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Galerkin Least-Squares Solutions for 
Purely Viscous Flows of Shear-
Thinning Fluids and Regularized Yield 
Stress Fluids 
This paper aims to present Galerkin Least-Squares approximations for flows of Bingham 
plastic fluids. These fluids are modeled using the Generalized Newtonian Liquid (GNL) 
constitutive equation. Their viscoplastic behavior is predicted by the viscosity function, 
which employs the Papanastasiou’s regularization in order to predict a highly viscous 
behavior when the applied stress lies under the material’s yield stress. The mechanical 
modeling for this type of flow is based on the conservation equations of mass and 
momentum, coupled to the GNL constitutive equation for the extra-stress tensor. The finite 
element methodology concerned herein, the well-known Galerkin Least-Squares (GLS) 
method, overcomes the two greatest Galerkin shortcomings for mixed problems. There is 
no need to satisfy Babuška-Brezzi condition for velocity and pressure subspaces, and 
spurious numerical oscillations, due to the asymmetric nature of advective operator, are 
eliminated. Some numerical simulations are presented: first, the lid-driven cavity flow of 
shear-thinning and shear-thickening fluids, for the purpose of code validation; second, the 
flow of shear-thinning fluids with no yield stress limit, and finally, Bingham plastic 
creeping flows through 2:1 planar and axisymmetric expansions, for Bingham numbers 
between 0.2 and 133. The numerical results illustrate the arising of two distinct unyielded 
regions: one near the expansion corner and another along the flow centerline. For those 
regions, velocity and pressure fields are investigated for the various Bingham numbers 
tested. 
Keywords: Bingham plastic, Carreau fluids, Yield Stress, Papanastasiou’s approximation, 
Galerkin Least-Squares 

Introduction 
1This work is concerned with aspects of finite element 

simulation of isochoric flows of viscoplastic liquids, where the non-
Newtonian constitutive law for the stress tensor is the Generalized 
Newtonian Liquid (GNL) model. Viscoplasticity is incorporated in 
this model by setting a yield stress, below which the material is 
assumed not to flow, into the viscosity function (see e.g. Bird et al. 
(1987) or Barnes (1999) for more details). Beyond the yield stress, 
most viscoplastic liquids are assumed to shear-thin, i.e., their 
viscosity decreases with the increase of strain rate. Viscoplastic 
materials are found in a wide range of applications associated with 
different industrial areas, such as: emulsions, polymer melts and 
solutions, food products, biological fluids, muds, asphalts, etc. 
Among the viscoplastic equations used in practice, the Bingham 
plastic is chosen in this paper for the numerical approximations. In 
order to achieve a computationally convenient formulation, (and 
also a more physically realistic behavior, see Souza Mendes and 
Dutra, 2004 and Roberts et al., 2001) a regularized version of the 
Bingham plastic constitutive model has been employed, following 
the approach proposed by Papanastasiou (1987). 

The flows considered herein were approximated via a mixed 
finite element technique. The Galerkin Least-Squares method (GLS) 
(Hughes et al., 1986) is employed in order to avoid undesirable 
pathologies (spurious oscillations, locking) to which the classical 
Galerkin formulation would be susceptible. The Galerkin method in 
fluids suffers from two major difficulties. First, the need to satisfy 
the Babuška-Brezzi condition (Ciarlet, 1978) in order to achieve a 
compatible combination of velocity and pressure subspaces. Further, 
the inherent instability of central difference schemes in 
approximating advective dominated equations (Brooks and Hughes, 
1982). The GLS method has the ability to circumvent Babuška-
Brezzi condition and to generate stable approximations for highly 

                                                
Paper accepted September, 2007. Technical Editor: Monica Feijo Naccache. 

advective flows preserving good accuracy properties (Franca and 
Frey, 1992). This is achieved by adding residual-based terms to the 
classic Galerkin formulation, retaining its weighted residual 
structure and not damaging its consistency. 

The numerical results section is divided in three sub-sections. 
The first is dedicated to the code validation. Newtonian and Non-
Newtonian flows in a lid-driven cavity are investigated. The second 
deals about non-Newtonian flows of shear-thinning liquids through 
a planar contraction. In the third sub-section the simulations of 
flows of viscoplastic liquids are presented. These simulations 
comprise the numerical approximation of inertialess flows of 
Bingham fluids through sudden 2:1 planar and axisymmetric 
expansions. The stability of the numerical approximation is 
achieved for a wide range of Bingham numbers, which account for 
the fluid’s viscoplasticity. The flow dynamics is investigated 
through the visualization of pressure, velocity, viscosity and stress 
fields. It is important to emphasize that the numerical methodology 
adopted was able to capture well-defined unyielded regions at 
expansion corner and flow centerline. These regions are studied in 
detail throughout that section. 

