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ABSTRACT 

 

The robust popularization of 3D videos noticed along the last decade, allied to the 
omnipresence of smart mobile devices handling multimedia-capable features, has led to 
intense development and research focusing on efficient 3D-video encoding techniques, 
display technologies, and 3D-video capable mobile devices. In this scenario, the 
Multiview Video Coding (MVC) standard is key enabler of the current 3D-video 
systems by leading to meaningful data reduction through advanced encoding 
techniques. However, real-time MVC encoding for high definition videos demands high 
processing performance and, consequently, high energy consumption. These 
requirements are attended neither by the performance budget nor by the energy 
envelope available in the state-of-the-art mobile devices. As a result, the realization of 
MVC targeting mobile systems has been posing serious challenges to industry and 
academia. 

The main goal of this thesis is to propose and demonstrate energy-efficient MVC 
solutions to enable high-definition 3D-video encoding on mobile battery-powered 
embedded systems. To expedite high performance under severe energy constraints, this 
thesis proposes jointly considering energy-efficient optimizations at algorithmic and 
architectural levels. On the one hand, extensive application knowledge and data analysis 
was employed to reduce and control the MVC complexity and energy consumption at 
algorithmic level. On the other hand, hardware architectures specifically designed 
targeting the proposed algorithms were implemented applying low-power design 
techniques, dynamic voltage scaling, and application-aware dynamic power 
management. 

The algorithmic contribution lies in the MVC energy reduction by shorten the 
computational complexity of the energy-hungriest encoder blocks, the Mode Decision 
and the Motion and Disparity Estimation. The proposed energy-efficient algorithms take 
advantage of the video properties along with the strong correlation available within the 
3D-Neighborhood (spatial, temporal and disparity) space in order to efficiently reduce 
energy consumption. Our Multi-Level Fast Mode Decision defines two complexity 
reduction operation modes able to provide, on average, 63% and 71% of complexity 
reduction, respectively. Additionally, the proposed Fast ME/DE algorithm reduces the 
complexity in about 83%, for the average case. Considering the run-time variations 
posed by changing coding parameters and video content, an Energy-Aware Complexity 
Adaptation algorithm is proposed to handle the energy versus coding efficiency tradeoff 
while providing graceful quality degradation under severe battery draining scenarios by 
employing asymmetric video coding. Finally, to cope with eventual video quality losses 
posed by the energy-efficient algorithms, we define a video quality management 
technique based on our Hierarchical Rate Control. The Hierarchical Rate Control 
implements a frame-level rate control based on a Model Predictive Controller able to 
increase in 0.8dB (Bjøntegaard) the overall video quality. The video quality is increased 
in 1.9dB (Bjøntegaard) with the integration of the basic unit-level rate control designed 
using Markov Decision Process and Reinforcement Learning. 
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Even though the energy-efficient algorithms drive to meaningful energy reduction, 
hardware acceleration is mandatory to reach the energy-efficiency demanded by the 
MVC. Aware of this requirement, this thesis brings architectural solutions for the 
Motion and Disparity Estimation unit focusing on energy reduction while attending 
real-time throughput requirements. To achieve the desired results, as shown along this 
volume, there is a need to reduce the energy related to the ME/DE computation and 
related to the intense memory communication. Therefore, the ME/DE architectures 
incorporate the Fast ME/DE algorithm in order to reduce the computational complexity 
while the memory hierarchy was carefully designed to find the optimal energy tradeoff 
between external memory accesses and on-chip video memory size. Statistical analysis 
where used to define the size and organization of the on-chip cache memory while 
avoiding increased memory misses and the consequent data retransmission. A 
prefetching technique based on search window prediction also supports the reduction of 
external memory access. Moreover, a memory power gating technique based on 
dynamic search window formation and an application aware power management were 
proposed to reduce the static energy consumption related to on-chip video memory. To 
implement these techniques a SRAM memory featuring multiple power states was used. 
The architectural contribution contained in this thesis extends the state-of-the-art by 
achieving real-time ME/DE processing for 4-views HD1080p running at 300MHz and 
consuming 57mW. 
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1 INTRODUCTION  

The consumers’ thirst for new and more immersive multimedia technologies allied 
to the industry interest to boost the entertainment market have driven the fast 
popularization of 3D video content generation, 3D-capable devices, and 3D 
applications. Although the first 3D video device was developed in 1833 and the first 3D 
film demonstration dates from 1915 (ZONE, 2007), this format only became worldwide 
known in the 1980s through IMAX (IMAX, 2012) technology. The real 3D video hype, 
however, was noticed in the late 2000s through the massive popularization and 
availability of 3D movies followed by the 3D-capable televisions dedicated to home 
cinema. For a better perspective of this popularization, more than 10% of the televisions 
sold in USA in 2011 were 3D capable (RESEARCH AND MARKETS, 2010). The 
latest field to be affected by the 3D video popularization is exactly the field responsible 
for the biggest IC (integrated circuits) industry growth after the popularization of 
personal computers: the mobile embedded systems. Smartphones, tablets, personal 
camcorders, and other mobile devices shipments already surpassed PC shipments 
(KAY, 2011) (IC INSIGHTS, 2012). For instance, more than 650 million smartphones 
are expected to be shipped in 2013 compared to 430 million PCs (GASSÉE, 2010) in 
the same year. Jointly, the popularization of 3D videos and mobile devices is leading to 
a scenario where a large amount of such 3D-capable smart devices is reaching the users 
every day, resulting in a large amount of 3D video content being generated, encoded, 
stored, transmitted, and displayed. According to CISCO (CISCO, 2012), video content 
already represents 51% of the current Internet traffic and is envisaged to touch the 90% 
mark due 2014 (SOCIAL TIMES, 2011). It is also important to consider that the 0.6 
Exabytes/month mobile traffic in 2011 is expected to reach 10.8 Exabytes/month in 
2016 (CISCO, 2012). 

To cover the gap between 3D video content generation and network and storage 
capabilities there is a need to efficiently encode 3D videos and reduce the amount of 
data required for their representation. The Multiview Video Coding (MVC), an 
extension to the H.264/AVC,  is the state-of-the-art on 3D video coding. Based on the 
multiple views paradigm, as the majority of current 3D video technology, the MVC 
reduces the 3D videos representation in 20%-50% compared to H.264/AVC simulcast. 
The cost of this efficiency improve comes from an increased coding complexity and 
increased energy consumption, mainly at the encoder side. The energy consumption 
incurs form multiple processing units working in parallel to attend throughput 
constraints (processors, DSPs, GPUs, ASICs) and intense memory access. In a scenario 
dominated by mobile devices, the increase in energy consumption goes against the 
battery restrictions posed by these mobile embedded systems. This conflict of interests 
between coding efficiency and energy constraints brings the main challenge related to 
3D-video realization on embedded systems: jointly design algorithmic and architectural 
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energy-efficient solutions to enable real-time high-definition 3D video coding, while 

maintaining high video quality under severe energy constraints. The main goal of this 
thesis is to address this challenge by presenting novel algorithms and hardware 
architectures designed to show the feasibility of 3D video encoding on embedded 
battery-powered devices. 

In the next sections, after this introduction, an overview of 3D video applications 
that make the 3D video field so promising is presented. After that, a brief introduction 
on the trends for 3D video coding and multimedia embedded systems is presented, 
followed by the related issues and research challenges. This section is finalized by a 
summary containing the contributions of this work. 

1.1 3D Video Applications 

The adoption of 3D videos is directly associated to the existence of new applications 
requiring the deepness sensation in order to improve the users’ immersion experience. 
From here onwards an overview of the main 3D video applications is presented. These 
applications share the same concept of capturing multiple views in the same 3D scene. 
To give the depth illusion, distinct views are displayed to each eye with displays that 
employ technologies based on parallax barriers, lenticular sheets, color polarization, 
directional polarization, or time interleaving (DODGSON, 2005), more details on this 
phenomenon are provided in Chapter 2. 

•   Three-Dimensional Video Personal Recording: Popularized by the 3D-capable 
mobile devices and the 3D video sharing services (YOUTUBE 3D, 2011) 
(VIMEO, 2012) the 3D video personal recording is the most massive 3D video 
service in terms of video content availability. With a 3D video recorder device the 
users are free to create and publish their own video content.  

•   Three-Dimensional Television (3DTV): 3DTV is an extension of the traditional 
2D with the depth perception (SMOLIC, MUELLER, et al., 2007). In this kind of 
application two or more views are decoded and displayed simultaneously where 
each viewer sees two views, one for the right eye, and other for the left eye. The 
simplest 3D displays, which are the stereoscopic displays that show two 
simultaneous views requiring the use of special glasses (polarized or active shutter 
glasses) to provide 3D sensation. The evolution of stereoscopic displays is the 
auto-stereoscopic display, which eliminates the need for glasses. In this case, 
parallax barriers and lenticular sheets are the most common solutions. Multiview 
displays are able to display higher number of views at the same time increasing 
the observer freedom by supporting head parallax, i.e. the viewpoint changes 
when the observer changes its position. 

•   Free-Viewpoint Television (FTV): In this application, the user is able to select 
the desired viewpoint in a 3D scene (POURAZAD, NASIOPOULOS e WARD, 
2009). It provides realism and interactivity to the user, i.e., the focus of attention 
can be controlled. The display technology used may vary from 2D televisions to 
multiview displays. 

• Three-Dimensional Telepresence: Allows the user to communicate and interact 
to interlocutors as if they were in the same location. Telepresence has been widely 
used for video teleconferencing, mainly in corporative environments, and for the 
implementation of the so called virtual offices. The evolution towards 3D 
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(BLANCHE, BABLUMIAN, et al., 2010) represents a meaningful step in order to 
improve the perception and interaction level between the conference attendees. 

• Three-Dimensional Telemedicine: Telemedicine (WELCH, SONNENWALD, et 

al., 2005) was defined to surpass physical limitations and make it possible for a 
doctor to attend patients or perform surgeries while in a distinct location by using 
telecommunications methods. The 3D video capability brings the telemedicine to 
a whole new level where the specialist can precisely perceive the 3D space and 
proceed accurately through robotic actuators. This technology enables a better 
health care quality in remote places that do not count on qualified specialists. 

• Three-Dimensional Surveillance: Traditional video surveillance systems rely in 
2D videos and pose difficulties to authorities if precise depth information is 
required. Employing 3D-videos for surveillance (KRÜGERA, NICKOLAYB, et 

al., 2005) provides a much richer information once it is possible to accurately 
extract depth and angulations data for all objects in the 3D scene. Therefore, a 
better description on the interaction between objects, such as possible criminals 
and victims, is obtained. 

Among these applications, some are not designed for mobile use (e.g., 3D 
Surveillance and 3D Telemedicine) or require only decoding at the mobile device (e.g., 
3DTV, FTV). For other applications, however, the capability to encode 3D videos is 
mandatory. For instance, 3D video personal recording requires real-time and energy-
efficient 3D video encoding. 3D Telepresence, when running on embedded devices, 
demands real-time, energy-efficient and low-delay 3D video encoding. Aware of the 
challenges posed by the presented set of applications, this work focuses on the MVC 
video encoder. 

1.2 Requirements and Trends of 3D Multimedia 

Although the processing power of computational systems, mainly for embedded 
systems, has increased meaningfully (as detailed in Section 1.3), the multimedia 
applications performance and energy requirements are increasing in a significantly 
higher pace due to increased video resolutions, frame rates, sampling accuracy, and 
number of views in case of 3D videos. In other words, the amount of data to be 
processed in a video sequence has been increasing in multiple axes simultaneously. 

Figure 1.1 relates the number of macroblocks (MB – 16x16 image block used as 
basic coding unit in MVC - for details refer to Chapter 2) to be processed per second 
considering the different video resolutions, frame rates and number of views. Previous 
coding standards, for instance MPEG-2, were designed and typically used in videos 
with low-medium resolutions and low-medium frame-rates such as CIF (352x288), 
VGA (640x480) and SDTV (768x576) at 15-30 fps (frames per second) (note that these 
numbers refer to the typical use and main target operation profiles, the standards define 
a very high operation range). The H.264 additionally targets high resolutions and high 
frame-rates such as 720p (1240x720) and HD1080p at 30-60fps. The next generation of 
coding standards, represented by H.265/HEVC (High Efficiency Video Coding), will 
also target on high and ultra-high resolutions and frame-rates including QHD 
(3840x2160) and UHDTV (7680x4320) videos at 60-120 fps (MCCANN, MATTEI, et 

al., 2012)(LING, 2010). To quantify this growth, the relation between the corner cases 
shown in Figure 1.1a, CIF@15fps and QHD@60fps, is equivalent to a 327x factor. 
Also, targeting improved quality, the samples bit-depth is increasing from 8 bits up to 
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14-bit samples, requiring wider data operators. At the complexity and energy 
consumption perspective, the scenario is even worse once there is a non-linear relation 
with the data amount. The increase in resolution, for instance, leads to higher processing 
effort per MB, higher memory traffic and larger on-chip memory related to the Motion 
Estimation (ME, see Chapter 2), resulting in energy consumption increase. Moreover, 
the video coding standards evolution severely contributes to the increase of complexity 
and energy requirements. For example, the H.264 encoder is approximately 10x more 
complex than the MPEG-4 (OSTERMANN, BORMANS, et al., 2004) encoder, while 
the HEVC is expected to bring additional 2-10x  (DÍAZ-HONRUBIA, MARTÍNEZ e 
CUENCA, 2012) complexity increase factor in relation to H.264.  

Considering 3D videos, the scaling scenario becomes more dramatic, as shown in 
Figure 1.1b. Besides the resolution and frame-rate increase, it is necessary to deal with 
the linear data growth in relation to the number of views. As MVC includes new coding 
tools the complexity and energy consumption increase in a non-linear (above-linear) 
fashion, as quantified in Section 3.1. The impacts of the fast 3D multimedia 
requirements scaling on embedded systems are discussed in the next section. 
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Figure 1.1: Video scaling trend 

1.3 Overview on Multimedia Embedded Systems 

The fast evolution of multimedia embedded systems has been driven by the so called 
smart devices (smartphones, tablets, and other mobile devices capable of data, audio, 
and video communication) popularization. Meaningful progress has been done by the 
major players in the field, (ARM LTD., 2012)(NVIDIA, 2012)(QUALCOMM INC., 
2011)(TEXAS INSTRUMENTS INC., 2012) (SAMSUNG ELECTRONICS CO. 
LTDA., 2012), in terms of performance boost and energy efficiency. The progress, 
however, is not enough to fill the gap between multimedia application requirements and 
technology evolution. The ARM SoCs (System-on-Chip), whose processors equip about 
90% of the current embedded devices (SOFTPEDIA, 2010), predicts a performance 
increase in the order of 10x when comparing the state-of-the-art in 2009 to the predicted 
one for 2016, as shown in Figure 1.2a. Energy restrictions related to slow battery 
evolution is the major factor limiting the performance of embedded systems. According 
to Panasonic (KUME, 2010), the capacity of Li-Ion batteries has been increasing, on 
average, 11% annually since 1994, as shown in Figure 1.2b. 

The high performance and energy efficiency required by the current 3D-video 
applications are not met by generic embedded solutions such as embedded processors, 
GPUs and DSPs. There is a need to implement application-specific hardware 
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accelerators to deliver the required throughput while minimizing energy consumption at 
the cost of a flexibility drawback. The latest high-end embedded SoCs already 
implement this approach for multimedia processing, e.g. H.264 video encoding and 
decoding, as detailed in Section 2.5. Some examples are Qualcomm Snapdragon S4 
(QUALCOMM INC., 2011), Nvidia Tegra 3 (NVIDIA CORP., 2012), Samsung Exynos 
4 (SAMSUNG ELECTRONICS CO. LTDA., 2012) and Texas Instruments OMAP 5 
(TEXAS INSTRUMENTS INC., 2012). The hardware support, however, needs to be 
extended in order to efficiently handle 3D videos. 

(b)
(a)

 

Figure 1.2: (a) Mobile systems performance trend (SHIMPI, 2011) and (b) Li-Ion 
battery capacity growth (KUME, 2010) 

1.4 Issues and Challenges 

The demand for mobile 3D multimedia processing allied to high performance 
demands and severe embedded devices energy constraints pose serious challenges to the 
researchers and developers actuating in the embedded multimedia systems field. In this 
scenario, employing hardware accelerators optimized for specific Multiview Video 
Coding applications is mandatory. Given the gap between 3D multimedia processing 
and the embedded processing reality, there is a need to further reduce the complexity 
and energy consumption at algorithmic and architectural levels. Such optimizations are 
only possible by employing deep application knowledge to perform a coupled and 
integrated optimization of the algorithms employed and the underlying hardware 
architecture. 

In addition to the varying coding settings and battery state, multimedia applications 
are susceptible to input content variations that significantly change the system behavior 
and requirements. For instance, videos with higher motion intensity require more 
processing and memory accesses resulting in more processing units and larger on-chip 
memory finally leading to increased energy consumption. Such variations are only 
detected at run-time. Therefore, energy-efficient MVC encoding systems require 
algorithmic and hardware run-time adaptivity that employ application and video content 
characteristics knowledge. The adaptation schemes must be able to handle the energy-
efficiency vs. video quality tradeoff in order to find the optimal operation point for each 
given system state and video input. 

Energy reduction algorithms and energy-oriented optimizations might lead to rate-
distortion (RD) performance losses, i.e., video quality reduction for the same bitrate. To 
avoid or minimize this drawback, there are mechanisms able to control the losses 
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through the optimization of the bit distribution among different views, frames and 
image regions.  

The in-depth study of the issues and challenges related to MVC encoding are 
presented in Chapter 3. In the following section, the contribution is summarized. 

1.5 Thesis Contribution 

The goal of this thesis is to understand the run-time behavior of the MVC encoder at 
the energy consumption perspective and propose algorithms and hardware architectures 
able to jointly attend the performance constraints and respect the energy envelope 
restrictions for state-of-the-art embedded devices. In this section, a summary of the 
contributions of this thesis is presented, highlighting the main innovations proposed. A 
deeper description of these contributions is found in Chapter 3, while the technical 
details are presented in Chapter 4 and Chapter 5, and results in Chapter 6. 

1.5.1 3D-Neighborhood Correlation Analysis 

The novel energy-efficient algorithms and hardware architectures proposed in this 
work are designed upon a strong MVC application knowledge including all MVC 
encoder algorithms and their run-time response to distinct input data. Along this work, 
the application knowledge, for many cases, is studied in terms of the correlation within 
the 3D-Neighborhood. The 3D-Neighborhood concept is a space domain defined in this 
thesis that contains the MBs belonging to the neighboring regions in the spatial, 
temporal, and disparity axes. Due to the redundancies existing within this neighborhood 
(see discussion in Section 2.2), the 3D-Neighborhood provides valuable information to 
predict video encoding side information, algorithms behavior, memory access pattern, 
etc. Therefore, the offline and online 3D-Neighborhood data are used to define and 
control the energy-efficient algorithms, hardware design, memory architecture and 
sizing, and adaptation schemes. 

1.5.2 Energy-efficient MVC Algorithms 

The energy-efficient algorithms for MVC are concentrated in three MVC encoding 
blocks: mode decision, motion and disparity estimation (ME/DE) and rate control. 
Mode decision (MD) and ME/DE units are responsible for the dominant energy 
consumption in the MVC encoder, as discussed along Chapter  3. The proposed fast 
MD and ME/DE target energy reduction through complexity reduction. These 
algorithms interact with the novel energy-aware complexity adaptation algorithm that 
controls the energy consumption by changing the coding efficiency considering battery 
state. The drawback posed by the energy-efficient algorithms comes in terms of quality 
drop under certain coding conditions. To minimize this negative impact a hierarchical 
rate control solution to optimize the bit utilization while maximizing and smoothen 
video quality in spatial, temporal, and disparity domains, is proposed. 

• Early SKIP Prediction: Exploits the high occurrence of SKIP coded 
macroblocks and the image properties to correlate the MBs within 3D-
Neighborhood. Quantization Parameter (QP)-based thresholding is employed to 
react to QP changing scenarios. 

• Multi-Level Fast Mode Decision: Incorporates the Early SKIP prediction to a 
sophisticated mode decision scheme composed of six decision steps and bad 
prediction protection. This fast MD employs multiple MD aggressiveness 
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strengths (to control energy vs. quality losses), 3D-Neighborhood data, coding 
modes ranking, video properties-based prediction, and Rate-Distortion cost 
(RDCost) prediction. 

• Energy-Aware Complexity Adaptation: Defines four quality states employing 
distinct MD that are interchanged at run-time according to the actual battery state. 
The complexity adaptation algorithm employs asymmetric view coding to 
maximize the video quality in face of battery discharging and provides graceful 
quality degradation along the time. 

• Fast Motion and Disparity Estimation: The proposed Fast ME/DE widely 
exploits the motion and disparity vectors correlation within the 3D-Neighborhood 
in order to avoid the search for non-key frames in the MVC prediction structure. 
According to the confidence in the neighboring MBs, the algorithm selects the 
Fast or Ultra-Fast prediction mode. 

• Hierarchical Rate Control (HRC): This innovative solution for the MVC rate 
controller employs two actuation levels, frame-level and basic unit-level rate 
control, with coupled feedback loop. The frame-level RC uses the Model 
Predictive Controller (MPC) to estimate the bitrate for future frames and decide 
the best QP. Markov Decision Process (MDP) with Reinforcement Learning (RL) 
and Regions of Interest (RoI) weighting is employed at BU-level to further 
optimize the QP selection within the frames. 

1.5.3 Energy-efficient Hardware Architectures 

The energy-efficient hardware architectures target the motion and disparity 
processing, which represents the most complex and energy-intense coding block of the 
MVC encoder. Three ME/DE architectures are proposed, all of them aiming to reduce 
the energy consumption for 4-views real-time HD1080p encoding through 
implementing, in hardware, the fast ME/DE algorithms proposed in this thesis. By 
doing so the on-chip memory size is reduced, the external memory accesses are 
reduced, and an efficient dynamic power management to the processing path and 
memory architecture is employed. The architectural innovations are introduced in the 
following and detailed in Chapter 5. 

• Motion and Disparity Estimation Architectural Template: Defines the main 
building blocks used to design all hardware architectures and the interaction 
between them. It is designed to provide support to multiple search algorithms, 
throughputs and memory hierarchy.  

• Motion and Disparity Estimation Hardware Architectures: Along this thesis are 
proposed three architectural solutions for the ME/DE block in the MVC encoder. 
These architectures feature distinct techniques to improve the performance and 
reduce the overall energy consumption. Additionally, by providing multiple 
solutions, this work enables the selection of the architecture that better adapts to a 
specific MVC encoding system.  

• Multi-Bank On-Chip Video Memory: This proposal enables a reduced on-chip 
video memory and sector-level power gating in order to reduce the energy 
consumption through leakage current lowering. The on-chip memory works in a 
cache fashion and employs multiple banks for high throughput. Distinct Dynamic 
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Power Management (DPM) techniques are proposed based on the memory 
prediction using the 3D-Neighborhood information.  

• Memory Design Methodology: A study of the memory requirements under 
different coding scenarios and video contents is presented to provide the basis for 
defining the optimal memory size and organization. Based on this study, an 
offline statistical analysis is used to define the memory hierarchy considering on-
chip memory size and number of external memory access. 

• Dynamic Search Window Formation-Based Date Reuse: Macroblocks 
previously encoded in the 3D-Neighborhood are used to create a search map that 
tracks the search pattern behavior. From the search map, a prefetch scheme named 
Dynamic Search Window formation is employed. This technique focuses on the 
reduction of external memory accesses and the reduction of active memory 
sectors in the on-chip video memory.  

• Application-Aware Dynamic Power Management: This proposal implements a 
sophisticated multi-level memory requirements prediction scheme to accurately 
control power states of the on-chip video memory sectors. Each sector is 
associated, at frame level and refined down to MB level, to one of the multiple 
power states according to its usage probability. Once again, the MBs within the 
3D-Neighborhood are used as source of information for decision making. 

1.6 Thesis Outline 

This thesis is organized as follows: 

Chapter 2 presents an overview of the background knowledge required to 
understand this work along with the related works published in academic channels and 
state-of-the-art industrial solutions. The basics of 2D and 3D digital videos concepts, 
3D video systems, multimedia architectural options, and Multiview Video Coding are 
provided. Afterwards, a state-of-the-art revision is presented including the latest 
reduced-complexity and energy-efficient solutions for the MVC encoding.  

Chapter 3 brings a deep study and discussions on the requirements and challenges 
related to the realization of MVC real-time encoding on embedded devices. The 
discussions are centered on the energy consumption and encoded video quality. Chapter 
3 also presents the overview of contributions presented along this thesis. For simplicity, 
the thesis contribution is also summarized using a high-level diagram. 

In Chapter 4 all the novel energy-efficient algorithms proposed in this work are 
thoroughly explained. They are classified and described in three sections: coding mode 
decision, motion and disparity estimation, and video quality management. Technical 
details ranging from case studies down to implementation level are followed by 
algorithm specific results. 

The architectural contribution for motion and disparity estimation is presented in 
Chapter 5. Firstly, an architectural template is presented to avoid description 
redundancies between the three proposed hardware architectures. At this point onwards, 
Chapter 5 is organized in three sections that describe each proposed architecture 
separately. Inside each section the architecture-specific contributions, such as memory 
architectures and control schemes, are presented. Additionally, the architectural specific 
results are presented in this section. 
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Chapter 6 brings the overall results for the proposed novel algorithms and 
architectures compared to state-of-the-art related works. Chapter 7 depicts the 
conclusions of this work and points to future research opportunities and challenges 
related to the next generations of 3D multimedia processing and 3D video coding. The 
works referred along this volume are presented in Chapter 8. 

Additional tools and simulation environments are presented in the appendixes.  
Appendix A presents the MVC reference software, the JMVC, and details the 
modifications applied to the JMVC in order to enable software experimentation. The in-
house developed Memory Access Analyzer tool and its graphic interface is presented 
Appendix B. Appendix C presents the CES Video Analyzer tool highlighting the 
extensions implemented to support multiview videos. Finaly, Appendix D brings an 
extended abstract of this thesis written in Portuguese.  
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2 BACKGROUND AND RELATED WORKS 

In this chapter the basic notions on digital videos, multiview video systems and the 
Multiview Video Coding (MVC) standard are presented. The mode decision, motion 
and disparity estimation and, rate control modules are detailed since they are the main 
foci of this thesis. Detailed state-of-the-art review is presented considering 3D-video 
systems, multimedia architectures, energy-efficient algorithms and architectures for 
video coding. 

2.1 2D/3D Digital Videos 

A video is formed by a sequence of frames (or pictures) of a scene captured in a 
given frame rate providing to the spectator the sense of motion. Usually, the frame rate 
goes from 15 to 60 frames per second (fps) depending on the application requirements. 
Each frame is formed by a number of points named picture elements, i.e. pixels. The 
number of pixels in each frame is called resolution, i.e. the number of horizontal and 
vertical pixel lines. The typical resolutions also depend on the target application. For 
instance, mobile devices use to handle relatively lower resolution and lower frame rate 
sequences if compared to home cinema that targets high resolution and high frame rates. 

Different color spaces are used to represent raw and decoded videos, the most usual 
ones are RGB (Red, Green, Blue) and YUV. Most monitors operate at the RGB space 
while most of video coding standards work over the YUV space. The YUV space is 
composed by three color channels: one luminance (Y) and two chrominance channels 
(U and V). The main reason for using YUV space for video coding is related to its 
smaller correlation between color channels, making easier to independently encode each 
channels. Since the Human Visual System (HVS) is less sensible to chrominance when 
compared to luminance, it is possible to reduce the amount of chroma information 
without affecting the overall perception. The reduction of chroma information is made 
using color sub-sampling (also known as pixel decimation). The most used color sub-
sampling pattern is the YUV 4:2:0 that stores one U and one V sample for each four 
luminance samples reducing in 50% the total amount of raw video data 
(RICHARDSON, 2010). 

All current widely used video coding standards are based on block coding. In other 
words, they divide each frame in pixel blocks to encode the video. These blocks are 
named macroblocks (MB). In the H.264, the latest video coding standard (JVT, 2003), 
the MBs are blocks of 16x16 luma pixels and its associated chroma samples (see Figure 
2.1). A group of MBs is called slice. The slice can be formed by one or more MBs that 
may be contiguous or not. One frame is formed by one or more slices. In turn, each slice 
is classified in one of three different types (here the SI and SP slices are not 
considered): Intra (I), Predictive (P) and Bi-predictive (B) slices. The example in Figure 
2.1 is composed of three slices, one contiguous (Slice 0) and two non-contiguous slices 
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(Slices 1 and 2). Note, the terminology used here is based on the H.264 standard and is 
directly applicable to the MVC standard (RICHARDSON, 2010)(JVT, 2009). 

 

Figure 2.1: Macroblocks and slices organization 

For a better comprehension on the different slice types it is necessary to understand 
the two basic prediction modes used by the state-of-the-art video encoders: intra-frame 
and inter-frame prediction. The intra-frame prediction only exploits the spatial 
redundancy by using surrounding pixels to predict the current MB. The inter-frame 
prediction exploits the temporal redundancy (similarity between different frames) by 
using areas from other frames, called reference frames, in order to better predict the 
current MB. Intra (I) macroblocks use the intra-frame prediction while predictive (P) 
and bi-predictive (B) macroblocks use the inter-frame prediction. While P macroblocks 
only use past frames as reference (in coding order) the B macroblocks can use reference 
frames from past, future or a combination of both. Intra slices are formed only by I 
MBs. Predictive (P) slices support I and P macroblocks and Bi-predictive (B) slices 
support I and B macroblocks (RICHARDSON, 2010)(JVT, 2009). 

Multiview video sequences are composed of a finite number of single view video 
sequences captured from independent cameras in the same 3D scene (MERKLE, 
SMOLIC, et al., 2007). Usually these cameras are carefully calibrated, synchronized 
and positioned. They are typically aligned in a parallel 1D-array or 2D-array, however, 
there are systems where the cameras are positioned in arch or cross shapes (KAUFF, 
ATZPADIN, et al., 2007). The typical spacing between cameras is 5cm, 10cm or 20cm 
for most of the available test sequences (SU, VETRO e SMOLIC, 2006). In Figure 2.2 a 
multiview video with four views and the captured frames along the time axis are 
presented. At the video encoding perspective, the MVC, as detailed in Section 2.3, 
extends the concept of inter-frame prediction to inter-view prediction where the 
correlation between different views is exploited. A deeper discussion regarding the 
spatial, temporal and view/disparity correlations is provided in Section 2.2. 

Figure 2.3 depicts the complete system required to capture, encode, transmit, decode 
and display multiview videos (CHEN, WANG, et al., 2009). The captured sequence is 
encoded by an MVC encoder in order to reduce the amount of data to be transmitted. 
The generated bitstream may be transmitted using broadcast, internet or stored in media 
servers or local storage. At the decoder side the bitstream, or part of it, is decoded and 
displayed according to the displaying technology available at the receiver end. In a 
simple single-view display the decoder considers only the base view that is decodable 
with a regular (H.264/AVC) video decoder. In the case of stereoscopic displays (two 
views) only two views are decoded and displayed. In FTV (Free Viewpoint Television) 
systems the user selects the desired viewpoint within the 3D scene and the video 
decoder selects which views to decode. For multiview displays all views displayed must 
be decoded along with the reference views used to reconstruct them. 
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Figure 2.2: Multiview video sequence 

 

Figure 2.3: Multiview video capture, (de)coding, transmission and display system 
Source: (CHEN, WANG, et al., 2009) 

2.2 Multiview Correlation Domains 

This section defines the three types of redundancies or correlations present in 
multiview video sequences in order to provide the background required for a better 
understanding of the MVC coding tools, detailed in Section 2.3, and for the 3D-
Neighborhood concept presented in Section 3.5.1. Here we discuss the correlation at 
pixel level, i.e., the similarities used to predict the image pixels, and at coding 
information level, i.e., how neighboring blocks share coding properties such as coding 
modes, vectors, etc. To have a more general description we present independently the 
three correlation dimensions: (i) spatial correlation, (ii) temporal correlation and, (iii) 
view/disparity correlation. Single-view video coding standards are able to exploit (i) 
and (iii) while MVC incorporates (iii) to provide improved prediction for multiview 
videos. 
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2.2.1 Spatial Domain Correlation 

The spatial correlation is the similarity within regions in the same frame. Previous 
image and video coding standards, such as JPEG2000 and H.263, were already able to 
exploit this similarity through MB prediction based on neighboring pixels (see Section 
2.3). Neighboring MBs tend to belong to the same image region and share similar image 
properties. For this reason, the surrounding pixels typically are good block predictors 
for the intra-frame prediction process. Exception cases happen in object borders where 
the image properties may change abruptly. Consider the example in Figure 2.4, all the 
MBs in the white background share similar image properties. The same happens for the 
MBs within one of the objects. The discontinuity occurs when an object border is found 
leading to increased prediction error. Note that, for simplicity, the spatial correlation is 
referred as one dimension but it is actually composed by two dimensions, the width and 
height of a frame. 

 

Figure 2.4: Neighborhood correlation example 

On average, the current coding standards are able to efficiently employ the intra-
frame prediction for pixel data. However, the correlation of coding side information 
(coding mode, motion vectors, disparity vectors, etc) is just superficially exploited. In 
H.264, a few simple techniques exploit this kind of correlation. The differential coding 
of intra prediction modes inside a macroblock exploits spatial correlation of coding 
information. In this technique, the intra coding mode is coded considering the coding 
mode of the previous block. Another example is the motion vector prediction process 
that uses the neighboring vectors to predict the current vector. By employing the motion 
vector prediction, only the differential motion vector need to be coded and transmitted. 
These examples show that there is also significant correlation at coding side information 
level. 

2.2.2 Temporal Domain Correlation 

The temporal correlation represents the similarities between different frames in the 
same view of a video sequence. That is, the objects of a given frame are usually present 
in neighboring temporal frames with a displacement that depends on its motion. 
Consider the frames T6S1 (view 1, time 6) and T7S1 (view 1, time 7) in Figure 2.4, the 
same objects are seen in both frames with a small displacement. Thus, frame T7S1 may 
be accurately predicted from the reference frame T6S1. The displacement between the 
two frames is found using the motion estimation (see Section 2.3.2). Besides the pixel-
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level prediction, the coding data is also similar for the same object along the time. In 
other words, for the same object in distinct time instants the same set of coding modes 
and motion behavior tend to be employed. The correlation is lost when there is an 
occlusion or the object moves out of the captured scene. 

Analogous to the spatial correlation, there are tools able to exploit the temporal 
correlation at pixel level, i.e. the motion estimation (Section 2.3.2). At coding side 
information level, an attempt to exploit this correlation was proposed in the H.264 
standard by using the temporal direct prediction for motion vectors. This prediction uses 
the collocated MB (MB sharing the same relative position in the frame) motion vector 
in order to predict the current one. 

2.2.3 Disparity Domain Correlation 

The disparity is a complete new domain introduced by multiview videos. It refers to 
the similarities between frames in different views. The similarities or redundancies at 
pixel level are exploited by the disparity estimation tool (Section 2.3.2). However, no 
tool is able to exploit this correlation at the coding information level. 

As depicted in Figure 2.4, frames T7S1 (view 1, time 7) and T7S2 (view 2, time 7), 
the same objects are present in the neighboring views displaced by the so-called 
disparity vector. Since they are the same objects, the same image properties are shared 
and similar coding information tends to be used in different views. The disparity 
neighborhood correlation is lost when a given object is out of the area captured by a 
given camera or there is an object occlusion for a given camera point of view. 

In order to obtain an accurate evaluation of the available correlation, we have carried 
out an extensive analysis of multiview videos. For this analysis we have used different 
multiview video sequences following the MVC test recommendation by JVT (SU, 
VETRO e SMOLIC, 2006). These sequences have coding structures similar to the one 
presented in Figure 2.7. Our analysis, discussed in Section 3.5.1, constitutes an in-depth 
exploration of coding mode distribution, video statistics, motion and disparity vectors, 
coding mode and RDCost correlation in the so called 3D-Neighborhood (spatial, 
temporal, and view neighborhood). 

2.3 Multiview Video Coding 

Encoding Multiview video sequences can be performed using different techniques. 
The most primitive one is the simulcast approach, where a single-view video coding 
standard (usually H.264/AVC) is used to encode independently each view. As presented 
in Figure 2.5, the simulcast approach considers the intra-frame prediction and inter-
frame prediction (a.k.a. motion estimation) exploiting the spatial and temporal 
redundancy. However, the disparity or inter-view redundancy (i.e. the redundancy 
between frames of different views) is not considered. The Multiview Video Coding 
(MVC) standard uses the inter-view prediction (a.k.a. disparity estimation) to take 
advantage of the similarities between views from the same scene. The inter-view 
prediction represented by the red arrows in Figure 2.5 is responsible for a bitstream 
reduction of 20-50% for the same video quality (MERKLE, SMOLIC, et al., 2007). 
Details on the MVC new tools, coding efficiency and complexity are discussed along 
this section. 
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Figure 2.5: Prediction comparison between simulcast and MVC 

In a strict definition, the Multiview Video Coding (MVC) is not a coding standard 
but an extension of the H.264/AVC or MPEG-4 Part 10 (JVT, 2003). The MVC was 
defined by the Joint Video Team (JVT) in March 2009 (JVT, 2009). The JVT is the 
group of experts formed by the Motion Picture Experts Group (MPEG) from ISO/IEC 
and the Video Coding Experts Group (VCEG) from ITU-T. 

The standard usually works over the YUV (or YCbCr) (MIANO, 1999) color space 
that is composed by one luminance channel and two chrominance channels (red and 
blue chrominance) but other color spaces are supported, such as RGB and YCgCo 
(orange  and green chrominance). The MVC also supports different subsampling 
patterns including 4:2:0 (four luminance samples for one sample of each chrominance 
channel), 4:2:2 (two luminance samples for one sample per chrominance channel) and 
4:4:4 (one luminance channel for one sample in each chrominance channel). The 
supported color space/subsampling and coding tools depend on the profile of video 
coding operation (JVT, 2009). 

Originally three profiles were defined in the H.264 standard: Baseline, Main and 
Extended. The Baseline profile focuses on video calls and videoconferencing. It 
supports only I and P slice and the CAVLC entropy coding method. The Main profile 
was designed for high definition displaying and video broadcasting. Besides the tools 
defined by the Baseline profile, it also includes the support to B slices, interlaced videos 
and CABAC entropy coding. The Extended profile targets video streaming on channels 
with high package loss and defines the SI (Switching I) and SP (Switching P) slices 
(RICHARDSON, 2010). In 2005 the Fidelity Range Extension (FRExt) defined the 
High profiles: High, High 10 (in which 10 bits per Y, Cb or Cr sample is used), High 
4:2:2 and High 4:4:4 targeting high fidelity videos (JVT, 2009). 

The MVC extension introduced to the standard a new set of CABAC contexts and 
new SEI (Supplemental Enhancement Information) messages to simplify parallel 
decoding and the transmission of sequence parameters (JVT, 2009). Additionally, the 
disparity estimation or inter-view prediction was proposed (MERKLE, SMOLIC, et al., 
2007). This is the most important innovation in the MVC that allows the exploration of 
similarities between different views. Its function is to find the best matching for the 
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current macroblock in a reference frame within the reference view. The possible search 
criteria, search patterns and objective are similar to the motion estimation. However, the 
dynamic behavior of the disparity estimation differs significantly with respect to the 
ME. In the following section, details of the MVC encoding process are presented. 

 

2.3.1 MVC Encoding Process 

In Figure 2.6 the high-level block diagram of the MVC encoding process is 
presented. As a hybrid coding standard it is composed of three phases: prediction, 
transforms and entropy coding. The transform and entropy phases are similar to 
H.264/AVC, except for the new syntax elements to be encoded by the entropy encoder. 
The main innovation is in the prediction phase, which incorporates the inter-view 
prediction tool, the disparity estimation (DE). 

 

Figure 2.6: MVC encoder block diagram  

The base view, the first one to be encoded, is encoded in compliance to the H.264 
standard. Then, the prediction has two options, the intra-frame or the inter-frame 
prediction. Other views are named dependent views and also employ inter-view 
prediction. The complete encoding process is described in this section, considering the 
Main profile tools in YUV color space with 4:2:0 sub-sampling, while further 
extensions available in the High profiles are omitted for simplicity. 

The MVC prediction structure inherits all the possibilities for temporal references 
and coding orders defined by the H.264. In addition, distinct possibilities of view 
coding order may be employed. The most used view coding orders are IPP and IBP 
(MERKLE, SMOLIC, et al., 2007). The prediction structure depicted in Figure 2.7 
employs IBP view coding order using Hierarchical Bi-Prediction (HBP) structure in 
temporal domain for 8 views and GOP (Group of Pictures) size equals to 8. The set of 
GOPs for all views are referred in MVC as GGOP (Group of Groups of Pictures). The 
frames located in the GGOP borders are called anchor frames while all others are the 
non-anchor frames. 

The intra-frame prediction uses the neighboring pixels within the frame to predict 
the samples in the current MB. The MVC supports two MBs partitioning sizes for intra-
frame prediction. The size 4x4 has nine prediction directions, as presented in Figure 2.8, 
where modes 0 and 1 apply a simple copy of the neighboring blocks and modes 3-8 
perform a weighted interpolation according to the prediction direction. Mode 2 (DC) 
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replicates the average of the neighboring samples to the entire block. Each one of the 
sixteen blocks inside the MB may use different prediction directions in order to find the 
best prediction. 

 

Figure 2.7: MVC prediction structure example  

 

Figure 2.8: Nine prediction directions for intra-prediction 4x4 

The intra-prediction can also be performed using the 16x16 block size. However, in 
this mode the number of prediction directions is restricted. Figure 2.9 presents the four 
prediction directions. Modes 0-2 are analogous to the modes 0-2 of the 4x4 block size. 
The plane mode (3) applies one linear filtering (RICHARDSON, 2010) to the 
neighboring samples resulting in a gradient texture. The 4x4 and 16x16 presented 
predictions are used for luminance samples. The chrominance prediction uses the same 
four directions present in 16x16 intra-prediction. The block size depends on the color 
sub-sampling; for the 4:2:0 color sub-sampling, 8x8 chroma blocks are used. 

The inter-frame prediction or motion estimation (ME) provides other possibility of 
prediction. Its function is to perform a search in the past or future previously encoded 
frames to find the best matching candidate in order to provide a good prediction. The 
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ME features bi-prediction, multiple block-size, motion vector prediction, ¼ sample 
motion vector accuracy, weighted prediction and other tools that help to improve the 
prediction quality (RICHARDSON, 2010), as defined in the H.264/MVC video coding 
standard and detailed in Section 2.3.2.  

 

Figure 2.9: Four prediction directions for intra-prediction 16x16 

For the dependent views (all views except the base one), the inter-view prediction or 
disparity estimation (DE) is also available (MERKLE, SMOLIC, et al., 2007). This 
MVC extension searches for the best matching candidate in the frames belonging to 
previous encoded views (left, right, up or down, depending on the cameras arrangement 
and view prediction structure). All features from ME are supported in DE, more details 
about these features and how they influence the encoder efficiency and complexity will 
be discussed in Section 2.3.2 and Section 3.1.1. 

The output of the prediction phase is a large set of prediction candidates. Among all 
different block sizes for intra-prediction, inter-frame prediction and inter-view 
prediction, the best prediction mode must be selected by the mode decision (MD) in 
order to provide the optimal rate-distortion (RD) tradeoff (RICHARDSON, 2010). The 
rate is the number of bits required to encode the MB and distortion is the objective 
video quality measured in Peak Signal-to-Noise Ratio (PSNR). To have the optimal 
solution all modes must be completely encoded, reconstructed and evaluated according 
to an RD optimization equation. Therefore, the MD (represented by the selection key in 
Figure 2.6) is of key importance since it controls the quality versus efficiency tradeoff 
and the computational complexity of the encoder. The MD optimization process is 
discussed in Section 2.3.3.  

After the prediction phase is completed, the predicted macroblock and the original 
macroblock are subtracted to generate the image residues. To reduce the energy in a few 
coefficients the residues are transformed from the space domain to the frequency 
domain using an integer approximation of the 4x4 2D-DCT transform. If the intra-
prediction 16x16 is selected, an additional Hadamard transform is applied after the 
DCT. In this case, the DC coefficients of each 4x4 block (left upper corner of each 
block as depicted in Figure 2.10) compose another 4x4 coefficient block and are 
submitted to a 4x4 Hadamard transform. The values inside each block in Figure 2.10 
represent the double-Z processing order of the blocks in the transform.  
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Figure 2.10: Block processing order in the transform module 

Once the transforms are concluded, each block is quantized to reduce the dynamic 
range of the coefficients for the entropy coding. In MVC a linear quantization is used. 
The quantization step is defined by the H.264/MVC standard (RICHARDSON, 2010).  

Finally, the quantized coefficients are sent to the entropy encoder. Each block is 
scanned in zigzag order, according to Figure 2.11, and encoded by one of the two 
standard entropy encoders: CABAC or CAVLC. The Context-Adaptive Variable 
Length Coding (CAVLC) use predefined tables depending on the syntax element being 
encoded. The coding method is an evolution of the Huffman coding to better adapt to 
multiple contexts. The Context-Adaptive Binary Arithmetic Coding (CABAC) is a new 
tool defined by the H.264/AVC standard and implements a novel coding technique able 
to reduce the bitstream size by about 5-15% (WIEGAND, SULLIVAN, et al., 2003) in 
comparison to the CAVLC encoder. The tables of probability used in CABAC are 
updated at bit level and present strong data dependencies. For further information please 
refer to (JVT, 2009)(RICHARDSON, 2010).  

 

Figure 2.11: Zigzag scan order for a 4x4 block 

After the entropy coding, the bitstream is assembled and the encoding is complete. 
However, every macroblock has to be reconstructed to work as reference for further 
MBs. For that, the inverse quantization and inverse transforms are applied to the 
quantized coefficients (the same data previously sent to the entropy).  

Once the residues are inversely quantized, they are added to the predicted block in 
order to reconstruct the decoded MB. The reconstruction loop guarantees the 
consistency between encoder and decoder sides avoiding drifting between encoder and 
decoder. To reduce the blocky effect (due to different prediction modes) in the 
reconstructed frames, the standard defines an in-loop deblocking filter (DF). The 
filtered MBs are used for displaying and to generate the reference for inter-frame and 
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inter-view references. Intra-prediction uses unfiltered macroblocks inside a frame. The 
DF has five filtering strengths and filters the borders of each 4x4 block of the image 
following the order presented in Figure 2.12 (RICHARDSON, 2010). 

 

Figure 2.12: Order of macroblock borders filtering 

 

2.3.2 Motion and Disparity Estimation 

Multiview video sequences are usually captured using a high sample rate, over 30 
frames per second, to improve the motion flow and give the observer a sense of 
smoother motion. This high frame rate implies in a high redundancy or similarity 
between neighboring frames in the time axis. As noticed in Figure 2.13, frames S0T0 
and S0T1 are very similar, hence only the differences between them have to be 
transmitted. The algorithm that exploits these inter-frame similarities is the motion 
estimation (ME). It searches in the temporal neighboring frames, known as reference 
frames (see Figure 2.14), the region that represents the best match for the current block 
or macroblock. Once the best matching block is found, a vector pointing to that 
position, the motion vector (MV) in Figure 2.14, is generated. Consider, for example, a 
background region (one of the yellow boxes in Figure 2.13), there is no motion between 
T0 and T1, so the motion vector m2 is probably zero. The dancers moving (woman’s 
face in the yellow box) present a displacement along the time; this displacement is 
represented by m1. The set of motion vectors of a given frame is called motion field and 
represent valuable information to understand the motion of an object as time progresses. 

The cameras that capture the different sequences in a given 3D scene are located 
near each other (typically, about 5cm to 20cm apart) (SU, VETRO e SMOLIC, 2006), 
thus there are many regions that are shared between neighboring cameras. A very high 
similarity is perceived between neighboring cameras as exemplified in frames S0T0 and 
S1T0 of Figure 2.13. The MVC defines the disparity estimation (DE) to exploit the 
redundancy between different views and minimize the transmission of replicated 
information multiple times. The approach of the DE is similar to the ME. It searches for 
the best matching candidate block within frames of the neighboring views. The frame 
used for search is called reference frame while the view is called reference view, as 
shown in Figure 2.14. Once the matching block is found the position is pointed by the 
so-called disparity vector (DV), see Figure 2.14. The set of DVs in a frame are referred 
as disparity field and represent the disparity of the objects between views. While the 
length of motion vectors (MV) represents the speed an object is moving (or the camera 
is moving) the disparity vectors denote the displacement of a given object between two 
views. The disparity depends on the distance between cameras, and the distance 
between the camera and the object (KAUFF, ATZPADIN, et al., 2007). The closer the 
object is the larger the displacement or disparity. For instance, in Figure 2.13, the 
background presents almost no disparity between S0 and S1 (d2) while the dancers have 
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a much larger disparity vector (d1). The average disparity vector between two views 
considering all objects and background is named Global Disparity Vector (GDV) 
(KAUFF, ATZPADIN, et al., 2007) (HAN e LEE, 2008), see Figure 2.7. 

S0

S1

T0 T1

d1 d2

m1

m2

 

Figure 2.13:   Temporal and disparity similarities 

The ME/DE search is not performed over the complete reference frame but in a 
region called search window (SW) defined by a search range (SR), as shown in Figure 
2.14, for instance a SR [±16,±16] covers a SW of 33x33 samples. Many search schemes 
for ME were proposed along the last two decades and their characteristics are well 
known. The exhaustive search algorithm, the Full Search (FS) (YANG, 2009), provides 
the optimal results at the cost of a very high computational effort. Many fast algorithms 
focusing on complexity reduction with small quality loss are found such as Log Search 
(JVT, 2009), Diamond Search (DS) (KUHN, 1999), Three Step Search (TSS) (JING e 
CHAU, 2004), UMHexagon Search (CHEN, ZHOU e HE, 2002) and Enhanced 

Predictive Zonal Search (EPZS) (TOURAPIS, 2002), to list a few. These algorithms are 
based on multiple search steps oriented by geometric shapes. The most recent schemes 
also consider the neighboring MBs as predictors to define the search starting point. 
Using predicted starting point is an evolution compared to the previous search schemes 
that use the collocated MB as starting point. Recalling, the collocated MB is the 
macroblock in the reference frame that belongs to the same relative position of the 
current MB.  

Despite the similarity between ME and DE there are behavioral differences that 
make solutions defined for ME inefficient when applied to DE. For instance, most of 
the traditional ME fast search patterns perform badly for DE. The reason for that is the 
motion vectors are usually located in a relative small length range while disparity 
vectors usually are much longer. The disparity vectors frequently have 50-100 samples 
length. For this reason, the recommended search range is at least [±96,±96] for SD 
resolutions (XU e HE, 2008). In this scenario most of the fast algorithms tend to fall in 
local minima and do not find the optimal candidate. For this reason the JMVC, the 
reference software for MVC (JVT, 2009), implements the TZ Search that is more 
complex in comparison to DS and EPZS, for example, but is still 23x times faster than 
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FS (YANG, 2009). The TZ employs predictor centered search start and a larger 
geometric shape search pattern. It performs well for both ME/DE with negligible or no 
quality loss in comparison to FS.  
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Figure 2.14:  Motion and disparity estimation 

However, once the conceptual tasks of ME and DE are similar, the available features 
are the same and together they represent the most computational and memory intensive 
tasks in the video encoder, see discussion in Section 3.1. For this reason, ME/DE have 
to be jointly considered in order to propose smart fast algorithms and efficient 
architectural solutions for real-time MVC encoding. 

In the following, the motion and disparity estimation features are detailed. Note that 
all these tools are mandatory at the decoder side depending upon the operation profile 
but are optional for the encoder.  

Bi-Prediction: In MVC, two types of MBs employ the ME/DE: Predictive (P), 
which is coded using inter-frame prediction referencing only past frames and backward 
views, in display order; or Bi-predictive (B), which is coded using both, reference 
frames from past/backward and from future/forward (this is possible due to the out-of-
order coding and decoding allowed by the standard). In a B macroblock, each partition 
can be predicted from one or two reference frames (SULLIVAN e WIEGAND, 2005). 
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In case of bi-prediction the final prediction is generated by calculating the average of 
the prediction from past/backward and future/forward.  

The reference frames are stored in two lists: List 0 and List 1. List 0 orders the 
frames from the past and backward views and List 1 orders the frames from the future 
forward views (JVT, 2003). Both lists can be ordered using temporal references first or 
disparity references first. For temporal references first, in List 0 the reference index 0 is 
the closest past encoded frame. For disparity references first, the index 0 in List 0 is the 
closest backward view reference frame. Analogous organization is observer in List 1. 

Multiple Block-Sizes: MVC allows ME/DE blocks of several sizes. The 16x16 MB 
can be segmented in two 16x8, two 8x16 or four 8x8 partitions (JVT, 2009). Each 8x8 
partition can be segmented in other two 8x4, two 4x8 or four 4x4 sub-partitions. Each 
partition may point to one reference frame per list (List 0 and List 1) while each sub-
partition may use only the frames referenced by the partition that it belongs. Each 
partitions or sub-partitions may have a single MV or DV. 

Multiple Reference Frames and Reference Views: Differently from earlier standards, 
in MVC the past and future reference frames are not only fixed to the immediate ones. 
Therefore, to reconstruct one given macroblock, temporally distant frames can be used 
in the prediction process and this distance is limited only by the size of the Decoded 
Picture Buffer (DPB) (SULLIVAN e WIEGAND, 2005). The reference frames are 
managed in List 0 and List 1 as previously cited. Analogously, the reference views are 
not restricted to the closest backward or forward views, any previously encoded views 
may be used as referenced depending if obeying the coding settings. 

Quarter-Sample Motion Vector Accuracy: In general, the motion of blocks does not 
match exactly in the integer grid of pixels in a frame, then fractional-sample motion 
vector accuracy is used to reach a better match. The MVC (JVT, 2003) defines the use 
of a quarter-sample motion compensation for the reference frame blocks. For luma 
samples, a six-tap FIR filter is used to interpolate half-samples, and then a simple 
average of integer and generated half-samples is used to generate the quarter-sample 
interpolation (JVT, 2003). When working with 4:2:0 sub-sampling, the chroma samples 
interpolation applies 1/8 sample accuracy. 

