
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CIÊNCIA DA COMPUTAÇÃO

RICARDO CHAGAS RAPACKI

Altea Booking integration into Social
Networking

Trabalho de Graduação

Trabalho realizado em Convênio de
Dupla Diplomação com o INP-Grenoble

Porto Alegre, Junho de 2013

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitora de Graduação: Prof. Valquíria Linck Bassani
Diretor do Instituto de Informática: Prof. Luís C. Lamb
Coordenador da CIC: Prof. Raul Fernando Weber
Bibliotecária Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

Grenoble INP - Ensimag

École Nationale Supérieure d’Informatique et de Mathématiques Appliquées

Projet de fin d’études report

Accomplished in Amadeus London

Altea Booking integration into Social
Networking

Ricardo Chagas Rapacki

3e année -— Option ISI

August 2012

Amadeus Services Limited Internship Manager

World Business Centre Building 3 Amit Gawali

1208 Newall Road

Middlesex, TW6 WTA

United Kingdom Pedagogic Tutor

 Claudia Roncancio

2

Resumo Extendido

Hoje em dia, com o surgimento das redes sociais, as pessoas estão

gradativamente realizando mais tarefas cotidianas em sites como Facebook

e Twitter – desde comprar roupas a checar informações sobre o trânsito.

Baseado nisto, a Amadeus, empresa líder mundial em soluções de TI para a

indústria de turismo e viagem, decidiu desenvolver um aplicativo Facebook

para permitir aos usuários buscarem reservas, compartilhá-las e combinar

viagens com amigos.

 Para isto, as reservas podem ser obtidas através da utilização dos

Web Services implementados pela Amadeus através de um record locator

(identificador único de uma reserva) ou criadas sem este identificador ao

salvar uma viagem no aplicativo que ainda não foi reservada no sistema.

 O núcleo do aplicativo foi implementado na linguagem Python

utilizando o framework Django, além de diversas outras tecnologias Web

como Javascript, jQuery, SOAP, API Facebook, API Google Maps, etc. Suas

funcionalidades focam na idéia de administrar viagens já reservadas ou

criadas através do aplicativo, compartilhá-las no mural do usuário no

Facebook ou convidar diretamente amigos para participar. Quando um

usuário é convidado para uma viagem, ele pode utilizar a viagem do amigo

como referência e checar, para cada trecho necessário, a disponibilidade de

vôos e preços.

 A arquitetura da aplicação é dividida nos seguintes elementos:

Canvas Facebook, API Facebook, Amadeus We Go App, Web Services e

banco de dados. O Canvas é um espaço em uma página Facebook onde

arquivos HTML, Javascript e CSS do aplicativo são carregados através de um

URL e a utilização da API Facebook é essencial para utilizar todas

funcionalidades e dados da rede social.

 Em relação ao módulo principal da aplicação Amadeus We Go, é

utilizada uma arquitetura MVC (Model-View-Controller), onde o arquivo

views.py controla que dados são apresentados, os templates Django nos

arquivos HTMLs controlam como estes dados são apresentados e o

controlador é o próprio framework. Além disso, os dados são salvos em

um banco de dados SQLite, criado pelo Django automaticamente pelo

arquivo models.py.

 Além deste, há também o banco de dados RFD da Amadeus e o

banco de dados acessado pelos Web Services. O primeiro é salvo no

servidor da companhia e fornece informação atualizada sobre aeroportos,

cidades, companhias aéreas, terminais, países e tudo relacionado à

indústria de turismo e viagem. Por exemplo, é possível procurar

informações de um aerporto através do código IATA de 3 dígitos, como

GRU para Garulhos, ou então listar todos aeroportos em determinado país.

 A fim de realizar o deployment da aplicação, foi necessário

configurar um servidor Apache no Linux e não somente utilizar o servidor

web disponibilizado pelo Django, pois este último não suporta o protocolo

HTTPS nativo, mandatório para aplicações no Canvas do Facebook.

 Como já citado anteriormente, três tecnologias são essenciais para

o aplicativo Amadeus We Go e serão explicadas mais detalhadamente a

seguir. Apesar da API Facebook, por essência, poder ser utilizada

normalmente através de requisições HTTP e retornar objetos JSON, o

Facebook suporta oficialmente SDKs para Javascript, PHP, iOs e Android

para abstrair este processo.

 Considerando que Python foi a linguagem de programação

escolhida, foi decidido que para abstrair a API seria utilizado o SDK open-

source chamado Python for Facebook. Este, além de abstrair as requisições

HTTP com funções simples de usar, é bastante portável e suportado por

uma grande comunidade. Apesar disso, é necessário utilizar o SDK

Facebook para Javascript para implementar a autenticação no modo

canônico com o Facebook e, em seguida, utilizar o cookie obtido no

arquivo Python.

 Adicionalmente, a API Facebook utiliza o protocolo OAuth 2.0 para

autenticação de usuários que fornece um fluxo de autorizações específicas

para aplicações web. Uma das maiores vantagens disto é que a aplicação

não tem acesso ao usuário e senha porque todo o fluxo é controlado pelo

Facebook. O pedido de autorização é feito pela aplicação para o usuário,

que é redirecionado a um diálogo Facebook para inserir seus dados e, se

correto, o Facebook retorna um token de acesso à aplicação.

4

 Este token está ligado às permissões definidas pela aplicação no

momento da autorização, como acesso a fotos e amigos, e está limitado

somente a estas permissões. Deste modo, a aplicação não terá liberdade

para fazer nada além do que já pediu e, se definir novas permissões, irá

gerar outro diálogo Facebook para criar um novo token de acesso.