Several authors have studied flows of viscoplastic materials 
inside ducts. Pak et al. (1990) observed experimentally that the 
reattachment length, for purely viscous fluids, was almost the same 
as in Newtonian fluids. Abdali et al. (1992) approximated, via finite 
element method, the contraction and exit flows of Bingham fluids 
through axisymmetric and planar channels, capturing yielded and 
unyielded material regions. Pham and Mitsoulis (1994) studied entry 
and exit flows of Casson fluids employing Papanastasiou modified 
equation (1987) via a finite element methodology. Vradis and 
Ötügen (1997) used a finite-difference scheme to simulate Bingham 
flows through a 2:1 sudden expansion, and Hammad et al. (1999) 
employed the same technique for Herschel-Bulkley fluids, 
concluding that the flow was strongly dependent on the yield stress, 
but weakly dependent on the power-law index. Jay et al. (2001) 
investigated viscoplastic flows in an axisymmetric 4:1 expansion, 
employing the model of Herschel-Bulkley and performing 
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numerical and experimental comparisons. Reis Junior and Naccache 
(2003) simulated viscoplastic flows through contractions via a finite 
volume method, with the plasticity behavior modeled by the Carreau 
equation subjected to a very high low-shear-rate-viscosity. Neofytou 
and Drikakis (2003) investigated the flows of three different fluid 
models (Casson, Quemada and power-law) in a sudden expansion 
channel. Zinani and Frey (2006) employed a GLS method to 
approximate the flow of Casson fluids through a planar expansion. 
They examined the relation between vortex formation and flow 
plasticization in the corner downstream the expansion, emphasizing 
that highly viscoplastic liquids tend to inhibit vortex formation. 
Recently, Mitsoulis and Huilgol (2004) simulated entry flows of 
Bingham plastics in expansions by a finite element method, 
computing the vortex size and intensity, as well as the entrance 
correction, as functions of the material yield stress. Their results are 
employed as a base of comparison for our results. 

Nomenclature 

a incremental vector 
B GLS functional 
Bn Bingham number 
C0 space of continuous functions 
Cu Carreau number 
Ch finite element partition 
D strain rate tensor 
div divergence operator 
F GLS functional 
F momentum load vector 
f vector of body forces 
G incompressibility matrix 
grad gradient operator 
H1 Sobolev functional space 
hK element size 
I identity tensor 
ID, IID, IIID invariants of the strain rate tensor 
int(i) value of i truncated to an integer 
J Jacobian matrix 
K element domain 
K momentum diffusive matrix 
L2 Hilbert functional space 
L Characteristic length 
m Papanastasiou’s approximation parameter 
N momentum advective matrix 
n outward normal unit vector 
n power-law exponent 
P pressure functional space 
p pressure field 
q pressure variation function 
r position vector 
R residual vector 
ℜ  set of real numbers 
Re Reynolds number 
Rk polynomial functional space of degree k
T stress tensor 
t stress vector 
t time 
U vector of degrees of freedom 
u admissible velocity field 
ui velocity component in the i direction 
u0 characteristic velocity 
V velocity functional space 
v virtual velocity field 
W vorticity tensor 

Greek Symbols 

γ&  magnitude of tensor D 

Γ domain boundary 
η viscosity function 
λ time parameter in Carreau model 
η0 zero-shear-rate viscosity 
η∞ infinite-shear-rate viscosity 
ηc characteristic viscosity 
ηp plastic viscosity 
µ Newtonian viscosity 
ν kinematic viscosity 
ρ mass density 
τ magnitude of stress, GLS stability parameter 
τ0 yield stress 
Ω problem domain 
ξ upwind function 

Subscripts 

a advection field 
g Dirichlet boundary condition 
h finite element approximation, Neumann boundary 

condition 
K finite element 
τ GLS stabilized matrix 

Superscripts 

nsd number of space dimensions 
* dimensionless 

Mechanical Modeling 

The problems studied herein are defined in an open bounded 

domain 2Ω ⊂ ℜ  with polygonal boundary Γ such that,

,

, 0
g h

g h g

Γ = Γ Γ
Γ Γ = ∅ Γ ≠

U

I
 (1) 

where Γg is the portion of Γ over which the Dirichlet boundary 
conditions are imposed and Γh the portion of Γ where the Neumann 
boundary conditions are prescribed.  

The Continuity Equation 

The mass of a mechanical body is invariant with time. 
Mathematically, this conservative principle may be expressed by 

0
d

d
dt

ρ
Ω

Ω =∫ (2) 

where ρ is the mass density. Applying the Reynolds transport 
theorem (Truesdell and Toupin, 1960) to Eq. (2), the differential 
form of the mass conservation equation may be achieved (Gurtin, 
1981), 

div( ) 0
t

ρ ρ∂ + =
∂

v (3) 

where v stands for the virtual velocity field. 
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The Motion Equation 

In fluid motion, all dynamic interactions may be described in 
terms of the forces acting on the fluid, which are described by 
balance laws that are valid for any arbitrary continuous portion of 
the fluid. Classically, three distinct types of forces are considered in 
Mechanics: internal contact forces, surface forces and body forces. 
All of them are related to the fluid motion through Euler dynamical 
axioms (Truesdell and Toupin, 1960). 