Weighted Prediction: The MVC defines a weighted prediction in the inter-frame 
coding process to apply a multiplicative weighting factor and an additive offset to each 
interpolated sample of a given reference frame (JVT, 2003). For single directional 
prediction from List 0 or List 1 this tool is defined as presented in Eq. (2.1), where ‘x’ is 
replaced by the list number (0 or 1), ‘w’ is the weighting factor, ‘logWD’ is a scaling 
factor and ‘o’ is the additive offset. P represents the interpolated pixels and P’ the 
weighted sample. For bi-predictive prediction the weighted prediction is defined as 
presented in Eq. (2.2).  

log 1'( , ) (( ( , )* 2 ) log )WD

x x xP i j P i j w WD o
−= + >> +  (2.1) 

log 1
0 0 1 1

0 1

'( , ) (( ( , ) * ( , ) * 2 )

(log 1)) (( 1) 1)

WD
P i j P i j w P i j w

WD o o

−= + +

>> + + + + >>
 (2.2) 

Motion/Disparity Vector Prediction: Exploiting the neighboring blocks correlation, 
the MVC standard defines that motion vectors and reference indexes (pointer to the 
reference frame in List 0 or List 1) have to be inferred from the reference index and 
motion/disparity vectors of neighboring blocks. The inferred vectors are called 
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predicted motion vectors (PMV). Differential motion vectors (MVD) are coded in the 
bitstream and summed up to the PMVs, obtaining the current motion vector (MV) or 
disparity vector (DV). The PMVs are normally obtained applying the median to the 
spatial neighbor blocks vectors. However, SKIP macroblocks (those that transmit no 
vectors or residuel) and direct predicted macroblocks are differently processed using the 
direct spatial or direct temporal predictions. The motion/disparity vector prediction is 
one example of using the video correlation to predict coding side information, as 
previously mentioned in Section 2.2. 

2.3.3 MVC Mode Decision 

The MVC provides a big number of options for the macroblocks prediction. Intra-
prediction defines two prediction sizes (three in case FRExt is considered), 16x16 and 
4x4,  with four and nine prediction modes, respectively. ME evaluates multiple 
candidate blocks for seven different block sizes. Additionally, the new disparity 
estimation adds a set of coding possibilities as large as the motion estimation 
possibilities. 

The mode decision (MD) module is the responsible to deal with this large 
optimization space. For that it implements an optimization algorithm and defines a cost 
function called RDCost, the Rate-Distortion cost (a.k.a. J cost). The objective is to 
evaluate the coding modes and to find the one that minimizes the RDCost to obtain the 
best coding relation between rate and distortion. Eq. (2.3) presents the J function where 
c and r represent the current original MB and the reconstructed one, MODE is the 
prediction mode used and QP is the quantization parameter. D represents the distortion 
measured after the complete MB reconstruction according to a distortion metric and R is 
the number of bits used to encode the current MB, this number is available once the 
entropy encoding is completed. λ is the Lagrange Multiplier used to control the rate-
distortion tradeoff. The Lagrange Multiplier value is not defined by the standard; 
however, typically it is defined by the Eq. (2.4) and depends upon the QP. To quantify 
the distortion, different metrics may be used; some examples are SAD (Sum of 
Absolute Differences), SATD (Sum of Absolute Transformed Differences) and SSE 
(Sum of Square Errors). The SSE is mostly used in the mode decision step since it 
provides better PSNR results. The reason is that PSNR is calculated using MSE (Mean 
Square Errors) which is only a division of SSE value, so the SSE is directly related to 
PSNR. It is important to understand that PSNR is currently the most accepted objective 
video quality metric. However, SAD is widely used in real-time systems due to its light-
weight computation. 

λ= + ModeJ( c, r , Mode|QP ) D( c, r , Mode|QP ) * R( c, r , Mode|QP )  (2.3) 

λ −= ( Q P 12 ) / 3
0.85* 2  (2.4) 

Although the algorithm to find the mode that minimizes the RDCost is not defined 
by the standard, the MVC reference software JMVC (JVT, 2009) implements an 
exhaustive search by completely encoding all possible coding modes and selecting the 
best mode. It is known as Rate-Distortion Optimized mode decision (RDO-MD) also 
referred as Full RDO or Exhaustive RDO. The RDO-MD guarantees the optimal MB 
encoding but drastically increases the encoder computational effort and makes the same 
approach for real-time MVC encoding unfeasible for the current technology.  
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2.3.4 MVC Rate Control 

According to (LI, PAN, et al., 2003), the rate control (RC) is a block of the video 
encoder that aims to regulate the output coded bitstream to produce high video quality 
at a given target bitrate. In the MVC scenario, an efficient RC scheme must be able to 
provide increased video quality for a given target bitrate with smooth visual quality 
variation along the time, for different views and within the frames. Most important, the 
RC should keep the bitrate as close as possible to the target bitrate (optimizing the 
bandwidth usage) while avoiding sudden bitrate variations. 
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Figure 2.15: MVC rate control actuation levels 

The rate control unit typically controls the quality vs. bitrate through QP adaptation. 
The bitrate and/or the video distortion metric are predicted using a prediction model. 
According to the prediction and the target bitrate (amount of bits per second used to 
encode the video), an adequate QP is selected. As QP grows higher, more residual data 
are quantized (video details lost) and more quality losses are inserted. The actual 
generated bitrate and the video quality may be used as feedback for the RC unit in order 
to update the prediction and QP definition. The QP adaptation may be performed in 
distinct actuation levels. In general, the RC for MVC can be classified in at least three 
actuation levels: (i) GOP level (Group of Pictures – set of frames); (ii) frame level, and 
(iii) Basic Unit (BU – set of one or more macroblocks MB) level, as shown in Figure 
2.15. It is possible to combine GOP-level and frame-level and based on this 
observation, for simplicity, they are jointly discussed in this thesis. 

In the following sections we present the state-of-the-art related to 3D video systems, 
MVC encoders and multimedia processing. Also, a literature overview on the latest 
low-complexity and energy-efficient solutions focusing mode decision, ME/DE and rate 
control for the MVC standard is presented. An overview on low-power techniques is 
also provided to give the technical background required for our energy-efficient 
architectural solutions. 

2.4 3D Video Systems 

The advances in video coding techniques targeting multiview videos have been 
driven by the increasing set of commercial systems employing 3D video capabilities. 
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These systems range from high-end cinemas and 3DTVs to mobile devices including 
content suppliers. Wider adoption is expected for the upcoming years with the increase 
in the available video content through 3D-capable television broadcasters, optical media 
(BLU-RAY DISC ASSOCIATION, 2010), popularization of personal 3D camcorders, 
3D video stream services (YOUTUBE 3D, 2011) (VIMEO, 2012), etc. All these 
commercial systems are, currently, based on stereoscopic videos (two views). An 
increase in the number of views is expected for the near future (FUJII, 2010) to improve 
the observer freedom and provide a more immersive experience. Some experimental 
and academic multiview systems are already available or under development to support 
the next generations of 3D video systems. In this section we start presenting the most 
prominent commercial 3D-video systems. 

3D-cinema systems are based on three market-leader technologies based on 
stereoscopic videos (IMAX, 2012), (REALD, 2012), and (DOLBY, 2012). The 
technology employed in (IMAX, 2012) requires the use of linear polarized glasses to 
block the light for one eye at a time allowing each eye to see only the frames intended 
for that eye. Two projectors are used to display 48 fps where each eye is able to 
effectively see 24fps in a time-sharing strategy.  (REALD, 2012) is also based on time-
sharing between the two eyes, however, the glasses are circular polarized glasses where 
each glass is polarized in an opposite direction. Also, (RealD, 2012) requires a single 
projector able to display 144 fps. Each effective frame for each eye is displayed thrice 
resulting in effective 24fps per eye. Finally, (DOLBY, 2012) employs passive glasses 
with dichroic filters where each view is displayed with a distinct chromatic filter and 
perceived by a single eye. With this strategy both views are simultaneously displayed 
allowing the use of regular 24fps projectors. At the video coding perspective, all these 
high-end applications support the stereoscopic MVC (THE DIGITAL 
ENTERTAINMENT GROUP, 2009). 

Stimulated by the content available in the 3D Blu-Ray (BLU-RAY DISC 
ASSOCIATION, 2010) - optical media that supports the MVC coding standard - the 3D 
televisions already exceed 10% of the televisions sold in the United States, in 2011, and 
this number is expected to reach 37% of the market share in 2014 (RESEARCH AND 
MARKETS, 2010). Other countries are expected to follow this trend. The majority of 
those 3DTVs is based on stereoscopic displaying and requires active shutter or passive 
polarized glasses to provide the 3D sensation. Many devices employ built-in decoders 
supporting the MVC standard. Along with the cinema solutions, the 3D televisions are 
not energy-critical and typically implement only the video decoder side, less complex in 
relation to the encoder.  

Currently, portable devices capable of handling digital video are available 
everywhere for a reasonable cost. The omnipresence of these gadgets implies a very 
large amount of data being produced. In this scenario the coding efficiency is a key 
issue in order to reduce the storage and transmission costs for digital video. Various 
devices are also capable of real-time 3D videos recording, such as (PANASONIC, 
2011), (FUJIFILM, 2011), (SHARP, 2011), and (SONY, 2011). Most of them feature 2 
cameras and encode the video sequences independently (simulcast). However, the 
increase in number of views from 2 up to 4-8 views (FUJII, 2010) in order to provide 
enhanced 3D experience freedom is envisaged for the next 3-5 years. In this scenario it 
is simple to conclude that the large amount of data generated requires the use of the 
state-of-the-art MVC standard. The first personal camcorder to fully support stereo 
MVC was released by Sony in 2011 (SONY, 2011). 
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Although 3D capable mobile devices are already available, attending MVC 
performance and energy constraints remains a big challenge for industry and academia, 
as discussed in Section 3.2. The current multimedia processing systems based on 
processors, DSPs and non MVC-optimized ASIC implementations are not efficient to 
provide the required throughput with the required energy efficiency while sustaining 
video quality and coding efficiency. In the following section we present an overview of 
the main multimedia architectural approaches and solutions in the current state-of-the-
art. 

2.5 Multimedia Architectures Overview 

In this section we present the multimedia processing architectures classified in four 
main classes: Multimedia Processors/DSPs, Reconfigurable Multimedia Processors, 
ASIC Multimedia cores and, Heterogeneous Multicore SoCs. On the one hand, ASIC 
solutions provide the highest performance and energy efficiency at the cost of reduced 
flexibility limiting the applicability to upcoming video standards. Still, the current lack 
of MVC-oriented ASIC optimizations prohibits further increase in both performance 
and energy efficiency. On the other hand, multimedia processors/DSPs allow high 
flexibility to multiple standards while providing reduced performance and poor energy 
efficiency if compared to ASICs. Additionally, reconfigurable processors may allow 
significant increase in performance and flexibility through ISA (Instruction Set 
Architecture) extensions. The reconfigurable processors, however, present 
reconfiguration energy issues and are unable to reach the ASIC-like performance and 
energy-efficiency required by the 3D multimedia applications. 

2.5.1 Multimedia Processors/DSPs 

Aware of multimedia processing characteristics, the Multimedia Processors/DSPs 
are designed to exploit the parallelism inherent to these applications. Massive multicore 
architectures are proposed to target task parallelism by supporting multiple parallel 
threads. Data-level and instruction-level parallelisms are exploited by employing SIMD 
(Single Instruction Multiple Data) and VLIW (Very Large Instruction Word) 
architectures, respectively. Some proposals are able to implement hybrid parallelism by 
handling multiple cores with SIMD and/or VLIW instruction sets. 

In (ABBO, KLEIHORST, et al., 2008), the Xetal-II employs 320 SIMD processing 
elements with a dedicated 10Mb on-chip frame memory. It is able to provide 107 GOPS 
with a 60W power consumption with instructions designed targeting video analysis 
applications. A multicore system for video decoding is proposed in (FINCHELSTEIN, 
SZE e CHANDRAKASAN, 2009) employing a caching mechanism to reduce the 
memory reads. The work presented in (KHAILANY, WILLIAMS, et al., 2008) 
describes a processor with 16 parallel lanes where each lane is a 5-ALU VLIW core. At 
800MHz, this solution delivers 512 GOPS (82pJ/MAC) and guarantee baseline 
HD1080p H.264 encoding at 30fps. The multi-streaming SIMD multimedia engine 
proposed in (CHIU e CHOU, 2010) claims a 3.3-5.5x performance increase compared 
to MMX architecture (Intel Multimedia Extension) by employing 12 multimedia 
kernels. These parallel architectures provide a relative high performance but are still far 
below MVC requirements and the power envelope is out of embedded devices 
boundaries. 

A 2-issue VLIW stream processor is presented in (CHIEN, TSAO, et al., 2008) with 
throughput for CIF encoding at 30fps. Stereo processing-oriented optimizations for 
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VLIW processors are presented in (PAYÁ-VAYÁ, MARTÍ-LANGERWERF, et al., 
2010). The authors claim performance improvements by implementing a new register 
file access mechanism and disparity functional unit to calculate disparity map. Also, an 
ASIP (Application Specific Instruction Processor) based on a VLIW DSP architecture is 
described in (ZHANG, HE, et al., 2009) and delivers increased performance if 
compared to traditional DSP and SIMD.  

2.5.2 Reconfigurable Processors 

In (OTERO, DE LA TORRE, et al., 2010) an architectural template for run-time 
scalable systolic coprocessors is presented. It focuses on run-time adaptation to time-
variable tasks or changing system conditions. It exploits replacing and relocation of 
basic processing elements of the array using FPGAs dynamic reconfiguration. In 
(BECK, RUTZIG, et al., 2008) is employed a coarse-grained reconfigurable array with 
a run-time mechanism designed to translate MIPS instruction to be executed in the 
reconfigurable array. (BEREKOVIC, KANSTEIN, et al., 2009) presents the mapping of 
MPEG-2 and H.264/AVC to the ADRES (coarse-grain reconfigurable processor) 
delivering throughput for real-time CIF decoding at 50MHz with a 4x4-core array. 
CRISP, a coarse grain reconfigurable stream processor (CHEN e CHIEN, 2008), 
implements an image processing pipeline reaching 55fps for HD1080p resolution. 
Aggressive performance losses are expected for video coding due to increased 
complexity compared to the implemented image processing algorithms.  

In (BAUER, SHAFIQUE, et al., 2007), the RISPP (Rotating Instruction Set 
Processing Platform) is presented bringing more flexibility to extensible processors. It 
features a special instruction forecasting algorithm able to predict the hotspots and 
allows to adapt at run time the different Molecules (implementation of the special 
instructions). This architecture was evaluated using some H.264 processing hotspots 
(SATD, DCT, etc) and demonstrated high flexibility to deal with the performance 
versus hardware tradeoff. This concept was extended in (BAUER, SHAFIQUE, et al., 
2008) by integrating a special instruction run-time scheduler able to outperform the 
state-of-the-art in 2.38x for the H.264 application. When integrated to a transmutable 
embedded processor (BAUER, SHAFIQUE e HENKEL, 2008), the RISPP concept was 
able to present up to 7.19x speedup in relation to related works for H.264. 

Compared to regular processors, reconfigurable processors target to increase the 
overall performance by adapting, at run time, to distinct applications properties. Also, 
the adaptivity can be efficiently exploited within the same application. Considering 
multimedia applications, the performance/energy requirements may vary with the video 
content, user settings, battery-level, etc. It brings a big optimization potential at the 
system perspective. However, when considering a single application for a given 
description, in this case real-time encoding for MVC HD1080p,  the profit of this 
adaptive behavior is not be perceived. Moreover, in this scenario, the energy and time 
costs for reconfiguration pose additional difficulties in terms of throughput and energy 
efficiency if compared to processors, DSPs and ASIPs. 

2.5.3 ASIC 

Multiple ASIC hardware architectures were proposed targeting real-time high 
definition (de)coding in accordance to the latest video coding standards trying to reduce 
the total energy consumption for embedded devices. The architecture presented in 
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(CHEN, CHEN, et al., 2009) delivers H.264 encoding for D1 (720x480) resolution with 
43.5-67.3 mW consumption. In (LIN, LI, et al., 2008) an H.264 video encoder able to 
process HD1080p sequences at 242mW is presented. (CHANG, CHEN, et al., 2009) 
proposes a real-time 720p H.264 encoder at 183mW consumption. It implements a 3-
stage pipeline, 8-pixel intra prediction parallelism and a parallelized subsampling 
algorithm. A 59.5 mW AVC/SVC/MVC decoder for up to 3-view HD1080p videos is 
presented in (CHUANG, TSUNG, et al., 2010). The first complete video encoding 
solution for MVC encoding was presented in (DING, CHEN, et al., 2010). The 
AVC/MVC 3D/Quad Full HDTV supports 3-views HD1080p and consumes 522 mW.  

Compared to other approaches, ASIC provides high throughput and energy 
efficiency. Considering the state-of-the-art IC manufacturing technology, ASIC 
implementation is the only solution able to encode high-definition MVC for an 
increased number of views at real-time, as shown in the related work overview 
presented. Still, further optimizations are possible in relation to the presented ASIC 
related works. Having (DING, CHEN, et al., 2010) as comparison basis, the future 
MVC encoding systems will require increased number of views. Moreover, in (DING, 
CHEN, et al., 2010) single-view-based optimization techniques (such as search window 
reduction that seriously affects the disparity estimation) are employed leaving a high 
potential for multiview-aware optimizations. 

2.5.4 Heterogeneous Multicore SoCs 

Heterogeneous multicore architectures are also proposed targeting multimedia 
applications. In (KOLLIG, OSBORNE e HENRIKSSON, 2009), the proposed systems 
handles an ASIC HW video codec, audio codecs, VLIW processors, MIPS host CPU, 
DSP and other HW accelerators. The system proposed by (KONDO, OTANI, et al., 
2009) is composed of 2 specific accelerators (video decoder and descriptor), 1 general 
accelerator (MX), 3 RISC CPUs and caches. (WOO, SOHN, et al., 2008) describes a 
195mW mobile multimedia SoC with ARM 9, AVC/MPEG decoder, JPEG codec, fully 
programmable 3D engine, and multiple peripheral interfaces. The heterogeneous 
multicores approach is the most used in the current set-top-boxes, digital TV decoders, 
and smart mobile diveices. It takes advantage of some degree of flexibility along with 
the performance of specific accelerators.  

The SoCs in current commercial mobile devices such as smartphones and tablets 
implement heterogeneous multicore SoCs employing processors with SIMD extensions, 
DSPs, ASIC codecs or hardware accelerators, and programmable embedded GPUs. 
Qualcomm Snapdragon S4 (QUALCOMM INC., 2011) is composed of up to 4 ARM 
cores, Hexagon DSPs, video coding hardware accelerators, and the Adreno embedded 
GPU. Nvidia Tegra 3 (NVIDIA CORP., 2012) is based on up to 4 ARM cores and 
employs dedicated video encoder/decoder and ULP GeForce GPU. Samsung Exynos 4 
(SAMSUNG ELECTRONICS CO. LTDA., 2012) is composed of quad-core ARM 
processor, video/image/audio ASIC codecs and the ARM Mali GPU. Texas Instruments 
OMAP 5 (TEXAS INSTRUMENTS INC., 2012) employs 2 ARM Cortex-A15, 2 ARM 
Cortex-M4, DSPs, video/audio accelerators and, the PowerVR GPU. Note, even with 
efficient ARM processors, SIMD extensions, DSPs and programmable massively 
parallel GPUs, the embedded SoCs require ASIC codecs/acceleration units to deliver 
the throughput and energy efficiency for real-time high definition video encoding. To 
deal with multiview videos and attend performance/energy requirements on embedded 
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battery-powered devices, these SoCs will require MVC-oriented optimizations at 
algorithmic and architectural (including datapath and application-aware units/memory 
management optimizations) levels. 

2.6 Energy/Power Consumption Background 

Before moving to the discussion related to energy-efficient algorithms and 
architectures it is necessary to understand the sources of energy consumption and how 
they might be reduced. Moreover, the energy consumption is directly related to the 
hardware implementation and only indirectly related to the algorithms. However, it is 
possible to design algorithms able to result in energy reduction at the hardware level by 
reducing computational complexity, processing time, memory access, etc. 

In Figure 2.16 are represented the three main power dissipation sources for CMOS 
circuits using an inverter as example: leakage current (static), switching power 
(dynamic), and short circuit current (dynamic). Eq. (2.5) shows the total power in terms 
of these three components. The static power dissipation is a result of the leakage 
currents. Consider Figure 2.16a where the input voltage (VI) is lower than the NMOS 
transistor threshold voltage (VTN). In this case, an ideal inverter NMOS transistor do not 
conduce any current. However, real MOSFET transistors cannot completely block this 
current, the so called leakage current. The closer VI is to VTN, the stronger the leakage. 
The same happens to PMOS transistors when a VI>VTP is applied to the gate (Figure 
2.16b). The leakage power for the case represented in Figure 2.16b is calculated by Eq. 
(2.6).  

The dynamic power is composed of two components the switching power (Figure 
2.16c) and the short circuit power (Figure 2.16d). Eq. (2.7) defines the switching power 
that linearly depends on the load capacitance (CL, that depends on the fanout of the 
device), the source voltage VDD, the frequency of operation (f), and the frequency of 
switching of that device (α). It represents the energy that is charged in the load 
capacitance and later drained to the ground. Note that only after two switches the energy 
is actually drained, in the first time instant (shown in Figure 2.16c) the capacitance CL 
is charged and in the second time instant (after another switch) the energy is drained 
from CL to ground. It justify the ½ factor in Eq. (2.7). The short circuit current happens 
while the input signal changes VDD-GND or GND-VDD. There is a given input voltage 
where both PMOS and NMOS transistors are conducing and a current is drained 
directly from VDD to the ground. It is depicted by the current in Figure 2.16d and the 
short circuit power is defined by Eq. (2.8). The total energy drained is the total power 
along the time (t) as represented in Eq. (2.9). Other power dissipation sources (such as 
gate leakage) exist in the CMOS devices but they are omitted in this short overview for 
simplicity reasons.  
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(a) (b)

(c) (d)

 
Figure 2.16: Energy/Power Dissipation Sources 

As can be seen from this overview it is possible to reduce both static and dynamic 
power. For instance, reducing the computation reduces the dynamic power once α is 
reduced. If frequency scaling is used, f is also reduced. Moreover, if voltage scaling the 
dynamic energy is reduced in a quadratic order because VDD is reduced. For leakage 
reduction, circuits featuring multiple thresholds are used. Hardware support is required, 
however, application knowledge and energy-aware control algorithms are required to 
accurately control thresholds, frequency, and voltage. 

= + +Total Leak Switch ShortP P P P  (2.5) 

*=Leak Leak DDP I V  (2.6) 

21
* * *

2
=Switch L DDP f C Vα  (2.7) 

*=Short Short DDP I V  (2.8) 

*=Total TotalE P t  (2.9) 

2.7 Energy-Efficient Algorithms for Multiview Video Coding 

2.7.1 Energy-Efficient Mode Decision 

The mode decision is one of the main contributors for the MVC high complexity and 
consequent energy consumption. The optimal solution using the exhaustive RDO-MD 
requires the evaluation of all possible inter-prediction and intra-prediction modes 
defined by the standard. Such solution is not feasible for real-world implementations. 
Thus, there is a need to reduce the number of evaluated modes during the coding 
process. Statically defining modes to be tested does not perform well due to changing 
coding parameters and video input characteristics. For this reason, it is necessary to 
dynamically define the most probable coding modes using the run-time available data. 
Figure 2.17 shows a hypothetical fast MD scheme which selects a few candidate modes 
out of all possible modes. Current solutions, as detailed along this section, use 
information extracted from the video content (texture, edges, brightness), coding mode 
history, video geometry, etc. 
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Figure 2.17: Fast mode decision example 

Several fast MD schemes have been proposed to reduce single-view H.264 
computational complexity, such as fast I-MB MD (PARK e SONG, 2006)(PAN, LIN, et 

al., 2005)(MENG, AU, et al., 2003)(KIM e LEE, 2011)(DE-FRUTOS-LÓPEZ, M., et 

al., 2010)(WEI, NGAN e LI, 2008), fast SKIP MD (JEON e LEE, 2003), fast P-MB 
MD (JING e CHAU, 2004)(GRECOS e YANG, 2005) (LIM, 2003)(ARSURA, DEL 
VECCHIO, et al., 2005)(LU, TOURAPIS, et al., 2005)(KO, YOO e SOHN, 
2009)(SALGADO e NIETO, 2006)(KIM e CHO, 2007)(WANG, SUN, et al., 
2007)(YU, 2004)(PARK e CAPSON, 2008), and the combination of the above (JEON e 
LEE, 2003) (ARSURA, DEL VECCHIO, et al., 2005)(LU, TOURAPIS, et al., 
2005)(KO, YOO e SOHN, 2009). These fast mode decisions of H.264 may be deployed 
for MVC. However, they will perform inefficiently for the non-anchor frames as they 
do not exploit the inter-view correlation and the knowledge of GDV. 

Recently, multiple fast MD schemes have been proposed for MVC (PENG, JIANG, 
et al., 2008)(LEE, SHIN e CHUNG, 2008)(HAN e LEE, 2008)(SHEN, YAN, et al., 
2009)(SHEN, LIU, et al., 2009) (DING, TSUNG, et al., 2008) (SHEN, LIUA, et al., 
2010)(ZENG, MA e CAI, 2011)(CHAN e TANG, 2012) considering the GDV, camera 
geometrical properties, inter-view correlation and early SKIP prediction. 

The authors in (LEE, SHIN e CHUNG, 2008)  proposed an object-based mode 
decision that uses image segmentation to evaluate different prediction modes for 
foreground and background regions. The image is segmented using a motion based 
approach, considering the vectors size and the SAD in relation to the collocated block 
(in the same relative position). In case the motion vector significantly defers from the 
vector average (respecting a threshold) and the SAD exceeds a given value the regions 
is considered as a foreground object; otherwise it is a background. A regions growing is 
used to merge the foreground objects. The foreground regions are coded using DE, 
while the background are coded using ME. The boundary MBs are coded using the 
exhaustive RDO-MD. 

A fast mode decision based on GDV is presented in (HAN e LEE, 2008). In this 
scheme the base view – encoded using exhaustive RDO-MD – is used to segment other 
views in foreground and background regions. The coding modes of the base view are 
used to classify the image regions. SKIP and Inter 16x16 MBs are defined as 
background while the remaining modes are considered foreground objects. AS the 
objects present displacement between views, the GDV is used to displace the classified 
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regions as well. Finally, the foreground regions are encoded using exhaustive RDO-MD 
and the background regions are encoded using big block sizes.  

The fast mode decision scheme of (SHEN, YAN, et al., 2009) considers the 
information of reference view to classify the current MB in three complexity classes. 
For that, the authors propose a mode complexity metric (MDC) defined as the sum of 
each mode complexity in a 3x3 MBs window. SKIP and Inter 16x16 have “0” 
complexity, Inter 16x8 and 8x16 have “1” complexity, Inter 8x8 (or smaller) and Intra 
have “2” and “3” complexity values, respectively. If the MDC is smaller than a given 
threshold (T0), that regions is classified as simple. In the opposite, if MDC exceeds 
another threshold (T1>T0)  it is classified as complex. Regions presenting MDC 
between these thresholds are defined as medium complexity. The simple regions test 
only Inter 16x16 mode. Medium regions evaluate Inter 16x16, 16x8 and 8x16 modes. 
Complex MBs are encoded using the exhaustive RDO-MD.  

In (ZENG, MA e CAI, 2011) a fast mode decision approach is proposed based on 
the classification of the current MB according to its motion activity based on the coding 
modes of the base view. Firstly, the five motion-activity classes are defined in relation 
to the coding modes. SKIP belong to the motionless class (1). Slow motion class (2) is 
defined for SKIP and ME 16x16. ME 16x8 and 8x16 are considered Moderate Motion 
(3). Fast motion regions (4) are defined by ME 8x8 or smaller. Finally, DE and Intra 
define High-texture with fast motion or scene cuts (5). The Mode Correlation-Based 
Mode Decision (MCMD) metric is defined and calculated using the 3x3 collocated MB 
window. Within this 3x3 neighboring MBs, each neighbor MB has an offline defined 
weight. This MCMD metric is used to classify the current MB motion activity in one of 
the classes described above. Independent of the motion-activity, the SKIP mode is 
firstly evaluated and an early termination test is employed. If the SKIP prediction was 
not effective other modes are evaluated according to the motion class. The same 
classification described above is used here. For instance, A slow motion MB evaluates 
only the ME 16x16. 

The work proposed in (CHAN e TANG, 2012) exploits the statistical behavior of the 
RDCost for the different coding modes along with the motion vectors difference in 
order to speed up the MVC encoding. In this solution, an interactive mode decision is 
employed. Based on statistical knowledge showing the ME is used more frequently than 
DE, the first interaction evaluates only the ME modes (all sizes). If the ME-based 
prediction is not satisfactory, a second interaction is used to evaluate the ME modes. 
However, only the block sizes that presented better coding performance for ME are 
evaluated for DE in the second interaction. 

State-of-the-art schemes mainly achieve the complexity reduction via fast MD. 
However, they do not exploit the full space of neighborhood correlation in all spatial, 
temporal, and view domains. These schemes deploy fixed-thresholding (HAN e LEE, 
2008)(SHEN, YAN, et al., 2009) and, consequently, are unable to react to the changing 
QPs (i.e. changing bitrates). Moreover, in their worst case, state-of-the-art schemes - 
like (HAN e LEE, 2008)(SHEN, YAN, et al., 2009) - check all prediction modes, thus 
falling back to the exhaustive RDO-MD. As a result, these schemes provide limited 
complexity reduction. 

In general, state-of-the-art schemes consider reference view encoded using the 
exhaustive RDO-MD and employ their fast MD scheme on the other views. These 
schemes prioritize the frames from the base view and the encoded quality of other views 
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rely on the one encoded using exhaustive RDO-MD. This might lead to meaningful 
prediction error increase for the last views. 

2.7.2 Energy-Efficient Motion and Disparity Estimation 

To find a single optimal/good matching block the ME/DE performs several block-
matching operations in multiple reference frames. Additionally, this search is replicated 
for multiple block sizes defined by the MVC standard. However, there are search 
directions (ME or DE), reference frames and, reference regions that are highly unlikely 
to provide a good matching. Also, there are sub-optimal points that provide similar 
results at the cost of much reduced searching effort. See the example in Figure 2.18a. A 
good matching for the diamond object is available in just one of the four reference 
frames, the past temporal reference. In the future temporal reference the diamond is 
partially occluded by a second object (rectangle). In the disparity references the 
diamond is either occluded or out of the captured scene. In this scenario there is no need 
to perform searches in all reference frames, resulting in complexity/energy reduction. 
Other example is depicted in Figure 2.18b. Note that the previously encoded 
neighboring MBs share a similar motion/disparity vector since they belong to the same 
object. Therefore, the current MB, which also belongs to the same object, is very likely 
to share a similar vector. This knowledge may be used to reduce the number of search 
operations by reducing the number of candidate blocks. A wide range of techniques to 
reduce the ME/DE complexity is available as presented in the following. 

 

Figure 2.18: ME/DE search conceptual example 

State-of-the-art fast ME/DE algorithms employ variable search range based on 
disparity maps (XU e HE, 2008) taking into account the distinct behavior between ME 
and DE. The work presents an study on how the search window size impacts in the 
coding efficiency showing the importance of big search windows. However, disparity 
maps show that it is possible reduce the effective search window by monitoring the 
disparity maps. From the disparity maps two parameters named vertical and horizontal 
scales (VS, HS) are defined. From the parameters the search window is reduced or 
increased in an asymmetric way, i.e., the search window may assume rectangular shapes. 
The increase and reduction are done in a factor 2.  

In (KIM, KIM e SOHN, 2007) two strategies are used to predict motion and disparity 
vectors. One vector predictor the traditional spatial median predictor from upper, left and 
upper right neighboring MBs. The other predictor used the camera geometry and vectors 
from previously encoded frames to estimate the current vectors. The difference between 
the two predicted vector is used to calculate the search window size. A small difference 
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means accurate predictors and a small search window is required. Otherwise, for big 
differences a larger window is needed.  

A fast direction prediction (ME or DE) based on the blocks motion intensity is 
proposed in (LIN e TANG, 2009). It exploits the inter-view correlation to predict a 
search direction for reducing the ME/DE complexity. The base view is encoded using 
the ME and the frame regions are classified as slow motion if the SAD is smaller than a 
threshold. Similarly, the anchor frames of all views are classified according to this 
strategy. For each MB to be encoded, the collocated MBs from base view and anchor 
frame are tested. In case both are slow motion, the current MB probably is also a slow 
motion MB and will be encoded using ME only. If only the base view collocated MB is 
not slow motion, DE is employed. Other cases require ME and DE processing. 

The schemes in (HAN e LEE, 2008)(DING, TSUNG, et al., 2008)(DENG, JIA, et 

al., 2009) exploit the information from the base view and classify MBs into foreground 
and background regions. In (DING, TSUNG, et al., 2008) a fast ME based on complete 
DE is proposed. The DE is used to locate the correlated MB in the base view. After that, 
the coding information extracted from the base view is used to predict the motion vectors 
and partition sizes for the current MB.  

The view-temporal correlation is exploited in (DENG, JIA, et al., 2009) by using the 
motion information of the first encoded view in order to reduce the computational 
complexity of further views. Additionally, disparity vectors from anchor frames are also 
taken into consideration. Using the geometric relation between the vector from base view 
and anchor frames, the authors predict the motion and disparity vectors that are used as 
search start point. A 2x2 refinement is applied around the predicted point. This process is 
repeated for each search direction. 

The inter-view correlation is also evaluated in (SHEN, LIU, et al., 2009) (SHEN, 
LIU, et al., 2010) to reduce ME/DE search window. The so called motion homogeneity 
is calculated using the collocated motion  field from previous frames. If the MB presents 
a complex motion (homogeneity higher than a threshold) the complete search window is 
used for searching. Homogeneous motion MBs use a search window reduced in a factor 
of 4, 1/4 of vertical size and 1/4 of horizontal size. For the intermediate case, the search 
window is reduced in a factor of 2. Simultaneously, this solution employs a search 
direction selection. Homogeneous regions employ only ME search while complex 
motion regions employ both ME and DE. Moderate motion regions use the RDCost 
information to enable DE search. 

Algorithm and architecture for disparity estimation with mini-census adaptive 
support is proposed in (CHANG, TSAI, et al., 2010). A minicensus transform is applied 
over a pair of frames in two neighboring views to define a matching cost at pixel level. 
Weights are additionally generated using color distance. The cost and weights are 
aggregated to find the best disparity between the pair of frames. According to the 
authors, the two-pass strategy reduces the complexity if compared to a direct approach. 
The architecture proposed is discussed in Section 2.9. 

The main drawback of these fast ME/DE algorithms resides in the fact that they do 
not exploit the full potential of the 3D-Neighborhood correlation available in spatial, 
temporal and disparity domains. Moreover, even the more sophisticated techniques are 
dependent on the complete first view encoding. However, it does not scale well for a 
large number of views as the prediction quality degrades in a hierarchical prediction 
structure. By encoding one view, the motion field information can be extracted but not 
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the disparity field information (as no inter-view prediction is performed in this case). 
Therefore, it potentially limits the speedup of disparity estimation. Additionally, most of 
the techniques use fixed thresholding, thus perform inefficient under varying 
Quantization Parameters (QPs). 

2.8 Video Quality on Energy-Efficient Multiview Video Coding 

Techniques to reduce the complexity and energy consumption of the video encoder 
(such as fast mode decision and motion/disparity estimation) typically lead to video 
quality losses. To control the quality losses rate control methods may be employed 
through QP adaptation. Several rate control schemes are found in the current literature. 
Mostly they are developed targeting single-view encoders such as H.264. Recently, a 
few works specific to the MVC standard have been proposed focusing on frame- and 
BU-level RC. In this section we present an overview of the state-of-the-art on rate 
control. 

In the single-view domain the majority of recent proposals are extensions of the RC 
implemented in the H.264 reference software that employs a quadratic model for MAD 
(Mean Absolute Differences) distortion prediction (LI, PAN, et al., 2003). However, the 
quadratic model leads to limited control performance, as discussed in (TIAN, SUN, et 

al., 2010). Aware of this limitation, the authors in (JIANG, YI e LING, 2004) and 
(MERRITT e VANAM, 2007) propose improved MAD prediction techniques. The 
scheme presented in (KWON, SHEN e KUO, 2007) implements both distortion and rate 
prediction models while in (MA, GAO e LU, 2005) the RC exploits rate-distortion 
optimization models. A RC based on a PID (proportional–integral–derivative control) 
feedback controller is presented in (ZHOU, SUN, et al., 2011). In (WU e SU, 2009), a 
RC scheme for encoding H.264 traffic surveillance videos using regions of interest 
(RoI) to highlight regions that contain significant information is proposed. In 
(AGRAFIOTIS, BULL, et al., 2006), RoI is used to highlight preset regions of interests 
using priority levels. However, single-view approaches do not fully consider the 
correlation available in the spatial, temporal and view domains and, consequently, 
cannot efficiently predict the bit allocation or distortion resulting in inefficient RC 
performance.  

The early RC proposals targeting the MVC encoder are based on simple extension 
of single-view approaches (LI, PAN, et al., 2003) and are still unable to fully exploit 
multiview properties. Novel solutions, however, have been proposed and most of them 
are limited to frame-level actuation. The solution in (YAN, AN, et al., 2009) uses an 
improved MAD prediction that differentiates the frame types. Intra frames, P and B 
frames with only temporal prediction, P and B frames with only disparity prediction, 
and B frames with both temporal and disparity prediction, features distinct MAD 
prediction equations. Once the MAD is predicted, the target bitrate  is predicted for the 
GGOP, refined to the GOP and finally defined for each frame. An appropriate QP for 
each frame is defined base on the target bitrate. This work is extended in (YAN, SHEN, 
et al., 2009) by employing a technique to define the first QP in the GGOP; it is used to 
encode the I-frame. But these solutions are unable to properly handle the complex 
Hierarchical Bi-Prediction (HBP) structure of MVC limiting the number of input 
samples and the rate control learning.  

The authors of (XU, KWONG, et al., 2011) define an pyramid-based priority 
structure extracted from the MVC HBP. The higher pyramid levels are used as 
reference  to encode lower pyramid level, e.g., I and P frames belong to the highest 
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level, B frames that refer to I and P frames belong to the second highest level and so on. 
The higher levels are prioritized and are encoded using lower QPs (high quality) in 
order to reduce error propagation. This solution, however, considers a fixed HBP 
structure and do not exploit the inter-GOP correlation.  

To deal with distinct image regions within a frame there is a need for a BU-level 
RC. Moreover, in order to find a global optimal solution, a joint frame- and BU-level 
rate control scheme must be designed. Recent works have proposed solutions for the 
BU-level RC in MVC. In (PARK e SIM, 2009) is presented a solution that deals with 
the frame-level and Macroblock(or BU)-level rate control. Firstly, the rate for each view 
is calculated based on weight parameters defined by the user. After that, the QP for each 
GOp is defined using the traditional H.264-based approach (LI, PAN, et al., 2003) 
followed by a QP refinement for each frame. The frame-level QP definition considers 
the HBP coding structure to prioritize frames in higher hierarchical levels. A MAD-
based strategy is used to calculate the target bitrate at MB level and a rate-distortion 
model (not described in the paper) is employed to define the QP for each MB.  

The authors in (LEE e LAI, 2011) consider the Human Visual System (HVS) 
properties to propose a BU-level rate control solution that prioritizes the regions that are 
visually more important to the observer. For that, they define regions of interest using 
the Just-noticeable difference (LIU, LIN, et al., 2010) metric along with luminance 
difference and edge information. Depending on the relation between these metrics, the 
QP is increased or decreased in relation to the initial QP (maximum QP in the 
neighborhood). However, this solution does not employ feedback-based control and just 
considers the coding information from one reference frame.  

Generally, the available rate control techniques cannot fully exploit the correlation 
potential available in the spatial, temporal and view domains of MVC. In addition, they 
are unable to adapt to multiple HBP structure and cannot employ the inter-GOP periodic 
behavior for RC optimization. Moreover, at the best of our knowledge, no work has 
proposed a Rate Control scheme for MVC able to jointly consider frame- and BU-level 
in a hierarchical and integrated fashion. 

2.8.1 Control Techniques Background 

In this section are presented the background concepts required to understand the rate 
control solution proposed in this thesis. Firstly, are presented the control theory basics 
behind the Model Predictive Control (MPC) used for the frame-level RC. On the 
following, we present the statistical foundation supporting the Markov Decision Process 
(MDP) that is implemented in our BU-level RC. Finally, the concepts related to 
Reinforcement Learning (RL) are introduced. 

2.8.1.1 Model Predictive Control (MPC) 

The control theory is a subfield of mathematics originated in engineering to deal 
with influences in the behavior of dynamic systems (TATJEWSKI, 2010). Several 
control methods have been proposed ranging from very general to application-specific 
solutions to cope with a wide range of applications. Control problems specifications 
may significantly vary and the selected control method must ensure the stability of the 
given system. Thus, the selection of a control method for a given dynamic system may 
be very challenging. In case the controller does not fit the system it may compromise 
the stability of the entire system.  
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Among state-of-the-art control methods, the MPC has gained prominence by being 
able to accurately predict and actuate on a dynamic multivariable systems. It represents 
not a single control algorithm but a controller design scheme applicable to distinct 
systems including: continuous or discrete in time, linear or nonlinear, integrated or 
distributed systems. MPC outperforms conventional feedback controllers (like PID) by 
keeping explicit integration of input and state constraints while considering state space 
constrains. Also, MPC can dynamically adapt to new contexts by employing rolling 
input and output horizons (see more details below). 

The main goal of the MPC is to define the optimal sequence of actions to lead the 
system to a desired and safe state by considering the system feedback to previous states 
and previously taken actions (see conceptual MPC behavior in Figure 2.19). To define 
this sequence of actions the MPC minimizes the performance function presented in Eq. 
(2.10). It minimizes the cost by defining a set of outputs y based upon a set of inputs u. 
Where u[k + i – 1|k], i = {1,... , m} denotes the set of process inputs with respect to 
which the optimization is performed; u is known as the control horizon or input horizon 
in the MPC theory. Analogous, y[k + 1|k], i = {1,... , p} is the set of outputs, named 
prediction horizon or output horizon (see Figure 2.19). The control horizon determines 
the number of actions to find. The prediction horizon determines how far the behavior 
of the system is predicted. m and p are the size of control/input and prediction/output 
horizons, respectively. m is the number of measured outputs (history size) used for the 
optimization process while p defines how many outputs are predicted; that is, how many 
future actions are considered in the optimization processes. k is the horizons index and 
represents the k-th input/output horizon. ySP defines the output set point that limits the 
prediction horizon. 
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Figure 2.19: Model Predictive Control (MPC) conceptual behavior 

2.8.1.2 Markov Decision Process (MDP) 

The Markov Decision Process (MDP) is a mathematical decision-maker framework 
for systems that outcome partly random and partly controlled by a decision maker 
(ARAPOSTATHIS, KUMAR e TANGIRALA, 2003). MDP is a time discrete 
stochastic control process based on the extension of Markov Chains that adds the 
concepts of actions and rewards.  
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Figure 2.20: Markov Decision Process (MDP)  

The symbolic representation of the MDP is a state machine or an automaton, as 
depicted in Figure 2.20a, which evolves in response to the occurrence of events. It is 
formally defined by 4-tuples (S,A,P(.,.),R(.,.)) composed by a finite set of states S={s0, 

s1,…}, actions A={a0, a1,…}, rewards R={r0, r1,…} and transition probabilities P={p0, 

p1,…}. The S includes all possible states assumed by the controlled system, actions A are 
the possible acts to be taken by the decision-maker in face of a given system state. P(S) 
is the probability distribution of transitions between system states and, finally, R(S) is 
the reward related to a given action for a given state. At each discrete time step t the 
process lays in a state s∈ S and the decision maker may choose any action a∈ A that will 
lead the process to a new state s’∈ S providing a shared reward  Rat(s,s'), as shown in 
Figure 2.20b. The rewards are used by the decision maker in order to find an action that 
maximizes, for a given policy, the total accumulated reward, as shown in Eq. (2.11)  
(where 0≤ γ ≥1 denotes the discount factor). 

a t t ts st
1

t 0

( , )Rγ
∞

+
=
∑  (2.11) 

By definition, the Markov process is considered a controlled Markov process if the 
transition probabilities P(S) can be affected by an action. Eq. (2.12) defines the 
probability Pa that an action a in the state s at time t will lead to state s’ at time t+1. 

'
a at t t tP R s s  s s  a a1 ,( | , )+= = = =  (2.12) 

Multiple extensions have been proposed to the MDP in order to best fit to distinct 
problem classes. For systems where the transitions probabilities or the rewards are 
unknown a priori, the Reinforcement Learning method may be applied to solve the 
MDP, as detailed in the following section. 
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2.8.1.3 Reinforcement Learning (RL) 

Reinforcement learning model is an agent to improve autonomous systems 
performance through trial and error by learning from previous experiences instead from 
specialists (BARTO, 1994), that is, the agent learns from the consequences of actions. 
In reinforcement learning model the agent is linked to the system to observe its behavior 
and take actions. RL theory is based on the Law of Effect, that is, if an action leads to a 
satisfactory state the tendency to produce this action increases.  For each discrete time 
step t the RL agent receives the system state s∈ S and rewards R(S) to take an action a∈ A 
that maximizes the reward Rat(s,s'). This action may lead the system to a new state s’∈ S 
and produce a system output, in terms of a scalar reinforcement value, used to define the 
new reward Ra(t+1)(s,s') according to Eq. (2.13). The general representation of 
reinforcement learning value  given by RL in Eq. (2.14), where U denotes the function 
that changes the system state from s to s’ and hR denotes the history of reinforcement 
learning. 

( ) ( )' '
a(t +1) ats s s sRL , RL , RL= +  (2.13) 

( )' RRL U s s h= +,  (2.14) 

2.8.1.4 Region of Interest (RoI) 

Within a video frame there may exist multiple regions or objects with distinct image 
properties and distinct importance for the observer. The image regions that are 
considered, for some reason, more important are called Regions of Interest. In this 
thesis, we consider all regions of semantically equal importance leaving space for 
application specific optimizations such as for 3D-surveillance, 3D-telemedicine, etc. 
However, at the encoding perspective, textured regions tend to have different coding 
properties at the mode decision and bit allocation perspectives if compared to 
homogeneous regions. To classify the image regions we use the variance map (Figure 
2.21) to characterize the texture complexity. Variance depicts the degree of dissipation 
of a given population (see definition in Eq. (4.1)). In this case, how the pixels values of 
an image region are distributed. High variance define textured regions (represented by 
brighter points in Figure 2.21) while low variance define homogeneous regions (dark 
regions in Figure 2.21).  

 
Figure 2.21: Variance-based Region of Interest map (Flamenco2)  

2.9 Energy-Efficient Architectures for Multimedia Processing 

In this section we introduce the state-of-the-art on energy management along with an 
overview on energy-efficient techniques and architectures for multimedia processing. 
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Before that, the infrastructure to support dynamic voltage scaling on SRAM memories 
is presented. This technique is extensively used in the literature and in some solutions 
proposed along this thesis. 

2.9.1 SRAM Dynamic Voltage Scaling Infrastructure 

The static energy due to leakage current has become a significant source of the total 
energy consumption in deep submicron technologies. Also, current integrated circuit 
footprints are dominated by embedded memories which are typically implemented as 
SRAM (Static Random Access Memory). Therefore, reducing SRAM static 
consumption is a key challenge to reach overall energy reduction. 

The fabrication technology evolution has provided meaningful contribution to 
leakage reduction by employing high-K oxides (HUFF e GILMER, 2004), FinFET 
transistors (PEI, KEDZIERSKI, et al., 2002), etc. Still, there is a need to further reduce 
the leakage at architecture and system levels through techniques such as power-gating, 
dynamic voltage scaling (DVS) and, dynamic power management (DPM). In the 
following paragraphs, we present the state-of-the-art infrastructure that enables the 
application of these techniques. 

In (FUKANO, KUSHIDA, et al., 2008) a DVS using dual power supply is used to 
implement a 65nm SRAM memory employing three operation modes: (i) high speed, 
(ii) low power and, (iii) sleep mode. In this work the low power and sleep modes are 
data retentive avoiding data refetching but it does not support partial DVS for specific 
sectors of the SRAM. (YAMAOKA, KATO, et al., 2004) presents a similar solution 
employing three operation modes while supporting bank-level DVS. It achieves leakage 
reduction through adapting the virtual supply voltage using PMOS transistors. Finally, 
the 65nm SRAM design presented in (ZHANG, BHATTACHARYA, et al., 2005) 
provides more flexibility through adopting multiple power states and fine grain power 
control. The DVS is controlled at sector level using a custom NMOS sleep transistor to 
control the virtual ground voltage. 

Along this thesis we assume the use of an on-chip SRAM memory featuring 
multiple power states with data retention capabilities. The high-level memory 
organization is presented in Figure 2.22 along with the picture of the silicon die 
implementing this memory organization (ZHANG, BHATTACHARYA, et al., 2005). 
However, to extract the potential benefit of the SRAM DVS an efficient dynamic power 
management is required. The overview of power/energy management techniques is 
presented in Section 2.9.3. 
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Figure 2.22: (a) SRAM voltage-scaling infrastructure and (b) silicon die picture from 
(ZHANG, BHATTACHARYA, et al., 2005) 

2.9.2 Energy Management for Multimedia Systems 

Energy and power management for multimedia systems has been studied in many 
research works mostly targeting embedded applications. The authors in (CAO, FOO, et 

al., 2010) employ DVS with five distinct voltage levels. It is controlled using the 
application-specific knowledge through workload modeling for a wavelet video 
encoder. In (KAMAT, 2009) a battery level-aware MPEG-4 video encoder with a 
notification manager and an application-specific controller is presented. Some solutions 
exploit the energy vs. video quality tradeoff at run time to adapt to the system scenario. 
(JI, CHEN, et al., 2010) partitions the input data in distinct profiles used for energy 
budgeting generating scalable video quality according to the energy scenario. Similar 
work is presented in (JI, LI, et al., 2009) applying game-theory algorithms to control the 
video encoder. (LIANG e AHMAD, 2009) proposes a rate-complexity-distortion model 
to progressively adjust the H.263+ encoder behavior considering the video content. It 
employs DVS providing and reaches up to 75% energy reduction. A power-rate-
distortion model (HE, CHENG e CHEN, 2008) is used for energy minimization in video 
communication devices by exploring energy tradeoff between video encoding and 
wireless communication providing up to 50% energy reduction. A dynamic quality 
adjustable H.264 encoder is proposed in (CHANG, CHEN, et al., 2009). It defines 
quality states to change the number of coding modes considering the power vs. quality 
tradeoff. The implemented ASIC provides real-time 720p encoding at 183mW 
consumption. The proposals summarized in this section are useful at the MVC scenario 
but lack the MVC-specific knowledge such as workload model, quality states, rate-
distortion behavior, etc. Thus, the simple application of these approaches lead to 
inefficient energy management performance. 

2.9.3 Energy-Aware Architectural Techniques 

Generic techniques for reducing the on-chip SRAM leakage (like (SINGH, 
AGARWAL, et al., 2007), (AGARWAL, NOWKA, et al., 2006)) propose memories 
with multiple sleep modes in order to better exploit the leakage vs. wake-up penalty 
tradeoff. State-retentive power-gating of register files featuring multiple sleep modes is 
presented in (ROY, RANGANATHAN e KATKOORI, 2011). However, to control 
these memories an efficient power management is required. In (MONDAL e MEMIK, 
2005) the hardware power-gating is controlled by monitoring the underlying hardware. 
These observation-based techniques may lead to miss-predictions, especially in case of 
sudden variations. The techniques in (LIU, SHENOY e CORNER, 2008) and 
(RAJAMANI, HANSON, et al., 2006) consider application-knowledge for a video 
decoder case study, but they only exploit the knowledge at frame level. These 
techniques consider longer periods and may not cope with severe variations at the MB-
level. Authors in (JAVED, SHAFIQUE, et al., 2011) presented an adaptive pipelined 
MPSoC for H.264/AVC with a run-time system that exploits the knowledge of 
macroblock characterization based on their spatial and temporal properties 
(SHAFIQUE, L. BAUER e HENKEL, 2010)(SHAFIQUE, MOLKENTHIN e 
HENKEL, 2010) to predict the workload. Based on this knowledge, unused processors 
are clock-gated or power-gated. These techniques provide limited energy-efficiency in 
MVC as they cannot exploit the MVC-specific knowledge such as  (a) distribution of 
memory usage at frame and MB levels, (b) memory usage correlation in the 3D-
Neighborhood, (c) memories with multiple sleep modes.  
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2.9.4 Energy-Efficient Video Architectures 

The work of (SHAFIQUE, L. BAUER e HENKEL, 2010) presents an energy 
budgeting scheme for the H.264 ME. This solution considers the total energy available 
along with the video properties to dynamically define a search pattern able to deal with 
the energy versus quality tradeoff. Each frame is classified into one of six energy classes 
and further classification refinement is performed at MB level. The highest complexity 
class performs a search composed of three search patterns (Octagon Star, Polygon and 
Diamond) without samples subsampling. The lowest complexity class employs a 
Diamond-shaped search using 4:1 subsampling. The highest complexity class requires 
17x more energy when compared to the lowest complexity class.   