 Para o aplicativo Amadeus We Go, as permissões requisitadas são

user_likes (para páginas curtidas pelo usuário), friends_about_me (para

informações pessoais de amigos), friends_location (para local de moradia

dos amigos) e publish_stream (para publicar postagens no mural do

Facebook. Esta última permissão é a única que é individualmente revocável

pelo usuário, enquanto as outras são obrigatórias para o uso do aplicativo.

 Finalmente, o núcleo da API Facebook é a API Graph, cuja função é

representar todo grafo da rede social uniformemente com objetos

(pessoas, fotos, eventos, páginas, etc) e conexões entre eles (amizades,

conteúdo compartilhado, tags em fotos, etc). Logo, após adquirir o objeto

chamado Graph com a SDK Python for Facebook, qualquer conteúdo pode

ser acessado através de seu ID e conexões.

 Igualmente importante para o aplicativo, os Web Services integram

as funcionalidades da Amadeus com a rede social. De modo a obter preços

e disponibilidade de vôo atualizados, o aplicativo envia mensagens SOAP

para estes Web Services da Amadeus e analisa a mensagem que recebe

como resposta. Este processo está encapsulado pelo cliente SOAP

implementado utilizando a biblioteca nativa urllib2 e é responsável por

guardar todas informações necessárias como URL do Web Service, ID da

sessão, token de segurança e número de sequência. Este último é utilizado

para checar se alguma mensagem foi perdida entre cliente e servidor e o

incremento do número é realizado por esse cliente.

 Além disso, cada serviço utilizado possui um arquivo Python

específico que recebe os parâmetros da chamada, cria a mensagem SOAP

através de um template e analisa a resposta. Entretanto, o primeiro passo

para utilizar tais serviços é se autenticar utilizando o LSS (Logon and

Security Server), um identificador único para cada aplicação ou empregado.

Após feito isso, as seguintes operações são utilizadas pelo aplicativo:

 PNR Retrieve by Record Locator: Obtém informações sobre uma

reserva ativa, chamada de PNR (passage name record) , utilizando

um record locator

 Flight Availability: Buscar disponibilidade de vôos buscando por

países de destino e origem, datas e classe de assento

 Itinerary Fare: Fornece tarifa atualizada para determinado vôo

Finalmente, a última tecnologia a ser detalhada é o banco de dados

SQLite, responsável por salvar usuários, passageiros, viagens e ligações

entre elas. Adicionalmente, é neste nível que é criada a distinção entre

duas reservas diferentes: as já compradas e salvas no sistema da Amadeus

e as salvas somente no aplicativo.

Para salvar informações sobre usuários Facebook e passageiros, é

utilizada a tabela Customer. Uma tupla pode ser criada em dois momentos:

 Quando uma nova viagem é criada, salvando informações do

perfil Facebook do usuário para evitar chamar a API e melhorar

o desempenho da aplicação

 Quando uma reserva é obtida através de um record locator,

onde todos passageiros presentes na reserva são salvos sem

informações Facebook

No segundo caso, se o usuário em seguida confirme que é um dos

passageiros em questão, a tupla é atualizada com suas informações de

perfil. Relacionado às viagens, a tabela Trip representa as informações

sobre uma viagem salva pelo aplicativo e guarda também ligações com

viagens de amigos no atributo linkedTrips.

Como casos mais simples, estão as tabelas Booking,

DummyBooking, Trip_Customer, Trip_Booking e Trip_DummyBooking para

representar, respectivamente, uma reserva presente no sistema da

Amadeus, uma reserva feita pelo aplicativo e tabelas para representar as

relações entre tabelas. Elas existem, pois, como no caso de Trip_Customer,

ela guarda um atributo informando se o usuário é proprietário da viagem

ou foi convidado por outro e, se sim, quem é o usuário que convidou.

A última tabela é a Segment, representando o trecho de uma

reserva, contendo todas informações úteis sobre as viagens. Um segmento

6

está sempre ligado a uma reserva com record locator ou uma sem. Logo,

se a reserva for destruída, o segmento também é.

De modo a validar cada versão do aplicativo, foi utilizada

ferramenta de controle de versionamento distribuído chamado Mercurial.

Para isto, é necessário primeiramente que o desenvolver execute um

commit localmente na máquina e, sempre que a modificação na versão

tenha sido significativa, será executado um nominate que envia um pedido

aos integradores.

Ao receber o pedido, cabe ao integrador a tarefa de baixar o código

e executá-lo em sua máquina. Se nenhum problema for encontrado, é

executado um push e o código atualizado se encontrará no repositório

principal, disponível já nas próximas vezes que alguém o recuperar.

Em relação à análise do desenvolvimento do software, a decisão de

utilizar Python com Django contribuiu muito para abstrair tarefas como o

banco de dados e permitiu criar um código extremamente modular e

facilmente extensível.

Por exemplo, caso um novo Web Service da Amadeus venha a ser

utilizado, é necessário somente a criação de um novo arquivo com o

template da mensagem a ser enviada e a lógica da leitura da resposta, pois

a parte da troca de mensagens e exemplos de outros serviços já estão

implementados. Além disso, o SDK Python for Facebook foi bastante

importante para a integração com a rede social mesmo não sendo

oficialmente suportado pelo Facebook.

Por outro lado, houve algumas complicações com a implementação

do cliente SOAP. Devido à falta de documentação por parte da própria

empresa Amadeus e das bibliotecas testadas, SUDS, SOAPpy e ZSI, o

desenvolvimento foi atrasado em um mês e o grande problema era a

inconsistência entre a mensagem enviada e a mensagem esperada pelo

servidor.

Adicionalmente, o envio de requisições HTTP para os Web Services

piorou o desempenho do aplicativo e, apesar de uma chamada HTTPS para

o API Facebook não ser tão pesada, o conjunto de operações realizadas

pode ficar extremamente custoso, pois cresce proporcionalmente em

função do número de amigos do usuário, por exemplo.