Principle of Momentum Balance: The rate of change of 
momentum in a fluid volume Ω  is equal to the total force acting on 
it. 

( )
d

d d d
dt

ρ
Ω Ω Γ

Ω = Ω + Γ∫ ∫ ∫v f t n  (4) 

Principle of Angular Momentum Balance: The rate of change of 
angular momentum in a fluid volume Ω is equal to the sum of the 
moments acting on it. 

( )
d

d d d
dt

ρ
Ω Ω Γ

× Ω = × Ω + × Γ∫ ∫ ∫r v r f r t n  (5) 

where r denotes the position vector. 
In order to establish the fluid motion equation, Cauchy theorem 

is enunciated (Gurtin, 1981), which has, as main assertion, the 
linearity of the stress vector t(n): Let (t,n) be a system of forces of a 
body in motion. The necessary and sufficient condition so that the 
laws of momentum conservation are satisfied is the existence of a 
symmetrical tensor field T – Cauchy tensor – such as: t(n)=Tn, 
satisfying the motion equation: 

divρ = +v T f& (6) 

Material Behavior 

Although Cauchy Theorem describes the form of the contact 
forces, stated for any continuous body, the way in which materials 
deform under arbitrary dynamic conditions is not stated by this 
theorem. In addition, the behavior of continuous bodies differs 
drastically with respect to the relation between internal contact 
forces (accounted by the stress tensor, T) and their motion and 
deformation. This relation is described mathematically by the so-
called rheological or material constitutive equations. The 
constitutive equations are constructed in order to obey certain rules 
that assure their physical meaning and generality. These rules are 
summarized in some principles, according to Astarita and Marrucci 
(1974) and Slattery (1999): the principle of determinism, principle 
of local action, principle of frame indifference, principle of fading 
memory and the satisfaction of the second law of thermodynamics.  

Being so, the dependence of T upon the body motion and 
deformation might give a function of the type, 

( ),grad=T T v v (7) 

Decomposing the tensor gradv in symmetric and skew-
symmetric parts, that is gradv=D+W, one has that the symmetric 
tensor D - called the strain rate tensor – is a frame indifferent tensor 
while the skew-symmetric tensor W – called the vorticity tensor - is 
not. In addition the velocity field v is not a frame indifferent field. 
Therefore, a constitutive equation for T written only in terms of D is 
also a frame indifferent function (Gurtin, 1981).  

The relation between T and D that obeys the principles above is 
based on the representation theorem for isotropic linear tensor 
functions (Gurtin, 1981) (4): 

2
1 2 3( ) ( , , ) ( , , ) ( , , )I II III I II III I II IIIψ ψ ψ= + +D D D D D D D D DT D I D D  (8) 

where ID, IID and IIID are the invariants of D. When the fluid is at 
rest (D=0), it develops a uniform field of hydrostatic stress, which is 
identified as the hydrodynamic pressure, p. In this case,  

p= −T I (9) 

The generalized Newtonian liquid (GNL) is a model based on 
Eqs. (8) and (9), by neglecting the quadratic term in Eq. (8) and 
considering the phenomena that occur in viscometric flows. Many 
flows of industrial interest are nearly viscometric. In this type of 
flow, the invariants ID and IIID are null (Gurtin, 1981), and the most 
relevant material function is the viscosity, which is represented by 
the coefficient of the second term on the right side of Eq. (8). The 
GNL model incorporates the viscosity dependence on strain rate, 
which is commonly observed in many polymeric fluids. This model 
is mathematically written as: 

2 ( )p η γ= − +T I D&  (10) 

where η( γ& ) is the viscosity function. The scalar γ&  is defined as the 

magnitude of the strain rate tensor (Slattery, 1999), which 
corresponds to the strain rate in viscometric flows: 

1 2 2 1 2(2 ) (2tr )IIγ = =D D&  (11) 

In the case where the viscosity is assumed constant, Eq. (10) 
reduces to the classical Newtonian model, with η=µ. 

Despite the GNL model does not predict normal stress 
differences in shear motions, it is useful in modeling a large scope 
of fluids in isochoric motion and shear dominated flows, when the 
most important phenomena are those caused by changes of 
viscosity. The flexibility of a strain rate dependent viscosity 
function allows the prediction of some commonly observed effects 
in shearing flows, as shear-thinning, also called pseudoplasticity 
(viscosity decrease with the increase of strain rate), shear-thickening 
(viscosity increase with the increase of strain rate), and also 
viscoplasticity (the fluid does not deform if the applied stress lies 
under a yield stress, and beyond the yield stress the fluid presents 
shear-thinning). 

