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ABSTRACT 

We introduce a new end-to-end, sender side Transport Control Protocol called TCP 
HolyWood or in short TCP-HW. In a simulated wired environment, TCP HolyWood 
outperforms in average throughput, three of the more important TCP protocols ever 
made, we are talking about TCP Reno, TCP Westwood, and TCP Vegas; and in average 
jitter to TCP Reno and TCP Vegas too. In addition, according to Jain’s index, our 
proposal is as fair as TCP Reno, the Standard.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: TCP, Wired Networks, Congestion, throughput, jitter. 
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TCP HolyWood 

RESUMO 

 
Apresentamos um novo Protocolo de Controle de Transporte fim-a-fim, 

implementado somente do lado do transmissor, chamado TCP HolyWood ou, 
abreviadamente, TCP-HW. Em um ambiente de rede cabeada simulada, TCP 
HolyWood supera em vazão media três dos mais importantes protocolos TCPs já 
elaborados. Estamos falando de TCP Reno, TCP Westwood, e TCP Vegas; e em 
variação de retardo media ao TCP Reno bem como ao TCP Vegas. Alem disso, de 
acordo com o índice de Jain, nossa proposta e tão imparcial quanto o padrão, TCP 
Reno. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Palavras-Chave: TCP, Rede cabeada, congestão, Vazão, variação de retardo. 
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1 INTRODUCTION                                                            

 
“Sim, naturalmente vãos foram todos os 
homens que ignoraram a DEUS e que, 
partindo dos bens visíveis, não foram capazes 
de conhecer AQUELE que é, nem, 
considerando as obras, de conhecer o 
ARTÍFICE”. 

  A Biblia de Jerusalem. (Sabedoria: 13,1) 

 
The transmission control protocol (TCP) is a stream-oriented transport layer 

protocol that has several targets as for examples: adjust the transmission rate of packets 
to the available bandwidth, create a reliable connection by   retransmitting lost packets, 
and keep off congestion at the network. 

First TCP versions only owned a simple sliding window and flow control 
mechanism, without any congestion control. Nevertheless after a series of collapses in 
1980's Van Jacobson introduced TCP Tahoe in 1988 (JACOBSON, 1988) and two year 
later introduced TCP Reno, considered as standard until now. What make majestic these 
two TCPs was their dynamic congestion controls and in the case of the latter served us 
as inspiration for this dissertation. 

After the work of Jacabson since 90s until our days several TCPs proposal were 
arising.  TCP  became a continuous  focus of research by the computer science 
community as shown by the several proposals presented, for example TCP Veno, TCP 
Westwood, TCP Santa Cruz, etc. all them trying to improve the throughput performance 
in different networks environments. 

The Transport Control Protocol is located in the fourth layer of the OSI (Open 
System Interconnect) Reference Model (ISO 7489) surrounded with the upper fifth 
layer, Session, and  the lower third layer, called Network. 

In the dissertation we will demonstrate, that in a simulated wired environment, TCP 
HolyWood outperforms in Average throughput three of the more important TCP 
protocols ever made, we are talking about TCP Reno, the standard; TCP Westwood and 
TCP Vegas; and in average jitter to TCP Reno and TCP Vegas. In addition, our 
proposal is as fair as TCP Reno.  

The structure of this dissertation is as follow: in chapter 2, we make a general review 
of background concepts. In chapter 3, review the current related works.  
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In chapter 4 is the reason of this dissertation, our proposal called ''TCP HolyWood''. 
In chapter 5, is the test-bed we used and the simulations we made in NS-2.  In chapter 6, 
are the results, comparison and analysis of this work. Finally, in chapter 7, are our 
conclusion and future works. 

1.1 Motivation 
Oscar called Violeta, Hi darling, I wrote you a mail two hours ago, but you did not 

answer it. I beg your pardon Oscar, said Violeta; it was because I was making a 
commercial transaction by Internet and took me lots of time, 'cause the net really was 
heavy.  Well darling if you read the email you will notice that I downloaded an excellent 
film ‘‘The Reborn of the Empire of the Sun'', that told the true story of the remaining 
descendants of the great Inca Empire in this century.  I bought a peruvian wine as well, 
for this occasion; maybe you will give me the pleasure to watch the film with me 
tonight.  I will be pleased said Violeta, so we will meet tonight kisses Oscar, kisses 
Violeta, see you later. 