Considerando possíveis melhorias futuras, a alta latência dos Web

Services pode ser mitigada se o deployment do aplicativo for feito nos

servidores do datacenter da Amadeus na cidade de Erding, Alemanha, pois

o custo de rede será minimizado. Além disto, a utilização de cache ou

salvar informações no banco de dados pode evitar a chamada de operações

pesadas e melhorar o desempenho da aplicação.

Diversas funcionalidades discutidas na fase de especificação do

projeto ou outras novas poderiam ser implementadas futuramente para

melhorar a experiência do usuário e aproveitar todo o potencial da API

Facebook e de todos Web Services da Amadeus. Uma das funcionalidades

identificada como importante, permitir a compra de passagens aéreas

através do aplicativo, não foi implementada devido às regras de negócio da

Amadeus. Neste projeto, o aplicativo está limitado a somente salvar as

informações sobre as viagens em seu banco de dados.

Concluindo, mesmo que nem todas as funcionalidades planejadas

inicialmente tenham sido implementadas, o aplicativo soluciona os

problemas que motivaram o desenvolvimento. Adicionalmente, para incluir

novas funcionalidades ou atualizar as já existentes, a extensão do

aplicativo é simples, seja utilizando novos Web Services da Amadeus ou

novas funções e dados da API Facebook para maior integração com a rede

social. Assim, o projeto pode ser continuado e oferece um futuro

promissor como um aplicativo para uso em redes sociais que venha a

integrar o cotidiano de viagens e turismo das pessoas.

8

Abstract

Interested in integrating the services provided by the company with social

networks, Amadeus decided to offer an internship opportunity to develop a

Facebook application, in which users can retrieve bookings and share them

with friends, amongst other functionalities.

The main purpose of the application consists in using Facebook

features to enable the users to share trips with their friends and the data

stored in the social network to provide useful information in the

application.

For example, the application enable users to share, invite and plan

trips with their Facebook friends, and also to retrieve booking information

and see who of their friends is going to be in the same city, whether living

or visiting.

To achieve that, the application was developed in Python using

Django Web framework and calling the Amadeus Web Services to retrieve

the flight information such as fares and bookings.

Keywords:

 Facebook, trip, travel, social media, python, django

Table of Contents

1. Introduction .. 11

2. Amadeus Services Ltd .. 12

3. Planning.. 13

3.1 Motivation .. 13

3.2 Gannt chart of the Work Plan 13

3.3 Implementation decisions ... 14

4. The Application ... 15

4.1 Features ... 15

4.1.1 Managing Trips ... 15

4.1.2 Retrieving Booking .. 16

4.1.3 Checking an invited trip ... 17

4.1.4 Searching available flights 19

4.1.5 Selecting available flights 20

4.1.6 Posting to the Facebook Wall 21

4.1.7 Inviting a friend ... 22

4.2 Architecture ... 23

4.2.1 Facebook Canvas ... 24

4.2.2 Facebook API ... 24

4.2.3 Amadeus We Go Application 24

4.2.4 Application Database ... 25

4.2.5 Amadeus RFD Database ... 25

4.2.6 Amadeus Web Services and Database 26

4.3 Deployment ... 26

4.4 Technologies .. 26

4.4.1 Facebook API ... 27

4.4.1.1 Python for Facebook ... 27

4.4.1.2 OAuth 2.0 .. 28

4.4.1.3 Graph API ... 28

4.4.2 Amadeus Web Service .. 29

4.4.2.1 Security Authenticate .. 30

10

4.4.2.2 PNR Retrieve by Record Locator 30

4.4.2.3 Flight Availability .. 30

4.4.2.4 Itinerary Fare .. 31

4.4.3 Other technologies .. 31

4.5 Database .. 31

4.5.1 Customer Table ... 32

4.5.2 Trip Table ... 33

4.5.3 Trip_Customer Table ... 33

4.5.4 Booking ... 34

4.5.5 DummyBooking ... 34

4.5.6 Trip_Booking ... 34

4.5.7 Trip_DummyBooking ... 35

4.5.8 Segment .. 35

4.6 Testing .. 35

5. Result Analysis .. 36

5.1 Benefits .. 36

5.2 Drawbacks ... 36

5.3 Improvements .. 37

5.4 Gannt chart of the development achieved 38

6. Conclusion .. 39

Bibliography .. 40

1. Introduction

Since the beginning of times, human beings have lived in communities and

have been influenced by their social behavior. Nowadays, with the advent

of social networks, people are gradually doing more of their normal tasks

in sites like Facebook and Twitter – from buying clothes to checking the

traffic.

Based on that, Amadeus decided to develop a Facebook application

to enable users to retrieve their bookings, share them with friends and plan

trips together. This way, the experience of planning a trip and inviting

friends is enhanced by the integration with the social network.

The main purpose of this Facebook application is to enable users to

retrieve and import bookings from Amadeus databases using their web

services with a record locator. Also, these bookings can be used to build a

travel plan together (building similar trip or linking bookings) or be added

to existing trips.

In the other hand, users can create new trips without a record

locator by selecting options, such as departure and destination cities, class

and dates, therefore saving a trip which is not booked yet.

12

2. Amadeus Services Ltd

Amadeus is a leading transaction processor for the global travel and

tourism industry, providing transaction processing power and technology

solutions to both travel providers (including full service carriers and low-

cost airlines, hotels, rail operators, cruise and ferry operators, car rental

companies and tour operators) and travel agencies (both online and

offline).

The company acts both as a worldwide network connecting travel

providers and travel agencies through a highly effective processing

platform for the distribution of travel products and services (through our

Distribution business), and as a provider of a comprehensive portfolio of IT

solutions which automate certain mission-critical business processes, such

as reservations, inventory management and operations for travel providers

(through our IT solutions business).