A widespread empirical model for the viscosity function η(γ& ) 

is the four-parameter Carreau fluid (Bird et al., 1987), which is 
employed to model shear-thinning fluids. It is written as: 

1
2 2

0( ) ( ) 1 ( )
n

η γ η η η λγ
−

∞ ∞  = + − + & &  (12) 

where η0  is the zero shear-rate viscosity,η∞ the infinite shear-rate 
viscosity, n represents the power-law exponent and λ a time 
constant. The Carreau dimensionless number, Cu, is given as: 

0

Cu
L

u

λ= (13) 

where u0 and L are the flow’s characteristic velocity and length, 
respectively. As λ grows, the Carreau model mimics the power-law 
viscosity function: 
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1( ) nKη γ γ −=& & (14) 

with K the consistency index, which is equivalent to η0λn-1 for the 
Carreau model when λ tends to infinity. 

The viscoplastic equation for the stress-strain behavior of a 
Bingham plastic was proposed in the following form for viscometric 
flows (Bird et al., 1987): 

0 0

0

      for 

0      for 
pτ τ η γ τ τ

γ τ τ
= + >

= ≤

&

&
 (15) 

where τ is the shear stress and γ&  the strain rate. The symbol ηp

stands for the plastic viscosity. For general flows, τ is assumed as 
the magnitude of the extra-stress tensor, ττττ=T+pI, given by 

( )1 221 2 trτ = τ (16) 

and γ&  is defined as in Eq. (11). The viscosity function is then given 

as: 

0
0( )   for p

τη γ η τ τ
γ

= + >&
&

 (17) 

For 0τ τ≤ , the viscosity function goes to infinity as τ
approaches zero. Papanastasiou (1987) proposed a modification in 
the Bingham plastic equation by introducing the material parameter 
m, which replaces the discontinuity of the viscosity function by an 
exponential stress growth for low strain rates. In this way, the 
equation is valid for both yielded and unyielded zones. 
Papanastasiou’s modification gives rise to the following continuous 
viscosity function: 

( )0 1 expp m
τη η γ
γ

= + − −  &
&

 (18) 

The Bingham dimensionless number is defined as follows 

0

0

Bn
p

L

u

τ
η

= (19) 

The viscosity of a fluid is employed in order to define a flow’s 
Reynolds number, along with other flow parameters (velocity, mass 
density and length). In the case of GNL, a characteristic fluid’s 
viscosity, ηc, must be set in order to define a Reynolds number. In 
this paper, the characteristic viscosity for the Carreau fluids is taken 
as the zero shear rate viscosity, η0; for the Bingham fluids the 
plastic viscosity, ηp; and for Newtonian fluids the Newtonian 
viscosity µ. So, The Reynolds number is defined as: 

0Re
c

u Lρ
η

= (20) 

Finite Element Methodology 

The equations of continuity and momentum conservation (Eq. 
(3) and Eq. (6) respectively), plus the GNL constitutive equation 
(Eq.(10)) in a domain Ω⊂ℜ2 are used to construct the following 
boundary-value problem: 

[ ] ( )

( )

grad 2 div grad in

div 0 in

on

2 ( ) on

g g

h h

p

p

ρ η γ ρ

η γ

− + = Ω
= Ω

= Γ

− + = Γ  

u u D f

u

u u

I D u n t

&

&

 (21) 

where u is the admissible velocity field, p the pressure field, ( )η γ&
the viscosity function (Eq. (18)), D the strain rate tensor, n the unit 
outward vector and f the vector of body forces. 

The system defined by Eqs. (21) was approximated by a finite 
element method using a stabilization scheme which was based on 
Galerkin Least-Squares formulations developed in (Hughes et al., 
1986, Franca and Frey, 1992, and references therein). Over the 

domain Ω  a finite element partition hC , consisting of convex 

quadrilateral Q1 elements in ℜ2 was performed in the usual way 
(Ciarlet, 1978),  

1 2 1 2, ,
h

K
K C

K K hK K C

∈
 = ΩΩ


Ω Ω = ∅ ∀ ∈

U

I

 (22) 

Throughout the article, the functional spaces 2 ( )L Ω , 
2
0 ( )L Ω , 1( )H Ω and 1

0 ( )H Ω  are defined in the usual way, 

{ }
{ }
{ }

2 2

2 2
0

1 2 2

1 2 2
0

( ) {  |    }

( )   ( ) |   =0

( )   ( ) |  ( )}, 1,

( )   ( ) |  ( ) |  0 on , 1,...,

i

i g

L q q d

L q L qd

H v L v x L i nsd

H v L v x L v i nsd

Ω

Ω

Ω = Ω < ∞

Ω = ∈ Ω Ω

Ω = ∈ Ω ∂ ∂ ∈ Ω =

Ω = ∈ Ω ∂ ∂ ∈ Ω = Γ =

∫
∫ (23) 

Besides, ( ),⋅ ⋅  and 
0

⋅  represents, respectively, the L2 inner 

product and the norm on Ω, and ( ),
K

⋅ ⋅  and 
0,K

⋅  the L2 inner 

product and the norm on the element domain Κ, respectively. 

