda
calculus’ realm. 1

An expression in toy has the effect of producing a value, perhaps changing the envi-
ronment (by adding variables to it) and/or changing the store (by updating or allocating
new cells in it). We capture this meaning with the eval function:

eval : Exp → Environment → Store → (Value × Environment × Store)

1Although the recursive applications of eval in the definition of eval itself would require some fixed-
point combinators in the real lambda calculus. (WATT, 1991; SCHMIDT, 1986)



44

Now we have to define eval regarding each one of the alternatives in Exp’s definition.
We start with JvK: evaluating a value just yields that value, without changing environment
or store:

eval JvK env sto = (v , env , sto)

Evaluating a variable means to check if it was defined previously. If not, this is an
error. Otherwise, we fetch from memory the contents stored in the location associated
with that variable.

eval JxK env sto =
case env x of

⊥ → ⊥
loc → (v , env , sto) where v = fetch sto loc

A function call (or application) means first evaluating the first expression (which is
supposed to yield a function value), then evaluating the second expression in the resulting
environment and store, and then using the auxiliary function apply to actually apply v2

to v1. The apply function is defined later; for now, we just assume that it will yield the
expected value, together with potentially modified environment and store.

eval Je1e2K env sto =
let (v1, env ′, sto ′) = eval e1 env sto

(v2, env ′′, sto ′′) = eval e2 env ′′ sto ′′

in apply v1 v2 env ′′ sto ′′

Assignments can have two possible effects: if there is no variable with that name,
it binds the variable to a new memory cell and store the computed value there. In the
case when the variable already exists, it is just updated. An assignment yields the value
computed from the right hand side expression.

eval Jx = eK env sto =
let (v , env ′, sto ′) = eval e env sto

in case env ′ x of

⊥ → let (loc, sto ′′) = alloc sto ′

in (v , env ′ [x 7→ loc] , update sto ′′ loc v)
loc → (v , env ′, update sto ′ loc v)

Conditional expressions are evaluated as follows: first e1 (the condition) is evaluated;
if it yields JnilK then e3 is evaluated, with e2 being evaluated otherwise.

eval Jif e1 then e2 else e3 endK env sto =
let (v , env ′, sto ′) = eval e1 env sto

in case v of

JnilK → eval e3 env ′ sto ′

x → eval e2 env ′ sto ′

Sequencing is trivial: e1 is evaluated, yielding a value together with potentially mod-
ified environment and store. That value is discarded and e2 is evaluated in the new envi-
ronment/store context.

eval Je1; e2K env sto =
let ( , env ′, sto ′) = eval e1 env sto

in eval e2 env ′ sto ′



45

Binary operators are handled by evaluating e1 and e2 sequentially 2, and then the actual
calculation is done by the operate function, which depends on the actual operator being
evaluated. operate is defined later, for now we just trust it to yield the operation’s result.

eval Je1 ⊕ e2K env sto =
let (v1, env ′, sto ′) = eval e1 env sto

(v2, env ′′, sto ′′) = eval e2 env ′ sto ′

in (operate ⊕ v1 v2, env ′′, sto ′′)

Now what’s left are the previously used auxiliary functions. apply , the helper function
for evaluating function calls (Jλx.eK v ) is in the following domain:

apply : Value → Value → Environment → Store → (Value × Environment × Store)

But among Value alternatives, apply is only defined for functions. It creates a new
environment binding the formal parameter to the actual parameter, and evaluates the func-
tion body (e) in the new environment. apply yields the value yielded by the evaluation of
the function body and the (possibly) modified store. That new environment is discarded,
since the formal parameter, as well as everything created inside the function body has
local scope.

apply Jλx.eK v env sto =
let (loc, sto ′) = alloc sto

(v ′, , sto ′′) = eval e (env [x 7→ loc]) (update sto ′ loc v)
in (v ′, env , sto ′′)

If, in Je1e2K, e1 does not yield a function, the whole expression has an undefined
semantics (although being syntactically valid).

The operate function used in evaluation of binary operations is as follows:

operate : Operator → Value → Value → Value

And it is defined for operators J+K and J∗K, together with number arguments. operate

is undefined when x or y are not both numbers.

operate J+K Jx K JyK = J(x + y)K
operate J∗K Jx K JyK = J(x × y)K

We have just presented toy’s denotational semantics, giving meaning to the language
constructs in terms of mathematical domains and functions. This semantics can be imple-
mented in Haskell as follows (where Triple a b c = (a,b,c)).

1 eval :: Exp -> Environment -> Store -> (Triple Value Environment
Store)

2 eval (Val v) env sto = (v, env, sto)
3 eval (Var x) env sto =
4 case env x of
5 Nothing -> error ("undefined variable \"" ++ x ++ "\"")
6 Just loc -> (v, env, sto) where v = fetch sto loc
7 eval (Call e1 e2) env sto =

2since expressions in toy have side-effects, we have to specify an evaluation order to simplify our se-
mantics. In an actual implementation, however, the expressions could be evaluated in parallel, depending
on some static analysis made to check if, for example, the expressions depend on each other.



46

8 let (v1, env’, sto’) = eval e1 env sto
9 (v2, env’’, sto’’) = eval e2 env’’ sto’’

10 in apply v1 v2 env’’ sto’’
11 eval (Assign x e) env sto =
12 let (v,env’,sto’) = eval e env sto
13 in case env’ x of
14 Nothing -> let (loc,sto’’) = alloc sto’
15 in (v, bind x loc env’, update sto’’ loc v)
16 Just loc -> (v, env’, update sto’ loc v)
17 eval (Cond e1 e2 e3) env sto =
18 let (v, env’, sto’) = eval e1 env sto
19 in case v of
20 Nil -> eval e3 env’ sto’
21 x -> eval e2 env’ sto’
22 eval (Seq e1 e2) env sto =
23 let (_, env’, sto’) = eval e1 env sto
24 in eval e2 env’ sto’
25 eval (Op op e1 e2) env sto =
26 let (v1,env’,sto’) = eval e1 env sto
27 (v2,env’’,sto’’) = eval e2 env’ sto’
28 in (operate op v1 v2, env’’, sto’’)
29 apply :: Value -> Value -> Environment -> Store -> (Triple Value

Environment Store)
30 apply (Function x e) v env sto =
31 let (loc, sto’) = alloc sto
32 (v’,_,sto’’) = eval e (bind x loc env) (update sto’ loc v)
33 in (v’,env,sto’’)
34 operate :: Operator -> Value -> Value -> Value
35 operate Sum (Number x) (Number y) = Number (x + y)
36 operate Mult (Number x) (Number y) = Number (x * y)

The above Haskell code implements the given semantics by almost “just” transliterat-
ing the mathematical definition into Haskell. In more detail, we have:

• line 2: eval JvK env sto

• lines 3–6: eval JxK env sto

• lines 7–10: eval Je1e2K env sto

• lines 11–16: eval Jx = eK env sto

• lines 17–21: eval Jif e1 then e2 else e3 endK env sto

• lines 22–24: eval Je1; e2K env sto

• lines 25–28: eval Je1 ⊕ e2K env sto

• lines 30–33: apply Jλx.eK env sto

• line 35: operate J+K Jx K JyK

• line 36: operate J∗K Jx K JyK



47

5.3.4 An operational semantics for toy

To give an operational semantics (PLOTKIN, 1981) to toy, we need first to define a
tuple representing configurations:

C = Exp × Environment × Store

The semantics itself is given in terms of a relation →⊆ C × C, where γ → γ ′ means
“there is a transition from configuration γ to configuration γ ′”. The → relation is then
defined in terms of rules.

Different from before, in this section we show an operational semantics for toy while
immediately following groups of rules by its Haskell implementation. For both rules
definitions and Haskell code, we’ll be reusing our previously defined semantic domains
for environments and stores.

To transform the operational semantics rules into Haskell functions, we can use a
transformation T , that for each rule in operational semantics, gives us the rule’s imple-
mentation in Haskell as a trans function:

T (γ → γ′)
def
= trans γ = γ′

T
(

β1 →β′

1
,...,βn→β′

n

γ→γ′

)
def
=

[
trans γ = γ′

where β ′

1 = trans β1, . . . , β
′

n = trans βn

This transformation T is useful for prototyping deterministic operational semantics
(i.e., semantics where if γ → γ ′ and γ → γ′′, then γ′ = γ′′). This is the case of the toy
operational semantics presented here.

Non-derministic operational semantics are a little bit more complicated. Section 5.5
points to literature where the issues involved are discussed.

In a case by case basis, we’ll show explicitly how T gives us the Haskell implementa-
tion of a rule, as well as the variations of T needed in special cases..

We have to start our Haskell implementation by defining the data type for configura-
tions, and declaring the trans function.

1 data Config = C Exp Environment Store
2 trans :: Config -> Config

Now let’s begin the operational semantics definition and its implementation: variables
are the simplest case.