3. Planning

3.1 Motivation

Amongst the current technology trends, one of the strongest is social

media, thus emphasizing the importance of concepts such as sharing

information with your friends.

In the daily life, users want to share pictures of their dinners and

tell their friends that they went to the movies. Despite all of that, there are

no applications that enable users to do such thing with their trips,

especially those already booked in the system.

For that reason, the Amadeus We Go Facebook application is

focused in that area, providing users the capability of sharing, inviting and

managing trips with their Facebook friends.

In order to obtain a fully integrated experience, it was decided also

that the application would be a Canvas App, which is an application inside

an iFrame in Facebook.

3.2 Gannt chart of the Work Plan

14

Image 1 – Gannt chart of the work plan. Y-axis is in months

3.3 Implementation decisions

In order to develop the application, two programming languages were

considered: PHP and Python. While PHP has an officially supported SDK by

Facebook, Python is widely used in web applications in Amadeus.

Additionally, Django Web Framework ensures many security aspects

are respected and provides features such as reusability and modularity for

web development with Python. For all these reasons, it was decided to use

Python with Django.

Regarding the features to be implemented, several travel

applications were consulted, for example Expedia and Opodo. After some

research, an initial specification document was created as a reference of

what was intended to be developed.

4. The Application

4.1 Features

In this section, the application features will be presented and explained

briefly, grouped by the context of the action performed during execution.

4.1.1 Managing Trips

In the Trips section of the application, all the user trips saved in the local

database are displayed, those that are owned and those that are invitations

from other users. In this screen, trips can be renamed or deleted. Clicking

in the name of one of them opens the detailed information regarding that

trip, such as departure and arrival city, departure and arrival date,

company, flight number and others.

Also, in the right-hand side of the screen an information bar is

shown displaying if the trip is linked to other trip, if there is any friend

living in the destination city and if there is any friend going to the same

city in similar dates. The information about linked trips is obtained from

the database and the information about friends is obtained using data from

Facebook and from the local database using the Facebook user id.

More specifically, if the clicked trip was an invited trip, for each

flight of a trip a button is shown with the option to check availability for

that specific flight. This feature will be more detailed in the chapter 4.1.3.

16

Image 2 – Application screen showing the saved trips

4.1.2 Retrieving Booking

In order to retrieve a booking, it is necessary to have a record locator, an

alphanumeric 6-digit code that points to a specific record, and a surname.

If the record locator exists and the surname is the same as in the record,

the booking information is displayed.

All the information displayed is obtained live from Amadeus Web

Services, so it is up-to-date whenever it is called. The information consists

in many fields such as departure city, departure date, arrival city, airline

Company, flight number, etc.

If the user does not have the booking saved in the database, a

message is displayed asking if the user is one of the passengers of the

booking. If so, the booking is saved in the database with the user id.

Image 3 – Screen showing a booking, confirming if user is a passenger

4.1.3 Checking an invited trip

As commented in chapter 4.1.1, the display of an invited trip includes a

button to check availability for each flight in a trip. When clicked, a new

screen is shown with all available flights for the same route in the same

day, highlighting the flight chosen by the inviting user.

18

Image 4 – Screen showing an invited trip

This gives the possibility of using an invited trip as a template, so

that the invited user can select and save only the flights convenient to

him/her, for example if such user is already in the second city of the route.

When saving each flight in this mode, they are all saved in the same

trip, linked to the invited one in the database.

Image 5 – Screen showing the availability related to an invited trip

4.1.4 Searching available flights

In the Plan Your Trip section of the application, a screen is shown with

options to search available flights, such as departure city, arrival city, class

and date. Also, a Google Maps is displayed so that the user can left-click

(or right-click) in a country to select as origin (or destination) country.

When a country is chosen, the city list of that option is updated with

all cities from that country. This list is obtained from the Amadeus

Database, which is up-to-date because it is refreshed every day.

20

In addition to that, clicking in countries or selecting cities creates

markers in the map, providing useful information such as number of

airports for the country and full name for the city.

Image 6 – Screen for search of available flights

4.1.5 Selecting available flights

After filling the parameters to search, all the available flights are shown

with information such as airline company, stops and fares, all provided by

Amadeus Web Services.

In the left-hand side, a parameter bar can filter the displayed flights

by departure times and number of stops. Also, clicking in a flight with one

or more stops opens all the information regarding all the stops.

Finally, to save the flights in the database, the user must click in the

trips and choose a name for the trip. After that, the trip is saved in the

database with that name, the user id and all the important information.

Image 7– Screen showing available flights for a search

4.1.6 Posting to the Facebook Wall

22

In order to post a trip to the wall, the user must click in the icon just next

to the chosen trip. After that, a Facebook dialog window will appear and a

message can be written to be shown in the Wall.

 If other users click in the link of the post, they are redirected to the

display of the invited trip, but it is not saved yet. Then, the user can save

the trip as an invited trip and check availability for each flight.

Image 8 – Screen a post of a trip to the Facebook Wall

4.1.7 Inviting a friend

To invite a friend to a trip, the user must click in the icon just next to the

chosen trip and select one or more friends to invite in the Facebook dialog.

This process is made using App Requests from Facebook API via

Javascript, so that the API handles all the logic of the invitation, receiving

only basic parameters in the function call such as title and message.

After that, the invited user receives a notification in his/her

Facebook account about the invitation and, when the application is

accessed, all the invited trips are saved in the database and shown in the

section Invited Trips to be used in the future as a template, as described in

chapter 4.1.3.

Image 9 – Screen showing the invitation to a trip

4.2 Architecture

In this chapter, the application architecture and all the modules will be

explained, describing the connections and the importance of each of them.