The authors in (CHEN, HUANG, et al., 2006) evaluated different state-of-the-art data 
reuse schemes (Level-A, Level-B, Level-C and Level-D) and proposed a new search 
window-level data reuse for H.264 ME (Level-C+) in order to reduce the energy 
consumption related to external memory access and on-chip memory storage. Level-A 
and Level-B solutions are based on candidate blocks. While Level-A fetches and stores 
on-chip a single candidate blocks, Level-B fetches a whole candidates stripe (inside the 
search window). They require frequent external memory access and only fit with regular 
search patterns which is not the case for state-of-the-art ME/DE algorithms. Level-C and 
Level-D follow the same logic but at search window level. Level-C stores one search 
window (avoiding the retransmission of overlapping search window regions accessed by 
neighboring MBs in the same line) and Level-D a search window stripe for the whole 
frame. Observe that Level-D requires a extremely large on chip memory for large search 
window or frame size. As Level-C presents a reasonable tradeoff between external 
memory access and on-chip memory size it was extended in Level-C+. Level-C only 
exploit the data reuse between horizontal neighboring MBs. Levels-C+ proposes to 
increase the vertical on-chip storage to include the search window of the MB line bellow. 
This allow exploiting the vertical data reuse at the cost of increased on-chip memory and 
out-of-order processing (two MB lines are processed using double-Z order).  

In (WANG, TAI e CHIANG, 2009) a bandwidth-efficient H.264 ME architecture 
using binary search is proposed. This solution employs a frame-level preprocessing that 
downsamples the image twice in a factor 2. It results in three images (or three layers), the 
original image, the downsampled image, and the twice downsampled image. After that, a 
search is performed in the three layers. This technique is also modified to allow parallel 
processing and easy hardware implementation. A hardware architecture is presented 
targeting low power through low memory access, efficient hardware utilization, and low 
operation frequency.  

An complete MVC encoder targeting low power operation is presented in (DING, 
CHEN, et al., 2010) employing eight pipeline stages, dual CABAC and parallel MB 
interleaving. A cache-based solution is used for the search window reading along with a 
specific prefetching technique. The cache tags are formed by the frame index and x and y 
block position. Also, each cache entry stores an image block (instead of words like in 
generic caches) following the same concept proposed in (ZATT, AZEVEDO, et al., 
2007). The search is constrained to a [±16,±16] search window with a predicted center 
point. The ME/DE architecture is described in more details in the previous work from the 
same group (TSUNG, CHEN, et al., 2009). This approach might lead to quality loss when 
the center point prediction is not accurate. Also, the authors ignored the fact that fast 
ME/DE schemes already consider this information to start the search. The MVC encoder 
is able to real-time encode 4 views HD720p at 317mW. 
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Generally, the search window-based data reuse approaches suffer from excessive 
leakage resulting from big on-chip SRAM memories required to store the complete 
rectangular search windows. This point becomes crucial for MVC as the DE requires 
relatively large search windows (mainly for high resolutions) such as [±96,±96] to 
accurately predict high disparity regions (XU e HE, 2008). In this case, even considering 
asymmetric search windows incurs in large on-chip storage overhead, thus suffering from 
significant leakage.  

The authors in (SHIM e KYUNG, 2009) use multiple on-chip memories to realize a 
big logical memory or multiple memories (one for each reference frame) according to the 
frame motion. A search window centered prediction is employed for data prefetching 
while the size of search window is dynamically adjusted at frame level using the size of 
motion vectors found in previous frames. The data reuse scheme Level-C is employed.  

A data-adaptive structured search window scheme is presented in (SAPONARA e 
FANUCCI, 2004). A adaptive window size approach is proposed considering the 
spatial/temporal correlation of the motion field. If the vectors of the current and past 
frames do not exceed a given value, there is no need to search in a region larger than this 
vector size and the fetching of a reduced window is necessary. In case the window is too 
small and the error starts do increase, a test detects it and the search window is increased 
regardless of the neighborhood. This solution leads to reduced external memory access 
but its potential for on-chip memory reduction is not discussed. 

The work in (CHEN, CHEN, et al., 2007) proposed a candidate-level data reuse 
scheme and a Four Stage Search algorithm for ME. Firstly, multiple search start points are 
predicted from the neighboring MBs motion activity. The predicted points are evaluated 
and the best one is selected for a Full Search around its position. A ladder-shaped data 
arrangement is also proposed in order to support random access for the proposed 
algorithm. The candidates parallel processing is performed using a systolic array. 

In (TSAI, CHUNG, et al., 2007) a caching algorithm is proposed for fast ME. 
Additionally, a prefetching algorithm based on search path prediction is proposed in order 
to reduce the number of cache misses. The work (TSAI, CHUNG, et al., 2007), however, 
is limited to a fixed Four Step Search pattern and it does not consider disparity estimation 
and power-gating. 

2.10 Summary of Background and Related Works 

The MVC is the most efficient video coding standard focusing on 3D-video coding. 
It is able to provide 20-50% of coding efficiency increase, if compared to H.264 
simulcast, by employing inter-view prediction, the disparity estimation. Mode decision 
and motion and disparity estimation represent the most complex modules in the MVC 
encoder and bring big challenges for their real-world implementation. 

The implementation of MVC encoders may exploit different multimedia processing 
architectural solutions. Currently, the most preeminent alternatives are multimedia 
processors/DSPs, reconfigurable processors, ASICs, and heterogeneous multicore SoCs. 
Each solutions presents positive and negative points. At the one hand, ASICs provide the 
highest performance and energy efficiency at the cost of no flexibility. At the other hand, 
multimedia processors/DSPs are totally flexible but deliver low performance and 
reduced energy efficiency. Heterogeneous multicore and reconfigurable processors 
provide tradeoff points between ASICs and processors. By employing units specialized 
in each kind of task, the heterogeneous multicore SoCs improve the performance in 
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relation to multimedia processors but typically present issues related to programming and 
portability. Reconfigurable processors can cover this gap by employing extensible 
instruction set and defining, at run time, if regular or custom instructions should be used 
in that specific time instant. Still, these solutions is unable to met the performance and 
energy efficiency required for MVC encoding without application specific ASIC 
acceleration. Therefore, considering the current technology, a complete ASIC encoder or 
an heterogeneous SoCs with hardware specific accelerators seen to be the most feasible 
solutions for embedded mobile devices. 

Multiple proposals targeting on complexity and energy reduction for the MVC are 
available in the current literature. These contributions are centered in two abstraction 
levels, the algorithmic and architectural levels. At the coding algorithms perspective, 
complexity reduction is most frequently addressed at the mode decision and motion and 
disparity estimation because they represent the most complex MVC blocks. The mode 
decision solutions used distinct side information in order to reduce the number of coding 
modes tested during the coding process. Video properties such as texture, edges, 
luminance, and motion/disparity activity are used to predict the most probable coding 
modes in each image regions. Additionally, extensive analysis has been done to learn 
how neighboring views and frames are correlated. This correlation also useful to predict 
the coding modes. As the ME/DE spends about 90% of the total encoding time, the same 
kind of information is used to predict the most probable motion and disparity vectors and 
reduce the ME/DE complexity. However, the related works do not fully exploit the 
correlation available within the 3D-neighborhood and perform badly under content 
changing scenarios. Moreover, these solutions are not developed considering the energy 
perspective and cannot react to battery level changing situations by dynamically adapting 
the complexity to the available energy. 

Generally, the complexity reduction techniques lead to uncontrolled quality 
degradation and coding efficiency losses. The rate control becomes a key tasks in order 
to minimize this complexity reduction drawback. The majority of rate control solution 
currently available target the H.264 or are simple extensions from H.264 solutions. The 
few rate control algorithms designed for MVC focus only on frame-level or basic unit-
level actuation levels. Additionally, theses algorithms do not use the intra- and inter-
GOP bitrate correlation in the 3D-neighborhood. 

At the hardware architectural perspective ME/DE is the most studied MVC coding 
block. The ME/DE is a processing and memory intensive task requiring massively 
parallel processing and efficient memory access and management. The resulting high 
energy consumption is mainly related to external memory access and on-chip video 
memory size. Diverse related works propose ME/DE processing hardware architectures, 
memory hierarchies and data reuse techniques. However, they share limitations related to 
the complexity reduction algorithms implemented (leading to quality losses), excessive 
external memory accesses, or large on chip-memory resulting in high. Moreover, most of 
the available architectures lack the ability to dynamically adapt its operation according to 
changing coding parameters or video content characteristics. 

Therefore, there is a demand for novel and energy-efficient MVC encoding solutions 
able to significantly reduce energy consumption under changing video and system 
scenarios. For this reason, this thesis targets on jointly addressing the energy issues at 
algorithmic and architecture levels while sustaining the video quality. 
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3 MULTIVIEW VIDEO CODING ANALYSIS FOR 
ENERGY AND QUALITY 

The Multiview Video Coding (MVC) standard brings high coding efficiency gains 
reducing the bitrate in 20-50% for similar video quality if compared to the H.264/AVC 
simulcast. The coding efficiency gains are driven by novel high-complexity coding 
tools that drastically increase the overall encoding processing effort and, consequently, 
the energy consumption. In this section an extensive analysis of the energy requirements 
for real-time MVC encoding and the energy consumption breakdown are presented. The 
goal is to provide a better comprehension on the MVC performance and energy 
requirements. Additionally, the requirements in terms of objective video quality are 
discussed in the following. 

3.1 Energy Requirements for Multi View Video Coding 

Encoding MVC at high definitions has shown to be an unfeasible task for mobile 
devices when all coding tools are implemented without energy-oriented optimizations. 
State-of-the-art embedded devices are unable to provide the processing performance or 
to supply the energy required by the MVC encoder. To demonstrate the energy-related 
challenges to MVC encoding a case study is presented in the following. 
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Figure 3.1: MVC energy consumption and battery life 

Figure 3.1 presents the energy consumption to encode a 4-view HD1080p video 
sequence using the MVC encoder while considering four fabrication technologies. Also, 
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the battery draining time for state-of-the-art smartphone batteries are presented. Note, 
these smartphones are unable to attend the MVC constraint. Despite the technological 
scaling that provides meaningful energy reduction for deep-submicron technologies, the 
energy consumption remains high considering embedded devices constraints. For 
instance, let us analyze the best-case scenario where a device is fabricated with a state-
of-the-art 22nm fabrication node and features a 7.8Wh battery as available in the latest 
Samsung Galaxy S3 (SAMSUNG, 2012) released in Q3 2012. For a scenario where 
MVC encoder is the only task draining the battery, only 526.9s (8 min, 46.9s) of 
recording would be possible before the battery was completely drained. The presented 
battery life is not acceptable and does not attend market and user requirements. 
Meaningful energy reduction techniques are required to bring the MVC consumption to 
a feasible energy envelope. For this, a better understanding on the energy consumption 
sources is required. 

Figure 3.2 demonstrates the motion and disparity estimation task (ME/DE) is 
responsible for about 90% of the total energy. These numbers were measured using the 
Orinoco(KROLIKOSKI, 2004) simulation environment and might present errors in the 
actual numbers. This simulation, however, is worth for a relative comparison of the 
energy consumed by MVC encoding tools. This numbers consider the fast search 
algorithm TZ Search (TANG, DAI e CAI, 2010) as search pattern. Motion 
compensation (2.5%), deblocking filter (2.5%) and intra-frame prediction encoder (2%) 
are the following in terms of energy consumption while representing less than 2.5% 
each. Thus, reducing ME/DE consumption is of key importance to reach energy 
efficiency. ME/DE consumption is directly related to the size of search window (SW), 
that is, the size of the region to perform the search. The increase in ME/DE search 
window leads to energy increase due to increased number of matching candidates and 
larger amount of data required (memory accesses) to perform the task. Figure 3.3 
quantifies the energy consumption for five distinct sized SWs. Comparing the corner 
cases, a small search window [±16, ±16] to a big [±128, ±128] SW, the energy increases 
in a factor of 6.5x. From single-view knowledge it is possible to affirm that there is no 
need for using SWs larger than [±64, ±64]. However, disparity vectors tend to have 
larger magnitude and the ME/DE task requires increased SW to find these matching 
candidates. According to (XU e HE, 2008), for a good disparity estimation performance 
in HD1080p video sequences, the search window should be at least [±96, ±96]. 
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Figure 3.2: MVC component blocks energy breakdown 
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Figure 3.3: MVC energy breakdown for multiple search window sizes 

Although the analysis correctly depicts some sources of energy consumption, a 
deeper knowledge of the application behavior is mandatory. The MVC encoder hides in 
the encoding process a control function that controls the complexity of each and single 
module discriminated in Figure 3.2. The mode decision (MD) defines how many modes 
are tested and how many times the ME/DE search is performed, how frequently the 
intra-frame encoder is used, etc. The relation between the exhaustive mode decision, the 
Rate-Distortion Optimized MD (RDO-MD), to the simplest possible MD that tests a 
single coding mode is in the order of 100x energy consumption, as shown in Figure 3.4. 
Obviously, the single mode MD is not used in practice under penalty of poor quality 
and coding efficiency results. Nevertheless, this example highlights the optimization 
space for energy-efficient solutions in the MD control.    
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Figure 3.4. MVC energy for distinct mode decision schemes 

At the architectural perspective, computation and memory (external memory access 
and on-chip memory storage) are the two energy consumption sources. Here, dynamic 
and static energies are jointly considered. As shown in Figure 3.5, the energy 
breakdown is composed of 90% memory-related energy consumption while 10% are 
represented by the computation itself. Typically, for a rectangular search window on-
chip memory using Level-C data reuse (CHEN, HUANG, et al., 2006), the on-chip 
memory energy and external memory access are evenly distributed but may vary 
according to design options (on-chip memory size, data reuse scheme, etc). The 
presented energy breakdown highlights the importance of reducing memory-related 
energy. Even so, the reduction of computational complexity stands as key challenge for 
low-energy MVC. Observe that multimedia processing applications are typically data-
oriented applications and require intense memory communication. However, the 
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complexity reduction leads to a win-win situation where both less data is processed and 
less memory accesses are required. Thus, complexity reduction positively impacts 
computation and memory energy consumptions. 

The following sections discuss on how computational complexity and memory 
access influence the overall energy consumption in MVC and how these components 
are distributed among the MVC modules.  
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Figure 3.5: MVC energy breakdown 

3.1.1 MVC Computational Complexity 

The MVC high energy consumption is driven by the complexity associated to the 
MVC video encoder. In this section we compare the complexity in relation to previous 
standards and quantify the main sources of complexity within the video encoder. The 
experiments here presented consider the fast search algorithm TZ search  for motion and 
disparity search. 

Figure 3.6 compares the MVC encoder in three distinct scenarios compared to the 
H.264-based simulcast encoding. The 8-view video sequences were encoded 
independently (simulcast) and using inter-view prediction with one, two or four 
reference views (when available). Custom extensions to the JMVC (JVT, 2009) 
reference software were done to support more than two reference views. Although using 
more than two reference views is not a common practice in current encoding systems, 
the increase in reference views is expected for many-view systems, especially for 2D-
array camera arrangements where the four surrounding neighbor views are closely 
correlated to the current view. The measured complexity to encode eight views using 
four reference views is 19x more complex than encoding a single H.264 view. Even 
using two reference views, as current multiview systems, the complexity exceeds in 14x 
the H.264 single-view complexity. To understand what this complexity represents it is 
important to consider that real-time H.264 encoding for HD1080p still pose interesting 
challenges in the embedded devices development and require application specific 
hardware acceleration (see discussion in Section 2.5.4). Moreover, according to 
(OSTERMANN, BORMANS, et al., 2004) the H.264 encoder is about 10x more 
complex then the MPEG-4 Part 2 encoder. If compared to the simulcast encoding of 
eight views (8x compared to H.264 single-view), the MVC is 1.75x and 2.37x more 
complex for two and four reference views, respectively. 
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Figure 3.6: MVC vs. Simulcast computational complexity 

The total encoder complexity is mainly concentrated in the motion and disparity 
estimation (ME/DE) unit responsible for about 90% of the total processing, as depicted 
in Figure 3.7. The deblocking filter (DF) and motion compensation (MC) blocks are the 
more complex blocks after ME/DE. The MVC encoder complexity measured from the 
JMVC (JVT, 2009) reference software without optimizations leads to 2 GIPS (Giga 
Instructions per Second) for only 4-view real-time MVC encoding at HD1080p 
resolution. This throughput is unfeasible even for high-end desktop computers. For 
instance, the latest Intel Core i7 3960X (BENNETT, 2011) processor with six physical 
cores running at 3.3GHz is able to provide about 180MIPS. Thus, the state-of-the-art 
high-end processors are orders of magnitude bellow the performance requirements for 
real time MVC encoding if no application/architectural optimizations are performed. 
The task is even more challenging for embedded processors. 

For energy-efficient MVC there is a need to drastically reduce the computational 
complexity. Based on the presented observations, ME/DE and MD modules have the 
highest potential for complexity reduction and, for this reason, are explored in this 
work. Therefore, deep application knowledge is required to design efficient complexity 
reduction algorithms able to avoid objective and subjective video quality losses. 
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Figure 3.7: MVC computational complexity breakdown 
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3.1.2 MVC Memory Access 

The other major component of energy consumption is related to data access. 
Multimedia applications are known for their data-oriented nature and consequent 
intense memory communication. The MVC encoder for 4-views HD1080p requires a 
memory bandwidth of 41 GB/s, as pointed in Figure 3.8. It can be met using GDDR5 
memory interfaces available in high-end GPUs such as Nvidia GeForce GTX 690 (384 
GB/s @ 300w) (NVIDIA, 2012) at the cost of high energy consumption. For embedded 
systems, however, the memories interfaces are limited by power constraints and deliver 
a reduced bandwidth. Thus, this bandwidth is not feasible for embedded devices. For 
instance, the Nvidia ULP GeForce embedded in Tegra 3 SoC (NVIDIA, 2012) provides 
a theoretical limit of 4.26 GB/s employing a LPDDR2-1066 memory interface. In this 
scenario, MVC encoding in embedded devices pose the need for drastically reducing the 
memory bandwidth through algorithmic and architectural optimizations. 

In video encoding systems, mainly the MVC video encoder, the access to the DPB 
(Decoded Picture Buffer) is the memory bottleneck. The DPB stores all reference 
frames used for inter-frame and inter-view (ME/DE) prediction. The frames are written 
in the DPB after the DF processing and the ME/DE block reads the stored data to 
perform motion/disparity search. ME/DE unit is responsible for about 68% of the 
encoder total memory access requiring a 28GB/s memory bandwidth for 4-view 
encoding, as shown in Figure 3.8. The measured memory bandwidth is far higher 
compared to the raw video data input (355 MB/s) because the reference frame data may 
be requested multiple times in order to perform the motion/disparity search for distinct 
MBs. Aware of this behavior, multiple techniques try to reduce external memory 
accesses through employing on-chip video memories and data-reuse techniques. Even 
though effective at the external memory perspective, these solutions significantly 
increase the on-chip energy consumption. Therefore, energy-efficient external and on-
chip memory reduction must be jointly considered at design time and at ruin time. 
Moreover, the complexity reduction design, discussed in Section 3.1.1, must consider 
the memory access behavior to optimize the overall energy consumption. 
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Figure 3.8: Memory bandwidth for 4-views MVC encoding 
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3.1.3 Adaptivity in MVC Video Encoder 

The high complexity and memory requirements posed by the MVC encoder are not 
the only challenges related to its realization. MVC energy consumption is unevenly 
distributed along the time.  Processing and memory energy components vary depending 
upon coding parameters, user’s definitions, system state and, video content. These run-
time variations make the MVC encoder design even more challenging. If on the one 
hand, an under-dimensioned encoder leads to performance issues and does not 
guarantee reduced energy consumption due the need of additional buffering. On the 
other hand, over-dimensioned encoders face under-utilization and unnecessary energy 
consumption.  

The MVC prediction structure is a dominant factor in terms of energy variation once 
distinct frame types (I, P or B) present distinct processing and memory access 
behaviors. I frames are the lightest frames once the ME/DE (that represents 90% of the 
encoder complexity) is completely skipped. P frames employ ME/DE to a single 
direction. In this scenario the P frames search in a single reference frame. The B frames 
require heavy processing, in comparison to I and P frames, and intense memory access 
while executing ME/DE search in multiple reference frames/views. In Figure 3.9 the 
frame-level energy consumption for seven GGOPs is presented. Each bar represents the 
sum of energies spent to encode the frames from all four views that belong to the same 
time instant (i.e., S0Tx+S1Tx+S2Tx+S3Tx). GGOP borders (anchors), for the 
experimented prediction structure, have one I frame, two P frames and, one B frame 
(that performs only DE once there are no temporal references available), for more 
details see prediction structure in Figure 2.7. Consequently, GGOP borders drain 
reduced energy amount (1.5 Ws/frame), as shown in Figure 3.9. All other relative 
positions within the GGOP are composed only by B frames and the energy consumption 
drastically increases in comparison to GGOP borders. Typically, the center of GGOP is 
the energy hungriest time instant once temporal references are far and more extensive 
motion search is required to find a good matching. According to the experiment 
presented in Figure 3.9, the energy consumption may exceed 7 Ws/time instant in this 
case. It represents a 4.7x instantaneous energy variation within the same GGOP. 

Although prediction structure-related energy variations may be easily inferred from 
the coding parameters, there is another important variation source that may not be easily 
obtained, the video content-related variations. The video content variations occur at 
multiple levels: (i) view level: distinct views may present distinct video content such as 
textures, motion and disparity behavior; (ii) frame level: video properties vary along the 
time; (iii) MB level: within the frame distinct regions or object may present distinct 
image properties. Figure 3.9 depicts the energy variations along the time. For instance, 
GGOP #6 (frames 41-49) drains reduced energy amount if compared to previous 
GGOPs due to reduced coding effort resulting from easier-to-encode video content. The 
MB-level variations are shown in Figure 3.10 in terms of ME memory requirements. 
The memory usage changes along the time depending on the video content motion 
intensity. High motion regions present increased memory usage in relation to low 
motion regions within the same frame. 

Therefore, energy-efficiency in MVC encoding requires the understanding of the 
energy sources variations and the design of adaptive architectures able to manage, at run 
time, the energy consumption while considering dynamically varying parameters (such 
as video content) and system state.  
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Figure 3.9: Frame-level energy consumption for MVC 
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Figure 3.10: Memory requirements for motion estimation at MB-level 

3.2 Energy-Related Challenges in Multiview Video Coding 

The large computational complexity and intense memory communication related to 
MVC poses a series of challenges related to real-time encoding for high-definitions 
mainly at the embedded systems domain. Energy consumption represents the most 
challenging issue related to embedded MVC encoding. Thus, there is a dire need for 
energy reduction of the MVC video encoder through computational complexity and 
memory access reduction. Energy-efficient solutions must jointly consider 
optimizations at algorithmic and architectural levels. Coupling deep application 
knowledge to intelligent employment of low-power design techniques is a key enabler 
for energy-efficient embedded MVC encoder realization. 

Based on the discussion presented along Section 3.1 the energy-efficient MVC 
requires the following optimizations at algorithmic level: 

• Energy-efficient mode decision scheme: The MVC defines an increased 
optimization space for the optimal prediction mode selection leading to high 
complexity and energy requirements, as demonstrated in Section 3.1. An efficient 
fast mode decision scheme is needed to reduce the optimization space through 
heuristics able to accurately anticipate the coding mode selection. The 
neighborhood information and image/video properties may provide hints to 
completely avoid the evaluation of unlikely prediction modes  
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• Energy-efficient motion and disparity estimation: ME/DE is the most complex and 
energy hungry module in the entire MVC encoder. Intelligent optimizations in 
ME/DE lead to meaningful overall energy reduction. Energy-efficient ME/DE may 
be reached by applying ME or DE elimination, search direction elimination, 
motion/disparity vector anticipation, object motion/disparity field analysis, etc.   

• Dynamic complexity adaptation: The energy-efficient MD and ME/DE can be 
designed considering distinct strengths in order to handle the energy versus quality 
tradeoff. Additionally, the MVC presents a dynamically varying behavior along the 
time depending on coding parameters, user’s constraints and video content. An 
energy-aware complexity adaptation scheme must be able to predict these 
variations and to react at run-time through reduction/increase of complexity budget 
by setting MD and ME/DE parameters. The dynamic complexity adaptation scheme 
may also exploit asymmetric coding properties such as the binocular suppression 
theory (STELMACH e TAM, 1999). 

The energy-efficient algorithms described above must be designed considering their 
impact in the architectural implementation. At architectural level, the energy-efficient 
solution must employ:  

• Low-energy motion and disparity estimation architecture: The ME/DE task 
requires high throughput but typically allows a high level of parallelism. To attend 
the throughput requirements at a reasonable frequency of operation while reducing 
energy multiple levels of parallelism must be exploited including (i) pixel-level, (ii) 
MB-level, (iii) reference frame-level, (iv) frame-level and (v) view-level 
parallelisms. It allows operating in a reasonable range of operation frequency and 
voltage. The processing units should be designed to enable power-gating and/or 
DVS to adapt to the performance variations. 

• Energy-efficient on-chip video memory hierarchy: Simply feeding the highly 
parallel ME/DE processing units while avoiding performance losses is typically a 
very challenging task. The on-chip video memory, however, has to deal with the 
high memory-related energy consumption and memory requirements variations. For 
that, an accurate memory sizing strategy is required. Also, the on-chip video 
memory must support partial power gating and/or DVS to adapt to memory 
requirement variations while minimizing static energy consumption.  

• Data reuse and prefetching technique: Neighboring MBs tend to access repeated 
times the same data from reference frames during the ME/DE process. To avoid 
additional external memory access the reference data must be stored in the local 
memory. However, increased local memory leads to increased static energy. Hence, 
only the actually required data must be read from external memory and stored 
locally. The energy-efficient MVC solution requires a memory-friendly data reuse 
technique able to reduce external memory access without employing increased local 
memory. To avoid performance losses due to local memory misses the required 
data must be prefetched accordingly. Thus, it demands an accurate memory 
behavior predictor that understands the ME/DE search pattern. Accurate 
prefetching becomes even more challenging for state-of-the-art adaptive and 
customizable search algorithms. 

• Dynamic Power Management: Supporting power gating and/or DVS in memory 
and processing units does not directly lead to energy savings. To reach energy-
efficiency an intelligent dynamic power management scheme is required to define 
the proper power states at each given time instant. The DPM must apply deep 
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application knowledge including offline statistical analysis, neighborhood history 
and, image/video characteristics in order to accurately predict performance and 
memory requirements and take proper action. 

Addressing each challenge related to energy-efficient MVC brings a contribution to 
the overall energy reduction. A balanced combination of energy-efficient techniques 
may lead to drastic MVC energy reduction. The energy reduction, however, shall not be 
built upon meaningful coding efficiency/video quality losses. Otherwise, the se of 
JMVC over simulcast is no more justified. Video quality issues are discussed in details 
in the following section. 

3.3 Objective Quality Analysis for Multiview Video Coding 

In the previous subsections the need for energy-efficient MVC encoding was 
motivated and justified. To reach such efficiency, complexity reduction, efficient 
architecture, and efficient memory management techniques including run-time 
adaptations are required. These techniques, however, may lead to undesirable rate-
distortion (RD) performance losses. In other words, the optimizations techniques may 
lead to reduced video quality for the same output bitrate. For simplicity, in this section 
we discuss the impact of optimizations algorithms in terms of video quality variation. 
However, it is necessary to keep in mind that, for a more general analysis, the rate-
distortion performance must be evaluated by jointly considering the objective video 
quality and the generated bitrate. The RD tradeoff can be managed through Quatization 
Parameter (QP) adaptation by employing an efficient rate control (RC) scheme (see 
2.3.4). 

To enable the use of MVC in real-world solutions, its implementation must be 
energetically feasible and the resulting video quality (for similar bitrate) must be 
significantly improved in relation to previous coding standards applying simulcast-
based coding. According to this assumption, the energy reduction techniques must 
aggressively reduce the total energy consumption at the cost of none or reduced quality 
loss. Figure 3.11 (extended from Figure 3.4) depicts the impact of some simplified 
mode decisions in terms of video quality versus bitrate. Take the example of the “SKIP 
only” MD, which  represents 1% of the total coding energy compared to the exhaustive 
RDO-MD at the cost of nearly 3dB quality loss. Remarkably, this is not a reasonable 
solution due high quality loss. According to the experiments presented in (MERKLE, 
BRUST, et al., 2009) and (OH, LEE e PARK, 2011), the MVC provide about 1dB 
quality increase in relation to H.264 simulcast. In case the energy-efficient 
optimizations lead to a quality drop at the order of 1dB there is no reason for using the 
MVC. In this scenario multiple state-of-the-art H.264 encoders should be employed 
avoiding the 1.75x-2.37x complexity increase (Section 3.1.1) driven by MVC in relation 
to simulcast. Intermediary solutions are also presented in Figure 3.11 dealing with the 
relation between energy and video quality. The same kind of energy vs. quality 
observations are noticed in the ME/DE optimizations. 
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Figure 3.11: Objective video quality in relation to coding modes  

Additionally, the 3D video quality includes additional properties in relation to the 
regular 2D videos. Blocking artifacts are severely undesirable in 3D videos and must be 
avoided during the encoding process. Such artifacts may lead to problems for 
intermediate viewpoints generation and/or to the stereo pair mismatch problem, as 
described in (STELMACH e TAM, 1998). Quality drop due to blurring effect in certain 
views, however, is tolerable and is attenuated according to the binocular suppression 
theory which is based on the psycho-visual studies of stereoscopic vision (STELMACH 
e TAM, 1998). According to it, if the video qualities of left and right eye views differ, 
the overall perceived quality is close to the high quality of the sharper view. In other 
words, there is space for controlled quality losses in odd or even views while sustaining 
the perceived quality and reducing overall energy consumption. 

3.4 Quality-Related Challenges in Multiview Video Coding 

To reduce the possible quality losses inserted by the energy-efficient optimizations 
related to the challenges pointed in Section 3.2, there is a need to define quality 
protection mechanisms able to manage the energy versus quality tradeoff. Such 
mechanisms must consider the application dynamic behavior in order to optimize the 
video quality for a given energy constraint. To sustain the overall video quality the 
energy-efficient MVC must employ: 

• QP-based thresholding: Most of the energy reduction schemes proposed in the 
current literature are unable to react to changing QP scenarios due to fixed thresholding. 
This limitation leads, for corner case scenarios (low or high QPs), to very high quality 
losses or to limited energy reduction. To deliver high video quality while providing 
meaningful energy reduction an energy-efficient MVC must control the energy 
reduction schemes through QP-based threshold equations. Moreover, the thresholds 
must be defined based on extensive statistical analysis to avoid biasing. 

• Frame-level rate control: Some energy optimizations may prioritize key frames 
by providing higher energy/processing budgets for such frames. The drawback of these 
approaches is the uneven quality distribution, at frame level, inside the same view or 
between neighboring views. If these quality variations are not properly controlled they 
may lead the observer to experience some discomfort (STELMACH e TAM, 1998). In 
order to avoid such quality variations, a frame-level rate control unit must be 
implemented. The RC task is to predict and control the bitrate versus quality tradeoff 
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and to distribute the amount of bits available (according to a given bandwidth 
limitation) in such a way to reduce the video quality oscillation and maximize the 
overall perceived quality. 

• Basic unit-level rate control: A rate control is also required at basic unit level 
once energy-efficient optimizations are also defined at MB level. In this scenario, the 
basic unit RC must be designed to optimize the overall video quality within each frame 
while considering image/video properties of the image regions. 

The challenges described above are critical to deliver high video quality even under 
a series of energy restrictive constrains and simplifications along the video coding 
process. In the following section is presented an overview on this thesis contribution. It 
describes, at high level, the main energy-efficient algorithms and architectures proposed 
in this volume along with the video quality control strategies. 

3.5 Overview of Proposed Energy-Efficient Algorithms and 
Architectures for Multiview Video Coding 

Figure 3.12 presents the overview of this thesis contribution related to the energy-
efficient realization of Multiview Video Coding. The high level diagram presents the 
algorithmic and the architectural contributions along with the conceptual contribution 
related to the 3D-Neighborhood correlation. Each contribution is detailed in the 
Chapters 4 and 5, as pointed in Figure 3.12. 

The energy reduction and management algorithms, hardware architecture design, 
memory designs and data-reuse schemes are based on the application knowledge to 
deliver more efficient results. In this thesis we define the 3D-Neighborhood concept that 
is widely used to guide the algorithmic and architectural contributions of this thesis. The 
3D-Neighborhood is defined as the MBs belonging to neighboring regions at spatial, 
temporal and view/disparity domains. The analysis of the 3D-Neighborhood space is 
powerful information to better understand the MBs correlation and to accurately predict 
the future MBs behavior, as detailed in Chapter 4. 

The algorithm-level contribution is centered in energy reduction through complexity 
reduction and management. The complexity reduction is reached through a multi-level 
fast mode decision (see Section 4.1) and fast motion and disparity algorithms (for 
details refer to Section 4.3) both based on the 3D-Neighborhood exploitation and 
image/video properties analysis. The fast MD and ME/DE algorithms are controlled by 
an energy-aware complexity adaptation scheme (detailed in Section 4.2) able to handle 
the energy versus video quality tradeoff while considering battery level and encoder 
state along with external constraints and user’s preferences. To avoid the possible 
quality losses inserted by complexity reduction techniques a hierarchical rate control 
(detailed in Section 4.4) featuring both frame- and basic unit-level rate control is 
proposed in order to guarantee a smooth video quality and output bitrate through QP 
adaptation. Additionally, to provide efficient energy reduction under varying QP 
scenarios our proposals employ QP-based thresholding according to the methodology 
presented in Section 4.1.2.2.  
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Figure 3.12: Energy-efficient Multiview Video Coding overview 

The architectural contribution is focused on the motion and disparity estimation unit 
and is composed of the ME/DE hardware architecture itself, the dynamic power and 
data-reuse management techniques and, the memory design methodology. A multi-level 
pipelined ME/DE architectural template is proposed (see details in Section 5.1) 
featuring parallel processing elements, search control and parallel memory interface 
initially designed to fit to the fast ME/DE algorithm. The on-chip video memory (see 
Section 5.1.3) sizing and organization was designed considering extensive offline 
analysis with real video content following our memory design methodology. The on-
chip video memory allows sector-level power gating to optimize the energy 
consumption through implementing a dynamic power management scheme based on the 
3D-Neighborhood knowledge (presented in Section 5.4.4). The external memory 
communication is optimized while employing reduced on-chip memory through a data-
reuse technique based on dynamic search window formation that also exploits the 3D-
Neighborhood concept. 

3.5.1 3D-Neighborhood 

The 3D-Neighborhood is defined as the set of MBs belonging to the neighborhood 
of the current MB in relation to spatial, temporal and view/disparity domains. The high 
coding properties correlation available in the 3D space is discussed and quantified 
through the statistical analysis presented along Chapter 4. For this reason the 3D-
Neighborhood is used to design and control multiple algorithms and architectural 
decisions proposed in this thesis. 
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At design time, the offline statistical analysis is used to understand which coding 
modes are more frequent, the range of motion and disparity vectors, performance and 
memory requirement variations, bitrate distribution, which neighboring regions are 
more correlated for distinct cases and video inputs. Such information is used to guide 
the complete design of the algorithms. Additionally, the offline analysis is used to 
define the threshold equations according to our thresholding methodology. 

The 3D-neighborhood data are also analyzed at run-time to perform the actual 
predictions related to the fast mode decision, fast ME/DE algorithms and rate control. 
Also, the data reuse and the memory requirements prediction used to control the power 
states of the on-chip video memory employ the neighborhood knowledge. 

3.5.2 Energy-Efficient Algorithms 

In this section are presented the main energy-efficient algorithms proposed in this 
thesis and detailed along the Chapter 4. 

Early SKIP Prediction: The Early SKIP prediction algorithms exploits the high 
occurrence of SKIP MBs in order to reduce the MVC encoder complexity. It also 
considers the 3D-Neighborhood correlation and image properties to take the early SKIP 
decision and avoid the evaluation of all other encoding modes. This techniques is later 
incorporated in the Multi-Level Fast Mode Decision algorithm. 

Multi-Level Fast Mode Decision: We propose a novel dynamic complexity reduction 
scheme for non-anchor frames in Multiview Video Coding (MVC). Our scheme 
exploits different video statistics and the coding mode correlation in the 3D-
Neighborhood to anticipate the more-probable prediction modes. Our scheme employs a 
candidate mode-ranking mechanism reinforced with an RDCost-based neighbor 
confidence level to determine the more-probable and less-probable prediction modes. 
Two complexity reduction levels named Relax and Aggressive with different threshold 
equations are employed. These levels provide a tradeoff between energy/complexity 
reduction and video quality. To limit the propagation of prediction error, the anchor 
frames are encoded using exhaustive RDO-MD. In this case the prediction error is 
propagated less due to the availability of a better prediction from the anchor frames of 
the neighboring GOPs. 

Fast Motion and Disparity Estimation: Our fast ME/DE algorithm computes the 
confidence of predictors (motion/disparity vectors of the neighboring MBs) in the 3D-
Neighborhood to completely skip the search step. The predictors are classified 
according to a confidence level and the search pattern is replaced by a reduced number 
of candidate vectors (up to 13). To exploit this knowledge, accurate motion and 
disparity fields must be available. Therefore, at least one frame using DE and one using 
ME must be en-coded with a near-optimal searching algorithm. In our scheme, to avoid 
a significant quality loss, all anchor frames and the frames situated in the middle of the 
GOP are encoded using the TZ Search algorithm (TANG, DAI e CAI, 2010). Once the 
motion and disparity fields are established, all remaining frames are encoded based on 
predictors available in these fields.  

Energy-Aware Complexity Adaptation: The energy-aware complexity adaptation 
scheme for MVC targeting mobile devices employs several Quality-Complexity Classes 
(QCCs), such that each class evaluates a certain set of coding modes (thus a certain 
complexity and energy requirement) and provides a certain video quality. It thereby 
enables a run-time tradeoff between complexity and video quality. To support 
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asymmetric view quality and exploit the binocular suppression properties, views for one 
eye are encoded with high quality class and views for the other eye are encoded using a 
low-quality class. Our scheme adapts the QCCs for different views at run time 
depending upon the current battery level. 

Hierarchical Rate Control: The Hierarchical Rate Control (HRC) for Multiview 
Video Coding employs a joint solution for the multiple actuation levels of rate control. 
The proposed HRC employs a Model Predictive Control-based rate control that jointly 
considers GOP-phase and frame-level stimuli to accurately predict the bit allocation and 
define an optimal control action at coarse-grain. This guarantees smooth bitrate and 
video quality variations along time and view domains while supporting any MVC 
hierarchical prediction structure. To further optimize the bit allocation within the 
frames, the HRC implements a Markov Decision Process to refine the control action at 
BU-level taking into consideration image properties to define and prioritize Regions of 
Interest (RoI). The fine-grained adaptation promotes an increase in objective and 
subjective video qualities inside the frame. The target bitrate at each time instant is 
predicted based on the bitrate distribution within the 3D-Neighborhood. 

Thresholds Definition Methodology: The energy-efficient algorithms, mainly those 
based on statistic-based heuristics, are very sensible to the thresholds. For this reason 
we consider the threshold definition methodology as part of this work. Our schemes 
employ QP-based threshold equations in order to guarantee proper reaction to changing 
QP values and keep the energy-efficiency. The thresholds for a subset of QPs are 
derived from extensive correlation statistical analysis of the 3D-Neighborhood. 
Probability Density Functions (PDF) considering a Gaussian distribution are typically 
used to model the coding properties distribution. The QP-based threshold equations are 
then modeled and formulated using polynomial curve fitting from the set of thresholds 
statically defined. 

3.5.3 Energy-Efficient Architectures 

The overview of our architectural contribution to the energy-efficient MVC 
realization is presented in the following. The implementation details are given in 
Section 5.  

Motion and Disparity Estimation Architectural Template: In this thesis we define a 
hardware architectural template for the ME/DE unit. This template was designed to 
facilitate the development and validation of our novel energy-efficient techniques. The 
hardware is composed of four main modules: (a) programmable search control unit, (b) 
shared SAD calculator, (c) on-chip video memory, and (d) address generation unit. 
Additional control and management hardware units may be added to this architectural 
template to implement novel techniques.  

Motion and Disparity Estimation Hardware Architectures: A pipelined hardware 
architecture was designed to fit the fast ME/DE algorithm introduced in 3.5.2. A multi-
level-pipelined parallel hardware architecture for ME/DE exploits four levels of 
parallelism inherent to the MVC prediction structure which are view, frame, reference 
frame and, MB levels. To improve reduce the energy consumption related to the 
memory leakage, another architecture is presented. The second solution features a 
multi-bank on-chip memory and the dynamic window formation-based power gating 
control. Finally, a application-aware dynamic power management is proposed and 
integrated to the third architectural proposal. The goal of the ME/DE architectures is to 
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deliver the performance for real-time ME/DE for up to 4 views HD1080p while 
reducing the overall energy consumption. 

Multi-Bank On-Chip Video Memory: Our multi-bank on-chip memory is designed to 
feed the SAD calculation by employing 16 parallel banks and provide high throughput 
in order to meet high definitions requirements. Each bank is partitioned into multiple 
sectors, such that each sector can be individually power-gated to reduced energy 
through leakage saving. The on-chip video memory behaves as a cache. Thus, it does 
not require complete reading of the entire search window. Only the required data is 
prefetched according to an application-aware prefetching technique such as dynamic 
window formation. The control of the power-gating is obtained from the application-
aware dynamic power management. The size and the organization of the memory are 
obtained by an offline analysis of the ME/DE memory and energy requirements within 
the 3D-Neighborhood. 

Memory Design Methodology: Based on the offline memory usage analysis, an 
algorithm is proposed to determine the size of the on-chip memory by evaluating the 
tradeoff of leakage reduction (on-chip energy) and cache misses (off-chip access 
energy; result of reduced-sized memory). Afterwards, the organization (banks, sectors) 
is obtained by considering the throughput constraint. Each bank is partitioned into 
multiple sectors to enable a fine-grained power management control. The data for each 
prediction direction is stored in distinct memory sections. 

Dynamic Search Window Formation-Based Date Reuse: Instead of prefetching the 
complete rectangular search window, a selected partial window is dynamically formed 
and prefetched for each search stage of a given fast ME/DE search pattern depending 
upon the search trajectory inferred within the 3D-Neighborhood. In other words, the 
search window is dynamically expanded depending upon the search history of 
neighboring MBs and the outcome of previous search stages. The search trajectories of 
the neighboring MBs and their spatial and temporal properties (variance, SAD, motion 
and disparity vectors) are considered to predict at run time the shape of the search 
window for the current MB. The goals are significantly reducing energy for off-chip 
memory accesses and reducing the total amount of on-chip memory bits. 

Application-Aware Dynamic Power Management: One key source of leakage is the 
big on-chip SRAM memory required to store a big rectangular search window, which is 
inevitable in case of DE. The unused regions of the rectangular search window indicate 
a waste of on-chip memory hardware. Therefore, significant leakage reduction may be 
obtained by reducing the size of the on-chip memory, while considering an analysis of 
the memory requirements of fast ME/DE schemes. Thus, an application-aware power-
management scheme is employed. Depending upon the fast ME/DE search pattern, 
search direction, MB properties, and 3D-Neighborhood memory usage, the amount of 
required data is predicted. Only the sectors to store the required data are kept powered-
on and the remaining sectors are voltage scaled to sleep power states. 

Each energy-efficient algorithm and architectural contribution introduced in this 
section is detailed in Chapters 4 and 5. They were designed and evaluated through 
simulations considering benchmark video sequences and recommended test conditions 
(SU, VETRO e SMOLIC, 2006)(ISO/IEC, 2011). The simulation setup and the energy 
reduction gains are presented, discussed and compared to the state-of-the-art in Chapter 
6. 
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3.6 Summary of Application Analysis for Energy and Quality 

The computational and energy requirements demanded for optimal MVC encoding 
are orders of magnitude beyond the reality of current embedded systems. As 
demonstrated along this section, MVC optimal encoding requires up to 1000BIPS while 
current processors delivers about 180MIPS. In this scenario, state-of-the-art batteries 
would be able to power the MVC encoder for just a few minutes. Thus, there is a need 
to reduce the MVC complexity and attack the main sources of energy consumption. 

As quantified along this section, mode decision and ME/DE represent more than 
90% of MVC encoder consumption. Moreover, in the ME/DE block, the memory-
related energy is dominant in relation to the computation-related energy. Aware of this 
behavior, a series of energy-oriented contributions are presented. 

Along this thesis are presented energy-efficient algorithms and hardware 
architectures to enable the real-world implementation of the MVC video encoder. 
Among the algorithms are a Multi-Level Fast Mode Decision and a Fast ME/DE 
algorithms. These solutions employ the 3D-neighborhood correlation to predict the full 
RDO-MD or to avoid unnecessary ME/DE searches. Additionally, an Energy-Aware 
Complexity adaptation algorithm is proposed to enable run-time adaptation in face of  
varying coding parameters and video inputs. To avoid eventual quality losses posed by 
these heuristic-based algorithms, a Hierarchical Rate Control is presented. 

Motion and disparity estimation architectures are proposed in order to provide real-
time performance and increased energy-efficiency to the most complex MVC encoding 
block. The Fast ME/DE algorithm is considered along with on-chip memory design 
techniques to reduce energy consumption. Moreover, the on-chip memory employs 
multiple power states controlled by our Application-Aware Dynamic Power 
Management. The external memory accesses are reduced by the Dynamic Search 
Window Formation algorithm. 
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4 ENERGY-EFFICIENT ALGORITHMS FOR 
MULTIVIEW VIDEO CODING 

The energy consumption in MVC encoding is directly related to the high 
computational effort and the intense memory access driven by the data processing. 
Therefore, the energy-efficient algorithms for the Multiview Video Coding proposed in 
this thesis are based on complexity reduction and complexity control techniques. 
Moreover, in addition to the energy consumption perspective, meaningful complexity 
reduction is also required at the performance perspective in order to make MVC real-
time encoding feasible for real-world embedded devices. 

Therefore, this chapter presents the proposed energy-efficient algorithms targeting 
complexity reduction for the Multiview Video Coding through fast mode decision and 
fast motion and disparity estimation techniques. An energy-aware complexity 
adaptation algorithm designed to offer run-time adaptivity to changing scenarios 
(battery level, user constrains, video content) of battery-powered embedded devices is 
further presented. Aware of the rate-distortion losses posed by such complexity 
reduction techniques we also present a video-quality management technique to avoid 
visual degradation. The quality management employs a rate control unit able to 
maximize the video quality for a given target bitrate while providing smooth quality and 
bitrate variations at spatial, temporal and disparity domains. 

The studies of correlation within the 3D-Neighborhood build the foundation for all 
algorithms proposed in this chapter. These studies are detailed along the chapter and 
contemplate the coding mode, motion and disparity fields and bitrate allocation. 
Additionally, the profiling of the mode distribution and motion/disparity vectors are key 
enablers for energy-efficient solutions able to provide high complexity reduction at a 
negligible cost in terms of coding efficiency. 

4.1 Coding Mode Decision 

Two coding mode decision algorithms are presented in the current section, the Early 
SKIP and the Multi-level Fast Mode Decision that also encapsulates the concepts 
exploited in the Early SKIP algorithm. Before moving to the algorithms description we 
present the analyses that build the ground foundation behind these algorithms. 

4.1.1 Coding Mode Correlation Analysis 

In this section is discussed the 3D-Neighborhood correlation considering the coding 
mode used for the different macroblocks in a video sequence. It discusses the mode 
distribution profiling and presents a statistical analysis considering coding modes, 
RDCost correlation and video properties for multiple multiview video sequences. 
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4.1.1.1 Coding Mode Distribution Analysis 

The graph presented in Figure 4.1 quantifies the mode distribution in anchor and 
non-anchor frames of the Ballroom and Vassar sequences for various QP values (22-
37). In anchor frames the mode distribution follows the typical distribution trend of 
H.264/AVC-based encoding at lower QPs (HUANG, HSIEH, et al., 2006), i.e. more 
Intra-coded MBs at lower QP values and more SKIP and large block partitions of Inter-
coded MBs at higher QP values. On the contrary, for non-anchor frames, a major 
portion of the total MBs (50-70%) is encoded as SKIP for QP>22. The percentage of 
the SKIP-coded MBs goes up to 93% (average 63%) in Vassar, a well-known test video 
which has slow-motion sequences. The second dominant mode is Inter-16x16. Notice 
that, for QP>27, the percentage distribution of the Intra-coded MBs in non-anchor 
frames diminishes to less than 1%. 
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Figure 4.1: Coding mode distribution in test video sequences 

The uneven mode distribution for non-anchor shows there is a great potential of 
complexity reduction in the non-anchor frames if the SKIP or Inter-16x16 coding mode 
are correctly predicted for a MB. In the following analysis, we show that 
variance/gradient information in conjunction with the coding mode and RDCost 
correlation in the 3D-Neighborhood provides a good prediction of the SKIP and/or 
Inter-16x16 coding modes. 

The mode distribution analysis provides high-level information about the features of 
a video sequence. This analysis is required for relating the distribution of predictions 
modes to the video features for a given QP. An in-deep analysis is provided in Section 
4.1.1.2 where Figure 4.2 provides a subjective analysis of the optimal mode distribution 
in the Ballroom sequence encoded using the exhaustive RDO-MD.  

4.1.1.2 Analyzing the Coding Mode Correlation 

The first observation provided by Figure 4.2 is the distinct mode distribution in the 
anchor and non-anchor frames. It is noteworthy that the number of SKIP coded MBs is 
much higher in the non-anchor frames. This is due to the fact that a higher correlation 
space is available for non-anchor frames compared to the anchor ones and, 
consequently, there is higher likelihood to provide a better prediction employing the 
SKIP mode. 

The upscaled frame (S0T1) of Ballroom sequence in Figure 4.2 demonstrates that 
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most of the MBs in the background of the scene (spectators and wall) and partially 
foreground objects (suits of the dancers and floor) of a non-anchor frame are encoded 
using the SKIP mode. The MBs at the object borders (dancers) are encoded using 
temporal-/view-prediction modes (i.e. Inter-coded MBs) or spatial-prediction modes 
(i.e. Intra-coded MBs). Only a few high-textured MBs containing moving spectators in 
the background are encoded using spatial-/temporal-/view-prediction modes. 

Note in Figure 4.2 that the MBs belonging to the same region tend to use the same 
coding mode when considering spatial, temporal or disparity collocated MBs. For 
instance, consider frame S0T1, the dancer borders share the same coding mode used by 
the spatial neighboring MBs that belong to this border. Also, the same coding mode 
tends to be shared with temporal and disparity collocated MBs in frames S0T2 and 
S1T1, respectively. 
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Figure 4.2: Visual coding mode correlation 

However, different neighboring MBs in the 3D-Neighborhood exhibit different 
amount of correlation to the current MB. Figure 4.3 shows the coding mode hits 
(averaged over various QPs and video sequences) using the exhaustive RDO-MD. A 
coding mode hit corresponds to the case when the optimal coding mode of a neighbor is 
exactly the same as that of the current MB. Otherwise it is given as a coding mode miss. 
The coordinates on the x- and y-axis correspond to the MB number in the corresponding 
column and row of a frame, e.g., (2,4) means the 2nd MB of the 4th row. The eight 
neighbor frames in the 3D domain are evaluated and named according to the cardinal 
points presented in Figure 7. There are total 44 neighbors: 4 spatial, 18 temporal, 18 
disparity, and 4 disparity-temporal. Note, the disparity and disparity-temporal neighbors 
consider the GDV rounded to an integer number of MBs. 

Figure 4.3 illustrates that the spatial neighbors in the current frame exhibit the 
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highest coding mode correlation to the current MB (i.e. hits>70%) followed by the 
disparity neighbors in the North and the South view frames (i.e. hits>66%). The coding 
mode hits of the disparity neighbors is less than that of the spatial neighbors due to the 
variations near the object borders and an inaccuracy in the GDV. The lower number of 
hits for the temporal and disparity-temporal neighbors is basically due to the motion 
properties. On overall, for non-anchor frames, in more than 98% of the cases the 
optimal coding mode of an MB is present in the 3D-Neighborhood. It means that by 
testing the coding modes of all 44 neighbors it is highly probable to find the optimal 
coding mode for the current MB (more than 98% of the MBs in the current frame). 
Moreover, due to the availability of a limited set of optimal coding modes in the non-
anchor frames (typically much less than the number of modes tested in an exhaustive 
RDO-MD), a significant complexity reduction may be achieved. 
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Figure 4.3: Coding mode hits in the 3D-Neighborhood 

As discussed above, there is a big potential of finding the optimal encoding mode in 
the 3D-Neighbohood. However, a big number of different coding modes may exist in 
this neighborhood. Thus, in order to reduce the number of probable modes, additional 
information is needed. In this thesis we consider video and image properties and the 
RDCost as additional information. The study related to these properties is presented in 
the following sections.  

4.1.1.3 Analyzing the Video Properties 

Along our studies multiple video and image properties - including variance, 
brightness, edges and gradient - were evaluated in order to provide useful information to 
build fast mode decision algorithms. Among these properties, variance and gradient 
information showed to be the most helpful to identify highly correlated neighboring 
MBs and their possible coding modes. The complete evaluation based on statistical 
analysis for the variance is presented below. For that, multiple video sequences were 
considered while assuming a Gaussian distribution for the video properties. The 
variance is defined in Eq. (4.1) while horizontal (∆x) and vertical (∆y) gradients are 
determined by Eq. (4.2), where ρi represents the pixels of a MB. 
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(4.2) 

Figure 4.4 shows different PDF (Probability Density Function) plots for the variance 
related to various coding modes. It is noticeable that the peaks for the SKIP and Inter-
/Intra-16x16 modes are at 400 and 700, respectively. Therefore, MBs with low variance 
are more likely to be encoded as SKIP than Inter-/Intra-16x16. On the contrary, MBs 
with high variance (1500-2500) are more likely to be encoded using smaller block 
partitions. The PDFs for gradient are omitted, however, they have a similar distribution 
to that of the variance. 
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Figure 4.4: Variance PDF for different coding modes 

Since there is a considerable overlap between the PDFs of 16x16 and smaller block 
partitions, in order to obtain a more robust/accurate prediction about the coding modes, 
RDCost (see Section 4.1.1.4) and coding mode correlation in the 3D-Neighborhood are 
considered along with the variance and gradient information. 