In this small dialogue, Violeta and Oscar were using transmission Control Protocol 
(TCP) without being aware of it, it was when Oscar sent an email, and when he 
downloaded the film and also when Violeta was making her commercial transaction. 
She also expressed her discomfort with the network, even with the highest speed link 
and updated technology congestions in the network may occur (JAIN, 1990). It showed 
us also that research to improve the TCP performance has to go on. 

We may appreciate nowadays that TCP protocol is deployed world wide, and that 
simple dialogue is a very frequent situation. According to (ALTMAN; JIMENEZ, 
2003), the TCP   is the transport protocol that is responsible for the transmission of 
around 90% of the internet traffic, and understanding TCP is thus crucial for 
dimensioning the Internet 

Now with the wireless technology in its different forms, wireless LAN and 
variations, Cellular Networks, Satellite Networks, wired-wireless cam networks, in 
general heterogeneous networks are being deployed in increasing rate, challenging 
situation may appear where TCP certainly will have to deal with. 

Let us remember the word of Jain (1990) “a scheme that works for one network may 
not work equally well for other networks”. So we will still have different network 
environments, metrics, factor, schemes, arising communication technologies,  that  
appropriated mixed will let us keep on playing with TCP for a long time in  the search 
of the ideal TCP.  

Finally, in the desire of conquer the space and with the developments of space 
technologies that are enabling the realization of space scientific missions, Interplanetary 
Internet is expected to be the next step in the design and development of deep space 
networks where TCP will play a primordial and decisive  roll (AKYILDIZ, 2003) . 
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2 BACKGROUND CONCEPTS                                               

 
“... Precisamos, entretanto, dar um sentido 
humano a nossas construções, e quando o 
amor ao dinheiro, ao sucesso nos estiver 
deixando cegos, saibamos fazer pausa, para 
olhar os lírios do campo e as aves do céu”. 

         Erico Verissimo, Olhai os Lírios do Campo. 

The concepts we are about to introduce in this chapter will let us to understand the 
technical structure of TCP HolyWood, our proposal,  definitions as TCP and algorithms 
that form TCP are explained,  as well as additional algorithms like Window Scaling,  
Delayed Acknowledgment and Large Initial Windows, not less important. 

2.1 Transmission Control Protocol     
The Transmission Control Protocol or well known as “TCP” is based on concepts 

first described by Cerf and Kahn (1974),  since then until now, it is in a constant 
evolving process, and new challenging proposals are appearing for different 
environments as wired networks, wired-cam-wireless networks, wireless ad hoc 
networks, etc. 

As stated by RFC 793 (DARPA, 1981), the primary purpose of TCP was to provide 
reliable logical circuit or connection service between pairs of processes. It does not 
assume reliability from the lower-level protocols (such as IP), so TCP must guarantee 
this itself. TCP can be characterized by the following facilities: 

- Basic Data Transfer: From the application's viewpoint, TCP transfers a 
contiguous stream of bytes through the network. The application does not have to 
bother with chopping the data into basic blocks. TCP does this by grouping the 
bytes in TCP segments, which are passed to IP for transmission to the destination. 
In addition, TCP itself choose how to segment the data and TCP can forward that 
data at its own convenience. Sometimes, an application needs to be sure that all 
the data passed to TCP has actually been transmitted to the destination. For that 
matter, a push function is defined. It will push all remaining TCP segments still in 
storage to the destination host. The normal close connection function also pushes 
the data to the destination (DARPA, 1981) (RODRIGUEZ, 2003). 

- Reliability: TCP assigns a sequence number to each byte transmitted and expects 
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a positive acknowledgment (ACK) from the receiving TCP. If the ACK is not 
received within a timeout interval, the data is retransmitted. Since the data is 
transmitted in blocks (TCP segments), only the sequence number of the first data 
byte in the segment is sent to the destination host. The receiving TCP uses the 
sequence numbers to rearrange the segments when they arrive out of order, and to 
eliminate duplicate segments (DARPA, 1981) (RODRIGUEZ, 2003). 