24

Image 10 – Application architecture

4.2.1 Facebook Canvas

The Facebook Canvas is a blank canvas inside the Facebook page where

web apps are loaded, hence without leaving the page and being fully

integrated with the social network.

When configuring the Facebook App in the Facebook Developers

page, the application administrator must fill an URL for the Canvas Page so

that the application can have a path to retrieve all HTML, Javascript and CSS

files.

For example, while the address of the Canvas Application was

https://apps.facebook.com/amadeuswego, the URL provided for the

Canvas app in its configurations was https://lonlnx41.lon.amadeus.net.

4.2.2 Facebook API

As a Facebook application, the Facebook API is essential to use all the

features and data from the social network. Since the language used was

Python and Facebook does not provide directly an API for it, this module

represents the open-source API called Python for Facebook, which is

further detailed in chapter 5.4.1.

4.2.3 Amadeus We Go Application

This is the main module, controlling all the logic of the application and the

other modules. It consists basically in a Django application, which means

written in Python and using the Django web framework. In addition to that,

this module includes all the HTML, Javascript and CSS files, essentials to

the rendering of the web pages.

 The application uses MVC (Model-View-Controller) architecture,

using Django features to perform that separation: the views.py file controls

which data is presented, the Django templates inside the HTML files control

https://apps.facebook.com/amadeuswego
https://lonlnx41.lon.amadeus.net/

how the data is presented, the controller is the framework itself and the

data is stored in a local database, created by Django using the file

models.py.

4.2.4 Application Database

The application database is a local SQLite database automatically created

by Django via the file models.py. As defined in the Django documentation

website:

“A model is the single, definitive source of data about your data. It

contains the essential fields and behaviors of the data you’re storing.

Generally, each model maps to a single database table.

The basics:

 Each model is a Python class that subclasses

django.db.models.Model.

 Each attribute of the model represents a database field.

 With all of this, Django gives you an automatically-generated

database-access API. “

In the context of the application, it is used to store information

about users, saved trips and links between them. It provides an easy to use

and extendable way to manipulate the stored data without the need to

create directly the SQL database, tables and etc.

4.2.5 Amadeus RFD Database

The Amadeus RFD Database is stored in the company server and provides

up-to-date information regarding airports, cities, airlines, terminals,

countries and everything related to the travel and tourism industry.

 It is updated every day and saved in a new SQLite file, therefore

every first execution of the program runs a script to check the newest

database in the folder to use it.

26

 Examples of use of the database include retrieving the name of the

city and airport from the 3-digit code, such as CDG to Paris Charles de

Gaulle, and listing all airports from a specific country.

4.2.6 Amadeus Web Services and Database

Responsible for the integration between the application and the services

provided by Amadeus, this module is called by the application to provide

information stored in the company database via SOAP requests and returns

a SOAP message with all useful information for that service.

More about this module is explained in chapter 5.4.2, detailing how

the requests are done by the application and how it parses the response.

4.3 Deployment

Initially, for the deployment of the application, the Django development

server was used, a lightweight Web server written purely in Python and

included with Django. However, this decision resulted in a problem with

Facebook because the server does not support native HTTPS, which is

mandatory by Facebook for Canvas Applications.

 For that reason, an Apache Server was configured in the Linux

development box, providing HTTPS support thus enabling Facebook

Canvas to fetch the page from the URL.

4.4 Technologies

In this chapter, the technologies already presented in previous chapters will

be described in detail to fully comprehend how they are used by the

application and what is their importance.

 In order to satisfy all requirements and provide a good user

experience, the Amadeus We Go Facebook application was developed using

many languages and frameworks: Python with Django, Javascript with

jQuery, HTML and CSS. The graphic above details the number of lines

written and the percentage for each language.

Image 11 – Number and percentage of lines written in the application

4.4.1 Facebook API

As a Facebook Application, it is of natural importance to use the Facebook

API. Facebook officially provides nowadays SDKS for Javascript, PHP, iOs

and Android. As for the other programming languages, it is necessary to

perform HTTP requests and parse the JSON response.

4.4.1.1 Python for Facebook

For the Amadeus We Go Application, it was decided to use the open-source

SDK called Python for Facebook to abstract those operations and provide

easy access to actions and data from the social network. One of the most

important reasons for that choice was the portability of the SDK and the

large community that supports it.

 The code is stored in Github

(http://github.com/pythonforfacebook/facebook-sdk) and PyPi

(http://pypi.python.org/pypi/facebook-sdk) and to use it is necessary only to

http://github.com/pythonforfacebook/facebook-sdk
http://pypi.python.org/pypi/facebook-sdk

28

copy the facebook.py file to the project directory and include it in the main

python file. However, it is necessary to use Facebook Javascript SDK to

implement Facebook authentication in the canonical way and, after that,

parse the cookie set in the python file to start using the SDK.

4.4.1.2 OAuth 2.0

In order to authorize users in Facebook Applications, the Facebook API

uses OAuth 2.0, a protocol originally created in late 2006 and, as defined

in the OAuth website, “focuses on client developer simplicity while

providing specific authorization flows for web application and others”.

One of the main advantages of this protocol is the fact that the

application does not obtain the username and password because the

authorization flow is controlled by Facebook itself. The application

requests an authorization to the user, the user is redirected to a Facebook

dialog to send username and password, and if correct Facebook returns a

user access token.

 When requesting an authorization, the application must specify

what are the permissions needed in Facebook, for example accessing

pictures or posting to the Facebook Wall. These permissions can be

revocable or not and are shown to the user in the Facebook dialog. Using

OAuth 2.0, the access token generated in the end of the process contains

only those permissions. Every time new permissions are needed, a new

dialog is shown to create a new access token.