The Galerkin Least-Squares Formulation 

In order to approximate the velocity and pressure, the following 
spaces of approximation functions are employed, which are usual in 
fluid dynamics (Ciarlet, 1978): 

1
0{ ( ) ( ) , }nsd nsd

h k hKH R K K C= ∈ Ω ∈ ∈V v v  (24) 

1{ ( ) ( ) , , on }g nsd nsd
h k h g gKH R K K C= ∈ Ω ∈ ∈ = ΓV v v v u (25) 

0 2
0{ ( ) ( ) ( ), }h l hKP p C L p R K K C= ∈ Ω Ω ∈ ∈I  (26) 

where Rk and Rl denote the polynomial spaces of degrees k and l, 
respectively. 

Based on the finite element subspaces defined by Eq. (24)-(26), 
a Galerkin Least-Squares formulation may be introduced to 
approximate system (21) as: find the pair (uh, ph) ∈ Vh

g x Ph such 
as: 

( ) ( ) ( ), ; , ,h h h hB p q F q P= ∀ ×u v v V  (27) 

with 
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( ) [ ]( ) ( )( ) ( ) ( )
[ ] ( ) ( ) [ ] ( )( )( )

, ; , grad , 2 ( ), ( ) div , div ,

grad 2div( )) grad , Re grad 2div( )) grad 
h

K K
K C

B p q p q

p q

ρ η γ

ρ η γ τ ρ η γ
∈

= + − − +

+ − + − −∑
u v u u v D u D v v u

u u D(u v u D(u

&

& &
 (28) 

and 

( ) ( ) ( ) ( ) [ ] ( )( )( ), , , , Re grad 2div( ( )) grad 
h

h

h K K
K C

F q qρ ρ τ ρ η γ
Γ

∈

= + + − −∑v f v t v f v u D v&  (29) 

with the terms within the sums of Eq. (28)-(29) evaluated 
elementwise and its stability parameter τ being the same as in 
Franca and Frey (1992), for the linear Newtonian fluid 

(Re ) (Re ), with Re
2 4 ( )

k KpK
K K K

p

m hhτ ξ
η γ ρ

= =
u

u &
 (30) 

Re ,0 Re 1
(Re )

1, Re 1
K K

K
K

ξ
≤ <

=  ≥
 (31) 

1
min , 2

3k km C
 =  
 

 (32) 

1

1

1,

, 1

max ,

pnsd p

j
j

p

j
j nsd

u p

u p

=

=

  ≤ < ∞ =  
 = ∞

∑
u  (33) 

2 22

0, 0
div ( ) ( )

h

k K hK
K C

C h
∈

≤ ∈∑ D v D v v V  (34) 

Remark 1: For the sake of analysis, a linear version of the 
formulation of Eqs. (27)-(34) must be introduced. Based on Oseen’s 
improvement for the Stokes solution (Landau and Lifchitz, 1971). 
This set of equations reduces to the following, subjected to 
appropriated boundary conditions, 

(grad ) grad 2 div ( ) 0 in

div 0 in

pρ η ρ+ − − = Ω
Ω

au v D u f

u =
 (35) 

where va is a given advection field and η assumed constant 
throughout the domain, linearizing the problem. Setting the 
stabilization parameter τ to zero, the stabilized formulation defined 
by Eq.(27)-(34) reduces to the classical Galerkin approximation for 
this version of system of Eq.(21). The instability of Galerkin 
approximation (35) for advective dominated flows is due to the lack 

of coercivity of its bilinear form. Choosing (u, p)=(v, −q) and 

selecting 1
0 ( )nsdH∈ Ωv , it follows that 

2

0
( , ; , ) 2 ( ) ( , ) h hB q q q Pν− ≥ ∀ ∈ ×v v D v v V  (36) 

Therefore, when the kinematic viscosity ν=µ/ρ tends to zero, the 
linear Galerkin approximation will be polluted by spurious 
oscillations, generating physically unreal solutions. 

Applying the analysis introduced in Franca and Frey (1992) to 
this context, but with a non-null stability parameter τ defined as in 
Eq. (30)-(34), the stability features of the GLS method follow 
immediately. The stability lemma runs as follows: 

( )( )2 1 2

0

1
( , ; , ) 2 ( ) (grad ) (grad ) ( , )

2 h hB q q p q Pν τ− ≥ + + ∀ ∈ ×av v D v v v v V

(37) 

Matrix Problem 

Discretization of Eq.(27)-(34) is carried out by expanding the 
trial functions u, p, and v, q in terms of their finite element basis or 
shape functions. This leads to a set of semi-discrete equations, 
which, in the residual form is written as: 

( ) =R U 0 (38) 

where U is the vector of degrees of freedom of uh and ph, and R(U) 
is given by the set of matrices 

In Eq. (39), matrices [K] and [G] are, respectively, originated by 
the diffusive and pressure terms of Eq.(27)-(29), and N(u), GT, F by 
the advective, incompressibility and body force ones. (The N(u)τ, 
[K]τ, [G]τ, N(u)τ, and Fτ in Eq. (39) are generated by the Least-
Squares terms of Eq.(27)-(34).) To solve system defined by Eq.(38)-
(39), a quasi-Newton method (Dalquist and Bjorck (1969)) has been 
implemented, with convergence criteria of maximum residual norm 
equal to 10-6. As initial solution estimates, null velocity and pressure 
fields were employed. The Jacobian matrix for this method is given 
below (Eq. (40)), and solution algorithm is the same as the one 
elucidated in Zinani and Frey, 2006. 