- Flow Control:  The receiving TCP, when transmiting an ACK back to the sender, 
also shows to the sender the number of bytes it can receive beyond the last 
received TCP segment, without producing overrun and overflow in its internal 
buffers. This is transmitted in the ACK in the form of the highest sequence 
number it can receive without any trouble (DARPA, 1981) (RODRIGUEZ, 2003). 

- Multiplexing: To allow many processes within a single host to deploy TCP 
communication facilities at the same time, The TCP gives a set of addresses or 
ports within each host (DARPA, 1981).  

- Logical Connection: The reliability and flow control mechanisms described 
above require that TCP initializes and maintains certain status information for 
each data stream. The combination of this status, including sockets, sequence 
numbers and window sizes, is called a logical connection. The pair of sockets 
used by the sending and receiving processes uniquely identifies each connection 
(DARPA, 1981).  

- Full Duplex: TCP provides for concurrent data streams in both directions 
(RODRIGUEZ, 2003). 

- Security: the users of TCP may indicate the security and precedence of their 
communication (DARPA, 1981).      

2.2 TCP Congestion Control Algorithms 
Although a wide variety of TCP versions are used in the Internet, the current de 

facto standard and the most popular implementation is the TCP Reno protocol 
(STEVENS, 1994) (BALAKRISHNAN, et al., 1997) (PAXTON, 1997). We are going 
to review the control measures against congestion of this protocol.  

The TCP congestion algorithms prevent a sender from overrunning the capacity of 
the network (for example, slower WAN links). TCP can adapt the sender's rate to 
network capacity and attempt to avoid potential congestion situations. 

Because the value of the Retransmission timer (RTO, also called retransmission time 
out) has a significant effect on the reaction of TCP to Congestion (STALLING, 2000), 
TCP Reno considers three techniques that deal with the calculation of the 
retransmission time: RTT Variance estimation, Exponential RTO backoff and Karn 
algorithm. A very important matter also is the design of a proper value of the 
retransmission timer (RTO). If the value is too small, there will be many unnecessary 
retransmissions, wasting network capacity. If the value is too large, the TCP protocol 
will be slow, in answering to a lost segment.  

In addition, TCP Reno also considers four techniques that deal with window 
management, because the size of TCP’s send window can have a critical effect on 
whether TCP can be used efficiently without causing congestion and they are the Slow 
Start, Congestion Avoidance, Fast Retransmit and Fast Recovery algorithms. 
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2.2.1 Round-trip time variance estimation  
The round-trip time (RTT) variance estimation is also called Jacobson’s algorithm, 

and is fundamental to TCP’s timeout and retransmission. First TCP protocol have to 
quantify the RTT between transmitting a byte  with particular sequence number and 
receiving an ACK that covers that sequence number, normally there is not a one-to-one 
correspondence between data segments and ACKs  (STEVENS, 1994). According to 
RFC 793, we have: 

Smoothed_RTT = α. Smoothed_RTT + (1-α). Measured RTT             Eq. 2.1 
Where α   is a smoothed factor with a recommended value of 0.9. 
The smoothed RTT is updated every time a new measure is made.  90% of each new 

estimate is from the previous estimate and 10%  is from the new measurement 
(STEVENS, 1994). In order to give greater weight to more recent instances because 
they are more likely to reflect future behavior, and based on this, the RTO 
(Retransmission Time-Out) is: 
    RTO = β. Smoothed_RTT   (DARPA, 1981)                     Eq. 2.2 

Where:  β is a delay variance factor with a recommended value of two. 
Calculating the RTO based on both the mean and variance  provide much better 

response  to wide fluctuations in the round-trip times, than just calculating the RTO as a 
constant multiple of the mean (STEVENS, 1994). 