 The permissions requested by the Amadeus We Go Facebook

application are user_likes (for the liked pages of the user),

friends_about_me (for personal info about the user’s friends),

friends_location (for the city of residence of the user’s friends) and

publish_stream (to publish posts to the Facebook Wall). The last one is the

only one which is individually user-revocable; the others are mandatory to

use the application.

4.4.1.3 Graph API

Nowadays, the core of the Facebook API is the Graph API, which, as defined

in the Graph API website, “represents a simple, consistent view of the

Facebook social graph, uniformly representing object in the graph (e.g.,

people, photos, events, and pages) and the connections between them

(e.g., friend relationships, shared content, and photo tags) ”.

So, using Python for Facebook, after retrieving the object Graph,

anything in the social network can be accessed by its ID and connections.

For example, after accessing a user by its Facebook id, all friends, liked

pages and pictures can be easily retrieved using the connections between

them.

4.4.2 Amadeus Web Service

As explained in chapter 4.2.6, the Amadeus Web Service is the responsible

to retrieve up-to-date information from the company database and provide

data regarding flight availability, fares and booking information.

 To use it, a SOAP Client must send SOAP requests to the web

service and parse the SOAP response to retrieve the information. In this

application, the python file client.py implements it and stores all the

necessary information to call the web service: the service URL, session id,

security token and sequence number.

 Each call to the Web Service must include the session id, security

token and sequence. In the first call, the session id and security token are

empty and are returned in the SOAP header of the response. The sequence

number must start at 1 and be increased by the SOAP client each call to the

web service so errors can be detected by analyzing the header.

 While that, all the information regarding the SOAP body are

included in other python files, one for each service used. They contain a

template of the SOAP message, the parameters passed for the message and

the logic to parse the response, generating a dictionary of dictionaries and

lists.

 In the next chapters, each service used will be briefly explained.

30

4.4.2.1 Security Authenticate

This is the only mandatory service to any application that uses the Web

Service and it is always the first one to be called because it performs the

authentication on Amadeus application, secured by the Logon and Security

Server (LSS), a unique identifier for each application or employee.

 The parameters used by this service are username, base64

encrypted password, length of original password, office code, duty code

and organization code. The response includes the status code, the session

id and security token, necessary to perform further operations.

4.4.2.2 PNR Retrieve by Record Locator

This service is responsible for retrieving information from an active

passage name record (PNR) using a record locator, a 6-digit alphanumeric

code.

The only parameter used by this service is the record locator of a

booking, since it is a unique code. The response includes a large range of

information regarding the booking, for example details about passengers,

departure and arrival location, dates, company and aircraft.

4.4.2.3 Flight Availability

This service provides availability information for flights on more than 360

airlines, such as Lufthansa, Airfrance, Brittish Airways, TAM and more.

The parameters used by this service are departure airport code,

departure date and time, cabin option and arrival airport code, where the

airport codes are 3-digit IATA codes. Cabin option is a number identifying

different groups of classes, the most important being first class, business

class and economy class. The response includes information about all

available flights, such as departure time in the chosen date, airline,

segments of the flights and airline. Also, the number of seats available per

class is retrieved.

4.4.2.4 Itinerary Fare

This service provides fares for passenger types without existing

reservation. In other words, up-to-date fares if the passenger wanted to

know the price to buy a ticket at the moment of the search.

 The parameters of this service consist of the currency to show the

fares, departure date and airport, arrival city, airline and flight number. The

response includes the amount in the chosen currency for each type

qualifier, where only the full price (including taxes) is used in the

application.

4.4.3 Other technologies

Amongst the other technologies used, there are APIs and libraries to

enhance the user experience adding more information and features. One of

them is the jQuery, a fast and concise JavaScript Library that simplifies

HTML document traversing, event handling, animating, and Ajax

interactions for rapid web development.

 This library is used in Javascript files for a better and cross-browser

web development and also for its UI, jQuery UI, which provides abstractions

for low-level interaction and animation, advanced effects and high-level,

themeable widgets, built on top of the jQuery JavaScript Library.

 In addition to that, Google Maps Javascript API was used, in order to

achieve a better user interface by providing a Google Maps map in the

application so the user can select countries and cities to travel from and to.

 All of them were very simple to use and quick to integrate to the

application, helping the interaction between the application and the user

and providing cross-browser portability for the application.

4.5 Database

In this application, the local database is used to store information about

users, passengers, trips and links between them, avoiding the need to call

32

the Web Service whenever trip information is needed. It also allows the

application to manipulate two different types of booking: those with a

record locator, already bought and confirmed, and those without it, created

in the application.

In the picture above, the application database schema is shown and

in the next chapters each table and their relationships will be further

explained.

Image 12 – The Application Database Schema

4.5.1 Customer Table

As the name suggests, this table represents a customer, either a Facebook

user or a stored passenger from a booking. For that reason, it contains two

different types of information: those regarding a Facebook account and

those regarding passenger information from a booking.

A customer may be created in two moments:

 during the save of a new trip, storing Facebook Id, full name and link to

the Facebook page to avoid calling the Facebook API thus enhancing

performance

 during the retrieve of a booking by a record locator, storing all

passengers from that booking in the database without any Facebook

information

In the second case, if the user confirms being one of the

passengers, that customer in the database is updated with the user

Facebook information.

4.5.2 Trip Table

This table represents the concept of a trip, storing useful information and

the link relationship between different trips. The fields of a trip are the

name, the update date and a many-to-many field pointing to its linked

trips.

 More specifically, the update date is the last date when the user

clicked in one of the bookings belonging to the trip, pulling up-to-date

information from the Web Services.

 A trip is created whenever a user plans and stores a new trip using

the application or a new booking is retrieved from the Web Services using a

record locator.