* * * * * * * * * *( ) ( ) ( ( ), ) [ ( ( )) ( ( ), )] [ ( ( ), )] ( ( ), )T
τ τ τ τη γ η γ η γ η γ η γ= + + + + + + − −R U N u u N u u K K u u G G u p G u F F u& & & & &  (39) 

( ( ), ) ( ( ), )( )
( ) ( ) ( ( ), ) ( ( )) ( ( ), )

( ( ), ) ( ( ), )
( ( ), ) T

τ τ
τ τ

τ τ
τ

η γ η γη γ η γ η γ

η γ η γη γ

∂ ∂∂= + + + + + + +
∂ ∂ ∂

∂ ∂
+ + + + −

∂ ∂

N u K uN u
J U N u u N u u K K u u

u u u
G u F u

G p G u G
u u

& &
& & &

& &
&

 (40) 
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Numerical Results 

The GLS formulation defined by Eq.(27)-(34) was employed in 
order to approximate GNL flows. All computations have used a 
non-linear finite element code for fluids under development at the 
Laboratory of Computational and Applied Fluid Mechanics 
(LAMAC), Mechanical Engineering Department, UFRGS. 

Flows in a Lid-Driven Cavity 

As a check for the computational implementation of the GLS 
formulation defined by Eq.(27), the approximation of non-
Newtonian flows subjected to mild advective transport of 
momentum was implemented. The lid-driven cavity problem was 
built in the usual manner (Fig. 1), with square cavity geometry of 
length L. The velocity boundary conditions were impermeability and 
non-slip at cavity walls except the upper one, on which a horizontal 
velocity u0 was prescribed. The power-law viscosity model was 
employed in order to allow the comparison with previous work 
(Neofytou, 2005). In the Reynolds number definition (Eq. (20)), the 
characteristic viscosity employed was ηc=K(u0/L)(n−1). A Reynolds 
number equal to 50 was investigated using three values of the 
power-law index, n: n=1.5, n=0.5 and n=1. A 120x120 Q1/Q1 finite 
element mesh was used. The Newtonian version of this problem is 
exploited in Zinani and Frey, 2006. 

  
Figure 1. Problem statement for the lid-driven cavity. 

In Fig. 2 the results for the horizontal velocity in the line 
x1=0.5L and the vertical velocity in the line x2=0.5L are shown. The 
dots correspond to the results of Neofytou (2005), and our results 
are represented by filled lines. The results of the present paper agree 
well with the literature. One may observe that, in relation to the 
Newtonian fluid (n=1), the shear-thinning fluid (n=0.5) reduces 
drastically the velocity gradients, while the dilatant fluid (n=1.5) 
increases them.  

(a) 

(b) 

(c) 

(d) 

Figure 2. Comparison of GLS results (filled lines) with results of Neofytou 
(2005) (dots). (a) u1 versus x2, Re=50, n=1.5, (b) u2 versus x1, Re=50, n=1.5, 
(c) u1 versus x2, Re=50, n=1, (d) u2 versus x1, Re=50, n=1, (e) u1 versus x2, 
Re=50, n=0.5. (f) u2 versus x1, Re=50, n=0.5. 
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(e) 

(f) 
Figure 2. (Continued).

Shear-Thinning Flow Through a Sudden Contraction 

In this section, the Carreau fluid flow trough a planar 4:1 sudden 
contraction is studied. The problem statement is given in Fig. 3. 
Considering the symmetry, half problem’s actual domain is 
employed to build the geometric model. The boundary conditions 
for this problem are: fully developed Newtonian velocity profile 
with mean velocity u0/4 in the inlet, non-slip and impermeability at 
walls (ui=0, i=1,2), symmetry in x2=0 (u2=0, 1 2 0u x∂ ∂ = ), and 

free traction at the outflow boundary. The parameters L and u0 are 
used to calculate each case’s Reynolds number (Eq. (20)), along 
with the characteristic viscosity of the Carreau model, η0. In the 
Carreau viscosity function, the infinite shear-rate viscosity, η∞, was 
taken equal to zero, so that three dimensionless parameters are 
needed to define the flow: Re, Cu and n. 

2L

L/2
u0

x1

x2

Figure 3. Problem statement for the Carreau flow through a sudden 4:1 
contraction. 