〈x, en, st〉 → 〈fetch st (en x), en, st〉 (5.1)

The rule in definition 5.1 translates into Haskell using T ’s first case : 3

1 trans (C (Var x) en st) =
2 C (Val (fetch st (fromJust (en x)))) en st

〈(λx.e) v, en, st〉 → 〈e, en [x 7→ loc] , update st′ loc v〉 (5.2)

where (loc, st′) = alloc st

3We just assume that x ∈ domain(en). If it’s not the case, the fromJust application will cause the
Haskell program to crash (what is expected from a program that tries to reference an undefined variable!)



48

〈e2, en, st〉 → 〈e′2, en
′, st′〉

〈v e2, en, st〉 → 〈v e′2, en
′, st′〉

〈e1, en, st〉 → 〈e′1, en
′, st′〉

〈e1e2, en, st〉 → 〈e′1e2, en′, st′〉
(5.3)

Rules in definitions 5.2 and 5.3 define function application. We now have to deal with
the more complicated cases, when we start to use the second case for the transformation
T when writing the Haskell code, plus some variations required by the circumstances:

1 trans (C (Call (Val (Function x e)) (Val v)) en st) =
2 C e (bind x loc en) (update st’ loc v)
3 where (loc,st’) = alloc st
4 trans (C (Call v@(Val(Function x e)) e2) en st) =
5 C (Call v e2’) en’ st’
6 where C e2’ en’ st’ = trans (C e2 en st)
7 trans (C (Call (Val v) _) en st) =
8 error ("called non-function " ++ (show v))
9 trans (C (Call e1 e2) en st) = C (Call e1’ e2) en’ st’

10 where C e1’ en’ st’ = trans (C e1 en st)

In this case, we needed an extra definition for when the first expression is not a func-
tion (lines 7–8), which was implicit in the transition relation. Since in Haskell pattern
matching is tested top-down, if that rule is not there our implementation will loop, be-
cause e1 and e2 in the last definition (lines 9–10) would match any expressions, includ-
ing non-function values.

〈x = v, en, st〉 → 〈v, en1, update st (en x) v〉 if x ∈ domain(en) (5.4)

〈x = v, en, st〉 → 〈v, en1 [x 7→ loc] , update st2 loc v〉 if x /∈ domain(en) (5.5)

where (loc, st2) = alloc st1

〈e, en, st〉 → 〈e′, en′, st′〉

〈x = e, en, st〉 → 〈x = e′, en′, st′〉
(5.6)

The rules in definitions 5.4, 5.5 and 5.6 define assignment. Their implementation is
slightly different from the conventional, because we chose to represent rules 5.4 and 5.5
in a single definition case of trans (lines 1–5), by using a case expression.

1 trans (C (Assign x (Val v)) en st) =
2 case en x of
3 Nothing -> (C (Val v) (bind x loc en) (update st’ loc v))
4 where (loc,st’) = alloc st
5 Just loc -> (C (Val v) en (update st loc v))
6 trans (C (Assign x e) en st) = C (Assign x e’) en’ st’
7 where C e’ en’ st’ = trans (C e en st)

〈if nil then e2 else e3, en, st〉 → 〈e3, en, st〉 (5.7)

〈if v then e2 else e3, en, st〉 → 〈e2, en, st〉 (5.8)



49

〈e1, en, st〉 → 〈e′1, en
′, st′〉

〈if e1 then e2 else e3, en, st〉 → 〈if e′1 then e2 else e3, en′, st′〉
(5.9)

Conditional expressions rules, presented in definitions 5.7, 5.8 and 5.9, are imple-
mented directly through T :

1 trans (C (Cond (Val Nil) e2 e3) en st) = C e3 en st
2 trans (C (Cond (Val v) e2 e3) en st) = C e2 en st
3 trans (C (Cond e1 e2 e3) en st) = C (Cond e1’ e2 e3) en’ st’
4 where C e1’ en’ st’ = trans (C e1 en st)

〈v; e, en, st〉 → 〈e, en, st〉
〈e1, en, st〉 → 〈e′1, en

′, st′〉,

〈e1; e2, en, st〉 → 〈e′1; e2, en′, st′〉
(5.10)

Rules in definition 5.10 define sequencing expressions, and are also implemented
without variation in the usual transformation:

1 trans (C (Seq (Val v) e2) en st) = C e2 en st
2 trans (C (Seq e1 e2) en st) = (C (Seq e1’ e2) en’ st’)
3 where C e1’ en’ st’ = trans (C e1 en st)

〈v1+v2, en, st〉 → 〈v1 + v1, en, st〉 〈v1*v2, en, st〉 → 〈v1 × v2, en, st〉 (5.11)

where v1, v2 ∈ N

〈e2, en, st〉 → 〈e′2, en
′, st′〉,

〈v1 ⊕ e2, en, st〉 → 〈v1 ⊕ e′2, en
′, st′〉

〈e1, en, st〉 → 〈e′1, en
′, st′〉,

〈e1 ⊕ e2, en, st〉 → 〈e′1 ⊕ e2, en′, st′〉
(5.12)

Binary operations, defined by the rules in definitions 5.11 and 5.12, are also imple-
mented without much creativity. The exception is, as in function applications, an extra
definition (lines 5–6) to force matching with non-number values and avoid looping in the
last rule, that matches against any pair of expressions.

1 trans (C (Op Sum (Val (Number v1)) (Val (Number v2))) en st) =
2 C (Val (Number (v1 + v2))) en st
3 trans (C (Op Mult (Val (Number v1)) (Val (Number v2))) en st) =
4 C (Val (Number (v1 * v2))) en st
5 trans (C (Op op (Val v1) (Val v2)) en st) =
6 error "you can only operate numbers!"
7 trans (C (Op op (Val v) e2) en st) =
8 (C (Op op (Val v) e2’) en’ st’)
9 where C e2’ en’ st’ = trans (C e2 en st)

10 trans (C (Op op e1 e2) en st) =
11 (C (Op op e1’ e2) en’ st’)
12 where C e1’ en’ st’ = trans (C e1 en st)

To finish the implementation of our operational semantics, we only need to define
how to go from an initial configuration to a final one, i.e., how to derivate the whole
execution of a toy program from individual transitions between configurations. We do



50

this defining a derivation function, that will iterate on the transition relation starting
from the initial configuration, producing a list of configurations by applying the transition
relation repeatedly: derivation γ0 = 〈γ0, γ1, . . . , γn〉, where ∀i < n, γi → γi+1, and γn

is a terminal configuration, i.e., a configuration to which no rule can be applied. It’s trivial
to realize that terminal configurations are in the form 〈v, em, st〉, where v ∈ V alue.

1 terminal :: Config -> Bool
2 terminal (C (Val v) en st) = True
3 terminal c = False
4

5 derivation :: Config -> [Config]
6 derivation conf =
7 if terminal conf
8 then [conf]
9 else conf:(derivation (trans conf))

If we apply derivation to an initial configuration 〈e, em, st〉, it will yield a list
comprising all the intermediate configurations of a system during the execution of pro-
gram e.

5.4 More elaborated prototypes

We have presented both a denotational and an operational semantics for toy, together
with their Haskell implementation. With this in hands, we can already try toy out. We just
need to fire a Haskell interpreter and experiment selected expressions, environments and
stores:
$ ghci Denotational.lhs

> let (v,e,s) = eval (Op Sum (Var "x") (Var "x")) (bind "x"0 emptyEnv) (update

emptyStore 0 (NumberLiteral 5)) in v

10

$ ghci Operational.lhs

> derivation (C (Op Sum (Var "x") (Val (Number 1))) (bind "x"0 emptyEnv) (update

emptyStore 0 (Number 6)))

[<x + 1,(en),(st)>,<6 + 1,(en),(st)>,<7,(en),(st)>]

Although we have already full implementations of our language, that’s not enough to
have feedback from its potential users. Representing abstract syntax trees of the language
as Haskell expressions is far from being productive. While developing this study, Happy
parsers (GILL; MARLOW, 2006) were used to implement concrete syntaxes, and they
showed to be very straightforward to write.

5.5 Related work

The general ideas on this chapter are not new. In the paper “Definitional Interpreters
for Higher-Order Programming Languages”, Reynolds (REYNOLDS, 1972) discussed
various issues regarding writing interpreters for higher-order programming languages us-
ing functional programming languages that are themselves based on the lambda calculus
(i.e., that are also higher-order themselves).

Hartel (HARTEL, 1997) presents a tool called Latos for prototyping operational
semantics through translation into Miranda functional programs. Latos is compared



51

with other previous tools, such as ASF+SDF and RML (both referenced in the paper). The
presented approach for prototyping operational semantics is much more comprehensive
than the presented here. Several aspects and properties of the operational definitions
and the restrictions they impose for the prototyping tools are considered. In particular,
handling non-deterministic operational semantics is discussed.

Pugs (TANG et al., 2006) is a Perl 6 (WALL et al., 2006) implementation written
in Haskell. It’s a very young project, but seems to be already the more complete Perl
6 implementation. Pugs has a variety of implemented backends, and apparently will be
used to bootstrap Perl 6. This work show the applicability of Haskell on implementation
of other languages.