4.1.1.4 Analyzing the RDCost 

In order to determine which neighbor has a probable coding mode hit or miss, we 
compute the difference between RDCost of a neighbor and the predicted RDCost of the 
current MB (as the actual RDCost is not available before the RDO-MD process). In the 
following we analyze the relationship between the RDCost difference and the above 
discussed coding mode hit/miss. Figure 4.5a presents the PDF for the RDCost 
difference for coding mode hits and misses in case of the SKIP mode. The PDF shows 
that a SKIP coding mode can be predicted with a high probability of a hit when the 
variance of an MB is low. Figure 4.5b and Figure 4.5c show MB-wise surface plot of 
the RDCost difference (averaged over all frames of the Ballroom sequence) for hits and 
misses, respectively. These plots demonstrate that most of the hits occur when the 
RDCost difference is below 10K, while the number of miss increases when the value of 
RDCost difference goes above 70K. This behavior also conforms to the PDFs in Figure 
4.5a. This analysis shows that the value of RDCost difference provides a good hint for a 
hit in case of a SKIP coding mode. Similar behavior was observed in the hit and miss 
PDFs for other coding modes. Here, we discuss the PDFs for the SKIP mode as an 
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example since it is the dominant coding mode in non-anchor frames, especially for 
higher QP values. 
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Figure 4.5: (a) PDF for RDCost difference (between the current and the neighboring 
MBs) for SKIP hit and miss; (b, c) Surface plots of RDCost difference for the SKIP 

coding mode hit and miss; (d) RDCost predition error for spatial neighbors 

Figure 4.6 presents the PDFs of predicted RDCost for different coding modes. 
Variable shapes of the PDFs already hint towards the exclusion of improbable mode for 
a given value of the predicted RDCost. Since a good prediction is important to 
determine a near-optimal coding mode, we have evaluated the accuracy of the predicted 
RDCost and optimal RDCost to analyze the risk of misprediction. 
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Figure 4.6: PDF of RDCost for different prediction modes of the of Ballroom sequence  

Once the RDCost is not available without the exhaustive RDO-MD we tested 
different predictors for the current MB RDCost in the 3D-Neighborhood. After 
analyzing the mean and median RDCosts predictors, we have determined that the 
median RDCost of the spatial neighbors (see Eq. (4.3)) provides the closest match to the 
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optimal RDCost. In Eq. (4.3) 
L

S , 
T

S , and 
TL

S represent left, top and top/left spatial 

neighbors, respectively. 

Pr edCurr L T TLRDCost Median( S , S , S )=  (4.3) 

Figure 4.5d shows the optimal RDCost vs. predicted RDCost for each MB in 36 
frames of the Vassar 3rd view. It illustrates a high correlation between the two values 
(approximately 0.88). Figure 4.7 shows the error surface for the predicted RDCost 
compared to the optimal RDCost highlighting the regions of misprediction (i.e. borders 
of the moving objects). 
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Figure 4.7: Average RDCost prediction error for spatial neighbors in Vassar Sequence  

4.1.1.5 Coding Mode Analysis Summary 

Our detailed analysis illustrates that it is possible to accurately predict the optimal 
coding modes, mainly for non-anchor frames, if the coding mode distribution, video 
statistics, and RDCost correlation in the 3D-Neighborhood are considered. It leads to a 
high potential of complexity and energy consumption reduction during the MVC 
encoding process. The main conclusions that enable our fast algorithms are summarized 
below. 

• SKIP MB is the dominant prediction mode (47-97%) in non-anchor frames for 
QP>27. 

• The inter-coded MBs with big partitions are dominant over the smaller partitions 
and intra-coded MBs in non-anchor frames. 

• Different prediction modes exhibit different variance, gradient, and RDCost 
properties which may be used to identify more- and less-probable coding modes for 
fast mode decision. 

• The spatial, temporal, and view neighborhood exhibit up to 77%, 62%, and 69% 
coding mode hits, thus there is a high-probability to find a correct prediciton of the 
coding mode in the 3D-Neighborhood. 

• RDCost provide means to identify neighbors with relatively high hit probability at 
run-time. 

• The median RDCost of the spatial neighbors provide an accurate RDcost prediction 
for the current MB. 

• Mispredictions may occur at the object borders, objects with high motion, and in 
the foreground objects where the displacement is different from GDV. 
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4.1.2 Early SKIP Prediction 

In this section is presented the adaptive early SKIP mode decision scheme for Multi-
view Video Coding based on 3D-Neighborhood correlation (ZATT, SHAFIQUE, et al., 
2010), variance and RDCost properties, as discussed in previous section. The algorithm 
handles an adaptive QP-based thresholding in order to react to the changing QP 
sustaining the complexity reduction for all QP range. 

4.1.2.1 Algorithm for Adaptive Early SKIP Mode Decision 

Figure 4.8 presents the flow of our proposed adaptive early SKIP mode decision 
algorithm. It evaluates the RDCost, variance, and mode hits in the 3D-Neighborhood 
using QP-based adaptive thresholds. To ensure a high probability of correct SKIP mode 
decision at least two out of three criteria must be satisfied, as shown in Step 2-3 below. 
The steps are: 

Step 1) The RDCost of SKIP mode (RDCostSKIP) is computed for the current MB. 
Step 2) If RDCostSKIP is less than THRD (Eq. (4.5)), to select the SKIP mode, the MB is 

additionally checked for variance (using THVar, Eq. (4.6)) or percentage 
neighbors with mode hits (using THNbHits, Eq. (4.7)). 

Step 3) Otherwise, conditions for both variance and mode hits in the 3D-Neighborhood 
need to be satisfied to select the SKIP mode. 

Step 4) If the early SKIP mode is selected, the current MB is encoded using the SKIP 
mode and all other modes are not evaluated, i.e. DE and ME are completely 
bypassed. 

Step 5) Otherwise, the exhaustive RDO-MD is used to select the optimal coding mode. 

Note, in the step 5, any fast RDO-MD may also be employed. However, we use 
exhaustive RDO-MD to demonstrate the benefit of our early SKIP mode decision 
scheme. The thresholds are defined using the offline statistical analysis detailed in 
Section 4.1.2.2 and Section 4.1.2.3. The goal is to define QP-based thresholds that lead 
to decisions with high probability hit considering a Gaussian distribution model. 

 
Figure 4.8: Early SKIP prediction algorithm 

 

4.1.2.2 RDCost and Variance Thresholding for Early SKIP 

To determine the thresholds for early SKIP mode decision, we analyze the 
Probability Density Function of the RDCost of MBs that are encoded as SKIP MBs 
when using the exhaustive RDO-MD. Figure 4.9 shows the PDFs for the Vassar 
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sequence encoded using various QP values. Notice that the PDF for QP 27 shows a 
concentrated distribution centered in a relatively low RDCost range, i.e. a small average 
(µ) and standard deviation (σ). Contrarily, the PDFs for relatively high QPs (32-42) 
exhibit a low peak centered in a relatively high RDCost range. 

For an accurate early SKIP mode decision, the SKIP mode RDCost of the current 
MB needs to lie in the zone of high probability in the PDF, i.e. RDCostSKIP < µ+σ. 
Assuming a Gaussian distribution, we can compute the area of the high probability zone 
as follows in Eq. (4.4). 

F(µ+σ; µ , σ
2
) - F(0; µ , σ

2
) ≈ 0.84 (4.4) 

Eq. (4.4) shows that up to 84% MBs have the high probability to be coded as SKIP. 
We define these points of high probability as the RDCost thresholds (THRD) for 
predicting a SKIP coding mode (diamond points in the Figure 4.9). Different points for 
different QPs are used to derive the QP-based threshold Eq. (4.5) using polynomial 
curve fitting. 

THRD = 4.06QP
3
 – 279.89QP

2
 + 6755.90QP – 53541 (4.5) 
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Figure 4.9: PDF of RDCost for SKIP MBs 

Figure 4.10 demonstrates a similar statistical analysis using the variance property of 
a SKIP MB. It shows that the SKIP MBs have a PDF peak in the low variance range 
compared to other inter-/intra-coded MBs. The variance thresholds (THVar) for 
predicting a SKIP coding mode are computed in the same way as of THRD, i.e. VarMB < 

µ+σ. The QP-based threshold is given by Eq. (4.6). 

THVar = 0.02QP
3
 – 2.02QP

2
 + 72.30QP + 196.04 (4.6) 
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Figure 4.10: PDF of Variance for different prediction modes  

From Figure 4.10 it is possible to notice the overlap between PDFs of SKIP MBs and 
other coding modes. Therefore, to obtain an accurate SKIP mode decision, in addition 
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to the RDCost and variance properties, the SKIP mode correlation in the 3D-
Neighborhood is also considered. 

4.1.2.3 SKIP Mode Correlation Thresholding  

To quantify the SKIP mode correlation in the 3D-Neighborhood we have considered 
a total of 44 neighbors: (i) 4 spatial, (ii) 18 temporal (previous and next frames), (iii) 18 
disparity (top and bottom views), and (iv) 4 disparity-temporal (top and bottom views of 
the temporal frames). The disparity and disparity-temporal neighbors consider the 
Global Disparity Vector (GDV) displacement. If the optimal coding mode of a neighbor 
(out of many in a given set of neighbors) is the same as that of the current MB, it is 
called a mode hit. Figure 4.11 shows that the number of mode hits in the 3D-
Neighborhood is greater than 88% for the Vassar sequence (QP 27). For a higher QP, 
the number of mode hits is even higher. It is noteworthy that when considering all of the 
44 neighbors, the number of mode hits is almost 100%, i.e. at least one neighbor 
accurately predicts the SKIP mode. 
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Figure 4.11: Analyzing the mode hits in the 3D-Neighborhood 

If many neighbors exhibit a mode hit, there is a high probability that the current MB 
is also a SKIP MB. This assumption is more likely to be true for non-anchor frames. 
Figure 4.12 presents the PDFs of percentage neighbors encoded as SKIP MBs (i.e. 
mode hits) for the Vassar sequence encoded using various QPs. Since in several cases 
some neighbors are not available (for instance, MBs at boundaries or MBs in the first 
encoded view), we consider percentage of SKIP-coded neighbors instead of an absolute 
number. A high probability zone can be defined as: %Nbhits > µ – σ. The QP-based 
threshold equation is given in Eq. (4.7). 

THNbHit = 0.006QP
3
 + 0.64QP

2
 -19.31QP+206.12 (4.7) 
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Figure 4.12: PDF of percentage neighbors with SKIP mode hits  

4.1.2.4 Early SKIP Complexity Reduction Evaluation 

While this thesis overall results are presented in Chapter 6, here are present some 
detailed results for the Early SKIP algorithm. Table 4.1 provides the detailed results for 
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∆PSNR, ∆Bitrate (BR), and time saving (TS) compared to the exhaustive RDO-MD. 
Our scheme achieves up to 77% time saving (avg. TS=56%). The early SKIP algorithm 
maintains the time savings for the complete QP range due to our adaptive QP-based 
thresholding.  

Table 4.1: Detailed Results for ∆PSNR, ∆Bitrate, and Time Savings (TS) compared to 
the exhaustive RDO-MD 

Video  QP Our Scheme 
  TS   (%) ∆PSNR (dB) ∆BR (%) 

Ballroom 

27 39.72 0.095 -0.28 
32 37.66 0.091 -0.57 
37 40.54 0.085 -0.12 
42 43.82 0.108 0.20 

Exit 

27 57.41 0.128 -0.47 
32 62.14 0.157 1.07 
37 65.85 0.227 1.06 
42 70.90 0.268 -0.66 

Vassar 

27 59.25 0.076 -1.500 
32 70.68 0.075 -3.438 
37 75.40 0.073 -2.803 
42 77.56 0.063 -4.868 

Rena 

27 46.61 0.285 -1.242 
32 50.34 0.299 -2.277 
37 54.72 0.324 -2.489 
42 58.54 0.395 -2.706 

Average 

27 50.75 0.146 -0.87 
32 55.20 0.155 -1.30 
37 59.13 0.177 -1.09 
42 62.70 0.209 -2.01 

Avg. 56.95 0.172 -1.32 

Figure 4.13 presents a deeper analysis chart of the time savings of our scheme for 
different views of two sequences. The first view presents less time saving due to the 
fewer number of available neighbors with mode hits. In Exit video, the odd views (i.e., 
1, 3, 5) – with top and bottom views available – present higher time saving due to a 
relatively high number of mode hits in the neighboring views. The large number of 
SKIP MBs in Vassar results in high time saving for all views. 
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Figure 4.13: View-level time saving of our Scheme  

In Figure 4.14 is presented the frame-level results of our early SKIP mode decision 
scheme for the first 50 non-anchor frames in the first 3 views of the Exit sequence. 
Anchor frames were omitted from these graphs due clarity reasons. The PSNR curves 
show that View 0 has relatively less PSNR loss compared to other views. However, it 
also provides relatively less time savings. Due to high SKIP mode hits in the 3D-
Neighborhood, View 1 provides a relatively higher time saving and lower PSNR loss 
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compared to View 2. Note that the sudden variations in the curves (i.e., valleys in Figure 
4.14) occur at the middle of GOP, where the temporal neighbors are from the anchor 
frames (thus a low number of mode hits). The variations are higher in View 0 (TS ≈ 
20%) due to the unavailability of the disparity neighbors. 
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Figure 4.14: PSNR, percentage of MBs selected as early SKIP and time saving for non-
anchor frames (Exit, QP=32). 

This section presented the early SKIP mode decision algorithm that detects the high 
probability of SKIP occurrence and avoids the processing of all other coding modes. 
The 3D-Neighborhood correlation and video properties are used to guarantee algorithm 
accuracy while reducing RD losses. 
4.1.3 Multi-Level Fast Mode Decision 

In Section 4.1.2 an Early SKIP prediction algorithm was proposed. However, other 
optimizations may be proposed to further reduce the MVC computational complexity 
and energy consumption within the mode decision scope. Therefore, in this section we 
propose a complete multi-level mode decision scheme (ZATT, SHAFIQUE, et al., 
2010) based on the 3D-Neighborhood correlation and exploitation of additional 
statistical and video information. 

The detailed flowchart of our multi-level fast mode decision for non-anchor in MVC 
is presented in Figure 4.15. The scheme operates in 6 phases: (i) RDCost-based 
confidence-level ranking, (ii) early SKIP prediction, (iii) evaluating high-confidence 
modes, (iv) evaluating low-confidence modes, (v) video properties based mode 
decision, and (vi) size/direction-based mode decision. At the end of each phase (except 
for phase i), a condition is evaluated for early termination of the scheme. We explain 
these phases in the subsequent sections. 
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Figure 4.15: Overview of the multi-level fast mode decision  

4.1.3.1 RD-Cost Confidence Level Ranking 

Firstly, the 3D-Neighborhood information is fetched and the RDCost for the current 
MB is predicted using the spatial neighbors considering their high ratio of coding mode 
hits (Eq. (4.8)). A list of candidate prediction modes (CandidateList) is formed from the 
3D-Neighborhood. Each candidate mode is associated with a rank value (RMODE). This 
value is calculated as the accumulated confidence level of the neighbors with the similar 
coding mode (CLNBi(Mode), Eq. (4.9) and (4.10)). This confidence level of a neighbor is 
computed by evaluating the normalized difference (NDiff) between its actual RDCost 
and the predictive RDCost for the current MB (Eq. (4.11)). Note that the confidence 
level calculation depends upon the quality of RDCost prediction (Section 4.1.1.4). The 
candidate list is then sorted according to the rank value (Eq. (4.12)). 

Pr edCurr L T TLRDCost Median( S , S , S )=  (4.8) 

=
= ∑

44

M O D E N B i
i 1

R C L ( M ode )  (4.9) 

=N B i iC L ( M ode ) ( C lip( N D iff ( N B ), 0 , 1 ))  (4.10) 

= − −i Pr edCurr N MAXNDiff ( NB ) 1 Abs( RDCost RDCost ) / Diff  (4.11) 

= SKIP IN TER 16 x 16 IN T RA 4 x 4C andidateL ist Sort( R , R , ..., R )  (4.12) 

where NBi is the i
th neighbor,  DiffMAX is the maximum RDCost difference. The Sort 

function in Eq. (4.12) sorts the values in a descending order. 

4.1.3.2 Early SKIP Prediction 

Based on the analysis of high SKIP MBs distribution in non-anchor frames (Section 
4.1.1.1), our scheme employs an early SKIP prediction based on the algorithm 
presented in Section 4.1.2. In case a SKIP mode is correctly predicted, significant 
complexity reduction is obtained as the ME and DE are entirely skipped. This early 
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SKIP mode prediction is only performed if sufficient correlation is available in the 3D-
Neighborhood. To avoid a misprediction (that may result in significant PSNR loss) the 
early SKIP prediction depends upon three conditions considering the mode rank, 
variance, and RDCost, as presented in Eq. (4.13). 

>

= <

<

SK IP R a nk

V ar

P r edC urr R D

(( R T H )& &

E a rlyS K IP ( V a ria n ce T H )& &

( R D C o st T H ))

 (4.13) 

The QP-based thresholds for RDCost (THRDCost_ES) and variance (THVar_ES) were 
obtained using the corresponding PDF analysis. The area of high probability (i.e. the 
grey-filled area in Figure 4.16) is considered as the average plus one standard deviation. 
A threshold is thereby given as TH = µ + σ. The PDFs for four different QP values are 
used to determine four thresholds at different QPs. A QP-based threshold formulation is 
obtained using the polynomial curve fitting. Figure 4.17 presents thresholds 
(THRDCost_ES and THVar_ES) for four QPs and the corresponding curve fitting. The 
threshold for ranks (THR_ES) was obtained (using an exhaustive analysis) as 15% of the 
total confidence level accumulated on the entire CandidateList (i.e. sum the ranks of all 
modes). 
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Figure 4.16:  PDF showing the area of high probability as the shaded region 
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Figure 4.17:  Early SKIP threshold curves for (a) RDCost and  (b) Variance 

4.1.3.3 Early Mode Decision Terminator 

After the early SKIP mode prediction, the tested mode is evaluated for the early 
mode decision termination. If the tested RDCost is bigger than the threshold THET, the 
mode decision proceeds to the next phase. Otherwise, the mode decision is terminated 
and the best tested mode is used for encoding the current MB. 

The threshold for early mode decision termination controls the achieved complexity 
reduction and the resulting PSNR loss. An excessively high value threshold provides 
high complexity reduction at the cost of severe PSNR loss. We have performed an 
exhaustive analysis to determine these thresholds. Figure 4.18 shows the RD-curve for 5 
different test threshold values and their corresponding complexity reduction (bars) for 
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QP=32. It is noted that THET = 5000 provides minimal PSNR loss and low complexity 
reduction, while THET ≥ 10000 provides a high complexity reduction at the cost of 
considerable PSNR loss (i.e. > 0.15 dB). In order to provide a tradeoff between 
achieved complexity and the resulting quality loss, we propose two complexity 
reduction levels or complexity reduction strengths: 

•  Relax complexity reduction: it provides a reasonable complexity reduction 
while considering a low PSNR loss. 

•  Aggressive complexity reduction: it provides a high complexity reduction at the 
cost of a slightly higher PSNR loss (but still visually un-noticeable in many cases, as 
we will show in results section). 

From an exhaustive analysis of various multiview sequences (encoded using 
exhaustive RDO-MD), we obtained the plots and QP-based equations for Relax (blue) 
and Aggressive (red) complexity reduction (see  Figure 4.19). 

This early termination is employed after each phase of our dynamic complexity 
reduction scheme as explained in the subsequent sections. 
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Figure 4.18:  Evaluation of thresholds for Early Termination for (Ballroom, QP=32) 
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4.1.3.4 High Confidence Modes and Low Confidence Modes 

The modes in the sorted CandidateList are partitioned into high-confidence and low-

confidence modes using THHighCL. The threshold THHighCL is determined (using an 
exhaustive analysis) as 25% of the total confidence level accumulated on the entire 
CandidateList. First, all of the high-confidence modes (i.e. RMODE ≥ THHighCL) are 
evaluated. Afterwards, the condition for early termination is evaluated. If the condition 
is not satisfied, all of the low-confidence modes (i.e. RMODE < THHighCL) are evaluated. If 
the termination condition is not satisfied after evaluating the low-confidence modes, the 
mode decision proceeds to the next phase. 

4.1.3.5 Video Properties-based Mode Prediction 

As discussed in Figure 4.1, SKIP and Inter-16x16 are the two most occurring modes 
in the non-anchor frames. In case sufficient correlation is not available in the 3D-
Neighborhood, the variance property of a frame is considered to evaluate SKIP and 
Inter-16x16 coding modes (in case these were not evaluated in the previous phases). 
The thresholds used in the conditions of this phase are derived using the PDFs presented 
in section 4.1.1.3 considering the region of high-probability as discussed in Figure 4.16. 

4.1.3.6 Texture Direction-based Mode Prediction 

In the last phase a texture direction based prediction is employed to evaluate modes 
other than SKIP and Inter-16x16 (if they were not tested in the previous phases). The 
direction of the gradient is considered to exclude improbable modes. The RDCosts of 
Inter-16x16 and Inter-8x8 modes are compared to determine whether to evaluate bigger 
or smaller partitions for the current MB. If the RDCost of Inter-16x16 is less than that 
of Inter-8x8, larger partitions (Inter-16x8 or Inter-8x16) are evaluated depending upon 
the dominant direction of the gradient. Otherwise, smaller partitions (i.e. Inter-8x4 and 
Inter-4x8) are evaluated accordingly Figure 4.15. 

In case of larger partition, SKIP mode is always tested (if not tested in the earlier 
phases). Similarly, Inter-4x4 is always tested in case of smaller partitions (if not tested 
in the earlier phases). Finally, after all the processed phases, the best mode (i.e. the 
mode with the minimum RDCost) is used for coding the current MB.  

4.1.3.7 Multi-Level Fast Mode Decision Evaluation 

The detailed results of our multi-level fast mode decision algorithm compared to the 
RDO-MD solution implemented in the JMVC are presented along this section. Table 4.2 
presents the results for ∆PSNR, ∆Bitrate, and complexity reduction (i.e. time saving, 
TS). For JMVC using the exhaustive RDO-MD the results are presented in coding time 
(column T, in seconds), PSNR (dB) and Bitrate (column BR, in kbps). The values for a 
certain QP value are obtained by averaging over all eight views. The last row named 
Average presents the average results over all sequence. The experiments were 
performed for 8 views considering IPB view coding order. For more details on the 
experimental setup refer to Section 6.1. 

Figure 4.20 illustrates the PSNR (lines) and time savings (bars) comparison of Relax 
and Aggressive levels averaged over all views and QPs for Ballroom and Exit 
sequences. It is noted that the difference between the RD-curves of Relax and 
Aggressive is more significant at low-bitrates and this difference diminishes at higher 
bitrates. The time savings of the Aggressive level are significantly higher compared to 
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Relax level at higher bitrates while providing slight RD difference. Relax scheme was 
developed to keep video quality in all QP ranges and for this reason is forced to reduce 
TS for big and small QP ranges presenting higher TS for intermediate QPs. In 
Aggressive scheme the higher TS is prioritized for the whole QP range. 

Table 4.2: Detailed Results for ∆PSNR, ∆Bitrate, and Time Savings Compared to the 
Exhaustive RDO-MD 

 

Video Sequence QP JMVC Proposed Relax Proposed Aggressive 

  
T 

[sec] 
PSNR 
[dB] 

BR 
[kbps] 

TS 
[%] 

∆PSNR 
[dB] 

∆BR 
[%] 

TS 
[%] 

∆PSNR 
[dB] 

∆BR 
[%] 

Ballroom 

22 2682.53 41.111 3176.849 54.77 0.005 2.923 59.03 0.002 5.820 
27 2490.47 38.415 1319.736 61.23 0.039 3.015 70.12 0.038 10.150 
32 2315.22 35.667 654.338 57.04 0.039 0.934 65.71 0.084 3.060 
37 2121.62 32.884 360.162 52.67 0.025 0.453 63.07 0.065 1.500 

Exit 

22 2671.07 41.601 2114.453 60.29 0.006 3.937 67.68 0.045 7.510 
27 2268.79 39.456 652.491 71.36 0.016 2.402 80.08 0.099 12.090 
32 2065.18 37.508 292.673 70.19 0.030 1.101 78.10 0.109 5.910 
37 1900.21 35.293 163.436 67.92 0.043 0.357 78.37 0.123 2.060 

Vassar 

22 2963.66 40.743 3007.434 55.26 0.001 2.837 69.35 0.001 5.470 
27 2519.33 37.828 850.324 77.18 0.021 1.198 81.24 0.001 11.250 
32 2114.88 35.490 259.826 76.59 0.020 -0.028 82.44 0.055 3.450 
37 1827.57 33.294 117.428 74.69 0.008 -0.196 82.23 0.034 3.660 

Race1 

22 4908.26 42.340 2549.767 64.55 0.006 8.349 78.10 0.005 11.550 
27 4631.98 39.422 1182.855 71.70 0.036 6.514 80.09 0.028 17.800 
32 4269.55 36.501 552.949 70.49 0.036 3.443 78.13 0.064 9.800 
37 3806.22 33.795 294.763 69.05 0.028 1.543 74.92 0.074 6.650 

Rena 

22 2238.63 46.555 1347.801 68.54 -0.205 12.283 67.09 -0.212 22.960 
27 1960.61 43.846 587.514 70.55 -0.215 14.289 70.44 -0.310 36.550 
32 1685.64 40.535 293.333 71.79 0.028 6.971 70.87 -0.220 33.740 
37 1452.22 37.396 163.581 66.58 0.043 3.038 73.03 -0.154 26.880 

Akko&Kayo 

22 2644.20 43.53 1743.05 65.67 -0.056 10.152 66.81 -0.050 14.770 
27 2560.85 40.79 808.48 69.66 -0.015 9.395 74.27 -0.020 21.920 
32 2466.77 37.59 433.65 65.66 0.036 3.130 71.05 0.000 15.280 
37 2320.73 34.45 254.24 59.72 0.023 1.597 70.02 0.020 8.970 

Breakdancers 

22 5893.46 41.449 4899.089 53.81 0.002 5.393 62.39 0.004 7.150 
27 4817.77 39.841 1454.553 63.14 0.038 7.492 76.10 0.061 12.910 
32 4116.45 38.432 667.955 62.98 0.054 7.861 74.95 0.111 11.700 
37 3487.59 36.629 378.932 59.53 0.094 3.615 76.11 0.237 7.150 

Uli 

22 4826.40 40.476 8152.865 44.35 -0.001 2.024 47.53 0.007 3.545 
27 4638.51 38.591 3801.339 61.34 0.013 3.245 66.62 0.048 5.488 
32 4326.23 36.238 2056.013 57.22 0.002 2.115 61.41 0.037 4.280 
37 3945.21 33.554 1162.239 61.54 0.078 3.676 68.11 0.137 7.150 

Poznan_ Hall2 

22 10737.88 42.9111 5149.584 63.48 -0.003 5.649 67.68 0.045 7.510 
27 8911.15 41.693 1417.539 69.02 0.016 5.124 80.08 0.099 12.090 
32 7778.938 40.303 693.789 65.46 0.020 3.913 78.10 0.109 5.910 
37 6702.69 38.606 420.110 61.56 0.047 1.269 78.37 0.123 2.060 

GT_Fly 

22 6334.83 41.247 6437.935 55.16 0.017 9.547 64.68 0.028 12.975 
27 5168.38 39.705 2029.539 59.98 0.042 8.832 72.68 0.052 10.685 
32 4511.77 38.280 946.270 62.40 0.044 6.562 67.60 0.079 8.655 
37 2185.58 36.819 610.563 59.74 0.051 3.217 67.00 0.116 9.984 

Average 

22 3603.53 42.226 3373.914 58.59 -0.023 6.310 65.03 -0.013 9.926 
27 3236.04 39.774 1332.162 67.52 -0.001 6.151 75.17 0.010 15.093 
32 2919.99 37.245 651.342 65.98 0.031 3.600 72.84 0.043 10.178 
37 2607.67 34.661 361.847 63.30 0.044 1.857 73.12 0.077 7.606 

AVG 3091.81 37.183 1172.794 63.85 0.013 4.479 71.54 0.029 10.701 
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Figure 4.20: Average tested modes (QP={22,27,32,37,42}, GOP=8, Views=8) 

 
View-Level Time Saving Evaluation 

A view-wise ∆PSNR and time savings comparison of Relax and Aggressive levels is 
provided in Figure 4.21 for the Exit sequence encoded using QP=32. Odd views – with 
north and south views (i.e. Views 1, 3, 5) available in the neighborhood – present higher 
time savings compared to the views with just one (i.e. Views 2/4/6/7) or none available 
neighboring views (i.e. View 0). Additionally, Views 1, 3 and 5 also present a smaller 
PSNR loss. This higher complexity reduction and reduced PSNR loss is due to the 
larger correlation space in the 3D-Neighborhood. It implies that more neighboring MBs 
are available for the prediction. Consequently, a more accurate CandidateList is 
generated. 
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Figure 4.21: View-level time savings and ∆PSNR comparison of Relax and 

Aggressive levels (Exit sequence, QP=32) 

Tested Modes Evaluation 

The high time savings provided by the multi-level mode decision comes from the 
reduced number of coding modes tested. Figure 4.22 provides the result of the average 
number of modes evaluated per MB considering the different operation modes. The 
Relax and Aggressive levels of our complexity reduction scheme process only 3.7 and 
2.3 modes per MB, respectively. 
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Figure 4.22: Average tested modes for all sequences 

The distribution of the evaluated modes for Relax and Aggressive complexity 
reduction levels is presented in Figure 4.23. It is noted that the number of SKIP mode 
increases for higher QPs while the number of other modes decreases accordingly. This 
behavior confirms the analysis of optimal mode distribution discussed in Section 
4.1.1.1. For QP 32 and above, the number of evaluated modes increases to maintain a 
high video quality.  
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Figure 4.23: Detailed number of evaluated modes for (a) Relax  

and (b) Aggressive (Exit Sequence) 

Frame-Level Time Saving Evaluation 

To analyze the frame-wise comparison of Relax and Aggressive levels, we have 
plotted the PSNR and time savings for View 0, 1, and 2 of Exit test sequence encoded 
using QP=32, as shown in Figure 4.24 and Figure 4.25. Please note that the plots only 
contain results for non-anchor frames, which are the primary focus for complexity 
reduction in this algorithm. 

There are 0, 1, and 2 available neighboring views available for the View 0, View 1 
and View 2, respectively (representing all possible cases). View 2 exhibits a higher 
∆PSNR and lower time savings while View 1 exhibits higher time savings and a lower 
∆PSNR for most of the frames when compared to the other plotted views. This ratifies 
the view-level results from Figure 4.21. 

The sudden variations (i.e. valleys) in Figure 4.25 correspond to the frames in the 
middle of the GOPs, i.e. frames that have temporal-neighbors from the anchor frames. In 
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this case, more intra modes are evaluated (in phase 3 and 4) in addition to the inter 
modes leading to a lower complexity reduction. View 1 due to the availability of all 
view-neighbors suffers less with such variations. 
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Figure 4.24: Frame-wise PSNR loss comparison of Relax and Aggressive levels (Exit, 

QP=32) 
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Figure 4.25: Frame-wise time saving comparison of Relax and Aggressive levels 

(Exit, QP=32) 

Multi-Level Mode Decision Algorithm Overhead  

The overhead of our complexity reduction scheme is already computed in the total 
processing time and time savings. Figure 4.26 compares the average overhead of the 
computational logic of our scheme with the average processing time of one MB 
encoded using different schemes. It is noted that the overhead is 0.15% of the average 
MB encoding time using the exhaustive RDO-MD. Figure 4.26 shows that the overhead 
of our scheme is insignificant compared to its time savings. 
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Figure 4.26: Overhead of our scheme 

In this section was presented the multi-level fast mode decision algorithm focusing 
on complexity reduction MVC that exploits the image properties, RDCost and the 
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correlation in the 3D-Neighborhood to provide complexity reduction with insignificant 
PSNR loss. Our detailed analysis provides the foundation for the proposed scheme. In 
order to react to the changing QP values, QP-based threshold equations are deployed.  

For a tradeoff between the desired complexity reduction and the resulting quality 
loss, two different operational levels are proposed for our scheme, the Relax and 
Aggressive modes. However, to better exploit the complexity reduction vs. RD 
performance, a control algorithm able to select at run time the most appropriate 
complexity reduction level is desirable. In the following section an energy-aware 
complexity adaptation based on fast mode decision is proposed.  

4.2 Energy-Aware Complexity Adaptation 

Besides the algorithms able to perform the fast mode decision, a complexity 
adaptation algorithm (SHAFIQUE, ZATT, et al., 2010) is required to adapt the mode 
decision at run time according to the changing application scenarios. Targeting MVC 
encoding systems where battery level, user constrains and video content may vary 
widely along the time, we propose in this section an energy-aware complexity adaptation 
for MVC targeting mobile devices. Our algorithm employs several Quality-Complexity 

Classes (QCCs), such that each class evaluates a certain set of coding modes (thus a 
certain complexity requirement) and provides a certain video quality. To support 
asymmetric view quality, views for one eye are encoded with high quality class and 
views for the other eye are encoded using a low-quality class. Our algorithm adapts the 
QCCs for different views at run time depending upon the current battery level. 

4.2.1  Employing Asymmetric View Quality 

A reduction in the complexity and energy consumption can be obtained by 
exploiting the binocular suppression theory which is based on the psycho-visual studies 
of stereoscopic vision (STELMACH e TAM, 1999). According to this study, if the 
video quality of left and right eye views differ, the overall perceived quality is close to 
the high-quality sharper view (STELMACH e TAM, 1999). However, for a blocky 
image, the perceived quality is the average of left and right eye views. Based on the 
binocular suppression theory (STELMACH e TAM, 1999) and considering the in-loop 
deblocking filter of MVC (JVT, 2008)  (that reduces the blocking artifacts), views for 
two eyes can be encoded at different qualities (i.e., exploiting asymmetric view quality), 
thus requiring different computational complexity. 

Figure 4.27 shows the MVC prediction structure for a four-view scenario employing 
asymmetric view quality. Assuming that the viewer is always exposed to adjacent views 
(Sn and Sn+1), the even views (S0 and S2) are encoded in higher quality while odd views 
(S1 and S3) are encoded in lower quality. In such way, the viewer sees one high quality 
and one low quality view resulting in a perception near to the high quality view. The use 
of high quality in even views is explained by the fact they are used as reference to odd 
views. 

Although in (STELMACH e TAM, 1999) the low quality frames were synthetically 
blurred for analysis, this knowledge can be extended to a real scenario and applied in 
techniques to reduce the MVC coding complexity. In our scheme, the odd views will be 
submitted to more aggressive mode decision resulting in a lower quality in relation to 
their neighboring views.  
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Figure 4.27: MVC coding structure for asymmetric coding 

In the following section is presented the energy-aware complexity adaptation 
algorithm besides of the Quality Complexity Classes (QCCs) and Quality States (QS) 
description. 

4.2.2  QCCs: Quality Complexity Classes 

In order to employ the asymmetric view quality and the battery level sensitivity to 
our scheme we define three Quality-Complexity Classes (QCCs). 

QCC 1: MBs of QCC 1 are exposed to the more aggressive mode decision of our 
scheme including SKIP and Inter 16x16 modes. Therefore, they have the 
lowest video quality and the higher complexity reduction. 

QCC 2: This class presents the intermediate video quality and complexity reduction. 
Modes of QCC 1 plus Intra 16x16, Inter 16x8, 8x16 and 8x8 are evaluated. 

QCC 3: More computational complex class and, consequently, the one that provides 
better video quality. It includes the coding modes available in QCC 1 and QCC 

2 plus small blocks such as Intra 4x4, Inter 8x4, 4x8 and 4x4. 

 
Figure 4.28: Energy-Aware Complexity Adaptation MVC Scheme 

Figure 4.28 presents the high level diagram of our scheme shown the mode decision 
flow. The QCCs are related to three different prediction phases according to the dashed 
blocks in Figure 4.28. QCC 1 is subject to Phase 1; QCC 2 to Phase 1 and Phase 2; and 
QCC 3 is subject to Phase 1, Phase 2 and Phase 3. However, even for QCC 2 and QCC 

3 big part of MBs are SKIP or Inter 16x16 and there is no need to test small block sizes. 
For this reason, the early prediction terminator zone (EPTZ) was defined. 
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4.2.3  Mode Decision Algorithm for Different QCCs 

The proposed algorithm is presented in Figure 4.29. It is composed of three phases. 
In Phase 1 the RDCost of SKIP and Inter 16x16 are calculated. If the current MB is 
QCC 1 or the RDCost of one of the predicted modes is under the EPTZ

Ph1 limit the MD 
is terminated. Phase 2 calculates the RDCost for Intra 16x16 and one out of three inter 
modes, 16x8, 8x16 and 8x8, depending upon the gradient direction. The MD is 
terminated if the MB is QCC 2 or the best RDCost is lower than EPTZ

Ph2 limit. For 
MBs QCC 3 with RDCost higher than EPTZ

Ph2 one of four small block modes (Intra 
4x4, Inter 8x4, 4x8 and 4x4) is tested. Finally, the best prediction mode, i.e. mode of 
lowest RDCost, is used to encode the current MB. 

 
Figure 4.29: Pseudo-code of mode decision for different QCCs 

4.2.4  RDCost-based Thresholding 

Based on experiments considering the optimal RDO-MD we observed that the 
RDCost distribution varies according to QP values. To better evaluate and quantify this 
observation we analyzed the RDCost PDF. As presented in Figure 4.30, the RDCost for 
low QPs is concentrated in low range values (resulting from a small average µ  and 
standard deviation σ) while for high QPs, the PDF is more disperse and centered around 
a larger value (larger µ  and σ). 

With the RDcost characterization we defined the EPTZ and being RDCostSKIP < µRD-

σRD for QCC 2. In other words, if the best RDCost for previously tested modes is within 
EPTZ (see PDFs in Figure 4.28 and Figure 4.30) the mode decision is terminated. For 
QCC 3 there are two early termination points, one at Phase 1 defined as RDCostSKIP < 

µRD-2*σRD and other in Phase 2 RDCostSKIP < µRD-σRD. Once the distribution is different 
for each QP, the EPTZ limit approximated by polynomial curve fitting is given by the 
following QP-based Eq. (4.14), (4.15) and (4.16).   

MB Mode Decision (Current MB) 
//Phase 1 

01. Calculate RDCost (SKIP, Inter16x16); 
02. If (Class 1 or RDCost<EPTZPh1) 
03.  Exit; 
04. End If 

//Phase 2 
05. Calculate RDCost (SKIP, Intra16x16); 
06. If (Gradient_Horiz > 1.25* Gradient_Vert) 

07.  Calculate RDCost (Inter8x16); 
08. Else If (Gradient_Horiz < 0.8* Gradient_Vert) 
09.  Calculate RDCost (Inter16x8);  
10. Else 
11.  Calculate RDCost (Inter8x8);  
12. End If 
13. If (Class 2 or RDCost<EPTZPh2) 
14.  Exit; 
15. End If 

//Phase 3 
16. For (all 8x8 partitions) 

17.  If (Gradient_Horiz > 1.25* Gradient_Vert) 

18.   Calculate RDCost (Inter4x8); 
19.  Else If (Gradient_Horiz < 0.8* Gradient_Vert) 

20.   Calculate RCost (Inter8x4); 
21.  Else 

22.   If (Inter16x16< Intra16x16) 
23.    Calculate RDCost (Inter4x4); 
24.   Else 
25.    Calculate RDCost (Intra4x4); 
26.   End If 
27.  End If 
28. End For 
29.  Encode MB (Mode with lowest RDCost); 
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Figure 4.30: Probability Density Function for RDCost 

4.2.5  Energy-Aware Complexity Adaptation 

Associated to the QCCs, our scheme employs four different Quality States (QS). The 
QSs consider the binocular suppression theory (STELMACH e TAM, 1999) using 
asymmetric view quality and react, at run-time, to the changing battery level. As 
summarized in Table 4.3, QS1 presents the highest quality and encode all views as 
QCC3. In turn, QS2 and QS3 use the view quality asymmetry encoding odd view in 
lower quality than even views.  QS4 provides the lowest quality and highest complexity 
reduction coding all views as QCC1. 

Table 4.3: Quality States 
Quality State Video Quality Even Views Odd Views 

Quality State 1(QS1) High Quality QCC3 QCC3 

Quality State 2(QS2) Medium Quality QCC3 QCC2 

Quality State 3(QS3) Low Quality QCC2 QCC1 

Quality State 4(QS4) Lowest quality for battery saving QCC1 QCC1 

 
Figure 4.31: Run-time complexity adaptation state machine  

The QS control is performed by one state machine that receives an indication of the 
battery level as input. Figure 4.31 presents the transitions between the four possible 
states. The quality states just change to the immediately superior or inferior quality in 
order to have smooth video quality variation. The hysteresis (H) is fixed as 5% in order 
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to avoid quick oscillations between different states and, consequently, video quality 
fluctuations. This state machine can be easily adapted to consider other external 
parameters such as user presets and time constrains. 

4.2.6  Energy-Aware Complexity Adaptation Evaluation 

This section presents the detailed experimental results for each Quality State of the 
proposed energy-aware complexity adaptation algorithm compared to the RDO-MD. 
The, overall results for the complexity adaptation algorithm are presented in Section 
6.2.1.2. The experiments used the experimental setup described in Section 6.1.  

Table 4.4 presents the detailed PSNR, bitrate (BR) and time saving (TS) results of 
the 4 Quality States of our scheme compared to the exhaustive mode decision (RDO-
MD). For the QS1 state our scheme provides a TS of up to 77% with negligible PSNR 
loss (avg. 0.089 dB). The TS goes up to 87% for QS4 with an average PSNR loss of 
0.195 dB.  

To calculate the objective quality of a sequence we consider the average PSNR 
between all possible stereo view points (VP) of a sequence. For example, a sequence with 
four views has three stereo VPs (View 0 and View 1, View 1 and View 2, View 2 and 
View 3). To calculate the PSNR of a given VP considering the binocular suppression we 
use the Eq. (4.17), as proposed in (OZBEK, TEKALP e TUNALI, 2007). 

PSNR
VP

=(1-α).PSNR
HighQuality +α.PSNR

LowQuality
; α=1/3 (4.17) 

Table 4.4: Comparison between the Quality States (QS) 
 QP Ballroom Exit Vassar Rena QP Average Total Average 

  TS ∆PSNR ∆BR TS ∆PSNR∆BR TS ∆PSNR ∆BR TS ∆PSNR ∆BR TS ∆PSNR∆BR TS ∆PSNR ∆BR 

QS1 

22 75.71 0.095 -3.45 77.28 0.093 -4.13 75.21 0.084 -7.143 82.26 0.292 -3.221 77.62 0.14 -4.49 

75.29 0.089 -5.48 
27 75.13 0.074 -5.33 77.28 0.072 -4.75 73.84 0.031 -8.527 79.64 0.207 -2.186 76.47 0.10 -5.20 

32 73.15 0.075 -2.36 76.45 0.070 -5.70 71.97 0.015 -12.22 76.18 0.094 -1.493 74.44 0.06 -5.44 

37 71.62 0.031 -1.24 75.95 0.003 -6.05 70.80 0.115 -15.49 72.24 0.073 -4.429 72.65 0.06 -6.80 

QS2 

22 77.96 0.096 0.70 79.29 0.094 0.07 77.68 0.086 -2.344 84.18 0.291 0.305 79.78 0.14 -0.32 

76.96 0.093 -0.53 
27 76.97 0.079 1.84 78.60 0.072 0.58 75.18 0.036 -2.381 81.21 0.210 1.193 77.99 0.10 0.31 

32 75.22 0.089 2.01 78.08 0.077 0.69 73.49 0.023 -2.294 77.26 0.099 0.707 76.01 0.07 0.28 

37 73.27 0.053 1.54 77.22 0.027 0.07 72.51 0.091 -8.604 73.30 0.063 -2.573 74.07 0.06 -2.39 

QS3 

22 84.86 0.116 4.38 84.52 0.112 4.32 85.81 0.097 1.676 85.67 0.280 4.260 85.22 0.15 3.66 

82.64 0.123 4.76 
27 83.98 0.088 6.42 83.43 0.084 7.45 83.61 0.050 2.660 83.31 0.228 3.919 83.58 0.11 5.11 

32 82.86 0.124 6.14 82.73 0.112 8.20 81.57 0.056 3.974 80.23 0.186 3.536 81.85 0.12 5.46 

37 81.43 0.131 5.48 81.53 0.113 7.83 80.03 0.059 3.790 76.66 0.127 2.116 79.91 0.11 4.80 

QS4 

22 87.96 0.148 6.42 86.93 0.140 6.75 87.86 0.123 2.456 87.54 0.318 6.106 87.57 0.18 5.43 

85.26 0.195 7.40 
27 87.29 0.112 8.95 85.40 0.117 11.39 85.59 0.065 3.690 85.83 0.320 6.175 86.03 0.15 7.55 

32 86.42 0.173 9.24 84.57 0.205 13.08 83.58 0.086 5.536 83.53 0.364 6.530 84.53 0.21 8.60 

37 85.44 0.239 8.96 83.32 0.264 13.02 82.20 0.090 5.277 80.74 0.356 4.782 82.93 0.24 8.01 

4.3 Fast Motion and Disparity Estimation 

According to the motivational analysis presented in Section 3.1.1 and challenges 
discussed on Section 3.2, the two main sources of complexity and energy consumption 
in the MVC encoder are the mode decision and the motion and disparity estimation 
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units. Along Section 4.1 distinct solutions for reducing the complexity and energy for 
the MD were proposed. Moreover, an energy-aware complexity adaptation based on  
mode decision was presented in order to enable run-time adaptivity to changing system 
and content scenarios. In this section the target is to present solutions to reduce the 
complexity and energy consumption associated to the second main complexity source, 
the ME/DE unit. 

In this section is presented a correlation analysis related to motion and disparity 
vectors (MV, DV) followed by a Fast ME/DE algorithm (ZATT, SHAFIQUE, et al., 
2011). Our Fast ME/DE algorithm was designed taking into account a future hardware 
implementation. 

4.3.1 Motion Vector Correlation Analysis 

Before proceeding to the novel fast ME/DE algorithm proposed  and to the 
motion/disparity vectors correlation analysis, we briefly recall the basic prediction 
structure of MVC to a level of detail necessary to understand the novel contribution. 
MVC uses the motion and disparity estimation tools to eliminate the temporal and view 
redundancies between frames, respectively. The prediction structure used in this work is 
presented in Figure 4.32. I squares represent intra-predicted frames (i.e. no ME/DE is 
used), P are frames using unidirectional prediction or estimation (in this example the P 
frames use only DE in one direction), and B frames use bidirectional prediction having 
reference frames in at least two directions. The arrows represent the prediction 
directions: frames at the tail side act as reference frames to the frames pointed by the 
arrowheads. Note that some frames have up to four prediction directions. In order to 
provide random access points, the video sequence is segmented in Groups of Pictures 
(GOPs) where the frames located at the GOP borders are known as anchor frames and 
are encoded with no reference to the previous GOP. All other frames are called non-
anchor frames.  

 

Figure 4.32: MVC prediction structure and 3D-Neighborhood details 

In our observations we noticed that the same objects in a 3D scene are typically 
present in different views (except for occlusions). Consequently, the motion perceived 
in one view is directly related to the motion perceived in the neighboring views (DENG, 
JIA, et al., 2009). Moreover, considering parallel cameras, the motion field is similar in 
these views (KIM, KIM e SOHN, 2007). Analogously, the disparity of one given object 
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perceived in two cameras remains the same for different time instances when just 
translational motion occurs. Even for other kinds of motion the disparity is highly 
correlated.  

Based on these observations an analysis of the motion and disparity vectors is 
performed to quantify the MV/DV correlation (here the term correlation is subjectively 
used, it is defined as the difference between the predictors and the optimal vector, i.e. 
MV/DV error) in the 3D-Neighborhood (i.e. spatial, temporal and view domains). A set 
composed of 1 spatial median predictor, 6 temporal predictors and 6 disparity predictors 
is analyzed. The temporal predictors are selected from the previous and next frames (in 
the displaying order) called West and East neighbor frames, respectively. For each 
neighboring frame, three predictors are calculated. They are (a) the collocated MB (MB 
in the reference frame with the same relative position of the current MB), (b) median up 
(using the median formula specified by the MVC standard (JVT, 2009) to calculate the 
spatial predictor), and median down (median of A*, B*, C* and D* as shown in Figure 
4.32). The disparity predictors from the North and South neighboring view frames are 
obtained by considering the GDV. 

Figure 4.33 illustrates the MV/DV error distribution for Vassar (low motion) and 
Ballroom (high motion) test video sequences in the 3D-Neighborhood. Each plot 
represents the difference between a given predictor (in this case for the spatial predictor 
and 3 collocated predictors in different neighboring frames) and the optimal vector of 
the current MB. It shows that for the majority of the cases, the predictor vectors have 
similar values in comparison to the optimal vector. Even, most of the predictors have 
exactly the same value of the optimal vector. Our analysis shows that this observation is 
valid for the other nine predictors in all direction of the 3D-Neighborhood as depicted in 
Figure 4.33 (only few error plots are shown here). 

To quantify the MV/DV error distribution in the 3D-Neighborhood, several 
experiments were carried out to measure the frequency in which a given predictor is 
equal to the optimal vector (i.e. MVPred = MVCurr). When this condition is satisfied, it is 
denoted as a so-called hit. A set of different conditions was defined including, for 
example, the case when all predictors of a given neighbor frame (collocated, median up 
and median down) are hits. Table 4.5 presents the detailed information on the vector hits 

where the Availability is the percentage of cases when that predictor is available. The 
disparity predictors present the higher number of hits followed by the spatial and 
temporal predictors. Considering the quality of predictors in the same neighboring 
frame, the collocated predictors present better results in relation to median up and 
median down. The latter two present similar number of hits. In the case where all 
predictors of a given neighboring frame are available, the predictor is highly accurate 
providing up to 98% hits. 

In conclusion, there is a high vector correlation available in the 3D-Neighborhood 
that can be exploited during the ME/DE processing. Once the predictors point to the 
same region as the optimal vector, there is no need for search patterns exploiting a large 
search range. Moreover, for most of the cases the predictors’ accuracy is enough to 
completely avoid the ME/DE search and refinement stages. 
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Figure 4.33: MV/DV error distribution between predictors and optimal vector 
(Ballroom, Vassar) 

Table 4.5: Predictors Hit Rate and Availability 

Predictor 
Neighbor 

Frame 
Hit [%] 

Available 
[%] 

 Neighbor 
Frame 

Hit [%] 
Available 

[%] 

Spatial n.a. 94.12 99.90 - - - - 

All 

West 96.94 51.52 
Median  

Up 

West 54.74 99.90 
East 97.93 60.30 East 63.78 99.90 

North 97.94 65.40 North 93.17 73.99 
South 98.67 21.29 South 94.61 23.98 

Collocated 

West 58.43 99.90 

Median 
Down 

West 54.99 99.89 
East 66.79 99.90 East 63.92 99.89 

North 95.39 72.39 North 93.21 74.13 
South 96.75 23.48 South 94.70 23.93 

4.3.2 Fast Motion and Disparity Estimation Algorithm 

Our Fast ME/DE scheme is based on the above-presented 3D-Neighborhood 
analysis. However, to exploit this correlation the motion and disparity fields must be 
available. In order to establish these fields at least one frame using DE and one using 
ME must be encoded with the optimal or a near-optimal searching algorithm. In our 
scheme, to avoid major quality loss, all anchor frames and the frames situated in the 
middle of the GOP are encoded using the TZ search algorithm (the fast ME/DE 
algorithm used in JMVC (JVT, 2009)). The anchor frames are encoded using DE, while 
the frames in the middle of a GOP use ME or ME and DE according to the view they 
belong. These frames encoded with high effort are herein referred as Key Frames (KF), 
while the others are the Non-Key Frames (NKF). Once the motion and disparity fields 
are available all NKF can be encoded based on these fields. The complete ME/DE 
search pattern is skipped for all NKF. It only uses the predictors inferred from the 3D-
Neighborhood. 

Figure 4.34 presents the flow diagram of our proposed fast ME/DE scheme based on 
the 3D-Neighborhood vectors correlation. It employs two different prediction classes: 
Ultra Fast Prediction and Fast Prediction. The scheme is composed of three main 



 

 

119 

phases: (i) Frame Level MV/DVs evaluation; (ii) MB Level MV/DVs Evaluation and 
Prediction, and (iii) MV/DV Storage. Figure 4.34 considers only the NKF coding. For 
KF the TZ search algorithm is used (as discussed earlier) to provide a good 
motion/disparity field. 

 

Figure 4.34: Flow diagram of the adaptive fast ME/DE 

In Frame Level MV/DVs evaluation, the presence of all temporal-disparity predictors 
is checked. If available, they are read from a MV/DV memory. The spatial predictor is 
not loaded in this phase since it is not available due to the spatial dependencies, if a 
hardware architecture scenario is considered . With the available data, the current MB is 
pre-classified in one out of the two prediction classes according to the predictors’ 
Confidence Level. Note, the spatial predictor is required for the SKIP vector 
calculation. So, this predictor is also considered in our algorithm to classify the current 
MB in the MB Level evaluation and prediction phases. 

The predictors Confidence Level is calculated based on the offline hit value, as 
presented in Table 4.5. Each predictor is associated to a Confidence Level (hit value). If 
one predictor has a Confidence level higher than a threshold (CLPred > CLTH), the 
current MB is classified to be encoded as Ultra Fast Prediction. Otherwise, the MB is 
classified to be encoded with the Fast Prediction. In case of Ultra Fast Prediction MBs, 
only three vectors are tested: the predictor with highest Confidence Level (also referred 
as Common Vector), the Zero vector and the SKIP vector. The Zero and SKIP vectors 
are tested because of their high occurrence. Fast Prediction MBs test all available 
predictors in addition to the Zero and SKIP vectors. It is important to mention that even 
if all predictors are available and different (this worst case rarely occurs), only 13 
predictors are tested. 
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4.3.3  Fast ME/DE Algorithm Evaluation 

In Table 4.6 the fast ME/DE results are detailed for the four evaluated sequences 
considering three different QPs (22,32,42). The TZ Search with a search range of [±64, 
±64] is used for comparison as it is used for the Key frames and performs 23x faster 
compared to the Full Search (not used for performance comparison), while providing 
the similar rate-distortion results (YANG, 2009). Compared to the TZ Search, our fast 
ME/DE provides 83% execution time saving at the cost of 11% increase in bitrate and 
0.114dB of PSNR loss. In the best case, the execution time savings go up to 86%, which 
represents a significant complexity reduction. Moreover, the reduced number of 
candidate blocks leads to a lower number of external memory accesses. 

