UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

ESCOLA DE ADMINISTRAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO - MESTRADO

Lucratividade versus Investimentos: Um estudo de caso sobre eficiência

informacional no mercado brasileiro

Dissertação de Mestrado apresentada ao

Programa de Pós-Graduação em Administração

da Universidade Federal do Rio Grande do Sul

como requisito parcial para a obtenção do

título de Mestre em Administração.

Márcio Almeida Espíndola

Orientador: Prof. Dr. Jairo Laser Procianoy

Porto Alegre, junho 2004

AGRADECIMENTOS

Gostaria de agradecer ao Prof. Dr. Jairo Laser Procianoy pela orientação, disposição e empenho, bem como à coordenação, professores e funcionários do PPGA pelo auxílio e incentivo.

À Escola de Administração da UFRGS por me receber como aluno, disponibilizando suporte técnico e infra-estrutura; ao CNPq pelo suporte financeiro prestado através de seu programa de bolsas.

Aos colegas do PPGA pelo convívio, respeito e bom humor nos dias de chuva, em especial aos caros colegas da área de Contabilidade e Finanças - Kelmara Vieira, Leandro Rassier, Sandro Chimisso e Alexandre Gava pelo incentivo e apoio constantes; a todas as pessoas que auxiliaram de uma forma ou outra a conclusão deste trabalho.

Aos amigos e colegas da Universidade de Santa Cruz do Sul pelo apoio.

Meus especiais agradecimentos ao Sr. Marco Aurélio Antunes, por seu incansável auxílio e pela disposição demonstrada em nossas diversas conversas; a minha família, pela compreensão e pelo apoio incondicional; a Letícia com quem compartilhei as emoções deste longo caminho.

RESUMO

Este trabalho consiste em um estudo de caso do mercado acionário brasileiro, pelo qual buscou-se investigar de que forma a publicação de informações contábeis trimestrais, referentes tanto à lucratividade das empresas quanto à realização de investimentos, transmite informações válidas para os agentes participantes do mercado.

À medida que a eficiência informacional se caracteriza pela rápida absorção de informações relevantes pelos mercados, estudos realizados no Brasil chamam atenção para a possibilidade de que a publicação, por parte das empresas, de seus relatórios contábeis provoque retornos anormais, indicando assim ineficiência informacional.

Durante a realização do estudo, levantaram-se os dados contábeis referentes à lucratividade e a realização de investimentos, estes foram então tratados na forma de variáveis independentes e utilizados para determinar de que modo se relacionam com variações nos preços das ações através da aplicação do método de Regressão Linear Múltipla.

Considerando-se as particularidades atribuídas aos estudos na área de finanças, os resultados obtidos demonstram estar de acordo com os resultados das evidências empíricas, levando a conclusão de que os fatores considerados realmente apresentam relação com a variação do valor das ações no mercado; entretanto, do ponto de vista estatístico, esta relação não pode ser considerada significativa, especialmente se consideramos o fator investimentos.

ABSTRACT

The present work is a case study on the Brazilian capital market. Investigating in which way information about earnings and investments decisions, present in quartly financial statements made public by firms, is efficient as a signaling mechanism available to transmit valid data to the market, and a possible factor in causing changes in stocks prices.

The possibility that financial statements are responsible for abnormal returns indicates market inefficiency, although the theory states that relevant information should be promptly absorbed by the market as soon as made public, previous studies carried out in Brazil indicate the presence of such inefficiency.

The necessary data for this study was collected in the Economatica software and statistically treated into valid dependent and independent variables; analyzing the output resulting from the of Multiple Linear Regression modeling, it was possible to determine how the tested independent variables (profits and investment variables) interact with the dependent ones (abnormal returns).

Considering the statistical characteristics of financial studies, the results obtained are in accordance with the observed empirical evidences, thus we conclude that, although the relationship between profitability, investments and stock value are not statistically significant, both of these relationships are relevant for the market, especially those concerning profitability.

Key words

Investments Decisions, Quartly Earnings, Efficient Market Hypothesis, Event Studies, Abnormal Returns.

SUMÁRIO

LISTA DE FIGURAS

LISTA DE TABELAS

INTRODUÇÃO10		
2 ASPECTOS RELEVANTES DA TEORIA FINANCEIRA15		
	2.1 MERCADO FINANCEIRO	
	2.1.1 MERCADO EFICIENTE	
	2.1.2 ESTUDO DE EVENTOS 21	
	2.1.3 MENSURAÇÃO DE RETORNOS ANORMAIS	
	2.1.4 Ineficiências de Mercado	
	2.2 EFICIÊNCIA INFORMACIONAL	
	2.2.1 O IMPACTO DA INFORMAÇÃO NO MERCADO FINANCEI RO	
	2.2.2 O IMPACTO DAS INFORMAÇÕES DE INVESTIMENTO E LUCRATIVIDADE	
3	3 MÉTODO36	
	3.1 CARACTERIZAÇÃO DA AMOSTRA	
	3.2 AJUSTES APLICADOS AOS DADOS	
	3.3 PROCEDIMENTOS DO ESTUDO DE EVENTOS	
	3.3.1 CARACTERÍSTICAS DO ESTUDO DE EVENTOS	
	3.3.2 DETERMINAÇÃO DE EVENTOS VÁLIDOS	
	3.4 Variáveis Testadas	
	3.4.1 VARIÁVEIS DE LUCRATIVIDADE	
	3.4.2 VARIÁVEIS DE LUCRATIVIDADE INESPERADA	
	3.4.3 VARIÁVEIS DE INVESTIMENTOS	
	3.4.4 Demais variáveis	
	3.5 TRATAMENTO DAS VARIÁVEIS	
	3.6 FORMULAÇÃO DAS HIPÓTESES	

4 APRESENTAÇÃO DOS RESULTADOS57		
4.1 Retornos Anormais		
4.2 Teste de Normalidade58		
4.3 Análise de Correlação58		
4.4 REGRESSÕES COM A VARIÁVEL AR		
4.5 REGRESSÕES COM A VARIÁVEL <i>CAR</i> 63		
4.6 DISCUSSÃO DOS RESULTADOS		
5 CONCLUSÕES69		
REFERÊNCIAS BIBLIOGRÁFICAS72		
ANEXOS76		
ANEXO A - LISTA DAS AÇÕES INCLUÍDAS NA AMOSTRA		
ANEXO B - ESTRUTURA BÁSICA DOS DEMONSTRATIVOS CONTÁBEIS		
Anexo C - Resultado da distribuição das variáveis analisadas		
ANEXO D - HISTOGRAMAS DAS VARIÁVEIS DEPENDENTES		
ANEXO E - HISTOGRAMAS DAS VARIÁVEIS INDEPENDENTES DE LUCRATIVIDADE81		
Anexo F - Histogramas das var. independentes de lucratividade inesperada 85		
ANEXO G - HISTOGRAMAS DAS VAR. INDEPENDENTES DE INVESIMENTOS91		
ANEXO H - HISTOGRAMAS DAS VAR. INDEPENDENTES DE TAMANHO92		
ANEXO I - TESTE DE NORMALIDADE KOLGOROV-SMIRNOV94		
ANEXO J - MATRIZ DAS VARIÁVEIS COLINEARES		
ANEXO K - RETORNO ANORMAL NO DIA DO EVENTO E RETORNO ANORMAL ACUMULADO96		
ANEXO L - CURRICULUM VITAE DO AUTOR 106		

LISTA DE FIGURAS

Figura 1 - Curva Normale Valores de AR	80
FIGURA 2 - CURVA NORMALE VALORES DE CAR	80
FIGURA 3 - CURVA NORMALE VALORES DE <i>VLB</i> %	81
FIGURA 4 - CURVA NORMALE VALORES DE VLOP%	81
FIGURA 5 - CURVA NORMAL E VALORES DE VLL%	82
FIGURA 6 - CURVA NORMAL E VALORES DE MGB	82
FIGURA 7 - CURVA NORMALE VALORES DE MGOP	83
FIGURA 8 - CURVA NORMAL E VALORES DE MGL	83
Figura 9 - Curva Normal e Valores de <i>RAT</i>	84
FIGURA 10 - CURVA NORMAL E VALORES DE <i>RPL</i>	84
FIGURA 11 - CURVA NORMAL E VALORES DE <i>LIT1</i>	85
FIGURA 12 - CURVA NORMAL E VALORES DE <i>LIT4</i>	85
FIGURA 13 - CURVA NORMAL E VALORES DE MGBT1	86
FIGURA 14 - CURVA NORMAL E VALORES DE MGBT4	86
FIGURA 15 - CURVA NORMAL E VALORES DE MGOPT1	87
FIGURA 16 - CURVA NORMAL E VALORES DE MGOPT4	87
FIGURA 17 - CURVA NORMAL E VALORES DE MGLT1	88
FIGURA 18 - CURVA NORMAL E VALORES DE MGLT4	88
Figura 19 - Curva Normale Valores de <i>RAT t1</i>	89
Figura 20 - Curva Normal e Valores de <i>RATT4</i>	89
FIGURA 21 - CURVA NORMAL E VALORES DE RPLT1	90
FIGURA 22 - CURVA NORMAL E VALORES DE <i>RPLT4</i>	90
Figura 23 - Curva Normal e Valores de $VAP\%$	91
FIGURA 24 - CURVA NORMAL E VALORES DE VAI%	91
FIGURA 25 - CURVA NORMALE VALORES DE <i>ROL</i>	92
FIGURA 26 - CURVA NORMAL E VALORES DE AT	92
FIGURA 27 - CURVA NORMAL E VALORES DE PL	93

LISTA DE TABELAS

TABELA 1 - VARIÁVEIS NÃO COLINEA RES E A R	60
Tabela 2 – Variáveis de lucratividade e AR	60
TABELA 3 – VARIÁVEIS DE LUCRO INESPERADO E AR	61
Tabela 4 - Variáveis de investimentos e AR	62
TABELA 5 - VARIÁVEIS DE TAMANHO E <i>AR</i>	62
TABELA 6 - VARIÁVEIS NÃO COLINEA RES E CAR	63
TABELA 7 - VARIÁVEIS DE LUCRATIVIDADE E CAR	64
TABELA 8 - VARIÁVEIS DE LUCRO INESPERADO E CAR	64
Tabela 9 - Variáveis de investimentos e <i>CAR</i>	65
Tabela 10 - Variáveis de tamanho e CAR	66

1. INTRODUÇÃO

Dentre os diversos tópicos que compõem a Teoria Financeira chamam atenção aqueles relacionados com a eficiência informacional existente entre os diversos participantes do mercado, isto acontece em função da relevância deste tema no sentido de possibilitar um melhor entendimento quanto ao funcionamento do Mercado Financeiro como um todo.

Partindo do pressuposto desta relevância, estudos realizados sobre o impacto das informações divulgadas através de Demonstrações Financeiras, tanto anuais quanto trimestrais, demonstraram que as divulgações produzem efeitos significativos sobre o comportamento dos preços das ações das empresas de capital aberto.

A exemplo disto, Antunes (2000) ao analisar o impacto da publicação de investimentos por parte das empresas de capital aberto determinou que alterações perceptíveis nas contas do Ativo Permanente e do Ativo Imobilizado das Demonstrações Financeiras poderiam ser associadas a alterações no preço das ações de sua amostra.

A maximização da riqueza do acionista é, ao menos teoricamente, o objetivo da firma e, por consequência do gestor desta. Assim sendo, o propósito deste estudo é comparar quais informações entre aquelas relacionadas com investimentos (tais como variações do Ativo Imobilizado e do Ativo Permanente) e aquelas associadas a resultados financeiros (representadas pelas variações nas contas de Lucro Bruto, Lucro Líquido e Lucro Operacional) melhor explicam variações nos preços das ações.

Em todo o mundo os mecanismos pelos quais o mercado avalia as empresas estão relacionados com a necessidade de se consolidar e aprimorar o mercado de capitais. No mercado de capitais brasileiro não é diferente disso. Assim, se faz necessário um constante aprimoramento das relações entre os investidores e as empresas, na busca de uma melhor eficiência informacional e transparência nas negociações.

Kelm (1996) chama atenção para a relevância da informação no processo de avaliação e classificação dos projetos de investimento durante o qual os investidores selecionam, de um conjunto de informações disponíveis, aquelas relacionadas aos seus objetivos. As informações disponíveis se acrescentam as características pessoais do investidor, na forma de sua própria percepção da realidade e, finalmente, deste conjunto de elementos, depende a análise dos riscos e vantagens das possibilidades de investimento.

A exemplo disto, ao analisar-se a pesquisa realizada por Antunes (2000), fica evidente a presença dos elementos apresentados no parágrafo anterior, uma vez que resultados encontrados revelam a possibilidade de existir **desconfiança** por parte dos investidores para com os anúncios realizados pelos gestores, caracterizando tanto uma modalidade de conflito de agência quanto uma característica comportamental do mercado e, em especial, dos investidores¹.

No entanto, um melhor entendimento das implicações das evidências empíricas encontradas, à luz das teorias científicas atualmente aceitas, se faz necessário. Estudos já realizados chamam atenção para o impacto das informações divulgadas pelas empresas sobre o mercado acionário, contudo estudos visando comparar em específico os efeitos dos investimentos com o impacto dos lucros, ambos sobre o preço das ações, ainda são poucos no Brasil.

Levando-se em consideração a possibilidade de que a realização de investimentos por parte das empresas não implica necessariamente na obtenção de lucros pelas mesmas, ou seja, há possibilidade de que sejam realizados investimentos em projetos que não maximizem a riqueza do acionista. Dentro deste contexto, a análise da relação entre investimentos, lucratividade e preço das ações se caracteriza como um passo além, no sentido de se compreender os mecanismos de funcionamento do mercado, justificando a necessidade de identificar, analisar e avaliar as possíveis relações entre as influências que a divulgação de investimentos e lucros (prejuízos) exercem sobre o preço das ações no mercado de capitais.

No que tange as informações de investimentos em específico, Antunes (2000) buscou identificar os efeitos que estes exercem sobre o valor do preço das ações das

_

¹ Tais afirmações se baseiam tanto nas hipóteses levantadas pela Teoria de Agência quanto na Teoria Comportamental Financeira (Thaler e Baberis, 2002; Vieru *et al.*, 2001).

empresas. Para tal, considerou que a variação do ativo permanente (*VAP*), publicado nos Demonstrativos Contábeis das empresas, é um sinalizador oneroso dos investimentos feitos pelas empresas, uma vez que confirma a aplicação de recursos em ativos, e um indicador da provável existência de projetos com Valor Presente Líquido (*VPL*) positivo.

A existência de tais projetos, dentre as opções de investimentos das empresas, seria interpretada pelo mercado, segundo a Teoria de Maximização da Riqueza do Acionista, como o aumento dos fluxos de caixa futuros e, em função disto, da riqueza do acionista. Este fato justificaria um ajuste no preço das ações. Isto em parte explicaria os resultados obtidos durante a segmentação da amostra utilizada na dissertação de Antunes (2000)². Entretanto, também indicaria uma contrariedade aos princípios da eficiência de mercado, segundo os quais os preços das ações deveriam reagir a anúncios e não a variações em Demonstrativos Contábeis.

O fato acima citado, uma possível anomalia ocorrida no mercado, poderia ser um indicativo da desconfiança dos investidores para com os gestores, uma vez considerada a "impossibilidade de se aceitar a priori a credibilidade sistemática do discurso dos dirigentes das empresas", sugerida por Lamb (1993, p.12).

Contudo, os Demonstrativos Contábeis, quando divulgados, apresentam uma série de informações que fornecem dados para análises que vão além de possíveis alterações das contas do Ativo. Corroborando com está afirmação, Antunes e Procianoy (2003) chamam atenção para a possibilidade de que outros fatores, tais como os **lucros** obtidos pelas empresas, possam exercer um efeito paralelo àqueles oriundos de variações no Ativo Permanente, interferindo nos resultados encontrados no estudo original.

Portanto, identificar qual a real relevância, no que tange os efeitos sobre os preços das ações, das informações de investimentos quando também são consideradas aquelas associadas à lucratividade das empresas, representa uma questão importante na busca por um melhor entendimento do mercado de ações brasileiro.

-

² Segundo os resultados obtidos pelo autor existe uma relação positiva entre a realização de investimentos e a valorização de ações.

Objetivo Geral

Visando responder a questão levantada, o objetivo geral deste trabalho é contribuir para o entendimento do comportamento do mercado acionário brasileiro através da investigação da hipótese de Eficiência de Mercado.

Uma vez que no mercado brasileiro o preço dos ativos se ajustam em função das informações divulgadas ao mercado (Antunes, 2000; Kelm, 1996; Lamb, 1993; Schiehll, 1996; entre outros citados ao longo deste trabalho), se propõem estudar o impacto exercido pela divulgação, através de Demonstrativos Contábeis, de investimentos e, em especial, de **lucros** sobre preço das ações, fornecendo, assim, aos participantes do mercado um melhor entendimento dos mecanismos de sinalização e conseqüentemente mais subsídios para suas decisões.

Objetivos Específicos

Para tal se propõe os seguintes objetivos específicos:

- Analisar a relação entre a publicação de indicadores de **lucro ou prejuízo** (índices de lucratividade) por parte das empresas e o retorno observado no valor das ações da amostra estudada, observando se a ocorrência de retornos anormais pode também ser relacionada à publicação destes indicadores e não apenas a comprovação de investimentos através da publicação de alterações no Ativo Permanente, conforme os resultados obtidos pelo trabalho de Antunes (2000).
- Evidenciar se as variações relativas dos **lucros** (prejuízos), medidas a partir da análise entre os valores dos índices de lucratividade publicados no dia do evento e os valores destes índices observados no trimestre imediatamente anterior ao do evento (trimestre t-1), assim como a média dos valores registrados ao longo dos quatro trimestres anteriores ao trimestre do evento (média dos trimestres t-1, t-2, t-3 e t-4), têm relação

significativa com os preços das ações da amostra ao longo período em estudo.

- Analisar qual dos fatores - realização de investimentos ou lucratividade - melhor explica a ocorrência de retornos anormais.

Na busca em atender a estes objetivos se espera comprovar que a divulgação, através dos Demonstrativos Contábeis, de informações referentes à lucratividade das empresas é fundamental para obtenção de retornos anormais e que tais informações são mais relevantes para o mercado do que aquelas referentes à realização de investimentos.

Desta forma, o trabalho divide-se em quatro partes. Na primeira, apresenta-se a revisão bibliográfica abrangendo os pressupostos da Teoria Financeira moderna relevantes a este estudo; na segunda parte expõe-se a metodologia aplicada para obtenção dos resultados; na terceira apresenta-se os resultados da pesquisa e, por último, apresenta-se as conclusões e considerações finais.

2. ASPECTOS RELEVANTES DA TEORIA FINANCEIRA

Através das premissas aceitas por diversos autores citados ao longo deste capítulo, apresenta-se aqui alguns aspectos da Teoria Financeira considerados relevantes para contextualizar este trabalho dentro de um arcabouço acadêmico.

2.1 MERCADO FINANCEIRO

Os mercados financeiros existem para facilitar a captação e aplicação de recursos por parte dos indivíduos que participam destes mercados, possibilitando assim operações entre os agentes economicamente superavitários e aqueles detentores de projetos de investimentos.

As circunstâncias econômicas que determinam o funcionamento dos mercados financeiros partem do pressuposto da existência de preferências intertemporais de consumo distintas entre os **indivíduos**, ou seja, do fato destes indivíduos preferirem mais consumo a menos (Copeland e Weston, 1992).

Estas preferências estão mais relacionadas com características psicológicas do que financeiras. Entretanto, sob o ponto de vista financeiro, dão origem aos acordos que servem de base para a existência do mercado financeiro.

Pela dinâmica existente no mercado, as diferentes opções de consumo mantêm o mecanismo onde se contrapõem as variáveis **tempo** e **quantidade**, ou seja, o indivíduo só preferirá adiar sua possibilidade de consumo caso haja a oportunidade de consumir mais no futuro. Da mesma forma, o consumo no presente implicará em menor capacidade de consumo no futuro.

Este contexto cria o cenário para que os indivíduos assumam um dos seguintes papéis: o de **tomador de recursos** ou o de **investidor de recursos**. O tomador de recursos

antecipa o consumo. Já o investidor, ao tomar suas decisões quanto ao consumo, se propõe a postergá-lo (Copeland e Weston, 1992).

Do ponto de vista do indivíduo, as **decisões de investimento** são essencialmente o quanto não se consumirá no presente, de forma a poder consumir mais no futuro, e são baseadas em um critério fundamental: maximizar o valor presente do consumo ao longo da vida.

A decisão de investimento ótimo visa maximizar a satisfação esperada, pois o indivíduo que economiza o faz em função do benefício esperado de consumo extra no futuro, consumo este propiciado pela também quantia "extra" economizada e que excederá o benefício de se consumir está mesma quantia hoje. O quanto a mais o investidor poderá consumir no futuro é descrito através da forma percentual, e comumente chamada, de taxa de juros.

Ross *et al.* (2002) demonstram como as pessoas, usando o mercado financeiro, podem ajustar seus padrões intertemporais de consumo e satisfazer suas preferências tomando ou fazendo empréstimos para ampliar suas opções de escolha.

As decisões entre tomar emprestado ou emprestar dependem da taxa de juros e representam o pressuposto de que os indivíduos nunca podem ficar em situação pior quando é ampliado o conjunto de alternativas a eles disponíveis.

A separação do processo de decisão em investimento para decisão de consumo é conhecido como **teorema de Fisher** da separação.

O teorema de Fisher demonstra que é possível delegar a decisão de investimento, pois qualquer investidor toma a mesma decisão, baseando-se no mesmo conjunto de oportunidades de produção, independente das preferências pessoais de cada um.

Segundo este teorema, e partindo da premissa de que o mercado é perfeito (não há custo de transação, existe competição perfeita, o mercado é eficiente **informacionalmente** e todos os indivíduos são racionais **maximizadores** da utilidade esperada) e completo, a decisão de investimento é governada somente pelo critério objetivo do mercado representado

pela maximização da riqueza obtida, sem considerar as preferências subjetivas individuais que entram nas suas próprias decisões de consumo.

Dentro do contexto corporativo, isso se traduz na separação entre a propriedade e o controle das empresas, o que possibilita ao investidor, na condição de acionista, escolher os diretores e gerentes como seus agentes.

Segundo Koutsoyiannis (1982), quando assumi-se que os preços das diferentes ações negociadas no mercado são independentes, o objetivo dos diretores de maximizar o valor da ação da empresa no mercado resulta sempre na maximização da riqueza dos acionistas.

Assim sendo, dentre os métodos apresentados por Copeland e Weston (1992) para se decidir entre quais projetos realmente maximizam a riqueza dos acionistas, o Valor Presente Líquido (VPL) é uma técnica sempre consistente com o objetivo maior de maximização, já que é calculado a partir do desconto dos fluxos de caixa futuros da empresa ou do projeto ao custo de oportunidade do capital utilizado pela empresas.

$$VPL = \sum_{t=1}^{N} \frac{\text{fluxo de caixa liquido t}}{(1+k)^{t}} - I_{0}$$
 (1)

onde I_0 é o investimento inicial, k é o custo do capital médio da empresa e N é o número de anos do projeto.

As forças de oferta e procura, ao interagirem, participam na determinação do preço das ações no mercado de capitais, e há pelos menos três fatores que estabelecem o nível destes preços: a) o fluxo de lucros esperados; b) o grau de incerteza do investidor na estimativa dos lucros futuros; e c) a taxa que é utilizada no cálculo do valor presente para descontar os lucros futuros esperados.

Estes fatores interagem e se refletem no mercado, o qual incorpora novas informações de acordo com seu nível de eficiência.

2.1.1 Mercado Eficiente

À medida que as empresas ou indivíduos tenha m um excedente de oportunidades de investimento produtivo, cujas possibilidades de retorno atendam um índice de retorno prédeterminado, mas sem dispor dos recursos necessários para concretizar todas as oportunidades, surgem as condições para o desenvolvimento de um mercado de capitais onde os recursos necessários podem ser captados junto a prováveis investidores.

Os investidores em potencial participam do mercado em função do excesso de fundos que possuem, mesmo após exaurirem suas próprias oportunidades produtivas que possibilitam ganho maior do que o representado pelo empréstimo dos recursos.

O elemento-chave para se proceder com as decisões de investimentos e precificação das oportunidades será o somatório dos retornos futuros esperados de cada projeto ou de um conjunto de projetos com um todo ajustados ao risco. A avaliação dos projetos, através do uso das técnicas disponíveis, permite determinar os índices de retorno esperado e avaliar quais as melhores oportunidades.

Desta forma, todo e qualquer elemento, que de alguma forma, influencie a análise tanto o retorno quanto do risco de uma empresa (tal como informações relevantes quanto a oportunidades de investimento ou ainda de financiamento das empresas) afetarão a forma pela qual a empresa é percebida pelo mercado.

De acordo com as restrições que apresenta, o mercado financeiro pode ser classificado em **perfeito** ou **eficiente**.

O conceito de **mercado eficiente** está relacionado com os objetivos principais do mercado, segundo os quais a necessidade da transferência eficiente de fundos entre o tomador e o investidor de recursos deve acontecer de forma a atender aos critérios de alocação otimizada de recursos, priorizando aos projetos que melhor equacionem os índices de retorno marginal ajustado ao risco, beneficiando tanto os tomadores quanto os investidores dos recursos.

Segundo Ross *et al.* (2002, p. 279), "um mercado eficiente de capitais é aquele no qual o preço das ações refletem completamente as informações disponíveis". Esta afirmação reforça a importância das informações como mecanismos para interação entre os diversos atores presentes no mercado de capitais.

Já o conceito de **mercado perfeito** considera que não há custos de transações, o acesso aos mercados financeiros é livre, não existe assimetria informacional, ou seja, há informação completa sobre oportunidades de captação e realização de empréstimos, existem diversos participantes no mercado, e nenhum deles é capaz de exercer impacto significativo sobre os preços de mercado (Ross *et al.*, 2002).

Possuindo menos restrições do que o mercado perfeito, o **mercado eficiente** é classificado de acordo com a relação entre o tipo de informação e o efeito que esta exerce sobre os preços das ações em suas três formas: a)**forma fraca**, b) **forma semi-forte** e c) **forma forte** (Fama; 1970, 1976, 1991).

Eficiência de **forma fraca** abrange as informações e preços históricos das ações, e supõe que nenhum investidor pode obter **retorno anormal**³ através de negociações baseadas nos preços ou nas informações do passado.

Eficiência de **forma semiforte** abrange todas as informações publicamente disponíveis, e nenhum investidor pode obter retorno anormal através de negociações baseadas nestas informações.

Eficiência de **forma forte** abrange todas informações publicamente disponíveis, e ainda todas as não divulgadas. Assim sendo, nenhum investidor pode obter um retorno anormal através de negociações baseadas em quaisquer informações, tanto de domínio público como privado.

A hipótese de mercado eficiente pode ser considerada como uma boa descrição da realidade e as pesquisas realizadas a partir de testes de eficiência buscam explicar aqueles casos cujos resultados apontam para a existência de possíveis ineficiências. Também

_

³ De acordo com Copeland e Weston (1992, p. 344), nota de rodapé n. 9, retornos anormais são os retornos em excesso que podem ser obtidos para um dado nível de risco.

chamadas de *puzzles* na literatura financeira, tais ineficiências se caracterizam como anomalias que contradizem a pressuposição de que o mercado eficiente absorve de maneira imediata as informações relevantes, o que impossibilitaria identificar situações passíveis de **arbitragem**⁴ e a existência de retornos anormais.

Ainda segundo Fama (1976), o preço de uma ação não é apenas um parâmetro de equilíbrio entre oferta e procura, mas também um indicador da avaliação que os participantes do mercado de capitais fazem sobre o retorno esperado de uma ação e, conseqüentemente, reflete as informações disponíveis sobre a empresa e o mercado em determinado momento, levando-se a conclusão de que a hipótese de mercado de capitais eficiente tem como prérequisito um sistema eficiente de informações.

À medida que as empresas fazem anúncios relacionados com as suas decisões de investimento, de financiamento e/ou remuneração dos investidores (como o pagamento de dividendos), estes anúncios são observados e interpretados pelo mercado e causam repercussões no valor das empresas, ou seja, no valor de ações no mercado.

À luz da hipótese de mercado eficiente as informações apresentam implicações para investidores e empresas, pois à medida que são divulgadas, refletem imediatamente nos preços e, desta forma, os investidores só podem esperar obter uma taxa de retorno normal.

Teoricamente, o conhecimento da informação divulgada não deve propiciar vantagem alguma ao investidor, pois sendo o ajuste imediato, não há oportunidade para se negociar a ação com o uso da informação. Seguindo a mesma lógica, as empresas devem esperar receber o valor **justo** pelos títulos que vendem, isto é, o valor dos mesmos deve ser o **valor presente**⁵ e desta forma não existem oportunidades valiosas de financiamento decorrentes de enganar os investidores.

Os preços em mercados competitivos seguem um modelo randômico e alterações nos mesmos, observadas no passado e que poderiam ser utilizados para predizer futuras alterações, acabam por serem rapidamente absorvidas pelo mercado, o qual se ajusta

_

⁴ Compra e venda de ativos semelhantes com lucro e sem risco ou custo.

⁵ Valor presente é determinado pela análise do valor atualizado dos fluxos de caixa futuros, descontados a uma taxa interna de retorno.

imediatamente até que os retornos anormais, oriundos de alterações nos preços ocorridas no passado, desapareçam.

Padrões nos preços deixam de existir e alterações ocorridas em um período serão independentes de alterações no próximo período. Assim sendo, observa-se que todas as informações oriundas dos preços registrados no passado se refletem no mercado de hoje e não no de amanhã (Brealey e Myers, 2000).

2.1.2 Estudo de Eventos

Fama (1970) associou as formas de eficiência de mercado (fraca, semi-forte e forte) a possíveis **testes** que poderiam ser utilizados para determinar ou comprovar o grau de desenvolvimento de um determinado mercado

O mesmo autor (Fama,1991), levando em consideração que no mundo real as condições de custo de transação e de informação não podem ser consideradas iguais a zero, reformulou a hipótese de eficiência de mercado, passando a considerar que o preço da ação reflete integralmente a informação somente enquanto o benefício marginal da nova informação superar o custo marginal de transação.

Partindo de um enfoque mais econômico para interpretar as formas de eficiência de mercado, o autor classificou novamente os testes em três categorias: **Previsibilidade de Retornos**, **Estudo de Eventos** e **Informações Privadas**.

Associados a forma fraca de eficiência de mercado, os testes de **Previsibilidade de Retornos** são realizados através do exame da capacidade de estimar retornos a partir de longas séries históricas, utilizando-se para isto de variáveis tais como: a distribuição de dividendos, os índices de rentabilidade e as taxas de juros.