The general idea on how to implement operational semantics in Haskell was bor-
rowed from Holyer, Gallagher and Muller (HOLYER; GALLAGHER; MULLER, 2006),
although they don’t present a systematic manner to go from the transition relation in
mathematical notation to a Haskell implementation.

Moura and colleagues present in (MOURA; RODRIGUEZ; IERUSALIMSCHY,
2004) a concise operational semantics for coroutines, which can be combined with the
techniques presented here to achieve a richer language, even in the prototyping stage.

Leal and colleagues present in (LEAL; IERUSALIMSCHY, 2005) an operational se-
mantics for garbage collection and finalizers, which can be used together with our tech-
niques — and a different model of memory — to produce more efficient prototypes.

5.6 Final remarks

Haskell is a good choice for rapid prototyping of languages. This work raised some
issues from the experience of implementing working prototypes based on both denota-
tional and operational semantics of languages, so we could achieve some conclusions and
compare the use of Haskell on prototyping both types of specification.

Since Haskell supports a limited (but useful) form of literate programming (KNUTH,
1984), using a tool like lhs2TeX (LöH, 2005) — a Haskell/TEX translator with extensive
formatting support — allows us to write at once both definition and implementation of
denotational semantics specifications. Being able to write semantics directly in Haskell
while not loosing the mathematical aspect bring two main benefits: (i) definition and
implementation are always synchronized to each other ; (ii) the definition can be type-
checked by any Haskell compiler, giving us several tools for writing better and more
correct semantic specifications. For instance, the definitions in this chapter’s section on
denotational semantics are actually written in Haskell and converted to a nicer, more
math-like, notation by lhs2TeX; that section, the abstract syntax section and the semantic
domains one are, at the same time, text and program. The definitions, however, are still in
lambda calculus, and can be manipulated in proofs as always.

Expressing operational semantics in Haskell is not as straightforward as it is with de-
notational semantics, but as operational semantics tend to be concise, the syntactic gap
does little harm (against no harm at all in the case of denotational semantics). But by
its nature, operational semantics allows us to abstract certain details that denotational
semantics doesn’t. For example, in this chapter one can see that the operational def-
inition is cleaner than the denotational one, although both can be successfully imple-
mented. The representation issue deserves some more investigation. Perhaps using Mon-
ads (WADLER, 1992) one can find a way of implementing operational definitions in
Haskell that is more close syntactically to the mathematical definition. This would allow



52

us to write operational semantics as literate Haskell programs, what couldn’t be done in
this chapter.

This work also showed us that several aspects of languages prototyping can be united
into a common framework: input files handling, interactive session console, transition
systems implementation (as shown in section 5.3.3). We have already started to work on
extracting a Semantic Prototyping Framework from our experiments (AZEVEDO TER-
CEIRO, 2006), aiming to remove the implementor’s need of dealing with those non-
functional aspects of the prototype.

The next chapter presents a semantics-based prototype for Algebraic Prosoft that was
developed following the methodology presented in this chapter.



53

6 THE DEVELOPMENT OF A SEMANTICS-BASED PRO-
TOTYPE FOR ALGEBRAIC PROSOFT

In this work, it was developed a semantics-based prototype for Algebraic Prosoft,
using the techniques presented in chapter 5.

This chapter describes some concepts that are crucial in the development of full
semantics-based prototype implementations, together with some implementation aspects
of Algebraic Prosoft’s prototype.

Section 6.1 presents the concept of Literate Programming. Section 6.2 presents some
aspects on the use of the Haskell Programming language together with Literate Program-
ming techniques for semantic prototyping. Section 6.3 discusses the structure of the pro-
totype implementation of Algebraic Prosoft. Section 6.5 summarizes this chapter.

6.1 Literate Programming

Literate Programming is a technique for typesetting programs in a way they are best
presented for people. It reverts the regular logic behind most of programming habits:
instead of writing a compiler-centric program, one writes a formatted document as it
were mainly intended to be read by people.

Literate Programming was introduced by Donald E. Knuth, in his seminal paper “Lit-
erate programming”(KNUTH, 1984). Knuth writes:

Let us change our traditional attitude to the construction of programs:
Instead of imagining that our main task is to instruct a computer what
to do, let us concentrate rather on explaining to human beings what we
want a computer to do.

Knuth’s intent with the development of the WEB system, described in that paper, was
to make the work of writing programs a combination of formal and informal language, in
order to allow one to write program in the best way for human understanding, abstracting
syntactic restrictions.

The main idea is that literate programs are composed of chunks, and each chunk can
be either a textual documentation, or actual source code. And the same literate program
can be given as input to both a compiler and a document preparation system, maybe after
some automatic preprocessing.

According to Norman Ramsey in (THOMPSON, 2000), the main characteristics of
Literate Programming are:

• Flexible order of elaboration. The program can be written in any order, preferably
that one that makes reading by people easier.



54

• Typeset documentation, especially diagrams and mathematics. In many cases,
being able to typeset diagrams and mathematics is very useful to precisely describe
complex programs.

• Automatic support for browsing. Having a table of contents, indexes, cross-
references and other navigation elements is crucial for a book-quality document.

The last two characteristics are accomplished by using a good document preparation
system. In fact, most of the literate programming systems do use some TEX variant,
which gives those literate programming system all richness that TEX already brings to
regular typesetting.

Figure 6.1: tool support for literate programming

For actual literate programming systems, tool support is an important issue. (THOMP-
SON, 2000) cites several available literate programming tools. Figure 6.1 shows how one
achieves documents and programs from a literate program: there is a tool that generates
input for a document preparation system from the literate program; this is called weaving.
1 Another tool generates input for the compiler from the literate program; this is called
tangling.

In some literate programming systems those intermediate steps may not exist: either
the compiler also does the tangling, or there is no need for preprocessing of the literate
programming before feeding it to the document preparation system.

6.2 Literate Programming and the Haskell Programming Language

Haskell’s syntax is very similar to lambda calculus, and in particular to the style used
commonly (SCHMIDT, 1986; WATT, 1991) to describe Denotational Semantics. This
makes Haskell a good tool for prototyping denotational semantics definitions: one can
write a denotational semantics as a Haskell program almost with no syntactic changes;
and by adding an input parser and some minor code for user interaction, one can obtain a
running executable for that semantics.

Haskell also supports a limited form of Literate Programming: literate programs are
officially defined in Haskell definition (JONES et al., 2003), and can be written by naming
the source file according to the adopted convention for literate Haskell source (*.lhs)
and starting every source code line with a “>” sign: all other lines will be considered as
comments by compilers. This way, tangling is natively supported by Haskell compilers.

1Recently, the term weaving has been also used in the area of Aspect-Oriented Software Development.



55

There are several weaving tools for Haskell, but for this work lhs2TeX (LöH, 2005)
was chosen. It supports the use of TEX for formatting the documentation sections of the
program, and generates special TEX code for source-code sections, so Haskell source can
be made stylized as regular mathematics in the generated document.

lhs2TeX provides also the possibility of detailed formatting of several aspects of the
code, with the intent of bringing the semantics expressed in Haskell for practical reasons
yet closer to mathematics. For example, we can instruct lhs2TeX to present the Haskell
expression Data.Set.empty as the empty set symbol ∅, or Data.Set.union a
b as a ∪ b.

lhs2TeX generates a TEX document from an literate Haskell program, playing the
weaving role (see figure 6.1).

This way, Haskell seemed a natural choice of tool for prototyping Algebraic Prosoft
Semantics. Actually, Algebraic Prosoft’s semantics was written directly in Haskell, so
both the text and the prototype, at the end, are the same thing. This showed some advan-
tages:

• Easier typesetting. Writing Haskell is easier than writing lambda calculus in TEX
with the proper indentation and formatting.

• Easier maintainance. Semantics definition and prototype implementation are al-
ways synchronized.

• Semantics is kept consistent. The documented semantics can be checked by the
Haskell compiler, and won’t show any syntax errors, type errors or similar errors.

6.3 The prototype

The prototype implementation of Algebraic Prosoft was developed using the tech-
niques presented in chapter 5, together with literate programming in Haskell for writing
the semantics itself. As discussed in chapter 5, it cannot be considered a production im-
plementation, not addressing issues as performance, security and all other non-functional
— but important — aspects. On the other hand, it’s indeed a full implementation of
Algebraic Prosoft, since the language can be actually used and tested through that imple-
mentation.

Figure 6.2: prosoft-reduce’s modules

The prototype was called prosoft-reduce. Figure 6.3 shows in a simplified way
prosoft-reduce’s modules and their role. The top of the figure comprises the mod-
ules that are also the semantics definition: each one of them is described in chapter 4. In
the bottom of the figure, there are the modules that are implementation-specific:



56

• Parser: this module is a Happy parser (GILL; MARLOW, 2006) for Algebraic
Prosoft specifications and terms. Additionally, it contains also a parser for console
commands made available by the Main module.

• Main: this module is the main mechanism that drives the execution of the proto-
type. It implements the main loop, reading input from the user, issuing the input to
the semantics modules, and presenting results from the users. It also implements
the special commands, like /load, that loads a new specification into the environ-
ment, /in, that makes the user enter the scope of a given ATO, and others (see
appendix A).