4.5.3 Trip_Customer Table

This table represents the many-to-many relationships between trips and

customers, since a customer may have many trips and a trip may belong to

many users.

 Its fields include a foreign key to the Trip table, a foreign key to the

Customer table, an ownership type, which defines if the user is the owner

of a trip or was invited, and in the last case a field to store the inviting

customer. Otherwise, that field is empty.

 Also, it possesses the information if a trip is owned by a customer

or not. If no customer owns a specific trip, it must be deleted.

34

4.5.4 Booking

As commented previously in chapter 4.5, there are two types of booking,

with or without record locator, and this table represents the first one. Its

primary key is the record locator and other fields include creation date and

time and update date.

 As well as the Trip table, the update date is the last date when the

booking information was pulled from the Web Services. A booking is

created in the moment a user searches one by its record locator for the

first time.

4.5.5 DummyBooking

This table represents a booking without a record locator, created in the

application and without a matching data in the Amadeus database. It

contains the same fields as the table Booking, with the exception of the

record locator.

 Its importance is to provide the user the capability to create new

bookings as if they were confirmed trips. The creation occurs in the

moment a user saves a trip after searching available flights or checking an

invited trip.

4.5.6 Trip_Booking

This table represents the many-to-many relationships between trips and

bookings, since a trip may have many bookings and a booking may belong

to many trips.

Its fields include only a foreign key to the Trip table and a foreign

key to the Booking table. Nevertheless, a many-to-many field could be

stored in the Trip table pointing to the Booking table instead, but this table

was created expecting that, in the future, some extra information in the

relationship could be needed.

4.5.7 Trip_DummyBooking

This table represents the many-to-many relationships between trips and

dummy bookings, since a trip may have many dummy bookings and a

dummy booking may belong to many trips.

 Analogous to the Trip_Booking table, the only difference is that,

instead of a foreign key to the Booking table, it contains a field for the

foreign key to the DummyBooking table, as the name suggests.

4.5.8 Segment

This table represents a segment of a flight, containing all the useful

information about trips and bookings. Besides this data, it contains a

foreign key to the Booking table and the DummyBooking table, mutually

exclusive (only one is not null), so that a segment may belong to either a

booking or a dummy booking.

 For that reason, a segment is always linked to a booking or a

dummy booking, so its creation and destruction occurs in the same

moment of them. The rest of the fields of this table include itinerary

number, arrival and departure city, arrival and departure date, company,

aircraft, fare and if the segment is the last of a booking.

4.6 Testing

In order to store the application source code, a distributed revision control

called Mercurial was used to manage the repository and its operations.

Whenever a version of the application was going to be stored

locally, the developer had to commit it to a repository in the local machine.

After that, the developer could nominate the modification so a request to

the integrators would be created to authorize the operation.

Then, an integrator would download the source code, run a new

Apache server and test if all the features were functional and no errors

were found. In that case, the integrator would push the modifications to

36

the Mercurial repository so any further pulls would have the latest and

functional source code.

5. Result Analysis

In this chapter, the implementation decisions made and the final result

achieved in the program will be analyzed, judging what the benefits were

and what the drawbacks were. Also, future improvements will be

commented and finally an updated Gannt chart will be presented for what

was really followed.

5.1 Benefits

During the planning, one of the most useful decisions was to choose

Python as the main language and Django as framework, instead of PHP. In

spite of that, the beginning of the development of the SOAP client was

complicated due to that choice, because three python SOAP frameworks

were tested without success: SUDS, SOAPpy and ZSI.

 However, after achieving that using the Python native module

urllib2, the development was only facilitated by the object-oriented

language, its modules and all the support to Web-development from

Django.

 For example, even though the Python for Facebook SDK is not

supported by Facebook, it was very simple and powerful to use and didn’t

cause any problems. Also, the Django object-relational mapper called

Models transforms a database layout in python code to SQL syntax, thus

being more easily modifiable and organized.

5.2 Drawbacks

As commented in the previous chapter, one of the main problems

encountered during the development was the creation of a SOAP client. The

attempt with three different frameworks caused a delay to the development

of one month, which was crucial to develop all features planned.

The cause was that, for each framework, an inconsistency was

encountered with the SOAP message being sent and the one expected by

the Web Services. Also, the lack of documentation regarding how to send

SOAP messages to the Web Service was problematic.

Another drawback, but not so big, was the fact that an ideal

database schema wasn’t planned in the beginning, resulting in many

changes to the Models file and the python file to retrieve data from the

database.

 In addition to that, sending HTTP requests with Facebook API and

Web Services decreased the performance of the application. While calling

the Web Service is time consuming, using the Facebook API is not so slow

but may be called several times, for example to check all of the user

friends information.

 However, this performance issue could be partially solved if the

application was deployed in the Erding server, where the Web Services are

located. This was not done only because only applications in production

systems are deployed in that server.

5.3 Improvements

After analyzing the benefits and drawbacks, the possible future

improvements to the application are considered and commented, whereas

it is a correction to a drawback or a new feature.

 First, as commented in the previous chapter, it would be crucial to

deploy the application in the Erding server to improve the performance

hence improving the user experience. Also, solutions should be discovered

to speed up the Facebook API calls and to perform fewer requests, for

example caching information about the user friends, so that the Facebook

API performance would be better as well.

 Also, many features could be implemented and would be very

useful to the user. For example, a part of the application called Travel

38

Journal where the user could give feedback about trip locations and hotels

and create albums for the trips, so his friends could see.

 To improve the sharing of a trip, a section of the application could

manage a group of users, their suggestions and their votings so that

decisions about future trips would be easier to be made when travelling in

a group.

In addition to that, the user could be informed by the application of

the documentation and visa needed when searching available flights,

analyzing up-to-date information about the relationship between

departure and arrival countries.