Em função da estreita relação entre a hipótese de eficiência de mercado e preço de equilíbrio, os testes de Previsibilidade de Retornos passam a considerar também os testes de

precificação de ativos e suas anomalias, como demonstram estudos realizados sobre: o efeito fim de semana ou efeito dia de semana (French, 1980; Costa Jr. e Lemgruber, 1993); efeito mês do ano (Costa Jr., 1990); efeito mensal (Almeida *et al.*, 1993); efeito tamanho da firma (Costa Jr e O'Hanlon, 1991) e o efeito preço-lucro (Basu, 1977).

No caso específico dos mercados considerados **semi fortes**⁶, os testes visam determinar se os preços correntes refletem completamente todas as informações publicamente disponíveis através de **Estudos de Eventos** (Fama, 1991). Cada um dos diferentes testes visa observar o ajuste do preço de uma determinada ação a divulgação de uma informação em específico (*stock splits*, anúncio de lucro ou prejuízo, etc.) a qual pode ser considerada como sendo um evento ou conjunto de eventos. Desta forma, cada teste submete o modelo a uma análise, visando estabelecerem-se parâmetros capazes de comprova-lo ou refutá-lo.

Aos testes de eficiência da forma forte, Fama (1991) sugeriu a denominação de testes de **Informações Privadas**. Estes testes visam identificar a existência ou não de condições nas quais participantes do mercado poderiam utilizar-se de informações não refletidas nos preços das ações, conhecidas por *insider information*, para obter, em determinadas ocasiões, retornos acima do esperado.

Ao analisar os estudos de Jensen (1968 e 1969), Fama (1991) conclui que, apesar da possibilidade da existência de anomalias, os resultados encontrados corroboram com a hipótese de **Eficiência de Mercado**.

Os testes atribuídos ao nível de eficiência semi-forte, os chamados **Estudos de Eventos**, proporcionam, segundo Fama (*op cit*), as melhores evidências sobre a eficiência de mercado, especialmente quando são utilizados retornos diários e a data de divulgação da informação para o mercado possa ser determinada com precisão. Desta forma pode-se afirmar que ambos fatores são relevantes para se determinar à relação entre oscilações nos preços das ações e o momento exato da divulgação da informação, ou seja, o dia do evento.

Entre os primeiros estudos de eventos, Ball e Brown (1968) analisaram o efeito dos relatórios anuais das empresas sobre o mercado de ações. No Brasil, entre outros estudos,

⁶ Classificação proposta por Schiehll (1996) para o mercado brasileiro.

Leite e Sanvicente (1990) analisaram o impacto da divulgação do Valor Patrimonial por Ação (publicados nos Demonstrativos Financeiros de 43 empresas) no comportamento dos preços das ações. Os resultados confirmaram o conteúdo informacional dos demonstrativos.

Também visando em específico o caso do mercado brasileiro, Kloeckner (1995, p.262-265) afirma que: "Estudos de Evento podem ser definidos como a análise do efeito de informações específicas a determinadas empresas sobre os respectivos preços de suas ações".

Os estudos de eventos, usados em testes de eficiência de mercado conforme a classificação de Fama (1991), têm como foco os retornos anormais das ações identificados em torno ou na data de um anúncio, os chamados **eventos**, e leva em consideração o desvio entre os retornos das ações e os retornos *ex ante* não condicionais ao evento.

Visando identificar se o retorno de uma ação, em função de um evento, pode ser considerado anormal, é necessário estabelecer um padrão, chamado de retorno controle ou retorno normal, o qual é o retorno que a ação teria obtido caso o evento não houvesse ocorrido. A comparação entre o retorno efetivamente observado com o retorno de controle permite identificar eventuais anormalidades durante o período estudado.

2.1.3 Mensuração de Retornos Anormais

Brown e Warner (1980) apresentam três modelos utilizados para gerar os retornos padrão necessários para identificar e mensurar retornos anormais:

O Modelo de Retorno Ajustado à Média pressupõe que $E(R_i)$, o retorno esperado (ex ante) da ação i, é igual à constante K_i . Sendo necessário gerar um retorno de controle para a ação i no período t, a constante K_i poderia ser o retorno do mês t1, ou ainda a média aritmética de retornos passados da ação i. Para um mês t, o retorno em excesso da ação i, ARit, é a diferença entre o retorno observado (ex post) da ação, R_{it} , e a constante K_i , ou seja, o erro de estimativa ou resíduo gerado pelo modelo. Assim sendo temos:

$$ARit = Rit - Ki \tag{2}$$

O Modelo de Retorno Ajustado ao Mercado é consistente tanto com o Modelo de Mercado ($R_i = a_i + \beta_i R_{mt} + \mathbf{e}_{it}$) quanto com o Modelo de Precificação de Ativos de Capital (CAPM), pressupondo que todas as ações da carteira de mercado têm um risco sistêmico (β) igual a 1 (um). No caso do Modelo de mercado existe uma premissa adicional de que o intercepto (a) é igual a zero. Assim, o retorno esperado de uma ação i durante o período t, $E(R_{it})$, é igual ao retorno esperado do portofólio de mercado durante o mesmo período, $E(R_{mt})$.

Qualquer anormalidade ex post do retorno de uma ação é dada pela diferença entre R_{it} , o retorno observado da ação i durante o período t e R_{mt} , o retorno observado do portofólio de mercado durante o mesmo período. Assim sendo,

$$AR_{it} = R_{it} - R_{mt} \tag{3}$$

O Modelo de Retorno Ajustado ao Risco e ao Mercado pressupõe que os retornos esperados são gerados de acordo com algum modelo de precificação de ativos como, por exemplo, o Modelo de Mercado ou CAPM. Quando o gerador de retornos é o Modelo de Mercado, AR_{it} , o retorno anormal da ação i durante o período t é dado por:

$$AR_{it} = R_{it} - a_i - \beta_i R_{mt} \tag{4}$$

onde R_{it} é o retorno observado da ação i durante o período t, Rmt é o retorno do mercado durante o mesmo período, a_i e β_i são os parâmetros da regressão linear dos retornos das ação em estudo, sobre os retornos de mercado. O segundo modelo de precificação de ativos mais comumente usado é baseado no CAPM, onde ARit é dado por:

$$AR_{it} = R_{it} - [R_{7t} (1 - \beta_i) + \beta_i . R_{mt}]$$
 (5)

sendo R_{zt} o retorno no período t de um portofólio de variância mínima, cujos retornos não são correlacionados com retornos do portofólio de mercado. Alternativamente, a versão original do CAPM pode ser utilizada e, no lugar de R_{zt} pode se utilizar o R_f , a taxa de retorno livre de risco.

A teoria do portofólio, juntamente com a idéia de equilíbrio de mercado⁷, serviram como base para o desenvolvimento dos modelos determinantes de preços de ativos. Dentre os primeiros modelos de **precificação** de ativos, Sharpe (1964) e posteriormente Lintner (1965) apresentaram o *Capital Asset Pricing Model (CAPM*). Este modelo pressupõe que a taxa de retorno de todos os ativos de risco é função de sua covariância com o portofólio de mercado (beta), sendo este o único fator de medição do risco.

O CAPM procura identificar a relação entre o risco de mercado e a taxa de retorno esperada para qualquer portofólio eficiente (linha de mercado de títulos), partindo do conceito de risco (beta) e da suposição que todos os investidores são avessos ao risco.

A eficiência do portofólio de mercado implica em uma relação linear e positiva entre o retorno esperado e o beta de mercado e, também, denota o beta de mercado como fator determinante dos retornos esperados necessários nos processo de geração do retorno das ações, e conseqüentemente para os testes de eficiência.

Ainda segundo Brown e Warner (1980), para cada processo gerador do retorno anormal, há situações onde o retorno observado é diferente daquele previsto. Contudo, em um mercado eficiente, retornos não podem sistematicamente diferir daqueles previstos.

O objetivo de se especificar o modelo de **retorno esperado** corretamente é reduzir a variância do componente **retorno anormal**. Quando o processo de geração do retorno esperado é corretamente desenvolvido, o retorno anormal deverá ser facilmente identificado e, assim sendo, se o CAPM é válido, o modelo de Retorno Ajustado ao Risco e ao Mercado, ao proporcionar mais informações sobre os determinantes do retorno realizado, pode aumentar a robustez do teste em relação ao modelo de Retorno Ajustado à Média.

Tanto para Brown e Warner (1980, 1985) quanto para Kloeckner (1995), os modelos utilizados para mensurar retornos anormais apresentam resultados muito semelhantes e não ocorrem diferenças significativas ao se optar por um por outro modelo, pois os resultados de uma pesquisa não serão prejudicados na escolha.

⁷ O equilíbrio de mercado implica que a oferta agregada é igual à demanda agregada, supondo-se igualdade entre as taxas de emprestar e tomar emprestado, expectativas homogêneas entre investidores e inexistência de custos de transação no mercado de capitais.

2.1.4 Ineficiências de Mercado

Apesar de inúmeros estudos sustentando a hipótese de mercados eficientes, alguns trabalhos têm surgido revelando uma gama de anomalias do mercado, contradizendo totalmente a noção de mercados eficientes. Evidências de que os retornos relativos das ações podem ser previstos utilizando-se fatores, sustentam críticas difundidas em elação a esta hipótese.

Ball e Brown (1968) relatam que o lucro de uma empresa possui tendência de se mover na mesma direção que o retorno médio do mercado, e que uma parcela significativa desta variação pode ser associada a efeitos macroeconômicos (*economy wide effects*).

Basu (1983) encontrou relação entre **lucros** e **retornos esperados**. Os resultados apresentam que as ações que possuem lucros correntes relativamente altos tendem a produzir retornos futuros relativamente elevados. Ações que obtiveram baixo rendimento no passado, à longo prazo tendem a viabilizar retornos futuros altos, sugerindo a ocorrência de reação exagerada em relação à informação por parte dos investidores ao **precificar** as ações.

Outra anormalidade de mercado é apresentada por Fama e French (1992) e Lakonishok, Shleifer e Vishny (1994). Estes autores mostram como a relação entre o preço corrente de mercado de uma ação e o valor contábil corrente da empresa ou dos lucros por ação podem ajudar a prever retornos futuros.

Por outro lado, vários estudos têm proposto a presença de viés nos resultados apontados pelos trabalhos que questionam a validade do paradigma dos mercados eficientes.

Kothari, Shanken e Sloan (1995), Brown, Goetzmann e Ross (1995) assim como os trabalhos de Brown e Warner (1980, 1985) citam, como fator estimulante da capacidade do poder de previsão dos retornos, a tendência de sobrevivência. Isto acontece quando as empresas que se tornam inativas durante o período em análise são sistematicamente excluídas, causando tendência positiva nos resultados dos testes realizados.

Chopra, Lakonishok e Ritter (1992) afirmam que o efeito de sobre-reação às boas e más notícias é mais significativo entre ações de empresas pequenas. A explicação para tal fato, segundo os autores, reside nos aspectos comuns do comportamento humano nos diversos mercados. Os investidores tendem a supervalorizar as informações mais recentes, decorrentes da idéia imprecisa da verdadeira duração do curto prazo, e estão sujeitos aos mesmos problemas de agência.

Acrescentando a todas as evidências apontadas para ineficiência dos mercados, Haugen (2000) afirma ainda que, mesmo se o mercado fosse eficiente, os determinantes dos retornos esperados das ações não estariam ligados exclusivamente aos fatores de risco, devido à presença de impostos e aos custos relacionados à liquidez diferencial das ações.

Apesar da abundância dos estudos realizados, é interessante ressaltar que os resultados encontrados são, de maneira geral, suscetíveis a problemas relacionados à metodologia empregada.

2.2 EFICIÊNCIA INFORMACIONAL

Para Bromwich (1992), informação é frequentemente definida como algo que transmite novos conhecimentos ao indivíduo. Contudo, do ponto de vista econômico, deve significar o conjunto de conhecimentos relevantes, capaz de influenciar a tomada de decisão.

O conhecimento adicional que não produz impacto sobre o processo decisório, ou apenas confirma as expectativas do tomador de decisão não deve ser considerada informação do ponto de vista econômico (Schiehll, 1996).

Partindo do enfoque econômico atribuído à informação, pode-se mensurar seu valor (ou qualidade). A definição de valor é dada em função do acréscimo na utilidade esperada com o uso ou acesso a um determinado sistema de informações, em relação ao não uso da informação.

Desta forma, Bromwich (1992) conclui afirmando que o Valor de um Sistema de Informações (VSI) perfeito pode ser mensurado pela expectativa de utilidade deste sistema (n_p) , menos a utilidade esperada de usar um sistema de informação nulo (n_0) , quando VSI >0 .

Valor de um Sistema de Informação =
$$(E(U/n_0) - E(U/n_0)) > 0$$
 (6)

Conforme Schiehll (1996), no intuito de se determinar o valor da informação através da mudança de opinião de seus usuários, variação no preço de uma ação torna-se um indicador eficaz para avaliar o impacto de uma informação sobre o mercado de capitais.

Tertuliano *et al.* (1993) avalia o impacto da informação como sendo uma forma de mensurar a adequação desta informação às necessidades dos investidores, e sua capacidade de proporcionar, aos participantes do mercado, subsídios para formar expectativas corretas quanto ao retorno futuro de um ativo.

Vários estudos foram realizados utilizando a variação no preço das ações como forma de analisar o impacto de uma determina informação ou evento. Dentre este se destacam Ball e Brown (1968), Foster et al. (1986), Cready (1988), Holthausen e Verrecchia (1990), Lamb (1993), Kelm (1996), Schiehll (1996), Prux (1998) e Antunes (2000).

De forma geral o objetivo destes estudos era investigar a hipótese de Eficiência de Mercado, na qual o preço dos ativos se ajusta em função da informação divulgada ao mercado. Desta forma, a variação anormal no preço de uma ação representa o impacto que uma informação gera sobre o mercado, com relação à expectativa do retorno esperado deste ativo.

2.2.1 O Impacto da Informação no Mercado Financeiro

Schiehll (1996) investigou, através de um estudo de eventos, se a divulgação de Demonstrações Financeiras de uma empresa de capital aberto produz efeitos no comportamento do preço das ações.

Os eventos considerados para o estudo foram à divulgação das Demonstrações Financeiras anuais e trimestrais de empresas de capital aberto. Os efeitos foram avaliados através das variações de volume negociado e / ou preço das ações negociadas na Bolsa de Valores que formavam a amostra.

Consistindo de um teste conjunto da eficiência informacional do mercado de capitais brasileiro e do modelo de mensuração de retornos anormais utilizado⁸, o autor afirma, nas conclusões de seu trabalho, que o mercado brasileiro de capitais possui um nível de eficiência semi-forte.

Assim sendo, evidencia-se que as **informações** oriundas de determinados eventos financeiros (decisões de investimento, financiamento, etc.) impõem ajustes rápidos e eficientes ao preço das ações, demonstrando a eficiência do mercado, especialmente quando são utilizados retornos diários e a data do evento pode ser determinada com precisão.

Schiehll (1996, p.33-34) ao concluir que os estudos de eventos confirmam sua importância para avaliar a eficiência informacional do mercado salienta: '6 efeito de outros eventos, ou informações, também devem ser estudados, pois o fortalecimento do mercado de capitais está condicionado à apreensão de seu funcionamento⁹"e complementa, "a classificação de variações anormais próximas à data do evento, permite identificar, entre outros efeitos, em que tipo de investidor uma determinada informação exerce maior impacto", indicando assim a existência do chamado Financial Behavior.

Considerando a possibilidade de ocorrência de **anomalias no mercado financeiro** ¹⁰, de maneira que os preços das ações não reflitam toda as informações relevantes ao mercado, especialmente aquelas não disponíveis publicamente, a hipótese de mercado eficiente deve levar em conta tanto à existência de assimetria informacional entre os participantes do mercado quanto os mecanismos de **sinalização de mercado** ¹¹. Como argumentam Pindyck e Rubinfeld (2002), assimetria informacional é uma das causas dos desvios de eficiência de mercado.

⁸ Schiehll (*op cit*, 1996) utilizou o modelo de Retorno Ajustado ao Risco e ao Mercado.

⁹ No Brasil, face ao número reduzido de trabalhos referentes à Eficiência de Mercado até então realizados, ainda é importante dimensionar os efeitos de determinados eventos sobre o processo de precificação das ações, a fim de melhor compreender o funcionamento do mercado de capitais brasileiro. Adaptado de Schiehll (1996, p.103).

¹⁰ Descritas na seção 2.1.4

¹¹ Conteúdo informacional dos anúncios e divulgações.

Os gestores, na condição de *insiders*, têm acesso exclusivo às informações sobre as oportunidades de investimentos e as expectativas dos fluxos de caixa futuro das empresas. A diferença de informação existente entre gestores e investidores corresponde a uma assimetria informacional (Copeland e Weston, 1992). Na presença de assimetria informacional, os preços das ações não refletem todas as informações relevantes, mas apenas aquelas publicamente disponíveis ao mercado.

Diante destes casos, devem existir incentivos para que as informações privilegiadas sejam divulgadas, como por exemplo, através de mecanismos envolvendo remuneração e benefícios dos gestores (Van Horne, 1992).

Segundo Kreps (1990), apud Antunes (2000), o uso de incentivos busca solucionar problemas como **risco moral** e **seleção adversa**.

O risco moral ocorre quando uma das partes envolvidas na transação pode empreender certas ações que afetam a avaliação da outra parte, sendo que esta outra parte é incapaz de monitorar perfeitamente a primeira; já a seleção adversa ocorre quando investidores, não conhecendo perfeitamente as expectativas de fluxo de caixa futuro da empresa tão bem quanto os gestores desta, avaliam as ações abaixo do real valor das mesmas, causando assim uma sub avaliação (Pindyck e Rubinfeld, 2002).

As dificuldades enfrentadas pelo mercado, tais como os problemas de assimetria informacional e/ou de seleção adversa, podem ser contornados através do uso da sinalização de mercado (*market signaling*). A sinalização corresponde à emissão de sinais que apresentam uma decisão com consequências econômicas (Luenberger, 1995), ou seja, implica que os sinais estejam relacionados com algum tipo de dispêndio (normalmente financeiro) que auxilie a garantir a credibilidade do sinal

Os sinais possibilitam a comunicação de alguns fatos aos investidores tornando as informações privilegiadas publicamente disponíveis, diminuindo ou mesmo extinguindo a assimetria informacional, e proporcionando alterações nas expectativas percebidas pelo mercado a respeito dos fluxos de caixa futuros da empresa (Antunes, 2000).

Anúncios das empresas referentes a decisões de investimento, financiamento e distribuição de dividendos, divulgados pelos gestores ao mercado, podem ser considerados como sinais que transmitem informações relevantes. A partir da percepção destes sinais pelo mercado, a expectativa é de que este reaja, ocasionando uma alteração nos preços das ações, as quais passaram a refletir estas novas informações (Ross e Westerfield, 2002).

2.2.2 O Impacto das Informações de Investimento e Lucratividade

De uma forma geral os sinais estão sujeitos a manipulação, pois existe a possibilidade de serem modificados pelos agentes que os emitem (gestores). No entanto, existem custos para que estas modificações possam ser realizadas, os chamados custos de sinalização, ou *signaling costs* (Spence, 1973).

Para Lamb (1993), além dos custos de sinalização, outro aspecto relevante diz respeito à credibilidade (ou reputação) dos participantes, a qual somente existirá se as atividades de sinalização implicarem em um custo. Ocorre, então, que a probabilidade de alguém honrar e conseguir executar o que foi sinalizado é proporcional à credibilidade da empresa. Dentro desta perspectiva, Katz e Rosen (1991) afirmam que o estabelecimento da credibilidade pode ajudar a superar problemas de assimetria informacional, mas não proporciona ao mercado um equilíbrio competitivo inteiramente eficiente.

Levando em conta tais premissas, trabalhos realizados ao longo dos anos buscaram fornecer evidências empíricas sobre os efeitos das decisões de investimentos das empresas no valor de suas ações no mercado de capitais.

McConnell e Muscarella (1985) investigaram se as respostas do mercado de capitais aos anúncios corporativos de dispêndios de capital são consistentes com a suposição conjunta da maximização do valor de mercado e o modelo tradicional de avaliação corporativa.

A análise estatística dos preços das ações ao redor da data dos anúncios de dispêndio de capital, os quais caracterizariam a realização de investimentos, proporcionaram duas conclusões:

- 1. Os gestores revelam informações relevantes para a avaliação de suas empresas através do anúncio de dispêndios de capital;
- 2. A reação dos preços das ações aos anúncios de dispêndios de capital, na amostra de empresas industriais, é consistente com a suposição conjunta da maximização do valor de mercado e o modelo tradicional de avaliação das empresas, pois o aumento de dispêndios está associado com um aumento estatisticamente significativo do preço das ações, da mesma forma que a redução de dispêndios está associada com a redução dos preços.

Chan *et al.* (1995) realizaram um estudo de eventos nos Estados Unidos com o objetivo de evidenciar os efeitos das decisões de investimentos no valor de mercado da empresa, argumentando que a reação do mercado provavelmente depende tanto do tipo de decisão de investimento quanto de outras informações transmitidas pelo anúncio de investimentos.

Neste caso, os eventos considerados foram anúncios de mudança de endereço da matriz, da matriz de subsidiárias e das unidades produtivas. Conforme as razões fornecidas pelos gestores para tais mudanças do negócio, os anúncios foram classificados em seis categorias: expansão do negócio, redução de custo ou melhoria de eficiência, redução de capacidade ou saída de negócio, fusão de unidades, ou outras razões e razões não especificadas.

Os resultados encontrados pelos autores levam a crer que o mercado percebe as decisões de investimento como sinais das expectativas futuras da empresa e responde às decisões de acordo com estes sinais. Já o tipo de decisão de investimento representa uma regra menos importante na determinação da resposta de mercado.

Chung *et al.* (1998) fornecem evidências adicionais do impacto das decisões de dispêndios de capital no preço das ações, argumentando que a reação do preço da ação depende criticamente da estimativa do mercado sobre a qualidade das oportunidades de investimento das empresas.

Para tal, consideram que os anúncios de aumentos (reduções) nos dispêndios de capital afetam positivamente (negativamente) os preços das ações das empresas que possuem

valiosas oportunidades de investimento. Para empresas sem tais oportunidades, os anúncios de aumentos (reduções) nos dispêndios de capital afetam negativamente (positivamente) os preços das ações.

Os resultados encontrados, segundo os autores, confirmaram a convicção de que é a expectativa de crescimento futuro da empresa, ao invés do ramo de atividade, que determina a reação do mercado às decisões de dispêndios de capital.

Já com relação ao mercado acionário brasileiro, Lamb (1993) estudou a possível reação dos preços das ações à política de investimentos das empresas num mercado marcado por assimetria informacional. A investigação levou em consideração a possibilidade de existir correlação entre a variação do Ativo Permanente Contábil e o preço de mercado das ações, partindo do pressuposto que os demonstrativos financeiros registram explicitamente as decisões de investimento e que a imobilização em ativos dedicados à atividade operacional possa ser considerada como uma sinalização onerosa da existência de oportunidade de crescimento.

Considerando que: (1) os demonstrativos financeiros registram explicitamente as decisões de investimento e (2) a imobilização em ativos dedicados à atividade operacional, por parte das empresas, pode ser vista como uma sinalização onerosa da existência de oportunidades de crescimento, o autor afirma que: (1) devido ao caráter de irreversibilidade do investimento, o custo de oportunidade de imobilizar recursos é um custo real, pois o valor imobilizado é mensurável; (2) e este custo real e mensurável permite sugerir o investimento como atividade onerosa de sinalização da existência de oportunidades de crescimento identificadas pela empresa.

Partindo da pressuposição de que: "a revelação de dados da empresa através de seus demonstrativos financeiros é observada pelos investidores no mercado, que então ajustam suas expectativas de lucratividade futura da ação da empresa" (Lamb, *op cit*, p. 95), uma Variação do Ativo Permanente (*VAP*) pode ser calculada a partir das informações constantes nos balanços patrimoniais publicados na imprensa, bem como sua evolução comportamental pode ser acompanhada através da análise horizontal dessas demonstrações financeiras.

Considerando que variação positiva no ativo permanente (VAP > 0), além de indicar que houve aquisição de ativos, é uma evidência da realização de investimentos por parte da empresa, isto reforça a possibilidade de utilização da Variação do Ativo Permanente como representante das decisões de investimento. Caso uma VAP seja responsável por uma variação no valor da ação, pode-se afirmar que existe uma relação significativa entre estas duas variáveis, bem como a variação no valor da ação deve ocorrer no exato momento em que as informações relevantes, causadoras da VAP, tornarem-se publicamente disponíveis.

O mesmo autor revela em suas conclusões que, apesar dos dados e da metodologia utilizados mostrarem-se limitados para o objetivo originalmente proposto ao trabalho, é evidente a existência de indícios de correlação positiva entre as variáveis estudadas.

Além de Lamb (1993), Antunes (2000) investigou, por meio de um estudo exploratório no mercado de capitais brasileiros, o impacto das decisões de investimentos das empresas de capital aberto sobre os preços de suas ações na bolsa de valores. Para tal, adotou a variação do ativo permanente como indicador das decisões de investimento, os quais por sua vez são sinalizadores da existência de oportunidades de investimentos com *VPL* positivo e ao serem interpretados pelo mercado implicam em variação no preço das ações.

$$\Delta(P) = f(\Delta A P) \tag{7}$$

onde ?(P) é a variação no preço da ação e ?AP é a variação do ativo permanente.

O método de estudo de evento foi utilizado como teste de eficiência informacional e para determinação do modelo de mercado se optou pelo procedimento *trade–to-trade* para negociações infreqüentes, proposto por Maynes e Rumsey (1993) e também utilizado em estudos realizados no Brasil por Navarro, (1997); Herrera (1998) e Vieira (1998).

Com relação aos resultados do trabalho de Antunes (*op cit*), Antunes e Procianoy (2003) observaram que os preços das ações reagem quando os investimentos são confirmados através da publicação dos Demonstrativos Contábeis.

Em um mercado eficiente, a reação dos preços das ações às decisões de investimentos deveria ocorrer a partir do momento do anúncio. Contudo, os autores ao

considerarem a segmentação da amostra¹² de 424 eventos, identificaram indícios de que os preços reagem a variações nas contas do Ativo Permanente e não apenas aos anúncios de investimentos. Está possibilidade sugere a existência de **conflito de agência** no mercado, pois o descrédito por parte dos investidores quanto à veracidade dos anúncios feitos pelos agentes, implicaria na necessidade de comprovação pública da sinalização de que existem oportunidades de crescimento e que estas foram realmente identificadas pela empresa, gerando assim **ineficiência informacional**.

Antunes e Procianoy (2003) chamam atenção para esta possível **ineficiência** do mercado brasileiro, uma vez que este deveria reagir ao anúncio de investimentos, ou seja, antes dos demonstrativos serem publicados, e para o fato de que outros fatores, tais como **lucratividade**, possa contribuir para a reação observada no mercado.

Em função das evidências encontradas nos trabalhos citados, uma análise comparativa entre o efeito do lucro sobre os preços das ações e o efeito da comprovação de investimentos sobre o preço das ações possibilitará um maior esclarecimento dos mecanismos por meio dos quais o mercado financeiro brasileiro funciona, uma vez que estudos já realizados, envolvendo o conteúdo informacional dos Demonstrativos Financeiros, comprovam a existência de uma correlação positiva entre a divulgação destes demonstrativos e o retorno mensurado no preço das ações, considerando inclusive, em específico, o conteúdo informacional das variáveis representativas de investimentos, tais como variações nas contas do Ativo Permanente.

_

Antunes (2000) apresenta no trabalho original, três segmentações da amostra: a primeira através da verificação do comportamento do mercado de acordo com variações positivas e negativas das contas do Ativo Permanente e do Ativo Imobilizado; na segunda e terceira segmentações foram consideradas as variações percentuais das contas do Ativo Permanente e do Ativo Imobilizado.

3. MÉTODO

A análise da sensibilidade do preço das ações de empresas de capital aberto, para com os indicadores de lucro de origem contábil, é realizada através da correlação entre valores dos índices de lucratividade descritos neste capítulo e os retornos anormais identificados com cada um dos eventos considerados válidos para este estudo. Concluída esta análise, a significância destas correlações é comparada com àquelas já identificadas por Antunes (2000) no intuito de se determinar qual fator, a comprovação da realização de investimentos ou a comprovação de que os investimentos foram realizados em projetos realmente rentáveis, melhor explica retornos anormais.

Dentro deste contexto, o presente trabalho caracteriza-se como sendo um estudo exploratório no mercado de capitais brasileiro, realizado na forma de um teste de eficiência informacional, através da aplicação do método de Estudos de Eventos. Os dados utilizados foram coletados no banco de dados do Sistema Economática. Os valores utilizados, coletados entre os dias 27 e 28 de março de 2003, foram corrigidos pelo índice IGP-DI¹³ para o dia 15 de novembro de 1999.

O método de **Estudos de Eventos** permite, segundo Antunes (2000), Herrera (2000), Vieira (1998), Binder (1997), McKinlay (1997), McWilliams e Siegel (1997), Schiehll (1996), Kloeckner (1995) Kritzman (1994), Maynes e Rumsey (1993) e Fama (1991), quantificar o impacto de informações específicas divulgadas pelas empresas sobre o preço de suas próprias ações no mercado de capitais. Assim sendo, consiste em medir o retorno anormal através da utilização de um dos modelos de retorno estudados por Kloeckner $(op\ cit)^{14}$.

Para este estudo optou-se por utilizar o Modelo de Retorno Ajustado ao Mercado, conhecido como **modelo de mercado**¹⁵, para capturar o efeito dos eventos sobre o preço das ações, estabelecendo uma relação linear entre o retorno (Rit) da ação i durante o período t e o

¹³ Índice Geral de Preços – Distribuição Interna. Optou-se por deflacionar os dados em função das alterações de moeda e dos altos índices de inflação registrados durante o período do estudo.

14 Para descrição dos modelos estudados por Kloeckner (1995) ver páginas 22, 23, 24 e 25 do capítulo anterior.

¹⁵ Página 24 do capítulo anterior.

retorno da carteira de mercado (*Rmt*) durante o mesmo período, permitindo, desta forma, se determinar os possíveis retornos anormais das ações estudadas.

No sentido de evidenciar o método científico utilizado, descreve-se neste capítulo a amostra que compõem o estudo e os critérios utilizados para sua seleção. A seguir são apresentados os ajustes realizados no valor de mercado das ações, objetivando incorporar os efeitos dos eventos acionários e inflacionários às cotações utilizadas nas diversas etapas do estudo, os procedimentos utilizados na realização do **Estudo de Eventos**; as variáveis utilizadas na determinação do modelo estatístico para o teste de significância e finalmente são apresentadas às hipóteses testadas.