• Shell: this module handles user interaction through Haskell’s GNU Readline
binding, allowing the user to navigate through previously issued terms and com-
mands, and to edit his/her input in a suitable console interface.

• Load: handles the loading of ATO’s from files, allowing the user to load his/her
own specifications into the environment.

The Builtins module is in the half of the way: since Records and Unions speci-
fications vary on the number of fields or choices, respectively, we need to dynamically
generate specifications based on the number of fields or choices. This way the include
semantic function (page 33) needs to use the createRecordSpec and createUnionSpec
auxiliary functions, implemented in the Builtinsmodule and omitted in the semantics
definition. The Builtins module also lists and creates the built-in specifications (see
appendix B): since they are implemented in Algebraic Prosoft itself, they are not part of
the semantics.

Figure 6.3 shows prosoft-reduce running a sample session. First, when starting
up, prosoft-reduce loads all its built-in ATO’s. Then the user can reduce terms
through the ICS, as shown in the figure. The user can also “jump” to the context of a
specific ATO (e.g. /in Booleans) and then issue terms that will be reduced in the
context of that ATO, just as if they were sent there through ICS.

prosoft-reduce’s architecture is shown in figure 6.4: it’s a 3-tier application.
The layer at the bottom, Semantics, was derived from the denotational specification of
Algebraic Prosoft’s semantics: it contains the modules that form the semantics of the
language, as well as its abstract syntax. The middle layer, the Parser, interprets the input
text using a concrete syntax specification written in Happy (GILL; MARLOW, 2006).
This interpretation transforms the input into abstract syntax elements that are fed into the
Semantics layer for interpretation. The topmost layer, Console-based UI2, handles the
interaction with the user, reading input and presenting results as output to the user.

Since we have clearly separated layers, we can add different implementations of each
layer without having much impact on the other ones. Something that is already being
worked on is a graphical interface supporting not only graphical editing of Prosoft spec-
ifications (like ProTool (RANGEL; NUNES, 2004)), but also graphical representation of
terms. As figure 6.4 shows, this graphical interface will be placed as another option of
user interface. Its introduction will make specification and specification prototyping even
more productive.

The appendices of this thesis present further information on prosoft-reduce.
Appendix A presents a simple reference manual for prosoft-reduce. Appendix B

2User Interface



57

Figure 6.3: A screenshot of prosoft-reduce

Figure 6.4: prosoft-reduce’s architecture

exhibits the implementation of the standard (or built-in) ATO for prosoft-reduce,
written in Algebraic Prosoft itself. Appendix C revisits the VideoClub problem, a histor-
ical example used for illustrating Algebraic Prosoft, this time from the point of view of
the “new” interpretation for Algebraic Prosoft.

6.4 A Semantic Prototype Framework

During the development of prosoft-reduce and the research on semantic pro-
totyping in general, it was noted that several aspects were always present in semantic
prototypes. Some of them were extracted into a framework that was called SPF (Seman-
tic Prototyping Framework).

SPF’s main features are:

• A driver function, that implements all the generic aspects of a semantic prototype:



58

if there is no input file, it fires a interactive console session and incrementally reads
inputs, parse them, and feed the parsed structures into the semantics module; if
there is an input file, the file is fully parsed and then fed into the semantics module.
The prototype implementor passes to the driver function both the parsing function
and the semantics function.

• Interactive console session: history handling, input line editing, and virtually all
features of GNU Readline.

• File input handling: the prototype implementor does not have to worry about deal-
ing with input file. SPF already reads the input file (if there is one), and feeds the
parsed program into the semantics module.

• A simple implementation of a transition system for Operational Semantics proto-
types: the prototype implementor just has to define his/her configuration data type,
and implement its functions for transition (the transition rules) and for checking ter-
mination (so the transition system knows when to stop: when it finds a configuration
that is considered a terminal one).

To develop a semantic prototype with SPF, the prototype implementor needs to de-
velop, besides the abstract syntax and semantics definitions, a parser function parser :
String → Expression, where Expression is the type of the parsed elements: de-
pending on the language, it can represent commands, expressions, etc. In the case of
prosoft-reduce, for example, an Expression is either a term to be reduced or a
console command to be executed by the program, like “load a new ATO”, “test matching
terms x and y”, etc.

More information on SPF can be found on its internet page (AZEVEDO TERCEIRO,
2006).

6.5 Final remarks

This chapter presented briefly the main aspects involved in the development of a
semantics-based prototype implementation of Algebraic Prosoft. It presented the con-
cept of Literate Programming and a discipline of using Literate Programming with the
Haskell programming language.

An overview of the prototype was given, describing superficially its main
implementation-specific modules, which together with the semantics modules, form
prosoft-reduce. It was also shown that several aspects of semantic prototypes are
common between several implementations, and that they are being extracted into the Se-
mantic Prototype Framework, an ongoing project.

The next chapter finishes this thesis, presenting related work, pointing its main con-
tributions, its limitations, and future work.



59

7 CONCLUSIONS

This chapter presents the conclusions of this work: what other work is related to this
one; how this work contributed to research in its field, as well as in the Prosoft research
group; what limitations we choose to live with; and what can be done in the future as a
consequence of this work.

The rest of the chapter is organized as follows: section 7.1 points related work; section
7.2 indicates the contributions presented in this work; section 7.3 describes the limitations
to which this work is bound. secion 7.4 presents possibilities of future work that can be
carried as logical sequences of this one.

7.1 Related work

(RIBEIRO, 1991) presents a formalization of Prosoft in VDM in order to integrate
algebraic specifications into the Prosoft Environment. Although modelling a currently
outdated version of Prosoft, this work provided some ideas about modelling the Prosoft
environment.

ProTool (RANGEL, 2003) is a tool that, through the translation of Prosoft specifica-
tions into OBJ (GOGUEN; TARDO, 1986) ones, provides means of prototyping Prosoft
specifications. Although being very useful in the process of software development, such
prototyping doesn’t provide a direct semantics to Prosoft. This way, the manipulation
and reasoning over Prosoft specifications wasn’t facilitated. It could only be achieved by
having a semantics explicitly defined.

7.2 Contributions

This work presents as contributions:

• Semantics for Algebraic Prosoft. By defining a precise semantics for Algebraic
Prosoft, this work contributes to the Prosoft research group by providing an uniform
view of Algebraic Prosoft, unifying its interpretation and providing a reference for
it.

Besides that, the already specified semantics can serve as a base for further develop-
ment of the Algebraic Prosoft language. Additions to the language can be specified
by extending the semantics presented in this thesis.

• Semantics for ICS. This contribution can be seen as a more general one, benefit-
ting not only the Prosoft group but the whole formal methods community. ICS is



60

an unique (to the best of our knowledge) concept that eliminates the need of inclu-
sion of data types by others, allowing a data type to use other data types’ operations
by referencing (calling) them with a special notation without including the whole
corresponding specification. This contrasts with the concept of data type inclusion,
when a data type has to include another one as a whole if it uses some of the other’s
operations. This work presents a precise and unambiguous semantics for the ICS
concept.

• A prototype implementation of Algebraic Prosoft. Besides specifying semantics,
this work also provides a prototype implementation, in which Algebraic Prosoft can
be actually experimented and used.

• Investigation on Semantic prototyping. This work also provided interesting re-
sults investigating the use of the Haskell programming language in semantic pro-
totyping, analyzing the prototyping of both denotational and operational semantics
definitions, as shown in chapter 5.

7.3 Limitations

The semantics in chapter 4 is presented in a non-standard way. It mixes semantic and
syntactic elements. It does not state explicitly the meaning of Prosoft specifications in
terms of a proper mathematical entity. Instead, semantic functions and auxiliary functions
aren’t properly separated.

This work started with the restriction of using only the prefixed syntax op(t1, . . . , tn)
for terms. This syntax form is certainly enough for semantic definition, but makes writing
large specifications harder. Allowing mix-fix syntax and other forms of syntactic sugar,
like providing a literal representation for some built-in types as Integers and Dates (i.e.
4 instead of succ(succ(succ(succ(zero))))) would make Algebraic Prosoft
more suitable for a production environment.

It was not specified a static semantics for Algebraic Prosoft. In a production environ-
ment it would be crucial to be able to check a specification for type errors. In special, if
one tries to reduce a term that does not match any of the operations defined in some ATO,
it’s simply not reduced. The user could receive a type error message instead, informing
that the term is not an object of a sort specified in that ATO.

7.4 Future work

An interesting possibility for future work is further research on semantic prototyping,
improving the Semantic Prototyping Framework by identifying other common aspects be-
tween prototype implementations and working on a better way of representing operational
semantics rules in Haskell.

Since now a precise interpretation of Algebraic Prosoft is available, an obvious future
work is to adequate the current implementation of the Prosoft Environment (Prosoft Java)
to this interpretation. Prosoft Java relies on an interpretation of Algebraic Prosoft that the
Prosoft group currently considers as “not the right one”.