Table 4.6: Comparison of Our Fast ME/DE Algorithm to TZ Search 
Video QP TZ Search  Fast ME/DE 

  Time 
[sec] 

BR 
[kbps] PSNR [dB] TS    

[%] 
∆BR 
[%] ∆PSNR [dB] 

Ballroom 
22 215.1 3298.026 40.709 85.9 8.4 0.011 
32 175.7 651.640 35.119 86.2 11.7 0.060 
42 127.1 188.178 29.318 84.9 19.8 0.190 

Vassar 
22 171.1 3415.744 40.456 83.0 1.1 0.010 
32 110.0 315.142 35.226 82.4 6.7 0.013 
42 72.1 64.888 30.563 79.7 6.7 0.043 

Breakdancers 
22 583.5 5680.204 41.172 86.0 15.7 0.087 
32 384.6 788.800 38.010 85.1 14.6 0.275 
42 262.9 277.970 33.803 82.8 8.9 0.304 

Uli 
22 600.9 12245.676 39.819 82.9 9.3 0.053 
32 516.8 2949.870 34.960 83.0 13.7 0.134 
42 406.5 849.462 28.944 82.4 8.5 0.191 

Poznan_Hall2 
22 1206.4 6245.748 42.654 86.8 8.2 0.012 
32 811.2 1002.354 40.138 86.1 10.3 0.017 
42 726.8 521.816 35.465 84.5 7.7 0.027 

GT_Fly 
22 1321.8 7123.971 40.980 81.3 10.0 0.103 
32 954.8 1113.591 38.057 81.9 17.3 0.265 
42 801.0 613.548 33.849 79.8 12.3 0.298 

Average 

22 683.1 6334.895 40.965 84.3 8.8 0.046 
32 492.2 1136.900 36.918 84.1 12.4 0.127 
42 399.4 419.310 31.990 82.4 10.7 0.176 

Avg. 524.9 2630.368 36.625 83.6 10.6 0.116 

Figure 4.35 presents the RD-curves for two XGA (1024x768) video sequences Uli 
and Breakdancers. It is noted that the RD curves of our fast ME/DE algorithm are close 
to that of the Full Search (used for quality comparison only). Compared to the Full 
Search, our fast ME/DE algorithm suffers from an insignificant loss of 0.116dB (on 
average). 
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Figure 4.35: Rate-Distortion Comparison with Full Search 
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  Figure 4.36: View-level execution time savings compared to TZ Search 

The view-level execution time savings are presented in   Figure 4.36. Note that 
for all views (except for View 0 of Vassar sequence) the time saving is ≥80%. The 
execution time savings for the high-motion sequences are slightly more than that in the 
low-motion sequences. Figure 4.37 presents the average number of SAD operations for 
ME/DE of one MB using Full-Search, TZ Search and, our fast ME/DE algorithm. 
Averagely, the proposed scheme reduces more than 99.9% in comparison to Full Search 
and 86% to TZ Search. Note, the detailed results in   Figure 4.36 and Figure 4.37 
are for QP32. 
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Figure 4.37: Comparison of the number of SAD operation 

4.4 Video Quality Management for Energy-Efficient Algorithms 

Although the energy and complexity reduction algorithms presented along this 
chapter were carefully designed to reduce undesirable effects to the coding efficiency, 
they lead to some level of quality drop due the heuristics and simplifications inserted in 
the encoding process. For this reason, an algorithm to manage the coding process and 
compensate eventual video quality losses is required. This management algorithm, 
however, must also consider and optimize the video quality and bitrate tradeoff in order 
to increase the coding efficiency while respecting to bandwidth constrains as discussed 
in the following. 
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Despite of the high coding efficiency provided by MVC, the transmission and 
storage of 3D videos remains a big challenge, especially for services operating over 
bandwidth/buffer-constrained infrastructures. It becomes even more challenging due to 
changing input video properties, run-time variations on video encoder state, battery 
level and user preferences. Thus, to provide high video quality while meeting channel 
bandwidth/buffering constraints it is necessary to further optimize the bandwidth usage 
by intelligently regulating the bits allocation. Therefore, a rate control algorithm is 
implemented to dynamically find a good compromise between the coding efficiency and 
video quality by adapting the QP.  

In this section is presented the Hierarchical Rate Control (HRC) (VIZZOTTO, 
ZATT, et al., 2012) for MVC that employs coupled Model Predictive Control-based 
frame-level RC and Markov Decision Process-based BU-level RC. Before presenting 
the HRC, however, a bitrate allocation study within the 3D-Neighborhood is detailed. 

4.4.1  Bitrate Correlation Analysis 

In this section we present a detailed bitrate distribution analysis to provide a better 
understanding towards the bitrate distribution during the MVC encoding process and its 
correlation with spatial, temporal and disparity neighborhood. The analysis is presented 
in a top-down approach starting with the view-level related discussion, following to 
frame-level and concluding with BU-level considerations. For that, we used eight views 
of the Flamenco2 VGA video sequence encoded at a fixed QP, that is, without rate 
control, for an IBP view coding (0-2-1-4-3-6-5-7) order and Hierarchical Bi-prediction 
at temporal domain. One basic unit is defined as one macroblock. 

Figure 4.38 shows the uneven bitrate distribution along different views. This 
distribution is highly related to the prediction hierarchy inside a GGOP. The View 0 or 
Base View is encoded independently with no inter-view prediction. It leads to reduced 
possibilities of prediction and, consequently, worse prediction, more residues and higher 
bitrate. B-Views (View 1, 3 and 5) fully exploit the inter-view correlation by 
performing disparity estimation (in addition to spatial and temporal predictions) to 
upper and bottom neighboring views. This increased prediction decision space results in 
improved prediction quality and tends to lead to reduced bitrates. P-Views (View 1, 3, 
5, and 7) represent the intermediate case performing disparity estimation in relation to a 
single neighboring view. P-Views typically present bitrate in the range between Base 
View and B-Views bitrates. Note, in Figure 4.38 the View 7 is a P-View but its 
reference view is closer if compared to other P-Views. While View 2 is two views 
distant to its reference view (View 0), View 7 is just one view distant to View 6. It 
usually results in a reduced bitrate for View 7 due better disparity estimation prediction.  

The bitrate relations associated to prediction hierarchy, however, are not always true 
and vary with the video/image properties of each view. For instance, in the example 
provided in Figure 4.38, View 6 (P-View) present reduced bitrate in relation to View 1 
and View 3 (both B-Views). Thus, we may conclude that even employing Bi-prediction 
at disparity domain the View 1 and 3 are harder to predict in relation to View 6 and 
produce higher bitrate. Similar observation is the increased bitrate generated by View 7 
if compared to other P-Views. Reduced bitrate is expected but for View 7 an increased 
bitrate is measured. These observations show that besides of the relation to the 
prediction structure (as discussed above), the bitrate distribution has a high dependence 
on the video content of each view. Hard-to-predict views typically present high texture 
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and/or high motion/disparity objects and require more bits to reach a given video 
quality. 
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Figure 4.38: View-level bitrate distribution (Flamenco2, QP=32)  

The bitrate distribution at frame level presented in Figure 4.39 shows that inside 
each GOP the frames that present higher bitrate are located at lower hierarchical 
prediction levels. This is related to the distance of temporal references, the farther the 
reference the more difficult is to find a good prediction. Therefore, more error is 
inserted resulting in higher bitrates. In B-Views this effect is attenuated once this view 
is less dependent to temporal references due to the higher availability of disparity 
references. Figure 4.39 illustrates that for neighboring GGOPs the frames at same 
relative position exhibit similar and periodic rate distribution pattern, the GOP-Phase.  
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Figure 4.39: Frame-level bitrate distribution for two GGOPs (Flamenco2, QP=32)  

Inside each frame the number of bits generated for each BU is also related to the 
video content. Figure 4.40 shows that the homogeneous and low motion/disparity 
background require lower bitrate if compared to the dancers region and to the textured 
floor for a similar quality. However, the Human Visual System (HVS) requires a higher 
level of details for textured and border regions to perceive good quality and, 
consequently, these regions deserve higher objective quality. Therefore, textured 
regions must be detected and receive further increased number of bits during the 
encoding process through QP reduction. 
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Figure 4.40: Basic Unit-Level bitrate distribution (Flamenco2, QP=32)  

Summary: The frame-level bitrate distribution depends on the prediction hierarchy 
and the video content of each frame. Due correlation of video content, an effective rate 
control must consider the neighboring frames at temporal, disparity and GOP-phase 
domains. The video properties have to be considered at BU-level in order to locate and 
prioritize regions that require higher quality. 

4.4.2 Hierarchical Rate Control for MVC 

In this section is presented the proposed Hierarchical Rate Control (HRC) for MVC, 
depicted in Figure 4.41. The HRC is responsible for controlling the encoder output 
bitrate, in accordance to the user preferences and/or channel limitations, by monitoring 
the MVC encoder and actuating through QP adaptation. It can be conceptually divided 
in two actuation levels: (i) frame-level (that encapsulates GOP and frame levels) at 
coarse grain and; the (ii) basic unit-level at fine grain. The MVC encoder receives the 
video sequences as input along with all user preferences and configurations to start the 
encoding process. The Model Predictive Control-based frame-level RC models the 
system behavior considering the encoding hierarchy and predicts the bitrate allocation at 
frame-level considering temporal, view and GOP-phase (inter-GOP) correlation. It 
defines the optimal QP for the predicted frames, the base QP, and forward it to the 
Markov Decision Process-based basic unit-level RC. At BU-level, a fine grained-
decision is taken to define the QP variation considering the image properties in terms of 
regions of interest. The fine-grained adaptation promotes an increase in objective and 
subjective video qualities inside the frame by allocating more bits to the RoI (in our 
case the hard-to-predict regions, see Section 2.8.1.4 and 4.4.1). The decision maker 
considers the previous knowledge, by implementing the Reinforcement Learning (RL) 
method, to increase or decrease the QP in relation to the base QP. To couple the frame- 
and BU-level in HRC, the RL unit feedbacks both the MPC and the MDP to keep 
system consistency and avoid mismatches. The HRC employs an observer unit able to 
read, store and manage the MVC encoder feedback (generated bitrate) and variables that 
define the encoder system state (target bitrate, QP, input constraints, etc) in order to 
support the bitrate prediction and actions/decision taking. Also, an image properties 
extractor is employed to build the RoI map used for BU-level RC. This integration 
allows HRC to properly exploit the influence of spatial, temporal, view and GOP-phase 
inputs to define a global optimal control action. 

MPC-based frame-level Rate Control: It is responsible for predicting the bitrate 
allocation and defining an optimal QP value for the current frame while minimizing a 
performance cost function. Our MPC-based RC deals with multiple stimuli 
superposition building the input horizon using previously encoded frames from 
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temporal and view neighborhood. The proposed scheme also incorporates the GOP-
phase for accurate bitrate prediction. 

MDP-based Basic Unit-level Rate Control: The BU-level RC receives the QP 
defined at frame level and adjusts the QP for each BU. The proposed Markov Decision 
Process-based RC takes the decisions over a map of states based on a set of possible 
actions (QP adaptations) and the associated rewards. The texture-based map of states is 
linked to the map of RoI and provides the structure to make decision. 

Coupled Reinforcement Learning: It is responsible for adapting MPC and MDP 
models to the dynamic system behavior. After an action is taken at BU-level, the RL 
reads the system response and, updates the transition probabilities and the associated 
rewards in the MDP model. Once the frame is totally encoded, the resulting map of 
states is used to update the fame-level MPC. This strategy integrates frame-level and 
BU-level guaranteeing consistency and avoiding modeling mismatches. 
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Figure 4.41: Hierarchical Rate Control system diagram 

On the following sub-sections the Hierarchical Rate Control will be presented in 
details along with the equations that describe the whole controller behavior. For 
simplicity we provide, in Table 4.7, the definitions of the main variables used in the 
HRC description. 

Table 4.7: Variables Definitions 

Variable Description 
Frame-Level Rate Cotnrol 

TBR Target bitrate for one frame (bits per frame) 
BW Channel bandwidth (bits per second) 

FR Frame rate (frames per second) 
BA Bit allocation (absolute) 

wI, wP, wB I, P and B weight respectively (absolute) 
GOP

w  Average w for the current GOP (absolute) 
LGOP GOP Length (# of frames) 
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ω Frame weight (absolute) 
NA Number of anchor frames (# of frames) 
BR Bitrate (#bits) 
HQP QP History (absolute) 

QPFL Quantization Parameter at Frame-level RC (discrete) 
QPCLP Quantization Parameter in last process (discrete) 
QPst Initial Quantization Parameter (discrete) 

Q Quantization Parameter in the optimization loop (discrete) 
NFR Number of frames 

Basic Unit-Level Rate Cotnrol 
MS RoI- Normalized Variance Matrix (absolute 0 – 1) 

M(δ) MDP Reward Matrix (matrix of absolute RD) 
BU BU variance 
µ Avarage of BUi 

NBU Number of BUs 
QPBU Quantization Parameter at Frame-level RC (discrete) 
TBR Target bitrate for one frame (bits per frame) 
RS BU Reward “Shared” (absolute) 
RL Reinforcement learning Value (vector of HR) 

f(s,δ) Probability of state transition 

PR 
Probability results from RL vector of “phase” actions. Actions of RL in 

a range of at least 2 horizons. 
∆ δ Variation between actual BU δ and the δ of anchor frame 
Mf Variation of variance matrix values 
HR History of RL 
GBR Generated bitrate (bits per frame) 

U(s,s’) Function to update the matrix from s to s’ 
 

4.4.3 Frame-Level Rate Control 

The frame-level MVC Rate Control problem matches the control-theory 
superposition principle (TATJEWSKI, 2010) defined as the response at a given place 
and time of the linear system caused by multiple stimuli. Model Predictive Control 
(MPC) techniques (GARCÍA, PRETT e MORARI, 1989)(MORARI e LEE, 1999) have 
demonstrated to accurately predict the response of multiple stimuli dynamic systems 
such as MVC encoder while incorporating the phase concept (periodic behavior) present 
in GGOP-level RC (see Section 4.4.1). MPC outperforms traditional feedback 
controllers by efficiently integrating input stimuli to state space constrains while 
providing flexibility by employing rolling input and output horizons (see Section 
2.8.1.1).  

As discussed in Section 2.8.1.1, the main goal of a Model Predictive Controller is to 
predict the future behavior of a system state and/or output over a finite time horizon as 
well as compute the future input signals at each step. These actions occur by minimizing 
a cost function under inequality constraints on the manipulated control or the controlled 
variables. In this work the MPC operates at frame-level predicting the bitrate and 
providing the QP for each frame to be encoded. The rate controller tries to define a 
sequence of actions and then induce the system to a desired state while the negative 
effects of this action are reduced respecting restrictions and taking constraints into 
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account. In other words, the RC defines a QP that optimizes the bandwidth or bit 
allocation while maximizing the visual quality and reducing bitrate/quality sudden 
variations.  

The bitrate prediction is performed considering the neighborhood correlation at 
temporal, view and inter-GOP domains. As discussed in Section 4.4.1, there is a high 
correlation in the temporal and view neighboring frames inside the same GOP. 
Moreover, there is also a periodic pattern that repeats at GOP level, the GOP-Phase. Our 
MPC-based RC is able to exploit this correlation in order to accurately predict the future 
bitrate. Figure 4.42 represents the previously encoded frames used for prediction 
(control horizon) and the current frame to be predicted (prediction horizon) for a given 
MVC prediction structure. Our method employs a variable weighting factor for frames 
considering their positions in relation to the current frame. The variable weighting 
factor is calculated considering the number of references and their distance to the 
current frame. With this extension our fame-level RC may be directly implemented in 
any hierarchical bi-prediction structure (HBP) while still catching the GOP-phase 
correlation. 
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Figure 4.42: MPC-based RC horizons 
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Figure 4.43: Frame-level rate control diagram 

Figure 4.43 shows in details the MPC optimization process and how the component 
functions interact to each other. The Rate Model generates, based on the neighborhood 
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correlation, a bitrate prediction for the current frame, the target bitrate. Based on the 
prediction an optimal QP is defined and the internal model is updated. The system 
feedback and the actually used QP defined in the BU-level RC are received through the 
observer. 

4.4.3.1 Rate Model 

The MPC-based Rate Control defines the target bitrate (TBR(f)) considering the 
bandwidth (BW) and frame rate (FR) constrains along with the neighboring frames 
weights (w) and their frames bit-allocation (BA), as shown in Eq. (4.18). 

BR fT  BA= ±( )

BW
w(

FR
)  (4.18) 

The feedback and the correlation between frames vary with the type of each frame. 
The bitrate range of distinct frame types (I, P and B) lie in different ranges, see Figure 
4.39. Thus, the weighting factors for each frame type must be different. A static weight 
(wI) is statically predefined for I frames (LI, PAN, et al., 2003) while P and B-frame 
weights (wP and wB) are calculated dynamically considering the weights of temporal 
neighboring frames. Eq. (4.19) shows how the weights are calculated considering the 
HBP in order to respect the local linearity inside the current GGOP; where GOP

w is the 
average of w in the current GOP, f represents the f-th frame of a given type (I, P or B) in 
the processing order, u=1/(LGOP-1) and LGOP denotes the GOP length. For a smooth 
weighting propagation, w is limited according to a statistically-defined range. 
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The target bit-allocation (BA) is given by a history-based weighted model to 
optimize MPC for best target bit-allocation, as shown in Eq. (4.20). The proposed MPC-
based RC was designed to differentiate the frames according to their number of 
references (0..2 temporal + 0..2 disparity reference frames) as it is an important data to 
understand how the bit allocation propagates within the 3D-Neighborhood. It allows 
HRC to respond to variations inside the GGOP and to become more flexible by 
adapting, without further extensions, to any HBP structure. 

The weights m,n
i , jω  (where i and j are the frame time instant and view; m and n denotes 

the number of references in the temporal and view domains, respectively) calculation is 
presented in Eq. (4.21).   

f
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4.4.3.2 Quantization Parameter Definition 

Once the prediction is performed, the RC must define a proper action in terms of 
QP. The QP is determined by summation of all target bitrate (TBR(f)) in the prediction 
horizon, the summation of all generated bitstream in the control horizon (BR) and, the 
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history of QPs (HQP), as shown in Eq. (4.22). Note, the QP defined in the frame-level 
(QPFL) RC is not directly used by the MVC encoder but forwarded to the BU-level RC 
to refine the QP selection. 

p
B Ri

Q P m

i

=

=

= ×
∑
∑

1
F L

1

T
Q P H

B R
 (4.22) 

To maintain the performance of our MPC-based controller there is a need to update 
the QP model. For that, the HRC implements an optimization loop with non-discrete 
steps (k) where QCLP denotes the quantization parameter for the frame coded in the last 
process. Eq. (4.23) and Eq. (4.24) describe the update process where the QP value is 
constrained to a variation range of ±2 QP points for smooth update. In Eq. (4.24) M is 
the transposed matrix of ω multiplied by target bitrate variation (∆TBR(f)) for the frames 
belonging to the control horizon. Qst is the initial QP defined by the user.  
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4.4.3.3 Frame-Level Rate Control Evaluation 

In the following are presented the detailed results of the frame-level only HRC. 
Table 4.8 presents the bitrate results generated using SMRC (Single-View Mode Rate 
Control) extrapolated from the H.264 reference software (JM) using the quadratic MAD 
prediction (LI, PAN, et al., 2003). To measure the target bitrate accuracy, we use the 
Mean Bit Estimation Error (MBEE) metric presented in Eq. (4.25). On average, the 
proposed frame-level RC provides 1.13% (up to 1.58%) of bitrate error while the 
SMRC provides 2.46% (up to 2.91%).  The results show that the frame-level HRC 
predicts more accurately the bitrate behavior and is able to adapt the QP in order to 
reduce the output error.  
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MBEE 100 N
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Table 4.8:  Comparison of Frame-Level HRC Bitrate Accuracy 

Video 
Target 
[kbps] 

Bitrate [kbps] Error (MBEE) [%] 

SMRC 
Frame-Level 

HRC 
SMRC 

Frame-Level 
HRC 

Ballroom 

256 263 259 2.63 1.17 
392 402 396 2.61 1.07 
512 523 518 2.16 1.13 

1024 1048 1032 2.35 0.81 

Exit 

256 261 258 2.10 0.88 
392 402 397 2.55 1.29 
512 523 519 2.25 1.36 

1024 1048 1038 2.34 1.38 
Flamenco2 256 262 258 2.30 0.81 
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392 402 396 2.50 1.00 
512 525 517 2.54 1.07 

1024 1049 1035 2.46 1.10 

Vassar 

256 263 258 2.91 0.84 
392 402 397 2.56 1.25 
512 526 519 2.68 1.36 

1024 1049 1040 2.44 1.58 

Average 

256 262 258 2.49 0.93 
392 402 397 2.55 1.15 
512 524 518 2.41 1.23 

1024 1049 1036 2.40 1.22 
Total Average 2.46 1.13 

The proposed frame-level RC also provides rate-distortion (RD) results that 
outperform SMRC and the fixed-QP solution (non-RC). Table 4.9 summarizes the 
quality and bitrate outputs in terms of BD-PSNR (Bjøntegaard Delta PSNR) and BD-
BR (Bjøntegaard Delta BR) (TAN, SULLIVAN e WEDI, 2005) in relation to the non-
RC solution. Compared to SMRC the proposal provides 0.6dB BD-PSNR increase. The 
BD-BR reduction is 19.28% in relation to SMRC. 

Table 4.9:  Comparison of BD-PSNR 

Video 

SMRC MPRC 

BD-BR 
[%] 

BD-PSNR 
[dB] 

BD-BR 
[%] 

BD-PSNR 
[dB] 

Ballroom 10.902 -0.328 28.603 -0.939 
Exit 11.542 -0.368 36.920 -1.089 

Flamenco 9.630 -0.217 29.852 -0.880 
Vassar 6.514 -0.183 20.333 -0.596 

Average 9.647 -0.274 28.927 -0.876 
 

4.4.4 Basic Unit-Level Rate Control 

Markov Decision Process (MDP) is a mathematically-based optimization model of 
discrete state, sequential decision making in a stochastic environment that depends only 
on the current state and not in previous states. However, if a controlled MDP is 
considered, the transition probabilities are affected by previous actions. According to 
this definition, the controlled MDP perfectly fits to the BU-level rate control where a 
decision among a set o discrete QP values has to be made considering the neighborhood 
history. However, in MVC, the transition probabilities between the possible states are 
not known a priori and vary for distinct time instants and video content. Reinforcement 
learning can solve MDP with no explicit probabilities definition. It calculates the 
probabilities of transition based on the Law of Effect theory that states: in case an action 
is followed by satisfactory state, the probability taking the same action again is 
increased. It is also possible to incorporate additional variables such as image properties 
into the reinforcement learning definition. 

As part of the HRC we propose a BU-level Rate Control employing Markov 
Decision Process along with RL able to consider the image properties through a texture-
based RoI map, as detailed along this section. 



 

 

131 

RoI

Pr | f(s)

RLM(s)

U(s,s’)

h(s) | a

QPBUMf(s)

M(δ)

(a)

 

Multiview 

Video 

Encoder

MPC Frame-Level Rate Control

Basic Unit-Level Rate Control

GBR

BS

QFL
Mδ

QPFR

R-L Core

HR

RS

U(s,s’)

QPBU

f

MS

PR

GBR
QFL

QFL

Observer

RoI
Variance Map

(b)

 
Figure 4.44: Basic unit-level rate control diagram 

Figure 4.44 depicts the diagram of the proposed BU-level RC that works as a 
refinement of the frame-level RC. In order to refine the accuracy of bit allocation and 
provide smooth visual quality, our BU-level RC includes the concept of region of 
interest (RoI) into a Markov Decision Process that employs reinforcement learning for 
adapt to dynamic encoder and input variations. At each decision step, the RC monitors 
the state of the system and determines the next action to take based on constraints 
observations and the control policy. Firstly, the HRC defines the RoIs for anchor frames 
generating a map of weights MS that will determine the importance of each BU inside 
the frame. Secondly, the weights map is linked to a map of states M(δ) in the MDP that 
corresponds to the QP for each BU. The MDP fits to the MVC encoder behavior by 
providing the structure to make decisions partly random and partly under a control. 
Finally, to dynamically adjust the matrix of states for next decision, the RL is 
responsible to feedback the system response to the current state for both BU-level and 
frame-level control. 

4.4.4.1 Regions of Interest 

As discussed in Section 2.8.1.4, frames are composed of regions with distinct image 
properties requiring a variable number of bits to be encoded. Regular video encoders 
use the same QP to encode all basic units within a frame leading to inefficient bitrate 
distribution and undesirable quality variations inside the frame. However, it is possible 
to define regions to receive special treatment, the regions of interest. The BUs 
belonging to RoIs may be prioritized by the rate control unit in order to protect the 
quality of those regions. In this work, the whole frame is considered to have the same 
semantic relevance (this leave space for further application specific extensions) but 
regions that present a hard-to-predict content must be allowed to use more bits through 
QP reduction. According to our analysis (see Section 4.4.1), textured regions tend to 
generate more residue and, consequently, require higher bitrate. 
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In our solution, the RoI is determined by a normalized variance map – given by MS 
in Eq.  (4.26) – for all anchor frames. Additionally, HRC also keeps a second matrix of 
states where each value represents a bitrate of a frame inside a GGOP encoding history 
to incorporate temporal and view neighborhood information to the MDP process. The 
matrixes data are used by the MDP and RL to define the rewards associated to each 
state and the actions taken by the control. For non-anchor frames are used the statistics 
given by anchor frames considering the reinforcement learning RL.  

i
S

B U µ
M

N

−
=

−
( i , j )

( )²

1
 (4.26) 

4.4.4.2 Markov Decision Process 

The HRC implements the BU-level RC by employing the Markov Decision Process. 
The MDP works over a matrix of independent states Mf(s) representing the QPs of each 
BU within a frame. Each BU has a set of possible actions A with associated rewards RS 
and transition probabilities f(s,δ). In our model the possible actions are increase, 
decrease or maintain the QP value defined at frame-level, as shown in Eq. (4.30) and 
Eq. (4.31). A matrix of coefficients M(δ) is used to define the reward for each action 
according to Eq. (4.27). The rewards RS are calculated based on the RoI map MS, matrix 
of coefficients M(δ) and the reinforcement learning RL (see Section 2.8.1.3), as shown in 
Eq. (4.28). For each action there is a probability of transition f(s,δ) defined by Eq. 
(4.29). 
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4.4.4.3 Coupled Reinforcement Learning 

The RL agent incorporates the knowledge of previous events in the decision making 
process through monitoring the MVC system response and updating state transitions 
probabilities and rewards at both frame- and BU-level. The BU-level feedback happens 
by updating the history of reinforcement learning hR, see Eq. (4.32). Eq. (4.33) gives the 
final MDP state matrix that is used as obtained knowledge for the upcoming frames. 
The QP of the frame updated using Eq. (4.33) and calculated according to Eq. (4.29) 
QPFR provides feedback to the MPC at frame-level.  
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4.4.5 Hierarchical Rate Control Evaluation 

In this section are presented the detailed results of the proposed HRC compared to 
baseline solution, the JMVC without RC and the SMRC (Single-View Mode Rate 
Control). The comparison with the state-of-the-art is presented in Chapter 6. Table 4.10 
presents the accuracy in terms of MBEE (less is better) for our HRC compared to 
baseline RC solutions. On average, our Hierarchical Rate Control provides 1.6% MBEE 
decrease while raging from 0.7%-1.37%. The superior accuracy is a result of the ability 
to adapt the QP jointly at frame and BU-levels considering the neighborhood correlation 
and the video content properties. 

Table 4.10:  Comparison of Proposed HRC Bitrate Accuracy 

Target JMVC SMRC HRC JMVC SMRC HRC
256 268 263 258 4.64 2.63 0.75
392 408 402 395 4.06 2.61 0.78
512 529 523 516 3.33 2.16 0.78
1024 1058 1048 1032 3.30 2.35 0.78
256 267 261 258 4.29 2.10 0.94
392 408 402 396 3.99 2.55 0.92
512 528 523 516 3.21 2.25 0.83
1024 1056 1048 1031 3.14 2.34 0.72
256 268 263 258 4.79 2.91 0.71
392 409 402 395 4.34 2.56 0.71
512 530 526 516 3.56 2.68 0.84
1024 1059 1049 1031 3.41 2.44 0.70
256 267 262 258 4.27 2.30 0.75
392 407 402 395 3.73 2.50 0.72
512 528 525 516 3.13 2.54 0.86
1024 1056 1049 1033 3.15 2.46 0.86
256 268 262 258 4.50 2.49 0.79
392 408 402 395 4.03 2.55 0.78
512 529 524 516 3.31 2.41 0.83
1024 1057 1049 1032 3.25 2.40 0.76
512 525 524 518 2.47 2.41 1.23
768 801 788 776 4.33 2.54 1.08
1024 1052 1050 1034 2.72 2.56 1.00
2048 2101 2109 2070 2.58 2.99 1.06
512 525 525 519 2.46 2.54 1.37
768 801 789 776 4.28 2.72 1.08
1024 1052 1052 1034 2.74 2.72 0.95
2048 2101 2101 2069 2.59 2.60 1.05
512 525 525 519 2.46 2.48 1.30
768 801 788 776 4.30 2.63 1.08
1024 1052 1051 1034 2.73 2.64 0.97
2048 2101 2105 2070 2.58 2.80 1.05
1024 1050 1049 1037 2.54 2.44 1.27
1536 1581 1575 1553 2.93 2.54 1.11
2048 2104 2101 2069 2.73 2.59 1.03
4096 4202 4219 4140 2.59 3.00 1.07
1024 1049 1050 1038 2.44 2.54 1.37
1536 1582 1578 1553 2.99 2.73 1.11
2048 2104 2104 2068 2.73 2.73 0.98
4096 4202 4203 4139 2.59 2.61 1.05

3.40 2.55 0.95Total Average
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Table 4.11 presents the objective rate-distortion in BD-PSNR (Bjøntegaard Delta 
PSNR) and BD-BR (Bjøntegaard Delta Bitrate) (TAN, SULLIVAN e WEDI, 2005) in 
relation to JMVC without RC. The HRC provides 1.86dB BD-PSNR increase along 
with BD-BR reduction of 40.05%, on average. If compared to SMRC, the HRC delivers 
1.6dB increased BD-PSNR and 31.08% reduced BD-BR. Remember, besides superior 
RD performance the HRC also outperforms SMRC in terms of accuracy. 

Table 4.11: BD-PSNR and BD-BR Comparison  

Ballroom Exit Flamenco2 Vassar Bdancer Uli Poznan GTGly

BD-PSNR 0.328 0.368 0.217 0.183 0.215 0.208 0.253 0.012 0.223

BD-BR -9.831 -10.348 -8.784 -6.116 -8.963 -9.805 -12.180 -6.711 -9.092

BD-PSNR 1.585 2.375 2.103 1.176 2.060 1.870 2.085 2.055 1.914

BD-BR -31.588 -47.458 -38.199 -27.335 -46.112 -49.660 -48.760 -47.250 -42.045

AVG

HRC

XGA
JMVC 8.5 vs.

VGA

SMRC

HD1080p

 

In the following we present HRC detailed results for Flamenco2 sequence encoded 
at 1024kbps. For simplicity, we analyze only the first 4 views. Figure 4.45 shows the 
target bitrate, the total accumulated bitrate and the accumulated bitrate for each view. 
The presented bitrate distribution is smooth also at view level without abrupt 
oscillations. As expected from the discussion in Section 4.4.1, the base view (View 0, I-
view) is more bitrate hungry followed by P-views (View 2) and B-views (View 1, 3). 
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Figure 4.45: View-level bitrate distribution (Flamenco2) 

The frame-level bitrate distribution is further detailed for the GOP #8 in Figure 4.46. 
It shows, graphically, the smooth bitrate and PSNR variations delivered by our solution 
considering frame-level. Note, the HRC surface presents no sudden variations for both 
bitrate and PSNR. Compared to the other solutions, it is clear that the bitrate and quality 
provided by our HRC are significantly smoother even when compared to SMRC. 
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Figure 4.46: Bitrate and PSNR distribution at frame level (GOP #8) 

Analogous analysis was performed to demonstrate the behavior of our RC at BU 
level. Figure 4.47 shows the bitrate distribution for a frame region (zoomed image) in 
sequence Flamenco2. Observe that for HRC the bitrate varies with the texture 
complexity due to our RoI-aware MDP implementation. For the homogeneous 
background, reduced number of bits is spent while for textured objects and borders 
(dancer) more bits are allocated. Note that, in Figure 4.47, the HRC bitrate distribution 
surface plot accurately fits the objet shapes. This behavior prioritizes the regions where 
the HVS requires a higher level of details tending to lead to a superior overall perceived 
quality. SMRC is unable to accurately react to the image content. In addition, the HRC 
also results in smoother variations within the same region (dancer’s body or 
background), as shown in Figure 4.47. It avoids sudden quality variations and the 
resulting coding artifacts inside those regions. 
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Figure 4.47:  Bitrate distribution at BU level (GOP #8) 

The evaluation presented demonstrates that is possible to maximize the video quality 
while obeying to bandwidth constrains by implementing an efficient RC algorithm. The 
proposed HRC is a powerful tool in order to protect the MVC encoder from quality 
losses typically posed by fast MD and fast ME/DE heuristics such those shown in 
Section 4.1, 4.2 and 4.3. 

4.5 Summary of Energy-Efficient Algorithms for Multiview Video 
Coding 

To provide basis to the mode decision algorithms presented in Section 4.1, a 
complete coding mode correlation analysis was presented. After that, the Early SKIP 
algorithms was presented in details along with the QP-based threshold derivation 
technique. The Multi-Level Fast Mode Decision that incorporates the Early SKIP 
concept describes a 6-step sophisticated algorithm for complexity reduction. It employs 
two complexity reduction operation modes while exploiting the 3D-neighborhood 
correlation along with video properties. To handle the energy versus quality tradeoff an 
Energy-Aware Complexity Adaptation algorithm is presented. 

Targeting the ME/DE complexity reduction the Fast ME/DE is presented in Section 
4.2. This algorithms defines two classes of frames, the key and non-key frames. 
Depending on the prediction mode inferred from 3D-Neighborhood information, the 
MBs belonging to non-key frames are submitted to the evaluation of 3 or 13 candidate 
blocks. It represents a meaningful overall complexity reduction. 

Aware of the video quality drawback posed by the energy-efficient MD and ME/DE 
algorithms, a Hierarchical Rate Control was developed in order to manage and 
compensate eventual quality drawbacks. The goal is to improve the video quality by 
optimizing the bit allocation. For that, the HRC operates in frame-level and BU-level 
rate control actuation levels. At frame level a Model Predictive Controller is used while 
the BU-level RC exploits a Markov Decision Process along with Reinforcement 
Learning. 

 



 

 

137 

5 ENERGY-EFFICIENT ARCHITECTURES FOR 
MULTIVIEW VIDEO CODING 

Although the fast ME/DE provides significant complexity reduction, a high 
throughput hardware architecture is required for real-time ME/DE in MVC. Without a 
dedicated hardware, ME/DE for MVC in real-time mobile application is unfeasible. 
Therefore, in addition to our fast ME/DE algorithm we propose novel motion and 
disparity estimation hardware architectures designed to provide real-time MVC 
encoding for up to four views HD1080p (1920x1080) based on the proposed fast 
ME/DE algorithm. As the architectural solutions share some similar architectural blocks 
we are going to start presenting a high-level architectural template description in order 
to avoid redundancies along the architectures description. The architectural template, 
presented in Section 5.1, will give the required basis for a better understanding of the 
three proposed architectures. Note that the main architectural contributions along this 
thesis do not lie in the design of the processing units but in the MVC parallelism 
exploitation, energy management, on-chip memory design, etc. 

In Section 5.2 a ME/DE architecture implementing in hardware the fast ME/DE 
algorithm proposed in Section 4.3. This first solution exploits the multiple levels of 
parallelism available in the MVC encoding structure. To reduce the on-chip video 
memory size and reduce external memory communication is presented in Section 5.3 an 
ME/DE hardware architecture with dynamic search window formation. The dynamic 
search window formation accurately predicts the memory access pattern from the 3D-
Neighborhood to manage the on-chip video memory. Finally, in Section 5.4 a complete 
application-aware dynamic power management algorithm and its architectural hardware 
implementation are presented. Also, the memory sizing, partitioning and, management 
techniques are detailed along this chapter.  

5.1 Motion and Disparity Estimation Hardware Architectural 
Template 

Our custom motion and disparity estimation hardware architectures typically employ 
a similar structure and processing units. For this reason, before moving to the each 
architecture and the energy-efficient techniques employed, we summarize in this section 
the architectural template and the design of the main ME/DE hardware building blocks. 

The architectural template overview is presented in Figure 5.1. It is composed of 5 
main blocks named: (i) Energy/Complexity-aware Control Units; (ii) Programmable 
Search Pattern Control Unit; (iii) Address Generation Unit (AGU); (iv) On-chip Video 
Memory and; SAD Calculator. Energy/Complexity-aware Control Units box is not 
detailed in this section since this block represents the implementation of all 
energy/complexity-aware control techniques presented in Sections 5.2, 5.3 and 5.4. Our 
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ME/DE architectures communicate with the remaining MVC encoder blocks by 
providing SAD values and motion/disparity vectors for the mode decision unit. The 
reference frames data is read from the external memory that stores the Decoded Picture 
Buffer (DPB). The MVC encoder writes the DPB after the encoded frames are 
reconstructed and filtered by the deblocking filter. 
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Figure 5.1:  ME/DE hardware architecture template 

The proposed Programmable Search Pattern Control Unit was designed employing a 
microprogrammed style in order to facilitate the implementation and experimentation of 
multiple search patterns. It communicates with the Energy/Complexity-aware Control 
Units in order to provide search pattern information such as search pattern used, 
memory regions accessed, number of candidate blocks tested. Energy/Complexity-
aware Control Units feedbacks the Programmable search pattern control unit with 
energy/complexity budget, search pattern to be employed for future MBs, vector 
predictors, search directions to be exploited, active on-chip memory sectors, etc. This 
communication and the hardware actually implemented inside the Energy/Complexity-
aware Control Units depend on which energy-efficient techniques are designed for the 
specific architectural solution. 

Once the search pattern is defined, the candidate blocks are forwarded to the AGU 
as a set of points inside the search window. The AGU is responsible for translating 
these points into a sequence of actual memory addresses. As the On-chip Video 
Memory is implemented in a cache fashion, the cache tags are generated using the 
address provided by the AGU according to a predefined tag format defined in Section 
5.1.3. The On-Chip Video Memory is implemented using SRAM memory to locally 
store samples belonging to the search window. The samples are brought from the 
external memory in block-based read operations. To check if the samples required by 
the search control are available on-chip, the above mentioned cache tags are tested 
employing a fully associative approach. 

The SAD (Sum of Absolute Differences) Calculator is composed of an array of 4-
sample SAD Processing Elements (PEs), an array of adder trees, and comparator trees. 
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The number of PEs depends on the throughput require. The PEs connectivity depends 
on the block sizes supported by the architecture and the number of candidate blocks 
processed in parallel. The SAD Calculator is fed in parallel by the On-chip video 
memory. The number of PEs and the memory width must be jointly defined in order to 
maximize the hardware usage and processing throughput. 

In the following sections the ME/DE hardware modules are presented in details.  

5.1.1 SAD Calculator 

All the data processing itself is performed in the SAD Calculator unit. It receives the 
current MB samples, that are stored in a small local buffer (omitted in Figure 5.1), and 
the reference samples to determine the SAD between the original block and the 
reference block according to Eq. (5.1).  
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Figure 5.2:  SAD Calculator architecture 

Each Processing Element, as depicted in Figure 5.2, calculates the SAD for four 
samples in parallel. PEs are composed of four subtractors, one absolute operator and 
three adders. Although the hardware description supports multiple sample bitdepth the 
implementation was limited to 8-bit sample inputs. The PEs are associated using adder 
trees to generate the SAD for a whole block of NxN. In the example presented in Figure 
5.2, the SAD Calculator is designed to process a 4x4 block in parallel by associating 
four PEs (PE0..PE3 process one 4x4 block).  In this scenario, each adder three requires 
further three adders in two logic levels. The larger the block to be processed, the bigger 
the adder tree. For 16x16 blocks, 63 adders are required in six logic levels. Therefore, 
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pipelining is required for bigger block sizes in order to avoid operation frequency 
reduction. For simplicity, Figure 5.2 omits pipeline barriers. 

After the SADs are calculated for the multiple block processed in parallel, the SAD 
Comparators Tree is used to select the smallest SAD values. Along with the SAD value 
the SAD Calculator feedbacks the Programmable Search Pattern Control with the 
position where the smallest SAD was found. This information is used do decide the 
following steps of the search process. The SAD Comparators Tree size and logic depth 
depends on the number of blocks processed in parallel. Thus, pipelining might be 
necessary in case of a large number of blocks.  

5.1.2 Programmable Search Control Unit 

Hardware implementations for the search control unit are typically limited to one 
single search pattern. In the architectures proposed in this thesis we implement a 
Programmable Search Control Unit able to support multiple search patterns without 
hardware redesign by employing the microprogramming concept. By simply 
reprogramming the Search Pattern Memory it is possible to change the search pattern 
(or shape). It allows fast hardware ME/DE algorithms design and verification. 

The Programmable Search Control Unit is composed of a Finite State Machine 
(FSM) and a Search Pattern Memory (SPM), both presented in Figure 5.3. Firstly, the 
FSM identifies the current MB position and reads, form the SPM, the first search 
pattern. By adding the current MB position and the coordinates of each search point 
defined in the SPM, the Programmable Search Control Unit determines and dispatch, in 
parallel, all the search points for that specific search pattern step. Depending on the 
feedback from the SAD Calculator, the next search step is selected among three options: 
repeat the same pattern, use another pattern described in the memory or process next 
MB.  

The SPM program memory organization is presented in Figure 5.3. The left table 
shows the description of each line while the right table specifies the fields and bitdepth 
of each field (a number o x-bits is represented as <xb>). A 32-bits program memory is 
used. The first SPM line brings the total number of patterns programmed and the ID of 
the first pattern (FirstPatternID) to be used, where each search pattern has a unique ID 
sequentially defined. The search pattern is described starting by a line containing a 16-
bit ID (actually only the 8 LSB are considered) and the number of points belonging to 
that specific search pattern. In the following, each point is described using a (X, Y) 
coordinates pair and the NextPatternID. X and Y are 12-bits integer numbers 
representing the displacement between the search point and the search pattern central 
reference point. The search pattern central reference is initially defined as the MB 
position and evolves according to the algorithm interaction assuming the best SAD 
point as center. The 12-bit coordinates enables a search range of up to [±2048, ±2048] 
in relation to the search pattern central reference. The NextPatternID specifies the next 
pattern to be used in case this point presents the lowest SAD among all points of the 
current pattern. In case the search point represents a terminating point (in case it is the 
lowest SAD the search ends) the NextPatternID is defined as the reserved value 0xFF. 
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Figure 5.3:  Programmable Search Control Unit (a) FSM and (b) program memory 

Table 5.1 provides a simple example using a two-step Log Search (MARLOW, NG 
e MCARDLE, 1997) with window size W=16 (search range [±8, ±8]) and finishes with 
a local Cross-Search (GHANBARI, 1990) refinement. The first Log Search step (ID 
0x0000) leads to the second Log Search step (ID 0x0001)  except for the central 
position (line 2) that leads to the Cross-Search refinement (ID 0x0002). After the 
second Log Search step all points lead to the Cross-Search refinement (ID 0x0002). The 
terminating step Cross-Search points to the reserved terminating pattern ID 0xFF. 

Although it is possible to extend the Programmable Search Control Unit in order to 
program new test conditions or thresholds, the current implementation requires 
additional modifications in the FSM to support features such as early termination and 
thresholds adaptation. 

Table 5.1: Search Pattern Memory example  
Addr Instruction  Addr Instruction 

0 0x000003 0x000001  11 0x0001 0x0009 
1 0x0000 0x0009  12 0 0 0x02 
2 0 0 0x02  13 -4 0 0x02 
3 -8 0 0x01  14 -4 -4 0x02 
4 -8 -8 0x01  15 0 -4 0x02 
5 0 -8 0x01  16 4 -4 0x02 
6 8 -8 0x01  17 4 0 0x02 
7 8 0 0x01  19 4 4 0x02 
8 8 8 0x01  20 0 4 0x02 
9 0 8 0x01  21 -4 4 0x02 

10 -8 8 0x01  22 0x0003 0x0004 
   23 -1 1 0xFF 
   24 1 1 0xFF 
   25 1 -1 0xFF 
   26 -1 1 0xFF 



 

 

142 

 

5.1.3 On-Chip Video Memory 

The On-Chip Video Memory used in this thesis works as a cache memory composed 
of an Address Comparator block and the On-Chip SRAM memory itself, as represented 
in Figure 5.4. The address requested by the Search Control and forwarded by the AGU 
(still using video representation) is compared to the Tags of each memory entry. Each 
entry represents a full MB of the reference frame and the Tags comparison is performed 
in parallel. Case the reference is available on-chip the requested data is transmitted to 
the SAD Calculator unit. Otherwise, the read request is sent to external memory. The 
addresses are provided by the AGU that translates the address from video representation 
to a burst of addresses mapped to the actual memory address space (see Section 5.1.4). 
After updating the data, the samples are sent to the SAD Calculator. 

The Tag in the On-Chip Video Memory is defined in Figure 5.5 where the <nb> 
represents a value with n bits wide. The Tag is composed by a unique view identifier, 
six LSBs of the frame Picture Order Counter (POC) within that specific view and the X 
and Y coordinates of the reference MB. By using this Tag is possible to support up to 
16 views, access reference frames within a 64-frames temporal window and support up 
to 2kx4k (QDH) video resolutions. This definition, however, can be easily extended by 
increasing the bitdepth of each field in order to handle increased demands.  

Remember this is just a template description, in the following sections we are going 
to present, in details, the SRAM organization, sizing and energy management of the On-
Chip Video Memory for different scenarios. 

On-Chip SRAMTag

A
d

d
re

ss
 

C
o

m
p

a
ra

to
r

External Memory

data

addr.

request

addr.

data

On-Chip Video Memory

 

Figure 5.4:  On-Chip Video Memory organization 

Cache Tag: ViewID<4b> FramePOC<6b> MBPosX<8b> MBPosY<8b> 

Figure 5.5:  On-Chip Video Memory cache tag 

5.1.4 Address Generation Unit (AGU) 

The AGU is used to convert the addresses defined in video representation provided 
by the Search Control to a linear memory representation. Video content is represented 
using 2D arrays, however, when mapped to the external memory these 2D arrays must 
be translated to a sequence of 1D addresses. This process is depicted in Figure 5.6, 
where the circles represent video samples. The math for generating the memory mapped 
addresses is detailed in the following paragraph. Note, this AGU is used for reading-
only purpose since other blocks of the MVC encoder are responsible for writing the 
external video memory. 
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The view (v) and frame (f) identifiers associated to the frame resolution 
(FrameWidth and FrameHeight) are used to define the frame base address 
(FrameBaseAdd), as presented in Eq. (5.2). Also, the line LineStride is defined by the 
frame width. To read a block pointed by positions (PosX, PosY) and size (SizeX, SizeY) 
a sequence of linear memory addresses (Add0, Add1, etc) are generated by the AGU. If 
the block requires more than one access per sample line (as the example Figure 5.6) two 
sequential addresses are generates by the AGU. This process is repeated SizeY times, 
always considering the LineStride displacement, to complete the block reading. The 
general linearization definition is provided in Eq. (5.2). Note that the video 
representation addresses refer to sample positions, to map it to memory positions the 
memory word size (MemWordSize) in number of samples is  taken into consideration. 
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Figure 5.6:  Address Generation Unit (AGU) for dedicated video memory 
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(5.2) 

5.2 Multi-Level Pipelined HW Architecture with Fast Motion and 
Disparity Estimation 

Although significant complexity reduction was achieved through the Fast ME/DE 
algorithm presented in Section 4.3, real-time motion and disparity estimation feasibility 
for mobile devices depends on energy-efficient dedicated hardware architectures.  

In this section is presented a hardware architecture (ZATT, SHAFIQUE, et al., 
2011) that integrates our Fast ME/DE algorithm with a multi-level pipelined parallel 
hardware to expedite the ME/DE process jointly at the algorithm and hardware levels. 
This solution is able to exploit the four levels of parallelism available in the MVC 
encoder and discussed in Section 5.2.1. The architecture scheduling and design are 
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presented in Section 5.2.2 and Section 5.2.3, respectively. Preliminary results are 
discussed in Section 5.2.4. 

5.2.1 Parallelism in the MVC Encoder 

Due to the prediction structure used in the MVC as depicted by the arrows in Figure 
5.7, four levels of parallelism can be exploited to achieve high throughput. For an easy 
understanding, the frames in Figure 5.7 are ordered according to the coding sequence 
using numbers for the KF and the alphabet order for NKF. The I frames are not 
processed by ME/DE and are considered available. Frames 2’, 4’ and 6’ belong to the 
previous GOP. 

 

Figure 5.7:  MVC prediction structure in our Fast ME/DE algorithm 

View-Level Parallelism: Although MVC defines the Time First decoding order (i.e. 
all frames inside a GOP of a given view are processed and then the next view is 
processed), this order is not mandatory (i.e. not forced by the standard) during the 
encoding process, as far as the bitstream respects it. For instance, views S1 and S3 can 
be encoded completely in parallel after S0 and S2 reference views are available. 

Frame-Level Parallelism: Within a view there are frames with no dependencies 
between them. For example, using one reference frame per prediction direction (1 west, 
1 east, 1 north and 1 south) frames A and B can be processed in parallel. Analogously, it 
is possible to process the frames C, D, E, and F in parallel. 

Reference Frame-Level Parallelism: Every single frame can be predicted using up 
to four reference frames to be encoded. The search in different reference frames has no 
data dependencies allowing the parallel processing. For instance, while encoding Frame 
P the search in reference frames 5, D, M, and J may be performed in parallel.  

MB-Level Parallelism: Each MB has data dependencies to the previous encoded MB 
due to motion vector prediction process and SKIP vector prediction. However, using the 
Fast ME/DE scheme (see section 4.3.2) it is possible to start the predictors evaluation 
before the spatial neighboring MB. Additionally, the prefetching and SAD calculation 
may be started before obtaining the previous MB results (also possible for Zero Vector).  

5.2.2 Multi-Level Pipelined Parallel Scheduling  

A novel scheduling scheme is proposed for the MVC ME/DE as shown in Figure 
5.8. The numbers and letters are consistent to Figure 5.7. The letters between 
parentheses represent the prediction direction E (East), W (West), N (North) and S 
(South). The dotted boxes represent a frame that belongs to the next GOP. This 
scheduling assumes the existence of two hardware modules executing/operating in 
parallel: one processing the TZ search for KF and the other processing the fast ME/DE 
for NKF. However, it can be easily be mapped to a serial architecture or extended to a 
more parallel hardware that exploits the four level parallelism knowledge. 
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Each time slot of the TZ Module is dedicated to perform the search for a complete 
KF in one reference frame. It is noticeable that the coding time for a given GOP is the 
time to perform 16 TZ searches. This number represents a reduction of 81% in the 
number of complete TZ searches if compared to a system without our fast ME/DE 
search (that performs 88 complete TZ searches).  

For NKF encoding there is a Fast ME/DE module. After the required reference 
frames are processed by the TZ module (solving the data dependencies) all NKF in the 
same view are processed following the pre-defined coding order (as shown by the 
alphabetic order). The data dependencies between the KF and NKF are represented in 
Figure 5.8 by dashed arrows. To avoid pipeline stalls, the GOP-level pipeline starts the 
TZ search in KF of next GOP while the fast ME/DE Module concludes the current GOP 
processing. Since the Fast ME/DE represents less than 1% of the processing effort of 
TZ Search the fast ME/DE module process the NKF in a burst and, in the following, it 
is clock-gated (CG) until the next usage. For simplification, in Figure 5.8, the encoding 
of NKF does not present the details showing which prediction direction is tested. 
However, in the slot of given frame A, all required prediction direction are serially 
tested (in the specific case of frame A, West and East directions). 

 

Figure 5.8:  GOP-level pipeline schedule 

The internal scheduling of the TZ Module operates at MB-level, as presented in 
Figure 5.9a. The three main tasks are: the algorithm control which is always active; the 
TZ search window prefetch logic which can be clock-gated after bringing the search 
windows from the external reference memory (DPB); and the TZ SAD computation that 
starts processing as soon the first useful reference block is available. 

As the Fast ME/DE scheme has two prediction modes (the Fast and Ultra Fast 
prediction modes) two distinct pipeline scheduling are required for the Fast ME/DE 
Module. The Ultra Fast scheduling is presented in Figure 5.9b and the Fast scheduling 
in Figure 5.9c. Three tasks are considered: Fast ME/DE Vector Calculation, Data 
Prefetching, and SAD calculation. First, the Zero Vector is tested because it has no data 
dependencies with the spatial neighbors. Afterwards, the predictors are evaluated and 
the Common Vector (if it exists, for algorithm details check Section 4.3) or Predictor 
Vector 1 are processed (represented by the gray blocks in Figure 5.9b and Figure 5.9c). 
This is the second vector evaluation step (MB-Level Evaluation in Figure 4.34) once the 
vectors can be calculated based on the Frame-Level Evaluation (Section 4.3.2). If the 
spatial vector points to a different position, additional data is then fetched and processed 
(Predictor Vector N). The last vector to be tested is the SKIP predictor that depend upon 
the previous MB. In this pipeline stage, the previous MB MV/DV information must 
already be available to avoid pipeline stalls. The MB time borders (indicated by the 
vertical dashed lines in Figure 5.9b and Figure 5.9c) interfaces are the same for both 
prediction modes allowing the mode exchange (Fast↔Ultra Fast) with no pipeline 
stalls. 
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Figure 5.9:  MB-level pipeline schedule for (a) TZ Module and Fast ME/DE Module in 

(b) Ultra Fast and (c) Fast operation modes. 