2.2.2 Exponential RTO Backoff 
The exponential RTO backoff algorithm is used to determine what RTO value 

should be used on a retransmitted segment.  However, when a TCP sender times out a 
segment, it has to retransmit that segment again and RFC 793 takes as true that the same 
RTO value will be deployed for this retransmitted segment, nevertheless for the reason 
that the time out is likely due to network congestion, keeping the same RTO value is a 
bad suggestion. In addition, in a scenario with several TCP sources transmitting into the 
Internet may cause a sustained or even an increasing congestion (STALLING, 2000). 

In a backoff process, a TCP source increases its RTO each time the same segment is 
retransmitted. In a scenario of several TCP senders transmitting into the Internet and 
loosing their packet due to congestion, after a first retransmission of a segment on each 
affected connection, the TCP sources will all expect a longer time before trying a 
second retransmission. This may let the Internet time to clear the current congestion. If 
a second retransmission is needed, each TCP source will expect an even longer time 
before timing out for a third retransmission, giving the Internet an even longer period to 
get over (STALLING, 2000). 

A simple technique for implementing RTO backoff is to multiply the RTO for a 
segment by a constant value for each retransmission: 

    RTO = q x RTO                                                       Eq. 2.4 
The equation before mentioned makes RTO to develop exponentially with each 

retransmission. Where the most commonly value of q is two. 

2.2.3 Karn’s Algorithm 
The Karn’s algorithm is used to determine which round-trip samples should be 

deployed as input to Jacobson’s algorithm (STALLING, 2000).  Karn and Partidge 
(1987) specified that, when a time out and retransmission happens, we are not able to 
update the RTT estimators when the ACK for the retransmitted data finally arrives. This 
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is because we do not know to which transmission the ACK corresponds. Perhaps the 
first transmission was delayed and not thrown away, or maybe the ACK of the first 
transmission was delayed. This is also called retransmission ambiguity problem 
(STEVENS, 1994). 

Karn’s algorithm solves this problem with the following rules (STALLING, 2000): 
1. Do not use the Measured RTT for a retransmitted segment to update 

SmoothedRTT and smoothed mean deviation (A). 
2. Compute the backoff RTO using equation 2.4 when a retransmission occurs. 
3. Deploy the backoff RTO value for succeeding segments until an ACK arrives for 

a segment that has not been retransmitted. 

2.2.4 Slow Start 

We may say that the TCP sender uses ACKs as a “clock” to strobe new packets into 
the network. Since the TCP receiver can generate ACKs no faster than data packets can 
get through the network, the protocol is “self clocking”. It means that the TCP 
automatically adjust the bandwidth and delay variations and have a wide dynamic 
range, but  at the same time what makes a  self-clocked system stable  when it is 
running makes it hard to start – to get data flowing there must be ACKs to clock out 
packets but  ACKs there must be data flowing (JACOBSON, 1988). To start the 
“clock”, Jacobson (JACOBSON, 1988), developed a slow start algorithm. 

In the Slow Start phase, the sender starts by transmitting one segment and waiting 
for its ACK. When that ACK is received, the congestion window is incremented from 
one to two, and two segments can be sent. When each of those two segments is 
acknowledged, the congestion window is increased to four and so forth (see Fig. 2.1). 
This provides an exponential growth, although it is not exactly exponential, because the 
receiver may delay its ACKs, typically sending one ACK for every two segments that it 
receives.  (RODRIGUEZ, 2003). 
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Figure 2.1: TCP slow start in action 

 

2.2.5 Congestion Avoidance 
The assumption of the algorithm is that packet loss caused by damage is very small 

(lesser than 1%). Therefore, the loss of a packet signals congestion somewhere in the 
network between the source and destination. There are two indications of packet loss, 
when a timeout occurs and when duplicate ACKs are received (RODRIGUEZ, 2003). 

