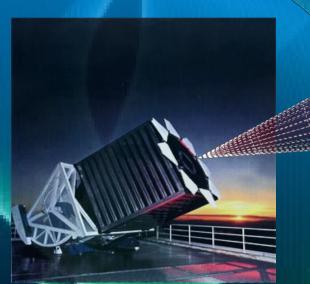
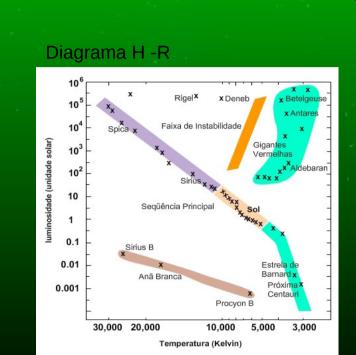
# Estudo das cores de anãs brancas observadas pelo Sloan Digital Sky Survey

Instituto de Física - UFRGS

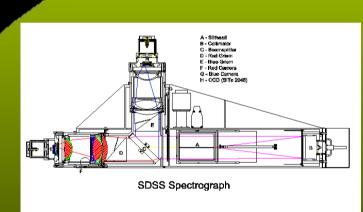

Vinicius Beltram Tergolina, J. E. S. Costa

(Bolsista IC CNPQ)

(Orientador)

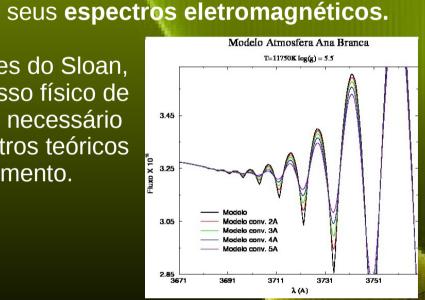

## Introdução

O projeto Sloan Digital Sky Survey (SDSS) obteve o espectro de milhares de estrelas anãs brancas. Independentemente, o Sloan também realizou medidas fotométricas nas bandas u, g, r, i e z. Ao comparar-se o espectro de uma estrela com espectros teóricos obtidos a partir de modelos para atmosferas de anãs brancas, é possível obter a temperatura T e a gravidade log(g) superficiais da estrela. Estas medidas também podem ser obtidas a partir da comparação das medidas das cores (u-g), (g-r), (r-i) e (i-z) com as cores calculadas a partir dos mesmo modelos teóricos. Entretanto, os valores obtidos para T e Log(g) a partir da espectroscopia e da fotometria (por cores) nem sempre são consistentes entre si.




#### **Anãs Brancas**

Anãs Brancas são estrelas compactas remanescentes da evolução de estrelas de até 10 massas solares, bossuem **tamanho** comparável ao da Terra e massas típicas ao redor de 0,6 massas solares.

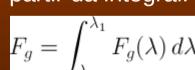



#### Fotometria, Espectroscopia e Convolução



A câmera do Sloan recebe luz de um objeto filtrado por um dos 5 filtros do sistema UGRIZ assim, é feita a fotometria das cores do objeto. Já na na espectroscopia, o telescópio capta a luz e a envia a dois espectrógrafos compostos por grismas que decompõe a luz recebida do objeto para obter

Diferentemente dos espectros provenientes do Sloan, os espectros teóricos não sofrem o processo físico de passagem pelo espectrógrafo. Por isto, é necessário efetuar a convolução espectral dos espectros teóricos de acordo com a resolução do instrumento.

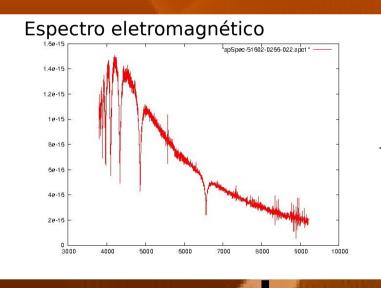


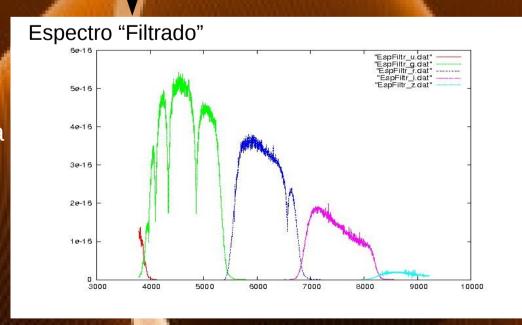

O objetivo principal deste trabalho é obter T e log(g) de anãs brancas observadas pelo SDSS e realizar uma comparação entre as medidas obtidas através de fotometria e espectroscopia.