5.2.3 Hardware Architecture 

Based on the above-discussed pipeline schedule that exploits the MVC parallelism, a 
multi-level pipelined parallel hardware architecture was designed, described in RTL and 
synthesized down to logic synthesis level. Figure 5.10 shows the block diagram of our 
ME/DE hardware architecture. It is composed of three main modules: (a) TZ Search 
Module, (b) Fast ME/DE Module, and (c) Shared SAD calculator, which consists of 
SAD operator and adder trees. A SKIP Vectors Prediction module and MV/DVs storage 
memory shared by the TZ and fast ME/DE modules were also designed. 

 

Figure 5.10:  ME/DE hardware architecture block diagram 

TZ Search Module: The TZ Module is composed of three internal modules: (i) TZ 
Search Control, (ii) Address Generating Unit (AGU), and (iii) Cache Memory. The TZ 
Search Control requires the search windows to be stored in the Cache Memory and the 
candidate blocks to be sent to SAD calculation. The implemented cache memory 
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exploits the regularity of TZ algorithm by using the Level-C data reuse scheme as 
described in (CHEN, HUANG, et al., 2006). 

Fast ME/DE Module: The Fast ME/DE differs from TZ module in the control 
module and the cache memory organization. The control module is responsible for (i) 
reading the MV/DVs from a dedicated memory, (ii) calculating the Common Vector (in 
case Ultra Fast Prediction is used), and (iii) to fetch the reference frame data. However, 
since the Fast ME/DE module evaluates candidate blocks with very different regularity 
behavior, the cache is composed of two small memories. Since the Zero Vectors show 
regular distribution, the Level-A (CHEN, HUANG, et al., 2006) caching technique is 
used for the Zero Vector Cache. For the predictors from the 3D-Neighborhood, the 
access to different reference frame areas may be required. The same behavior is noticed 
for SKIP predictor that cannot be anticipated. For this reason, our architecture employs 
the 3D-Cache (ZATT, AZEVEDO, et al., 2007) originally developed for the H.264 
decoder motion compensation. The 3D-Cache is used to store the data required for  
SKIP and 3D-Neighborhood predictors. In our ME/DE the 3D-cache is composed of 16 
sets instead of the original 32 because our solution tests the predictors for a single 
reference frame at a time while the original memory was designed to support multiple 
reference frames. 

Shared SAD Calculator: The relation between the processing time for one complete 
TZ search and one Fast Prediction lies in about 1:100. Therefore, to balance the parallel 
modules of TZ search and Fast ME/DE without extra hardware, the TZ SAD throughput 
should be 100x higher than the Fast ME/DE Module. Alternatively, a Shared SAD 
Calculator hardware was developed guaranteeing the fully usage of the SAD operators 
(and the adder trees) along the coding process. If the Fast ME/DE is performed, some 
operators are allocated for this task, otherwise all SAD operators are allocated to the TZ 
Search module. Moreover, this solution allows exploring the parallelism by simply 
varying the number of SAD operators (and Adder Trees) and the SAD operator 
allocation logic. In order to obtain 4-views HD1080p real-time MVC encoding, 64 4x4-
SAD operators were instantiated, i.e., 256x the 4-sample SAD PEs described in Section 
5.1.1. 

5.2.4 Multi-Level Pipelined ME/DE Architecture Evaluation 

The proposed architecture is designed, implemented, and verified in VHDL. It is 
synthesized and implemented (place and route) for a Xilinx Virtex-6 xc6vlx240t FPGA 
and an ASIC using IBM 65nm LPe LowK standard technology. For the Xilinx Virtex-6 

xc6vlx240t FPGA, our architecture processes real-time ME/DE for HD1080p at a 
maximum frequency of 258MHz. It requires 4,308 Slices (9,876 LUTS) and 103 BRAM 
modules. The ASIC on-chip memory is based on the 1 Mb SRAM scheme for low 
power SoCs proposed in (FUKANO, KUSHIDA, et al., 2008) that consumes 60mW at 
300 MHz. The ASIC implementation details are presented in Table 5.2. Our design is 
able to provide real-time ME/DE for up to four-views HD1080p videos. Besides the 
faster hardware and the pipelined schedule considering four levels of parallelism, the 
throughput increase is due to the reduced number of candidate blocks per MB provided 
by our fast ME/DE algorithm. 

Memory Overhead: While providing very high throughput and requiring a relatively 
low gate count compared to the current state-of-the-art solutions (as will be discussed in 
Chapter 7) the proposed architecture requires a high number of on-chip memory bits. 
The large memory is justified by the increased search range of [±64,±64] (required to 
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encode increased resolutions) supported by our architecture, the capability to encode 
HD1080p (thus support for more MBs), and the support for three different caching 
schemes. Level-A requires 2 Kbits, Level-C 131 Kbits and 3D-cache 82 Kbits. 
Additionally, the MV/DV memory used by our fast ME/DE algorithm requires 522 
Kbits (a limitation of our approach, but justified by the high throughput achieved). The 
prefetching schemes enable to reduce the external memory bandwidth by up to 65%. 

Table 5.2: Comparison of Our Fast ME/DE Algorithm to TZ Search 

 
Multi-Level Pipelined  

Fast ME/DE Architecture 
Technology IBM 65nm LPe LowK  
Gate Count 211k 

SRAM 737 Kbits 
Max. Frequency 300 MHz 

Power 81mW, 0.8v 
Proc. Capability 4-views HD1080p 

Remember from our discussion in Section 3.2 that the energy drained by the on-chip 
video memory represents a meaningful share of total memory consumption. For this 
reason, Section 5.3 and Section 5.4 present alternative architectural solutions that 
emphasize the on-chip memory design and dynamic power management focusing on 
reducing the on-chip energy consumption. To provide overall energy reduction, the on-
chip memory energy reduction is considered along with the external memory access 
energy consumption. 

5.3 Motion and Disparity Estimation Hardware Architecture with 
Dynamic Search Window Formation 

Aware of the dominant memory-related energy consumption we present in this 
section a hardware architecture featuring novel data prefetching scheme and on-chip 
memory management solution (ZATT, SHAFIQUE, et al., 2011). Considering the 
previous MBs memory access our architecture is able to build a search map and predict 
the memory usage. It enables to read only the required data from external memory, 
avoiding performance drawback. Additionally, the mentioned memory access prediction 
allows the run-time management of the on-chip memory by adapting the power states of 
each memory sector, resulting in reduced energy consumption. The features of this 
architecture are summarized below. 

Dynamically Expanding Search Window Formation Algorithm: Instead of 
prefetching the complete rectangular search window, a selected partial window is 
formed and prefetched for each search stage of a given fast ME/DE scheme depending 
upon the search trajectory, i.e., the search window is dynamically expanded depending 
upon the outcome of each search stage. An analysis is performed to highlight the issues 
related to the expansion of the partial window at each search stage. The search 
trajectories of the neighboring MBs and their spatial and temporal properties (variance, 
SAD, motion and disparity vectors) are considered to predict at run time the form of the 
search window for the current MB. This results in a significantly reduced energy for 
off-chip memory accesses. 

Hardware architecture with Multi-Bank On-Chip Memory: A hardware architecture 
with parallel SAD modules is proposed. A pipelined schedule is proposed to enable 
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high throughput. Moreover, the hardware is equipped with a multi-bank on-chip 
memory to provide high throughput in order to meet high definition requirements. The 
size and the organization of the memory is obtained by an analysis of the fast ME/DE 
scheme. Each bank is partitioned into multiple sectors, such that each sector can be 
individually power-gated to save leakage. The control of the power-gates is obtained 
from the application layer. 

Application-Aware Power-Gating Scheme for the On-Chip Memory: Depending 
upon the fast ME/DE scheme and the macroblock properties, the amount of required 
data is predicted. Only the sectors to store the required data are kept powered-on and the 
remaining sectors are power-gated. 

Before moving to the hardware description, the memory organization, and the 
power-gating algorithm, we present the access pattern analysis that provides the basis 
for our memory access pattern prediction. After that, the search maps used to predict the 
memory access pattern are introduced followed by the Dynamic Search Window 
formation algorithm. The memory hierarchy and its application-aware power gating are 
also presented in this section with detailed results. 

5.3.1 ME/DE Memory Access Pattern Analysis  

Real encoding systems do not implement the exhaustive search (Full Search, FS) but 
fast search algorithms. Fast ME/DE search algorithms usually are based on multiple 
search interactions following a given geometric shape and may employ start point 
selection and early stop criteria to reduce the computational complexity. These 
algorithms can provide expressive speedup and reduced number of memory accesses at 
the cost of negligible quality loss. However, real systems may suffer due to the irregular 
memory access pattern of external memory. 

As a case study we present the memory access pattern for two fast ME/DE 
algorithms, TZ Search and Log Search, considering low and high motion MBs (see 
Figure 5.11). These search algorithms are implemented in the MVC reference software 
(JMVC) and their behavior represent a wide family of search algorithms. During ME 
the high motion areas perform higher number of memory accesses compared to low 
motion areas in which the search converges quickly. Analogous behavior happens for 
DE where objects with high disparity require more effort to find a good match. In 
Figure 5.12 the memory access profile for one frame is presented. The flat regions 
represent the low motion/disparity areas while the peaks are located at high 
motion/disparity ones. Other important observation is that for a same image region or 
object the number of memory access and the search pattern behavior is similar, i.e. 
neighbor MBs that belong to the same object tend to have similar memory and search 
pattern behavior.  

Even considering high motion/disparity regions it is noticeable that big part of the 
search window is not accessed resulting in communication and storage energy wastage. 
Averagely, the ME/DE access 19.85% of the total search window using TZ search and 
1.01% using Log Search. This represents that most of the search window is read and 
stored in vain, as detailed in Figure 5.13. The search pattern also is of key importance in 
the accuracy vs. memory access tradeoff. Compared to Log search, the TZ requires 
more memory accesses (see Figure 5.13), reaches extended search area (see Figure 
5.11) and tends to provide more accurate search results. 
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Figure 5.11: ME/DE search pattern for TZ Search and Log Search  
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Figure 5.12: Number of pixels accessed in external memory 
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Figure 5.13: ME/DE search window wastage 

5.3.2 Search Map Prediction 

Figure 5.14 presents the Search Map for two neighboring MBs (denoted as MBx and 
MBx+1) using the Log Search algorithm. After the ME search is performed for the MBx, 
a Search Map is built based on the search trajectory (i.e., the ID of the selected 
candidate search points at each search stage of the ME/DE scheme). As shown in Figure 
5.14a, the first search stage selects the candidate with ID 6 as the best candidate. 
Similarly, candidates with ID 3 (at stage 2), ID 4 (at stage 3), and ID 4 (at stage 4) are 
selected as the best candidates at their respective search stages. This provides a Search 
Map of [6,3,4,4] (the trajectory is shown by the red arrows). Note, for each search stage 
there is an entry in the Search Map with the ID of the candidate with minimum SAD at 
that particular search stage. 
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Figure 5.14:  Search Map Prediction for the Log Search 

Considering the analysis of the MB neighborhood, a Search Map for the MBx+1 can 
be predicted from the Search Map of MBx. In case there is a deviation in the search 
trajectory of these two MBs, there will be a miss in the on-chip memory due to the 
prefetch of the false region (see the green box in Figure 5.14b). Typically, these misses 
are at the boundaries of the moving objects and occur in relatively few MBs along the 
whole video frame. In case of a miss, there will be a stall  only for the prefetching of the 
first candidate data on the new trajectory (i.e., 16x16 pixel data). All other candidates 
on the new trajectory will be then prefetched correctly (before their respective SAD 
computations, thus not causing any stall) as the search pattern design of the fast ME/DE 
schemes is fixed at design time (see the brown box for the new prefetched data). 
Typically a miss in the trajectory depends upon the motion/disparity difference of two 
MBs, which is significantly smaller in most of the neighboring MBs due to high 
correlation between them. 

5.3.3 Dynamic Search Window Formation 

Figure 5.15 depicts the pseudo-code for the algorithm of the dynamic search window 
formation and expansion. The algorithm works in two major steps. First it predicts the 
Search Map from the spatial predictors (lines 3-21). Afterwards, it checks if the search 
pattern matches the Search Map, prefetches the appropriate partial search window, and 
updates the Search Map (lines 23-33).  

Four spatial predictor with presenting high correlation with the current MB are used to 
predict the Search Map (line 4). Afterwards, variance of these predictors is computed and 
motion and disparity information is obtained (lines 5-6). Based on the spatial, temporal, 
and view information, a matching function is computed that provides a hint that predictors 
may belong to the same object or may exhibit similar motion/disparity properties (lines 7, 
9-12). Afterwards, the predictors are sorted with regard to their similarity to the current 
MB (line 14). The closest predictor is determined by computing the SAD with the current 
MB (line 15). In case the closest predictor also belongs to the same object or exhibit 
similar motion/disparity, its Search Map is considered as the predicted Search Map (line 
17). Otherwise, the closest map is found in the remaining predictor set (line 19). If none 
of the predictors exhibit similarity to the current MB, then the predicted Search Map is 
empty. 
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After the Search Map is predicted, it is used to form the search window. For each 
search stage, the partial search window is determined according the Search Map and 
prefetched. In case the search candidates of the search pattern are present in the Search 
Map (i.e., the search trajectory falls in the predicted region), the partial search window 
is simply constructed according to the predicted Search Map and the prefetched data is 
used (i.e., a case of hit) (see line 28). Otherwise, if the Search Map is empty or does not 
contain the search candidate, the Search Map is ignored for this stage onwards (see line 
26). In this case the prefetched data is wasted and it is considered as a miss. The partial 
search window is then constructed according to the search pattern for the miss parts (see 
line 31, it can also be seen in the example of Figure 5.14b). 

In the following section we discuss the architecture of our joint ME/DE scheme 
along with the design of the multi-bank on-chip memory and application-aware power-
gating. 

5.3.4 Memory Hierarchy 

On-Chip storage of rectangular search windows incurs in increased area and leakage 
of on-chip memory, like those presented in (CHEN, HUANG, et al., 2006)(DING, 
CHEN, et al., 2010)(SAPONARA e FANUCCI, 2004)(CHEN, CHEN, et al., 
2007)(TSUNG, CHEN, et al., 2009)(TSAI, CHUNG, et al., 2007). The size of the 
dynamically formed search window is significantly lower compared to the rectangular 
search windows. This scenario becomes even more critical in MVC where ME and DE 
are performed for multiple views using larger search windows (for instance [±96, ±96] 

1. // Predict the Search Map from the Neighboring MBs 
2. PredictorSet  � Ø; 
3. If (PredictorsAvailable) Then 
4.  PredictorSet = {MVLeft, MVTop, MVTopRight, MVSpatialMedian}; 
5.  computeVariance (PredictorSet); //Compute Variance of all predictors 
6.  getTemporalInfo (PredictorSet, currMB); //Get MV, DV, SADs 
7.  MotioncurrMB = (SADcurrMB > THSAD)? 1: 0; 
8.  For i = 0 to all Predictors //Compute the Similarity of predictors,i.e., check if predictors 

belong to the same object as of the current MB 
9.   diffVarpredi = VarcurrMB - Varpredi; 
10.   Motionpredi = (SADpredi > THSAD)? 1: 0; 
11.   diffMotionpredi = MotioncurrMB - Motionpredi; 
12.   predDiffpredi = α*diffVarpredi + β*diffMotionpredi; 
13.  End For 
14.  PredictorSet = sortPredictors (predDiff, PredictorSet); 
15.  bestPred = determineBestPredictor (PredictorSet, currMB); 
16.  If (predDiffbestPred < THdiff) Then 
17.   predSearchMap = SearchMapbestPred; 
18.  Else 
19.   predSearchMap = findClosestSM (PredictorSet, THdiff); 
20.  End If 
21. End If 
22. // Perform Dynamic Formation and Expansion of the Search Window 
23. For all SearchStages  // Depending upon the  fast ME/DE scheme 
24. SM_Miss = checkSearchMap (searchStageID, predSearchMap); 
25.  If ((PredictorSet == Ø) or SM_Miss) Then 
26.   SWBuffer = prefetchPartialWindow (refFrame, searchStageID,   

   searchStagePattern); 
27.  Else 
28.   SWBuffer = prefetchPartialWindow (refFrame, searchStageID,   

   predSearchMap); 
29.  End If 
30.  bestCand = performMEDE (currMB, SWBuffer, SearchAlgorithm); 
31.  Build_CurrMB_SearchMap (bestCand, searchStageID); 
32.  If (earlyTermination)  return;  End If 
33. End For 
34. return; 

Figure 5.15: Algorithm for Search Map Prediction and the 
Dynamic Formation and Expansion of the Search window 
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to capture high disparity regions in DE). Depending upon the MB properties, the sizes 
of dynamically expanding search windows may vary significantly. However, the size of 
on-chip memory that stores this window must be fixed at design time. Therefore, we 
firstly perform a design space exploration to obtain a reasonable size of the on-chip 
memory (that provides leakage power reduction and area savings). In case the MB 
exhibit low motion and the size of the prefetched window is still less than the on-chip 
memory, the remaining parts of the memory are power-gated to further reduce leakage. 

Figure 5.16 demonstrates the design space exploration for the memory access 
distribution using Ballroom video sequence (a fast motion sequence). Figure 5.16a 
shows the number of MBs for which ME and DE require less than 96 MBs. Here, a 
MB-based memory fetching is considered. Please note that the reduced number is 
mainly due to the adaptive nature of fast ME/DE schemes and it does not mean that this 
is within a smaller search range. A rectangular search window of [±96, ±96]  size 
requires 37KB of on-chip memory. Figure 5.16b shows that even for such a large search 
range, at most 96 candidates are evaluated per MB. This corresponds to an on-chip 
memory of 24KB, i.e., a reduction of 35% area. When scrutinizing the Figure 5.16b, it 
is noticed that in more than 95% cases a storage of only 64MBs is required (i.e., 16 KB 
� 57% savings). We have performed such an analysis for various video sequences with 
diverse motion (not shown here due to space reasons). Similar observations were made 
in all of the cases. Therefore, we have selected an on-chip memory of 16KB, which 
provides significant leakage reduction in the on-chip memory. In rare cases, where the 
ME and DE may require more MBs, misses may happen (as we will show in section 
5.3.7.1).The on-chip memory is organized in 16 banks, where one 16 pixel row of an 
MB is stored in each of the banks, in order to guarantee high parallel throughput. 

As discussed above, even 16KB memory may not be completely used to store the 
dynamically expanding search window as the size of prefetched search window highly 
depends upon the MB properties and the fast ME/DE scheme (it can be seen in Figure 
5.16b that in more than 20% of the cases storage for 32MBs is used, i.e., only half of the 
memory). Therefore, each bank is partitioned into multiple sectors (8 sectors in this 
case) where each sector can be individually power-gated to further reduce the leakage 
(see Figure 5.17). The main challenge here is to incorporate the application and video 
knowledge to determine the power-gate control, such that the power-gating signals may 
be determined depending upon the predicted memory requirements of the current MB. 
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Figure 5.16: Analyzing the memory requirements for ME/DE of different MBs in 
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Figure 5.17: Search Window Memory organization with power-gating 

5.3.5 Application-Aware Power Gating 

A previously discussed,  MB properties provides a relatively high potential for 
leakage reduction by accurately predicting the memory requirements of MBs before their 
actual ME/DE. However, frequent on-off switching needs to be avoided to reduce power-
gating wakeup energy overhead. Therefore, our scheme predicts the sleep time as function 
of n consecutive MBs whose sectors can be jointly power-gated. Considering the worst 
case of stationary MBs, to overcome the wakeup energy overhead, the condition defined 
in Eq. (5.3) must hold. 

Pleak_onChipMem * TminMEDE * n > Ewakeup (5.3) 

However, the minimum ME/DE time depends upon the deployed fast ME/DE 
scheme. For instance, in case of a stationary MB there will be a minimum of 9 SAD 
computations for the Log Search and for the TZ Search it is 46 SADs. Therefore, 
considering the minimum number of SADs for a stationary MB, Eq. (5.3) can be re-
written as Eq. (5.4) where minNumberSADs is 9 and 46 for Log and TZ Searches, 
respectively. For a given sleep transistor design and a given SRAM memory, the n can be 
determined. In reality, MBs exhibit diverse motion and spatial properties. Therefore, the 
number of consecutive MBs that require a certain amount of on-chip memory may be 
even less than n. 

n > (Ewakeup / Pleak_onChipMem * minNumberSADs * TSAD) (5.4) 

Let’s assume n consecutive MBs require at most R KB of on-chip memory for their 
search window prefetching. For a given on-chip memory of size Smemory KB with NSec 
number of SSec KB sectors, the amount of power-gateable memory sectors is computed 
by Eq. (5.5). 

NgateableSectors = (Smemory - R) / SSec (5.5) 

The control signal is generated by the Power Gating Control unit by simply reading 
the motion and disparity vectors from 3D-Neighborhood and counting the number of 
consecutive low motion/disparity MBs. 

5.3.6 Hardware Architecture 

Figure 5.18 shows the hardware architecture with our proposed dynamic search 
window formation scheme. It employs the above-discussed dynamically expanding 
search window prefetching and a multi-banked on-chip memory with application-aware 
power gating control. In order to obtain high throughput, a set of 64 (4x4-pixel) SAD 
operators and SAD trees is provided as the main computation block. An ME/DE search 
control unit is integrated which can be programmed to realize various fast ME/DE 



 

 

155 

schemes. This unit controls the search stages and patterns, and it provides the required 
algorithmic information to various other modules. The search window formation unit 
predicts the Search Map and dynamically constructs the search window structure. This 
data corresponding to the window is prefetched in the multi-bank search window 
memory which consists of various sectors that can be individually power-gated 
(ZHANG, BHATTACHARYA, et al., 2005) depending upon the ME/DE requirements 
of the current MB. 

 
Figure 5.18: ME/DE hardware architecture block diagram 

In Figure 5.19 is presented the MB-level ME/DE processing pipeline scheduling 
including the data prefetching and SAD computation for different search stages. During 
the SAD computations of the preceding search stage, the partial search window data is 
prefetched for the succeeding search stage. However, in case of a Search Map miss, stall 
for one candidate data prefetch happens (see A in Figure 5.19). In case the fast ME/DE 
scheme stops the search due to early termination criteria, the prefetch data in the search 
window is wasted (see B in Figure 5.19).  

 
Figure 5.19: Pipeline Processing Schedule of our ME/DE Architecture 

5.3.7 Hardware Architecture Evaluation 

5.3.7.1 Dynamic Window Formation Accuracy 

For the detailed experimental results presented in this section a set video sequences 
with 4 views each was used. The search algorithm used were TZ Search (YANG, 2009) 
and Log Search (JVT, 2009) considering three QP values (22,27,32) and search in the 
four possible directions with a search window of [±96, ±96]. The thresholds set used 
were: N=6, α=1, β=500 and THSAD=400. 

Figure 5.20 presents details for the Search Map and on-chip memory evaluation. 
Figure 5.20 shows that the accuracy of Search Map prediction is higher for low motion 
sequences (e.g., Vassar) compared to high motion sequences (e.g., Flamenco2) as the 
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search trajectory is shorter and easier to be predicted (due to a higher number of 
stationary/slow-moving MBs). However, even for the worst case the hits are around 
80% (see Figure 5.20a). In case of off-chip memory accesses, the misses are higher for 
low motion sequences because the search trajectory tends to converge to the center 
(only the central region of search window is accessed) reducing the overlapping 
accessed area with the neighboring MBs. The higher number of memory misses for low 
motion sequences, however, does not limit off-chip energy savings achieved for the 
same sequences. The reason is that the percentage of misses is calculated over a much 
smaller number of total memory accesses for low motion sequences. 
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Figure 5.20: Search Map Prediction accuracy and on-chip memory misses 

5.3.7.2 Hardware Architecture Evaluation 

Table 5.3 presents the ASIC implementation results of our architecture. The 
hardware implementation executes at 300MHz and provides real-time ME/DE for up to 
4-views HD1080p consuming 74mW. Reduced power is reached mainly due to the 
employment of dynamic search window formation, power-gating, smaller logic, and fast 
ME/DE scheme. Please, refer to Section 6.2 for comparison to state-of-the-art ME/DE 
architectures. 

Table 5.3: Comparison of Our Fast ME/DE Algorithm 

 
 

Fast ME/DE Architecture w/ 
Dynamic Search Window Formation 

Technology 
ST 65nm Low-Power  

7 metal layer 
Gate Count 102k 

SRAM 512 Kbits 
Max. Frequency 300 MHz 

Power 74mW, 1.0v 
Proc. Capability 4-views HD1080p 

5.4 Motion and Disparity Estimation Hardware Architecture with 
Adaptive Power Management  

Based on in-depth memory access correlation analysis (see Section 5.4.1) it was 
possible to conclude that the memory access prediction can be further improved in 
relation to the solution presented in Section 5.3. As a result, novel memory power-
gating control schemes may be proposed. In this section we present a ME/DE hardware 
architecture featuring an adaptive power management scheme (ZATT, SHAFIQUE, et 

al., 2011) able to consider the 3D-Neighborhood correlation and reduce the energy 
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consumption related to memory. The memory hierarchy and power-management are 
carefully explained along this section. Below the main features implemented in this 
architectural solution are summarized.  

An On-Chip Multi-banked Video Memory: based on the offline memory usage 
analysis, an algorithm is proposed to determine the size of the on-chip memory by 
evaluating the tradeoff of leakage reduction and misses (as a result of reduced-sized 
memory). Afterwards, the organization (banks, sectors) is obtained by considering the 
throughput constraint. Each bank is partitioned into multiple sectors to enable a fine-
grained power management control. The data for each prediction direction is stored in 
distinct sections. 

An Application-Aware Power-Gating Scheme for the On-Chip Memory: A multi-
level power-management scheme is employed. First, depending upon the current 
prediction direction (top, left, down, right, i.e., using the knowledge from the 
application that determines a prediction direction), different sectors can be completely 
power-gated. Afterwards, frame-level memory requirements are predicted by taking the 
weighted-average of the neighboring frames in the 3D-Neighborhood. Then, the 
consecutive MBs with similar spatial and temporal properties are grouped together and 
sleep modes for their idle sectors are determined by evaluating a cost function of 
leakage savings and wakeup overhead. In the last step, the power-gating control of 
different sectors is refined at the MB level. 
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Figure 5.21: MVC with motion and disparity estimation hardware  

To the best of our knowledge, this is the first multi-banked video memory 
architecture that employs a multi-level application-aware power management scheme to 
enable low-power motion and disparity estimation in MVC. The proposed architecture 
and power-management scheme require the knowledge of ME/DE algorithm and the 
search window perfecting technique in order to perform a memory-requirement 
analysis, though our concept is not limited to any fixed algorithm. Figure 5.21 presents 
an MVC encoder with joint ME/DE hardware architecture, showing our novel 
contribution in blue filled boxes. 

5.4.1 Motion and Disparity Estimation Memory Access Analysis 

Instead of a Full Search (impracticable due to very high computation and energy 
requirements), an adaptive fast ME/DE algorithm (TZ Search) is deployed for this 
analysis (to represent a real-world embedded system scenario). These adaptive 
algorithms are typically based on multiple search stages and patterns, and process 
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different number of search candidates for different MBs, thus exhibit highly-varying 
memory usage profile, as shown in Figure 5.22 and Figure 5.24. 
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Figure 5.22: Summary of memory usage of various macroblocks for ME and DE 

Figure 5.22 shows the box-plot summary of memory usage for different MBs in 
various video sequences for an on-chip memory of size 37.25 KB (storing a search 
window of [±96,±96], which is recommended for ME/DE (XU e HE, 2008)). However, 
the maximum measured memory usages are 20.9 KB (i.e., memory wastage of 44%) 
and 23.2 KB (i.e., memory wastage of 38%) for ME and DE, respectively.  Still, most of 
the MBs require much less memory than the maximum requirements. The minimum and 
maximum memory requirements vary for different video sequences due to their spatial 
and temporal properties. In the worst case, more than 80% of the on-chip memory may 
be idle, thus leading to significant energy wastage due to leakage. Figure 5.22 shows 
that, in case of ME, the box plot is less scattered and close to the average. It 
demonstrates a high correlation in the memory usage profile for ME. However, the 
observation is different for DE, where the range between the 25% and 75% quartiles is 
relatively wider compared to that of ME. Still, the 75% quartile is much below than the 
maximum usage. However, care needs to be taken, as a misprediction may incur 
significant misses, thus a high penalty in terms of re-fetching from the external memory 
and wakeup of additional memory sectors. The less scattered distribution in the box-plot 
hints towards the fact that there is an extensive correlation in the 3D-Neighborhood, i.e., 
MBs in the neighboring frames and views exhibit similar memory requirements, as they 
belong to the same object. This fact become apparent in the 3D plot of Figure 5.23. 
Therefore, the memory requirements of a frame may be predicted (with a high accuracy) 
by exploiting the correlation in the 3D-Neighbohood (i.e., memory requirements of the 
neighboring frames). The frame-level prediction can be further refined considering the 
MB-level properties. 

The frame-level memory usage can be predicted
using the temporal neighbors
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Figure 5.23: 3D- Plots showing the similarity in memory usage 

When further analyzing the memory requirements within a frame (see Figure 5.24 
for Ballroom sequence), two different variation zones are noticed in ME that correspond 
to two different groups of MB, where MBs in a group have similar spatial and temporal 
properties. MBs in the group-1 exhibit a low-variation in their memory usage, while 
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MBs, in the group-2 exhibit high-variation. The distinction between two groups can be 
made by evaluating the average spatial and temporal properties of MBs. Depending 
upon the group-level variations, low-leakage or high-leakage sleep mode may be 
selected. The large variations for DE are primarily due to the bigger search performed 
by the TZ algorithm for capturing longer disparity vectors. 
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Figure 5.24: Memory usage variation within one video frame 

Figure 5.25 shows four excerpts of the Ballroom sequence illustrating the memory 
access behavior (within the white lines) of MBs with low and high ME/DE. The 
memory access behavior of the MB with low motion/disparity is less spread and 
focused towards the centre (i.e., less memory is used in a smaller vicinity). In contrast, 
the memory access behavior of the MB with high motion/disparity shows that the 
memory from a wider region is accessed (see multiple displaced diamond patterns). 
Figure 5.24 and Figure 5.25 demonstrate that the memory requirements of an MB can 
be accurately prediction by considering its spatial and temporal properties and the 
memory requirements of MBs of the same group. 

High Motion Low Motion High Disparity Low Disparity

 
Figure 5.25: Comparing the memory access patterns of MBs with slow and fast 

motion/disparity 

Summarizing, an application-aware power management scheme for an on-chip video 
memory needs to consider the knowledge of ME/DE algorithm, spatial and temporal 
video properties (at both frame and MB levels), and correlation in the 3D-Neighborhood 
to determine the number of idle sectors and an appropriate sleep mode for each sector. 

5.4.2 Memory and Power Model 

The on-chip video memory is partitioned into NBanks banks, such that the rows of an 
MB are stored in different banks to provide parallel data access for the SAD accelerator 
hardware in order to support high-throughput constraints. Each bank Bi; iЄ[1…NBanks] is 
composed of NSector equally-sized sectors. Each sector consists of SSector number of bytes 
organized in memory lines, where the size of one memory line is given as NBLine. This 
implies that the number of lines in a sector Sij is SSector/NBLine. Figure 5.26 shows an 
abstract diagram of our memory organization. 
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Figure 5.26: Architectural model of the on-chip multi-banked memory with sleep 

transistors and application-aware power manager 

All Sij; iЄ[1…NSector] sectors are connected to a power gate circuitry STj in order to 
simultaneously power gate the Sij sectors of all banks. In this thesis, we assume the 
power-gate model with multiple sleep modes (like in (SINGH, AGARWAL, et al., 
2007)(AGARWAL, NOWKA, et al., 2006)(ROY, RANGANATHAN e KATKOORI, 
2011)), where each sleep mode has a certain leakage savings at the cost of a wakeup 
energy and latency overhead. Therefore, using multiple sleep modes provide the 
foundation to exploit the wake-up overhead vs. leakage saving tradeoff. Different sleep 
modes are typically realized by controlling the virtual ground bias using footer 
transistors. 

Figure 5.27 shows the power state machine (PSM), where each sector can be power 
gated in one of the three sleep modes, i.e., S1, S2, and S3. The S0 mode corresponds to 
the powered-on state. PSM is given as PSleepMode = {S0, S1, S2, S3}. For the S0 mode, the 
leakage energy is computed based on the drain current ‘I’ and Vdd, i.e, ES0 = ΣVdd.Ii.ti. 
The S1 and S2 modes are intermediate state-retentive sleep modes, i.e., data inside the 
memory cells is preserved and this mode does not require re-fetching of data from the 
off-chip memory. For these sleep modes, the total energy is computed as ES1=ES0 .ΦS1 
and ES1=ES0 .ΦS1, where ΦS1 and ΦS2 are calculated using the design curves for footer 
gate bias vs. normalized leakage and footer gate bias vs. virtual ground voltage, as 
discussed in (SINGH, AGARWAL, et al., 2007). The S3 mode is a non-retentive state, 
i.e., data is lost, requires re-fetching from the off-chip memory. It is also termed as an 
powered-off state and the wakeup energy from S3 to S0 depends upon the capacitance 
(Ccircuit) and Vdd, Ewake_up=½.Ccircuit.Vdd

2 (see Figure 5.27). The wake-up penalty for 
other transitions depends on the scale factor ξx for wake-up energy and ρx for wake-up 
latency, where x represent the transition x Є {T1, T2, T3}. The scale factors are obtained 
from the design curves for normalized leakage vs. normalized wakeup-penalty, as 
discussed in (SINGH, AGARWAL, et al., 2007). The wakeup latencies of S1 and S2 are 
quite short (for values, see Table 5.4), thus these modes are beneficial for short sleep 
durations, i.e., in the Group-2 with fast variations of memory usage by different MBs 
(as shown in Section 5.4.1). In contrast, S3 is beneficial for longer sleep durations. 
Correspondingly, S1 and S2 modes also provide reduced leakage savings compared to S3. 
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Figure 5.27: PSM of power-gate with multiple sleep modes  

The leakage energy of the total on-chip video memory and the energy for memory 
misses are given by Eq. (5.6) and Eq. (5.7). PLeak is the accumulated leakage power for 
the total on-chip video memory, TMEDE is the time for performing Motion and Disparity 
Estimation (ME, DE), and EMiss is the energy required for one memory miss that includes 
the energy to fetch data from the off-chip memory (EoffChipAccess), additional energy due to 
the stalling of the SAD hardware (EHWstall), and energy to fill the memory line (ElineFilling). 
Table 5.4 shows the set of thresholds and power mode parameters used in our 
experiments.  

L eak L eak M E D EE P T= ×  (5.6) 

M issT otal M iss M iss

M iss o ffC h ipA ccess H W sta ll lineF illing

E E N

E E E E

= ×
= + +  (5.7) 

Table 5.4: Power Model Parameters and Thresholds  
ΦS1 0.5 α 0.65 
ΦS2 0.3 β 0.35 
ξ1 0.35 ρS1 0.1 
ξ2 0.35 ρS2 0.2 
ξ3 0.6 ρS3 0.3 

 

5.4.3 Multi-Bank Video Memory Architecture 

The goal is to determine an appropriate size of the on-chip video memory and its 
organization in terms of number of banks, sectors in a bank, etc. The parameters that 
can affect the size of the on-chip video memory are: (a) ME/DE search algorithm, 
number of search candidates in different search stages; (b) search range that also 
depends upon the video resolution; and (c) spatial and temporal video properties. Figure 
5.28 shows the histogram of memory accesses during ME and DE for a search range of 
[±96, ±96]. The memory usage in ME/DE is much less than the size of a rectangular 
search window (37.25 KB). The maximum requirement is < 20 KB what represents 
54% of the total size of a rectangular search window. This leads to an increased leakage. 
However, using a rectangular search window ensures no misses, as all the data is always 
available in the on-chip memory. In case a reduced-sized memory is used, the 
probability of misses increases. This fact is illustrated in Figure 5.29 with the help of 
two histograms from our memory miss analysis. The histograms show that the number 
of misses decreases exponentially with a linear increase in the memory size. Especially 
the reduction rate is significant for ME. The challenge is to obtain the size of on-chip 
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video memory for ME/DE, such that the leakage savings (due to reduced size compared 
to the rectangular search window) are balanced by the energy overhead due to misses. 

ME: 

SR[±96]
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Figure 5.28: Histograms of memory usage during ME and  DE 
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Figure 5.29: Histograms of memory misses (ME and DE) identifying potential size 

options for the on-chip memory 

Figure 5.30 presents the pseudo-code for the proposed algorithm to perform 
memory size exploration for a given prediction direction. The input is a set of different 
size options SSSS={s1, s2, …, sn}, obtained from an extensive memory usage analysis for a 
set A of various video sequence (slow-fast motion), as exemplified in Figure 5.28 and 
Figure 5.29. Further inputs are (a) leakage energy of the rectangular search window 
(ELeakRecSW), a set B of test video sequences which are different from the set A to avoid 
biasing towards the offline analysis), and the prediction direction (dir). Different on-
chip memory sizes are evaluated in a loop in a decreasing order (lines 4-11). The 
candidate size s is evaluated for a miss-analysis by performing video encoding tests for 
set B of video sequences and the energy for misses (EMissTotal) is estimated using Eq. (5.7) 
(line 5). Depending upon the duration of ME and DE, the leakage energy of the on-chip 
memory (ELeak) for a given size is estimated using Eq. (5.6) (line 5). Afterwards, the 
energy profit (EProfit) is computed in relation to the rectangular search window size 
considering the leakage-energy saving and miss-energy overhead (line 6). The memory 
size with the best energy profit (sBest) is selected and returned (lines 7-10, line 12). 

After the size for a given prediction direction (Sdir) is obtained, for Ndir number of 
prediction directions, the total memory size is computed as Total dirNdirS S= ∑ . As 
discussed in Section 5.4.3, the memory is partitioned into banks to provide MB parallel 
access for parallel SAD computation. The number of banks is computed (Eq. (5.8)) 
depending upon the given throughput constraints (as frame rate FRate in fps) and video 
resolution (WxH: width and height of the video in pixels). 

( )
6

Banks
SAD

Line Rate Avg _ dir dir

1 f 10
N

W HNB F N N
256

 
× = ×

 × × × ×
 

 (5.8) 
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SAD
Avg _ dirN  is the average number of SAD per MB and it depends upon the search 

algorithm. The frequency of the ME/DE hardware is denoted as f in MHz. Afterwards, 
the size of a sector (SSector in bytes, Eq. (5.9)) is computed by considering the variations in 
the usage profile (see Figure 5.28) in order to increase the potential of power-gating for 
different MBs that exhibit diverse spatial and temporal properties. Total number of sectors 
for each direction ( dir

S ec torN ) is computed according to Eq. (5.10). 

S ec tor Max Min StdS (Usage Usage ) / Usage= −    (5.9) 
d ir
S ec to r d ir B a n ks S ec to rN S / ( N S )= ×    (5.10) 

 

1. DetermineVideoMemorySize(ELeakRecSW, B, dir, SSSS) 

2. BEGIN  

3. EBestProfit � 0; sBest � 0; 

4. For all s     Є SSSS    // evaluate sizes in a decreasing order  

5.  (ELeak, EMissTotal) � performMEDE(s, B, dir ); // see Eq.Error! Reference source not found. & Error! Reference source not found. 

6.  EProfit = (ELeakRecSW – ELeak) – (EMissTotal); 

7.  If (EProfit ≥ EBestProfit) Then; 

8.   sBest = s; 

9.   EBestProfit = EProfit; 

10.  End If; 

11. End For 

12. return sBest; 

13. END 

Figure 5.30: Pseudo-code of the algorithm for finding the memory size for a given 
prediction direction 

As discussed in Section 5.4.1 and illustrated by Figure 5.28, not all MBs use the 
complete on-chip memory and despite of a reduced-size memory, major parts (in several 
cases more than 40%) of the memory may not be used (see usage variations in Figure 
5.28). Furthermore, the memory usage in ME is much less than that in DE, see Figure 
5.28. Therefore, our proposed power-management scheme performs power-gating to the 
unused sectors. The key challenge is to determine an appropriate sleep mode depending 
upon the predicted memory requirements considering the spatial and temporal properties 
of frames/MBs, thus raising the abstraction level of power-gating to the application-level. 

5.4.4 Application-Aware Power Management 

First, a prediction direction is obtained from the application level. Since the search 
window for each prediction direction is stored in distinct sectors, the sectors of the 
unused prediction directions are put in S2 state-retentive mode (as the data will be 
required in the MB loop, different search predictions are processed sequentially for each 
MB). Afterwards, the application-aware power management is employed for each 
prediction direction independently. 

 The primary input for the application-aware power management scheme is an 
offline analysis of the memory requirements (like in Figure 5.35). From this analysis, 
three different memory requirement predictions are obtained by performing a PDF 
analysis over various test video sequences. First prediction is about the maximum 
memory requirement which is denoted as PM3. Considering a Gaussian distribution, two 
further highly-probable memory requirement predictions (PM1 and PM2) are computed 
using Eq. (5.11) and Eq. (5.12), where the high-probability zones cover the area under 
the curve considering PM1=µ+σ and PM2=µ+2σ. Here, µ denotes the average of the 
distribution and σ denotes the standard deviation. Figure 5.32 shows an abstract 
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example for computing PM1, PM2, and PM3. PM1 covers 84% of the area under the 
curve, while PM2 covers 97.5% of the area under the curve.  

PM1 � F(µ+σ; µ, σ
2
) - F(0; µ, σ

2
) ≈ 0.84 (5.11) 

PM2 � F(µ+2σ; µ, σ
2
) - F(0; µ, σ

2
) ≈ 0.975 (5.12) 

These predicted memory requirements are then forwarded to the algorithm of the 
power management scheme (Figure 5.33) as a tuple: MRMRMRMROffline = {PM3, PM2, PM1}. 
Further inputs are: (a) prediction direction (dir), (b) camera view (v), (c) video frame (f), 
(d) total size of the on-chip memory (STotal), and (e) size of a sector (SSector). The 
algorithm in Figure 5.33 performs the power management in five main phases, as 
explained in the following. 

 Phase 1 - Frame-Level Power-Management: the memory requirements for the 
current frame f in a view v (MRCurrent) are predicted from the neighboring frames in 
temporal (left, right) and disparity (top, down) domains using a weighted prediction of 
their respective MRn (as shown in Figure 5.33, line 5). Firstly, the neighboring frames 
are obtained (line 3). In case the information about the memory requirements of a 
certain neighboring frame is not available, its memory requirements are initialized with 
the offline memory requirements (MROffline), see line 4. Figure 5.34 presents the pseudo-
code for frame-level memory requirement prediction. Each predicted memory 
requirement {PM3, PM2, PM1} is computed as the weighted average of the 
corresponding PM of the neighboring frames, using Eq. (5.13) (see line 5 in Figure 
5.34). n {Left,Right,Top,down},,,,nd ∀ ∈  denotes the temporal/disparity distance (in terms of number of 
frames between the current frame and the prediction frame), while α and β are given as 
the motion and disparity weighting factors, respectively. 

Note, during the encoding of Intra-frames, the complete on-chip memory for 
ME/DE is kept is the S3 mode, as no ME/DE is performed for Intra-frames. 

Current Left Left Right Right

top Top Down Down

MR [( MR * d MR * d )*

( MR * d MR * d )*

= + α

 + + β] / 4
 (5.13) 

 
Figure 5.31: 2D-weighted prediction using the memory usage of the frames in the 3D-

Neighborhood 
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Figure 5.32: Statistical distribution of memory requirements (ME, DE) 

1. ApplicationAwarePowerManager(dir, v, f, STotal, SSector, MRMRMRMROffline) 

2. BEGIN  

3. list<NeighboringFrames> NNNN     � getNeighboringFrames (dir, v, f ); 

4. 
O ffline∀ ∈ ← M Rnn     n  is  A v a ila b le g etM em R eq (n ) :   ;N M R ( ) ?N M R ( ) ?N M R ( ) ?N M R ( ) ?  

5. MRMRMRMRCurrent    � frameMemReq(MRMRMRMRLeft, MRMRMRMRRight, MRMRMRMRTop, MRMRMRMRDown); // Figure 5.34:  

6. list<MBGroups> GGGG     � getMBGroups (ffff); // combine MBs in Groups  
7. For all g g g g  Є GGGG 

8.  MRMRMRMRGroup�reAdjustMemReq(gggg, MRMRMRMRCurrent, EMissGroup); // see Figure 5.35:  
9.  list<Sectors> PSPSPSPS � setSleepModes(STotal, SSector, MRMRMRMRGroup); // Figure 5.36:  

10.  For all mb     Є gggg 

11.   (EMissGroup, ELeakGroup, memUsedMB) � performSearch( ); // perform ME/DE search and log memory requirements of the 
current MB 

12.  MRMRMRMRCurrent� mbLevelPowerGating(PSPSPSPS, memUsedMB); // Figure 5.37:   

13.  End For  

14. End For 

15. MRMRMRMR � computeMemStatistics(PM3, PM2, PM1); 

16. return MRMRMRMR; 

17. END 

Figure 5.33: Pseudo-code of the Application-Aware Power Manager 

Grouping of MBs: Since different MBs in a frame exhibit different spatial and 
temporal properties, not all MBs of a frame use same amount of memory for ME and 
DE. Therefore, the frame-level memory requirement prediction is adapted for different 
MBs in order to determine the sleep mode. Since state transitions (especially from S3 to 
S0) incur a wakeup overhead (in terms of energy and latency), consecutive MBs 
(sharing the same spatial and temporal video properties) are grouped together (using Eq. 
(5.14)) in order to increase the sleeping duration (see line 6 in Figure 5.33). Figure 5.35 
shows the PDF of memory requirements for two different groups of MBs, where Group-
I contains the homogeneous MBs with slow motion/disparity and the Group-II contains 
highly-textured MBs with medium-fast motion/disparity. It is noteworthy that the 
distribution of MBs in the Group-I is more centered compared to the Group-II in case of 
ME. Therefore, the frame-level prediction is readjusted considering the MB group using 
Eq. (5.16) (see line 8 in Figure 5.33), where ξi is given as the difference between the 
average textures of the complete video frame and the MB Group. Where, THSAD and 
THVar are computed using a statistical analysis over various test video sequences and are 
derived as Eq. (5.15) and Eq. (5.16). 

MB SAD MB Varif ( SAD TH  &  Var TH )   Group I

Else,   Group II

> < =


=
 (5.14) 

Var Var Var SAD SAD SADTH ;TH= µ +1.5∗σ = µ +1.5∗σ  (5.15) 

i-Group i i-Currenti [1...3]     PM  = *PMξ∀ ∈  (5.16) 
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1. frameMemReq(MRMRMRMRLeft, MRMRMRMRRight, MRMRMRMRTop, MRMRMRMRDown) 

2. ∀ ∈n {Left,Right,Top,down}  

3.  {PM3, PM2, PM1}n � getMemReqSteps(MRMRMRMRn); // see // see Figure 5.32:  

4. ∀ ∈i [1...3]  // compute the weighted average using Eq. 3 

5.  PMi-Current � weightedAvg(PMi-Left, PMi-Right, PMi-Top, PMi-Down, α, β);   
6. MRMRMRMRCurrent � {PM3, PM2, PM1}Current; 

7. return MRMRMRMRCurrent; 

Figure 5.34: Pseudo-code of Frame-Level Memory Requirement Prediction 
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+Slow Motion)
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22002000180016001400
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2200 1200

 
Figure 5.35: Statistical distribution of memory requirements for homogenous and 

textured MBs for ME and DE 

Phase 3 - Group-Level Power-Management: Pseudo-code in Figure 5.36 provides 
the flow for making power-gating decisions. First, the group-level memory requirement 
prediction in terms of {PM3, PM2, PM1} is obtained. Afterwards, different sets of sectors 
candidate for power gating are obtained, (as denoted by the 3 different types of filled 
area under the curve in Figure 5.32). The memory exciding the maximum requirements 
(M3) is gated in S3 mode, as it is highly improbably to be used by the MB-group. The 
other two sets of sectors – M2 and M1 – are candidates for being gated in S2 and S1 state-
retentive modes, as they store the data which might be used later by other MBs of the 
group. This leads to a reduced wakeup overhead and reduced leakage savings compared 
to S3. Since wakeup incurs an energy overhead, our scheme predicts the sleep duration 
which is required to amortize the wakeup overhead as a function of number of MBs in 
the group, see Eq. (5.17). Due to the non-retentive nature of S3 mode, there is a 
probability of memory misses. Therefore, in addition to Ewakeup, EMissGroup is also added 
for evaluating the sleep decision of the S3 mode. The set of sectors in different power 
modes is saved and returned. 

wakeup LeakGroup 1 2

Group

wakeup MissGroup LeakGroup

E / E    If    S   or  S
N

( E E ) / E    Else


> 

+
 (5.17) 

After an MB group is encoded, the energy of misses (EMissGroup) along with the 
wakeup energy overhead (EwakeupS3->S2) and leakage savings (ELeakGroup) are used to 
predict the number of sectors that should be moved from the sleep mode S3 (state non-
retentive) to S2 (state-retentive), as PM 3 MissGroup LeakGroup wakeupS3 S2N E / ( E E )→= × . 

Phase 4 - MB-Level Power Management: Afterwards, for all MBs in an MB-Group, 
the ME/DE search is performed and EMissGroup, ELeakGroup, memUsedMB are obtained (see 
line 11 in Figure 5.33). Then, the number of sectors in the state-retentive sleep modes 
(S0, S1, and S2) for the upcoming MB is re-adjusted depending upon the actually used 
memory of the currently-encoded MB (see 12). Figure 5.37 illustrates the procedure for 
readjusting the sleep modes for the upcoming MB in an MB-Group. Firstly, the 
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difference between the used memory and predicted memory is computed in terms of 
number of sectors (line 4). If the difference is zero, no update in the sleep modes is 
performed (line 5). If the difference is positive, the used memory is less than the 
predicted memory in mode S0 (i.e., powered-on) and additional sectors are put into the 
state-retentive sleep mode S1 (lines 7). Otherwise, more sectors are powered-on in other 
state-retentive modes (lines 8-15). 

1. setSleepModes(S, SSector, MRMRMRMR) 

2. BEGIN 

3.  {PM3, PM2, PM1} � getMemReqSteps(MRMRMRMR);// see Figure 5.32:  

4.  ; ;     
         

3 3 2 2 1
3 2 1

Sector Sector Sector

S-PM PM -PM PM -PMM =     M =     M =
S S S

; 

5.  PowerGate(M3, S3); PowerGate(M2, S2); PowerGate(M1, S1); // using the cost function Eq. 

Error! Reference source not found. 

6.  M0; = (S/SSector) – (M3+M2+M1); 

7.  SwitchOn(M0, S0); 

8.  list<Sectors> PSPSPSPS � {M0, M1, M2, M3}; 

9.  return PSPSPSPS; 

10. END 

Figure 5.36: Pseudo-code for determining the number of sectors and their corresponding 
sleep modes 

1. mbLevelPowerGating(PSPSPSPS, memReqMB) 

2. {M0, M1, M2, M3} �PSPSPSPS ; 

3. ; 
  

MB

Sector

memReqM=
S

 

4. Δmem = M0 – M; 

5. If (Δmem == 0) Then return PSPSPSPS; 

6. If (Δmem > 0) Then // Put more sectors in S1 gating mode 

7.  M0’ = M0 – Δmem; M1’ = M1 + Δmem; M2’ = M2; 

8. Else 

9.  M0’ = M0 – Δmem; // switch ON more sectors 

10.  If (|Δmem| ≥ M1) Then // re-adjust S1-gated & S2-gated sectors 

11.   M1’ = M2 + M1 – |Δmem|; M2’ = 0; 

12.  Else 

13.   M1’ = M1 – Δmem; M2’ = M2; 

14.  EndIf 

15. EndIf 

16. PSPSPSPS � {M0’, M1’, M2’, M3}; 

17. return PSPSPSPS; 

Figure 5.37: Pseudo-code of MB-Level Power-Gating 

Phase 5 - Re-compute Statistics: After the frame ME/DE is completed, the 
probabilistic analysis (like in Figure 5.32 and Figure 5.35) is performed to obtain the 
MRMRMRMR, which is used by the subsequent frames. 

5.4.5 Hardware Architecture 

Our on-chip memory with application-aware power management is integrated in the 
ME/DE hardware architecture presented in Section 5.3 that features an array of 64 4x4-
sample SAD operators and SAD trees to provide high throughput and a TZ Search 
controller. All components, including the memory size are designed to support real-time 
encoding for up to 4-views HD1080p performing ME/DE for search ranges up to 
[±96,±96] pixels. The detailed results are explained here onwards while the comparison 
to the state-of-the-art is discussed in Chapter 6. 
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5.4.6 ME/DE Architecture with Adaptive Power Management Evaluation 

The leakage reduction provided by our application-aware power management is 
presented in Figure 5.38. It shows the leakage reduction normalized to our architecture 
with no power management (NC). When the application-aware power-gating featuring 
only frame-level (FC) power management is integrated with our memory, the leakage 
energy reduction reaches more than 50%. The fine-grained power-management at the 
MB level (FMBC) provides further 5% leakage reduction, altogether providing up to 
55% leakage reduction. 
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Figure 5.38: Comparing the leakage savings 

Figure 5.39 presents the detailed analysis of the memory usage and the selected 
sleep modes and the corresponding energy savings for a series of MBs in Flamenco2 
sequence. Figure 5.39a shows different memory usages in ME/DE for different video 
sequence in terms of blocks (16x16 pixels). The power states of different blocks are 
shown by different colors. It is worthy to note that the sleep mode S1 is used too 
seldom. It is due to the fact that our scheme quickly transited between S1 and S2, as the 
difference in the wakeup overhead for S1 and S2 is insignificant. The decision of state S3 
is primarily at the frame-level as it is state non-retentive, which is visible by the 
transition in Figure 5.39b. At the MB and MB-Group levels, our scheme tends to choose 
S2 mode due to its low wakeup overhead. The selection of S1 allows fine-grained power 
savings and accommodates sudden variations. Figure 5.39c shows the corresponding 
energy savings along the time. It is worthy to note that the variations in the energy 
savings are very frequent, it is due to the fact, that our scheme adapts very quickly to 
accommodate sudden variations in the memory requirements, thus frequently transiting 
between S0�S1�S2. An interesting observation in Figure 5.39c is that the variations 
between S1-S2 do not touch the sectors gated in S3 mode. This shows that the frame-
level prediction of the maximum requirements is very accurate and the probability of 
powering-on the S3 gated sectors is significantly low. As result, no data re-fetching is 
required.  