Congestion avoidance and slow start are independent algorithms with different 
objectives. Nevertheless, when congestion occurs TCP must slow down its transmission 
rate of packets into the network, and invoke slow start to get things going again. In 
practice, they are implemented together. Congestion avoidance and slow start require 
that two variables be maintained for each connection the Congestion Window or 
abbreviated CWND and the Slow Start Threshold Size or abbreviated SSTHRESH 
(RODRIGUEZ, 2003).The combined algorithm operates as follows (RODRIGUEZ, 
2003): 

1. Initialization for a given connection sets CWND to one segment and SSTHRESH 
to 65535 bytes. 

2. The TCP output routine never sends more than the lower value of CWND or the 
receiver's advertised window. 

3. When congestion occurs (timeout or duplicate ACK), one-half of the current 
window size is saved in SSTHRESH. Additionally, if the congestion is indicated 
by a timeout, CWND is set to one segment. 

4. When new data is acknowledged by the other end, increase CWND, but the way it 
increases depends on whether TCP is performing slow start or congestion 
avoidance. If CWND is less than or equal to SSTHRESH, TCP is in slow start; 
otherwise, TCP is performing congestion avoidance. 
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Slow start continues until TCP is halfway to where it was when congestion occurred 
(since it recorded half of the window size that caused the problem in step 2), and then 
congestion avoidance takes over. Slow start has CWND begin at one segment, and 
incremented by one segment every time an ACK is received. As mentioned earlier, this 
opens the window exponentially: send one segment, then two, then four, and so on.  

Congestion avoidance dictates that CWND be incremented by        
(SEGSIZE*SEGSIZE) / CWND each time an ACK is received, where SEGSIZE is the 
segment size and CWND is maintained in bytes. This is a linear growth of CWND, 
compared to slow start's exponential growth. The increase in CWND should be at most 
one segment each round-trip time. Regardless of how many ACKs are received in that 
RTT (RODRIGUEZ, 2003).  

In the Figure 2.2, the value of Slow Start Threshold (SSTHRESH) is 8. Until this 
threshold is reached, TCP uses the exponential slow start procedure to expand the 
congestion Window. Afterward, CWND is increased linearly.  Note also that it takes 11 
round-trip times to recover to the CWND level that initially took 4 round-trip times to 
achieve.  
 

 
Figure 2.2: TCP slow start and congestion avoidance behavior in action 

2.2.6 Fast Retransmit 
Fast retransmit avoids TCP waiting for a timeout to resend lost segments. Note that 

TCP may generate an immediate acknowledgment (a duplicate ACK) when an out-of-
order segment is received. The purpose of this duplicate ACK is to let the other end 
know that a segment was received out of order, and to tell it what sequence number is 
expected. Since TCP does not know whether a lost segment or just a reordering of 
segments causes a duplicate ACK, it waits for a small number of duplicate ACKs to be 
received. It is assumed that if there is just a reordering of the segments, there will be 
only one or two duplicate ACKs before the reordered segment is processed, which will 
then generate a new ACK. If three or more duplicate ACKs are received in a row, it is a 
strong indication that a segment has been lost as shown in Figure 2.3 TCP then 
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performs a retransmission of what appears to be the missing segment, without waiting 
for the retransmission timer to expire (RODRIGUEZ, 2003).  

 

 
Figure 2.3: TCP Fast Retransmit Algorithm 

2.2.7 Fast Recovery 
After fast retransmit sends, what appears to be the missing segment, congestion 

avoidance, but not slow start, is performed. This is the fast recovery algorithm. It is an 
improvement, which allows high throughput under moderate congestion, especially for 
large windows. The reason for not performing slow start in this case is that the receipt 
of the duplicate ACKs tells TCP more than just a packet has been lost. Since the receiver 
can only generate the duplicate ACK when another segment is received, that segment 
has left the network and is in the receiver's buffer. That is, there is still data flowing 
between the two ends, and TCP does not want to reduce the flow abruptly by going into 
slow start (RODRIGUEZ, 2003). The fast retransmit and fast recovery algorithms are 
usually implemented together as follows (RODRIGUEZ, 2003): 

1. When the third duplicate ACK in a row is received, set SSTHRESH to one-half the 
current congestion window, CWND, but no less than two segments. Retransmit 
the missing segment. Set CWND to SSTHRESH plus three times the segment size. 
This inflates the congestion window by the number of segments that have left the 
network and the other end has cached. 