Another possibility regarding the Prosoft Environment is to investigate how far can
we go with semantic prototyping: would it be possible to integrate prosoft-reduce
with a graphical interface and other elements of modern user interface design? Can we



61

integrate the semantics module together with parts of prosoft-reduce with existing
Prosoft Java user interface?

Finally, having a precise semantics creates the possibility of developing proof of prop-
erties over ATO’s in the Prosoft Environment. An interesting work would be to attach a
theorem prover to the Prosoft Environment.



62

REFERENCES

AZEVEDO TERCEIRO, A. S. de. SPF: a semantic prototyping framework. Available
at: <http://www.inf.ufrgs.br/~asaterceiro/spf/>. Visited on April 7th
2006.

BOEHM, B. Software Engineering Economics. Englewood Cliffs: Prentice Hall, 1981.

DAHMER, A. Um Modelo de Processo de Curso. 2006. Tese (Doutorado em Ciência
da Computação) — Instituto de Informática, UFRGS, Porto Alegre.

DAVIE, A. J. An Introduction to Functional Programming Systems Using Haskell.
[S.l.]: Cambridge University Press, 1992. (Cambridge Computer Science Texts, v.27).

DIJKSTRA, E. W. A Discipline of Programming. [S.l.]: Prentice-Hall, 1976.

FREITAS, A. V. P. APSEE-Global: um modelo de gerência de processos distribuídos de
software. 2005. 255p. Dissertação (Mestrado em Ciência da Computação) — Instituto de
Informática, UFRGS, Porto Alegre.

GILL, A.; MARLOW, S. Happy: the parser generator for haskell. Available at: <http:
//www.haskell.org/happy/>. Visited on January 26th 2006.

GOGUEN, J. V.; TARDO, J. J. An Introduction to OBJ: a language for write and
testing formal algebraic program specifications. In: GEHANI, N.; MCGETTRICK,
A. D. (Ed.). Software Specifications Techniques. [S.l.]: Addison-Wesley Publishing
Company, 1986.

GRANVILLE, L. Z.; GASPARY, L. P. Distributed Prosoft: management of tools and
memory. [S.l.: s.n.], 1996.

GRIES, D. The Science of Programming. New York: Springer-Verlag, 1981.

HARTEL, P. LATOS – a lightweight animation tool for operational semantics. 1997.

HOLYER, I.; GALLAGHER, J.; MULLER, H. Lecture Notes for COMS30122 —
Advanced Language Engineering. Available at: <http://www.cs.bris.ac.
uk/Teaching/Resources/COMS30122/lectures/>. Visited on January 26th
2006.

IERUSALIMSCHY, R. Programming in Lua. [S.l.]: Lua.org, 2003. 288p.



63

JONES, S. P.; AUGUSTSSON, L.; BARTON, D.; BOUTEL, B.; BURTON, W.; FASEL,
J.; HAMMOND, K.; HINZE, R.; HUDAK, P.; HUGHES, J.; JOHNSSON, T.; JONES,
M.; ERIK MEIJER, J. L. andy; PETERSON, J.; REID, A.; RUNCIMAN, C.; WADLER,
P. Haskell 98 Language and Libraries: the revised report. Available at: <http://
www.haskell.org/onlinereport/>. Visited on January 9th 2006.

KNUTH, D. E. Literate programming. The Computer Journal, Oxford, UK, UK, v.27,
n.2, p.97–111, 1984.

LEAL, M. A.; IERUSALIMSCHY, R. A Formal Semantics for Finalizers. Journal of
Universal Computer Science, [S.l.], v.11, n.7, p.1198–1214, 2005.

LöH, A. lhs2TeX. Available at: <http://www.cs.uu.nl/~andres/lhs2tex/
>. Visited on October 17th 2005.

MAIA, A. B. APSEE-Tail: um modelo de apoio a adaptacao de processos de software.
2005. Dissertação (Mestrado em Ciência da Computação) — Instituto de Informática,
UFRGS, Porto Alegre.

MOURA, A. L. de; RODRIGUEZ, N.; IERUSALIMSCHY, R. Coroutines in Lua. Jour-
nal of Universal Computer Science, [S.l.], v.10, n.7, p.910–925, 2004.

NUNES, D. J. Estratégia data-driven no desenvolvimento de software. In: SIMPóSIO
BRASILEIRO DE ENGENHARIA DE SOFTWARE, 1992, Gramado. Anais. . . Porto
Alegre: Instituto de Informática: UFRGS, 1992. p.81–95.

NUNES, D. J. PROSOFT: um ambiente de desenvolvimento de software baseado no
método algébrico. [S.l.]: Instituto de Informática – Universidade Federal do Rio Grande
do Sul, 1994.

NUNES, D. J. Projeto PROSOFT – Position Paper. [S.l.: s.n.], 2003. Work in progress.

PLOTKIN, G. D. A Structural Approach to Operational Semantics. [S.l.]: Computer
Science Department, Aarhus University, 1981.

RANGEL, G. S. ProTool: uma ferramenta de prototipação de software para o ambiente
PROSOFT. 2003. Dissertação (Mestrado em Ciência da Computação) — Instituto de In-
formática – Universidade Federal do Rio Grande do Sul, Porto Alegre.

RANGEL, G. S.; NUNES, D. J. ProTool: uma ferramenta de prototipação de software
para o ambiente prosoft. In: SIMPóSIO BRASILEIRO DE ENGENHARIA DE SOFT-
WARE – SESSãO DE FERRAMENTAS, 2004. Anais. . . [S.l.: s.n.], 2004.

REIS, C. A. L. Um gerenciador de processos de software para o ambiente PROSOFT.
1998. 197p. Dissertação (Mestrado em Ciência da Computação) — Instituto de Infor-
mática, UFRGS, Porto Alegre.

REIS, C. A. L. Uma abordagem flexível para execução de processos de software evo-
lutivos. 2003. 267p. Tese (Doutorado em Ciência da Computação) — Instituto de Infor-
mática, UFRGS, Porto Alegre.

REIS, R. Q. Uma proposta de suporte ao desenvolvimento cooperativo de software no
ambiente PROSOFT. 1998. 177p. Dissertação (Mestrado em Ciência da Computação)
— Instituto de Informática, UFRGS, Porto Alegre.



64

REIS, R. Q. APSEE-Reuse: um meta-modelo para apoiar a reutilização de processos
de software. 2002. 215p. Tese (Doutorado em Ciência da Computação) — Instituto de
Informática, UFRGS, Porto Alegre.

REYNOLDS, J. C. Definitional interpreters for higher-order programming languages. In:
ACM ANNUAL CONFERENCE, 1972, Boston. Proceedings. . . New York: ACM Press,
1972. p.717–740.

RIBEIRO, L. Integração no Prosoft de ambientes corretos obtidos a partir de es-
pecificações algébricas e executados usando sistemas de reescrita. 1991. Dissertação
(Mestrado em Ciência da Computação) — Instituto de Informática, UFRGS.

SANNELLA, D.; TARLECKI, A. Algebraic methods for specification and formal devel-
opment of programs. ACM Comput. Surv., New York, NY, USA, v.31, n.3, p.10, 1999.

SCHLEBBE, H. Distributed Prosoft. [S.l.: s.n.], 1994.

SCHLEBBE, H.; SCHIMPF, S. Reengineering of PROSOFT in Java: outubro de 1997
a dezembro de 1997. Porto Alegre: [s.n.], 1997.

SCHMIDT, D. A. Denotational semantics: a methodology for language development.
Dubuque, IA, USA: William C. Brown Publishers, 1986.

SOUSA, A. L. R. de. APSEE-Monitor: um mecanismo de apoio à visualização de pro-
cessos de software. 2003. Dissertação (Mestrado em Ciência da Computação) — Instituto
de Informática, UFRGS, Porto Alegre.

TANG, A. et al. Pugs. Available at: <http://www.pugscode.org/>. Visited on
January 26th 2006.

THOMPSON, D. B. The Literate Programming FAQ. Available at: <http:
//www.literateprogramming.com/farticles.html>. Visited on October
14th 2005.

WADLER, P. Monads for functional programming. In: MARKTOBERDORF SUMMER
SCHOOL ON PROGRAM DESIGN CALCULI – COMPUTER AND SYSTEMS SCI-
ENCES, 1992. Proceedings. . . [S.l.]: Springer Verlag, 1992. v.18.

WALL, L. et al. Perl 6. Available at: <http://dev.perl.org/perl6/>. Visited
on January 26th 2006.

WATT, D. A. Syntax and Semantics of Programming Languages. [S.l.]: Prentice Hall
International, 1991.



65

APPENDIX A PROSOFT-REDUCE SIMPLIFIED REFER-
ENCE MANUAL

Download and installation

The instructions presented here are mainly targeted at Unix-like environments. Al-
though they were only tested in Debian GNU/Linux systems, they may work on most
Unix-like environments with the needed requirements installed, specially with any
GNU/Linux variant.

Obtaining prosoft-reduce

prosoft-reduce can be downloaded from the Prosoft research group’s
website, under the “Downloads” section. The available file is named
prosoft-reduce-x.y.z.tar.gz, where x.y.z is the version number.