 

 

169 

(a
)

0

16

32

48

64

80

96

112

Ballroom Vassar Exit Flamenco

S0 S1 S2 S3

Ballroom

M
e

m
o

ry
 B

lo
ck

s 
S

ta
te

s

0

16

32

48

96

112

Vassar Exit Flamenco

64

80

ME DE ME DE ME DE ME DE

0

16

32

48

64

80

96

1 1001 2001 3001

M
e

m
o

ry
 B

lo
ck

s 
S

ta
te

s

16

32

48

96

64

80

0

16

32

48

64

80

96

1 1001 2001 3001

Energy Consumption Energy Saving

1000

E
n

e
rg

y
 S

a
v

in
g

s 
[%

]

0

25

50

100

2000 3000

75

#MB
500 1500 2500 3500

(b
)

(c
)

 
Figure 5.39: Detailed analysis of the memory usage and sleep modes 

Figure 5.40 illustrates the comparison of our prediction accuracy with the actual 
memory usage and two history-based predictors. Observe that, in case of sudden 
variations, our application-based prediction follows the exact usage much accurately 
compared to the history-based predictors. This improved accuracy leads to the significant 
energy savings shown in Figure 5.38. 
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Figure 5.40: Comparing the accuracy of different predictors compared to the used 
memory (in case of a rectangular search window) 

Table 5.5 presents the synthesis details for our ME/DE hardware architecture 
featuring application-aware dynamic power management using 65nm technology node. 
This implementation runs at 300MHz and provide the required throughput for real-time 
encoding 4-views HD1080p while consuming 57mW. This architecture requires 102k 
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gates and 832Kbits of on-chip video memory. The comparison of these implementation 
results to the state-of-the-art is discussed in Section 6.2. 

Table 5.5: Comparison the Hardware Results of the Fast ME/DE Architecture with Our 
On-Chip Memory  

 
ME/DE Hardware of with our On-Chip 

video Memory 

Technology 
ST 65nm LP  
7 metal layer 

Gate Count 102k 
SRAM 832 Kbits 

Max. Frequency 300 MHz 
Power 57mW, 1.0v 

Proc. Capability 4-views HD1080p 

5.5 Summary of Energy-Efficient Algorithms for Multiview Video 
Coding 

Three architectural solution to enable real-time ME/DE are presented along this 
chapter. Initially, the architectural template and the basic hardware building blocks are 
described in Section 5.1. Based on this structure a multi-level pipelined architecture 
implementing the Fast ME/DE algorithm is described in details along Section 5.2. 

Targeting the reduction of the energy consumption related to the external memory 
accesses and on-chip video memory leakage, an architecture featuring the Dynamic 
Search Window Formation strategy is proposed in Section 5.3. This solution observes 
the search patterns of the neighboring MBs in order to anticipate the data required for 
the current MB. It allows accurate external memory data prefetching while reducing the 
on-chip memory size by avoiding the entire search window storage. 

In Section 5.4 an Application-aware Dynamic Power Management algorithm is 
integrated to the ME/DE architecture. Assuming an on-chip memory with multiple 
power states and sector-level power gating, the DPM predicts the memory usage and 
power gate the memory sectors accordingly. By doing so, this architecture is able to 
significantly reduce the overall energy consumption through minimizing on-chip 
memory leakage. 
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6 RESULTS AND COMPARISON 

In this chapter the overall results of this work and the comparison with the latest 
state-of-the-art approaches are presented. Before moving to the actual comparison, a 
description of the experimental setup is presented discussing the fairness of comparison 
in relation to the related works. The benchmark video properties, common test 
conditions, simulation environment, and synthesis tool chain are also introduced in this 
chapter. The results for energy-efficient algorithms are discussed in terms of complexity 
reduction while considering the coding efficiency and video quality in relation to state-
of-the-art and optimal solutions. The video quality control algorithm based on rate 
control is compared to other rate control techniques described in current literature. 
Energy-efficient architectures are evaluated against the latest hardware solutions for 
ME/DE on MVC with emphasis on the overall energy consumption for both, memory 
access and processing datapath. Additionally, throughput and IC footprint area are 
discussed. 

6.1 Experimental Setup 

In this section are described the simulation, design and synthesis environment 
employed during the development of this work. Afterwards is presented a discussion on 
the test conditions and benchmark video sequences followed by the fairness of 
comparison with the state-of-the-art approaches. The hardware design method and 
synthesis tool chain is also presented in this section. 

6.1.1 Software Simulation Environment 

Each algorithm proposed along this thesis was implemented and evaluated using the 
reference software platform provided by the Joint Video Team (JVT, 2009), the Joint 
Model for MVC, also known as JMVC. The JMVC is provided in order to prove the 
concepts behind the MVC standard and facilitate the experimentation and integration of 
new tools to the MVC.  

Initially, implementations were described on top of the JMVC 6.0, the latest version 
available by the time this work was started. In face of limitations related to the 
simulation of HD1080p sequences (note the use of these sequences were normalized in 
March 2011 (ISO/IEC, 2011) after this work was started), our algorithms were migrated 
to a more recent version, the JMVC 8.5, in order to extend our experimental results. 
Details on the JMVC software structure and the implemented modifications are detailed 
in Appendix A. 

In Table 6.1 is presented a summary of the video encoder settings and parameters 
most commonly used for experimentation along this thesis. Note that some settings may 
vary depending on the experiments nature. These changes, however, are mentioned 
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along the results discussion. Table 6.2 describes the computational processing resources 
used for simulation. 

Table 6.1: Video Encoder Settings 
Parameter Setting 

Entropy Encoder CABAC 
FRExt Yes 

QP (experiments w/o rate control) 22, 27, 32, 37, 42 
Bitrate (experiments w/ rate control) 256, 392, 512, 768, 1024, 2048, 4096 

GOP Size 8 
Anchor Period 8 

Temporal Coding Structure IBP (Hierarchical B Prediction) 
#Views 4/8 

View Coding Structure IBP (0-2-1-3 or 0-2-1-4-3-6-5-7) 
Number of Reference Frames Up to 4 (one per temporal/view direction) 

Inter-frame/ Inter-view Prediction 
Pictures First 

Inter-frame 

B Pictures Reference Yes 
Search Mode TZ Search 

Search Reange Up to [±96, ±96] 
Distortion Metric SAD 

Weighted Prediction No 
Deblocking Filter Yes 

Table 6.2: Simulation infrastructure 
Desktop for Simulation 

Processor Intel Core 2 Duo-6600@2.4GHz 
Main Memory 3.25GB DDR2 

Operational System Windows XP SP2 
Mobile Device for Battery-Aware Experiments 

Device HP Pavillion DV6000 Series 
Processor Intel Core-2 Duo T5500 @1.66GHz 

Main Memory 2GB DDR2 
Operational System Windows XP SP2 

Battery 6-cell lithium ion 4400mAh 10.8V 
 

6.1.2 Benchmark Video Sequences 

To allow other researchers to easily compare their results against ours and, 
consequently, make our results more meaningful to the current literature, the benchmark 
video sequences used in our experimental section were derived from the common test 
conditions recommendations provided by JVT (SU, VETRO e SMOLIC, 2006) and 
ISO/IEC (ISO/IEC, 2011). In Table 6.3 are presented the video sequence names along 
with the number of views, cameras organization and resolution. The considered video 
resolutions are VGA (640x480), XGA (1024x768) and HD1080p (1920x1088 – 
typically cropped to 1920x1080) featuring distinct number of cameras, camera spacing 
and organization. Although some sequences have up to 100 cameras, our experiments 
are constrained to four or eight depending on the algorithm under evaluation. Please 
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consider that the main goal of this thesis is on MVC encoding for mobile devices that 
are not expected to feature more than 8 cameras. Nevertheless, the concepts behind the 
energy reduction algorithms proposed in this thesis are scalable to increased number of 
views for applications such 3DTV and FTV. 

Table 6.3: Benchmark Video Sequences 
Sequence Resolution # Views Cameras Organization 
Ballroom 640x480 8 20cm spacing; 1D/parallel 

Exit 640x480 8 20cm spacing; 1D/parallel 
Vassar 640x480 8 20cm spacing; 1D/parallel 
Race1 640x480 8 20cm spacing; 1D/parallel 
Rena 640x480 100 5cm spacing; 1D/parallel 

Akko&Kayo 640x480 
100 5cm horizontal and 20 cm vertical 

spacing; 2D array 
Flamenco2 640x480 5 20cm spacing; 2D/parallel (Cross) 

Ballet 1024x768 8  
Breakdancers 1024x768 8 20cm spacing; 1D/arc 

Uli 1024x768 8 20cm spacing; 1D/parallel convergent 
GT Fly 1920x1088 9 Computer generated 

Poznan Hall2 1920x1088 9 13.75 cm spacing; 1D/parallel 
Poznan Street 1920x1088 9 13.75 cm spacing; 1D/parallel 
Undo Dancer 1920x1088 9 Computer generated 

To support the reader that is not familiar with these video sequences, is provided, in 
Figure 6.1, the spatial, temporal and, disparity indexes (SI, TI and DI) for each video 
sequence referred in Table 6.3. The higher the index the more complex the sequence is 
in that specific dimension. The goal is to better understand why some sequences 
perform better than others under certain coding conditions and/or algorithms. The 
spatial and temporal indexes were proposed in (ITU-T, 1999) and have been used to 
classify the benchmark video sequences (NACCARI, BRITES, et al., 2011) used to test 
the next video coding standard, the High Efficiency Video Coding (HEVC/H.265). Eq. 
(6.1) and Eq. (6.2) give the equations that define SI and TI extended for multiview 
videos where ρ(i,j) represents the pixel luminance value in coordinates i and j, Sobel 
denotes the Sobel filter operator and n is the frame temporal index. Additionally, in 
order to further adapt to multiview special needs we define the disparity index based on 
the same metric used for TI according Eq. (6.3) where v is the view index. 

= view time spaceSI max {max { std [ Sobel( ( i , j ))]}}ρ  (6.1) 

−= −view time space n n 1TI max {max { std [ ( i , j ) ( i , j )]}}ρ ρ  (6.2) 

−= −view time space v v 1DI max {max { std [ ( i , j ) ( i , j )]}}ρ ρ  (6.3) 
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Figure 6.1: Spatial-Temporal-Disparity indexes for the benchmark multiview video 
sequences 

6.1.3 Fairness of Comparison 

Although the experimental results were generated using standard benchmark video 
sequences and standard coding settings, it is frequently not possible to directly compare 
our algorithms with the results provided by published the related works. For this reason, 
all state-of-the-art competitors were implemented using our infrastructure based on the 
information available in the referred literature. This approach requires significant 
implementation effort overhead, however, it ensures that all algorithms are tested under 
the same conditions and guarantees the fairness of comparison between all proposed 
solutions. The simulation infrastructure and modifications applied to the JMVC are 
presented in Appendix A. 

6.1.4 Hardware Description and ASIC Synthesis 

The architectural contribution proposed along this thesis includes complete RTL 
(Register Transfer Level) description, functional verification, and logical and physical 
synthesis. The hardware was described using VHDL hardware description language 
followed by functional verification with Mentor Graphics ModelSim (MENTOR 
GRAPHICS, 2012) using real video test vectors. The standard-cell ASIC synthesis for 
65-nm technologies was performed using the Cadence ASIC Tool chain (CADENCE 
DESIGN SYSTEMS, INC., 2012). Two distinct processes and standard-cell libraries 
were considered in our hardware results, the IBM 65nm LPe LowK (SYNOPSYS, INC., 
2012) and ST 65nm Low-Power (CIRCUITS MULTI-PROJECTS, 2012). For 
preliminary results, FPGA synthesis targeting Xilinx FPGAs was performed using the 
Xilinx ISE tool (XILINX, INC., 2012). 

As mentioned above, the presented architectures were completely designed, 
integrated, and tested. The only exception is the on-chip SRAM memories featuring 
multiple power states. As far as our memory libraries and memory compiler were not 
able to generate such memories, regular SRAM memories were instantiated instead for 
connectivity and area approximation. The SRAM energy numbers were extracted from 
the related works that describe, implement and characterize the multiple power states 
SRAM memories for 65-nm (FUKANO, KUSHIDA, et al., 2008) (ZHANG, 
BHATTACHARYA, et al., 2005)(SINGH, AGARWAL, et al., 2007). With the energy 
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numbers and ME/DE memory traces, a memory simulator was designed to provide the 
energy saving results. 

6.2 Comparison with the State-of-the-Art 

6.2.1 Energy-Efficient Algorithms 

In this section is presented the comparison between the energy-efficient mode 
decision algorithms proposed in this thesis and the state-of-the-art for fast mode 
decision. The efficiency of the algorithms is measured in terms of time savings 
compared to the JMVC using RDO-MD. Also, the video quality (PSNR in dB) and 
bitrate (BR in # of bits) variations are presented using RD curves and the Bjøntegaard 
rate-distortion metric (TAN, SULLIVAN e WEDI, 2005). 

6.2.1.1 Comparing Our Mode Decision Algorithms to the State-of-the-Art 

Figure 6.2 presents the percentage time savings compared to RDO-MD for the early 
SKIP mode decision (Section 4.1.2), the two strengths of our multi-level fast mode 
decision (Relax and Aggressive, Section 4.1.3) and, two related works (HAN e LEE, 
2008) and (SHEN, YAN, et al., 2009). Each bar represents the average for all QPs for 
that specific video sequence and mode decision algorithm. Even our simplest solution, 
the early SKIP algorithm, is able to outperform (SHEN, YAN, et al., 2009) for most of 
the cases. The work proposed in (HAN e LEE, 2008) provides time savings superior to 
the early SKIP but pays a price in terms of video quality, as will be discussed soon. The 
multi-level fast mode decision shows a superior performance compared to all 
competitors and provides up to 79% time reduction. Additionally, it provides two 
complexity reduction strengths that allow handling the energy saving vs. quality 
tradeoff according to the system state and video content. The multi-level mode decision 
outperforms the state-of-the-art for all cases while keeping the video quality losses 
within an acceptable range, as discussed below. 
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Figure 6.2: Time savings comparison with the state-of-the-art 

The graph in Figure 6.3 brings the time savings information detailing its behavior 
for multiple QPs considering two video sequences, one VGA and one HD1080p. This 
plot shows that our fast MD algorithms are able to sustain the time savings for the 
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whole QP range due to the QP-based thresholding employed. For instance, (SHEN, 
YAN, et al., 2009) employs fixed threshold and suffers from reduced time savings 
specially for low QPs. At high QPs, the fixed thresholds tend to incur increased quality 
drop. To summarize the complexity reduction results, Figure 6.4 depicts the distribution 
of time savings provided by each competitor algorithm considering all video sequences 
and QPs tested. In summary, the algorithms proposed along this thesis provide 
averagely higher complexity reduction while sustaining significant complexity 
reduction for any encoding scenario. While (SHEN, YAN, et al., 2009) shows scenarios 
with 10% reduction, the early SKIP prediction provides at least 38%. The multi-level 
fast mode decision ensures time savings between 55% and 90%. 
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Figure 6.3: Time savings considering the multiple QPs  
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Figure 6.4: Time savings distribution summary 

Beside of providing complexity reduction, fast mode decision algorithms must avoid 
significant video quality losses. In Figure 6.5 the rate-distortion curves show that for 
most of the tested video sequences there is a small displacement compared to the RDO-
MD solution. The Relax level of our multi-level mode decision scheme provides RD 
results very close to the exhaustive RDO-MD for most of the cases. The Aggressive 
level incurs slightly worse RD results, especially for Race1 and Rena sequences. Please 
note, our scheme with both Relax and Aggressive levels provides much higher 
complexity reduction compared to all schemes, as discussed earlier. The usage of the 
Aggressive level is recommended if high complexity reduction is desired (e.g. when the 
battery level of a mobile device is low). Under normal execution conditions, the Relax 
level is recommended as it provides superior complexity reduction compared to the 
state-of-the-art while keeping the RD performance close to the RDO-MD. In Table 6.4 
is summarized the rate-distortion performance for the discussed mode decision 
algorithms. Averagely, the early SKIP and relax solutions present the best RD results. 
The Aggressive variant of the multi-level fast mode decision sacrifices RD performance, 
compared to other competitors, in order to provide the higher complexity reduction.  
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Figure 6.5: Rate-Distortion results for fast mode decision algorithms 

Table 6.4: Bjøntegaard PSNR and BR for fast mode decision algorithm 

Video 
Sequences 

Han Shen Proposed Relax Proposed Aggressive 

BD- 
PSNR 

BD- 
BR 

BD- 
PSNR 

BD- 
BR 

BD- 
PSNR 

BD- 
BR 

BD- 
PSNR 

BD- 
BR 

Ballroom -0.163 4.412 -0.054 1.458 -0.106 2.749 -0.272 7.221 

Exit -0.1234 5.278 -0.041 1.749 -0.097 3.960 -0.281 12.047 

Vassar -0.182 8.311 -0.122 5.582 -0.037 1.709 -0.172 8.189 

Race1 -0.112 2.868 -0.024 0.600 -0.222 5.890 -0.514 14.019 

Rena -0.156 3.672 -0.022 0.514 -0.467 10.917 -1.031 25.585 

Akko&Kayo -0.298 6.444 -0.091 1.944 -0.278 5.852 -0.735 16.260 
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Breakdancers -0.229 13.688 -0.039 2.301 -0.154 9.044 -0.268 15.314 

Uli -0.424 12.400 -0.149 4.234 -0.084 2.242 -0.202 5.521 

Poznan_Hall2 -0.112 7.781 -0.027 3.137 -0.042 3.242 -0.140 8.780 

GT_Fly -0.134 7.273 -0.107 5.614 -0.232 12.886 -0.276 14.697 

Average -0.193 7.212 -0.067 2.713 -0.171 5.849 -0.389 12.763 

 

6.2.1.2 Comparing the Energy-Aware Complexity Adaptation to the State-of-the-Art 

The evaluation of the energy-aware complexity adaptation algorithm was done by 
experimentation on a battery-powered HP laptop (DV6000, Core-2 Duo). For accessing 
the battery level, we have used the CallNtPowerInformation windows API. In this 
experiment, the Quality States were forced to switch from QS1 to QS4 (simulating a 
battery discharge) and from QS4 back to QS1 (simulating battery charging). Figure 6.6 
shows the frame-wise quality and time savings of our scheme encoding the Ballroom 
sequence. Two views are presented in Figure 6.6. Compared to the RDO-MD, the 
Quality States QS1 and QS2 incur a negligible quality loss while providing a TS of up 
to 75%. For QS3 and QS4 the TS go up to 79% and 88%, respectively. Due to the 
binocular suppression QS3 maintains a negligible PSNR loss. The resulting quality for 
the resulting viewpoint (VP) is measured according to Eq. (6.4) (OZBEK, TEKALP e 
TUNALI, 2007). 

PSNR
VP

=(1-α).PSNR
HighQuality +α.PSNR

LowQuality
; α=1/3 (6.4) 
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Figure 6.6: Complexity-adaptation for MVC for changing battery levels  

The energy-aware complexity adaptation for MVC enables run-time tradeoff 
between complexity and video quality using different Quality-Complexity Classes 
(QCCs). Our scheme facilitates encoding of even and odd views using different QCCs 
(i.e., asymmetric view encoding) such that the overall perceived video quality is close to 
that of the high quality view. Our scheme is especially beneficial for next-generation 
battery-operated mobile devices with a support of 3D-multimedia. 

6.2.1.3 Comparing the Fast Motion and Disparity Estimation to the State-of-the-Art 

The comparison of our Fast ME/DE with the TZ Search algorithm and state-of-the-
art complexity reduction schemes for ME/DE is presented in this section. Figure 6.7 
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shows the time savings of our Fast ME/DE algorithms for multiple video sequences and 
QPs for 4-view sequences. The TZ Search is used for comparison as it is 23x faster 
compared to the Full Search, while providing the similar rate-distortion (RD) results. 
Compared to the TZ Search, our fast ME/DE provides 83% execution time saving. In 
the best case, the execution time savings go up to 86%, which represents a significant 
computation reduction. These results are possible through drastic reduction in the 
number of SAD operations required, as shown in Figure 6.8. Compared to (LIN, LI, et 

al., 2008) and (TSUNG, CHEN, et al., 2009), the number of SAD operations is reduced 
in 99% and 94%, respectively. It also represents 86% complexity reduction compared to 
the original TZ Search. 
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Figure 6.7: Complexity reduction for the Fast ME/DE 
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Figure 6.8: Average number of SAD operations 

The Fast ME/DE algorithm was designed to avoid high quality drops and bitrate 
increases that surpass 10%, for this reason, it does not result in high rate-distortion 
losses. The RD curves presented in Figure 6.9 summarize the average 0.116dB quality 
reduction and 10.6% bitrate increase (see detailed table in Section 4.3.3) resulting from 
the aggressive complexity reduction provided by the proposed algorithm. Also, the Fast 
ME/DE demonstrate its robustness in terms of complexity reduction for all the tested 
video resolutions and QPs. This characteristic is desirable for real-time hardware 
architectures design. 
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Figure 6.9: Fast ME/DE RD curves 

6.2.2 Video Quality Control Algorithms 

To deal with the quality losses posed by our fast algorithms, we propose, in Section 4.4, 
a complete rate control (RC) solution in order to efficiently manage the video quality vs. 
energy tradeoff. An efficient RC is supposed to sustain the bitrate as close as possible to 

the target bitrate (optimizing the bandwidth usage) while avoiding sudden bitrate 
variations. To measure the RC accuracy, that is, how close the actual generated bitrate 

(Ra) is in relation to the target bitrate (Rt), we use the Mean Bit Estimation Error 
(MBEE) (see Eq. (4.2)) metric. The averrage is calculated over all Basic Units (NBU) 

along 8 views and 13 GOPs for each video sequence.  

Figure 6.10 presents the accuracy in terms of MBEE (less is better) for our HRC 
compared to the state-of-the-art solutions (LI, PAN, et al., 2003), (YAN, SHEN, et al., 
2009), (LEE e LAI, 2011), and our frame-level RC. On average, our Hierarchical Rate 
Control provides 0.95% MBEE, while raging from 0.7%-1.37%. The competitors (LI, 
PAN, et al., 2003), (YAN, SHEN, et al., 2009), (LEE e LAI, 2011), and the frame-level 
RC present, on average, 2.55%, 1.78%, 2.03% and 1.18%, respectively. The HRC 
reduces the state-of-the-art error on 0.83%, on average. The superior accuracy is a result 
of the ability to adapt the QP jointly at frame and BU levels while considering the 3D-
Neighborhood correlation and the video content properties. 
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Figure 6.10: Bitrate prediction accuracy  
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In Figure 6.11 the long term behavior of distinct Rate Control schemes is presented 
in terms of accumulated bitrate. A more accurate RC maximizes the use of available 
bandwidth and, consequently, the accumulated bitrate tends to stay closer to the target 
bitrate line. After a few initial GOPs required for control stabilization, our HRC curve 
better fits to the target bitrate followed by our frame-level RC, as shown in Figure 6.11. 
JMVC without RC presents the worst bandwidth usage, as expected. 
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Figure 6.11: Accumulate bitrate along the time 

Once the accuracy of our HRC is proven we present the rate-distortion (RD) results 
to show that overall video quality and quality smoothness are not compromised. Table 
6.5 summarizes the objective rate-distortion in terms of BD-PSNR (Bjøntegaard Delta 
PSNR) and BD-BR (Bjøntegaard Delta Bitrate) in relation to JMVC without RC. The 
HRC provides 1.86dB BD-PSNR increase along with BD-BR reduction of 40.05%, on 
average. If compared to (LEE e LAI, 2011), that presents the best RD performance 
among the related works, the HRC delivers 0.06dB increased BD-PSNR and 3.18% 
reduced BD-BR. Remember, besides of superior RD performance, the HRC also 
outperforms (LEE e LAI, 2011) in terms of accuracy (1.08% MBEE). 

Figure 6.12 shows the RD curves for different video sequences considering videos 
from distinct spatial, temporal and disparity indexes.  The HRC shows its superiority in 
relation to the state-of-the-art for most of the RD curves. It is also important to highlight 
that HRC does not insert visual artifacts such as blurring and blocking noise. Moreover, 
our RC does not compromise the borders sharpness typically lost in case of bad QP 
selection. 

Table 6.5: Bjøntegaard PSNR and BR for the HRC 

Ballroom Exit Flamenco2 Vassar Bdancer Uli Poznan GT_Fly

BD-PSNR 0.328 0.368 0.217 0.183 0.215 0.208 0.254 0.012 0.223

BD-BR -9.831 -10.348 -8.784 -6.116 -8.963 -9.805 -12.186 -6.711 -9.093

BD-PSNR -0.090 0.073 0.114 0.051 -0.086 0.155 0.169 -0.118 0.034

BD-BR -4.156 -5.463 -3.346 -1.958 22.819 -5.293 -0.671 16.953 2.361

BD-PSNR 2.056 2.058 1.292 1.509 2.019 1.879 1.928 1.721 1.808

BD-BR -35.446 -43.167 -26.643 -33.474 -43.445 -39.110 -40.931 -38.134 -37.544

BD-PSNR 0.939 1.089 0.880 0.596 0.881 0.670 0.750 0.614 0.802

BD-BR -22.241 -26.965 -22.989 -16.897 -22.818 -20.964 -17.184 -20.872 -21.366

BD-PSNR 1.585 2.375 2.103 1.176 2.060 1.870 2.086 2.056 1.914

BD-BR -31.588 -47.458 -38.199 -27.335 -46.112 -49.660 -48.766 -47.258 -42.047
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Figure 6.12: Rate-distortion results for the HRC 

6.2.3 Energy-Efficient Hardware Architectures 

Results and comparison to the state-of-the-art for the three proposed energy-efficient 
hardware architectures are presented in this section. Table 6.6 summarizes the hardware 
implementation results with details on gate count, size of on-chip memory, performance 
and power consumption (on-chip). For simplicity, along this section the proposed 
architectures are referred as: (A) Multi-Level Pipelined HW Architecture with Fast 
ME/DE (Section 5.2), (B) Motion and Disparity Estimation HW Architecture with 
Dynamic Search Window Formation (Section 5.3) and, (C) Motion and Disparity 
Estimation HW Architecture with Application-Aware Dynamic Power Management 
(Section 5.4). Figure 6.13 shows the physical layout of the ASIC implementing 
architecture (C). To the current stage, the IC was completely synthesized but not 
fabricated. 

Compared to our architectures, the one presented in (CHANG, TSAI, et al., 2010) 
requires more hardware resources while providing significantly low performance, 
attending only CIF resolution (352x258) requirements. Even assuming a frequency 
extrapolation, the performance provided by  (CHANG, TSAI, et al., 2010) is not 
comparable to the other discussed solutions. Comparing to  (TSUNG, CHEN, et al., 
2009), our designs are able to provide real-time ME/DE for up to 4-views HD1080p 
videos compared to HD720p provided by (TSUNG, CHEN, et al., 2009) at the same 
operation frequency. This represents a throughput increase (in terms of the processed 
MBs) of 2.26x obtained through Fast ME/DE and careful pipelining and scheduling in 
architecture. Additionally, architecture (A) reduces the gate count and power 
consumption compared to (TSUNG, CHEN, et al., 2009). Architecture (A) requires 8% 
less gates compared to (TSUNG, CHEN, et al., 2009). The power consumption 
(excluding the external memory accesses that are reduced by 65%) is also reduced by 
69% (including the on-chip SRAM memory read/write power). The number of memory 
bits is increased once Level-A cache requires 2 Kbits, Level-C 131 Kbits and 3D-cache 
82 Kbits. Additionally, the MV/DV memory used by our fast ME/DE algorithm 
requires 522 Kbits. In relation to (TSUNG, CHEN, et al., 2009) the memory in (A) 
represents a 11.5x increase. It is also important to consider that our architecture is 
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implemented in 65nm at 0.8v while (TSUNG, CHEN, et al., 2009) uses a 90nm low 
power technology at 1.8v.  

Further improvements were employed in architecture (B) in terms of control flow 
and memory design. A significant gate count reduction was possible by simplifying the 
two dataflow control units from architecture (A) – a single control unit remains in 
architecture (B) - and by merging the three cache memories in a single one. Architecture 
(B) reduces the gate count, number of memory bits and power consumption by 52%, 9% 
and 30%, respectively, compared to (A). It also increases the maximum search range from 
[±64,±64] to [±96,±96]. Compared to (TSUNG, CHEN, et al., 2009) the area and power 
reductions are 66% and 72%, respectively, while providing higher throughput. This 
significant power reduction is mainly due to the employment of dynamic search window 
formation, on-chip memory power-gating, smaller logic, and fast ME/DE scheme. Note 
that the standard-cell library and fabrication technologies are different compared to 
(TSUNG, CHEN, et al., 2009) and also to architecture (A). 

Architecture (C) was designed based in the same architecture used in (B) except for 
the memory design and the more sophisticated application-aware power management. For 
this reason, (C) presents similar gate count compared to (B). The number of memory bits 
was increased in 62.5%, however, the improved power management led to a total power 
reduction of 27%, 30% and 79% if compared to (B), (A), and (TSUNG, CHEN, et al., 
2009), respectively. To the best of our knowledge, the Motion and Disparity Estimation 
HW Architecture with Application-Aware Dynamic Power Management (C) represents 
the most efficient architectural solution available in the current literature and guarantees 
the processing of 4-view HD1080p running at 300MHz and dissipation 57 mW. 
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Figure 6.13: ME/DE Architecture with Application-Aware Dynamic Power 
Management physical layout 

 

Table 6.6: Motion and disparity estimation hardware architectures comparison 

 
(CHANG, 

TSAI, et al., 
2010) 

(TSUNG, 
CHEN, et al., 

2009) 

Multi-Level 
Pipelined 

Fast ME/DE 
Architecture 

(A) 

ME/DE 
Architecture 
w/ Dynamic 

Search 
Window 

(B) 

ME/DE 
Architecture  
w/ app-aware 

DPM 
(C) 

Technology UMC 90nm 
TSMC 90nm 
Low Power 
LowK Cu 

IBM 65nm 
LPe LowK  

ST 65nm LP  
7 metal layer 

ST 65nm LP  
7 metal layer 

Gate 
Count 

562k 230k 211k 102k 102k 

SRAM 170 Kbits 64 Kbits 737 Kbits 512 Kbits 832 Kbits 
Max. 

Frequency 
95 MHz 300 MHz 300 MHz 300 MHz 300 MHz 

Power n/a 265mW, 1.2v 81mW, 0.8v 74mW, 1.0v 57mW, 1.0v 
Search 
Range 

 [±16,±16] [±64,±64] [±96,±96] [±96,±96] 

Proc. 
Capability 

CIF @ 42fps 4-views 720p 
4-views 

HD1080p 
4-views 

HD1080p 
4-views 

HD1080p 

At first analysis, the main drawback of the proposed ME/DE architectures lies in the 
increase on-chip video memory in comparison to the state-of-the-art. The on-chip 
memory in our hardware is relatively larger as it supports a much bigger search window 
of up to [±96,±96] compared to [±16,±16] in (TSUNG, CHEN, et al., 2009) (which is 
insufficient to capture larger disparity vectors). However, the larger on-chip memory does 
not imply in increased power dissipation because of the dynamic power management and 
power-gating techniques employed in our solutions. 

The authors of (TSUNG, CHEN, et al., 2009) use a rectangular data reuse technique 
such as  Level-C (CHEN, HUANG, et al., 2006), which compared to our proposed 
solutions (search as dynamic window formation) perform inefficiently. Note, Level-C 
(CHEN, HUANG, et al., 2006) with a search window of [±96,±96] would require four 
memories of 288Kb (i.e., a total of 1,115 Mb) to exploit the reusability in four possible 
prediction directions available in MVC. Our approaches implement it with 737 Kbits, 
512Kbits and, 832Kbits, respectively. To perform a fair comparison, we have deployed 
the Level-C and Level-C+ (CHEN, HUANG, et al., 2006) techniques in our hardware 
architecture. 

Figure 6.14 shows the energy benefit of employing our dynamically expanding search 
window and multi-bank on-chip memory with power-gating (implemented in (B)). 
Compared to Level-C and Level-C+ (CHEN, HUANG, et al., 2006) prefetching 
techniques (based on rectangular search windows), our approach presents energy 
reduction in on-chip and off-chip memories as shown in Figure 6.14. For a search 
window of [±96,±96], our approach provides an energy reduction of up to 82-96% and 
57-75% for off-chip and on-chip memory access, respectively. These significant energy 
savings are due to the fact that Level-C and Level-C+ (CHEN, HUANG, et al., 2006) 
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suffer from a high data retransmission for every first MB in the row. Additionally, our 
approach provides higher data reuse and incurs reduced leakage due to a smaller on-chip 
memory and power-gating of the unused sectors. 

Figure 6.15 shows the leakage reduction for the application-aware DPM (architecture 
(C)) normalized to Level-C+ (CHEN, HUANG, et al., 2006). Due to its reduced size 
compared to Level-C+, our memory even without the power management (NC) is able to 
provide 50% leakage energy reduction compared to Level-C+. When the application-
aware power-gating only at the frame level (FC) is integrated with our memory, the 
leakage energy reduction approaches 75%. The fine-grained power management at the 
MB level (FMBC) provides further 3%-5% leakage reduction, altogether providing up to 
80% leakage reduction compared to Level-C+ (for more details kindly refer to memory 
miss results in Section 5.4.6). Altogether, our application-aware power management 
leads to reduced energy, which is the primary design concern in this work.  
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Figure 6.15: On-chip memory leakage reduction  

6.3 Summary of Results and Comparison 

To cope with comparison fairness issues, along this chapter were detailed all setting 
and videos used for comparison along this thesis. The video benchmark sequences were 
classified using the spatial, temporal and disparity indexes to quantify their complexity 
along theses axes. Additionally, the simulation infrastructure and tools employed along 
this work were presented in Section 6.1. 

A complete comparison to the state-of-the-art was presented in Section 6.2 and 
showed the superiority of our solutions. The mode decision complexity reduction 
algorithms are able to provide average 71% complexity reduction with 0.17dB quality 
loss or 5.8% bitrate increase (Bjøntegaard). In turn, the Fast ME/DE contributes with 
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additional 83% complexity reduction with a drawback of  0.116dB quality loss or 10.6% 
bitrate increase. The energy/complexity versus quality tradeoff can be managed using the 
presented complexity adaptation algorithms whose stability and fast reacting to changing 
scenarios was demonstrated in Section 6.2.1.2. The quality drawback posed by our 
algorithms may be recovered by employing our HRC that provides an average video 
quality increase of 1.9dB (Bjøntegaard). 

Compared to the state-of-the-art architecture for ME/DE the solutions presented in 
this thesis are able to reduce the gate count in 56% while increasing the performance 
2.26x. Most importantly, our latest architecture is able to provide real-time 4-views 
HD1080p at 300MHz with 57mW. It represents a 79% power reduction. This reduction is 
mainly due to intelligent on-chip video memory energy management. The chip physical 
layout is showed in Section 6.2.3. 

The results presented in Chapter 6 for both, energy-efficient algorithms and energy-
efficient architectures, demonstrate the superior performance of our solutions in face of 
the related works. Moreover, the results demonstrate that is possible to provide solutions 
able to encode MVC at real time while respecting to embedded devices energy 
constraints. 
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7 CONCLUSION AND FUTURE WORKS 

The presented thesis focuses on the energy reduction of the Multiview Video Coding 
(MVC) encoder to enable the realization of real-time high-definition 3D-video encoding 
running on mobile embedded devices with battery-constrained energy. For that, novel 
energy-efficient techniques are proposed at both, algorithmic and architectural abstraction 
levels. The joint consideration of algorithms and underlying hardware architecture is the 
key enabler to provide improved energy-efficiency, as demonstrated along this thesis. 

The strong correlation within the 3D-Neighborhood domain, concept defined in this 
work, has been the base for designing most of the algorithms and hardware architecture 
adaptation schemes proposed. An extensive study based on statistical analysis correlating 
MVC coding side information (such as coding modes,  motion/disparity vectors and 
RDCost) to the video content properties is provided to justify the importance of the 3D-
Neighborhood understanding and to demonstrate its potential to support energy reduction 
in the MVC encoder. 

A set of energy-efficient algorithms for MVC compose one of the major contributions 
to the state-of-the-art proposed in this work. Two fast mode decision algorithms are 
described targeting energy-efficiency through complexity reduction. The Early SKIP 
prediction exploits the high occurrence of SKIP coded MBs to accelerate the encoding 
process by employing statistical methods that define if each MB is in the high SKIP 
probability region in order to avoid other coding modes evaluation. The early SKIP 
concept is integrated in the multi-level fast mode decision algorithm to further reduce the 
energy consumption. It eliminates coding modes evaluation even in the case where an 
early SKIP is not detected by analyzing the coding modes available within the 3D-
Neighborhood while considering an video/RDCost-based mode ranking. The video 
properties are also used to define block sizes and prediction modes orientation. To protect 
the multi-level fast MD algorithm from inserting excessive quality losses an early 
termination test is inserted between each prediction step. This algorithm defines QP-based 
thresholds for two distinct energy reduction strengths, the relax and aggressive strengths. 
By employing two operation modes it is possible to select the best energy vs. quality 
tradeoff for a given system state and video content. Moreover, multiple fast MD modes 
enable the integration of a energy-aware complexity adaptation control scheme. The 
multi-level fast MD algorithm evaluation, results, and comparison with related works, 
points to an average complexity reduction of 25% at the cost of 0.32dB quality loss and 
10% bitrate increase, for aggressive mode, and 0.1dB quality loss and 3% bitrate increase, 
for relax mode.  

This thesis work demonstrated that the coding properties and coding effort highly 
depends on the video content. Moreover, when considering embedded applications, the 
processing power is constrained by energy resources available in the embedded battery. 
From this observations, it is proposed an energy-aware complexity adaptation algorithm. 



 

 

188 

 

The goal is to jointly consider the video input characteristics and the battery state to 
sustain the highest possible video quality by selecting the appropriated MD algorithm and 
quality states. In case of battery discharging, further energy reduction is necessary leading 
to quality reduction. Thus, the complexity-adaptation algorithm delivers a graceful quality 
degradation by employing the binocular suppression theory knowledge. For binocular 
displaying, the Human Visual Systems (HVS) tends to perceive the highest quality view, 
so the proposed algorithms firstly drops the quality of odd views guaranteeing a high 
perceived quality while reducing energy consumption for encoding these odd views. 
Experimental results show the beneficial effect of the complexity adaptation for energy 
consumption and smooth quality variation along the time under battery charging and 
discharging scenarios. 

The motion and disparity estimation consumes more than 90% of the total MVC 
encoding energy and represents the main target for energy reduction. In this work, a novel 
Fast ME/DE was detailed. It uses the motion and disparity vectors available in the 3D-
Neighborhood to avoid, for multiple frames in the prediction structure, the complete 
motion/disparity search pattern. There are defined two classes for frames, key and non-
key frames, where the key frames are encoded using off-the-shelf fast search patterns and 
the non-key employ our Fast ME/DE. According to the confidence, defined using image 
properties, on the vectors inferred from the neighborhood, each MB in the non-key frames 
select between fast mode or the ultra-fast mode. These modes test only 3 or 13 candidate 
blocks, respectively. The proposed Fast ME/DE algorithms is able to reduce 83% of the 
total encoding time at the cost of 0.116dB and 10% bitrate increase.  

To compensate eventual losses posed by the energy-efficient algorithms, a video 
quality management based on our hierarchical rate control (HRC) algorithm was 
proposed. The HRC operates in two actuation levels, the frame level and the basic unit 
(BU) level, and features a coupled closed feedback loop. The frame-level RC employs a 
Model Predictive Controller (MPC) to predict the bitrate for future frames based on the 
bit allocation in the frames belonging to the 3D-Neighborhood. The multiple stimuli 
coming from temporal, disparity and phase neighboring frames compose the MPC input. 
The bitrate prediction is then used to define the optimal QP for that frame. The QP is 
further refined inside the frame by a Markov Decision Process (MDP)-based BU-level 
rate control. It considers Regions of Interest to prioritize hard-to-encode image regions. 
Reinforcement learning is used to update the MDP parameters. The HRC provides 
smooth bitrate and video quality variations along time and view axes, while respecting to 
bandwidth constraints and providing improved video quality. Compared to the fixed QP 
solution, the video quality was improved in 1.9dB (Bjøntegaard). In comparison to the 
state-of-the-art, the bitrate prediction error is reduced in 0.83% in addition to 0.106dB 
PSNR increase or 4.5% Bjøntegaard bitrate reduction.  

In addition to the energy-efficient algorithms, the severe energy restrictions and 
performance requirements demanded by the MVC encoder require hardware dedicated 
acceleration able to employ sophisticated application-aware adaptive power management 
techniques. Three energy-efficient hardware architectures for motion and disparity 
estimation were proposed in order to provide multiple implementation options under 
distinct encoder design constraints. The proposed architectures provide throughput to 
encode, at real time, 4-view HD1080p video sequences. 

The multi-level pipelined ME/DE hardware architecture featuring Fast ME/DE was 
jointly designed with the Fast ME/DE algorithm presented in this thesis. This dual-
pipelined solution employs two parallel search control and dispatch units, one for the 
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regular search and one for the fast algorithm itself, and three cache memories with distinct 
caching and fetching paradigms to minimize misses and avoid data retransmission. A 
novel processing scheduling was designed exploiting the multiple parallelism levels 
available in the MVC coding structure,  view, frame, reference-frame and MB levels, to 
deal with data dependencies. 

Merging the two pipelines, it was proposed a novel ME/DE architecture that 
incorporates a multi-bank video on-chip memory and the dynamic search window-based 
data prefetching technique for jointly reducing the on/off-chip memory energy 
consumption. A dynamically expanding search window is constructed at run time based 
on the neighborhood-extracted search map to reduce the off-chip memory accesses. 
Considering the multi-stage processing nature of advanced fast ME/DE schemes, the 
reduced-size multi-bank on-chip memory is partitioned in multiple sectors which can be 
power-gated depending upon the video properties while enabling fine-grained tuning for 
leakage current reduction. 

The potential of memory-related energy savings motivates the proposal of a novel 
energy-efficient architecture featuring an elaborated application-aware dynamic power 
management scheme for the on-chip video memory. The memory organization (size, 
banks, sectors, etc.) is driven by an extensive analysis of memory-usage behavior for 
various 3D-video sequences. Considering the multiple power state model adopted, the 
application-aware power management scheme is employed to reduce the leakage energy 
of the on-chip memory. The knowledge of motion and disparity estimation algorithm in 
conjunction with video properties are considered to predict the memory requirements of 
each frame and refine to macroblock level. A cost function is evaluated to determine an 
appropriate sleep mode for each memory sector, while considering the wakeup overhead 
(latency and energy).  

The architectural contribution presented in this thesis involves the architectures 
design, management schemes, complete RTL coding and ASIC synthesis down to 
physical layer using 65-nm fabrication technologies. From experimental results for 
multiple video sequences, the proposed architectures provide a dynamic energy 
reduction of 82-96% for the off-chip memory and up to 80% on-chip leakage energy 
reduction compared to state-of-the-art. From this contribution, it is possible to 
demonstrate the feasibility of performing motion and disparity estimation for up to 4-
view HD1080p at 30fps with a power dissipation of 57mW running at 300MHz on an 
IC footprint with 102k gates. 

The overall results and benchmarks demonstrate the energetic efficiency of the 
proposed algorithms and architectures in front of the state-of-the-art solutions. This 
proves our claim that for attending the 3D video coding requirements for embedded 
systems, it is required to jointly consider and optimize the coding algorithms and the 
underlying dedicated hardware architectures. Additionally, run-time adaptation is required 
to better predict the system behavior and react to changing video input, coding parameters 
and battery level scenarios. For that, deep MVC application knowledge coming from 
extensive analysis, such as the correlation available within the 3D-Neighborhood, must be 
employed. 

7.1 Future Works 

Beyond the contribution brought in this thesis work, there are multiple research topics 
related to 3D-video coding and video processing that were not addressed in this volume. 
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The algorithms and architectures here presented were centered in mode decision and 
motion and disparity estimation once these are the most energy-hungry coding units in the 
MVc encoder. Additionally, focusing on video quality issues the rate control was 
discussed. The MVC, however, brings a big set of other research challenges if embedded 
applications are considered. 3D videos pre- and post-processing also play key roles in the 
3D-video system and present plenty of novel challenges. Finally, next generation 3D-
video coding algorithms are under study for future standardization. The next 3D-video 
generation is expected to bring innovative tools and provide good perspective for future 
research opportunities in the 3D-multimedia field. 

Remaining MVC challenges: Although the main challenges in terms of complexity 
and energy consumption are related to the MD and ME/DE blocks, attending to the MVC 
demands while respecting energy constraints presents challenges related to other MVC 
processing blocks. The entropy encoder, for instance, may become the bottleneck of the 
encoder system if no proper parallelization is employed. The block-level data 
dependencies in intra prediction also require research attention. Finding efficient solutions 
to deal with data dependencies and parallelization issues provide interesting research 
opportunities for future works. 

3D video pre- and post-processing: Video encoding is one single stage in the 3D-
video system. Between video capturing and video coding phases, there is a need for pre-
processing such as geometrical calibration (for correcting the aligning of the multiple 
videos) and color correction (responsible for equalizing the brightness level and color 
gamut). After the transmission and decoding, the video is processed for displaying 
depending on the application and display technology. This post-processing phase includes 
color space mapping (in a system using color polarization), resolution scaling and 
viewpoint synthesis (generation of intermediate viewpoints for displaying). The pre- and 
post-processing implement complex and data-intensive algorithms (especially for 
viewpoint synthesis) that run concurrently with the video encoder/decoder and require 
real-time performance. Therefore, the embedded energy and hardware resources must be 
shared to attend both video coding and pre-/post-processing demands. 

Next generation 3D video coding: The next generation for 3D video coding is 
currently referred as 3DV (3D Video)(ISO/IEC, 2009) and is based on the Video+Depth 
concept that defines distinct channels to transmit video and the depth maps. The 3DV is 
expected to be defined as an extension to the HEVC/H.265 (SULLIVAN e OHM, 2010). 
The 3DV tools will bring a completely new set of challenges boosting the research topics 
related to 3D multimedia. Moreover, the video coding standards lifetime is expected to 
reduce for future standard generations resulting in the simultaneous coexistence of 
multiple coding standards. Thus, there is a need to support multiple complex coding 
standards in the same device by employing flexible and adaptive solutions. 
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APPENDIX A  <JMVC SIMULATION ENVIRONMENT> 

The JVT (Joint Video Team), formed from the cooperation between the ITU-T 
Study Group 16 (VCEG) and ISO/IEC Motion Picture Experts group (MPEG), 
responsible for the standardization of the H.264, SVC (Scalable Video Coding) and 
MVC provides software models used for algorithms experimentation and for standards 
prove of concept. The JMVC (Joint Model for MVC) (JVT, 2009), currently on version 
8.5, is the reference software available for experimentation on the MVC standard. 
Along this work the JMVC software, coded using C++, was used and modified to 
implement the proposed algorithms. Initially, the version 6.0 was used followed by an 
upgraded to version 8.5. Considering the length and complexity of the software, a high-
level overview of the interaction between the main encoder classes is presented here. 
Afterwards are shown the classes modified to enable our algorithms experimentation. 
For in deep details of the classes structure refer to JMVC documentation 
(ERDAYANDı, 2009). 

B. 1 – JMVC Encoder Overview 

The JMVC classes are hierarchically structured as shown in Figure A.1 (TECH, 
MÜLLER, et al., 2010). The JMVC encodes each view at a time requiring as many calls 
as number of view to be encoded. The reference views are stored in temporary files. The 
class H264AVCEncoderTest represents the top encoder entity, it initializes the encoder, 
call the  CreateH264AVCEncoder class to initialize the other coding classes. At this 
level, the PicEncoder is initialized and the frame-level loop is controlled. The 
PicEncoder loops over the slices inside each frame and reset the RDcost. The slice 
encoder controls the MB-level loop and set the reference frames for each slices. For MB 
encoding there are two main classes, the MbEncoder and the MBCoder. MbEncoder 
encapsulates all the prediction, transforms and entropy steps. It implements the mode 
decision by looping over and encoding all possible coding modes (in case of RDO-MD) 
and determining the minimum RDCost. At this point no MB coding data is written to 
the bitstream. Once the best mode is selected, the SliceEncoder calls the MbCoder to 
write the MB-level side information and residues to the bitstream. 

Figure A.2 (TECH, MÜLLER, et al., 2010) depicts the hierarchical call graph of 
methods inside the mode decision process implemented in MbEncoder class. Firstly, the 
SKIP and Direct modes are evaluated, along this thesis these modes are jointly referred 
as SKIP MBs. In the following, all inter-prediction block sizes are evaluated. For each 
partition size a call to the method MotionEstimation::estimateBlockWithStart (see 
Figure A.3 discussion) is performed. The same happens for the sub-partitions in case of 
8x8 partitioning. EstimateMb8x8Frext is only called in case the FRExt flag in set. 
Finally, the intra-frame coding modes including PCM, intra4x4, intra8x8 (FRExt only) 
and intra16x16 are called. The Estimate<mode> methods call the complete coding loop 



 

 

208 

 

for that specific mode including prediction, transforms, quantization, entropy encoding 
and reconstruction. It allows a precise definition of the minimum RDCost (λ) and an 
optimal best mode selection at the cost of elevated coding complexity. The MbCoder is 
called to entropy encode the best mode and write the data into the bitstream output 
buffer.  

H264AVCEncoderTest
(H264AVCEncoderTest.cpp)

JMVC Encoder

CreateH264AVCEncoder
(CreaterH264AVCEncoder.cpp)

PicEncoder
(PicEncoder.cpp)

SliceEncoder
(SliceEncoder.cpp)

MbCoder
(MbCoder.cpp)

MbEncoder
(MbEncoder.cpp)

- Init encoder
- Setup frame buffers
- Loop over frames 

- Init slice header
- Set RDCost (λ)
- Loop over slices

- Init reference frames
- Loop over MBs

- Loop over coding modes  
- Perform the encoding for each mode
- Select the best RDCost

- Encode the best mode
- Create the bitstream

BS

 

Figure A.1: JMVC Encoder High-Level Diagram 

The motion and disparity estimation search itself is defined in the method 
estimateBlockWithStart and is composed of three basic steps. The ME/DE dataflow is 
represented by the arrows in Figure A.3. Once the estimateBlockWithStart is called, for 
instance in EstimateMb16x16, the search runs for each reference frame list (List 0 and 
List 1) and for an interactive B search mode that exploits both lists in an interactive 
fashion (in case the interactive B is active). At the software perspective, there is no 
distinction between ME and DE. List 0 and List 1 store both temporal and disparity 
reference frames. The search for a given reference frame firstly finds the best candidate 
block among the integer pixels (ME/DE Full Pel) and then refines the result considering 
half and quarter pixels (ME/DE Sub Pel). The search pattern depends on the search 
algorithm, JMVC implements TZ Search, Full Search, Spiral Search and Log Search. 
The goal is to find the candidate block that minimizes the Motion Cost (λMotion) in terms 
of SAD, SAD-YUV (considering chroma channels), SATD or SSE according to user 
defined coding parameters. The position of the best matching candidate block position 
defines the motion or disparity vector. 
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Figure A.2: Mode Decision hierarchy in JMVC 
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Figure A.3: Inter-frame search in JMVC 

B. 2 – Modifications to the JMVC Encoder 

B.2.1 – JMVC Encoder Tracing 

In order to generate the statistics used for coding modes and motion/disparity vector 
some modifications were done in the original JMVC code. Te point selected for this 
tracing is inside the entropy encoder to guarantee that the extracted data is the same 
actually encoded and transmitted. The entropy encoder is declared as the virtual class 
MbSymbolWriteIf but the actual implementation is in CabacWriter and UvlcWriter, 
depending on the entropy encoder selected in the configuration file. The methods 
monitored are skipFlag that encodes the SKIP (and Direct) coded MBs and mbMode 
that encodes all other modes. Note, MB coding mode codes (uiMbMode)  varies with 
the slice type as defined in tables 7-11, 7-12, 7-12, 7-13 and 7-14 of the MVC standard 
(JVT, 2008). 

B.2.2 – Communication Channels in JMVC 

Multiple algorithms proposed in this thesis employ the information from the 3D-
Neighbohood. For that, there is a need to build communication channels between 
neighboring MBs in the special, temporal and disparity domains. In other words, it is 
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required an infrastructure to send and receive data at MB level, at frame level (in same 
view) and at view level (frames in different views). Therefore, a hierarchical 
communication infrastructure was designed and implemented. Figure A.4 presents 
graphically the modified classes along with the new member data structures and 
communication methods. 