3.1 CARACTERIZAÇÃO DA AMOSTRA

A população do estudo é composta por ações listadas na Bolsa de Valores de São Paulo (Bovespa) durante o período da análise. O período de estudo é de 126 meses com início em março de 1989 e término em agosto de 1999, e o conjunto de relatórios anuais e trimestrais corresponde aos balanços referentes ao período do último trimestre de 1989 até o último trimestre de 1998.

A amostra foi formada pelas ações de empresas não financeiras de maior liquidez e formalmente registradas na Bovespa durante o período abrangido pela pesquisa. Optou-se pelo fator **maior liquidez** por este favorecer a obtenção de séries mais completas de **eventos** e **cotações** durante o período do estudo. Para determinação do grau de liquidez de cada ação, utilizou-se o **Índice de Liquidez** (*IL*).

O Índice de Liquidez (*IL*) reflete o nível de negociação da ação na bolsa de valores e, segundo Leite (1994), é um indicador que considera três aspectos essenciais da liquidez: (1) a participação da ação no mercado (relação entre o volume de negócio da ação e o volume total da bolsa); (2) a participação no número de negócios (relação entre o número de negócios com a ação e o número total da bolsa) e (3) a presença da ação nos pregões (relação entre o número de pregões em que a ação foi negociada e o número total de pregões da bolsa).

Para a ação i no período t, o índice de liquidez em bolsa (IL_{it}) é calculado no sistema Economática pela fórmula:

$$ILit = 100 \times \frac{pit}{Pt} \times \sqrt{\frac{nit}{Nt} \times \frac{vit}{Vt}}$$
 (8)

Onde, p_{it} é o número de dias em que houve ao menos 1 (uma) negociação com a ação i no período t; P_t é o número total de dias do período t; n_{it} é a quantidade de negócios com a ação i no período t; N_t é a quantidade total de negócios de todas as ações no período t; v_{it} é o volume em dinheiro das negociações realizadas com a ação i no período t e V_t é o volume total em dinheiro das negociações realizadas com a ação i no período t.

Do número total de ações negociadas na Bovespa na data da coleta original de dados¹⁶ foram excluídas, além de 34 ações de empresas do setor financeiro, as ações das empresas que deixaram de publicar quatro ou mais Balanços Patrimoniais que deveriam fazer parte do conjunto de relatórios do período do estudo.

Utilizando-se o índice de liquidez médio, ou seja, a média dos índices de liquidez da ação i no período t (t=1 ano), de cada um dos anos que compõem o período do estudo, elaborou-se uma lista de ações organizadas em ordem decrescente do índice de liquidez médio, da qual foram selecionadas as 100 primeiras ações. Destas 100 ações, 23 eram ordinárias (ON) e 77 preferenciais (PN).

O critério de liquidez foi mais uma vez aplicado nos 13 casos de empresas listadas com mais de uma classe de ação (ON e PN). Por fim, do universo de ações negociadas na Bovespa em 1999, foi obtida uma amostra final de 87 ações de empresas diferentes¹⁷.

Determinada a amostra final, observou-se que o número total de ações utilizadas na amostra, após a aplicação dos critérios mencionados, representava 22,1% da população de ações negociadas na Bovespa e 24,2% da população de ações de empresas não financeiras (com dados do sistema Economática).

¹⁶ 394 ações de 305 empresas distintas, sendo 34 destas ações de empresas do setor financeiro.

¹⁷ Ver anexo A.

3.2 AJUSTES APLICADOS AOS DADOS

Os eventos anuais e trimestrais foram analisados, utilizando-se cotações diárias de fechamento do pregão das ações da amostra e do índice *FGV-100*¹⁸, deflacionadas pelo *IGP-DI*¹⁹ e ajustadas para eliminar as oscilações proporcionadas por dividendos, bonificações e subscrições, obtendo-se assim as cotações reais. Foram desconsiderados os dias sem negociação na bolsa, tais como feriados e fins de semana, quando não há pregão.

Os dados foram corrigidos para proventos no próprio sistema Economática pelas seguintes fórmulas:

a) Dividendos:

$$P_c = P_o \times \left[1 - \frac{D}{P_u} \right] \tag{9}$$

b) Bonificação:

$$Pc = \frac{Po}{1+b} \tag{10}$$

c) Subscrição:

$$P_c = P_o \times \left[\frac{1}{(1+s)} + \frac{s \times S}{(1+s) \times P_u} \right]$$
 (11)

Onde, P_c é o preço corrigido, P_o é o preço original, P_u é o preço original na última data "**com**", D é o valor do dividendo, b é a percentagem da bonificação, S é o preço da subscrição e s é a percentagem da subscrição.

Os justes de proventos foram necessários porque a evolução do preço das ações é alterada continuamente em função de proventos realizados pelas empresas a seus acionistas. Corrigida esta descontinuidade, se obtém séries históricas que consideram apenas as oscilações que representam altas e baixas legítimas.

_

¹⁸ Calculado pelo Instituto Brasileiro de Economia, o índice *FGV100* é um índice de preço das ações de 100 empresas não financeiras negociadas na Bolsa de Valores de São Paulo (BOVESPA).

¹⁹ Ver nota de rodapé n° 13, página 36.

3.3 PROCEDIMENTOS DO ESTUDO DE EVENTOS

A presente análise utilizou a metodologia comumente aplicada em estudos de eventos, ou seja, coleta de dados da amostra de companhias onde ocorreram eventos com as mesmas características, definindo-se precisamente o dia do anúncio das informações relevantes ao estudo e que caracterizam o evento em si.

Os procedimentos usados neste estudo para determinar os eventos válidos, assim como para obtenção dos Retornos Anormais, buscaram acompanhar aqueles aplicados por Antunes (2000), visando-se com isto observar-se uma padronização dos procedimentos e a **comparatibilidade** dos resultados. Os procedimentos descritos a seguir servem para registrar o conjunto de atividades que levaram aos resultados encontrados. Descreve-se na seqüência as características dos eventos válidos analisados e os critérios para determinação dos retornos.

3.3.1 Características do Estudo de Eventos

Os eventos estudados correspondem às datas de divulgação dos balanços e anuais e trimestrais das empresas da amostra de acordo com as informações do sistema Economática, entre janeiro de 1990 e dezembro de 1998. Nos casos onde as informações constantes nos relatórios foram por algum motivo posteriormente alteradas, foram realizadas as necessárias correções das informações contábeis, com base nos dados publicados nas datas das divulgações originais informadas pelo sistema ²⁰.

As cotações reais obtidas corresponderam ao retorno da ações (*Rit*), enquanto que as cotações diárias do índice *FGV-100* representaram o retorno da carteira de mercado (*Rmt*) na equação do **modelo de mercado**. Optou-se pelo índice *FGV-100* em função de serem desconsideradas em sua formação as empresas do setor financeiro. Desta forma, preservou-se

,

²⁰ O Sistema Economática considera a data de divulgação do demonstrativo financeiro como sendo a data de entrega na Comissão de Valores Mobiliários (CVM), entretanto, quando ocorre alguma retificação das informações constantes no banco de dados, a data da retificação passa a ser indicada como sendo a data da divulgação. Uma vez que o estudo de evento procura determinar as reações do mercado quando da divulgação original procurou-se, através da pesquisa em arquivos de *back –up* do sistema, identificar as datas originais dos eventos assim como os valores originais apresentados nos relatórios.

uma homogeneidade com a amostra utilizada, uma vez que a mesma foi formada exclusivamente por ações de empresas não financeiras.

Uma vez que o **modelo de mercado** foi utilizado para determinação dos retornos necessários para realização da pesquisa e, visto que as ações da amostra apresentaram a ocorrência de negociações infreqüentes²¹, foi necessária a aplicação de procedimentos utilizados para reduzir os problemas relacionados e estimar os parâmetros do modelo.

Dentre os procedimentos passíveis de adoção²² quando há ocorrência de negociações infreqüentes, o método *trade-to-trade*, descrito por Maynes e Rumsey (1993) e utilizado em estudos realizados no mercado brasileiro por Antunes (2000), Herrera (1998), Vieira (1998) e Navarro (1997), despreza os dias sem negociação e utiliza o retorno da ação efetivamente observado, adaptando os procedimentos de estimação e os testes estatísticos.

Segundo Maynes e Rumsey ($op\ cit$), o retorno observado, R_{j,n_t} , pode ser expresso como a soma dos n_t retornos não observados:

$$Rj, nt = \ln \left[\frac{Pj, t}{P'j, t-1} \frac{P'j, t-1}{P'j, t-2} \dots \frac{P'j, t-s}{Pj, t-n t} \right]$$
(12)

Onde, n_t é o intervalo de tempo decorrido desde a negociação anterior terminando no dia t; $P_{j,t}$ é o preço da ação j no dia t; $P'_{j,t-s}$ é o preço não observado da ação j para os dias t-s e $s = 1, ..., n_t - 1$.

Assim as taxas de retorno observadas, $R_{j,nt}$, de cada ação j no dia t, após um intervalo de tempo n decorrido desde a última negociação, são calculados de acordo com o procedimento trade-to-trade pela equação:

²² Maynes e Rumsey (1993) citam três procedimentos aplicáveis para o tratamento de dados quando existem problemas de negociações infreqüentes, o *Lumped Return*, o *Uniform Return* e o *Trade to* trade. Através de simulações, os autores concluíram que o *Trade to trade* é significativamente superior aos demais.

_

²¹ A ausência de negociações na bolsa em dias normais de pregão, caracterizadas como **negociações infreqüentes**, podem ocorrer inclusive com ações que apresentam alto índice de liquidez.

$$Rj, nt = \ln \frac{Pj, t}{Pj, t - nt}$$
 (13)

Onde, n_t , é a extensão, no dia t, do intervalo de tempo decorrido desde a negociação anterior; $P_{j,t}$ é o preço da ação j no dia t; $P_{j,t-n_t}$ é o preço da ação no dia t menos n_t . O retorno observado da carteira de mercado, R_{m,n_t} , também é calculado por esta mesma equação.

O **modelo de mercado**, representado pela regressão linear da taxa de retorno observada sobre o retorno do portofólio de mercado ou o representante deste, é definido como:

$$R_{jt} = \boldsymbol{a}_j + \boldsymbol{b}_j R_{mt} + \boldsymbol{e}_{jt} \tag{14}$$

Onde, R_{jt} é o retorno esperado da ação j no período t; R_{mt} é o retorno observado, no período t, de um portofólio referencial representativo das variações gerais do mercado²³; \mathbf{a}_j e \mathbf{b}_j são os parâmetros estimados e \mathbf{e}_j é o resíduo da ação j no período t,.

Uma vez que existe dificuldade em se determinar exatamente quando o mercado tomou conhecimento a respeito da informação referente ao evento faz necessária a determinação de um período para o estudo do desempenho das ações. A janela do evento é o intervalo de tempo ao redor da data em que se pressupõe ter sido a informação tornada pública.

Calculados os parâmetros da regressão, seque-se a análise dos resíduos ou erros de predição apresentados no período do evento. Temos então que:

$$\boldsymbol{e}_{jt} = R_{jt} - \boldsymbol{a}_{j} - \boldsymbol{b}_{j}R_{mt}$$
 (15)

Onde, o resíduo \mathbf{e}_{jt} é considerado como o possível \mathbf{erro} de $\mathbf{predição}$ da ação j no período t.

 $^{^{23}}$ No caso deste estudo representado pelas ações do índice FGV-100.

Incluindo os intervalos de tempo entre as negociações ao **modelo de mercado**, a fórmula do retorno passa a ser:

$$R_{j,nt} = \mathbf{a}_{j,nt} + \mathbf{b}_{j}R_{m,nt} + \sum_{s=0}^{n_t-1} \mathbf{e}_{j,t-s}$$
 (16)

A ocorrência de resíduos (\mathbf{e}) diferentes de zero caracteriza a existência de retornos anormais (AR). O retorno anormal, $AR_{j,nt}$, da ação j no período n_t é calculado por:

$$ARj, n_t = Rj, n_t - \boldsymbol{a}_j, n_t - \boldsymbol{b}_j Rm, n_t$$
 (17)

O desvio padrão estimado dos retornos anormais da ação *j* é dado por:

$$S(ARj) = \sqrt{\frac{1}{T_j} \sum_{t=1}^{T_j} \left[\frac{AR_{jt}}{\sqrt{n_t}} \right]^2}$$
 (18)

Onde, T_j representa a quantidade de dias, durante o período de estimação, em que ocorreram negociações com a ação *j*, e o somatório considera somente os valores efetivamente observados (*nonmissing values*) de *t*, ou seja, o somatório despreza os dia sem negociação durante o período de estimação (Maynes e Rumsey, 1993; Vieira, 1998; Antunes, 2000).

O desempenho anormal é mensurado apurando-se os resíduos médios ou retornos anormais médios (\overline{AR}_t) para os períodos t pertencentes a janela do evento. O retorno anormal médio, \overline{AR}_t , para uma amostra de N ações no dia t da janela do evento é dado por:

$$\overline{ARt} = \frac{1}{N} \sum_{i=1}^{j} ARjt$$
 (19)

Os retornos anormais médios acumulados (*CARt*) são calculados visando a análise dos casos nos quais a reação do mercado difunde-se por alguns dias, permitindo assim avaliar

a reação do mercado ao longo da janela do evento. De acordo com Brown e Warner (1985), temos:

$$CARt = CARt - 1 + \overline{ARt}$$
 (20)

Devido a heterocedasticidade dos resíduos apurados conforme equação (14), há a necessidade dos dados utilizados na estimação dos parâmetros da equação linear serem divididos pela raiz quadrada do intervalo entre as negociações.

3.3.2 Determinação dos Eventos Válidos

Segundo Brown e Warner (1985), MacKinlay (1997), Maynes e Rumsey (1993), Herrera (1998) e Antunes (2000), para aplicação de um teste de significância estatística se pressupõe a independência *cross-sectional* entre os resíduos, significando que as datas dos eventos devem ser independentes entre si, ou seja, não deve existir sobreposição entre as janelas dos eventos, o chamado *clustering*.

Analisando o conjunto de relatório anuais e trimestrais do período do estudo, correspondente aos balanço de 1989²⁴ e aos balanços do período fiscal de janeiro 1990 a dezembro de 1998, foram utilizadas informações de 10 balanços anuais e de 30 ITR's (relatórios trimestrais), totalizando assim 36 divulgações por empresa, ou seja, divulgações de caráter contábil a respeito das empresas representadas por cada uma das ações.

O dia do anúncio, considerado como sendo a data de publicação de cada um dos balanços e ITR's e identificado no conjunto de dados do Sistema Economática, foi utilizado para determinação: a) da data do evento, ou seja, o dia 0 (zero); b) da janela do evento, ou seja, o período de 5 dias anteriores e 5 dias posteriores ao anúncio (de –5 a +5) e c) do período de estimação utilizado para determinação dos retornos de cada evento válido, o qual avaliou o período de 239 pregões anteriores a janela do evento (de –244 a –6).

_

²⁴ O balanço e ITR's de 1989 foram utilizados apenas para se determinar às alterações nas variáveis independentes, da mesma forma que as cotações das ações durante este ano foram utilizadas na determinação dos Retornos Anormais para os eventos ocorridos em 1990.

Desta forma, a janela do evento corresponde a 11 dias, observando uma simetria de - 5 e +5 dias em relação ao dia *t* (dia zero), e o período analisado para cada evento engloba 250 dias de negociação (de –244 a +5), ou seja, aproximadamente um ano.

Uma vez que o número de ações válidas na amostra foi de 87 ações, cada uma analisada ao longo de 36 trimestres, obteve-se um número total de 3.132 eventos. Deste universo foram excluídos: aqueles que apresentavam²⁵ sobreposição na data do evento (ocorrência de *clustering* em 2.345 eventos), aqueles cujas datas de divulgação não puderam ser determinadas com exatidão (47 eventos), aqueles que representavam casos de **eventos omissos**²⁶(48 eventos) e, aqueles que apresentavam ausência de negociação em um ou mais dos 11 dias da janela do evento (258 eventos). Do universo de eventos da amostra, 434 atenderam aos critérios sendo classificados como completamente independentes e aptos a serem incluídos nos teste estatísticos.

Dos 434 eventos considerados aptos, 324 apresentavam pelo menos um dia em que a ação não foi negociada (negociação infreqüente). Em função disto o retorno das ações para cada evento foi calculado com base na técnica *trade-to-trade* e, para testar a significância de **b** (beta), aplicou-se o valor do teste *t* da distribuição de *Student*²⁷. Uma vez que os resultados obtidos na regressão linear indicaram que dos 434 eventos, 10 não apresentavam valor do teste *t* significativo pelo menos ao nível de 10%, estes também foram excluídos.

Ao fim da aplicação dos critérios e testes acima mencionados, obtiveram-se 424 eventos válidos, os quais foram utilizados na realização das demais etapas deste estudo.

período de estimação.

²⁵ Desta maneira, caso um evento A apresentasse sua data de ocorrência na mesma data do evento B, ou vice versa, estes eventos eram excluídos, eliminando assim a dependência *cross – seccional* da amostra.

²⁶ Ausência de variação nas contas do Ativo Permanente.

 $t = \frac{r\sqrt{Tj-2}}{\sqrt{1-r^2}}$, onde, r é o coeficiente de correlação e T_j a quantidade de dias de negociação durante o

3.4. VARIÁVEIS TESTADAS

Dentre as variáveis independentes testadas podemos destacar quatro grupos: as representativas dos investimentos, as representativas de lucratividade e as demais variáveis, representativas do tamanho das empresas da amostra e as chamadas variáveis dummy, utilizadas para representar os diferentes setores das ações analisadas, assim como os diversos anos englobados pela pesquisa.

3.4.1 Variáveis de Lucratividade

As variáveis de lucratividade foram definidas em função dos três tipos de lucro básicos apresentados nos Demonstrativos Contábeis: Lucro Bruto, Lucro Operacional e o Lucro Líquido; uma vez que estas três modalidades representam os diferentes estágios das contas de resultado²⁸, se optou por analisar, na medida do possível²⁹, as variações percentuais e os índices de lucratividade originários de cada uma das três modalidades.

Assim sendo, as variáveis de lucratividade analisadas são:

1. Variação Percentual do Lucro Bruto (*VLB*%), calculada pela fórmula:

$$VLB\%it = \frac{LB_{it} - LB_{i(t-1)}}{LB_{i(t-1)}}$$
(21)

2. Variação Percentual do Lucro Operacional (VLOp%), calculada pela fórmula:

$$VLOp \% it = \frac{LOp_{it} - LOp_{i(t-1)}}{LOp_{i(t-1)}}$$
 (22)

3. Variação Percentual do Lucro Líquido (VLL%), calculada pela fórmula:

Ver anexo B.
 As variáveis Retorno sobre Ativo (Lucro Líquido/Ativo Total) e Retorno sobre o Patrimônio (Lucro
 Lucros Operacional e Bruto.

$$VLL\%it = \frac{LL_{it} - LL_{i(t-1)}}{LL_{i(t-1)}}$$
 (23)

4. Margem Bruta no evento t (MgBt), calculada pela fórmula:

$$MgBit = \frac{LucroBruto_{it}}{\text{Re }ceitaOperacionalLiquida_{it}}$$
(24)

5. Margem Operacional no evento t (MgOpt), calculada pela fórmula:

$$MgOpit = \frac{LucroOperacional_{it}}{ReceitaOperacionalLiquida_{it}}$$
(25)

6. Margem Líquida no evento t (MgLt), calculada pela fórmula:

$$MgL_{it} = \frac{LucroLiquido_{it}}{\text{Re } ceitaOperacionalLiquida_{it}}$$
(26)

7. Retorno sobre o Ativo Total (*RATt*), calculado pela formula:

$$RAT_{it} = \frac{LucroLiqui do_{it}}{AtivoTotal_{it}}$$
 (27)

8. Retorno sobre o Patrimônio Líquido (*RPLt*), calculado pela formula:

$$RPL_{it} = \frac{LucroLiquido_{it}}{PatrimonioLiquido_{it}}$$
 (28)

3.4.2 Variáveis de Lucratividade Inesperada

Além dos valores relativos (nos casos das variações de lucro e dos próprios índices), a questão do impacto causado pela surpresa dos lucros, considerado neste estudo como o **lucro inesperado**, analisados através da razão entre as variações do Lucro Líquido e dos

Assim sendo, as variáveis de lucratividade inesperada analisadas são:

1. Lucro Inesperado trimestral (*LIt1*), calculado pela fórmula:

$$LIt1it = \frac{LucroLiquido_{it}}{LucroLiquido_{i(t-1)}}$$
(29)

onde, $Lucro\ L\'iquido_{i(t-1)}$, corresponde ao Lucro L\'iquido publicado no trimestre anterior ao evento.

2. Lucro Inesperado anual (LIt4), calculado pela fórmula:

$$LIt4it = \frac{LucroLiquido_{it}}{LL_{it4}}$$
 (30)

onde, LL_{ii4} , corresponde a média do Lucro Líquido publicado nos quatro trimestres anteriores ao evento.

3. Margem Bruta Inesperada trimestral (*MgBt1*), calculada pela fórmula:

$$MgBt lit = \frac{MgB_{it}}{MgB_{id}}$$
 (31)

onde, MgB_{itI} corresponde ao índice de Margem Bruta do trimestre anterior ao evento.

4. Margem Bruta Inesperada anual (*MgBt4*), calculada pela fórmula:

$$MgBt \, 4it = \frac{MgB_{it}}{MgB_{itA}} \tag{32}$$

onde, MgB_{it4} corresponde a média dos índices de Margem Bruta dos quatro trimestres anterior ao evento.

5. Margem Operacional Inesperada trimestral (*MgOpt1*), calculada pela fórmula:

$$MgOpt1it = \frac{MgOp_{it}}{MgOp_{it1}}$$
 (33)

onde, $MgOp_{itI}$ corresponde ao índice de Margem Operacional do trimestre anterior ao evento.

6. Margem Operacional Inesperada anual (MgOpt4), calculada pela fórmula:

$$MgOpt4it = \frac{MgOp_{it}}{MgOp_{it4}}$$
 (34)

onde, $MgOp_{it4}$ corresponde a média dos índices de Margem Operacional dos quatro trimestres anterior ao evento.

7. Margem Líquida Inesperada trimestral (MgLt1), calculada pela fórmula:

$$MgLt1it = \frac{MgL_{it}}{MgL_{it1}}$$
 (35)

onde, MgL_{it1} corresponde ao índice de Margem Líquida do trimestre anterior ao evento.

8. Margem Líquida Inesperada anual (*MgLt4*), calculada pela fórmula:

$$MgLt4it = \frac{MgL_{it}}{MgL_{it4}}$$
 (36)

onde, MgL_{it4} corresponde a média dos índices de Margem Líquida dos quatro trimestres anterior ao evento.

9. Retorno sobre o Ativo Total Inesperado trimestral (*RATt1*), calculado pela formula:

$$RATt1_{it} = \frac{RAT_{it}}{RAT_{it}}$$
 (37)

onde, RAT_{itl} corresponde ao índice de Retorno sobre o Ativo Total do trimestre anterior ao evento.

10. Retorno sobre o Ativo Total Inesperado anual (*RATt4*), calculado pela formula:

$$RATt4_{it} = \frac{RAT_{it}}{RAT_{it4}}$$
 (38)

onde, RAT_{it4} corresponde a média dos índices de Retorno sobre o Ativo Total dos quatro trimestres anteriores ao evento.

11. Retorno sobre o Patrimônio Líquido trimestral (*RPLt1*), calculado pela formula:

$$RPLt1_{it} = \frac{RPL_{it}}{RPL_{it1}}$$
 (39)

onde, RPL_{itI} corresponde ao índice de Retorno sobre o Patrimônio Líquido do trimestre anterior ao evento.

12. Retorno sobre o Patrimônio Líquido Inesperado anual (*RPLt4*), calculado pela formula:

$$RPLt4_{it} = \frac{RPL_{it}}{RPL_{itA}} \tag{40}$$

onde, RPL_{it4} corresponde a média dos índices de Retorno sobre o Patrimônio Líquido dos quatro trimestres anteriores ao evento.

3.4.3 Variáveis de Investimentos

Para se determinar à realização de investimentos se utilizará, através do *naive model* de Ball e Brown $(1968)^{30}$, a Variação do Ativo Permanente (VAP_{it}) da ação i no período t, obtida a partir dos valores do Ativo Permanente (AP_{it}) divulgadas em Balanços Patrimoniais consecutivos, pela fórmula:

$$VAPit = APit - APi(t-1)$$
 (41)

Os valores percentuais da Variação do Ativo Permanente (VAP_{it}) da ação i no período t são obtidos a partir dos valores do Ativo Permanente (AP_{it}) divulgadas em Balanços Patrimoniais consecutivos, pela fórmula:

$$VAP\%it = \frac{APit - APi(t-1)}{APi(t-1)}$$
(42)

Visando a possibilidade de uma análise das decisões de investimentos, que envolvem especificamente imobilizações em ativos fixos, também foi considerada a Variação do Ativo Imobilizado (VAI_{it}) da ação da ação i no período t, obtida a partir dos valores do Ativo Imobilizado (AI_{it}) divulgadas em Balanços Patrimoniais consecutivos, pela fórmula:

$$VAIit = AIit - AIi(t-1)$$
 (43)

³⁰ Este modelo prevê que o valor atual do Ativo Permanente será o mesmo valor do ano anterior, estabelecendo que o erro de previsão é simplesmente a variação entre o período atual e o período anterior.

Os valores percentuais da Variação do Ativo Imobilizado (VAP_{it}) da ação i no período t são obtidos a partir dos valores do Ativo Imobilizado (AP_{it}) divulgadas em Balanços Patrimoniais consecutivos, pela fórmula:

$$VAI\%it = \frac{AIit - AIi(t-1)}{AIi(t-1)}$$
(44)

A utilização de variações percentuais permite a transformações de variáveis absolutas em variáveis relativas, o que possibilita uma melhor comparatibilidade entre os diversos tipos de variáveis.

Todos os valores foram coletados ao longo do período do estudo, tendo sido considerados os valores nominais tanto para o cálculo das Variações do Ativo Permanente quanto do Ativo Imobilizado.

3.4.4 Demais Variáveis

As demais variáveis consideradas são compostas por três grupos: As três variáveis utilizadas para mensurar o tamanho das empresas da amostra consideradas neste estudo correspondem respectivamente aos valores de Receita Operacional Líquida (ROL_{it}), de Ativo Total (AT_{it}) e de Patrimônio Líquido (PL_{it}) publicados em cada um dos eventos válidos; as 25 variáveis dummy representativas dos setores econômicos de atuação das empresas da amostra, segundo a classificação do Sistema Economática são elas: setor de alimentos (AL), de autopeças (AU), de bebidas (BE), de brinquedos (BR), de cimento (CI), de comércio (CO), de diversos (DI), de eletroeletrônicos (EE), de eletrodomésticos (ED), de energia (EN), de fertilizantes (EI), da indústria mecânica (EI), de informática (EI), madeireiro (EI), de material de transporte (EI), de metalurgia (EI), de siderurgia (EI), de papel e celulose (EI), de petroquímica (EI), de química (EI), de siderurgia (EI), de telecomunicações (EI), têxtil (EI), de transporte aéreo (EI) e outros (EI), 9 variáveis representativas dos anos considerados ao longo deste trabalho: 1990 (EI), 1991 (EI), 1992 (EI), 1993 (EI), 1994 (EI), 1995 (EI), 1996 (EI), 1997 (EI), 1998 (EI), 1998 (EI), 1998 (EI), 1998 (EI), 1999 (EI), 1997 (EI), 1999 (EI), 1999

Ao todo são consideradas cinquenta e nove diferentes variáveis independentes³¹ e duas variáveis dependentes e significativas pelo teste *t*, *AR* (Retorno Anormal) e *CAR* (Retorno Anormal Acumulado). Nas análises realizadas nesta pesquisa, estas variáveis serão testadas separadamente em relação às variáveis independentes.

3.5 TRATAMENTO DAS VARIÁVEIS

A metodologia empregada neste estudo se baseia na utilização da análise de Regressão Linear Múltipla para estimar os coeficientes da equação linear, relacionando uma ou mais variáveis independentes que melhor predizem o valor da variável dependente, contudo antes de se proceder com a realização das regressões faz-se necessário à aplicação de testes estatísticos complementares, conforme descrito a seguir.

Tendo em vista o grande número de variáveis e visando-se determinar os procedimentos estatísticos mais apropriados para o tratamento dos dados, se faz necessário testar a normalidade ou não normalidade das variáveis, excluídas as chamadas variáveis *dummy*. Para isto, utilizou-se a análise dos **histogramas** e da **curva normal** gerados pelos **valores** e **freqüências dos valores** apresentados pelas variáveis não *dummy*, além disto os resultados foram confirmados pela aplicação do teste KS (Kolmogorov-Smirnov), disponível no aplicativo de análise estatística *SPSS*. Este teste não paramétrico analisa, através de um teste de significância, a normalidade ou não normalidade da distribuição dos valores das variáveis³².

Determinadas às características de distribuição dos valores das variáveis, se procedem as análises para determinação da existência e do grau de correlação entre as diversas variáveis analisadas. Este procedimento tem como objetivo utilizar, no modelo estatístico, apenas variáveis não colineares que melhor expliquem as alterações apresentadas pelas variáveis dependentes. Identificadas as variáveis válidas³³ e acrescidas as variáveis

_

³¹ Duas variáveis de investimento, oito de lucratividade, doze de lucratividade inesperada, três de tamanho, vinte cinco de setor e nove referentes a cada um dos anos englobados pelo estudo, sendo que as últimas trinta e quatro são consideradas variáveis "dummy".

³² Valores com significância maior do que 5% indicam uma distribuição normal; valores com significância menor ou igual a 5% indicam a não normalidade da distribuição dos valores da variável.

³³ Variáveis não significativamente correlacionadas entre si.

dummy, se procede à realização das Regressões Múltiplas, de acordo com os métodos *enter* e *stepwise* disponíveis no aplicativo *SPSS*.

A metodologia de Regressão Linear Múltipla possibilita identificar quanto uma variável (variável dependente "Y") é explicada por outras (variáveis independentes " X_1 , X_2 , X_3 ..."). Através do Coeficiente de Determinação (R^2) é possível representar a proporção da variância de "Y" explicável pela análise do modelo gerado pela regressão. Os valores de R^2 dispõem-se entre zero (0) e um (1), fornecendo uma medida dimensional da quantidade do ajuste do modelo de regressão múltipla aos dados. Quanto mais próximo de "1" for o valor de R^2 , mais explicativa será a variável "X" (ou o modelo de variáveis " X_n ") pela variabilidade da variável "Y". O tipo de método escolhido permite especificar de que forma as variáveis independentes são inseridas no modelo estatístico, possibilitando a construção de vários modelos de regressão a partir do mesmo conjunto de variáveis.