Note:
To ease the evolution from the viewpoint of users, prosoft-reduce’s versions are num-
bered with numbers that contain three components, in the form x.y.z, where:

• x is called major version number. It’s incremented when there are large, conceptual
changes in the design of the software.

• y is called minor version number. It’s incremented every time a new version contains
substancial, functional changes when comparing to its predecessor.

• z is called patch level. Every version that corrects bugs and non-functional require-
ments gets a new patch level number.

Compilation and installation

Compiling prosoft-reduce has the following requirements:

• GNU make.

• Glasgow Haskell Compiler (GHC). prosoft-reduce was tested only with ver-
sions above 6.4, but there are no special reasons that would make it not work with
earlier os later versions. Other Haskell compilers may also work, but were not
tested.

The first step is to extract the source code from the tarball file, and enter the source
code directory:



66

# tar xvf prosoft-reduce-x.y.z.tar.gz
# cd prosoft-reduce-x.y.z

Inside the prosoft-reduce-x.y.z directory, you can use the common method
for software that is packaged with GNU autotools (most free software out there that are
written in a compiled language are):

# ./configure
# make
# make install

If you want to install prosoft-reduce to a privileged path (like /usr), the
last command must be executed as the root user. If you want to install to a user-
defined location, you can pass the --prefix=/your/preferred/path argument
to ./configure. Try ./configure --help for a full list of available options.

Usage

If everything went well with the installation procedure, the prosoft-reduce com-
mand will be immediately available:

# prosoft-reduce
I: Loaded ATO builtins/Prelude
I: Loaded ATO builtins/Sets
I: Loaded ATO builtins/Maps
I: Loaded ATO builtins/Lists
I: Loaded ATO builtins/Integers
I: Loaded ATO builtins/Dates
I: Loaded ATO builtins/Booleans
Prelude> _

For issuing terms to reduction you just type them in the console prompt.
prosoft-reduce will reduce them in the context of the current ATO, identified in
the command prompt (e.g. Prelude> indicates that the current ATO is Prelude). If
you issue and ICS call, the current ATO does not matter (expect for input variables, as
we’ll see later).

Prelude> ICS(Booleans, not, [false])
=> true
Prelude> _

Commands

For issuing commands for the tool, you enter their names after a slash (“/”), like in
/commandname. Some commands expect parameters, and others don’t. The available
commands are:

• /load ATO1 ATO2 ...
Loads the ATO’s informed as arguments. The ATO’s are searched in files



67

with their same names plus the .prosoft extension. prosoft-reduce
searches them in the current directory, then in a subdirectory examples, then
in prosoft-reduce’s directory for builtin ATO’s.

Example (the VideoClub ATO is in a file named VideoClub.prosoft inside an
examples subdirectory):

Booleans> /load VideoClub
I: Loaded ATO VideoClub
=> .
Booleans> _

• /in ATO
Changes the context of reduction to the ATO informed as argument. You will note
that prosoft-reduce’s reduce prompt will change to reflect this.

Example:

Prelude> /in Booleans
=> Now in the context of ATO Booleans
Booleans> _

• /help

Shows online help.

• /atos

Lists the available ATO’s in the environment (all the ATO’s that were already
loaded).

• /show ATO1 ATO2 ...

Shows operations, variables and equations in the ATO’s passed as argument (the
ATO’s must be already loaded).

• /match TERM1 TERM2

Tests TERM2 for matching against TERM1, as if you were trying to reduce TERM2
and TERM1 was the letf-hand side of an equation. If the terms match, the generated
substitution is shown.

Example:

Prelude> /match succ(x) succ(pred(succ(y)))
{"x":=pred(succ(y))}
=> yes
Prelude> /match op(x) y
=> no
Prelude> _



68

Input variables

Input variables (x?) are an important element of Algebraic Prosoft. They allow us
to have more than one input even for monadic operations: when Prosoft stops reducing a
term, any remaining input variables are presented to the user, so that he/she can enter an
actual value for that variable, allowing the reduction to continue.

Suppose you enter the following term in prosoft-reduce:

Booleans> and(true,t?)

In this case, prosoft-reduce can’t proceed the reduction without knowing the
value of t?. It will ask the user for input:

... t? ...
t = _

After you enter an actual value for t?, the reduction can finally be completed:.

true<ENTER>
=> true
Booleans> _

But prosoft-reduce asks for input only when its needed: the value of t? is not
needed at all when reducing the following terms:

Booleans> and(false,t?)
=> false
Booleans> or(true,t?)
=> true
Booleans> _

Here are other examples, this time in the “Integers” ATO:

Integers> succ(x?)
... succ(x?) ...
x = zero
=> succ(zero)
Integers> multiply(succ(x?),zero)
=> zero
Integers>
Integers> add(succ(succ(x?)),succ(y?))
... add(succ(succ(succ(x?))),y?) ...
x = zero
y = zero
=> succ(succ(succ(zero)))
Integers> _

In the end of appendix C, it is presented a sample prosoft-reduce session run-
ning the examples presented there.



69

APPENDIX B BUILT-IN ATO’S

This appendix presents the built-in ATO’s implemented for prosoft-reduce.
They are all implemented in Algebraic Prosoft itself.

Booleans

1 specification Booleans
2 sort Boolean
3 operations
4 true : -> Boolean
5 false : -> Boolean
6 not : Boolean -> Boolean
7 and : Boolean, Boolean -> Boolean
8 or : Boolean, Boolean -> Boolean
9

10 variables
11 v : Boolean
12 u : Boolean
13 equations
14 not(true) = false
15 not(false) = true
16

17 and(true,v) = v
18 and(false,v) = false
19 and(v,u) = and(u,v)
20

21 or(true,v) = true
22 or(false,v) = v
23 or(v,u) = or(u,v)
24

25 end
26

27 # vim: tw=60

Dates

1 # Dates specification for Prosoft
2 #
3 # This specification is currently almost empty, since



70

4 # without a little bit of syntatic sugar is quite difficult
5 # to express actual dates. Did you already try to write
6 # "2006" as succ(succ(...succ(zero))) ? ;-)
7

8 specification Dates
9

10 include Integers
11

12 sort Date
13

14 operations
15 create_date: Integer, Integer, Integer -> Date
16

17 end
18

19 # vim: tw=60

Integers

1 # Integers specification for Prosoft
2

3 specification Integers
4 include Booleans
5 sort Integer
6 operations
7 zero : -> Integer
8 succ : Integer -> Integer
9 pred : Integer -> Integer

10 add : Integer, Integer -> Integer
11 minus : Integer, Integer -> Integer
12 is : Integer, Integer -> Boolean
13 gt : Integer, Integer -> Boolean
14 max : Integer, Integer -> Integer
15 multiply: Integer, Integer -> Integer
16

17 # testing "constructors":
18 one : -> Integer
19 two : -> Integer
20 variables
21 x : Integer
22 y : Integer
23 equations
24

25 one = succ(zero)
26 two = succ(one)
27

28 pred(zero) = zero
29 pred(succ(x)) = x
30

31 add(x,succ(y)) = add(succ(x),y)
32 add(x,zero) = x



71

33 add(zero,x) = x
34

35 minus(succ(x),succ(y)) = minus(x,y)
36 minus(zero,x) = zero
37 minus(x,zero) = x
38

39 is(succ(x),succ(y)) = is(x,y)
40 is(x,x) = true
41 is(succ(x),zero) = false
42 is(zero,succ(x)) = false
43

44 gt(succ(x),succ(y)) = gt(x,y)
45 gt(succ(x),zero) = true
46 gt(zero,x) = false
47 gt(x,x) = false
48

49 lt(x,y) = gt(y,x)
50

51 max(x,y) = if gt(x,y) then x else y
52

53 multiply(x,zero) = zero
54 multiply(x,succ(y)) = add(x,multiply(x,y))
55

56 end
57

58 # vim: tw=60

Lists

1 # Lists specification for Prosoft
2

3 specification Lists
4 include Booleans
5 formal sort Component
6 sort List
7 operations
8 emptyList : -> List
9 cons : Component, List -> List

10 head : List -> Component
11 tail : List -> List
12 concat : List, List -> List
13 reverse : List -> List
14 contains: List, Component -> Booleans
15 equations
16 head(cons(h,t)) = h
17 head(emptyList) = error
18

19 tail(cons(h,t)) = t
20 tail(emptyList) = emptyList
21

22 concat(cons(h,t),l) = cons(h,concat(t,l))



72

23 concat(emptyList,l) = l
24 reverse(cons(h,t)) = concat(reverse(t),cons(h,emptyList))
25 reverse(emptyList) = emptyList
26

27 contains(emptyList,x) = false
28 contains(cons(h,l),x) = if h==x then true else contains(l,x)
29 end
30

31 # vim: tw=60

Maps

1 # Maps specification for Prosoft
2

3 specification Maps
4

5 formal sorts Domain, Range
6 sort Map
7

8 operations
9 emptyMap: Map

10 overwrite : Map, Domain, Range -> Map
11 lookup: Map, Domain -> Range
12 restrict: Map, Domain -> Map
13 has_key: Map, Domain -> Map
14