This analysis is based in two Reynolds number values for a 
Newtonian fluid, Re=1 and Re=100, and two Carreau numbers (Eq. 
(13)) and n index values for the non-Newtonian fluids (for Re=1): 
Cu=0.5 and Cu=50, and n=0.1 and n=0.5. The effects of the fluid’s 
shear-thinning in the flow dynamics are investigated, i.e. how the 
local viscosity decrease in the high shear rate regions affects the 

flow. A mesh dependency analysis was performed with three 
meshes, comprised of 3120 (m1), 5362 (m2) and 7154 (m3) 
elements. The results were started to be mesh independent from 
mesh m2. 

The GLS formulation produced stable numerical results for 
Newtonian flows, for Reynolds numbers between 0 and 100, and 
also for the non-Newtonian flows corresponding to the values cited 
above for the Carreau model.  

In Fig. 4, the horizontal velocity profiles for the Newtonian and 
shear-thinning fluids are depicted, for Re=1: (a) upstream the 
contraction, representing a fully developed profiles, not disturbed by 
the contraction; (b) at a distance L upstream the contraction plane, 
(c) at the contraction plane. In these graphics, y=x2/L and u*=u1/u0, 
the dimensionless horizontal velocity. In the fully-developed profile 
(a), the typical flattened profile is observed in the profile of the 
higher Carreau number fluid (Cu=50). The low Carreau number 
fluid (Cu=0.5) has the same velocity profile as the Newtonian fluid, 
which means that the viscosity of this fluid does not decrease, i.e., it 
is kept in the viscosity plateau of this model, where viscosity is 
constant and the fluid presents a near Newtonian behavior, for very 
low strain rates. The same occurs with the profile just upstream the 
contraction plane (b): the low Cu and the Newtonian fluids present 
identical velocity profiles, while the high Cu fluid presents a much 
more flattened profile, but with the same tendency of acceleration in 
the symmetry line. In the contraction plane (c), the fluid 
experiments much deformation and even the low Cu fluid presents a 
different profile from the Newtonian one. The high Cu fluid presents 
a flattened profile, due to the high deformation region that is formed 
because of the contraction. 

(a) 

(b) 

Figure 4. Horizontal velocity profile in the contraction plane. (a) Fully 
developed velocity profile upstream the contraction plane, (b) just 
upstream the contraction plane, (c) in the contraction plane. 
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(c) 

Figure 4. (Continued). 

Figure 5 shows graphics of the pressure drop along the 
symmetry plane for the Newtonian fluid with Re=1 and Re=100, 
and the Carreau fluids with Re=1 and various fluid’s parameters. In 
part (a) the pressure drops obtained for the Newtonian fluid at Re=1 
and the shear-thinning fluids with low Cu are compared. One may 
observe that the pressure levels are of the same magnitude, despite 
shear-thinning reduces the total pressure drop. In part (b) the 
pressure drops for the high Cu fluids are shown. One may observe 
that the levels of pressure fall much lower than the Newtonian fluid 
flowing with Re=1, and that they fall in the same range of 
magnitude than a Newtonian fluid flowing with Re=100. This 
phenomenon is a consequence of the viscosity reduction due to 
shear-thinning, which may reduce the resistance to flow in orders of 
magnitude, as in this example. Another interesting feature is that the 
slope of the shear-thinning curves differ much from the Newtonian 
in the region downstream the contraction, i.e., where deformation by 
shear is more severe and shear-thinning is more pronounced. 

(a) 

Figure 5. Pressure drop along the symmetry plane: (a) Newtonian with 
Re=1 and low Cu fluids, (b) Newtonian with Re=100 and high Cu fluids 
with Re=1. 

(b) 

Figure 5. (Continued). 

Bingham Flow Through 2:1 Expansions 

In this section, inertialess flows of regularized Bingham fluids 
(Eq. (18)) through 2:1 sudden expansions are studied (as illustrated 
in Fig. 6), employing both planar and axisymmetric coordinate 
systems. The geometry total length is of 60L, to guarantee the 
inflow development upstream and downstream the expansion. The 
boundary conditions were: fully developed Newtonian velocity 
profile with mean velocity u0 in the inlet, non-slip and 
impermeability at walls (ui=0, i=1,2), symmetry in x2=0 (u2=0, 

1 2 0u x∂ ∂ = ), and free traction at the outflow boundary. The 

values of L, u0, and the viscosity ηc have been set equal to unity. A 
detail of the finite element mesh is seen in Fig. 7. The results were 
obtained for Bingham numbers (Eq.(19)) from Bn=0 (Newtonian 
fluid) to Bn=133, employing a finite element mesh with 10,640 
Q1/Q1 elements. The parameter m in Eq. (18) was taken as great as 
to give mL/u0=1000, as suggested in Mitsoulis and Zisis (2001) in 
order to reproduce the Bingham model. 

2L
L

u0

x2

x1

Figure 6. Flow in a 2:1 expansion, problem statement. 

Figure 7. A detail of the employed finite element mesh. 