 One of the main improvements and most complicated would be to

allow the user to buy plane or train tickets or book hotels and not only

create them in the database, so that the application could control the

complete flow of a trip. However, there are many business rules applied

regarding the airline companies and an extensive study should be made to

discover how it should be done.

 Finally, other minor features would be useful, such as allowing the

user to update the fares from the Web Service to the unconfirmed flights

when desired, show the total price of a trip, etc.

5.4 Gannt chart of the development achieved

Image 13 – Gannt chart of the work plan achieved. Y-axis is in months

6. Conclusion

From this report, even though not all features planned were implemented,

the main flow was achieved and the final application addresses completely

the initial problems that generated the motivation.

The module that required more efforts during the development was

the integration with the Amadeus system, especially how to call and parse

the information from the Web Services, as noted in the Drawbacks chapter.

In contrast, Python, Django and Python for Facebook SDK didn’t generate

any issues and were simple and powerful to use.

In order to support new features and to update the existing ones,

the extension of the application is simple and offers a great capacity for

the application to be expanded. These extensions require only modifying

the Web Service which is called, parsing the new data and including more

Facebook interaction such as posting to the Facebook Wall when creating a

trip and suggesting friends to travel with based in the common likes.

To conclude, the internship was challenging and very important to

learn many different technologies and integrate them with already existing

production systems from Amadeus. The final application developed solves

the initial problems proposed and is easily extendable, so that the project

can be continued and perhaps become a live application that will provide a

new way of organizing trips with friends.

40

Bibliography

1. Django – The Web framework for perfectionists with deadlines.

https://www.djangoproject.com/

2. Python for Facebook – A home for Python developers working with

Facebook. http://www.pythonforfacebook.com/

3. Amadeus. http://www.amadeus.com/amadeus/x5034.xml

4. Amadeus Web Services. http://webservices.amadeus.com/

5. W3C (2007, April, 27) - SOAP Version 1.2 Part 1: Messaging Framework

(Second Edition). http://www.w3.org/TR/soap12-part1/

6. SUDS - a lightweight SOAP python client for consuming Web Services.

https://fedorahosted.org/suds/

7. SoaPpy - A SOAP/XML Schema Library for Python.

http://soapy.sourceforge.net/

8. ZSI: the Zolera Soap Infrastructure - a Python package that provides an

implementation of SOAP messaging.

http://pywebsvcs.sourceforge.net/zsi.html

9. Google Maps Javascript API v3 – the solution for Maps Applications for

both Desktop and Mobile Devices.

https://developers.google.com/maps/documentation/javascri

pt/

10. jQuery – a fast and concise Javascript library that simplifies HTML

traversing, event handling, animating, and Ajax interactions for rapid web

development, . http://jquery.com/

https://www.djangoproject.com/
http://www.pythonforfacebook.com/
http://www.amadeus.com/amadeus/x5034.xml
http://webservices.amadeus.com/
http://www.w3.org/TR/soap12-part1/
https://fedorahosted.org/suds/
http://soapy.sourceforge.net/
http://pywebsvcs.sourceforge.net/zsi.html
https://developers.google.com/maps/documentation/javascript/
https://developers.google.com/maps/documentation/javascript/
http://jquery.com/

11. jQuery UI – provides abstractions for low-level interaction and

animation, advanced effects and high-level, themeable widgets.

http://jqueryui.com/

12. Opodo. http://www.opodo.co.uk/

13. Expedia. http://www.expedia.co.uk/

14. Graph API – presents a simple, consistent view of the Facebook social

graph, uniformly representing objects in the graph and the connections

between them.

https://developers.facebook.com/docs/reference/api/

15. Facebook Javascript SDK - provides a rich set of client-side

functionality for accessing Facebook's server-side API calls.

https://developers.facebook.com/docs/reference/javascript/

16. Mercurial - a free, distributed source control management tool.

http://mercurial.selenic.com/

http://jqueryui.com/
http://www.opodo.co.uk/
http://www.expedia.co.uk/
https://developers.facebook.com/docs/reference/api/
https://developers.facebook.com/docs/reference/javascript/
http://mercurial.selenic.com/

42

Grenoble INP - Ensimag

École Nationale Supérieure d’Informatique et de Mathématiques Appliquées

Rapport de projet de fin d’études

Effectué chez Amadeus Londres

Altea Booking integration into Social
Networking

Ricardo Chagas Rapacki

3e année -— Option ISI

Août 2012

Amadeus Services Limited Responsable de stage

World Business Centre Building 3 Amit Gawali

1208 Newall Road

Middlesex, TW6 WTA

United Kingdom Tuteur de l’école

 Claudia Roncancio

Abstract

Intéressé par l’intégration des services fournis par l’entreprise avec des

réseaux sociaux, Amadeus a décidé offrir une opportunité de stage afin de

développer une application Facebook, dans lequel les utilisateurs peuvent

récupérer ses bookings et les partager avec ses amis, entre des autres

fonctionnalités.

La principale intention de l’application consiste en utiliser les

fonctionnalités du Facebook de façon à permettre les utilisateurs à

partager des voyages avec ses amis et les données stockées dans le réseau

social pour fournir des informations utiles dans l’application.

Par exemple, l’application permettre les utilisateurs à partager,

inviter et planifier les voyages avec ses amis sur Facebook, et aussi à

récupérer information sur le booking et voir qui entre ses amis sur

Facebook va être dans la même ville, soit ils vivent ou en visitant.

De façon à réaliser ça, l’application a été développée en Python en

utilisant le Web Framework Django et en appelant les Web Services

d’Amadeus pour récupérer des informations tells que des tarifs et

informations sur des booking.

Mots-clés:

 Facebook, voyage, social media, python, Django, réseau social