O método *enter* é um processo de seleção de variáveis, no qual todas a variáveis selecionadas são inseridas em conjunto na análise, gerando um único modelo que considera todas variáveis significativas aleatoriamente. O método *stepwise* seleciona automaticamente, em função dos resultados obtidos através da inserção e remoção no modelo, as variáveis independentes que melhor explicam a variabilidade da variá vel dependente. Sendo o método *stepwise* mais criterioso ao realizar diferentes combinações de variáveis independentes, os resultados obtidos por este método tendem a ser melhor do que aqueles obtidos através do método *enter*.

Definidos a amostra, os eventos, as variáveis e o método estatístico, buscou-se atingir os objetivos relacionados no capítulo introdutório deste trabalho, através da análise das hipóteses descritas a seguir.

3.6 FORMULAÇÃO DAS HIPÓTESES

Este estudo tem por objetivo avaliar a reação do mercado acionário às informações de investimento e de resultados financeiros em função de retornos anormais apresentados pelas ações das empresas utilizadas na amostra. Assim sendo, pretende-se, através da análise de Regressão Linear Múltipla, proceder com o tratamento e controle de variáveis

independentes, a fim de se determinar quais das seguintes hipóteses melhor se aplicam a este caso:

A hipótese, $\mathbf{H}_{\mathbf{A}}$, visa investigar o impacto provocado pela publicação de informações relativas à lucratividade das empresas, sobre o retorno observado no valor das ações da amostra estudada. As hipóteses nula e alternativa são as seguintes:

 H_{A0} , As variáveis representativas dos índices de lucratividade publicados pelas empresas da amostra não podem ser considerados explicativos do retorno anormal observado nas ações.

 H_{A1} , As variáveis representativas dos índices de lucratividade publicados pelas empresas da amostra podem ser considerados explicativos do retorno anormal observado nas ações.

A hipótese, H_B , conduz a investigação do impacto provocado pela publicação de informações relativas à realização de investimentos por parte das empresas, sobre o retorno observado no valor das ações da amostra estudada. As hipóteses nula e alternativa são as seguintes:

 H_{B0} , As variáveis indicativas da realização de investimentos por parte da empresas da amostra não podem ser considerados explicativos de retorno anormal observado nas ações.

 H_{B1} , As variáveis indicativas da realização de investimentos por das empresas da amostra podem ser considerados explicativos de retorno anormal observado nas ações.

A hipótese, \mathbf{H}_{C} , conduz a investigação do impacto provocado pela publicação de informações relativas a lucros inesperados obtidos pelas empresas, sobre o retorno observado no valor das ações da amostra estudada. As hipóteses nula e alternativa são as seguintes:

 H_{C0} , As variáveis representativas dos índices de lucratividade inesperada publicados pelas empresas da amostra não podem ser considerados explicativos de retorno anormal observado nas ações.

 H_{C1} , As variáveis representativas dos índices de lucratividade inesperada pelas empresas da amostra podem ser considerados explicativos de retorno anormal observado nas ações.

Deve-se observar que a utilização do modelo de regressão é compatível com a metodologia utilizada em trabalhos anteriores, a exemplo de Leite e Sanvicente (1990), Kelm (1996), entretanto, estes mesmos autores chamam atenção para a importância de que as variáveis utilizadas nas regressões, não apresentem colinearidade, pois isto poderia gerar resultados distorcidos para os Coeficientes de Determinação resultantes das regressões.

4. APRESENTAÇÃO DOS RESULTADOS

Neste capítulo apresentam-se e discutem-se os resultados deste trabalho. Objetivando entender o comportamento do mercado acionário brasileiro, através da investigação da hipótese de **Eficiência de Mercado**, utilizou-se a análise de modelos gerados a partir das variáveis dependentes e independentes e cujos resultados são apresentados a seguir.

Os dados aqui apresentados são resultantes da aplicação da metodologia descrita no capítulo anterior e observam a seguinte ordem: resultados dos Retornos Anormais identificados no dia do evento e os Retornos anormais acumulados ao longo das janelas dos eventos; resultados dos testes de normalidade (histogramas e KS) para as variáveis dependentes, para as variáveis de lucratividade, para as variáveis de lucratividade inesperada, para as variáveis de investimentos e para as variáveis de tamanho; resultados da análise de correlação entre as variáveis; resultado das regressões baseadas na variável dependente AR_{it} e resultado das regressões baseadas na variável dependente CAR_{it} e discussão dos resultados.

Os testes foram segmentados em função das duas modalidades de variáveis dependentes estudadas, AR_{it} e CAR_{it} , tendo ambas sido submetidas ao mesmo tratamento estatístico de **Regressão Linear Múltipla**.

4.1 RETORNOS ANORMA IS

Os Retorno Anormais foram obtidos utilizando-se a metodologia descrita no capítulo anterior, em especial o tratamento apresentado no item *3.3.1*. Os resultados podem ser observados no Anexo E, onde podem ser identificados cada um dos 424 eventos³⁴ válidos (o

_

³⁴ Os eventos estão identificados pelo número do evento válido, enumerado em ordem cronológica a partir do primeiro evento considerado ao longo do período da análise, para cada uma das ações válidas. As ações válidas estão numeradas na coluna adjacente.

número do evento e da ação a qual o evento diz respeito) e os valores de Retorno Anormal e Retorno Anormal Acumulado.

Os Retornos Anormais obtidos podem ser considerados significativos (análise dos resultados da aplicação do teste t) e são idênticos àqueles encontrados por Antunes (2000) quando da realização de seu estudo. Isto demonstra a precisão dos resultados obtidos, uma vez que, a exemplo de Antunes ($op\ cit$), utilizou-se o **modelo de mercado** para determinação dos retornos.

4.2 TESTE DE NORMALIDADE

Confirmada a ocorrência de Retornos Anormais, a partir da determinação dos valores de AR_{it} e CAR_{it} , se procedeu o tratamento das variáveis pertinentes ao estudo. Para se determinar às características de **normalidade** ou **não normalidade** elaborou-se os histogramas de cada uma das variáveis, utilizando-se para isto a média e o desvio padrão³⁵ dos dados das variáveis, assim como as respectivas curvas normais³⁶, além disto foi realizado o teste KS, disponível no software SPSS, no intuito de se confirmar os resultados.

A análise dos histogramas e das curvas normais permite a conclusão de que todas as variáveis consideradas apresentam características de **não normalidade**. Esta conclusão esta de acordo com os resultados apresentados pelo teste³⁷ de normalidade *KS*, os quais corroboram com os resultados da análise dos histogramas, também indicando que dentre todas as variáveis analisadas não é possível determinar normalidade. Assim sendo, os procedimentos adotados para análise estatística devem ser àqueles compatíveis com **não normalidade**.

4.3 ANÁLISE DE CORRELAÇÃO

A análise de correlação possibilita mensurar a forma pela qual as variáveis estudadas se relacionam. Para se determinar à existência de colinearidade entre as variáveis utilizadas,

-

³⁵ Ver Anexo C - Resultado da Distribuição das Variáveis analisadas (exceto *dummies*).

³⁶ Ver Anexos de D até H - Histogramas das Variáveis analisadas (exceto *dummies*).

³⁷ Ver Anexo I – Resultados do teste KS (com exceção das variáveis *dummy*).

elaborou-se uma matriz de correlação com coeficiente de *Spearman*³⁸, apropriado para casos cujas variáveis apresentem **não normalidade**.

A matriz de correlação apresentou vinte casos cujos coeficientes de correlação entre duas variáveis eram superiores ou iguais a 75%, e cujas significâncias eram menores ou iguais a $10\%^{39}$, a análise destes casos apontou que das vinte cinco variáveis independentes analisadas, dezoito apresentavam colinearidade.

Tendo sido identificadas as variáveis que apresentavam colinearidade, se optou por excluir àquelas variáveis que comparativamente apresentassem, nos modelos resultantes das regressões, os menores valores do Coeficiente de Determinação (R²) e maior colinearidade. Desta forma foram selecionadas e descartadas onze variáveis independentes e colineares.

As quatorze variáveis independentes restantes, VLB%, VLOp%, MgB, MgOp, RPL, MgBt4, MgBt1, MgOpt4, MgOpt1, RATt4, VAP, VAI, ROL e PL, foram associadas às variáveis dummy e submetidas a análise estatística com a realização de Regressões Lineares Múltiplas. As regressões foram realizadas utilizando-se os métodos enter e stepwise a fim de se determinar quais os modelos melhor representariam as variações das variáveis dependentes. A análise considerou separadamente AR e CAR e os tratamentos foram inicialmente realizados tomando-se todas as variáveis válidas; após o tratamento original, as variáveis independentes foram separadas de acordo com suas características (lucratividade, lucro inesperado, investimentos e tamanho) e se realizaram novas regressões utilizando-se separadamente, cada grupos de variáveis, associados as variáveis dummy.

Desta forma foram realizadas vinte regressões cujos resultados são apresentados a seguir.

³⁹ Ver Anexo J - Matriz das Variáveis Colineares.

³⁸ A medida de correlação entre duas ou mais variáveis pressupõe que os valores das mesmas sejam ordenados do menor até o maior e que o coeficiente de correlação de *Pearson* seja aplicado a partir da ordenação realizada. O coeficiente de *Spearman* é uma versão **não paramétrica** do coeficiente de correlação de *Pearson*, baseado na ordem obtida com os valores das variáveis, ao invés dos reais valores das mesmas. É indicada para casos onde os dados a serem analisados não satisfazem as condições de normalidade. Os valores do coeficiente variam de –1 a +1, e o sinal do coeficiente indica a direção do relacionamento entre as variáveis, já o valor absoluto indica a robustez da correlação, uma vez que, quanto maior forem os valores absolutos, mais robusta será a correlação.

4.4 REGRESSÕES COM A VARIÁVEL AR

A tabela 1 apresenta os resultados dos Coeficientes de Correlação (R), de Determinação (R²) e de Determinação Ajustado (R² Ajustado), da regressão da variável dependente *AR* com relação a todas variáveis independentes não colineares e variáveis *dummy*. Os valores são respectivamente oriundos da aplicação dos métodos *enter* e *stepwise*.

Tabela 1: Variáveis não colineares e AR

Método	R	R ²	R ² Ajustado
Enter	0,379	0,144	0,037
Stepwise	0,262	0,068	0,057

Fonte: SPSS

Os resultados obtidos pelo método *enter* apontam como mais relevantes para explicação da variável AR, as variáveis MgOpt4 (t = -2,549 e significância 0,011)⁴⁰ e TI (t = -2,849 e significância 0,005). O método *stepwise*, dentre os cinco modelos gerados, aponta com mais relevantes as variáveis TI (t = -3,266 e significância 0,001), MgOp (t = 2,544 e significância 0,011), MgOpt4 (t = -2,399 e significância 0,017), AU (t = -2,052 e significância 0,041) e VLB% (t = 2,033 e significância 0,043). Em ambos métodos, os resultados encontrados para o Coeficiente de Correlação **(em negrito)** indicam que os modelos são pouco explicativos (menos de 75%) da variável AR, contudo ressalta-se a relevância das variáveis de lucros inesperados MgOpt4 e de lucratividade MgOp e VLB%.

A tabela 2 apresenta os resultados dos Coeficientes de Correlação (R), de Determinação (R²) e de Determinação Ajustado (R² Ajustado), da regressão da variável dependente *AR* com relação as variáveis independentes de lucratividade não colineares e variáveis *dummy*. Métodos *enter* e *stepwise*.

Tabela 2: Variáveis de lucratividade e *AR*

Tubera 2. Variavers de lactatividade e ilit			
Método	R	\mathbb{R}^2	R ² Ajustado
Enter	0,346	0,120	0,033
Stepwise	0,216	0,047	0,040

Fonte: SPSS

_

 $^{^{40}}$ O teste t foi utilizado para determinar a importância relativa de cada uma das variáveis dos modelos.

O resultado obtido pelo método *enter* aponta como mais relevantes para explicação da variável *AR*, as variáveis *VLB%* (t = 2,169 e significância 0,031) e *TI* (t = -2,915 e significância 0,004). O método *stepwise*, dentre os três modelos gerados, aponta com mais relevantes as variáveis *TI* (t = -3,127 e significância 0,002), *MgOp* (t = 2,503 e significância 0,013) e *VLOp%* (t = 2,090 e significância 0,037). Em ambos métodos, os resultados encontrados para o Coeficiente de Correlação **(em negrito)** indicam que os modelos são pouco explicativos (menos de 75%) da variável *AR*, contudo, as variáveis *VLB%*, *VLOp%* e *MgOp* aparecem nos modelos como as mais relevantes das variáveis de lucratividade.

A tabela 3 apresenta os resultados dos Coeficientes de Correlação (R), de Determinação (R²) e de Determinação Ajustado (R² Ajustado), da regressão da variável dependente *AR* com relação as variáveis independentes de lucro inesperado não colineares e variáveis *dummy*. Métodos *enter* e *stepwise*.

Tabela 3: Variáveis de lucro inesperado e AR

Método	R	R ²	R ² Ajustado
Enter	0,353	0,125	0,038
Stepwise	0,212	0,045	0,038

Fonte: SPSS

O resultado obtido pelo método *enter* aponta como mais relevantes para explicação da variável AR, as variáveis MgOpt4 (t = -2,643 e significância 0,009) e TI (t = -2,736 e significância 0,007). O método *stepwise*, dentre os três modelos gerados, aponta com mais relevantes as variáveis TI (t = -3,163 e significância 0,002), MgOpt4 (t = -2,404 e significância 0,017) e AU (t = -2,065 e significância 0,040). Em ambos métodos, os resultados encontrados para o Coeficiente de Correlação (em negrito) indicam que os modelos são pouco explicativos (menos de 75%) da variável AR, contudo, a variável MgOpt4 aparece nos modelos como as mais relevantes das variáveis de lucro inesperado.

A tabela 4 apresenta os resultados dos Coeficientes de Correlação (R), de Determinação (R²) e de Determinação Ajustado (R² Ajustado), da regressão da variável dependente AR com relação as variáveis independentes de investimentos não colineares e variáveis dummy. Métodos enter e stepwise.

Tabela 4: Variáveis de investimentos e AR

Método	R	R ²	R ² Ajustado
Enter	0,313	0,098	0,017
Stepwise	0,178	0,032	0,027

Fonte: SPSS

Os resultados obtidos pelo método *enter* apontam como mais relevante para explicação da variável AR, a variável TI (t = -2,796 e significância 0,005). O método *stepwise*, dentre os dois modelos gerados, aponta com mais relevantes as variáveis TI (t = -3,137 e significância 0,002) e AU (t = -2,009 e significância 0,045). Em ambos métodos, os resultados encontrados para o Coeficiente de Correlação **(em negrito)** indicam que os modelos são pouco explicativos (menos de 75%) da variável AR, além disto, os modelos gerados demonstram a pouca relevância das variáveis de investimentos para explicação da variável AR.

A tabela 5 apresenta os resultados dos Coeficientes de Correlação (R), de Determinação (R²) e de Determinação Ajustado (R² Ajustado), da regressão da variável dependente *AR*, com relação as variáveis independentes de tamanho não colineares e variáveis *dummy*. Métodos *enter* e *stepwise*.

Tabela 5: Variáveis de tamanho e *AR*

Método	R	\mathbb{R}^2	R ² Ajustado
Enter	0,308	0,095	0,013
Stepwise	0,178	0,032	0,027

Fonte: SPSS

Os resultados obtidos pelo método *enter* apontam como mais relevante para explicação da variável AR, a variável TI (t = -2,740 e significância 0,006). O método *stepwise*, dentre os dois modelos gerados, aponta com mais relevantes as variáveis TI (t = -3,137 e significância 0,002) e AU (t = -2,009 e significância 0,045). Em ambos métodos, os resultados encontrados para o Coeficiente de Correlação **(em negrito)** indicam que os modelos são pouco explicativos (menos de 75%) da variável AR, além disto, não demonstram relevância das variáveis de tamanho na explicação da variável AR.

4.5 REGRESSÕES COM A VARIÁVEL CAR

A tabela 6 apresenta os resultados dos Coeficientes de Correlação (R), de Determinação (R²) e de Determinação Ajustado (R² Ajustado), da regressão da variável dependente *CAR* com relação a todas variáveis independentes não colineares e variáveis *dummy*. Os valores são respectivamente oriundos da aplicação dos métodos *enter* e *stepwise*.

Tabela 6: Variáveis não colineares e *CAR*

Método	R	R ²	R ² Ajustado
Enter	0,462	0,213	0,115
Stepwise	0,375	0,141	0,120

Fonte: SPSS

Os resultados obtidos pelo método *enter* apontam como mais relevantes para explicação da variável *CAR*, as variáveis *VLB%* (t = -2,203 e significância 0,028), *MgOpt4* (t = -2,348 e significância 0,019), *IM* (t = 2,868 e significância 0,004), *TI* (t = -2,331 e significância 0,20), *MD* (t = 2,087 e significância 0,038), *TA* (t = 2,740 e significância 0,006) e *NOV0* (t = -2,043 e significância 0,042). O método *stepwise*, dentre os dez modelos gerados, aponta com mais relevantes as variáveis *IM* (t = 3,543 e significância 0,000), *TA* (t = 3,149 e significância 0,002), *CO* (t = -2,395 e significância 0,017), *TI* (t = -2,045 e significância 0,041), *VLB%* (t = -2,625 e significância 0,009), *VAP%* (t = 2,204 e significância 0,028), *MD* (t = 2,689 e significância 0,007), *MgBt4* (t = -2,079 e significância 0,038), *MgOpt4* (t = -2,038 e significância 0,042) e *NOV0* (t = -2,037 e significância 0,042). Em ambos métodos, os resultados encontrados para o Coeficiente de Correlação (**em negrito**) indicam que os modelos são pouco explicativos (menos de 75%) da variável *CAR*. Contudo, ressalta-se a relevância das variáveis de lucros inesperados *MgOpt4*, *MgBt4* e de lucratividade *VLB%*.

A tabela 7 apresenta os resultados dos Coeficientes de Correlação (R), de Determinação (R²) e de Determinação Ajustado (R² Ajustado), da regressão da variável dependente *CAR* com relação as variáveis independentes de lucratividade não colineares e variáveis *dummy*. Métodos *enter* e *stepwise*.

Tabela 7: Variáveis de lucratividade e *CAR*

Método	R	\mathbb{R}^2	R ² Ajustado
Enter	0,430	0,185	0,098
Stepwise	0,337	0,113	0,098

Fonte: SPSS

O resultado obtido pelo método *enter* aponta como mais relevantes para explicação da variável *CAR*, as variáveis *CO* (t = -2,141 e significância 0,033), *IM* (t = 2,964 e significância 0,003), *TI* (t = -2,094 e significância 0,037), *MD* (t = -2,247 e significância 0,025), *TA* (t = 2,906 e significância 0,004), *NOV0* (t = -2,592 e significância 0,010) e *VLB%* (t = -2,647 e significância 0,008). O método *stepwise*, dentre os sete modelos gerados, aponta com mais relevantes as variáveis *IM* (t = 3,848 e significância 0,000), *TA* (t = 3,253 e significância 0,001), *CO* (t = -2,534 e significância 0,012), *TI* (t = -2,034 e significância 0,043), *VLB%* (t = -2,390 e significância 0,017), *MD* (t = 2,582 e significância 0,010) e *NOV0* (t = -2,557 e significância 0,011). Em ambos métodos, os resultados encontrados para o Coeficiente de Correlação (**em negrito**) indicam que os modelos são pouco explicativos (menos de 75%) da variável *CAR*. A variável *VLB%* aparece nos modelos como a mais relevante entre as variáveis de lucratividade.

A tabela 8 apresenta os resultados dos Coeficientes de Correlação (R), de Determinação (R²) e de Determinação Ajustado (R² Ajustado), da regressão da variável dependente *CAR* com relação as variáveis independentes de lucros inesperados não colineares e variáveis *dummy*. Métodos *enter* e *stepwise*.

Tabela 8: Variáveis de lucro inesperado e *CAR*

Método	R	\mathbb{R}^2	R ² Ajustado
Enter	0,440	0,194	0,098
Stepwise	0,334	0,111	0,096

Fonte: SPSS

Os resultados obtidos pelo método *enter* apontam como mais relevantes para explicação da variável CAR, as variáveis CO (t = -2,296 e significância 0,022), IM (t = 3,114 e significância 0,002), TI (t = -2,654 e significância 0,008), MD (t = 2,076 e significância 0,039), TA (t = 3,301 e significância 0,003), NOVO (t = -2,387 e significância 0,017) e MgOpt4 (t = -2,170 e significância 0,031). O método stepwise, dentre os sete modelos

gerados, aponta com mais relevantes as variáveis IM (t = 3,714 e significância 0,000), TA (t = 3,240 e significância 0,001), CO (t = -2,525 e significância 0,012), TI (t = -2,126 e significância 0,034), MD (t = 2,660 e significância 0,008), NOVO (t = -2,460 e significância 0,014) e MgBt1 (t = -2,176 e significância 0,030). Em ambos métodos, os resultados encontrados para o Coeficiente de Correlação (em negrito) indicam que os modelos são pouco explicativos (menos de 75%) da variável CAR, entretanto, as variáveis de lucro inesperado MgOpt4 e MgBt1 são utilizadas nos modelos criados.

A tabela 9 apresenta os resultados dos Coeficientes de Correlação (R), de Determinação (R²) e de Determinação Ajustado (R² Ajustado), da regressão da variável dependente *CAR* com relação as variáveis independentes de investimentos não colineares e variáveis *dummy*. Métodos *enter* e *stepwise*.

Tabela 9: Variáveis de investimentos e *CAR*

Método	R	R ²	R ² Ajustado
Enter	0,403	0,162	0,087
Stepwise	0,331	0,110	0,095

Fonte: SPSS

O resultado obtido pelo método *enter* aponta como mais relevantes para explicação da variável *CAR*, as variáveis *CO* (t = -2,385 e significância 0,018), *IM* (t = 3,140 e significância 0,002), *TI* (t = -2,228 e significância 0,026), *MD* (t = 2,141 e significância 0,033), *TA* (t = 2,917 e significância 0,004). O método *stepwise*, dentre os sete modelos gerados, aponta com mais relevantes as variáveis *IM* (t = 3,576 e significância 0,000), *TA* (t = 3,077 e significância 0,002), *CO* (t = -2,505 e significância 0,013), *TI* (t = -2,123 e significância 0,034), *VAP* (t = 1,991 e significância 0,047), *MD* (t = 2,657 e significância 0,008) e *NOV0* (t = -2,013 e significância 0,045). Os modelos gerados em ambos métodos demonstram a pouca relevância das variáveis de investimentos para explicação da variável *CAR*. Além disto, em ambos casos os resultados encontrados para o Coeficiente de Correlação (**em negrito**) indicam que os modelos são pouco explicativos (menos de 75%) da variável *CAR*.

A tabela 10 apresenta os resultados dos Coeficientes de Correlação (R), de Determinação (R²) e de Determinação Ajustado (R² Ajustado), da regressão da variável

dependente *CAR*, com relação as variáveis independentes de tamanho não colineares e variáveis *dummy*. Métodos *enter* e *stepwise*.

Tabela 10: Variáveis de tamanho e *CAR*

Método	R	\mathbb{R}^2	R ² Ajustado
Enter	0,393	0,154	0,076
Stepwise	0,318	0,101	0,088

Fonte: SPSS

O resultado obtido pelo método *enter* aponta como mais relevantes para explicação da variável *CAR*, as variáveis *CO* (t = -2,280 e significância 0,023), *IM* (t = -3,269 e significância 0,001), *TI* (t = -2,106 e significância 0,036), *MD* (t = 2,127 e significância 0,034), *TA* (t = 2,941 e significância 0,003) e *NOVO* (t = -2,397 e significância 0,017). O método *stepwise*, dentre os seis modelos gerados, aponta como mais relevantes as variáveis *IM* (t = 3,286 e significância 0,000), *TA* (t = 3,195 e significância 0,002), *CO* (t = -2,545 e significância 0,011), *TI* (t = -2,079 e significância 0,038), *MD* (t = 2,591 e significância 0,010) e *NOVO* (t = -2,505 e significância 0,013). Os modelos gerados em ambos métodos, além de apresentarem baixo Coeficiente de Correlação (**em negrito**), não demonstram relevância das variáveis de tamanho na explicação da variável *CAR*.

4.6 DISCUSSÃO DOS RESULTADOS

Os resultados apresentados demonstram que não há relações significativas entre as variáveis dependentes e independentes, uma vez que os coeficientes de R^2 ficaram abaixo de 2,13. Este resultado foi obtido com o modelo envolvendo todas variáveis não colineares e dummies, e considerando a variável dependente CAR.

A predominância de melhores resultados⁴¹ quando utilizada a variável dependente *CAR* comprova que os efeitos gerados pela publicação de informações contábeis são melhor identificados quando considerada uma **janela de evento**.

-

⁴¹ Os modelos utilizando como variável dependente a variável *CAR* obtiveram, quando comparados aos resultados obtidos com a variável *AR*, melhores resultados em todos as análises.

Naquilo que tange os objetivos deste trabalho, os resultados não permitem rejeitar a hipótese nula \mathbf{H}_{A0} . Neste sentido, as regressões efetuadas com as variáveis de lucratividade, cujos resultados são apresentados nas tabelas 1, 2, 6 e 7 das seções anteriores, não foram capazes de gerar um Coeficiente de Determinação que significativamente explique o comportamento dos preços das ações da amostra. Desta forma podemos afirmar que o impacto provocado pela publicação de informações relativas à lucratividade das empresas da amostra, não pode ser considerado explicativo dos retornos anormais observados.

Com relação à segunda hipótese testada, os resultados obtidos não permitem rejeitar a hipótese nula $\mathbf{H_{B0}}$, uma vez que as regressões efetuadas com as variáveis de investimentos, cujos resultados podem ser observados nas tabelas 1, 3, 6 e 8 das seções anteriores, não foram capazes de gerar um Coeficiente de Determinação que significativamente explique o comportamento dos preços das ações da amostra. Assim sendo, não é possível afirmar que as confirmações da realização de investimentos possam ser consideradas explicativa dos retornos anormais observados.

Os resultados também não nos permitem rejeitar a hipótese nula \mathbf{H}_{C0} , ou seja, mesmo a ocorrência de lucros (prejuízos) inesperados não nos possibilita afirmar que tais **surpresas** podem ser consideradas explicativas dos retornos anormais observados.

Com relação aos objetivos propostos para este trabalho, podemos afirmar que:

- Tendo analisado a relação entre a publicação de indicadores de lucro (índices de lucratividade) por parte das empresas e o retorno observado no valor das ações da amostra estudada, a ocorrência de retornos anormais pode ser relacionada à publicação destes indicadores, contudo, esta relação não ocorre de forma significativa;
- As evidências encontradas indicam que as variações relativas dos lucros, medidas a partir da análise entre os valores dos índices de lucratividade válidos, publicados no dia do evento, e os valores destes índices observados no trimestre imediatamente anterior ao do evento (trimestre t-1), assim como a média dos valores registrados ao longo dos quatro trimestres anteriores ao

trimestre do evento (média dos trimestres t-1, t-2, t-3 e t-4), não tem relação **significativa** com os preços das ações da amostra ao longo período do estudo;

Analisando os resultados obtidos através do método de Regressão Linear Múltipla, o fator **lucratividade** (representado pelas variáveis independentes de lucratividade do modelo) é comparativamente mais explicativo da ocorrência de retornos anormais do que o fator **realização de investimentos** (representado pelas variáveis de investimentos).

Como demonstram os resultados descritos para a amostra e período analisados, tanto as variáveis de lucratividade quanto as variáveis de investimentos, de tamanho e *dummies*, não podem ser consideradas explicativas dos Retornos Anormais identificados. Dentre as variáveis *dummy* analisadas destacam-se as representativas do setor de Informática (TI) e Autopeças (AU) quando utilizada a variável dependente AR; quando utilizada a variável dependente CAR, destacam-se as variáveis *dummy* setor Indústria Mecânica (IM), setor de Informática (TI), setor Madeireiro (MD), setor de Transporte Aéreo (TA), setor de Comércio (CO) e o ano de 1990 (NOVO).

5. CONCLUSÕES

Comparativamente analisando os resultados encontrados por Antunes (2000), fica evidente que, embora haja certas divergências, relacionadas sobre tudo ao nível de significância dos resultados encontrados, os autores são unânimes em concluir que há relação entre a publicação de informações contábeis (tais como variações no Ativo Permanente e índices de lucratividade).

Ainda assim, os resultados apresentados ao longo do capítulo anterior mostram-se bastante coerentes em relação a Hipóteses de Eficiência de mercado em sua forma semi-forte.

Uma vez que os testes realizados permitem de certa forma evidenciar uma reação do mercado quanto da publicação de informações contábeis, os modelos gerados são, do ponto de vista estritamente estatístico, inadequados para determinar com segurança que, tanto a confirmação de investimentos quanto à confirmação de lucros são explicativos dos Retornos Anormais identificados.

As divergências observadas, referentes ao nível de significância dos resultados encontrados, podem ser explicadas por fatores ligados ao tratamento estatístico dispensado a variáveis consideradas em ambos estudos. Dentre estes fatores é relevante observar o fato do autor ter empregado neste estudo um método para análise estatística dos dados, diverso⁴² daquele utilizado por Antunes (*op cit*).

Outro fator que pode ter relevância é o tratamento dado as variáveis em termos de segmentação. Contrário ao procedimento adotado por Antunes (*op cit*), optou-se por analisar um maior número de variáveis, no intuito de estabelecer a relevância destas dentro de uma modelagem mais ampla, abrangendo um maior número de possibilidades.

⁴² Antunes (*op cit*) optou por utilizar o teste estatístico de "*Rank*".

Com relação às questões levantadas por Antunes (*op cit*), referentes a possível interferência dos lucros nos resultados por ele observados, estas se demonstraram acertadas, pois os resultados encontrados apontam os fatores diretamente relacionados com lucratividade como mais explicativos dos retornos anormais do que aqueles relacionados com a realização de investimentos.

Contudo, convém ressaltar importância em se ter cautela com a tendência a generalizações a respeito das considerações oriundas do resultado deste trabalho, uma vez que as mesmas se referem às ações das empresas selecionadas para a amostra e ao período considerado pelo estudo.

O período considerado abrange momentos conturbados da economia nacional, com os Governos civis que se sucederam nas décadas de 80 e 90 lançando mão de diversos planos econômicos que visavam à estabilização do país. Tal fator deve ser considerado como relevante uma vez que impactos econômicos se repetiram pelo menos sete vezes em um breve espaço de tempo⁴³, alcançando o Brasil em 1994, através do Plano Real, a derrubada da inflação e a esperada estabilização econômica.

Não obstante tais fatos, a questão que permanece refere-se até que ponto os resultados obtidos por este trabalho garantem as prerrogativas da hipótese de Eficiência de Mercado. Os resultados obtidos, embora estatisticamente não possam ser considerados significativos, dizem respeito a uma análise de fatores financeiros, área na qual os resultados aqui encontrados podem ser considerados de forma pragmática bastante significativos, especialmente se consideramos os resultados tipicamente obtidos em pesquisas nesta área.