#### **Procedimento**

#### **Primeiro:**

A curva de transmissão do filtro g foi aplicada a cada espectro observado gerando o espectro "filtrado". O fluxo total F<sub>a</sub> para o filtro g foi calculado a partir da integral:





Depois, a partir do fluxo total na banda g, pode-se calcular a magnitude ma desde que a constante de calibração Ca seja conhecida, utilizando a equação abaixo:

$$m_g = -2.5log(F_g) + C_g$$

Neste trabalho, a constante de calibração C<sub>a</sub> foi calculada empiricamente a partir das magnitudes magnit fotometria do Sloan, rearranjando a equação acima:

$$C_{o} = 2.5log(F_{o}) + m_{o}$$



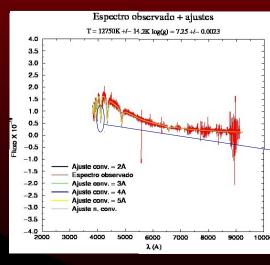


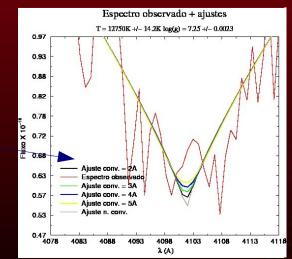
Curvas de transmissão 3000 4000 5000 6000 7000 8000 9000 1000011000 Wavelength (Angstroms)

A constante de calibração C<sub>a</sub> foi calculada para aproximadamente 2200 estrelas para assim obtermos seu valor médio e seu desvio padrão.

|   | Filtro | Constante de<br>Calibração | Desvio<br>Padrão |
|---|--------|----------------------------|------------------|
|   | u      | - 15.9467                  | 0.3435           |
|   | g      | - 13.9679                  | 0.0896           |
|   | r      | - 14.4136                  | 0.0912           |
| ١ | i      | - 15.0810                  | 0.1411           |
| ı | Z      | - 17.5509                  | 0.3072           |

As constantes de calibração para os outros filtros foram calculadas pelo mesmo processo


Tabela, Constantes de calibração)


\*Note que o espectro do SDSS não cobre totalmente o alcance dos filtros u e z, afetando assim o cálculo das cores (u-g) e

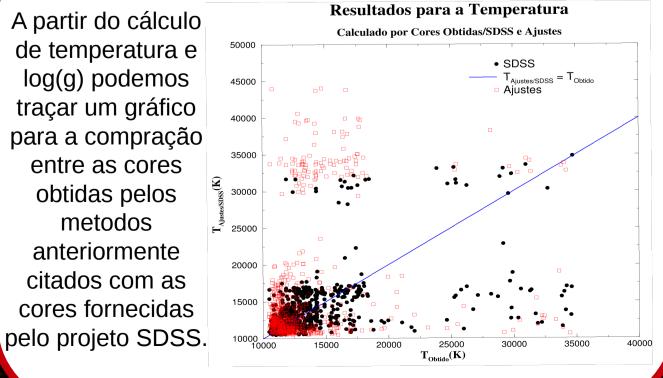
### Cálculo de Temperatura e log(g)

As constantes de calibração foram usadas para calcular as magnitudes nas bandas u, g, r, i e z e as cores (u-g), (g-r), (r-i) e (i-z).

As temperaturas e log(g) foram calculadas a partir da comparação das cores de cada especto do SDSS com as cores calculadas para espectros sintéticos gerados por modelos de atmosfera pra anãs brancas DAs.






| Modelo Teórico T/log(g) | u-g    | g-r    | r-i          | i-z    |
|-------------------------|--------|--------|--------------|--------|
| 10250 K/6,00            | -0.640 | -0.188 | -0.167       | 0.105  |
| 14700 K/6,00            | -0.869 | -0.345 | -0.247       | 0.051  |
| 32500 K/8,25            | -1.471 | -0.494 | -0.334       | -0.035 |
| 47500 K/5,00            | -1.536 | -0.554 | -0.351       | -0.037 |
| Espectro SDSS           | u-g    | g-r    | <i>r-i</i> l | i-z    |
| Spec-51602-0266-029     | 0.397  | -0.298 | -0.205       | -0.642 |
| Spec-51602-0266-031     | 0.128  | -0.083 | -0.092       | -0.152 |
| Spec-51602-0266-034     | 0.083  | -0.066 | -0.075       | -0.166 |
| Spec-51602-0266-314     | 0.229  | -0.133 | -0.228       | -0.678 |

Paralelamente, temperatura e log(g) das anãs brancas também podem ser medidas a partir do ajuste dos espectros teóricos aos espectros observados. (primeira imagem à esquerda)

#### **Resultados Preliminares**

A partir do cálculo de temperatura e log(g) podemos traçar um gráfico para a compração entre as cores obtidas pelos metodos anteriormente citados com as

cores fornecidas



Referências: Koester, D. 2008 arXiv 0812.0482K Lupton, R.H. et al. 1999, AJ, 118, 1406 www.sdss.org/