15 variables
16

17 d : Domain
18 x : Domain
19 r : Range
20 m : Map
21

22 equations
23

24 lookup(emptyMap,d) = error
25 lookup(overwrite(m,d,r),x) =
26 if (d==x)
27 then r
28 else lookup(m,x)
29

30 restrict(emptyMap,k) = emptyMap
31 restrict(overwrite(m,d,r),x) =
32 if (d==x)
33 then m
34 else overwrite(restrict(m,x),d,r)
35

36 has_key(emptyMap,x) = false
37 has_key(overwrite(m,d,r),x) =
38 if (d==x)
39 then true



73

40 else has_key(m,x)
41

42 end
43

44 # vim: tw=60

Prelude

1 # Prelude specification for Prosoft
2 #
3 # This specification contains nothing at all. It’s only a
4 # placeholder for being the default context in
5 # prosoft-reduce, where everything needs te be feed into ICS
6 # to be reduced.
7

8 specification Prelude
9 end

10

11 # vim: tw=60

Records

1 # Records "template" specification for Prosoft
2 #
3 # WARNING:
4 # this file isn’t a valid prosoft specification. Don’t try
5 # to pass it as input to prosoft-reduce
6 #
7 # This is not an actual specification. Records specification
8 # are created on demand, since depending on the number of
9 # fields, the record’s specification is different. This is

10 # only a placeholder file to show how a Record specification
11 # will look like after being created.
12 #
13 # See Builtins.lhs for the actual Records specification
14 # generation
15

16 # assume n = number of fields
17 specification Records
18

19 formal sorts Sort_1, Sort_2, ..., Sort_n
20 sort Record_n
21

22 operations
23

24 create_record : Sort_1, Sort_2, ..., Sort_n -> Record_n
25

26 get_field_1 : Record_n -> Sort_1
27 get_field_2 : Record_n -> Sort_2
28 #...



74

29 get_field_n : Record_n -> Sort_n
30

31 equations
32

33 get_field_1 (create_record(v_1 ,v_2, ..., v_n)) = v_1
34 get_field_2 (create_record(v_1 ,v_2, ..., v_n)) = v_2
35 #...
36 get_field_n (create_record(v_1 ,v_2, ..., v_n)) = v_n
37

38 end
39

40 # vim: tw=60

Sets

1 # Sets specification for Prosoft
2

3 specification Sets
4

5 include Booleans,Lists
6

7 formal sorts Element
8 sorts Set
9

10 operations
11 emptySet: -> Set
12 insert: Element, Set -> Set
13 in: Element, Set -> Boolean
14 singleton: Element -> Set
15

16 union: Set, Set -> Set
17 intersection: Set, Set -> Set
18

19 variables
20 e: Element
21 x: Element
22 s: Set
23

24 equations
25

26 emptySet = set(emptyList)
27

28 insert(e,set(s)) =
29 if contains(s,e)
30 then set(s)
31 else set(cons(e,s))
32

33 in(e,set(s)) = contains(s,e)
34

35 singleton(e) = insert(emptySet,e)
36



75

37 union(set(emptyList),s) = s
38 union(set(cons(x,l)),s) =
39 if in(x,s)
40 then union(set(l),s)
41 else union(set(l),insert(x,s))
42

43 intersection(set(emptyList),s) = emptySet
44 intersection(set(cons(x,l)),s) =
45 if in(x,s)
46 # {x} U (l ^ s):
47 then union(singleton(x),intersection(set(l),s))
48 else intersection(set(l),s) # l ^ s
49

50 end
51

52 # vim: tw=60

Unions

1 # Unions "template" specification for Prosoft
2 #
3 # WARNING:
4 # this file isn’t a valid prosoft specification. Don’t try
5 # to pass it as input to prosoft-reduce
6 #
7 # This is not an actual specifications. Unions
8 # specifications are created on demand, since depending on
9 # the number of choices, the union’s specification is

10 # different. This is only a placeholder file to show how a
11 # Union specification will look like after being created.
12 #
13 # See Builtins.lhs for the actual Unions specification
14 # generation
15

16 # assume n = number of choices
17 specification Unions
18

19 include Booleans
20 formal sorts Sort_1, Sort_2, ..., Sort_n
21 sort Union_n
22

23 operations
24

25 # constructors
26 tag_1 : Sort_1 -> Union_n
27 tag_2 : Sort_2 -> Union_n
28 #...
29 tag_n : Sort_n -> Union_n
30

31 # observers
32 is_tag_1 : Union_n -> Boolean



76

33 is_tag_2 : Union_n -> Boolean
34 #...
35 is_tag_n : Union_n -> Boolean
36

37 equations
38

39 is_tag_1(tag_1(x)) = True
40 is_tag_1(y) = False
41 #
42 is_tag_2(tag_2(x)) = True
43 is_tag_2(y) = False
44 #...
45 is_tag_n(tag_n(x)) = True
46 is_tag_n(y) = False
47

48 end
49

50 # vim: tw=60



77

APPENDIX C THE VIDEOCLUB EXAMPLE, REVISITED

To provide a sample of Algebraic Prosoft, we present here a complete example of an
problem modelled in Algebraic Prosoft. The following example presents the specification
of a control application for a Video Club.

The Video Club example has been historically the classical example for Prosoft
specifications. In this appendix, the Video Club example is revisited, this time using
the “new” interpretation of Algebraic Prosoft. This example can even be executed in
prosoft-reduce.

According to the Prosoft paradigm, solution to problems are given by defining ATO’s
that represent the several data elements involved in the problem.

In the next sections, each one of the ATO’s defined for the Video Club problem is
presented. Both their graphical representation and their full specification are provided.

The last section shows an example prosoft-reduce section running this example.

VideoClub

The first ATO defined is VideoClub. Figure C show the graphical representation for
the VideoClub ATO.

Figure C.1: Graphical representation for VideoClub ATO

1 specification VideoClub
2

3 include Integers
4

5 include instantiation of Records
6 using
7 Customers for Sort_1,
8 customers for Field_1,
9 Tapes for Sort_2,



78

10 tapes for Field_2,
11 Rentals for Sort_3,
12 rentals for Field_3,
13 Movies for Sort_4,
14 movies for Field_4
15 renamed using VideoClub for Record
16

17 operations
18 create: -> VideoClub
19 add_customer : VideoClub -> VideoClub
20 remove_customer : VideoClub -> VideoClub
21 add_movie : VideoClub -> VideoClub
22 remove_movie : VideoClub -> VideoClub
23 add_tape: VideoClub -> VideoClub
24 remove_tape: VideoClub -> VideoClub
25

26 rent_tape: VideoClub -> VideoClub
27 return_tape: VideoClub -> VideoClub
28 calculate_payment: VideoClub -> Integer
29

30 variables
31 c: Customers
32 t: Tapes
33 r: Rentals
34 m: Movies
35

36 equations
37 create = create_VideoClub(ICS(Customers,create),
38 ICS(Tapes, create),
39 ICS(Rentals, create),
40 ICS(Movies, create)
41 )
42

43 add_customer(create_VideoClub(c,t,r,m)) =
44 create_VideoClub(ICS(Customers,add_customer,[c]),t,r,m)
45 remove_customer(create_VideoClub(c,t,r,m)) =
46 create_VideoClub(ICS(Customers,remove_customer,[c]),t,r,m)
47

48 add_tape(create_VideoClub(c,t,r,m)) =
49 create_VideoClub(c,ICS(Tapes,add_tape,[t]),r,m)
50 remove_tape(create_VideoClub(c,t,r,m)) =
51 create_VideoClub(c,ICS(Tapes,add_tape,[t]),r,m)
52

53 add_movie(create_VideoClub(c,t,r,m)) =
54 create_VideoClub(c,t,r,ICS(Movies,add_movie,[m]))
55 remove_movie(create_VideoClub(c,t,r,m)) =
56 create_VideoClub(c,t,r,ICS(Movies,remove_movie,[m]))
57

58 rent_tape(create_VideoClub(c,t,r,m)) =
59 create_VideoClub(c,t,ICS(Rentals,rent_tape,[r]),m)
60 return_tape(create_VideoClub(c,t,r,m)) =



79

61 create_VideoClub(c,t,ICS(Rentals,return_tape,[r]),m)
62 calculate_payment(create_VideoClub(c,t,r,m)) =
63 ICS(Rentals,calculate_payment,[r])
64

65 end

Customers

The Customers ATO describes the base of customers of the Video Club. Figure C
show the graphical representation for the the Customers ATO.

Figure C.2: Graphical representation for Customers ATO

1 # Videoclub example
2 #
3 # Customers specification
4

5 specification Customers
6

7 include Booleans
8

9 include instantiation of Maps
10 using
11 Integer for Domain,
12 Customer for Reange
13 renamed using Customers for Map
14

15 operations
16

17 create: Customers
18 add_customer: Customers -> Customers
19 remove_customer: Customers -> Customers
20 exists_customer: Customers, Integer -> Boolean
21

22 variables
23

24 cs: Customers
25 customer_code: Integer
26 new_customer: Customer
27

28 equations



80

29

30 create = emptyMap
31

32 add_customer(cs) =
33 if not(exists_customer(cs,customer_code?))
34 then overwrite(cs, customer_code?, new_customer?)
35 else cs
36

37 remove_customer(cs) = restrict(cs, customer_code?)
38

39 exists_customer(cs, customer_code) =
40 has_key(cs, customer_code)
41

42 end
43

44 # vim: tw=60

Tapes

The Tapes ATO describes how are organized information about the tapes owned by the
Video Club. The graphical representation on figure C helps in understanding the structure
of this ATO.