A ocorrência de Retorno Anormal ao longo da janela do evento é um indicativo irrefutável de que, considerando os resultados aqui descritos, há a necessidade de um melhor entendimento quanto à forma pela qual o mercado reage à publicação de Informativos Contábeis.

⁴³ Fevereiro de 1986, Plano Cruzado I; novembro de 1986, Plano Cruzado II; junho de 1987, Plano Bersser; janeiro de 1989, Plano Verão; março de 1990, Plano Collor I; fevereiro de 1991, Plano Collor II e julho de 1994, Plano Real.

Thaler e Barberis (2002) e Vieru *et al.* (2001) argumentam que anomalias identificadas no mercado financeiro somente podem ser completamente interpretadas, utilizando-se modelos em que os agentes não são completamente racionais.

A opinião destes autores diz respeito ao leque de possibilidades que se abre, quando, ao adentrarmos o campo da psicologia, consideramos a Teoria Comportamental Financeira (*Financial Behaviour*) como um campo relativamente inexplorado da Teoria Financeira, especialmente no Brasil, e cujas proposições poderiam explicar melhor os resultados obtidos por esta e outras pesquisas.

Como sugestão para trabalhos futuros, indica-se a realização de estudos que considerem um maior número de variáveis, que considerem um período de economia mais estável, proporcionando resultados menos susceptíveis a fatores macroeconômicos e que levem em consideração a possibilidade de aspectos subjetivos, tais como comportamento irracional por parte dos participantes do mercado, serem causadores de anomalias não completamente explicadas.

REFERÊNCIAS BIBLIOGRÁFICAS

- ALMEIDA, G.R.; RODRIGUES, E.L.; LEMGRUBER, E.F. <u>O Efeito Mensal no Mercado</u> <u>Brasileiro de Ações</u>. Anais do 17° ENANPAD. Salvador, v.6, p. 111-121, 1993.
- ANTUNES, M. <u>Os Efeitos das Decisões de Investimentos das Empresas sobre os Preços de Suas Ações no Mercado de Capitais</u>. (Dissertação Mestrado) PPGEP/UFRGS, Rio Grande do Sul, 2000.
- ANTUNES, M.; PROCIANOY, J.L. <u>Os Efeitos da Decisões de Investimentos das Empresas sobre os Preços de Suas Ações no Mercado de Capitais:</u> Revista de Administração da Universidade de São Paulo, v. 38, n. 1, jan/fev/mar, 2003.
- BALL, Ray; BROWN, Philip. <u>An Empirical Evaluation of Accounting Income</u>. Journal of Accounting Research, v. 6, n. 2, autumn, 1968.
- BASU, S. <u>Investment Performance of Common Stocks in Relation to Their Price-Earning</u>
 <u>Ratios: a test of the efficient market hypothesis</u>, The Journal of Finance, 32, 663-682, Jun., 1977.
- BASU, S. *The Relationship Between Earnings Yield, Market Value, and Return For NYSE common Stocks:* Further Evidence, Journal of Financial Economics, 12, 129-156, 1983.
- BINDER, John J. *The Event Study Methodology Since* 1969, Forthcoming in Review of Quantitative Finance and Accounting, p. 66, June 1997.
- BREALEY, A Richard; MYERS, Stewart C. <u>Principles of Corporate Finance</u>, 6° ed., Irwin McGraw-Hill, 2000.
- BROWN, S. J., WARNER, J.B. *Measuring Security Price Performance*, Journal of Financial Economics. v. 8, p. 205-258, 1980.
- BROWN, S. J., WARNER, J.B. *Using Daily Stock Returns:* The case of event studies, Journal of Financial Economics. v. 14, p. 3-31, 1985.
- BROWN, S. J., GOETZMANN, W. N., ROSS, S. A. *Survival*, Journal of Finance, 50, 853-873, 1995.
- BROMWICH, Michael. *Financial Reporting, Information and Capital Markets*. London, Pitman Publishing, 1992.
- CHAN, Su Han; *et al.* <u>Stock Market Reaction to Capital Investment Decisions</u>: Evidence from business realocations. Journal of Financial Quantitative Analysis. v.30, p. 81-100, 1995

CHOPRA, N., LAKONISHOK, J., RITTER, J. R. <u>Measuring Abnormal Performance</u>: Do Stocks Overreact?, *Journal of Financial Economics*, 31, 235-268, 1992.

CHUNG, Kee. H; et al. <u>Investment Opportunities and the Market Reaction to Capital Expenditure Decisions</u>. Journal of Banking and Finance. v.22, p.41-60, 1998.

COPELAND, Thomas E.; WESTON, J. Fred. *Financial Theory and Corporate Policy*, 3° ed., Addison-Wesley, 1992.

COSTA JR., Newton. C. A. <u>Sazonabilidade do IBOVESPA</u>. Revista de Administração de Empresas. São Paulo, v.30, n.3, p. 79-84. jul/set. 1990.

COSTA JR., N. C. A.; O'HANLON, J. <u>O Efeito Tamanho Versus o Efeito Mês do Ano no Mercado de Capitais Brasileiro</u>: uma análise empírica. Revista Brasileira de Mercado de Capitais. v.43, p.61-74, 1991.

COSTA JR., N. C. A.; LEMGRUBER, E. F. <u>O Efeito Fim de Semana Durante Períodos de</u>

<u>Abertura e de Fechamento das Bolsas de Valores</u>. Anais do 17° ENANPAD, Salvador, v.6, p.103-111, 1993.

CREADY, W.M. *Information Value and Investor Wealth*: The case of Earnings announcements. Journal of Accounting Research. v.26, p.1-27, 1988.

FAMA, E. F. *Efficient Capital Markets*: a Review of Theory and Empirical Work, Journal of Finance, 25, 383-417, 1970.

FAMA, E. F. *Foundations of Finance*, Basic Books, New York, 1976.

FAMA, E. F. Efficient Capital Markets: II, Journal of Finance, 46, 1575-1617, 1991.

FAMA, E. F., FRENCH, K. R. <u>The Cross-section of Expected Stock Returns</u>, Journal of Finance, 47, 427-465, 1992.

FRENCH, K. <u>Stock Returns and The Weekend Effect</u>, Journal of Financial Economics, 8, 55-69, 1980.

FOSTER, T.W., et al. <u>The Incremental Informational Content of the Annual Report.</u> Accounting and Business Research, v. 16, p.91-98, 1986.

HAUGEN, R. Os Segredos da Bolsa - São Paulo: Pearson Educação, 2000.

HERRERA, Patrícia B. <u>Avaliação dos Retornos das Ações de Empresas Concordatárias</u>. PPGA/UFRGS, Rio Grande do Sul, 1998 (Dissertação de Mestrado).

HOLTHAUSEN, R., VERRECCHIA, R. *The Effect of Informedness and Consensus on Price and Volume Behavior*. The Accounting Review. v. 65, n.1, p. 191-208, January, 1990.

JENSEN, M. C. <u>The Performance of Mutual Funds in the Period 1945-64</u>. Journal of Finance, 23, p.389-416, May, 1968.

JENSEN, M. C. <u>Risk, the Pricing of Capital Assets, and the Evaluation of Investment Portfolios</u>. Journal of Business, 42, 167-247, April, 1969.

KATZ, Michael L.; ROSEN, Harvey; *Microeconomics*, 2° ed., Irwin, 1991.

KELM, Martinho Luiz. <u>A Sensibilidade do Preço das Ações de Empresas de Capital Aberto</u> <u>Às Informações Contábeis Divulgadas</u>, PPGA/UFRGS, Rio Grande do Sul, 1996 (Dissertação de Mestrado).

KLOECKNER, Gilberto de O. *Estudos de Evento*: A análise de um método. Revista Brasileira de Administração Contemporânea, n. 1, 261-270, 1995.

KOTHARI, S. P., SHANKEN, J., SLOAN, R. G. <u>Another Look at The Cross-section of Expected Stock Returns</u>, Journal of Finance, 50, 185-224, 1995.

KOUTSOYIANNIS, A. <u>Non Price Decisions</u>: The firm in a modern context. Macmillan Education, 1982.

KREPS, David M. <u>A Course in Microeconomic Theory</u>. Harvester Wheatsheaf, Adivision of Simon & Schuster International Group, 1990.

KRITZMAN, Mark P. <u>What Practioners Need to Know About Event Studies</u>, Financial Analysts Journal. November – December, p.17-20, 1994.

LAKONISHOK, J., SHLEIFER, A., VISHNY, R. W. *Contrarian Investment*, *Extrapolation*, *and Risk*, Journal of Finance, 49, 1541-1578, 1994.

LAMB, Roberto. <u>A Decisão de Investimento nas Empresas e a Reação do Mercado de Capitais:</u> Uma abordagem Informacional, (Dissertação Mestrado) PPGA/UFRGS, Rio Grande do Sul, 1993.

LEITE, Hélio de P.; SANVICENTE, Antonio Z. <u>Valor Patrimonial</u>: Usos, abusos e conteúdo Informacional. Revista de Administração de Empresas. São Paulo, v. 30, n3, p.17-31. jul/set. 1990.

LINTNER, J., <u>The Evaluation of Risk Assets and the Selection of Risk Investment in Stock</u> <u>portfolios and Capital Budgets</u>, Review of Economics and Statistics, 13-37, February, 1965.

LUENBERGER, David G.; *Microeconomics Theory*, 4° ed., McGraw-Hill, 1995.

MacKINLAY, A. Craig, *Event Studies in Economics and Finance*, Journal of Economic Literature. v.35, march, p.13-39, 1997.

MAYNES, Elizabeth.; RUMSEY, John. *Conducting Event Studies with Thinly Traded Stocks*. Journal of Banking and Finance. V.17, p.145-157, 1993.

McCONNELL, John. J.; MUSCARELLA, Chris J. <u>Corporate Capital Expenditures Decisions</u> <u>and the Market Value of the Firm</u>. Journal of Financial Economics. v.14, September, p. 399-422, 1985.

McWILLIAMS, Abgail; SIEGEL, Donald. <u>Cevent Studies in Management Research</u>: Theoretical and Empirical Issues. Academy of Management Journal, v.10, June, p.626-657, 1997.

NAVARRO, Paulo S. <u>O Impacto de Formas Societárias Sobre o Valor das Empresas de</u>
<u>Capital Aberto</u>: O Caso da Transformação de Conglomerados Financeiros em Bancos
Múltiplos. PPGA/UFRGS, Rio Grande do Sul, 1996 (Dissertação de Mestrado).

PINDYCK, Robert S.; RUBINFELD, Daniel L.; *Microeconomia*; 5° ed., Prentice Hall, São Paulo, 2002.

PRUX JR., Jaime L. <u>Assimetria Informacional e Precificação das Ações das Empresas</u>

<u>Negociadas na Bolsa de Valores de São Paulo:</u> Evidências a partir da faculdade de divulgar demonstrações contábeis em moeda constante a partir de 1996. (Dissertação Mestrado) PPGA/UFRGS, 1998.

ROSS, Stephen A.; WESTERFIELD, Randolph W.; JAFFE, Jeffrey F. <u>Administração</u> <u>Financeira</u>: Corporate Finance, 2° ed., Atlas, São Paulo, 2002.

SCHIEHLL, Eduardo. <u>O Efeito da Divulgação das Demonstrações Financeiras no Mercado</u> <u>de Capitais Brasileiro:</u> Um estudo sobre a variação no preço das ações. (Dissertação Mestrado) PPGA/UFRGS, Rio Grande do Sul, 1996.

SHARPE, W. F. <u>Capital Asset Prices</u>: A Theory of Market Equilibrium under Conditions of Risk, Journal of Finance, 19, 425-442, 1964.

SPENCE, Michael. *Job Market Signaling*. Quartely Journal of Economics, v.87, n.3, August, 1973.

TERTULIANO, Francisco A., *et al. Full Disclosure*: como aperfeiçoar o relacionamento das empresas abertas com o Mercado de Capitais. Ed. Maltese, São Paulo, 1993.

THALER, Richard; BARBERIS, Nicholas. <u>A Survey of Behavioral Finance</u>, September, 2002 Disponível em: < http://www.nbr.org/papers/w9222/>. Acesso em: 24 jul 2003.

VAN HORNE, James C.; <u>Financial Management and Policy</u>, 9° ed., Prentice Hall, Englewood Cliffs, NJ, 1992.

VIEIRA, Kelmara M. <u>Reação do Mercado a Stock Splits e Stock Dividends</u>: Um Estudo de Evento e Um Teste de Liquidez. PPGA/UFRGS, Rio Grande do Sul, 1998 (Dissertação de Mestrado).

VIEIRU, M.; PERTTUNEN, J.; SCHDEWITZ, H. <u>How Investidors Trade Around Interim</u>

<u>Earnings Announcements</u>, July, 2001. Disponível em: <
http://papers.ssrn.com/paper.taf?abstract_id=248725m/>. Acesso em: 20 jul 2003.

Anexos

ANEXO A: LISTA DAS AÇÕES INCLUÍDAS NA AMOSTRA.

Nº de ações	Nº da ação	Ação	Código na Bolsa
1	2	Acesita PN	ACES4
2	3	Acos Villares PN	AVIL4
3	5	Alpargatas PN	ALPA4
4	6	Aracruz PNB	ARCZ6
5	7	Artex PN (atual Kuala PN)	ARTE4
6	8	Avipal ON	AVPL3
7	10	Belgo Mineira PN	BELG4
8	11	Bic Caloi PNB	BCAL6
9	12	Bombril PN	BOBR4
10	13	Brahma PN (atual Ambev PN)	BRHA4
11	14	Brasmotor PN	BMTO4
12	15	Caemi Metal PN	CMET4
13	16	Casa Anglo PN	CABR4
14	17	Celesc PNB	CLSC6
15	19	Cemig PN	CMIG4
16	21	Cesp PN	CESP4
17	22	Ceval PN (atual Bunge PN)	CEVA4
18	23	Chapeco PN	CHAP4
19	24	Cia Hering PN	HGTX4
20	25	Cim Itau PN	ICPI4
21	26	Cofap PN	FAPC4
22	27	Confab PN	CNFB4
23	28	Copene PNA	CPNE5
24	29	Duratex PN	DURA4
25	30	Eberle PN	EBER4M
26	31	Electrolux PN	REPA4
27	32	Eletrobras ON	ELET3
28	34	Ericsson PN	ERIC4
29	35	Estrela PN	ESTR4
30	36	Eternit ON	ETER3
31	37	F Cataguazes PNA	FLCL5
32	38	Ferbasa PN	FESA4
33	39	Ferro Ligas PN	CPFL4M
34	40	Forjas Taurus PN	FJTA4
35	41	Gerdau Met PN	GOAU4
36	42	Gerdau PN	COGU4
37	43	Ind Villares PN	IVIL4
38	44	Inepar PN (atual Coinvest PN)	INEP4
39	45	Iochp-Maxion PN	MYPK4
40	46	Ipiranga Pet PN	PTIP4
41	47	Ipiranga Ref PN	RIPI4
42	48	Itausa PN	ITSA4
43	49	Itautec PNA	ITEC5

Nº de ações	Nº da ação	Ação	Código na Bolsa
44	50	J B Duarte PN	JBDU4
45	51	Klabin PN	KLAB4(atual KLAB5)
46	52	Light ON	LIGH3
47	53	Loj Americanas PN	LAME4
48	54	Magnesita PNA	MAGS5
49	55	Manah PN (atual Bunge Fertilizantes PN)	MAHS4
50	56	Mangels PN	MGEL4
51	57	Mannesmann ON	MANM3
52	58	Marcopolo PN	POMO4
53	59	Met Barbara PN (atual St. Gobain PN)	BARB4
54	60	Metal Leve PN	LEVE4
55	61	Minupar PN	MNPR4
56	62	Oxiteno PN	OXIT4
57	63	Paraibuna PN	PRBN4
58	64	Paranapanema PN	PMAM4
59	65	Paul F Luz ON	PALF3
60	67	Perdigao PN	PRGA4
61	68	Petrobras ON	PETR3
62	70	Pettenati PN	PTNT4
63	72	Pirelli ON	PIRE3
64	73	Pirelli Pneus PN	PIPN4
65	74	Plascar PN	OSAO4
66	75	Ripasa PN	RPSA4
67	76	Sadia SA PN	SOES4
68	77	Samitri PN	SAMI4
69	78	Santista Alimentos ON	MFLU3
70	79	Serrana ON (atual Bunge Brasil ON)	MSAN3
71	80	Sharp PN	SHAP4
72	81	Sid Nacional ON	CSNA3
73	82	Souza Cruz ON	CRUZ3
74	83	Suzano PN	SUZA4
75	84	Teka PN	TEKA4
76	86	Telebras - RCTB PN	RCTB41
77	88	Telerj PN	TERJ4
78	90	Telesp PN	TLSP4
79	91	Trombini PN	TRMB4
80	92	Tupy PN	TUPY4
81	93	Unipar PNB	UNIP6
82	94	Vale Rio Doce ON	VALE3
83	96	Varga Freios PN	VGAF4
84	97	Varig PN	VAGV4
85	98	Vidr S Marina ON	VSMA3
86	99	Votorantim C P PN	PSIM4
87	100	White Martins ON	WHMT3

Fonte: Economática

ANEXO B – ESTRUTURA BÁSICA DOS DEMONSTRATIVOS CONTÁBEIS

DEMONSTRAÇÃO DO RESULTADO DO EXERCÍCIO

(+) Receita Bruta Mercado Interno
(+) Receita Bruta Mercado Externo
RECEITA BRUTA (RB)
(-) Impostos sobre Vendas
RECEITA OPERACIONAL LÍQUIDA (ROL)*
(-) Custo Produtos Vendidos
LUCRO BRUTO (LB)*
(-) Despesas Operacionais Próprias
(-) Despesas com Vendas
(-) Despesas Administrativas
LUCRO OPERAC PROPRIO
(+) Resultado Financeiro
LUCRO OPERACIONAL (LOp)*
(+) Resultado não Operacional
LUCRO ANTES DO IMPOSTO DE RENDA
(-) Provisão para Imposto de Renda
(-) Participação/Contribuição Estatutária
(-) Participações Acionistas Minoritários
LUCRO LÍQUIDO (LL)*

^{*} Contas diretamente consideradas no estudo.

Fonte: Economática

ANEXO C – RESULTADO DA DISTRIBUIÇÃO DAS VARIÁVEIS ANALISADAS (EXCETO *DUMMIES*)

VARIÁVEL	MÉDIA	DESVIO PADRÃO
AR	0,003	0,04
CAR	0,01	0,13
VLB%	0,2	2,14
VLOp%	- 0,1	6,55
VLL%	0,9	10,24
MgB	25,2	28,40
MgOp	677,4	9.542,18
MgL	675,6	9.417,58.
RAT	0,6	7,88
RPL	-1,4	24,38
Lit1	1,9	10,24
Lit4	1,7	16,10
MgBt1	0,8	1,22
MgBt4	0,8	3,51
MgOpt1	-1,4	28,89
MgOpt4	1,4	7,86
MgLt1	-0,4	30,83
MgLt4	1,0	3,68
RATt1	1,8	9,94
RATt4	1,0	25,22
RPLt1	1,9	11,44
RPLt4	1,7	11,22
VAP%	0,03	0,2
VAI%	0,3	4,92
ROL	878.964.823,0	248.000.000,0
AT	63.431.868,3	173.000.000,0
PL	469.130.020,8	139.000.000,0