Figs. 8 and 9, for the planar and axisymmetric cases, 
respectively, depict in black the flow zones in which the stress lies 
under the yield stress for each fluid. These are the unyielded zones, 
or rigid zones of flow. As it may be noticed, a non-zero Bingham 
number develops two distinct unyielded regions in the material (the 
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black zones in the figure), which are located near expansion corner 
and around flow centerline. While stagnant velocities at the corner 
originate the former (stagnant) region, the latter one is due to the 
growth of a plug flow at the centerline (rigid body motion). These 
regions tend to grow as the Bingham number increases, for the yield 
limit gets higher. It is also possible to observe that the unyielded 
zones are greater in the planar cases, since the flow is only subjected 
to the shear stresses in the upper and lower walls, while in the 
axisymmetric cases the whole flow region is surrounded by the 
walls, which shear the fluid yielding the flow. 

(a) 

(b) 

(c) 

(d) 

Figure 8. Planar geometry. Unyielded zones for (a) Bn=0.2; (b) Bn=3.9; (c) 
Bn=27.1; (d) Bn=127. 

(a) 

(b) 

(c) 

Figure 9. Axisymmetric geometry. Unyielded zones for (a) Bn=0.2; (b) 
Bn=4.76; (c) Bn=11.29; (d) Bn=133. 

(d) 

Figure 9. (Continued). 

The flow of Bingham plastics in expansions has been studied by 
Mitsoulis and Huilgol (2004). For the specific case of flows trough a 
planar expansion, these authors present results for the yield surfaces, 
i.e., the limiting surfaces between yielded and unyielded zones. Fig. 
10 depicts the superposition of the yield surface position obtained 
using the GLS formulation of Eq. (27)-(34) (lines) and the results of 
Mitsoulis and Huilgol (2004) (dots), for two Bingham numbers, 
Bn=127, planar flow and Bn=11.29, axisymmetric flow. It is 
possible to see that the GLS results agree well with those of 
Mitsoulis and Huilgol (2004). In the planar case, the results present 
yielded zones with the same width but distinct lengths. In the 
axisymmetric case, the width of the present results seem also 
smaller that that of Mitsoulis and Huilgol (2004). 

(a) 

(b) 

Figure 10. Yield surfaces, comparison of GLS results (lines) with Mitsoulis 
and Huilgol, 2004 (dots). (a) Planar Bn=127, (b) axisymmetric, Bn=11.29. 

Figures 11 and 12 show the horizontal velocity elevation plots, 
Fig. 11 for the planar flow and Fig. 12 for the axisymmetric one. 
One may observe the development of the velocity profile from the 
imposed Newtonian profile in the channel entry. The developed 
profile differs more from the Newtonian one as the Bingham 
number increases. The plug flow predicted by the constitutive 
Bingham model is easily observed, showing a flatter profile as Bn 
increases. 
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(a) 

(b) 

(c) 

(d) 

Figure 11. Horizontal velocity elevation plot for planar flows: (a) Bn=0.2; 
(b) Bn=2, (c) Bn=10, (d) Bn=110. 

(a) 

(b) 

(c) 

(d) 

Figure 12. Horizontal velocity elevation plot for axisymmetric flows: (a) 
Bn=0.2; (b) Bn=4.49, (c) Bn=11.29, (d) Bn=133. 
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Figures 13 and 14 illustrate the pressure drops throughout the 
planar channel. One observes that the higher the Bn, the higher the 
pressure drop. This feature may be explained by the high drag 
caused by the unyielded zones. The perturbation in the pressure field 
caused by the imposition of boundary conditions may be noticed, 
but it is also noticed that they do not disturb that field in the region 
of interest, i.e., near the expansion. 

(a) 

(b) 

(c) 

(d) 

Figure 13. Pressure contours and elevation for planar flows: (a) Bn=0.2; 
(b) Bn=3.9, (c) Bn=27.1, (d) Bn=127. 

(a) 

(b) 

(c) 

(d) 

Figure 14. Pressure contours and elevation for axisymmetric flows: (a) 
Bn=0.2; (b) Bn=4.49, (c) Bn=11.29, (d) Bn=133. 
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Conclusions 

This work exploited the features of a Galerkin Least-Squares 
finite element method in the approximation of purely viscous non-
Newtonian flows. The method was efficient in stabilizing both 
pressure and velocity fields, circumventing the compatibility 
conditions between their subspaces. The method was also capable to 
stabilize the advective dominated zones that have arisen due to 
shear-thinning, to keep the regions of high viscosity gradients stable, 
and also to be implemented in an axisymmetric coordinate system. 
Such features were demonstrated in the approximation of Carreau 
and Bingham fluids. In the case of flow of Carreau fluids through a 
contraction, the effects of shear-thinning were the flattening of the 
velocity profile in the contraction plane and the reduction of 
pressure drop due to viscosity reduction. In the cases of flows of 
Papanastasiou regularized Bingham fluid through expansions, the 
effect of increasing the yield limit (by increasing its dimensionless 
counterpart, the Bingham number) was to increase considerably the 
pressure drop due to the formation of a growing yielded zone in the 
contraction plane. In addition, the flattening of the velocity profile 
was also noticed. 
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