The MbDataAccess already provides direct access to the left and upper neighbors 
(A, B, C and D in Figure A.4). This access was extended to the right and bottom 
neighbors (A*, B*, C* and D*) enabling access to data from all spatial neighboring 
MBs. For temporal neighboring MBs access the current MB data is sent to SliceHeader 

(using Send() methods) where a 2D array stores the information from the MBs 
belonging to the current slice. Once the slice is completely processed, the 2D array is 
sent to the PicEncoder class. PicEncoder maintains the data for the whole current GOP. 
For reading the data communication channel writes the requested data from PicEncoder 

to SliceHeader and finally to MbDataAccess (using Receive() methods). As far as the 
views a processed in distinct encoder calls there is a need to use external temporary files 
to transmit the disparity neighboring information. The current MB data is written in 
these files from MbDataAccess while the data from previous views is read in 
PicEncoder, as shown in Figure A.4. 

MbDataAccess

MBA A*

BD C

B*C* D*

SliceHeader

Frame

#MBx

#
M

B
y

SliceHeader::Send(slice.POC)
SliceHeader::Receive(slice,POC)

MbDataAccess::Send(MB,x,y)
MbDataAccess::Receive(MB,x,y)
MbDataAccess::Write(MB,x,y)

PicEncoder
#MBx

#
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B
y

Frame

PicEncoder ::Read(file, view)

Send()

Receive()

MB

Send()

Receive()

Storage File

View N

Storage File

View N-1

Write()Read()
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Figure A.4: Communication in JMVC 

B.2.3 – Mode Decision Modification in JMVC 

The mode decision is programmed in a very simple becoming easy to find and 
modify. MD is handle in MbEncoder::encodeMacroblock. To find the exact point 
search for the xEstimateMb methods responsible for calling the modes evaluation. 
Before this point are implemented the 3D-Neighborhood communication calls and the 
calculation required to take the fast decisions.  

B.2.4 – ME/DE Modification in JMVC 

The modification for fast ME/DE are inserted in two distinct classes. For 
modifications at higher level such as avoiding interactive B search, search direction and 
reference frames the modification are done in the MbEncoder by modifying the 
xEstimateMb methods. If the modifications are in the search step itself, 
MotionEstimation class is the right point for modification. estimateBlockWithStart 
method is responsible for fetching the image data, prediction SKIP vectors and calling 
the search methods (xPelBlockSearch, xPelSpiralSearch, xPelLogSearch and 
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xTZSearch). By modifying these methods it is possible to reach low level modifications 
on the ME/DE search. 

B.2.4 – Rate Control Modification in JMVC 

The JMVC does not implement any rate control algorithms. Therefore, to implement 
the Hierarchical Rate Control (HRC) scheme one new class is created,  the RateControl. 
Three files are used to better partition the RC hierarchy. File RateCtlCore.cpp describes 
the behavior of the whole HRC while RateCtlMPC.cpp and RateCtlUB.cpp are 
responsible for the calculations relative the MPC and MDP controllers. RateCtl.h file is 
used to define the MPC and MDP actuation parameters. The QP history is read from 
CodingParameter class and the generated bitrate is accessed via  BitWriteBuffer and 
BitCounter. The QP defined for the next frames or BU are sent back to 
CodingParameter. Additional modifications were required in files MbCoder.cpp, 
CodingParameter.cpp, RateDistortion.cpp, ControlMngH264AVCEncoder.cpp, 
Multiview.cpp, and ControlMngH264AVCEncoder.h. 
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APPENDIX B  <MEMORY ACCESS ANALYZER TOOL> 

The MVC Viewer software is used as part of this work to plot and analyze the 
memory accesses that are required by the Motion and Disparity Estimation (ME/DE). 
The goal of this tool is to help the researchers in their projects in the visual and 
statistical analysis of the communication between the multiview video encoder and the 
reference samples memory. It provides a set of final statistics and several plots using the 
original input video. 

The MVC Viewer was designed to be adapted to different encoder parameters. In a 
configuration file, the user should specify: (a) the number of views, (b) the GOP size, 
(c) the video resolution , (d) the original YUV video files path and, finally, (e) the 
memory tracing input files path. The tracing file is an intermediated way to 
communicate the video encoder output, like JM or x264, with the MVC Viewer tool. In 
this file, all memory accesses performed by ME/DE are listed. 

This tool runs over the JVM (Java Virtual Machine) and provides a simple interface 
to the analysis. Figure B.1 presents the overview of the MVC Viewer main screen. The 
main parts are: 

1. Encoding parameters: GOP Size, number of coded frames, number of coded 
views and video resolution (directly defined in the configuration files). 

2. Tracing files path where all accessed regions of reference frames are listed. 
3. Original YUV videos. 
4. Program mode selection: the MVC Viewer has mainly two possible analysis 

tool: (a) current macroblocks based analysis and (b) reference frame based 
analysis. 

5. Listbox with all memory access that will be plotted in the output. 
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Figure B.1: MVC Viewer main screen 

The two analyses that are allowed by the MVC Viewer tool will be explained in the 
next sections. 

B. 1 - Current Macroblock-Based Analysis 

In this analysis, the goal is to trace all accessed reference frame samples when the 
ME/DE is performed for one or more current macroblocks. The MVC massively uses 
multiple reference frames, then the MVC Viewer will generate several plots that will 
determine the accessed regions for each reference frame (temporal and disparity 
neighbors). The Figure B.2 shows a MVC Viewer screenshot when it is running this 
analysis. The main parts are: 

1. Selection of the target macroblocks that will be traced. 
2. List of all selected macroblocks. 
3. List of all memory access caused by the ME/DE for the selected macroblocks. 
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4 5
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Figure B.2: Current Macroblock Based analysis screenshot 

The Figure B.3 presents an output example for one macroblock that reflects in 
samples accesses in the four directions: past and future temporal reference frames, and 
right and left disparity reference frames. 

 

Figure B.3: Output Example: four prediction directions and their respective accessed 
areas. 

B. 2 - Search Window-Based Analysis  

This analysis selects one specific frame and traces all accesses performed by the 
ME/DE when the selected frame is used as reference. This way, it is possible to 
determine the most accessed regions of the frame. The knowledge about this behavior is 
important to define strategies to save memory bandwidth. Figure B.4 presents the MVC 
Viewer during this analysis, where the main parts are: 
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1. Reference frame selection: the user must define the frame identification (the view and 

frame positions) to be traced. 

2. Current MBs Tracing option: the user has the possibility to delimit an area inside the 

reference frame to discover which are the current blocks processed by the ME/DE that 

cause the accesses. 

3. List of all memory access caused by the ME/DE in the selected reference frame. 

 

Figure B.4: Current Macroblock Based analysis screenshot. 

The Figure B.5 presents two different examples of the Reference Frame Based 
Analysis considering two search algorithms: (a) Full Search and TZ Search.  

 

Figure B.5: Output Exapmle: reference frame access index considering two block 
matching algorithms: Full Search and TZ Search. 

The Full Search has a regular access pattern where all samples inside the Search 
Window are fetched. On the other hand, the TZ Search has a heuristic behavior and the 
access index varies in according with the video properties (low/high motion/disparity). 
These two different cases are represented in the plots of the Figure B.5. 
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APPENDIX C  <CES VIDEO ANALYZER TOOL> 

The CES Video Analyzer tool was developed in house targeting the displaying and 
analyzing of video properties. It was described in C# programming language and 
features the Graphic User Interface presented in Figure C.1. The goal of the original 
tool is to support the decision making during novel coding algorithms design. The tool 
support diverse displaying modes including luminance only mode and applying MB 
grids. Also, the CES Video Analyzer implements image filters such as Sobel, Laplace, 
Kirsch and Prewitt filters besides of luminance, gradient and variance maps. An 
additional information window summarizes all image properties. Figure C.2 exemplifies 
the tool features presenting the original frame with the MB grid, the Sobel filtered 
image and the variance map. 

 

Figure C.1: CES Video Analyzer User Interface 

 

Figure C.2: CES Video Analyzer Features 
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To facilitate the development of the algorithms proposed in this volume, the CES 
Video Analyzer was extended to support and provide better visualization for MVC 
videos. Figure C.3 shows the visualization of a frame differentiating SKIP, inter and 
intra MBs. In Figure C.4 all MBs, including SKIPs, are classified in disparity estimation 
or motion estimation for different time instants. 

Intra-coded MBs

Inter-coded MBs

SKIP-coded MBs

 

Figure C.3: Coding mode analysis using CES Video Analyzer 
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Figure C.4: ME/DE analysis using CES Video Analyzer 
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APPENDIX D  <EXTENDED ABSTRACT: PORTUGUESE> 

D.1 - Introdução 

A busca do Mercado consumidor por tecnologias de multimídia imersivas aliada ao 
interesse da indústria de impulsionar o mercado de entretenimento levou a 
popularização dos vídeos e aplicações 3D além de dispositivos que processam tais 
vídeos. Embora o primeiro dispositivo 3D tenha sido desenvolvido em 1833 e a 
primeira exibição 3D tenha acontecido em 1915 (ZONE, 2007), esse formato apenas se 
tornou amplamente conhecido nos anos 1980 através da tecnologia IMAX (IMAX, 
2012). A explosão de popularidade dos vídeos 3D, no entanto, aconteceu no final dos 
anos 2000 por meio da popularização dos cinemas 3D seguidos de televisores voltados 
par cinema em casa. Para melhor quantificar essa popularização, mais de 10% dos 
televisores vendidos nos EUA em 2011 eram capazes de reproduzir vídeos 3D 
(RESEARCH AND MARKETS, 2010). O último nicho a ser afetado pela 
popularização 3D é também responsável pelo maior crescimento da indústria de 
circuitos integrados depois dos computadores pessoais: os sistemas móveis embarcados. 
A venda de smartphones, tablets, càmeras portáteis, e outros dispositivos móveis já 
supera a venda de computadores pessoais (KAY, 2011) (IC INSIGHTS, 2012). Por 
exemplo, a expectativa de vendas para smartphones para 2013 é de 650 milhões 
enquanto computadores devem atingir a marca de 430 milhões (GASSÉE, 2010) de 
unidades vendidas no mesmo ano. Tal popularização leva a um grande aumento no 
volume de conteúdo 3D sendo gerado, codificado, armazenado, transmitido e exibido 
diariamente. De acordo com a CISCO (CISCO, 2012), videos digitais já representam 
51% do tráfego da internet devendo atingir o patamar de 90% em 2014 (SOCIAL 
TIMES, 2011). Considere-se também o aumento no tráfego gerado por dispositivos 
móveis na internet previsto para crescer de 0,6 Exabytes/mês em 2011 para 10,8 
Exabytes/mês em 2016 (CISCO, 2012). 

Para cobrir a lacuna entre geração de conteúdo 3D e as capacidades de transmissão e 
armazenamento, é necessário codificar os vídeos 3D de forma eficiente reduzindo o 
volume de dados necessário para sua representação. O padrão de codificação para 
vídeos de múltiplas vistas, Multiview Video Coding (MVC), criado como uma extensão 
do H.264/AVC, representa a tecnologia mais avançada em codificação 3D. Baseado no 
paradigma de múltiplas vistas, assim como a grande maioria do conteúdo 3D atual, o 
MVC é capaz de reduzir o volume de dados de um vídeo em 20%-50% comparado ao 
H.264/AVC. Esse aumento de eficiência vem ao custo de aumento em complexidade 
computacional e consumo de energia na etapa de codificação. O aumento de consumo 
energético se deve ao grande número de unidades funcionais necessárias para processar 
tal volume de dados e do intenso tráfego de memória. Em um cenário dominado por 
sistemas móveis, o aumento no consumo de energia vai de encontro às limitações 
impostas pelas baterias de tais sistemas. Esse conflito de interesses entre eficiência de 
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codificação e restrições energéticas carrega o principal desafio relacionado a 
codificação de vídeos 3D em sistemas embarcados: desenvolver soluções algorítmicas e 

arquiteturais com eficiência energética para viabilizar a codificação de vídeos 3D de 

alta definição em tempo real e, ao mesmo tempo, manter alta qualidade sob severas 

restrições energéticas. O principal objetivo dessa tese é encontrar soluções para 

resolver esse desafio propondo algoritmos e arquiteturas de hardware inovadoras que 

possibilitem a codificação 3D em sistemas móveis.    

D.1.1 – Aplicações de Vídeos 3D 

A utilização de vídeos 3D está associada a existência de aplicações multimídia que 
necessitem prover sensação de profundidade para aumentar a imersão dos 
telespectadores na cena. Aqui apresentaremos algumas da principais aplicações de 
vídeos 3D. Todas estas compartilham o conceito de utilizar múltiplas vistas capturas na 
mesma cena 3D. Para prover a sensação de profundidade, diferentes vistas são exibidas 
para cada um dos olhos do observador por meio de tecnologias como barreiras de 
paralaxe, lentes, polarização cromática, polarização direcional ou intercalação temporal 
(DODGSON, 2005). 

•   Vídeos Pessoais 3D: Popularizados por meio de dispositivos móveis capazes de 
processar vídeos 3D e de serviços de compartilhamento de vídeos 3D 
(YOUTUBE 3D, 2011) (VIMEO, 2012), o nicho dos vídeos pessoais representa a 
aplicação 3D com maior volume de conteúdo disponível. Dispondo de apenas um 
dispositivo móvel de gravação 3D cada usuário é capaz de criar e publicar seu 
próprio conteúdo. 

•   Televisão 3D (3DTV): a 3DTV é uma extensão da televisão 2D tradicional que 
proporciona também a percepção de profundidade ao observador (SMOLIC, 
MUELLER, et al., 2007). Neste tipo de aplicação, duas ou mais vistas são 
decodificadas e exibidas simultaneamente de forma que cada observador veja 
duas vistas, uma para o olho direto e outra para o olho esquerdo. Os televisores 
mais simples são chamados estereoscópicos, eles exibem as duas vistas 
simultaneamente e requerem o uso de óculos especiais para efetuar a filtragem das 
vistas (óculos polarizados passivos ou de abertura e fechamento ativos).  A 
evolução dos televisores estereoscópicos são os chamados autoestereoscópicos 
que eliminam a necessidade de óculos especiais. Os mais comumente encontrados 
são implementados por meio de barreiras de paralaxe ou lentes. Os televisores de 
múltiplas vistas são capazes de exibir maior número de vistas e aumentam a 
liberdade do observador pois suportam paralaxe de cabeça, ou seja, o conteúdo 
exibido se modifica quando o observador se desloca. 

•   Televisão com ponto de vista livre (FTV): Esta aplicação permite ao usuário 
selecionar o ponto de vista desejado para visualizar a cena 3D (POURAZAD, 
NASIOPOULOS e WARD, 2009). Além do realismo, a FTV proporciona 
interatividade para o usuário. A exibição pode ser feita utilizando televisores 2D 
ou televisores 3D (estéreo ou multi-vistas). 

•   Telepresença 3D: Viabiliza a comunicação e interação entre interlocutores 
remotos provendo aos mesmos a sensação de estarem no mesmo local 
fisicamente. A telepresença tem sido amplamente utilizada para video 
conferências, especificamente no meio corporativo, e na implementação dos 
chamados home offices. A evolução para conferências 3D (BLANCHE, 
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BABLUMIAN, et al., 2010)  representa um grande avanço na qualidade da 
percepção e interação entre os conferencistas. 

•   Telemedicina 3D: A telemedicina (WELCH, SONNENWALD, et al., 2005) foi 
criada para superar limitações físicas permitindo que médicos localizados 
remotamente sejam capazes de prestar consultas e efetuar cirurgias. Vídeos 3D 
levam a telemedicina a um novo patamar onde o médico especialista pode 
observar o espaço 3D com maior precisão e qualidade resultando em melhores 
diagnósticos e procedimentos cirúrgicos mais precisos. Esta aplicação tem grande 
importância no tratamento de pacientes que se encontram em locais remotos com 
carência de médicos especialistas.  

•  Vídeo Segurança 3D: Sistemas tradicionais de segurança por vídeo utilizam 
vídeos 2D para o monitoramento podendo levar a dificuldades quando a 
informação de profundidade se faz necessária. A utilização de vídeos 3D para 
segurança e monitoramento (KRÜGERA, NICKOLAYB, et al., 2005) 
proporciona informação muito mais rica e detalhada com profundidade e 
angulação precisas de cada objeto na cena. Portanto, uma melhor descrição de 
possíveis criminosos e vítimas em uma cena é obtida pelo uso de vídeos 3D. 

Entre estas aplicações, algumas não são voltadas para o uso e dispositivos móveis 
(por exemplo, segurança e telemedicina 3D) ou necessitam apenas decodificação em 
dispositivos móveis (3DTV e FTV). Para outras aplicações, no entanto, a habilidade de 
codificação 3D móvel é mandatória. Por exemplo, vídeos pessoais 3D demandam 
codificação de múltiplas vistas em tempo real e com alta eficiência energética. 
Telepresença 3D, quando rodando em dispositivos móveis, demanda além de tempo real 
e eficiência energética, baixa latência de codificação e decodificação. Ciente dos 
desafios envolvidos na implementação dessas aplicações em dispositivos móveis, este 
trabalho foca sua contribuição no codificador MVC voltado para dispositivos móveis. 

D.1.2 – Requisitos e Tendências para Multimídia 3D 

Embora o poder de processamento, principalmente para sistemas embarcados 
móveis, tem aumentado de forma acelerada, os requisitos de performance e energia das 
aplicações crescem ainda mais rapidamente devido ao aumento de resolução, taxa de 
quadros, precisão de amostragem e número de vistas, no caso de vídeos 3D. Em outras 
palavras, o volume de dados a ser processado em uma única sequência de vídeo tem 
aumentado em múltiplos eixos simultaneamente. 

Figura D.1 relaciona o número de macroblocos (MB – unidade básica de codificação 
do MVC composta de 16x16 amostras) a serem processados por segundo com 
diferentes resoluções, taxas de quadros e número de vistas. Padrões de codificação 
anteriores, como o MPEG-2, foram amplamente utilizados para codificar vídeos de 
baixas-médias resoluções e taxas de quadros como CIF (352x288), VGA (640x480) e 
SDTV (768x576) a uma taxa de 15-30 fps (quadros por segundo). O H.264/AVC foca, 
principalmente, em resoluções altas como 720p (1240x720) e HD1080p a 30-60fps 
enquanto a próxima geração, o H.265/HEVC (High Efficiency Video Coding), tem 
como principal objetivo codificar vídeos de resoluções ultra elevadas incluindo QHD 
(3840x2160) e UHDTV (7680x4320) a 60-120 fps (MCCANN, MATTEI, et al., 
2012)(LING, 2010). Para quantificar esse crescimento, a relação entre os casos 
extremos representados nas Figura D.1a, CIF@15fps e QHD@60fps, é de 327x. Além 
disso, com o objetivo de promover maior qualidade, a largura de palavra usada para 
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representar as amostras de vídeo tem aumentado de 8 bits para 14 bits, demandando 
operadores digitais mais largos e mais custosos em termos de hardware. Quando 
analisamos a complexidade e energia desprendidas o cenário se torna ainda pior uma 
vez que estas não crescem de forma linear com o volume de dados. O aumento de 
resolução, por exemplo, leva a um maior processamento por MB, maior tráfego de 
memória externa e maior memória on-chip relacionada a estimação de movimento, 
resultando em aumento energético. Somando, a evolução dos padrões de codificação 
contribui de forma severa com o aumento da complexidade e consumo de energia. Por 
exemplo, o codificador H.264/AVC é cerca de 10x mais complexo que o MPEG-4 
(OSTERMANN, BORMANS, et al., 2004), ao passo em que estima-se que o 
codificador HEVC aumente a complexidade computacional em 2-10x quando 
comparado ao codificador H.264 (DÍAZ-HONRUBIA, MARTÍNEZ e CUENCA, 
2012). 

Quando consideramos vídeos 3D, a tendência se torna ainda mais severa, como 
demonstrado na Figura D.1b. Além do aumento relacionado a uma única vista, o 
volume de dados tem um aumento diretamente proporcional ao número de vistas. Como 
o MVC implementa ferramentas de codificação adicionais (não existentes em padrões 
mono-vistas) a complexidade e consumo de energia crescem de forma não linear 
(crescimento superior ao crescimento linear) com relação ao número de vistas. 
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Figura D.1: Tendência de escala para vídeos 3D  

D.1.3 – Revisão sobre Sistemas Multimídia Embarcados 

A rápida evolução de sistemas multimídia embarcada tem sido impulsionada pela 
popularização dos chamados dispositivos smart (smatphones, tablets e outros 
dispositivos móveis capaz de processamento e comunicação de dados, áudio e vídeo). 
Grande progresso em termos de performance e eficiência energética foi feita pelos 
principais competidores do mercado de embarcados (ARM LTD., 2012) (NVIDIA, 
2012) (QUALCOMM INC., 2011) (TEXAS INSTRUMENTS INC., 2012) 
(SAMSUNG ELECTRONICS CO. LTDA., 2012). O progresso, no entanto, não é 
suficiente para cobrir a lacuna entre os requisitos das aplicações multimídia e a 
evolução tecnológica dos circuitos integrados. A ARM, cujos processadores equipam 
90% dos dispositivos embarcados atuais (SOFTPEDIA, 2010), prevê um aumento de 
performance na ordem de 10x para 2016 quando comparado as sistemas produzidos em 
2009, conforme Figura D.2a. Restrições de energia relacionadas ao lento aumento de 
capacidade das baterias tem sido o fator limitante. De acordo com a Panasonic (KUME, 
2010), a capacidade das baterias de Íons de Lítio aumenta em média 11% ao ano, como 
quantificado na Figura D.2b. 
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As altas performance e eficiência energética requisitadas pelas aplicações de vídeo 
3D atuais não são atendidas por soluções de sistemas embarcados genéricas como 
processadores de propósito geral, GPUs e DSPs. Existe a necessidade de utilizar 
aceleradores de hardware dedicados para prover a performance necessária, manter o 
consumo energético em patamares toleráveis ao custo de perda em flexibilidade. Os 
sistemas em chip (SOCs) embarcados mais atuais já utilizam esta abordagem para 
processamento multimídia. Alguns exemplos são Qualcomm Snapdragon S4 
(QUALCOMM INC., 2011), Nvidia Tegra 3 (NVIDIA CORP., 2012), Samsung Exynos 
4 (SAMSUNG ELECTRONICS CO. LTDA., 2012) e Texas Instruments OMAP 5 
(TEXAS INSTRUMENTS INC., 2012). O suporte de hardware, no entanto, precisa ser 
estendido para propiciar suporte ao processamento de vídeos 3D. 

(b)
(a)

 
Figura D.2: (a) Tendência para performance em sistemas móveis (SHIMPI, 2011) e 

(b) crescimento da capacidade de baterias íons de Lítio (KUME, 2010)  

D.1.4 – Dificuldades e Desafios 

A alta demanda por processamento móvel 3D aliada a severas restrições de 
processamento e energia impõe sérios desafios aos pesquisadores e desenvolvedores 
que atua no ramo de sistemas embarcados móveis. Neste cenário, a utilização de 
aceleradores de hardware dedicados se faz mandatória. Dada a lacuna entre os requisitos 
de processamento multimídia 3D e a realidade dos sistemas embarcados atuais, existe 
ainda a necessidade otimizar a complexidade e o consumo de energia nos níveis de 
algoritmos e arquiteturas. Essas otimizações apenas são possíveis por meio de um 
profundo conhecimento da aplicação que permita otimizar conjuntamente os algoritmos 
e a arquitetura de hardware associada. 

Além das diferentes configurações de codificação e estado da bateria, aplicações 
multimídia são sensíveis a variações no conteúdo de entrada que altera radicalmente o 
comportamento do sistema. Por exemplo, videos de alta movimentação demandam 
maior processamento e acesso à memória. Estas características fazem com que sejam 
necessárias mais unidades funcionais, maior memória on-chip e, consequentemente, um 
maior consumo de energia. Estas variações são detectada em tempo de execução, 
portanto, codificadores MVC eficientes energeticamente precisam ser adaptativos em 
tempo de execução e considerar características de algoritmos e vídeos de entrada. As 
técnicas de adaptação devem ser capazes de lidar com o compromisso entre eficiência 
energética e qualidade de vídeo  e encontrar o ponto ótimo de operação para cada estado 
do sistema e vídeo de entrada.  

Algoritmos para redução no consumo de energia podem levar a perdas na eficiência 
de codificação, ou seja, perda de qualidade para uma mesma taxa de bits. De forma a 
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minimizar tais perdas, devem ser implementados mecanismos capazes de controlar 
perdas através da otimização na distribuição de bits entre vistas, quadros e macroblocos.  

D.1.5 – Contribuições desta tese 

O objetivo dessa tese é entender o comportamento dinâmico do codificador MVC 
sob a perspectiva energética e propor algoritmos e arquiteturas de hardware capazes de 
responder as demandas de performance e respeitar as restrições energéticas dos sistemas 
embarcados atuais. Nesta seção serão brevemente descritas as contribuições e inovações 
propostas ao longo desta tese.    

D.1.5.1 Correlação na Vizinhança 3D 

Os algoritmos e arquiteturas eficientes energeticamente propostos neste trabalho 
foram projetados com base em forte conhecimento dos algoritmos e comportamento 
dinâmico do codificador MVC. Ao longo deste trabalho, em muitos casos, o 
conhecimento da aplicação é estudado em termos da correlação dentro da vizinhança 
3D. A vizinhança 3D é um espaço definido nesta tese que contem os macroblocos 
pertencentes as vizinhanças nos domínios espacial, temporal e de disparidade. Devido 
as redundâncias existentes nestas vizinhanças, a vizinhança 3D proporciona valiosa 
informação para predizer informações laterais de codificação, comportamento de 
algoritmos, padrões de acesso a memória, etc. Portanto, a análise online e offline da 
vizinhança 3D é utilizada para projetar e controlar algoritmos energeticamente 
eficientes, arquiteturas de hardware, hierarquias e dimensionamento de memória, etc. 

D.1.5.2 Algoritmos Energeticamente Eficientes para MVC 

Os algoritmos energeticamente eficientes propostos nesta tese estão concentrados 
em três blocos do codificador MVC: modo de decisão (MD), estimação de movimento e 
disparidade (ME/DE) e controle de taxa. A unidades de modo de decisão e ME/DE 
dominam o consumo de energia do codificador MVC. Em nossas soluções, MD e 
ME/DE buscam a redução energética por meio da redução da complexidade 
computacional. Estes interagem com nosso algoritmo de adaptação energética que 
modifica os parâmetros de codificação de acordo com o estado do sistema e estado da 
bateria. As perdas na eficiência de codificação impostas por tais algoritmos são 
minimizadas por meio de nosso algoritmo de controle de taxa hierárquico que otimiza a 
distribuição dos bits enquanto maximiza qualidade de vídeo e suaviza variações visuais 
nos eixos espacial, temporal e de disparidade. 

•  Modo de decisão rápido multi-nível: O modo de decisão proposto é um 
algoritmo composto por seis níveis de decisão incluindo um para detecção 
antecipada de MBs SKIP. O modo de decisão apresenta múltiplas intensidades de 
operação para controlar o compromisso entre qualidade e energia, considera 
informações da vizinhança 3D, classifica os MBs vizinhos e avalia propriedades 
do vídeo e do custo de codificação (RDCost). 

•  Adaptação de complexidade para minimização de energia: São definidos quatro 
estados de operação que implementam modos de decisão distintos. Estes modos 
podem ser alterados em tempo de execução de acordo com o estado do sistema e 
da bateria. Nosso algoritmo de adaptação utiliza codificação assimétrica de vistas 
para maximizar a qualidade percebida e prover uma degradação de qualidade 
suave mesmo em um cenário de bateria descarregando. 
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•  Estimação de movimento e disparidade rápidas: A ME/DE rápida proposta neste 
trabalho se utiliza da correlação dos vetores de movimento e disparidade 
disponíveis na vizinhança 3D para evitar, completamente, o processamento da 
ME/DE para alguns quadros da estrutura de predição. Dependendo do nível de 
confiança nos MBs vizinhos o algoritmo seleciona entre os modos rápido e ultra-
rápido. 

•  Controle de taxa hierárquico: Essa solução inovadora lança mão de dois níveis 
de atuação, nível de quadros e nível de unidades básicas. O primeiro utiliza um 
controlador de modelo preditivo (MPC) para estimar a taxa de bits e selecionar o 
QP (parâmetro de quantização) para um determinado quadro. Essa decisão é 
refinada no nível de unidades básicas que utiliza um processo de decisão de 
Markov (MDP) com reforço de aprendizagem (RL). Adicionalmente, o MDP 
utiliza o conceito de regiões de interesse (RoI) para distribuir os bits de acordo 
com as propriedades da imagem.  

D.1.5.3 Arquiteturas de Hardware Energeticamente Eficientes para MVC 

As arquiteturas energeticamente eficientes propostas neste trabalho tem como foco o 
processamento da estimação de movimento e disparidade, o bloco de codificação mais 
complexo e que demanda maior quantidade de energia. Três arquiteturas são são 
propostas focando no processamento, em tempo real, de 4 vistas HD1080p. Nas 
diferentes arquiteturas são explorados o algoritmos rápido para ME/DE proposto nesta 
tese bem como técnicas para reduzir a memória on-chip, reduzir o tráfego da memória 
externa e prover um gerenciamento dinâmico de potência eficiente. Algumas das 
inovações arquiteturais são apresentada abaixo. 

•  Memória de vídeo on-chip com múltiplos bancos: Essa proposta possibilita a 
implementação de uma memória de vídeo on-chip com número reduzido de bits e 
um gerenciamento de potência mais preciso (granularidade fina) propiciando 
redução de energia via diminuição da corrente de fuga (energia estática). A 
memória proposta opera como uma cache e dispões de múltiplos bancos para 
aumenta o paralelismo.  

•  Reuso de dados baseado em formação dinâmica de janela de busca: 
Macroblocos da vizinhança 3D previamente codificados são usados para prever o 
comportamento da busca feita pela ME/DE do macrobloco atual. Essa previsão de 
busca, o chamado de mapa de busca, é utilizado para controlar o esquema de 
reuso de dados que monta uma janela de busca, baseada no mapa de busca, de 
forma dinâmica. Essa técnica reduz o número de acessos a memória externa e o 
número de setores ativos da memoria de vídeo on-chip levando a redução 
energética nessas duas frentes. 

•  Gerenciamento de potência dinâmico baseado na aplicação: A proposta utiliza 
um complexo sistema para prever os requisitos de memória do codificador e 
controlar os estados de potência dos setores da memória on-chip. Essa decisão é 
definida em nível de quadros e refinada em nível de macroblocos. Os MBs da 
vizinhança 3D são utilizados como fonte de informação para tomada de decisões.    

Nas seções que se seguem serão detalhados os algoritmos e arquiteturas 
energeticamente eficientes propostas nesta tese. 
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D.2 – Algoritmos Energeticamente Eficientes para MVC 

D.2.1 –Modo de Decisão Rápido 

Esta seção apresenta o algoritmo para modo de decisão rápido multi-níveis proposto 
nesta tese. Este modo de decisão é baseado na correlação existente na vizinhança 3D e 
nas propriedades dos vídeos de entrada. O fluxograma detalhado do modo de decisão 
multi-níveis está representado na Figura D.3. O algoritmo opera em seis níveis 
encadeados: (i) Classificação baseada em RDCost, (ii) predição SKIP antecipada, (iii) 
avaliação de modos de alta confiança, (iv) avaliação de modos de baixa confiança, (v) 
decisão baseada em propriedades de vídeo e (vi) modo de decisão baseado em tamanho 
e direção. Cada um dos níveis é executado e caso a predição não seja considerada boa, 
por meio de um teste de parada antecipada, o nível seguinte é executado. A condição de 
parada, bem como as demais limiares do algoritmo, são definidos por meio de um 
estudo estatístico offline na vizinhança 3D. Mais detalhes deste algoritmo estão 
disponíveis em (ZATT, SHAFIQUE, et al., 2010) e (ZATT, SHAFIQUE, et al., 2010). 

 

Figura D.3: Modo de decisão rápido multi-níveis 

D.2.2 –Adaptação de Complexidade 

Além de um modo de decisão eficiente um algoritmo de adaptação de complexidade 
é importante para alterar dinamicamente a complexidade do codificador de acordo com 
o estado do sistema. Como o codificador MVC pode variar muito dependendo do nível 
da bateria, vídeo de entrada e cenário do sistema, nós propomos um algoritmo de 
adaptação de complexidade focado em controle energético. São definidas diferentes 
Classes de Qualidade-Complexidade (QCCs) de forma que cada uma opere em uma 
dada complexidade e uma dada qualidade de codificação. Além disso, codificação 
assimétrica é utilizada permitindo codificar vistas referentes a um olho utilizando 
qualidade inferior e, ainda assim, prover percepção de alta qualidade ao usuário. Abaixo 
são descritas as QCCs. 
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QCC 1: Testa os modos SKIP e Inter 16x16. Representa a classe de menor 
complexidade e qualidade inferior.. 

QCC 2: Em adição aos modos da QCC 1, testa os modos Intra 16x16, Inter 16x8, 8x16 
e 8x8. Representa a classe intermediária em termos de qualidade e 
complexidade. 

QCC 3: Esta classe é a mais complexa e de melhor qualidade de codificação. Testa 
todos modos das classes inferiores QCC 1 e QCC 2 mais Intra 4x4, Inter 8x4, 
4x8 e 4x4. 

 
Figura D.4: Esquema de adaptação de complexidade 

Figura D.4 apresenta um diagrama de alto nível do modo de decisão para as 
diferentes QCCs. O esquema é implementado em três níveis cascateados cujo fluxo é 
controlado pela QCC do MB codificado e por uma condição de término (EPTZ). A 
condição de término é definida estatisticamente de acordo com as propriedades de cada 
MB. O método de classificação dos MBs e a definição da EPTZ são apresentados em 
detalhes em (SHAFIQUE, ZATT, et al., 2010). 

D.2.3 –Estimação de Movimento e Disparidade Rápidas 

O algoritmo rápido para ME/DE (ZATT, SHAFIQUE, et al., 2011) explora a 
correlação existente no campo de movimento/disparidade dentro da vizinhança 3D. Para 
construir os campos demovimento/disparidade alguns quadros definidos como quadros 
chave são codificados de forma quase ótima utilizando o padrão de busca TZ. Desta 
forma limita-se a propagação de erro ao longo da sequência codificada. Os demais 
quadros, quadros não chave, utilizam nosso algoritmo rápido. Os quadros não chave 
utilizam vetores da vizinhança 3D para estimar o vetor de cada MB. Assim, o processo 
de busca ME/DE é totalmente evitado. 

A Figura D.5 apresenta o diagrama de blocos do algoritmo rápido proposto para 
estimação de movimento e disparidade composto por três etapas: (i) Avaliação a nível 
de quadro; (ii) Avaliação e predição a nível de MB; (iii) Armazenamento de vetores de 
movimento e disparidade. O esquema proposto implementa dois modos de predição 
distinto: Rápido e Ultra-Rápido. O primeiro testa até 15 vetores encontrados na 
vizinhança 3D enquanto o segundo testa apenas 3 vetores candidatos. O modo Ultra-
Rápido é utilizado apenas quando a grande maioria dos vetores da vizinhança 3D aponta 
para o mesmo vetor candidato.  
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Figura D.5: Estimação de movimento e disparidade rápidas 

D.2.4 –Controle de Taxa Hierárquico 

O diagrama que representa o controle de taxa hierárquico (HRC) é apresentado na 
Figura D.6. O HRC é responsável por controlar o número de bits na saída do 
codificador, respeitando as restrições do canal de transmissão ou dispositivo de 
armazenamento, através do monitoramento do codificador MVC e atuando por meio de 
adaptação do QP. Ele foi desenvolvido em dois níveis de atuação: (i) nível de quadros 
para granularidade grossa e (ii) nível de unidades básicas para granularidade fina. Um 
controlador de modelo preditivo (MPC) para controle de taxa estima o volume de bits 
para cada quadro, analisando o comportamento do sistema, e atribui o QP mais 
adequado. Para isso, o MPC considera a vizinhança temporal, de disparidade e de fase 
entre grupos de quadros (GOP) contíguos. O QP definido para o quadro é repassado 
para o controlador a nível de unidades básicas que implementa um processo de decisão 
de Markov (MDP) que considera as características da imagem para alocar mais ou 
menos bits através de alteração do QP. O MDP opera sobre um mapa de regiões de 
interesse (RoI) definido como sendo o mapa de variância da imagem onde regiões de 
alta variância (de mais difícil predição) recebem maior cota de bits. Para atualizar os 
parâmetros do MDP é utilizado o mecanismo de reforço de aprendizagem (RL). Uma 
relimentação conjunta para o MDP e o MPC é feita através do RL e de um mecanismo 
observador garantindo a consistência entre os dois níveis de atuação. O observador 
usado no HRC lê, armazena e gerencia os dados do codificador MVC a serem 
realimentados ao controlador (número de bits alvo) além de variáveis de estado do 
sistema (QP, configuração do codificador, taxa de bits alvo, etc). Adicionalmente, uma 
unidade para extrair propriedades do vídeos é implementada para alimentar o HRC. 
Detalhes podem ser encontrados em (VIZZOTTO, ZATT, et al., 2012). 
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Figura D.6: Controle de Taxa Hierárquico  

D.3 – Arquiteturas de Hardware Energeticamente Eficientes para 
MVC 

A Figura D.7 apresenta uma arquitetura de hardware proposta que implementa a 
técnica de reuso baseada em formação dinâmica de janela de busca. Ela implementa, 
além da técnica de reuso citada, uma estrutura de memória de vídeo on-chip compostas 
por múltiplos bancos de memória SRAM capaz de controle de potência a nível de 
setores. Esta memória se comporta como uma memória cache. Para o processamento 
dos dados são utilizados 64 (4x4 pixels) elementos de processamento e árvores de SAD. 
Uma unidade de controle de busca para ME/DE micro-programável é utilizada 
gerenciar os padrões de busca desejados e fornecer informações para a unidade de 
gerenciamento de potência. A unidade de predição de mapa de busca estima o mapa de 
busca através da vizinhança 3D e controla a formação da janela de busca 
dinamicamente. Os dados que correspondem a janela de busca predita são buscados na 
memória externa e armazenados na memória de vídeo on-chip.  

O agendamento do processamento projetado para nossa arquitetura de hardware é 
apresentado na Figura D.8 que inclui a etapa de computação de SAD e a etapa de 
obtenção de dados. Enquanto o SAD é calculado para um estágio do padrão de busca, os 
dados necessários para o estágio seguinte são buscados na memória externa. No entanto, 
em caso de um erro na predição da janela de busca, uma bolha é inseria no pipeline 
(veja A na Figura D.8). Caso o padrão de busca seja interrompido por uma condição de 
parada, os dados já lidos da memória externa são descartados. 

Figura D.9 mostra o leiaute físico do circuito integrado dedicado que implementa 
uma de nossas arquiteturas para ME/DE proposta neste trabalho. O circuito foi 
completamente desenvolvido até o nível físico mas não foi fabricado. Maior nível de 
detalhes é encontrado em (ZATT, SHAFIQUE, et al., 2011), (ZATT, SHAFIQUE, et 

al., 2011) e(ZATT, SHAFIQUE, et al., 2011). 
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Figura D.7: Diagrama de blocos da arquitetura de ME/DE  

 
Figura D.8: Agendamento do pipeline de processamento ME/DE 
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Figura D.9: Mapeamento físico do chip que implementa a arquitetura pra ME/DE  
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D.4 – Conclusões e Trabalhos Futuros 

A presente tese focou na redução do consumo de energia do Codificador de Vídeo 
Multivistas (MVC) para permitir a realização de codificação de vídeos 3D de alta 
definição em tempo-real em dispositivos portáteis com energia restrita. Para isto, técnicas 
eficientes em energia inovadoras foram propostas tanto no nível algorítmico como no 
nível arquitetural. A consideração conjunta de algoritmos e a arquitetura de hardware é o 
ponto chave para prover eficiência energética, como foi demonstrado nesta tese. 

A forte correlação no domínio da vizinhança 3D, conceito definido nesta tese, foi base 
para o projeto da maioria dos algoritmos e esquemas de hardware adaptativos propostos. 
Um extenso estudo baseado na análise estatística que correlaciona informações laterais da 
codificação MVC (tais como modos de codificação, vetores de movimento/disparidade e 
RDCost) com as propriedades do vídeos foi conduzido para justificar a importância do 
entendimento da vizinhança 3D e para demonstrar seu potencial reduzir energia no 
codificador de vídeo MVC. 

Um conjunto de algoritmos eficientes em energia para MVC compõe uma das maiores 
contribuições ao estado-da-arte propostas neste trabalho. Dois algoritmos para decisão 
rápida de modo são descritos focando na redução do consumo de energia através da 
redução de complexidade. A predição Early SKIP explora a alta ocorrência de MBs do 
tipo SKIP para acelerar o processo de codificação utilizando métodos estatísticos para 
definir se cada MB está na região de alta probabilidade de SKIP no sentido de evitar a 
avaliação de outros modos de codificação. O conceito de early SKIP é integrado a um 
algoritmo de decisão rápida multi-nível para reduzir ainda mais o consumo de energia. 
Ele elimina a avaliação dos modos de codificação mesmo no caso de um early SKIP não 
for detectado. Isto é feita através da análise dos modos de codificação disponíveis na 
vizinhanca 3D levando em consideração um ranking de modo baseado nas propriedades 
do video e RDCost. As propriedades do vídeo são usadas para definir tamanhos de bloco 
e orientações dos modos de predição. 

Para evitar que o algoritmo de decisão rápida multi-nível diminua excessivamente a 
qualidade do vídeo, um teste de término antecipado foi inserido entre cada passo de 
predição. O algoritmo define limiares baseados no QP para diferentes forças de redução 
de energia chamadas de relax e aggressive. Empregando dois modos de operação é 
possível selecionar o melhor compromisso energia versus qualidade para um dado estado 
do sistema e conteúdo do vídeo. Além disto, estados múltiplos de MD possibilitam a 
integração de um esquema adapatativo de complexidade energeticamente eficiente. 
Avaliações, resultados e comparações com trabalhos relacionados apontaram uma 
redução de complexidade de 25% ao custo de perda de qualidade de 0,32dB e 10% de 
aumento no bitrate com o modo aggressive e perda de qualidade de 0,1dB e 3% de 
aumento no bitrate para o modo relax. 

Esta tese demonstrou que as propriedades e o esforço de codificação dependem 
fortemente do conteúdo do vídeo. Além disto, se consideradas aplicações embarcadas, o 
poder de processamento está limitado aos recursos de energia disponíveis na bateria do 
sistema embarcado. A partir destas observações foi proposto um algoritmo de 
complexidade adaptativa eficiente em energia. O objetivo é considerar conjuntamente as 
características do vídeo de entrada e o estado da bateria para prover a máxima qualidade 
de vídeo através da seleção de algoritmos apropriados para MD e estados de qualidade. 
No caso de descarregamento da bateria, uma redução de energia adicional é necessária 
levando à redução de qualidade. Deste modo, o algoritmo de complexidade adaptativa 



 

 

232 

 

reduz a qualidade através da aplicação do conhecimento da teoria de supressão binocular. 
Para exibição binocular, o Sistema Visual Humano tende a perceber a vista de mais alta 
qualidade, logo os algoritmos propostos tendem a reduzir qualidade das vistas ímpares 
garantindo uma alta qualidade perceptual final enquanto reduzem a energia para o 
processamento destas vistas ímpares. Resultados experimentais mostraram o efeito 
benéfico da adaptação da complexidade para o consumo de energia e uma variação suave 
de qualidade ao longo do tempo para cenários de carga e descarga da bateria. 

A estimação de movimento e disparidade consomem mais de 90% da energia total de 
codificação MVC e representam o maior alvo para redução de energia. Nesta tese, um 
novo método de ME/DE rápida foi detalhado. Ele usa vetores de movimento e 
disparidade disponíveis na vizinhança-3D para evitar um padrão completo de busca de 
movimento/disparidade nos múltiplos quadros da estrutura de predição. Foram definidas 
duas classes para quadros-chave e quadros não-chave, no qual os quadros-chave são 
codificados utilizando técnicas conhecidas de busca de movimento/disparidade e para os 
quadros não-chave é utilizado nosso método rápido. De acordo com confiança (definida 
usando propriedades da imagem) nos vetores inferidos da vizinhança, cada MB dos 
quadros não-chave selecionam um modo entre rápido e ultra-rápido. Estes modos testam 
somente 3 ou 13 blocos candidatos, respectivamente. O algoritmo proposto é capaz de 
reduzir 83% do tempo de codificação total ao custo de redução em 0.116dB na qualidade 
e aumento de 10% no bitrate. 

Para compensar perdas eventuais decorridas dos algoritmos eficientes em energia, um 
gerenciamento de qualidade baseado em nosso algoritmo de controle de taxa hierárquico 
(hierarchical rate control, HRC) foi proposto. O HRC opera em 2 níveis de atuação, o 
nível de quadro e o nível de unidade básica e caracteriza um laço fechado de 
realimentação. O controle de taxa no nível de quadro emprega um Modelo de Controle 
Preditivo (Model Predictive Controller, ou MPC) para predizer o bitrate para os quadros 
futuros baseado na alocação de bits dos quadros pertencentes à vizinhança 3D. Os 
múltiplos estímulos provenientes dos quadros vizinhos temporais, espaciais e de fase 
compõem a entrada MPC. A predição do bitrate é usada para definir o QP ótimo para o 
quadro. O QP é refinado internamente ao quadro um Controle de Taxa no Nível de 
unidade básica (BU) baseado em um Processo de Decisão de Markov (Markov Decision 

Process, MDP). Ele considera regiões de interesse para priorizar regiões da imagem 
difícies de codificar. Reinforcement learning é usado para atualizar os parametros do 
MDP. O HRC fornece variações suaves de bitrate e qualidade ao longo dos eixos de 
tempo e vistas, ao mesmo tempo respeitando restrições de largura de banda e aprimorando 
a qualidade do vídeo. Comparada à solução de QP fixo, a qualidade do vídeo foi 
aumentada em 1.9dB (método Bjøntegaard). Comparado ao estado-da-arte, o erro de 
predição de bitrate foi reduzido para 0.83% com um aumento de qualidade de 0.106dB 
PSNR e 4.5% de redução de bitrate (método Bjøntegaard). 

Adicionalmente aos algoritmos eficientes em energia, as severas restrições de energia 
e os requisitos de desempenho do codificador de vídeo MVC requerem aceleração de 
hardware dedicado para possibilitar técnicas sofisticadas de gerenciamento de energia 
adaptativas à aplicação. Três arquiteturas de hardware eficientes em energia para 
estimação de movimento e disparidade foram propostas no sentido de proporcionar 
múltiplas opções de implementação para diferentes restrições de projeto do codificador. 
As arquiteturas propostas atingem throughput suficiente para codificar, em tempo-real, 
sequências de 4 vistas de vídeos HD1080p. 
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As arquiteturas de hardware ME/DE com pipeline multi-nível foi conjuntamente 
projetada com o algoritmo rápido de ME/DE apresentado nesta tese. A solução de 
pipeline dual emprega duas unidades de busca e despacho em paralelo, uma para a busca 
regular e a outra para o algoritmo rápido em si. Três memórias cache com paradigmas 
distintos de busca e carga foram projetadas para evitar faltas e evitar a retransmissão de 
dados. Um novo escalonamento para o processamento foi projetado explorando os 
múltiplos níveis de paralelismo disponíveis na estrutura de codificação MVC (nos níveis 
de vista, quadro, quadro de referência e MB) para lidar com as dependências de dados. 

Fundindo os dois pipelines, foi proposta uma nova arquitetura para ME/DE que 
incorpora uma memória multi-banco interna ao chip para armazenamento de vídeo e uma 
técnica de pré-carga baseada em janela de busca dinâmica que conjuntamente reduzem o 
consumo de energia das memórias on-chip e off-chip. Uma janela de busca se expande 
dinamicamente em tempo de execução baseada no mapa de busca extraído da vizinhança 
para reduzir os acessos à memória off-chip. Considerando a natureza multi-estágio dos 
esquemas avançados de ME/DE rápida, uma memória on-chip multi-banco de tamanho 
reduzido é particionada em múltiplos setores que podem ser desligados (power-gated) 
dependendo das propriedades do vídeo além de empregar uma sintonia de grão-fino para 
redução da corrente de leakage. 

O potencial de redução de energia da memória motivou a proposta de uma arquitetura 
inovadora energeticamente eficiente que contém um elaborado esquema de 
gerenciamento de potência dependente da aplicação para a memória de vídeo on-chip. A 
organização da memória (tamanho, bancos, setores, etc.) é realizada a partir de uma 
extensa análise do comportamento de uso da memória para várias sequências de vídeo 
3D. Considerando o modelo de múltiplos estados de potência adotado, o esquema de 
gerenciamento de potência dependente da aplicação é adotado para reduzir a energia de 
leakage da memória on-chip. O conhecimento do algoritmo de estimação de movimento e 
disparidade em conjunto com as propriedades do vídeo é considerado para predizer os 
requisitos de memória para cada quadro e refinar para o nível de macrobloco. Uma função 
de custo é avaliada para determinar o estado de sleep apropriado para cada setor da 
memória, considerando o custo necessário para o wakeup (latência e energia). 

 A contribuição arquitetural apresentada nesta tese envolve projeto da arquitetura, 
esquemas de gerenciamento, codificação completa do RTL e síntese ASIC até o nível 
físico usando tecnologia de fabricação de 65-nm. Dos resultados experimentais para 
múltiplas sequências de vídeo, as arquiteturas propostas proporcionam uma redução de 
energia dinâmica de 82-96% para a memória off-chip e até 80% de redução de energia de 
leakage comparado com o estado-da-arte. Desta contribuição, é possível demonstrar a 
viabilidade de realizar estimação de movimento e disparidade para até 4 vistas  de vídeos 
HD1080p a 30 quadros por segundo com uma dissipação de potência de 57mW 
executando a 300MHz para um consumo de 102k gates do circuito integrado. 

Os resultados gerais e benchmarks demonstraram a eficiência energética dos 
algoritmos e arquiteturas propostos frente às soluções estado-da-arte. Isto prova nossa 
hipótese de que, para cumprir os requisitos de codificação de vídeo 3D para sistemas 
embarcados, é necessário considerar conjuntamente e otimizar os algoritmos de 
codificação e as arquiteturas de hardware dedicadas que os executam. Adicionalmente, 
adaptação em tempo de execução é necessária para melhor predizer o comportamento do 
sistema e reagir às mudanças no conteúdo do vídeo, parâmetros de codificação e cenários 
de nível da bateria. Para isto, um conhecimento profundo da aplicação MVC realizado de 
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uma extensiva análise, como da correlação disponível da vizinhança-3D, deve ser 
empregado. 

D.4.1 – Trabalhos Futuros 

Além das contribuições feitas nesta tese, existem múltiplos tópicos de pesquisa 
relacionados à codificação e processamento de vídeo 3D que não foi abordado neste 
volume. Os algoritmos e arquiteturas aqui apresentados estão concentrados na estimação 
de movimento e disparidade uma vez que estes são as unidades de codificação que mais 
consomem energia no codificador MVC. Adicionalmente, questões de qualidade de vídeo 
foram discutidas na seção de controle de taxa. O MVC, contudo, traz um grande conjunto 
de outros desafios de pesquisa se aplicações embarcadas forem consideradas. O pré- e 
pós-processamento de vídeo 3D também cumpre um papel chave em sistemas de vídeo 
3D e apresenta uma profusão de novos desafios. Finalmente, algoritmos de codificação de 
vídeo 3D de nova geração estão atualmente sendo estudados para nova padronização. Se 
espera que a nova geração de vídeos 3D traga ferramentas inovadoras e boas perspectivas 
para futuras oportunidades de pesquisa no campo multimídia 3D. 

Desafios remanescentes em MVC: Apesar de os desafios principais em termos de 
complexidade e consumo de energia são relacionados aos blocos de MD e ME/DE, 
atender demandas do MVC e restrições de energia impostas traz novos desafios 
relacionados a outros blocos do codificador MVC. O codificador de entropia, por 
exemplo, pode se tornar um gargalo do sistema de codificação se nenhuma técnica 
apropriada de paralelização for aplicada. As dependências em nível de bloco da predição 
também possibilitam trabalhos de pesquisa. Encontrar soluções para lidar com as 
dependências de dados e os problemas de paralelização possibilitam oportunidades 
interessantes de pesquisa para trabalhos futuros. 

Pré- e pós-processamento de videos 3D: codificação de vídeo 3D é um estágio único 
de um sistema de vídeo 3D. Entre a captura do vídeo e as fases de codificação, existe a 
necessidade de pré-processamento de vídeo como calibragem geométrica (para corrigir o 
alinhamento entre múltiplos vídeos) e correção de cor (responsável pela equalização do 
brilho e gamut de cores). Depois da transmissão e decodificação, o vídeo deve ser 
processado para exibição dependendo da aplicação e tecnologia do display. Esta fase de 
pós-processamento inclui mapeamento do espaço de cores (em um sistema usando 
polarização de cor), escalamento da resolução e síntese de pontos de vista (geração de 
pontos de vista intermediários para exibição). O pré- e pós-processamento implementa 
algoritmos complexos e intensivos em dados (especialmente para síntese de vistas) que 
executam concorrentemente com o codificador/decodificador de vídeo e requerem 
desempenho de tempo-real. Portanto, a energia e recursos de hardware devem ser 
compartilhados para atender as demandas tanto da codificação de vídeo como das etapas 
de pré- e pós-processamento. 

Nova geração de codificação de vídeo 3D: a nova geração de codificação de vídeo 3D 
é atualmente referida como 3DV (3D Video) (ISO/IEC, 2009) e é baseada no conceito de 
Vídeo+Profundidade que define canais distintos para transmitir vídeo e mapas de 
profundidade. Espera-se que o 3DV seja definido como uma extensão do HEVC/H.265 
(SULLIVAN e OHM, 2010). As ferramentas do 3DV irão prover um conjunto 
completamente novo de desafios que impulsionará a pesquisa relacionada a multimídia 
3D. Além disso, o tempo de vida dos padrões de codificação futuros tende a reduzir 
exigindo que múltiplos padrões coexistam em um mesmo sistema. Portanto, um mesmo 
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dispositivo multimídia embarcado deverá suportar múltiplos padrões sendo flexível e 
capaz de se adaptar aos diversos cenários possíveis. 
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