Fonte: SPSS

Curva normal e distribuição dos valores da variável AR

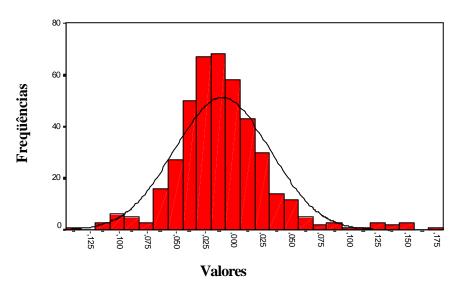


Figura 1 – Curva normal e valores de AR N = 424

Fonte: SPSS

Curva normal e distribuição dos valores da variável CAR

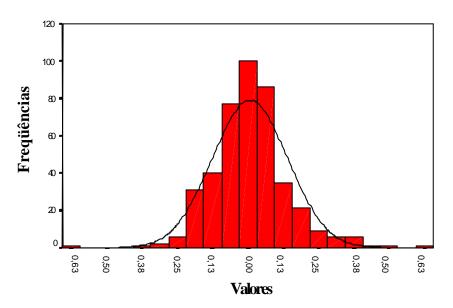


Figura 2 – curva normal e valores de CAR

ANEXO E -HISTOGRAMAS DAS VARIÁVEIS INDEPENDENTES DE LUCRATIVIDADE

Curva normal e distribuição dos valores da variável VLB%

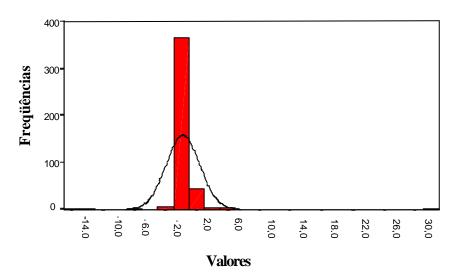


Figura 3 – Curva normal e valores de VLB%

N = 424Fonte: SPSS

Curva normal e distribuição dos valores da variável VLOp%

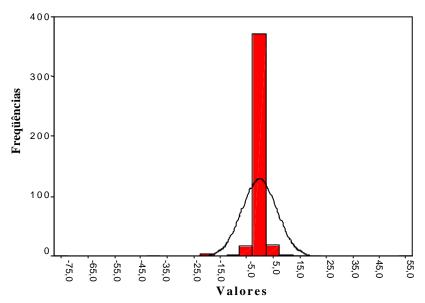


Figura 4 – Curva normal e valores de *VLOp*%

Curva normal e distribuição dos valores da variável VLL%

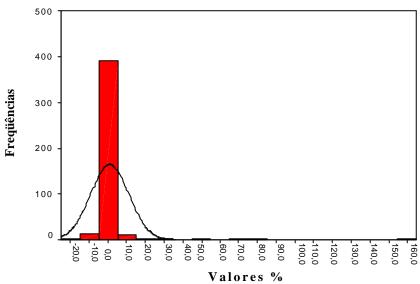


Figura 5 – Curva normal e valores de VLL%

N = 424Fonte: SPSS

Curva normal e distribuição dos valores da variável MgB

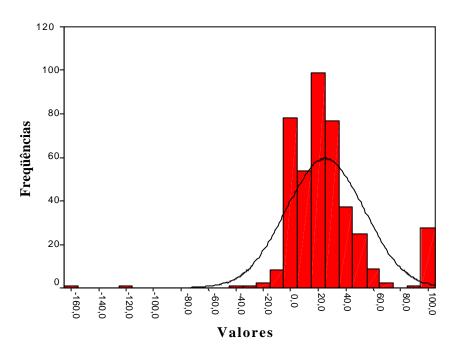


Figura 6 – Curva normal e valores de MgB

Curva normal e distribuição dos valores da variável MgOp

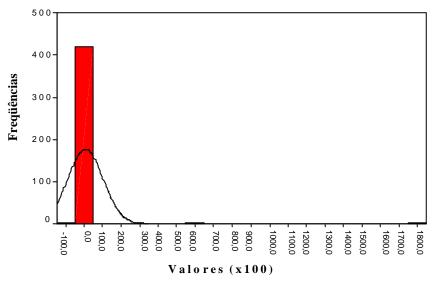


Figura 7 – Curva normal e valores de MgOp

N = 424Fonte: SPSS

Curva normal e distribuição dos valores da variável MgL

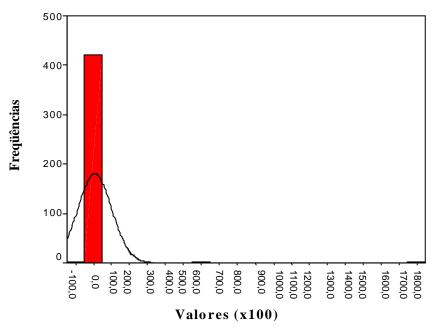


Figura 8 – Curva normal e valores de MgL

Curva normal e distribuição dos valores da variável RAT

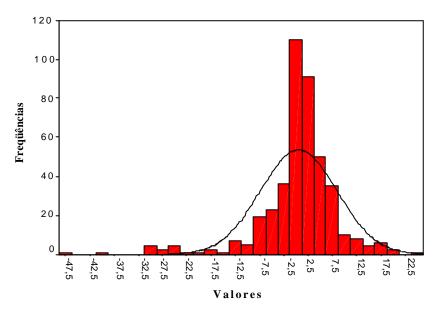


Figura 9 – Curva normal e valores de RAT

N = 424Fonte: SPSS

Curva normal e distribuição dos valores da variável RPL

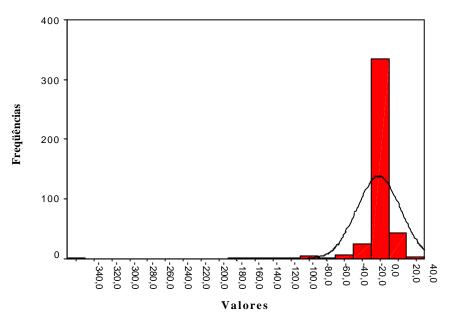


Figura 10 – Curva normal e valores de RPL

ANEXO F – HISTOGRAMAS DAS VARIÁVEIS INDEPENDENTES DE LUCRATIVIDADE INESPERADA

Curva normal e distribuição dos valores da variável LIt1

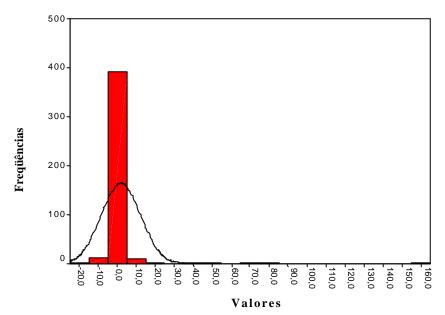


Figura 11 – Curva normal e valores de LIt1

N = 424 Fonte: SPSS

Curva normal e distribuição dos valores da variável LIt4

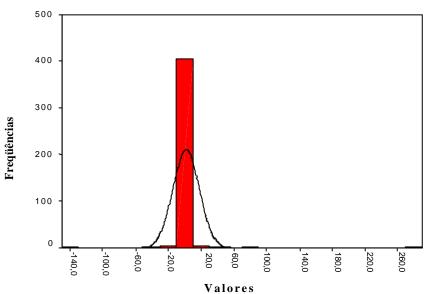


Figura 12 – Curva normal e valores de *LIt4*

Curva normal e distribuição dos valores da variável MgBt1

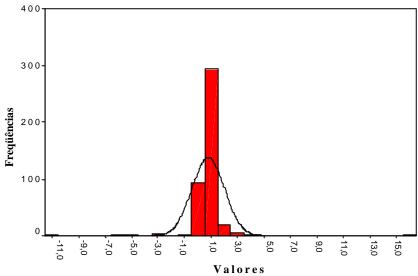


Figura 13 – Curva normal e valores de MgBt1

N = 424Fonte: SPSS

Curva normal e distribuição dos valores da variável MgBt4

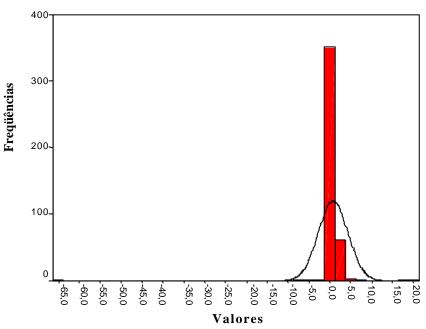


Figura 14 – Curva normal e valores de *MgBt4*

Curva normal e distribuição dos valores da variável MgOpt1

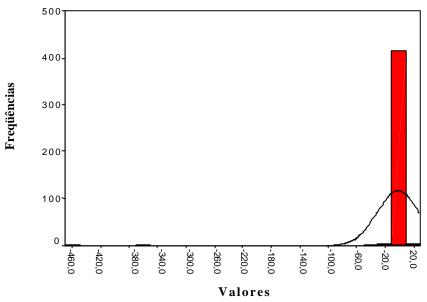


Figura 15 – Curva normal e valores de MgOpt1

N = 424 Fonte: SPSS

Curva normal e distribuição dos valores da variável MgOpt4

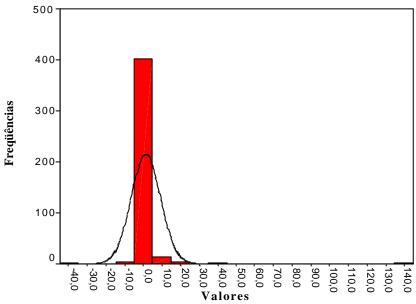


Figura 16 - Curva normal e valores de MgOpt4

Curva normal e distribuição dos valores da variável MgLt1

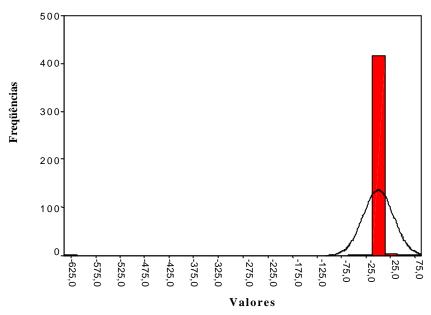


Figura 17 – Curva normal e valores de MgLt1 N = 424

Fonte: SPSS

Curva normal e distribuição dos valores da variável MgLt4

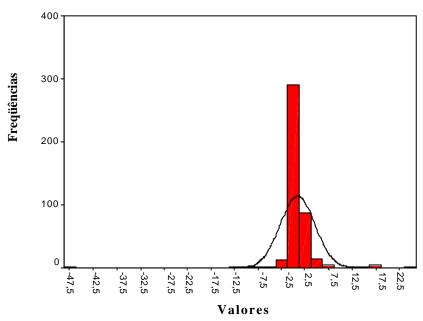


Figura 18 - Curva normal e valores de MgLt4

Curva normal e distribuição dos valores da variável RATt1

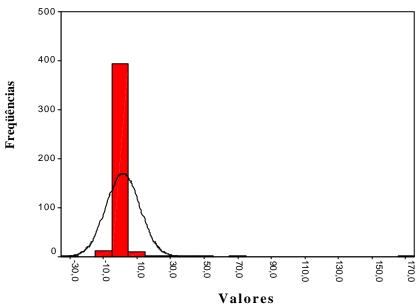


Figura 19 – Curva normal e valores de RATt1

N = 424 Fonte: SPSS

Curva normal e distribuição dos valores da variável RATt4

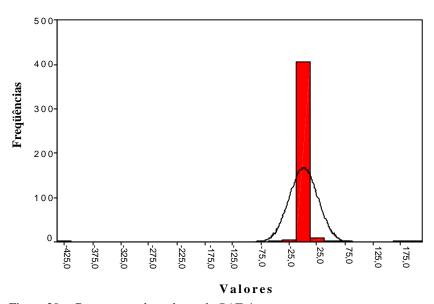


Figura 20 – Curva normal e valores de RATt4

Curva normal e distribuição dos valores da variável RPLt1

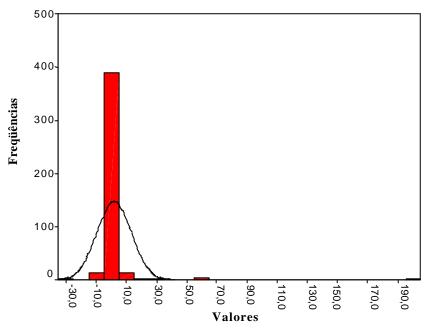


Figura 21 – Curva normal e valores de RPLt1

N = 424Fonte: SPSS

Curva normal e distribuição dos valores da variável RPLt4

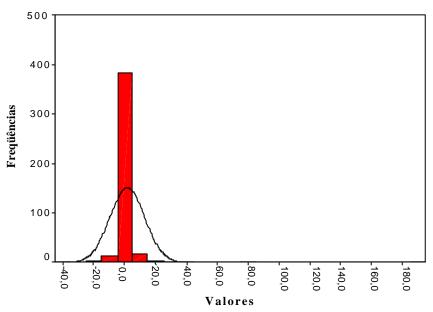


Figura 22 – Curva normal e valores de RPLt4

ANEXO G – HISTOGRAMAS DAS VARIÁVEIS INDEPENDENTES DE INVESTIMENTOS

Curva normal e distribuição dos valores da variável VAP%

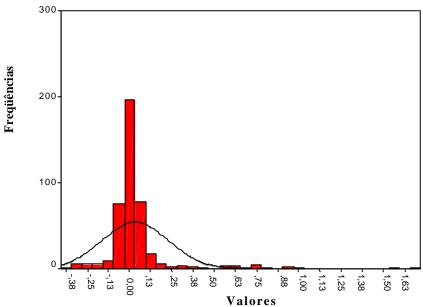


Figura 23 – Curva normal e valores de VAP%

N = 424Fonte: SPSS

Curva normal e distribuição dos valores da variável VAI%

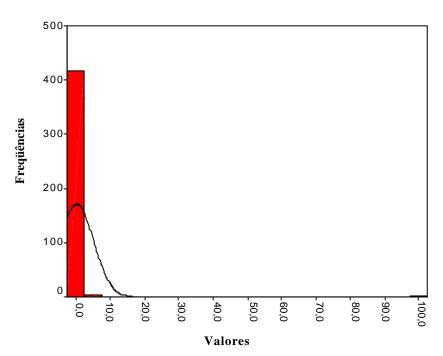


Figura 24 – Curva normal e valores de VAI%

ANEXO H – HISTOGRAMAS DAS VARIÁVEIS INDEPENDENTES DE TAMANHO

Curva normal e distribuição dos valores da variável ROL

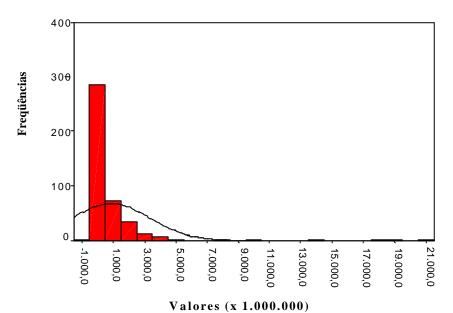


Figura 25 – Curva normal e valores de *ROL*

N = 424 Fonte: SPSS

Curva normal e distribuição dos valores da variável AT

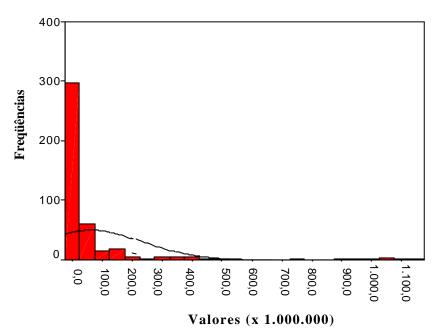


Figura 26 – Curva normal e valores de AT

Curva normal e distribuição dos valores da variável ${\it PL}$

Figura 27 – Curva normal e valores de PL

ANEXO I – TESTE DE NORMALIDADE $\underline{KOLGOROV\text{-}SMIRNOV}$

Teste Kolmogo	orov-Smirnov		
Variáveis	Nº de eventos	Kolmogorov-Smirnov Z	Significância
AR	424	1,812	0,003
CAR	424	1,508	0,021
VLB%	424	5,393	0,000
VLOp%	424	7,024	0,000
VLL%	424	7,608	0,000
Llt4	424	7,731	0,000
Llt1	424	7,606	0,000
MgB	424	3,124	0,000
MgOp	424	10,209	0,000
MgL	424	10,171	0,000
RAT	424	3,297	0,000
RPL	424	5,677	0,000
MgBt4	424	8,13	0,000
MgBt1	424	5,454	0,000
MgOpt4	424	7,156	0,000
MgOpt1	424	9,285	0,000
MgLt4	424	5,679	0,000
MgLt1	424	9,046	0,000
RATt4	424	8,213	0,000
RATt1	424	7,518	0,000
RPLt4	424	7,298	0,000
RPLt1	424	7,709	0,000
VAP%	424	5,69	0,000
VAI%	424	9,078	0,000
ROL	424	7,398	0,000
AT	424	7,268	0,000
PL	424	7,488	0,000

FONTE: SPSS

ANEXO J – MATRIZ DAS VARIÁVEIS COLINEARES

	Matriz de Correlação de Spearman																	
	Variáveis Correlacionadas																	
	%dOJA	%TT%	LI t4	LI t1	${ m MgOp}$	MgL	RAT	RPL	Mg Op t4	${ m Mg}$ Op t1	Mg L t4	Mg L t1	RAT t4	RAT t1	RPL t4	RPLt1	ATT	PL
VLOp%	*	.793 .000		.792 .000										.777 .000		.777 .000		
VLL%	.793 .000	*		.999 .000										.983 .000		.982 .000		
LI t4			*										.934 .000		.903 .000			
LI t1	.792 .000	.999 .000		*										.984 .000		.983 .000		
Mg Op					*	.914 .000												
Mg L					.914 .000	*	.737 .000	.749 .000										
RAT						.737 .000	*	.989 .000										
RPL						.749 .000	.989 .000	*										
Mg Op t4									*		.869 .000							
Mg Op t1										*		.782 .000						
Mg L t4									.869 .000		*							
Mg L t1										.782 .000		*						
RAT t4			.934 .000										*	.951 .000				
RAT t1	.777 .000	.983 .000		.984 .000									.951 .000	*		.995 .000		
RPL t4			.903 .000												*			
RPLt1	.777 .000	.982 .000		.983 .000										.995 .000		*		
ATT																	*	977 .000
PL																	.977 .000	*

LEGENDA:

COEFICIENTE SIGNIFICÂNCIA

Fonte: SPSS

Nº Eventos	Evento	Empresa	AR	CAR
1	22	2	-0,00598505563806879	0,04017753311763970
2	23	2	-0,00667116474522002	-0,03495065923595070
3	24	2	0,02482973559727930	0,08008149843704050
4	29	2	-0,02264506278209400	-0,09382346872033340
5	6	3	-0,02952674882403400	-0,24130246831824500
6	5	5	0,03467771824870520	-0,02339210767551650
7	7	5	-0,04598571923617580	-0,30704209136643900
8	8	5	0,05910019395895640	0,27089537509488800
9	12	5	0,16348493439451300	0,02102010548142810
10	13	5	0,02268648232452950	0,23572498956159100
11	9	6	0,01066898068625040	0,05899148661962650
12	11	6	-0,00155739295760279	0,00634701387663205
13	12	6	0,00897266488569831	0,05713492677655920
14	19	6	-0,02131978486588620	0,02990522351859750
15	22	6	0,00813173472301195	0,04453473895172230
16	26	6	-0,01515027387117270	0,04733527049625880
17	27	6	-0,01304168908695310	-0,12574648826330200
18	36	6	-0,01724895440975640	0,08190382133457110
19	11	7	0,06770088606724490	0,29157945684145600
20	31	7	-0,00262434751605555	-0,15090764848338300
21	1	8	-0,02854582717811050	-0,12939256205549600
22	5	8	-0,00126265590861448	0,01475370848209100
23	10	8	0,19163359612510700	0,33006497277830400
24	12	8	0,01131950461889930	-0,05836036074289450
25	14	8	-0,01914813508796300	0,16833652135824600
26	15	8	-0,01536204995646730	-0,02767469014211160
27	1	10	-0,02247033190444280	-0,07149138229561630
28	3	10	0,01994837989470470	0,06302794487057850
29	28	10	-0,00212821891415184	-0,05583476532743880
30	32	10	-0,01364117220482830	-0,00495313140875089
31	33	10	0,00566647876596263	0,14740340469827600
32	36	10	0,05779594844698680	-0,03022334578191920
33	14	11	-0,12234494235710600	-0,07810961326557320
34	15	11	-0,00202203374743836	-0,07956509147794390
35	16	11	-0,00807137272279235	-0,06268191509866030
36	18	11	-0,05211038922412480	-0,15526513678298500
37	14	12	0,03207333749490910	-0,04501451616185860
38	25	12	0,05769414328506280	0,02488631555179640
39	32	12	-0,00835204367315458	0,15322315804330100
40	33	12	0,01820162752026250	0,02428355066706610
41	5	13	-0,04168111122080270	-0,04434979223925970
42	7	13	0,00544110226261424	0,06211959834766870

				1
43	17	13	0,00065644636336679	-0,08388834773602800
44	18	13	-0,00502888707574789	-0,16864099346130400
45	28	13	0,00201012692990240	-0,02974981375365670
46	32	13	-0,00990325833446114	-0,00365772496916860
47	36	13	-0,00079281269387270	0,08623121368995870
48	9	14	-0,03150498554371120	-0,01747379316408890
49	10	14	0,02202947575559930	-0,12748539845422500
50	11	14	0,01305793526219570	0,10476158949988200
51	23	14	-0,01180840515832760	-0,04861992079264600
52	24	14	-0,01474384485549940	-0,06546484217417530
53	29	14	-0,03472480126367180	-0,05771141221941110
54	33	14	0,02202312266686430	-0,01341242935235080
55	34	14	0,01524538333172530	0,22433852607683000
56	36	14	-0,01946481243360330	-0,15922831391105600
57	4	15	-0,02647465778167610	-0,00144147306503060
58	5	15	-0,02764786123878530	0,02927661811790420
59	6	16	-0,01685197162744020	-0,14491421236193100
60	7	16	0,14645089440837500	-0,27390924694708500
61	15	17	0,01026422934279830	0,10264752355824700
62	27	17	-0,01851447921912560	-0,00549744970440386
63	28	17	0,03903793243395430	0,04377086388138760
64	29	17	-0,01313831586141400	-0,05349499277189180
65	33	17	-0,03655040512113800	-0,02039242471499950
66	9	19	-0,01732928114700470	-0,10275975297081100
67	11	19	-0,08628549982147730	-0,16690174708945200
68	15	19	0,02731407671831470	-0,07838583593199000
69	16	19	-0,00598834037969857	-0,00442041927444280
70	18	19	-0,01339844403116120	-0,15670837059058900
71	25	19	-0,00705663522788011	-0,01383147206099510
72	26	19	-0,01125017047784280	0,08059511885347940
73	29	19	0,02428676115526180	-0,01407078683534010
74	36	19	0,03843780938782930	0,13677723592421400
75	21	21	-0,00530126948233566	0,02890638023462160
76	25	21	-0,04235045095504100	-0,04640871971470350
77	4	22	-0,02711195325225210	0,02798155825967420
78	6	22	-0,00571821686093395	0,02961077996435690
79	7	22	0,00363017763891736	-0,01732510403290150
80	9	22	-0,02713670742970010	-0,08147561012805660
81	20	22	-0,01080541925157390	-0,11371723033947400
82	24	22	0,00593135079396939	-0,00724123263085713
83	17	23	0,12174183635341400	0,34460666563972000
84	25	23	-0,05045498196158500	0,02362565544665090
85	26	23	0,00667642126239266	0,02574128307168420
86	16	24	0,02832067724492250	0,01985255213352220
87	24	24	0,01994025895641430	0,05809941793096800
88	21	25	-0,02543042315014610	-0,07728518341846050

nº Eventos Evento Empresa	AR	CAR
---------------------------	----	-----

		1		
89	2	26	-0,03257012197087910	-0,03713809696309020
90	5	26	-0,07858818329068910	-0,13045428352050400
91	7	26	-0,04251337911508540	-0,04864100851372420
92	10	26	-0,00456162580831337	-0,09372957225744570
93	16	26	-0,05303879971217490	-0,00043218581500758
94	17	26	-0,00632302392900389	-0,05333133623740110
95	18	26	0,01169794387406710	0,00491004001940070
96	20	26	-0,01678514909382110	0,07745437936389250
97	23	26	-0,01779840317117000	-0,11565960748374800
98	24	27	-0,02763861643347400	-0,07538611411437840
99	28	27	0,02619799532779000	-0,01416231034894990
100	31	27	-0,04034444433111560	-0,03397407249619190
101	36	27	0,01232657077279580	-0,03313875871056580
102	4	28	-0,02349032562960530	-0,11970268045746900
103	6	28	-0,01642762151571260	-0,13513993541588900
104	9	28	-0,00240821411721195	0,03756202838688360
105	11	28	-0,00819036711534389	-0,09372344130698830
106	13	28	-0,00635243164871504	-0,05692450502435020
107	15	28	0,03629683432199500	0,01278812126123870
108	17	28	-0,00976834851443077	-0,09715486185592320
109	20	28	-0,00513930901252769	0,14140752233909500
110	21	28	0,00907934248476978	0,09110500073758050
111	22	28	-0,03252713317178940	-0,16803040624153100
112	24	28	-0,03003439891333480	-0,11964942477809200
113	26	28	0,00326150367505695	-0,07393437404227320
114	27	28	0,00719403089774243	0,00325907182391259
115	28	28	-0,04345316753223570	-0,13999311433231200
116	30	28	-0,04803679243356600	0,01632079290043980
117	1	29	-0,04441462139049140	0,05982620491022320
118	2	29	0,00533362218048773	0,09685008886271010
119	3	29	0,05498042928681390	0,17314952992835600
120	4	29	0,01893922963178670	0,02157367067512910
121	11	29	0,01761880082265310	0,12539240716724100
122	17	29	0,00553176250319036	0,13229829282204700
123	21	29	-0,00103442190845553	0,11571310814017500
124	23	29	0,00741147162838575	-0,03539081626526070
125	24	29	-0,01986587982534540	0,04687048755092690
126	28	29	0,01786569688857130	0,02564996828804710
127	32	29	0,00879530699424878	0,06090291302878980
128	33	29	-0,00799981811460372	0,00072956019752685
129	35	29	0,10110047469304500	0,36241613915063200
130	36	29	0,00679424008095710	-0,05925562798282530
131	13	30	-0,08541101373792820	-0,16609171172417600
132	16	30	-0,03681863255006670	-0,21067346989515400
133	17	30	-0,02219017383100550	-0,16001177458525900
134	20	30	-0,02113213356641140	0,08714192473958850

135	1	31	0,00528709063787013	-0,03541211214000740
136	4	31	0,08157455626699430	0,10534417067862000
137	8	31	0,06044116533436070	0,27572699992171200
138	16	31	-0,02771383328728050	-0,16521412596395500
139	19	31	0,00454444433162201	-0,02114594962771580
140	26	31	-0,00670294936858629	-0,08124183608898710
141	29	31	0,06112542989349460	-0,06935681136559520
142	4	33	0,03782781302676790	0,24972711954270100
143	13	33	0,02296006757422140	-0,04300955608302380
144	14	33	0,03247687730160900	0,15017863229468800
145	17	33	-0,00602526829220178	0,12564988832754700
146	20	33	0,04236806124183930	0,00217296636802614
147	22	33	-0,01730179891624190	-0,01194686644710660
148	24	33	0,01255404476357800	0,08055949560829560
149	26	33	0,00262912056901591	0,00475127378812559
150	27	33	-0,01745514537201160	0,00877400285831473
151	28	33	0,00873724678775480	-0,07951685741933340
152	32	33	-0,00465477154948915	0,06160977054968140
153	36	33	0,01019722571862970	-0,14363742067970600
154	19	34	-0,08868145353667870	-0,07602902160626540
155	33	34	-0,03822996618220120	-0,09513560812519590
156	7	35	0,06158294114990000	-0,16538038945095900
157	8	35	0,03121242897055210	0,63174196175205300
158	13	35	-0,00069610903210855	-0,00455939018816043
159	16	35	-0,01100510514475710	0,12780203141584300
160	19	35	-0,03608812741919630	-0,09885297986734770
161	20	35	-0,02472953338016470	-0,16483074509778500
162	21	35	-0,01199304582213910	0,00112244529027710
163	25	35	-0,02094312668500840	0,02042245636649720
164	7	37	-0,03207621649074420	0,07449850222152450
165	14	37	0,01388149327626690	-0,02175143850684850
166	16	37	0,01243197192999440	0,09121814442246640
167	21	37	0,03673456783834130	-0,03877440350800790
168	22	37	0,02810614213329760	0,05641840651353420
169	24	37	0,03202149676912150	0,04036185042459400
170	12	39	-0,04072538342448460	0,06011088587966410
171	14	39	-0,05208040581407880	0,08366682182975590
172	16	39	-0,08124252410692390	0,52856571653122100
173	18	39	0,00311707568844067	-0,13890925916629800
174	10	40	0,14886039062953200	-0,14721265805346100
175	11	40	0,00406900186203121	-0,06603323825154020
176	12	40	-0,02314272365588030	-0,09615770888499250
177	19	40	-0,04559329985438770	-0,09993087048262230
178	21	40	-0,00810836380464402	0,02197754816890560
179	22	40	0,01408201577972990	-0,06137132014304590
180	23	40	-0,01102086977010140	0,01696558013501440

181 24 41 0,03909522211266380 0,13542	
	2616007420200
	7291567405850
	5782888625560
	5178304214400
185 32 42 0,03455428425918470 0,05597	7011948269490
186 34 42 0,07518753660041510 0,02003	3675079256580
187 2 43 -0,02229447779110720 0,03583	3335074304650
188 9 44 0,03175770986661970 0,29133	1051228263900
189 10 44 -0,02112058131411230 0,02625	5734118872940
190 12 44 -0,03085371974825380 -0,0740	2243699167020
191 13 44 -0,05244316423830270 -0,0733	4732673983480
192 14 44 0,02753267155437140 -0,2692	9762121743000
193 18 44 -0,01362328451122120 0,15729	9347802851300
194 22 44 -0,01335550284606130 0,04633	1795386176470
195 23 44 0,01124786365307250 0,11163	3268932147700
196 24 44 0,06456684867305870 0,08743	3540089326370
197 25 44 0,00058821976541025 -0,0043	4758636745237
198 26 44 0,02169379508826100 -0,0009	4653614366399
199 27 44 0,00471712731661752 0,04145	5497644124230
200 29 44 0,00036356905807118 0,21709	9434506944300
201 30 44 -0,00777954285920659 -0,1700	6811517917600
202 33 44 0,05435041968710830 0,08064	4100509289870
203 34 44 0,04135566714643050 0,04344	4540779826080
204 35 44 0,00141905475144998 0,01379	9182120038720
205 36 44 -0,04312372131812310 0,07572	1763257852910
206 20 45 0,02739507778413430 0,12370	0433983147200
207 29 46 0,00301546404807203 -0,0628	8940551906660
208 31 46 -0,00949262891560389 -0,1607	1840670364000
209 4 48 0,01197335705478030 0,19706	6517906121900
210 12 48 0,00772249563478708 0,00353	3359267670283
211 20 48 0,03153826131659140 0,17436	6477551448600
212 21 48 0,04618586795232320 0,18958	8654519742000
213 22 48 -0,00084852014983966 -0,0094	7873257227019
214 24 48 -0,00554581426407468 -0,0669	1112822130160
215 28 48 -0,00385166987546531 0,02978	8622010859530
216 32 48 0,00902020032082857 0,00192	2871578323172
217 2 49 -0,08468900837413190 -0,3987	2637536061000
218 20 49 -0,08729484600647470 -0,0415	8544318973890
219 1 50 -0,05024913689403990 -0,0028	5989895856669
220 16 50 0,00473683302238068 0,02683	1068268337210
221 17 50 -0,02608750797065190 -0,2808	8152143066100
222 19 50 -0,01340564997989250 -0,0531	7840561053580
223 12 51 -0,00676807403640166 -0,0104	0394767507430
224 16 51 -0,04164890525218240 -0,1557	8117871993800
225 19 51 0,02813640060019230 0,03880	0644140174130
226 8 52 0,03675474881701590 -0,1807	8865105502900