Figure C.3: Graphical representation for Tapes ATO

1 specification Tapes
2

3 include Integers, Dates, Booleans
4

5 include instantiation of Maps
6 using Integer for Domain,
7 Tape for Range
8 renamed using Tapes for Map
9

10 include instantiation of Records
11 using
12 movie_code for Field_1,



81

13 Integer for Sort_1,
14 purchase_date for Field_2,
15 Date for Sort_2
16 renamed using Tape for Record
17

18 operations
19

20 create: -> Tapes
21 add_tape: Tapes -> Tapes
22 remove_tape: Tapes -> Tapes
23 exists_tape: Tapes, Integer -> Boolean
24

25 #exists_tape_of_movie: Tapes, Integer -> Boolean
26

27 variables
28

29 ts: Tapes
30 t: Tape
31 cod: Integer
32 mcod: Integer
33 purchase_date: Date
34

35 equations
36

37 create = emptyMap
38

39 add_tape(ts) =
40 if not(exists_tape(ts, cod?))
41 then overwrite(ts, cod?, create_Tape(mcod?, purchase_date?))
42 else ts
43

44 remove_tape(ts) = restrict(ts, cod?)
45

46 exists_tape(ts, cod) = has_key(ts, cod)
47

48

49 end

Rentals

Rentals is the ATO that represents information about rentals made by customers: the
tapes rent, together with a record of the date of the rental.

1 specification Rentals
2

3 include Integers, Dates, Booleans
4

5 include instantiation of Maps
6 using
7 tape_code for Field_1,
8 Integer for Sort_1,



82

Figure C.4: Graphical representation for Rentals ATO

9 RentalInfo for Sort_2,
10 rental_info for Field_2
11 renamed using Rentals for Map
12

13 include instantiation of Records
14 using
15 customer_code for Field_1,
16 Integer for Sort_1,
17 rental_date for Field_2,
18 Date for Sort_2
19 renamed using RentalInfo for Record
20

21 operations
22

23 create: Rentals
24 rent_tape: Rentals -> Rentals
25 return_tape: Rentals -> Rentals
26 customer_has_rental: Rentals -> Boolean
27 is_tape_rent: Rentals -> Boolean
28 calculate_payment: Rentals -> Integer
29 diary_tax: Integer
30

31 variables
32 rs: Rentals
33 tape_code: Integer
34 rental_date: Date
35 today: Date
36 customer_code: Integer
37 searched_customer_code: Integer
38

39 equations
40

41 create = emptyMap
42

43 rent_tape(rs) =



83

44 if not(is_tape_rent(rs, tape_code?))
45 then overwrite(rs,
46 tape_code?,
47 create_rentalinfo(customer_code?, rental_date?)
48 )
49 else rs
50

51 return_tape(rs) = restrict(rs, tape_code?)
52

53 customer_has_rental(overwrite(rs,
54 tape_code,
55 create_rentalinfo(customer_code,
56 rental_date)
57 )
58 ) =
59 if (customer_code == searched_customer_code?)
60 then true
61 else customer_has_rental(rs)
62 customer_has_rental(emptyMap) = false
63

64 is_tape_rent(rs, tape_code) = has_key(rs, tape_code)
65

66 calculate_payment(rs) =
67 if is_tape_rent(rs, tape_code?)
68 then multiply(minus(today?,
69 get_rental_date(lookup(rs, tape_code?))
70 ),
71 diary_tax
72 )
73 else zero
74

75 diary_tax = succ(succ(zero)) # 2/day
76

77 end

Movies

The Movies ATO represents information about the movies the Video Club know about.
Figure C show the graphical representation of the ATO.

Figure C.5: Graphical representation for Movies ATO



84

1 specification Movies
2

3 include Booleans
4

5 include instantiation of Maps
6 using
7 Movie for Range,
8 Integer for Domain
9 renamed using Movies for Map

10

11 operations
12

13 create: Movies
14 add_movie: Movies -> Movies
15 remove_movie: Movies -> Movies
16 exists_movie: Movies -> Boolean
17

18 variables
19

20 ms: Movies
21

22 equations
23

24 create = emptyMap
25

26 add_movie(ms) =
27 if not(exists_movie(ms, movie_code?))
28 then overwrite(ms, movie_code?, new_movie?)
29 else ms
30

31 remove_movie(ms) = restrict(ms,movie_code?)
32

33 exists_movie(ms, movie_code) = has_key(ms, movie_code)
34

35 end

Customer

The Customer ATO represents information the Video Club stores about each customer.
Figure C shows the graphical representation for the ATO.

1 # Videoclub example
2 #
3 # Customer specification
4

5 specification Customer
6

7 include instantiation of Records
8 using
9 String for Sort_1,

10 Name for Field_1,



85

Figure C.6: Graphical representation for Customer ATO

11 String for Sort_2,
12 Address for Field_2,
13 String for Sort_3,
14 Phone for Field_3
15 renamed using Customer for Record
16

17 end
18

19 # vim: tw=60

Movie

The Movie ATO represents informations that the Video Club stores about each movie.
Graphical representation for the ATO is shown in figure C.

Figure C.7: Graphical representation for Movie ATO

1 specification Movie
2

3 include instantiation of Records
4 using
5 String for Sort_1,
6 Title for Field_1,
7 String for Sort_2,
8 Director for Field_2,
9 Integer for Sort_3,

10 Year for Field_3
11 renamed using Movie for Record
12

13 end



86

Running a sample prosoft-reduce session with the VideoClub ex-
ample

First we start prosoft-reduce:

# prosoft-reduce
I: Loaded ATO builtins/Prelude
I: Loaded ATO builtins/Sets
I: Loaded ATO builtins/Maps
I: Loaded ATO builtins/Lists
I: Loaded ATO builtins/Integers
I: Loaded ATO builtins/Dates
I: Loaded ATO builtins/Booleans

Then we load all the needed ATO’s:

Prelude> /load Customers Movie Rentals Customer Movies VideoClub
Tapes

I: Loaded ATO Tapes
I: Loaded ATO VideoClub
I: Loaded ATO Movies
I: Loaded ATO Customer
I: Loaded ATO Rentals
I: Loaded ATO Movie
I: Loaded ATO Customers
=> .

Creating a new VideoClub object:

Prelude> ICS(VideoClub,create)
=> create_VideoClub(emptyMap,emptyMap,emptyMap,emptyMap)

Now we add a new customer:

Prelude> ICS(VideoClub, add_customer, [create_VideoClub(emptyMap
,emptyMap,emptyMap,emptyMap)])

... create_VideoClub(overwrite(emptyMap,customer_code?,
new_customer?),emptyMap,emptyMap,emptyMap) ...

customer_code = succ(zero)
new_customer = john
=> create_VideoClub(overwrite(emptyMap,succ(zero),john),emptyMap

,emptyMap,emptyMap)

And then another one:

Prelude> ICS(VideoClub,add_customer,[create_VideoClub(overwrite(
emptyMap,succ(zero),john),emptyMap,emptyMap,emptyMap)])

... create_VideoClub( if not( if succ(zero)==customer_code? then
true else false) then overwrite(overwrite(emptyMap,succ(zero
),john),customer_code?,new_customer?) else overwrite(emptyMap
,succ(zero),john),emptyMap,emptyMap,emptyMap) ...



87

customer_code = succ(succ(zero))
new_customer = mary
=> create_VideoClub( if not(false) then overwrite(overwrite(

emptyMap,succ(zero),john),succ(succ(zero)),mary) else
overwrite(emptyMap,succ(zero),john),emptyMap,emptyMap,
emptyMap)

Here we get something weird. Since we were in the context of Prelude (an empty
ATO), it wasn’t possible to reduce not(false). If we just jump to the “Booleans”
ATO (or any other ATO that includes it), we get the right result:

Prelude> /in Booleans
=> Now in the context of ATO Booleans
Booleans> ICS(VideoClub,add_customer,[create_VideoClub(overwrite

(emptyMap,succ(zero),john),emptyMap,emptyMap,emptyMap)])
... create_VideoClub( if not( if succ(zero)==customer_code? then

true else false) then overwrite(overwrite(emptyMap,succ(zero
),john),customer_code?,new_customer?) else overwrite(emptyMap
,succ(zero),john),emptyMap,emptyMap,emptyMap) ...

customer_code = succ(succ(zero))
new_customer = mary
=> create_VideoClub(overwrite(overwrite(emptyMap,succ(zero),john

),succ(succ(zero)),mary),emptyMap,emptyMap,emptyMap)
Booleans>