0.10	T .	-	A TO	CAD
nº Evento	s I H Vento	Lemnresa	AR	(AR
II LIVEIIC	5 Livento	Limpicsa	7 111	CITIC

227 12 52 0,03080700109187300 0,38859666201177300 228 13 52 0,05080325502557080 0,18776801545146200 229 14 52 0,09635507517658590 0,15277022865453000 230 15 52 -0,03146939504761760 0,01267463841088900 231 16 52 -0,03146939504761760 0,01267463841088900 232 19 52 0,02098833586289320 0,04418141125203890 233 21 52 0,01971357786982460 -0,06643365162843030 234 23 52 -0,01462291549997300 0,07588221051225110 235 27 52 0,03324561640270 0,13322303673522400 236 30 52 -0,01546202936159840 -0,13223361347119100 237 35 52 0,0574863473505650 -0,03289941939772860 239 25 53 -0,05718363473505650 -0,013829471939772860 239 25 53 -0,0574866359886470 -0,01588127019362920 240			-		
229	227	12	52	0,03050700109187300	0,39859606201177300
230	228	13	52	0,05080325502557080	0,18776801545146200
231	229	14	52	0,09635507517658590	0,15277022865453000
232 19 52 0,02098833586289320 0,04418141125203890 233 21 52 0,01971357786982460 -0,06643365162843030 234 23 52 -0,01462291549997300 0,07588221051225110 235 27 52 0,03322453611640270 0,13322303673522400 236 30 52 -0,01546202936159840 -0,13025361347119100 237 35 52 0,00364422655981137 -0,01414211531929380 238 36 52 0,05778363473505650 -0,03289941939772860 240 28 53 0,05245665999868470 -0,00585278705846257 241 34 53 -0,00571323356158299 -0,12234371861006300 242 1 54 -0,0063457762772748 -0,17833750114172300 243 32 54 0,02964025328457860 0,04578275964851540 244 26 55 0,080876518120290 0,09369454168890460 246 32 55 -0,02080876518120299 0,09369454168890460 247	230	15	52	-0,05189927215441610	-0,13730383939847100
233 21 52 0,01971357786982460 -0,06643365162843030 234 23 52 -0,01462291549997300 0,07588221051225110 235 27 52 0,03322453611640270 0,13322303673522400 236 30 52 -0,01546202936159840 -0,13025361347119100 237 35 52 0,00364422655981137 -0,01414211531929380 238 36 52 0,05778363473505650 -0,03289941939772860 239 25 53 -0,07387119729984330 -0,15581270193629200 240 28 53 0,05245665999868470 -0,00585278705846257 241 34 53 -0,00571323356158299 -0,17833750114172300 242 1 54 -0,0063457762772748 -0,17833750114172300 243 32 54 0,02964025328457860 0,04578275964851540 244 26 55 0,00814703446809550 0,05298074763079710 245 29 55 -0,02032678678484600 0,18287629791025400 246	231	16	52	-0,03146939504761760	0,01267463841088900
234 23 52 -0,01462291549997300 0,07588221051225110 235 27 52 0,03322453611640270 0,13322303673522400 236 30 52 -0,01546202936159840 -0,13025361347119100 237 35 52 0,00364422655981137 -0,01414211531929380 238 36 52 0,05778363473505650 -0,03289941939772860 240 28 53 -0,05245665999868470 -0,0585278705846257 241 34 53 -0,00571323356158299 -0,12234371861006300 242 1 54 -0,00063457762772748 -0,17833750114172300 243 32 54 0,02964025328457860 0,04578275964851540 244 26 55 0,00814703446809550 0,05298074763079710 245 29 55 -0,02032678678484600 0,18287629791025400 247 3 56 -0,00937979422381191 -0,01057537663823730 248 4 56 0,0175428815035470 0,18849924942202100 250	232	19	52	0,02098833586289320	0,04418141125203890
235 27 52 0,03322453611640270 0,1322303673522400 236 30 52 -0,01546202936159840 -0,13025361347119100 237 35 52 0,00364422655981137 -0,01414211531929380 238 36 52 0,05738363473505650 -0,03289941939772860 240 28 53 -0,07387119729984330 -0,15581270193629200 240 28 53 -0,0564565999868470 -0,0085278705846257 241 34 53 -0,00571323356158299 -0,12234371861006300 242 1 54 -0,00063457762772748 -0,17833750114172300 243 32 54 0,02964025328457860 0,04578275964851540 244 26 55 0,00814703446809550 0,05298074763079710 245 29 55 -0,02080876518120290 0,0369454168890460 246 32 55 -0,02080876518120290 0,03869454168890460 247 3 56 -0,037974232881191 -0,01057537663823730 248	233	21	52	0,01971357786982460	-0,06643365162843030
236 30 52 -0,01546202936159840 -0,13025361347119100 237 35 52 0,00364422655981137 -0,01414211531929380 238 36 52 0,05778363473505650 -0,03289941939772860 239 25 53 -0,07387119729984330 -0,15581270193629200 240 28 53 0,05245665999868470 -0,00585278705846257 241 34 53 -0,00571323356158299 -0,12234371861006300 242 1 54 -0,0063457762772748 -0,17833750114172300 243 32 54 0,02964025328457860 0,04578275964851540 244 26 55 0,00814703446809550 0,05298074763079710 245 29 55 -0,02032678678484600 0,18287629791025400 246 32 55 -0,00937979423281191 -0,0157537663823730 248 4 56 0,0516838050792014 0,18849924942202100 250 10 56 0,15759333396345300 0,40536406772961000 251	234	23	52	-0,01462291549997300	0,07588221051225110
237 35 52 0,00364422655981137 -0,01414211531929380 238 36 52 0,05778363473505650 -0,03289941939772860 239 25 53 -0,07387119729984330 -0,15581270193629200 240 28 53 0,05245665999868470 -0,0585278705846257 241 34 53 -0,00571323356158299 -0,12234371861006300 242 1 54 -0,00063457762772748 -0,17833750114172300 243 32 54 0,02964025328457860 0,04578275964851540 244 26 55 0,00814703446809550 0,05298074763079710 245 29 55 -0,02038676518120290 0,09369454168890460 246 32 55 -0,00937979423281191 -0,10575537663823730 248 4 56 0,0516838050792014 0,18849924942202100 249 8 56 0,15775933396345300 0,40536406772961000 250 10 56 0,01134082651635090 0,04323846941713170 253	235	27	52	0,03322453611640270	0,13322303673522400
238 36 52 0,05778363473505650 -0,03289941939772860 239 25 53 -0,07387119729984330 -0,15581270193629200 240 28 53 0,05245665999868470 -0,00585278705846257 241 34 53 -0,00571323356158299 -0,12234371861006300 242 1 54 -0,00063457762772748 -0,17833750114172300 243 32 54 0,02964025328457860 -0,04578275964851540 244 26 55 0,00814703446809550 0,05298074763079710 245 29 55 -0,0208876518120290 0,09369454168890460 246 32 55 -0,02032678678484600 0,18287629791025400 247 3 56 -0,0093797423281191 -0,01057537663823730 248 4 56 0,0516838050792014 0,18849924942202100 250 10 56 0,15759333396345300 0,40536406772961000 251 12 56 0,01775428815035470 -0,03491167861828860 251	236	30	52	-0,01546202936159840	-0,13025361347119100
239 25 53 -0,07387119729984330 -0,15581270193629200 240 28 53 0,05245665999868470 -0,00585278705846257 241 34 53 -0,00571323356158299 -0,12234371861006300 242 1 54 -0,00063457762772748 -0,17833750114172300 243 32 54 0,02964025328457860 0,04578275964851540 244 26 55 0,00814703446809550 0,04578757964851640 245 29 55 -0,02032678678484600 0,05298074763079710 246 32 55 -0,02032678678484600 0,018287629791025400 247 3 56 -0,00937979423281191 -0,01057537663823730 248 4 56 0,0516838050792014 0,18849924942202100 250 10 56 0,0175293333396345300 0,046528572499440160 251 12 56 0,01134082651635090 0,04323846941713170 252 13 56 0,01134082651635090 0,043246941713170 255	237	35	52	0,00364422655981137	-0,01414211531929380
240 28 53 0,05245665999868470 -0,00585278705846257 241 34 53 -0,00571323356158299 -0,12234371861006300 242 1 54 -0,00063457762772748 -0,17833750114172300 243 32 54 0,02964025328457860 0,04578275964851540 244 26 55 0,0080876518120290 0,05298074763079710 245 29 55 -0,02080876518120290 0,09369454168890460 246 32 55 -0,02032678678484600 0,18287629791025400 247 3 56 -0,00937979423281191 -0,01057537663823730 248 4 56 0,0516838050792014 0,18849924942202100 250 10 56 0,01922669826371260 0,06628572499440160 251 12 56 -0,01775428815035470 -0,03491167861828860 252 13 56 0,01134082651635090 0,04323846941713170 253 12 57 0,1347554514435200 -0,01848422234532980 254	238	36	52	0,05778363473505650	-0,03289941939772860
241 34 53 -0,00571323356158299 -0,12234371861006300 242 1 54 -0,00063457762772748 -0,17833750114172300 243 32 54 0,02964025328457860 0,04578275964851540 244 26 55 0,00814703446809550 0,052298074763079710 245 29 55 -0,02032678678484600 0,0389454168890460 246 32 55 -0,00937979423281191 -0,01057537663823730 248 4 56 0,00516838050792014 0,18849924942202100 249 8 56 0,15759333396345300 0,40536406772961000 250 10 56 0,01922669826371260 0,06628572499440160 251 12 56 -0,01775428815035470 -0,03491167861828860 252 13 56 0,01134082651635090 0,04323846941713170 253 12 57 0,13475545514335200 -0,0184722234532980 254 13 57 -0,10438409884441300 -0,0822117868482165 255	239	25	53	-0,07387119729984330	-0,15581270193629200
241 34 53 -0,00571323356158299 -0,12234371861006300 242 1 54 -0,00063457762772748 -0,17833750114172300 243 32 54 0,02964025328457860 0,04578275964851540 244 26 55 0,00814703446809550 0,05298074763079710 245 29 55 -0,02080876518120290 0,09369454168890460 246 32 55 -0,02032678678484600 0,18287629791025400 247 3 56 -0,00937979423281191 -0,01057537663823730 248 4 56 0,0516838050792014 0,18849924942202100 250 10 56 0,01922669826371260 0,06628572499440160 251 12 56 -0,01775428815035470 -0,03491167861828860 252 13 56 0,01134082651635090 0,04323846941713170 253 12 57 0,1347554514335200 -0,01184722234532980 254 13 57 -0,10438409884441300 -0,0822117868482165 255	240	28	53	· ·	· ·
242 1 54 -0,00063457762772748 -0,17833750114172300 243 32 54 0,02964025328457860 0,04578275964851540 244 26 55 0,00814703446809550 0,05298074763079710 245 29 55 -0,02032678678484600 0,18287629791025400 246 32 55 -0,00937979423281191 -0,01057537663823730 248 4 56 0,00516838050792014 0,18849924942202100 249 8 56 0,15759333396345300 0,40536406772961000 250 10 56 0,01922669826371260 0,06628572499440160 251 12 56 -0,01775428815035470 -0,03491167861828860 252 13 56 0,01134082651635090 0,04323846941713170 253 12 57 0,1347545514335200 -0,01184722234532980 254 13 57 -0,02162006310092640 -0,00822117868482165 255 24 57 -0,10438409884441300 -0,21208181796622900 256	241	34	53		· ·
243 32 54 0,02964025328457860 0,04578275964851540 244 26 55 0,00814703446809550 0,05298074763079710 245 29 55 -0,02080876518120290 0,09369454168890460 246 32 55 -0,02032678678484600 0,18287629791025400 247 3 56 -0,00937979423281191 -0,01057537663823730 248 4 56 0,00516838050792014 0,18849924942202100 249 8 56 0,15759333396345300 0,40536406772961000 250 10 56 0,01922669826371260 0,06628572499440160 251 12 56 -0,01775428815035470 -0,03491167861828860 252 13 56 0,01134082651635090 0,04323846941713170 253 12 57 0,13475545514335200 -0,01184722234532980 254 13 57 -0,02162006310092640 -0,08222117868482165 255 24 57 -0,10438409884441300 -0,21208181796622900 256	242	1	54	· ·	· ·
244 26 55 0,00814703446809550 0,05298074763079710 245 29 55 -0,02080876518120290 0,09369454168890460 246 32 55 -0,02032678678484600 0,18287629791025400 247 3 56 -0,00937979423281191 -0,01057537663823730 248 4 56 0,0516838050792014 0,18849924942202100 249 8 56 0,15759333396345300 0,40536406772961000 250 10 56 0,01922669826371260 0,06628572499440160 251 12 56 -0,01775428815035470 -0,03491167861828860 252 13 56 0,01134082651635090 0,04323846941713170 253 12 57 0,13475545514335200 -0,01184722234532980 254 13 57 -0,02162006310092640 -0,0822117868482165 255 24 57 -0,10438409884441300 -0,21208181796622900 256 24 58 0,05869215892921150 0,03895892051886410 257	243	32	54	· ·	· ·
246 32 55 -0,02032678678484600 0,18287629791025400 247 3 56 -0,00937979423281191 -0,01057537663823730 248 4 56 0,00516838050792014 0,18849924942202100 249 8 56 0,15759333396345300 0,40536406772961000 250 10 56 0,01922669826371260 0,06628572499440160 251 12 56 -0,01775428815035470 -0,03491167861828860 252 13 56 0,01134082651635090 0,04323846941713170 253 12 57 0,13475545514335200 -0,01184722234532980 254 13 57 -0,02162006310092640 -0,00822117868482165 255 24 57 -0,10438409884441300 -0,21208181796622900 256 24 58 0,05869215892921150 0,03895892051886410 257 33 58 0,02317272660466650 0,01607482922048620 258 10 59 0,002511592865732620 -0,13083123254391600 260	244	26	55	,	· ·
246 32 55 -0,020326786784844600 0,18287629791025400 247 3 56 -0,00937979423281191 -0,01057537663823730 248 4 56 0,00516838050792014 0,18849924942202100 249 8 56 0,15759333396345300 0,40536406772961000 250 10 56 0,01922669826371260 0,06628572499440160 251 12 56 -0,01775428815035470 -0,03491167861828860 252 13 56 0,01134082651635090 0,04323846941713170 253 12 57 0,13475545514335200 -0,01184722234532980 254 13 57 -0,02162006310092640 -0,00822117868482165 255 24 57 -0,10438409884441300 -0,21208181796622900 256 24 58 0,05869215892921150 0,03895892051886410 257 33 58 0,0229124343202461 -0,05182137285761210 259 11 59 0,0358566450654610290 -0,13083123254391600 261	245	29	55	-0,02080876518120290	0,09369454168890460
248 4 56 0,00516838050792014 0,18849924942202100 249 8 56 0,15759333396345300 0,40536406772961000 250 10 56 0,01922669826371260 0,06628572499440160 251 12 56 -0,01775428815035470 -0,03491167861828860 252 13 56 0,01134082651635090 0,04323846941713170 253 12 57 0,13475545514335200 -0,01184722234532980 254 13 57 -0,02162006310092640 -0,00822117866482165 255 24 57 -0,10438409884441300 -0,21208181796622900 256 24 58 0,05869215892921150 0,03895892051886410 257 33 58 0,02391272660466650 0,01607482922048620 258 10 59 0,00229224343202461 -0,05182137285761210 259 11 59 0,03158922656448340 -0,01317005419047340 261 14 59 0,086625629528618 0,00183020762069316 262	246	32	55	-0,02032678678484600	0,18287629791025400
249 8 56 0,15759333396345300 0,40536406772961000 250 10 56 0,01922669826371260 0,06628572499440160 251 12 56 -0,01775428815035470 -0,03491167861828860 252 13 56 0,01134082651635090 0,04323846941713170 253 12 57 0,13475545514335200 -0,01184722234532980 254 13 57 -0,02162006310092640 -0,00822117868482165 255 24 57 -0,10438409884441300 -0,21208181796622900 256 24 58 0,05869215892921150 0,03895892051886410 257 33 58 0,02391272660466650 0,01607482922048620 258 10 59 0,00229224343202461 -0,05182137285761210 259 11 59 0,02511592865732620 -0,13083123254391600 260 13 59 0,03895892658448340 -0,01317005419047340 261 14 59 0,00806625629528618 0,00183020762069316 262	247	3	56	-0,00937979423281191	-0,01057537663823730
250 10 56 0,01922669826371260 0,06628572499440160 251 12 56 -0,01775428815035470 -0,03491167861828860 252 13 56 0,01134082651635090 0,04323846941713170 253 12 57 0,13475545514335200 -0,01184722234532980 254 13 57 -0,02162006310092640 -0,00822117868482165 255 24 57 -0,10438409884441300 -0,21208181796622900 256 24 58 0,05869215892921150 0,03895892051886410 257 33 58 0,02391272660466650 0,01607482922048620 258 10 59 0,00229224343202461 -0,05182137285761210 259 11 59 0,02511592865732620 -0,13083123254391600 260 13 59 0,03158922656448340 -0,01317005419047340 261 14 59 0,05866450654610290 0,04301048911393970 263 19 59 0,02389262834473490 -0,03873692793964740 264	248	4	56	0,00516838050792014	0,18849924942202100
251 12 56 -0,01775428815035470 -0,03491167861828860 252 13 56 0,01134082651635090 0,04323846941713170 253 12 57 0,13475545514335200 -0,01184722234532980 254 13 57 -0,02162006310092640 -0,00822117868482165 255 24 57 -0,10438409884441300 -0,21208181796622900 256 24 58 0,05869215892921150 0,03895892051886410 257 33 58 0,02391272660466650 0,01607482922048620 258 10 59 0,00229224343202461 -0,05182137285761210 259 11 59 0,02511592865732620 -0,13083123254391600 260 13 59 0,03158922656448340 -0,01317005419047340 261 14 59 0,05866450654610290 0,04301048911393970 263 19 59 0,02389262834473490 -0,03873692793964740 264 22 59 0,01221494466143980 -0,07454861654490680 265	249	8	56	0,15759333396345300	0,40536406772961000
252 13 56 0,01134082651635090 0,04323846941713170 253 12 57 0,13475545514335200 -0,01184722234532980 254 13 57 -0,02162006310092640 -0,00822117868482165 255 24 57 -0,10438409884441300 -0,21208181796622900 256 24 58 0,05869215892921150 0,03895892051886410 257 33 58 0,02391272660466650 0,01607482922048620 258 10 59 0,00229224343202461 -0,05182137285761210 259 11 59 0,02511592865732620 -0,13083123254391600 260 13 59 0,03158922656448340 -0,01317005419047340 261 14 59 0,00806625629528618 0,00183020762069316 262 16 59 0,05866450654610290 0,04301048911393970 263 19 59 0,01221494466143980 -0,07454861654490680 264 22 59 0,16489759677702800 0,00404364761834034 266	250	10	56	0,01922669826371260	0,06628572499440160
252 13 56 0,01134082651635090 0,04323846941713170 253 12 57 0,13475545514335200 -0,01184722234532980 254 13 57 -0,02162006310092640 -0,00822117868482165 255 24 57 -0,10438409884441300 -0,21208181796622900 256 24 58 0,05869215892921150 0,03895892051886410 257 33 58 0,02391272660466650 0,01607482922048620 258 10 59 0,00229224343202461 -0,05182137285761210 259 11 59 0,02511592865732620 -0,13083123254391600 260 13 59 0,03158922656448340 -0,01317005419047340 261 14 59 0,00806625629528618 0,00183020762069316 262 16 59 0,05866450654610290 0,04301048911393970 263 19 59 0,01221494466143980 -0,07454861654490680 264 22 59 0,16489759677702800 0,00404364761834034 266	251	12	56		· ·
254 13 57 -0,02162006310092640 -0,00822117868482165 255 24 57 -0,10438409884441300 -0,21208181796622900 256 24 58 0,05869215892921150 0,03895892051886410 257 33 58 0,02391272660466650 0,01607482922048620 258 10 59 0,00229224343202461 -0,05182137285761210 259 11 59 0,02511592865732620 -0,13083123254391600 260 13 59 0,03158922656448340 -0,01317005419047340 261 14 59 0,00806625629528618 0,00183020762069316 262 16 59 0,05866450654610290 0,04301048911393970 263 19 59 0,02389262834473490 -0,03873692793964740 264 22 59 0,01221494466143980 -0,07454861654490680 265 23 59 0,16489759677702800 0,00404364761834034 266 12 61 -0,00258720835739160 0,11939450631434800 267	252	13	56	0,01134082651635090	0,04323846941713170
255 24 57 -0,10438409884441300 -0,21208181796622900 256 24 58 0,05869215892921150 0,03895892051886410 257 33 58 0,02391272660466650 0,01607482922048620 258 10 59 0,00229224343202461 -0,05182137285761210 259 11 59 0,02511592865732620 -0,13083123254391600 260 13 59 0,03158922656448340 -0,01317005419047340 261 14 59 0,00806625629528618 0,00183020762069316 262 16 59 0,05866450654610290 0,04301048911393970 263 19 59 0,02389262834473490 -0,03873692793964740 264 22 59 0,01221494466143980 -0,07454861654490680 265 23 59 0,16489759677702800 0,00404364761834034 266 12 61 -0,02258720835739160 0,11939450631434800 267 15 61 -0,10349582453634700 -0,05593982827978230 268	253	12	57	0,13475545514335200	-0,01184722234532980
256 24 58 0,05869215892921150 0,03895892051886410 257 33 58 0,02391272660466650 0,01607482922048620 258 10 59 0,00229224343202461 -0,05182137285761210 259 11 59 0,02511592865732620 -0,13083123254391600 260 13 59 0,03158922656448340 -0,01317005419047340 261 14 59 0,00806625629528618 0,00183020762069316 262 16 59 0,05866450654610290 0,04301048911393970 263 19 59 0,02389262834473490 -0,03873692793964740 264 22 59 0,01221494466143980 -0,07454861654490680 265 23 59 0,16489759677702800 0,00404364761834034 266 12 61 -0,02258720835739160 0,11939450631434800 267 15 61 -0,10349582453634700 -0,20442006515715300 268 17 61 -0,03801437313911070 -0,16989162009493700 270	254	13	57	-0,02162006310092640	-0,00822117868482165
256 24 58 0,05869215892921150 0,03895892051886410 257 33 58 0,02391272660466650 0,01607482922048620 258 10 59 0,00229224343202461 -0,05182137285761210 259 11 59 0,02511592865732620 -0,13083123254391600 260 13 59 0,03158922656448340 -0,01317005419047340 261 14 59 0,00806625629528618 0,00183020762069316 262 16 59 0,05866450654610290 0,04301048911393970 263 19 59 0,02389262834473490 -0,03873692793964740 264 22 59 0,01221494466143980 -0,07454861654490680 265 23 59 0,16489759677702800 0,00404364761834034 266 12 61 -0,02258720835739160 0,11939450631434800 267 15 61 -0,10349582453634700 -0,20442006515715300 268 17 61 -0,03801437313911070 -0,16989162009493700 270	255	24	57	-0,10438409884441300	-0,21208181796622900
258 10 59 0,00229224343202461 -0,05182137285761210 259 11 59 0,02511592865732620 -0,13083123254391600 260 13 59 0,03158922656448340 -0,01317005419047340 261 14 59 0,00806625629528618 0,00183020762069316 262 16 59 0,05866450654610290 0,04301048911393970 263 19 59 0,02389262834473490 -0,03873692793964740 264 22 59 0,01221494466143980 -0,07454861654490680 265 23 59 0,16489759677702800 0,0040404364761834034 266 12 61 -0,02258720835739160 0,11939450631434800 267 15 61 -0,10349582453634700 -0,20442006515715300 268 17 61 -0,03801437313911070 -0,16989162009493700 270 19 61 -0,00600742210381056 -0,12374666001663500 271 20 61 0,00605421234613894 0,04581255557924940	256	24	58	0,05869215892921150	0,03895892051886410
259 11 59 0,02511592865732620 -0,13083123254391600 260 13 59 0,03158922656448340 -0,01317005419047340 261 14 59 0,00806625629528618 0,00183020762069316 262 16 59 0,05866450654610290 0,04301048911393970 263 19 59 0,02389262834473490 -0,03873692793964740 264 22 59 0,01221494466143980 -0,07454861654490680 265 23 59 0,16489759677702800 0,00404364761834034 266 12 61 -0,02258720835739160 0,11939450631434800 267 15 61 -0,10349582453634700 -0,20442006515715300 268 17 61 -0,00630719170642727 -0,055593982827978230 269 18 61 -0,03801437313911070 -0,16989162009493700 270 19 61 -0,00600742210381056 -0,12374666001663500 271 20 61 0,00605421234613894 0,04581255557924940	257	33	58	0,02391272660466650	0,01607482922048620
260 13 59 0,03158922656448340 -0,01317005419047340 261 14 59 0,00806625629528618 0,00183020762069316 262 16 59 0,05866450654610290 0,04301048911393970 263 19 59 0,02389262834473490 -0,03873692793964740 264 22 59 0,01221494466143980 -0,07454861654490680 265 23 59 0,16489759677702800 0,00404364761834034 266 12 61 -0,02258720835739160 0,11939450631434800 267 15 61 -0,10349582453634700 -0,20442006515715300 268 17 61 -0,00630719170642727 -0,05593982827978230 269 18 61 -0,03801437313911070 -0,16989162009493700 270 19 61 -0,00600742210381056 -0,12374666001663500 271 20 61 0,00605421234613894 0,04581255557924940	258	10	59	0,00229224343202461	-0,05182137285761210
261 14 59 0,00806625629528618 0,00183020762069316 262 16 59 0,05866450654610290 0,04301048911393970 263 19 59 0,02389262834473490 -0,03873692793964740 264 22 59 0,01221494466143980 -0,07454861654490680 265 23 59 0,16489759677702800 0,00404364761834034 266 12 61 -0,02258720835739160 0,11939450631434800 267 15 61 -0,10349582453634700 -0,20442006515715300 268 17 61 -0,00630719170642727 -0,05593982827978230 269 18 61 -0,03801437313911070 -0,16989162009493700 270 19 61 -0,00600742210381056 -0,12374666001663500 271 20 61 0,00605421234613894 0,04581255557924940	259	11	59	0,02511592865732620	-0,13083123254391600
262 16 59 0,05866450654610290 0,04301048911393970 263 19 59 0,02389262834473490 -0,03873692793964740 264 22 59 0,01221494466143980 -0,07454861654490680 265 23 59 0,16489759677702800 0,00404364761834034 266 12 61 -0,02258720835739160 0,11939450631434800 267 15 61 -0,10349582453634700 -0,20442006515715300 268 17 61 -0,00630719170642727 -0,05593982827978230 269 18 61 -0,03801437313911070 -0,16989162009493700 270 19 61 -0,00600742210381056 -0,12374666001663500 271 20 61 0,00605421234613894 0,04581255557924940	260	13	59	0,03158922656448340	-0,01317005419047340
263 19 59 0,02389262834473490 -0,03873692793964740 264 22 59 0,01221494466143980 -0,07454861654490680 265 23 59 0,16489759677702800 0,00404364761834034 266 12 61 -0,02258720835739160 0,11939450631434800 267 15 61 -0,10349582453634700 -0,20442006515715300 268 17 61 -0,00630719170642727 -0,05593982827978230 269 18 61 -0,03801437313911070 -0,16989162009493700 270 19 61 -0,00600742210381056 -0,12374666001663500 271 20 61 0,00605421234613894 0,04581255557924940	261	14	59	0,00806625629528618	0,00183020762069316
264 22 59 0,01221494466143980 -0,07454861654490680 265 23 59 0,16489759677702800 0,00404364761834034 266 12 61 -0,02258720835739160 0,11939450631434800 267 15 61 -0,10349582453634700 -0,20442006515715300 268 17 61 -0,00630719170642727 -0,05593982827978230 269 18 61 -0,03801437313911070 -0,16989162009493700 270 19 61 -0,00600742210381056 -0,12374666001663500 271 20 61 0,00605421234613894 0,04581255557924940	262	16	59	0,05866450654610290	0,04301048911393970
265 23 59 0,16489759677702800 0,00404364761834034 266 12 61 -0,02258720835739160 0,11939450631434800 267 15 61 -0,10349582453634700 -0,20442006515715300 268 17 61 -0,00630719170642727 -0,05593982827978230 269 18 61 -0,03801437313911070 -0,16989162009493700 270 19 61 -0,00600742210381056 -0,12374666001663500 271 20 61 0,00605421234613894 0,04581255557924940	263	19	59	0,02389262834473490	-0,03873692793964740
266 12 61 -0,02258720835739160 0,11939450631434800 267 15 61 -0,10349582453634700 -0,20442006515715300 268 17 61 -0,00630719170642727 -0,05593982827978230 269 18 61 -0,03801437313911070 -0,16989162009493700 270 19 61 -0,00600742210381056 -0,12374666001663500 271 20 61 0,00605421234613894 0,04581255557924940	264	22	59	0,01221494466143980	-0,07454861654490680
267 15 61 -0,10349582453634700 -0,20442006515715300 268 17 61 -0,00630719170642727 -0,05593982827978230 269 18 61 -0,03801437313911070 -0,16989162009493700 270 19 61 -0,00600742210381056 -0,12374666001663500 271 20 61 0,00605421234613894 0,04581255557924940	265	23	59	0,16489759677702800	0,00404364761834034
268 17 61 -0,00630719170642727 -0,05593982827978230 269 18 61 -0,03801437313911070 -0,16989162009493700 270 19 61 -0,00600742210381056 -0,12374666001663500 271 20 61 0,00605421234613894 0,04581255557924940	266	12	61	-0,02258720835739160	0,11939450631434800
269 18 61 -0,03801437313911070 -0,16989162009493700 270 19 61 -0,00600742210381056 -0,12374666001663500 271 20 61 0,00605421234613894 0,04581255557924940	267	15	61	-0,10349582453634700	-0,20442006515715300
269 18 61 -0,03801437313911070 -0,16989162009493700 270 19 61 -0,00600742210381056 -0,12374666001663500 271 20 61 0,00605421234613894 0,04581255557924940	268	17	61	-0,00630719170642727	-0,05593982827978230
270 19 61 -0,00600742210381056 -0,12374666001663500 271 20 61 0,00605421234613894 0,04581255557924940	269	18	61	· ·	· ·
271 20 61 0,00605421234613894 0,04581255557924940	270	19	61	· ·	· ·
272 21 61 -0,01236520550538690 0,06796440460917400	271	20	61	· ·	· ·
	272	21	61	-0,01236520550538690	0,06796440460917400

0.17	1	Г	4 D	CAD
nº Eventos	HVento	Empresa	AR	('AR
II LIVEIROS	Lvento	Limpresa	7 111	CITIC

274 12 62 -0,00479303728932225 0,21293989476601100 275 4 63 -0,06186623070326510 -0,16276492036178800 276 6 63 0,00361544038828972 -0,15071788428727800 277 7 63 0,07361586139932780 -0,13934129085334600 278 9 63 -0,01769669422980260 0,30307748002076800 280 11 63 -0,02560920212035760 0,01614326723951450 281 15 63 -0,02560920212035760 0,01614326723951450 282 18 63 0,13917756002255600 0,012832615156103900 283 2 64 0,04307957045102330 0,04818698775203500 284 6 64 -0,04529086944343630 0,03126593687578450 286 28 64 -0,00774355804763308 -0,138602911339956700 287 9 65 -0,05497365895715270 -0,22489072574644200 288 20 65 -0,04200467057107190 -0,175718932026177600 291					T
275 4 63 -0.06186623070326510 -0,16276492036178800 276 6 63 0.00361544038828972 -0,15971788428727800 277 7 63 0.07361586139932780 -0,13934129085334600 278 9 63 -0,01769669422980260 0.30307748002076800 280 11 63 -0,02072836441060880 -0,016444630102045740 281 15 63 -0,0250920212035760 -0,12832615156103900 283 2 64 -0,0437957045102330 -0,04818698775203500 284 6 64 -0,04529086944343630 -0,09301169646074010 285 11 64 -0,02947862185556550 -0,03126593687578450 286 28 64 -0,0074355084763308 -0,13800291133956700 287 9 65 -0,05497365895715270 -0,22489072574644200 288 20 65 -0,07364314525803450 -0,17518932026177600 299 31 65 -0,0420467057107190 -0,17518932026177600 291	273	22	61	0,00097520856845288	0,12270568243265300
276 6 63 0,00361544038828972 0.015071788428727800 -0,15071788428727800 -0,13934129085334600 -0,03361586139932780 0.0,13934129085334600 -0,03748002076800 -0,33007748002076800 -0,002028851263843345 0.010147235448846000 -0,00228851263843345 0.0,10147235448846000 -0,002560920212035760 0.04644630102045740 0,04644630102045740 0.04644630102045740 0,04644630102045740 0.04644630102045740 0.01614326723951450 0,04307957045102330 0.04818698775203500 0.0284697365895715270 0.02947862185556550 0.033126593687578450 0.02947862185556550 0.033126593687578450 0.033126593687578450 0.03482694763308 0.0186029133956700 285 11 64 0,02947862185556550 0.033126593687578450 0.033126593687578450 0.05497365895715270 0.022489072574644200 0.02849072574644200 0.0344525803450 0.07787890214364700 0.0294784288890743 0.07787890214364700 0.02947842684583000 0.04646463017819910 0.07787890214364700 0.07787890214364700 0.07787890214364700 0.015264590261536370 0.058547536089012210 0.03031586475045400 0.03031586475045400 0.03031586475045400 0.03031586475045400 0.03031586475045400 0.00846464639378260 0.00578259397136202 0.00578259397136202 0.005786259397136202 0.00578259397136202 0.0057825939732716426 0.0085887572612297730 0.075880232447553050 0.07880232447553050 0.008483856433670160 0.008488856433670160 0.008488856433670160 0.0084848687871290 0.0256498116 0.0718818707519946400 0.017598150394939800 0.008589387578412146 0.07218381622898410 0.07218381622898410 0.0017384466162913070 0.008544919840 0.007218381622898410 0.007218381622898410 0.0017381870751946400 0.0084491890 0.008266377187946400 0.00859533261140420 0.005741045100831020 0.006349166162913070 0.0063571984393060 0.006349166162913070 0.0063571984393060 0.004025637718788400 0.				·	· ·
277 7 63 0,07361586139932780 -0,13934129085334600 278 9 63 -0,01769669422980260 0,30307748002076800 279 10 63 -0,00028851263843345 -0,10147235448846000 280 11 63 -0,02560920212035760 0,01614326723951450 281 15 63 -0,02560920212035760 0,01614326723951450 282 18 63 0,13917756002255600 0,012832615156103900 283 2 64 -0,04529086944343630 -0,09301169646074010 285 11 64 -0,02947862185556550 0,03126593687578450 286 28 64 -0,00744355084763308 -0,13800291133956700 287 9 65 -0,05497365895715270 -0,22489072574644200 288 20 65 -0,05497365895715270 -0,22489072574644200 289 25 65 0,0549544454798730 0,12507422684383000 299 31 65 -0,0420467057107190 -0,17518930206177600 291				·	
278 9 63 -0,01769669422980260 0,30307748002076800 279 10 63 -0,00028851263843345 -0,10147235448846000 280 11 63 -0,02560920212035760 0,01614326723951450 281 15 63 -0,02560920212035760 0,12832615156103900 283 2 64 0,04307957045102330 0,04818698775203500 284 6 64 -0,04529086944343630 -0,09301169646074010 285 11 64 0,02947862185556550 0,03126593687578450 286 28 64 -0,0074355084763308 -0,13800291133956700 287 9 65 -0,05497365895715270 -0,22488072574644200 288 20 65 -0,07364314525803450 -0,0778789021436470 289 25 65 0,05439544454798730 0,12507422684383000 290 31 65 -0,01400467057107190 -0,17518932026177600 291 34 65 -0,014444110870 -0,17777899021436790 292	276		63	0,00361544038828972	-0,15071788428727800
279 10 63 -0,00028851263843345 -0,010147235448846000 280 11 63 -0,02072836441060880 0,04644630102045740 281 15 63 -0,02560920212035760 0,01614326723951450 282 18 63 0,13917756002255600 0,12832615156103900 283 2 64 0,04307957045102330 0,04818698775203500 284 6 64 -0,04529086944343630 -0,09301169646074010 285 11 64 0,02947862185556550 0,03126593687578450 286 28 64 -0,0074355084763308 -0,13800291133956700 287 9 65 -0,05497365895715270 -0,22489072574644200 288 20 65 -0,05497365895715270 -0,07787890214364700 289 25 65 0,05439544454798730 0,1207787890214364700 291 34 65 -0,04200467057107190 -0,17518932026177600 291 34 65 -0,016658785719126650 0,30031586475045400 292 <td>277</td> <td>-</td> <td>63</td> <td>0,07361586139932780</td> <td>-0,13934129085334600</td>	277	-	63	0,07361586139932780	-0,13934129085334600
280 11 63 -0,02072836441060880 0,04644630102045740 281 15 63 -0,02560920212035760 0,01614326723951450 282 18 63 0,13917756002255600 0,12832615156103900 283 2 64 0,04307957045102330 0,04818698775203500 284 6 64 -0,04529086944343630 -0,09301169646074010 285 11 64 -0,02947862185556550 0,03126593687578450 286 28 64 -0,00074355084763308 -0,13800291133956700 287 9 65 -0,05497365895715270 -0,022489072574644200 288 20 65 -0,07364314525803450 -0,17787890214364700 290 31 65 -0,04200467057107190 -0,17518932026177600 291 34 65 -0,009743288890743 0,15548190770908100 292 35 65 -0,0164656017819910 -0,08547536089012210 293 12 67 0,01865447286343040 0,16301896863142900 296	278	9	63	-0,01769669422980260	0,30307748002076800
281 15 63 -0,02560920212035760 0,01614326723951450 282 18 63 0,13917756002255600 0,12832615156103900 283 2 64 0,04307957045102330 0,04818698775203500 284 6 64 -0,04529086944343630 -0,09301169646074010 285 11 64 0,02947862185556550 0,03126593687578450 286 28 64 -0,00074355084763308 -0,13800291133956700 287 9 65 -0,05497365895715270 -0,22489072574644200 288 20 65 -0,07364314525803450 -0,07787890214364700 289 25 65 0,05439544454798730 0,12007422684383000 290 31 65 -0,04200467057107190 -0,17518932026177600 291 34 65 -0,0109743288890743 0,15548190770908100 292 35 65 -0,01064656017819910 -0,08347536089012210 293 12 67 0,01865447286343040 0,16301896863142900 294	279	10	63	-0,00028851263843345	-0,10147235448846000
282 18 63 0,13917756002255600 0,12832615156103900 283 2 64 0,04307957045102330 0,04818698775203500 284 6 64 -0,04529086944343630 0,09301169646074010 285 11 64 0,02947862185556550 0,03126593687578450 286 28 64 -0,00074355084763308 -0,13800291133956700 287 9 65 -0,05497365895715270 -0,22489072574644200 288 20 65 -0,07364314525803450 -0,07787890214364700 289 25 65 0,05439544454798730 0,12007422684383000 290 31 65 -0,04200467057107190 -0,17518932026177600 291 34 65 -0,01064656017819910 -0,08547536089012210 293 12 67 0,01865847286343040 0,16301896863142900 294 16 67 -0,01025890144110870 -0,0177742837350100 295 20 67 0,0185479664045 -0,00532399392716426 299	280	11	63	-0,02072836441060880	0,04644630102045740
283 2 64 0,04307957045102330 0,04818698775203500 284 6 64 -0,04529086944343630 -0,09301169646074010 285 11 64 0,02947862185556550 0,03126593687578450 286 28 64 -0,00074355084763308 -0,13800291133956702 287 9 65 -0,05497365895715270 -0,22489072574644200 288 20 65 -0,07364314525803450 -0,07787890214364700 289 25 65 0,05439544454798730 0,12007422684383000 290 31 65 -0,04200467057107190 -0,17518932026177600 291 34 65 -0,01064656017819910 -0,08547536089012210 293 12 67 0,01968785719126650 0,30031586475045400 294 16 67 -0,01025890144110870 -0,01177742837350100 295 20 67 0,01865447286343040 0,16301896861342900 296 22 67 0,01254590261536370 0,05782593971362020 297	281	15	63	-0,02560920212035760	0,01614326723951450
284 6 64 -0,04529086944343630 -0,09301169646074010 285 11 64 0,02947862185556550 0,03126593687578450 286 28 64 -0,00074355084763308 -0,13800291133956700 287 9 65 -0,05497365895715270 -0,22489072574644200 288 20 65 -0,05439544454798730 0,12007422684383000 289 25 65 0,05439544454798730 0,12007422684383000 290 31 65 -0,04200467057107190 -0,17518932026177600 291 34 65 -0,01064656017819910 -0,08547536089012210 293 12 67 0,0186785719126650 0,30031586475045400 294 16 67 -0,01025890144110870 -0,01177742837350100 295 20 67 0,01865447286343040 0,16301896863142900 296 22 67 0,0187447286343040 0,0578259371526020 297 24 67 0,00839587351618914 0,03218391071540340 298	282	18	63	0,13917756002255600	0,12832615156103900
285 11 64 0,02947862185556550 0,03126593687578450 286 28 64 -0,00074355084763308 -0,13800291133956700 287 9 65 -0,05497365895715270 -0,22489072574644200 288 20 65 -0,07364314525803450 -0,07787890214364700 289 25 65 0,05439544454798730 0,12007422684383000 290 31 65 -0,04200467057107190 -0,17518932026177600 291 34 65 -0,01064656017819910 -0,08547536089012210 293 12 67 0,01968785719126650 0,30031586475045400 294 16 67 -0,01025890144110870 -0,01177742837350100 295 20 67 0,01865447286343040 0,16301896863142900 296 22 67 0,01854590261536370 0,05782593971362020 297 24 67 0,00889589351618914 0,032187886405 -0,00532399392716426 299 29 67 0,03118788422709670 0,02564308100009820	283	2	64	0,04307957045102330	0,04818698775203500
286 28 64 -0,00074355084763308 -0,13800291133956700 287 9 65 -0,05497365895715270 -0,22489072574644200 288 20 65 -0,07364314525803450 -0,07787890214364700 289 25 65 0,05439544454798730 0,12007422684383000 290 31 65 -0,04200467057107190 -0,17518932026177600 291 34 65 -0,00099743288890743 0,15548190770908100 292 35 65 -0,01064656017819910 -0,08547536089012210 293 12 67 0,01968785719126650 0,30031586475045400 294 16 67 -0,01025890144110870 -0,01177742837350100 295 20 67 0,01865447286343040 0,16301896863142900 296 22 67 0,0254590261536370 0,05782593971362020 297 24 67 0,0381877686405 -0,00532399392716426 299 29 67 0,03118788422709670 0,02564308100009820 301	284	6	64	-0,04529086944343630	-0,09301169646074010
287 9 65 -0,05497365895715270 -0,22489072574644200 288 20 65 -0,07364314525803450 -0,07787890214364700 289 25 65 0,05439544454798730 0,12007422684383000 290 31 65 -0,04200467057107190 -0,17518932026177600 291 34 65 -0,0109743288890743 0,15548190770908100 292 35 65 -0,0106656017819910 -0,08547536089012210 293 12 67 0,01968785719126650 0,30031586475045400 294 16 67 -0,01025890144110870 -0,01177742837350100 295 20 67 0,01865447286343040 0,16301896863142900 296 22 67 0,01254590261536370 0,05782593971362020 297 24 67 0,00889589351618914 0,03218391071540340 298 26 67 0,03118788422709670 0,02564308100009820 301 33 67 0,0419820738563268 0,048838856433670160 302	285	11	64	0,02947862185556550	0,03126593687578450
288 20 65 -0,07364314525803450 -0,07787890214364700 289 25 65 0,05439544454798730 0,12007422684383000 290 31 65 -0,04200467057107190 -0,17518932026177600 291 34 65 -0,00099743288890743 0,15548190770908100 292 35 65 -0,01064656017819910 -0,08547536089012210 293 12 67 0,01968785719126650 0,30031586475045400 294 16 67 -0,01025890144110870 -0,01177742837350100 295 20 67 0,01865447286343040 0,16301896863142900 296 22 67 0,01254590261536370 0,05782593971362020 297 24 67 0,00809589351618914 0,03218391071540340 298 26 67 -0,0538018377686405 -0,00532399392716426 299 29 67 0,03118788422709670 0,02554308100009820 300 32 67 0,02085401494619780 -0,09519364463393220 301	286	28	64	-0,00074355084763308	-0,13800291133956700
289 25 65 0,05439544454798730 0,12007422684383000 290 31 65 -0,04200467057107190 -0,17518932026177600 291 34 65 -0,00099743288890743 0,15548190770908100 292 35 65 -0,01064656017819910 -0,08547536089012210 293 12 67 0,01968785719126650 0,30031586475045400 294 16 67 -0,01025890144110870 -0,01177742837350100 295 20 67 0,01865447286343040 0,16301896863142900 296 22 67 0,01254590261536370 0,05782593971362020 297 24 67 0,00809589351618914 0,03218391071540340 298 26 67 -0,00538018377686405 -0,00532399392716426 299 29 67 0,03118788422709670 0,02564308100009820 300 32 67 0,02085401494619780 -0,09519364463393220 301 33 67 0,00419820738563268 0,04883856433670160 302	287	9	65	-0,05497365895715270	-0,22489072574644200
290 31 65 -0,04200467057107190 -0,17518932026177600 291 34 65 -0,000997432888890743 0,15548190770908100 292 35 65 -0,01064656017819910 -0,08547536089012210 293 12 67 0,01968785719126650 0,30031586475045400 294 16 67 -0,01025890144110870 -0,01177742837350100 295 20 67 0,01865447286343040 0,16301896863142900 296 22 67 0,01254590261536370 0,05782593971362020 297 24 67 0,00809589351618914 0,03218391071540340 298 26 67 -0,00538018377686405 -0,00532399392716426 299 29 67 0,03118788422709670 0,02564308100009820 300 32 67 0,02085401494619780 -0,09519364463393220 301 33 67 0,00419820738563268 0,04883856433670160 302 1 69 -0,01370682024091890 0,1759815039493980 304	288	20	65	-0,07364314525803450	-0,07787890214364700
291 34 65 -0,000997432888890743 0,15548190770908100 292 35 65 -0,01064656017819910 -0,08547536089012210 293 12 67 0,01968785719126650 0,30031586475045400 294 16 67 -0,01025890144110870 -0,01177742837350100 295 20 67 0,01865447286343040 0,16301896863142900 296 22 67 0,01254590261536370 0,05782593971362020 297 24 67 0,00880589351618914 0,03218391071540340 298 26 67 -0,00538018377686405 -0,00532399392716426 299 29 67 0,03118788422709670 0,02564308100009820 300 32 67 0,02085401494619780 -0,09519364463393220 301 33 67 0,00419820738563268 0,04883856433670160 302 1 69 -0,01284827231422210 0,17598150394939800 304 7 69 0,0225648871290 -0,07880232447553050 305	289	25	65	0,05439544454798730	0,12007422684383000
292 35 65 -0,01064656017819910 -0,08547536089012210 293 12 67 0,01968785719126650 0,30031586475045400 294 16 67 -0,01025890144110870 -0,01177742837350100 295 20 67 0,01865447286343040 0,16301896863142900 296 22 67 0,01254590261536370 0,05782593971362020 297 24 67 0,00809589351618914 0,03218391071540340 298 26 67 -0,00538018377686405 -0,00532399392716426 299 29 67 0,03118788422709670 0,02564308100009820 300 32 67 0,02085401494619780 -0,09519364463393220 301 33 67 0,00419820738563268 0,04883856433670160 302 1 69 -0,01284827231422210 0,17598150394939800 304 7 69 0,00210663993782567 -0,07880232447553050 305 8 69 -0,0250786687871290 -0,08460052771530290 307	290	31	65	-0,04200467057107190	-0,17518932026177600
293 12 67 0,01968785719126650 0,30031586475045400 294 16 67 -0,01025890144110870 -0,01177742837350100 295 20 67 0,01865447286343040 0,16301896863142900 296 22 67 0,01254590261536370 0,05782593971362020 297 24 67 0,00809589351618914 0,03218391071540340 298 26 67 -0,00538018377686405 -0,00532399392716426 299 29 67 0,03118788422709670 0,02564308100009820 300 32 67 0,02085401494619780 -0,09519364463393220 301 33 67 0,00419820738563268 0,04883856433670160 302 1 69 -0,01370682024091890 -0,08788772612297730 303 4 69 -0,02235812486538840 0,21122952904208600 305 8 69 -0,02335812486538840 -0,21122952904208600 306 17 69 0,01852990849763460 -0,08460052771530290 307	291	34	65	-0,00099743288890743	0,15548190770908100
294 16 67 -0,01025890144110870 -0,01177742837350100 295 20 67 0,01865447286343040 0,16301896863142900 296 22 67 0,01254590261536370 0,05782593971362020 297 24 67 0,00809589351618914 0,03218391071540340 298 26 67 -0,00538018377686405 -0,00532399392716426 299 29 67 0,03118788422709670 0,02564308100009820 300 32 67 0,02085401494619780 -0,09519364463393220 301 33 67 0,00419820738563268 0,04883856433670160 302 1 69 -0,01370682024091890 -0,08788772612297730 303 4 69 -0,01284827231422210 0,17598150394939800 304 7 69 0,00210663993782567 -0,07880232447553050 305 8 69 -0,02335812486538840 0,21122952904208600 306 17 69 0,01852990849763460 -0,08460052771530290 307	292	35	65	-0,01064656017819910	-0,08547536089012210
295 20 67 0,01865447286343040 0,16301896863142900 296 22 67 0,01254590261536370 0,05782593971362020 297 24 67 0,00809589351618914 0,03218391071540340 298 26 67 -0,00538018377686405 -0,00532399392716426 299 29 67 0,03118788422709670 0,02564308100009820 300 32 67 0,02085401494619780 -0,09519364463393220 301 33 67 0,00419820738563268 0,04883856433670160 302 1 69 -0,01370682024091890 -0,08788772612297730 303 4 69 -0,01284827231422210 0,17598150394939800 304 7 69 0,00210663993782567 -0,07880232447553050 305 8 69 -0,02335812486538840 0,21122952904208600 306 17 69 0,01852990849763460 -0,08460052771530290 307 20 69 -0,0250786687871290 -0,25698811664733400 308	293	12	67	0,01968785719126650	0,30031586475045400
296 22 67 0,01254590261536370 0,05782593971362020 297 24 67 0,00809589351618914 0,03218391071540340 298 26 67 -0,00538018377686405 -0,00532399392716426 299 29 67 0,03118788422709670 0,02564308100009820 300 32 67 0,02085401494619780 -0,09519364463393220 301 33 67 0,00419820738563268 0,04883856433670160 302 1 69 -0,01370682024091890 -0,08788772612297730 303 4 69 -0,01284827231422210 0,17598150394939800 304 7 69 0,00210663993782567 -0,07880232447553050 305 8 69 -0,02335812486538840 0,21122952904208600 306 17 69 0,01852990849763460 -0,08460052771530290 307 20 69 -0,02500786687871290 -0,25698811664733400 308 21 69 0,01713743649169260 -0,044443614076099580 310	294	16	67	-0,01025890144110870	-0,01177742837350100
297 24 67 0,00809589351618914 0,03218391071540340 298 26 67 -0,00538018377686405 -0,00532399392716426 299 29 67 0,03118788422709670 0,02564308100009820 300 32 67 0,02085401494619780 -0,09519364463393220 301 33 67 0,00419820738563268 0,04883856433670160 302 1 69 -0,01370682024091890 -0,08788772612297730 303 4 69 -0,01284827231422210 0,17598150394939800 304 7 69 0,00210663993782567 -0,07880232447553050 305 8 69 -0,02335812486538840 0,21122952904208600 306 17 69 0,01852990849763460 -0,08460052771530290 307 20 69 -0,02500786687871290 -0,25698811664733400 308 21 69 0,01713743649169260 -0,04443614076099580 310 28 69 0,00839387578412146 -0,07218381622898410 311	295	20	67	0,01865447286343040	0,16301896863142900
298 26 67 -0,00538018377686405 -0,00532399392716426 299 29 67 0,03118788422709670 0,02564308100009820 300 32 67 0,02085401494619780 -0,09519364463393220 301 33 67 0,00419820738563268 0,04883856433670160 302 1 69 -0,01370682024091890 -0,08788772612297730 303 4 69 -0,01284827231422210 0,17598150394939800 304 7 69 0,00210663993782567 -0,07880232447553050 305 8 69 -0,02335812486538840 0,21122952904208600 306 17 69 0,01852990849763460 -0,08460052771530290 307 20 69 -0,02500786687871290 -0,25698811664733400 308 21 69 -0,02614844180039160 -0,07291441224195170 309 22 69 0,01713743649169260 -0,044443614076099580 310 28 69 -0,03840033002607090 -0,08220832245422510 313	296	22	67	0,01254590261536370	0,05782593971362020
299 29 67 0,03118788422709670 0,02564308100009820 300 32 67 0,02085401494619780 -0,09519364463393220 301 33 67 0,00419820738563268 0,04883856433670160 302 1 69 -0,01370682024091890 -0,08788772612297730 303 4 69 -0,01284827231422210 0,17598150394939800 304 7 69 0,00210663993782567 -0,07880232447553050 305 8 69 -0,02335812486538840 0,21122952904208600 306 17 69 0,01852990849763460 -0,08460052771530290 307 20 69 -0,02500786687871290 -0,25698811664733400 308 21 69 -0,02614844180039160 -0,07291441224195170 309 22 69 0,01713743649169260 -0,074443614076099580 310 28 69 0,0839387578412146 -0,07218381622898410 311 32 69 -0,04144665530696110 -0,17081870751946400 312	297	24	67	0,00809589351618914	0,03218391071540340
300 32 67 0,02085401494619780 -0,09519364463393220 301 33 67 0,00419820738563268 0,04883856433670160 302 1 69 -0,01370682024091890 -0,08788772612297730 303 4 69 -0,01284827231422210 0,17598150394939800 304 7 69 0,00210663993782567 -0,07880232447553050 305 8 69 -0,02335812486538840 0,21122952904208600 306 17 69 0,01852990849763460 -0,08460052771530290 307 20 69 -0,02500786687871290 -0,25698811664733400 308 21 69 -0,02614844180039160 -0,07291441224195170 309 22 69 0,01713743649169260 -0,04443614076099580 310 28 69 0,0839387578412146 -0,07218381622898410 312 35 69 -0,03840033002607090 -0,08220832245422510 313 2 70 -0,07822775586232570 0,10499767996285000 314	298	26	67	-0,00538018377686405	-0,00532399392716426
301 33 67 0,00419820738563268 0,04883856433670160 302 1 69 -0,01370682024091890 -0,08788772612297730 303 4 69 -0,01284827231422210 0,17598150394939800 304 7 69 0,00210663993782567 -0,07880232447553050 305 8 69 -0,02335812486538840 0,21122952904208600 306 17 69 0,01852990849763460 -0,08460052771530290 307 20 69 -0,02500786687871290 -0,25698811664733400 308 21 69 -0,02614844180039160 -0,07291441224195170 309 22 69 0,01713743649169260 -0,04443614076099580 310 28 69 0,00839387578412146 -0,07218381622898410 311 32 69 -0,03840033002607090 -0,08220832245422510 313 2 70 -0,07822775586232570 0,10499767996285000 314 4 70 -0,01528933261140420 0,05741045100831020 315	299	29	67	0,03118788422709670	0,02564308100009820
302 1 69 -0,01370682024091890 -0,08788772612297730 303 4 69 -0,01284827231422210 0,17598150394939800 304 7 69 0,00210663993782567 -0,07880232447553050 305 8 69 -0,02335812486538840 0,21122952904208600 306 17 69 0,01852990849763460 -0,08460052771530290 307 20 69 -0,02500786687871290 -0,25698811664733400 308 21 69 -0,02614844180039160 -0,07291441224195170 309 22 69 0,01713743649169260 -0,04443614076099580 310 28 69 0,00839387578412146 -0,07218381622898410 311 32 69 -0,04144665530696110 -0,17081870751946400 312 35 69 -0,03840033002607090 -0,08220832245422510 313 2 70 -0,07822775586232570 0,10499767996285000 314 4 70 -0,01528933261140420 0,05741045100831020 315	300	32	67	0,02085401494619780	-0,09519364463393220
303 4 69 -0,01284827231422210 0,17598150394939800 304 7 69 0,00210663993782567 -0,07880232447553050 305 8 69 -0,02335812486538840 0,21122952904208600 306 17 69 0,01852990849763460 -0,08460052771530290 307 20 69 -0,02500786687871290 -0,25698811664733400 308 21 69 -0,02614844180039160 -0,07291441224195170 309 22 69 0,01713743649169260 -0,04443614076099580 310 28 69 0,00839387578412146 -0,07218381622898410 311 32 69 -0,04144665530696110 -0,17081870751946400 312 35 69 -0,03840033002607090 -0,08220832245422510 313 2 70 -0,07822775586232570 0,10499767996285000 314 4 70 -0,01528933261140420 0,05741045100831020 315 6 70 0,06349166162913070 -0,06057570284393060 316	301	33	67	0,00419820738563268	0,04883856433670160
304 7 69 0,00210663993782567 -0,07880232447553050 305 8 69 -0,02335812486538840 0,21122952904208600 306 17 69 0,01852990849763460 -0,08460052771530290 307 20 69 -0,02500786687871290 -0,25698811664733400 308 21 69 -0,02614844180039160 -0,07291441224195170 309 22 69 0,01713743649169260 -0,04443614076099580 310 28 69 0,00839387578412146 -0,07218381622898410 311 32 69 -0,04144665530696110 -0,17081870751946400 312 35 69 -0,03840033002607090 -0,08220832245422510 313 2 70 -0,07822775586232570 0,10499767996285000 314 4 70 -0,01528933261140420 0,05741045100831020 315 6 70 0,06349166162913070 -0,06057570284393060 316 11 70 -0,01837154467701790 -0,08964719847081840 317	302	1	69	-0,01370682024091890	-0,08788772612297730
305 8 69 -0,02335812486538840 0,21122952904208600 306 17 69 0,01852990849763460 -0,08460052771530290 307 20 69 -0,02500786687871290 -0,25698811664733400 308 21 69 -0,02614844180039160 -0,07291441224195170 309 22 69 0,01713743649169260 -0,04443614076099580 310 28 69 0,00839387578412146 -0,07218381622898410 311 32 69 -0,04144665530696110 -0,17081870751946400 312 35 69 -0,03840033002607090 -0,08220832245422510 313 2 70 -0,07822775586232570 0,10499767996285000 314 4 70 -0,01528933261140420 0,05741045100831020 315 6 70 0,06349166162913070 -0,06057570284393060 316 11 70 -0,01837154467701790 -0,08964719847081840 317 12 70 0,01075680002885090 0,04025637718788400	303	4	69	-0,01284827231422210	0,17598150394939800
306 17 69 0,01852990849763460 -0,08460052771530290 307 20 69 -0,02500786687871290 -0,25698811664733400 308 21 69 -0,02614844180039160 -0,07291441224195170 309 22 69 0,01713743649169260 -0,04443614076099580 310 28 69 0,00839387578412146 -0,07218381622898410 311 32 69 -0,04144665530696110 -0,17081870751946400 312 35 69 -0,03840033002607090 -0,08220832245422510 313 2 70 -0,07822775586232570 0,10499767996285000 314 4 70 -0,01528933261140420 0,05741045100831020 315 6 70 0,06349166162913070 -0,06057570284393060 316 11 70 -0,01837154467701790 -0,08964719847081840 317 12 70 0,01075680002885090 0,04025637718788400	304	7	69	0,00210663993782567	-0,07880232447553050
307 20 69 -0,02500786687871290 -0,25698811664733400 308 21 69 -0,02614844180039160 -0,07291441224195170 309 22 69 0,01713743649169260 -0,04443614076099580 310 28 69 0,00839387578412146 -0,07218381622898410 311 32 69 -0,04144665530696110 -0,17081870751946400 312 35 69 -0,03840033002607090 -0,08220832245422510 313 2 70 -0,07822775586232570 0,10499767996285000 314 4 70 -0,01528933261140420 0,05741045100831020 315 6 70 0,06349166162913070 -0,06057570284393060 316 11 70 -0,01837154467701790 -0,08964719847081840 317 12 70 0,01075680002885090 0,04025637718788400	305	8	69	-0,02335812486538840	0,21122952904208600
308 21 69 -0,02614844180039160 -0,07291441224195170 309 22 69 0,01713743649169260 -0,04443614076099580 310 28 69 0,00839387578412146 -0,07218381622898410 311 32 69 -0,04144665530696110 -0,17081870751946400 312 35 69 -0,03840033002607090 -0,08220832245422510 313 2 70 -0,07822775586232570 0,10499767996285000 314 4 70 -0,01528933261140420 0,05741045100831020 315 6 70 0,06349166162913070 -0,06057570284393060 316 11 70 -0,01837154467701790 -0,08964719847081840 317 12 70 0,01075680002885090 0,04025637718788400	306	17	69	0,01852990849763460	-0,08460052771530290
309 22 69 0,01713743649169260 -0,04443614076099580 310 28 69 0,00839387578412146 -0,07218381622898410 311 32 69 -0,04144665530696110 -0,17081870751946400 312 35 69 -0,03840033002607090 -0,08220832245422510 313 2 70 -0,07822775586232570 0,10499767996285000 314 4 70 -0,01528933261140420 0,05741045100831020 315 6 70 0,06349166162913070 -0,06057570284393060 316 11 70 -0,01837154467701790 -0,08964719847081840 317 12 70 0,01075680002885090 0,04025637718788400	307	20	69	-0,02500786687871290	-0,25698811664733400
310 28 69 0,00839387578412146 -0,07218381622898410 311 32 69 -0,04144665530696110 -0,17081870751946400 312 35 69 -0,03840033002607090 -0,08220832245422510 313 2 70 -0,07822775586232570 0,10499767996285000 314 4 70 -0,01528933261140420 0,05741045100831020 315 6 70 0,06349166162913070 -0,06057570284393060 316 11 70 -0,01837154467701790 -0,08964719847081840 317 12 70 0,01075680002885090 0,04025637718788400	308	21	69	-0,02614844180039160	-0,07291441224195170
311 32 69 -0,04144665530696110 -0,17081870751946400 312 35 69 -0,03840033002607090 -0,08220832245422510 313 2 70 -0,07822775586232570 0,10499767996285000 314 4 70 -0,01528933261140420 0,05741045100831020 315 6 70 0,06349166162913070 -0,06057570284393060 316 11 70 -0,01837154467701790 -0,08964719847081840 317 12 70 0,01075680002885090 0,04025637718788400	309	22	69	0,01713743649169260	-0,04443614076099580
312 35 69 -0,03840033002607090 -0,08220832245422510 313 2 70 -0,07822775586232570 0,10499767996285000 314 4 70 -0,01528933261140420 0,05741045100831020 315 6 70 0,06349166162913070 -0,06057570284393060 316 11 70 -0,01837154467701790 -0,08964719847081840 317 12 70 0,01075680002885090 0,04025637718788400	310	28	69	0,00839387578412146	-0,07218381622898410
313 2 70 -0,07822775586232570 0,10499767996285000 314 4 70 -0,01528933261140420 0,05741045100831020 315 6 70 0,06349166162913070 -0,06057570284393060 316 11 70 -0,01837154467701790 -0,08964719847081840 317 12 70 0,01075680002885090 0,04025637718788400	311	32	69	-0,04144665530696110	-0,17081870751946400
313 2 70 -0,07822775586232570 0,10499767996285000 314 4 70 -0,01528933261140420 0,05741045100831020 315 6 70 0,06349166162913070 -0,06057570284393060 316 11 70 -0,01837154467701790 -0,08964719847081840 317 12 70 0,01075680002885090 0,04025637718788400	312	35	69	-0,03840033002607090	-0,08220832245422510
314 4 70 -0,01528933261140420 0,05741045100831020 315 6 70 0,06349166162913070 -0,06057570284393060 316 11 70 -0,01837154467701790 -0,08964719847081840 317 12 70 0,01075680002885090 0,04025637718788400	313	2	70	· ·	0,10499767996285000
315 6 70 0,06349166162913070 -0,06057570284393060 316 11 70 -0,01837154467701790 -0,08964719847081840 317 12 70 0,01075680002885090 0,04025637718788400	314			· ·	· ·
316 11 70 -0,01837154467701790 -0,08964719847081840 317 12 70 0,01075680002885090 0,04025637718788400		6			
317 12 70 0,01075680002885090 0,04025637718788400		11		· ·	
		12		· ·	· ·
310	318	10	72	-0,04257556898351950	0,04945782625297380

0.10	T .	-	A TO	CAD
nº Evento	s I H Vento	Lemnresa	AR	(AR
II LIVEIIC	5 Livento	Limpicsa	7 111	CITIC

1				
319	28	72	-0,03701594899968910	0,05348853366842470
320	8	73	-0,02665951244466350	0,29689962324909100
321	35	74	0,01021838115513000	-0,18359880912624500
322	36	74	0,00280454733335760	-0,10222153303118900
323	16	75	0,05384821926904190	0,04187557173062330
324	29	75	0,13136897588353800	0,20788304172337000
325	30	75	-0,00854475358752293	-0,00299913586445164
326	12	76	0,01965613100404470	-0,00952345505989954
327	14	76	-0,01934398926593650	0,04372673862348960
328	20	76	0,04501602478885150	-0,00402710596114149
329	24	76	0,01445409087041880	0,01688571205591090
330	28	76	0,03462089314062720	0,11312146634316000
331	34	76	0,03112212385175000	0,07564758784334990
332	5	77	0,03369397657450440	0,22913619243720600
333	8	77	-0,01602819092359800	0,01797211053572440
334	32	77	0,06898542804551660	0,18345522640845900
335	36	77	0,00462362034195774	-0,16860295636657200
336	32	79	0,04424231254682280	0,09702961812053040
337	3	80	0,02072131498595280	0,02990738825050630
338	13	80	-0,01134102339742080	-0,10178560281469800
339	15	80	0,03444941667517990	-0,12604716003042800
340	16	80	-0,08828753438631240	-0,01419874440730800
341	19	80	0,00191075845752574	0,17904796531608100
342	30	80	-0,03832162556130570	-0,08835620309265380
343	36	80	0,07162839632889690	0,21086255600986900
344	21	81	-0,00923502922505841	0,00591754611188369
345	23	81	0,02259161204305300	0,11195386666892700
346	24	81	0,02084849526163720	0,03221767598346470
347	36	81	-0,00919337021469134	-0,00943073872578720
348	4	82	0,01057141377812210	-0,06322652755451160
349	5	82	0,00653355279204179	-0,04781534905384640
350	6	82	-0,05336796692974530	-0,18468795557973500
351	8	82	-0,00723905784200791	-0,09000243479235050
352	9	82	0,02425408289969890	-0,01626940086528610
353	11	82	0,00678335549090489	0,09384178059281880
354	12	82	-0,02504424839146180	0,10671201648986700
355	13	82	0,02879083413356650	0,05357962901125960
356	15	82	-0,06435598777389760	0,06969558375551230
357	17	82	-0,02071416764616870	-0,17023986130371300
358	19	82	0,01419179293036170	-0,04076039674611520
359	20	82	-0,02366302205316450	-0,01680383353911350
360	21	82	0,05073252034619170	0,09136246365394480
361	22	82	-0,00976954529693003	0,08297207720483790
362	24	82	0,05617340657285340	0,07059133182740550
363	26	82	0,00582586425223924	-0,01694707229304270
364	28	82	0,01667031588738740	0,13013307858296500

nº Eventos Evento Empresa	AR	CAR	
-------------------------------	----	-----	--

	1	1		
365	35	82	0,03285345544102480	0,08679292285161040
366	3	84	-0,01987379987840060	-0,62451118417620200
367	13	84	-0,01940444875167420	0,01639609944049930
368	21	84	0,02919630652615840	0,09950515653445950
369	23	84	0,00400375414458275	0,03019064889009930
370	25	84	-0,01355037918420300	0,08545073848476250
371	36	84	0,05587694775953740	0,08326386809665660
372	6	86	0,11589389801881600	0,43089096261239200
373	12	86	0,02487855495023170	0,15661416501652900
374	14	86	0,04089573981463180	-0,05430978263217770
375	28	86	-0,00551036847286422	-0,00307813640519555
376	32	86	-0,00534256751478669	0,05046138624879300
377	10	88	-0,01991405113396100	-0,14233034827594100
378	13	88	0,04526998463355330	0,07382428351931510
379	36	90	0,01118899611472060	0,02941433396352240
380	4	91	0,01257964393398690	-0,19589794311657900
381	8	91	-0,09457275552463130	-0,20808368061639700
382	10	91	-0,02420725653386570	0,18780219447587700
383	14	91	0,07653016809845560	0,27057698884889400
384	3	92	0,02551034839176150	0,38735433986953500
385	4	92	-0,02319326649727420	0,17061908414934400
386	19	92	-0,00056244369166568	0,22633076941682400
387	2	93	-0,02159351047159270	-0,02557292143525660
388	4	93	0,01216566752511740	0,10026987244665700
389	16	93	0,03136104364593810	0,07158360688714370
390	18	93	0,03703302170953220	0,07547833427994120
391	22	93	0,00122175961642345	0,04161707728198400
392	24	93	-0,01569927231185710	-0,08068689448703600
393	27	93	0,05118105519363350	0,00212993597734311
394	31	93	-0,01537333496814310	0,03224391942489300
395	32	93	-0,02792191128244640	-0,16428888803775200
396	33	93	-0,00067379714455792	0,02615949280302620
397	1	95	-0,05392806868122970	-0,06861164295960290
398	2	95	0,01459824790339390	0,05203257709909140
399	10	95	0,01682414784725930	-0,07420886194761150
400	14	95	-0,01148528921278770	0,11430899691524100
401	17	95	0,01276666163522560	-0,07480838371050980
402	19	95	0,04074443017874590	0,07036778218484830
403	20	95	0,02606034941811540	0,04946111331276730
404	22	95	0,01191837943978840	-0,00720202839765141
405	24	95	-0,02488666921015950	-0,01569449977932730
406	27	95	-0,02938257432149180	-0,06309663257065120
407	31	95	0,03411570428817350	0,03525556483270300
408	34	95	0,00806420891861459	0,00748203177672803
409	35	95	0,00684764530306005	-0,03845258771196300
410	36	95	-0,02183137472212950	-0,28230614189339300
				I

nº Eventos Evento	Empresa	AR	CAR

				1
411	4	97	0,02209715871631580	0,40316348090281900
412	6	97	-0,03469893679878120	0,22780353943605800
413	15	97	0,08399063353283990	0,09167618835688440
414	3	98	-0,01190496296226320	-0,01099323810360090
415	4	98	0,03279759936046040	0,01793389639902510
416	10	98	-0,06186993506883970	-0,19111276852685800
417	4	99	0,01221978218201410	-0,00463544934380470
418	9	99	-0,05117337940472720	-0,05930085798568410
419	18	99	0,01315092062335350	-0,18007544570817500
420	34	99	-0,01365547615013630	0,06093731211927880
421	4	100	-0,00827295601202513	0,08116396361818230
422	6	100	0,02543071877098670	0,12997243441129700
423	7	100	0,03677096548648050	0,05140679525903640
424	12	100	0,09731171622235640	0,08070743133823710