2. Each time another duplicate ACK arrives, increment CWND by the segment size. 
This inflates the congestion window for the additional segment that has left the 
network. Transmit a packet, if allowed by the new value of CWND. 

3. When the next ACK arrives that acknowledges new data, set CWND to 
SSTHRESH (the value set in step 1). This ACK should be the acknowledgement of 
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the retransmission from step 1, one round-trip time after the retransmission. 
Additionally, this ACK should acknowledge all the intermediate segments sent 
between the lost packet and the receipt of the first duplicate ACK. This step is 
congestion avoidance, since TCP is down to one-half the rate it was at when the 
packet was lost as seen in Figure 2.4. 
 

 

Figure 2.4: TCP Fast Recovery Algorithm 

2.3 Additional Algorithms 
Some algorithms that currently are being deployed with the TCP Reno, the Standard, in 
the several papers, we studied, and that we used in our proposal, TCP HolyWood, are as 
follows:  
 
2.3.1 Delayed Acknowledgments:  
 

It is defined in RFC 1122 (BRADEN, 1989), and permits that a TCP can abstain 
from transmitting an ACK for each incoming data segment, nonetheless rather should 
send an ACK for every second full-sized data segment received. If a second data 
segment is not received within a given timeout (not to exceed 500ms.) an ACK is 
transmitted (ALLMAN; FALK, 1999). 

2.3.2 Explicit Congestion Notification 
In RFC 2481 (RAMAKRISHNAN; FLOYD, 1999) is defined a technique in which 

a router can transmit an explicit message stating that the network is becoming 
congested, rather than dropping a segment, In (FLOYD, 1994), this Explicit Congestion 
Notification is further detailed. This algorithm is still a non-standardized extension of 
TCP (ALLMAN; FALK, 1999).  

2.3.3 Large Initial Windows:   
In RFC 2581(ALLMAN; PAXSON; STEVENS, 1999) allows TCP to use an initial 

congestion window of 1 or 2 segments. Nonetheless in RFC 2414 (ALLMAN; FLOYD; 
PARTRIDGE, 1998) describes an experimental TCP algorithm that increase the initial 
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congestion window to 3-4 segments, being founded on the segment size. This algorithm 
is still a non-standardized extension of TCP (ALLMAN; FALK, 1999).  

2.3.4 Nagle’s Algorithm 
The Nagle algorithm is defined in RFC 896 (NAGLE, 1984), and is deployed to 

combine many small bits of data produced by applications into larger TCP segments. 
The Nagle Algorithm has been shown to reduce the number of segments transmitted 
into the network, but also interfere with HTTP and NNTP (Network News Transport 
Protocol) protocols as well as the delayed acknowledgement strategy, thus reducing 
performance (ALLMAN; FALK, 1999). The beauty of this algorithm is that is self-
clocking, the faster the ACKs come back, the faster the data is sent (STEVENS, 1994).  

2.3.5 Window Scaling 
The standard TCP header in RFC 793 (DARPA, 1981), limits the advertised window 

size to 64 KB. Which is not adequate in many situations, therefore a network path that 
exhibits a long delay and/or a large bandwidth may require windows size of more than 
64 KB. To solve the problem is defined in the RFC 1323 (BRADEN; BORMAN, 1992) 
allowing the use of window size of more than 64 KB. Windows scaling extension of 
TCP can lead to more rapid use of the TCP sequence space (ALLMAN; FALK, 1999). 

2.4 Detection of packet loss 
Packet loss can be detected in one of two ways, either by the reception at the TCP 

sender of “triple-duplicate” acknowledgments, i.e. four ACK’s with the same sequence 
number (it depends on the implementation, for example in Linux the loss indications 
occur after two duplicate ACK’s); or time-outs (PADHYE, 2000). In the case where the 
TCP sender times out, this happens when packets or acknowledgements are lost, and 
less than three duplicate acknowledgements are received. The sender waits for a period 
denoted by T0 and then retransmit non-acknowledged packets. Following a time-out, the 
congestion window is reduced to one, and one packet is thus resent in the first round 
after time-out. In the case that another time-out occurs before successfully 
retransmitting  the packet lost during the first time-out, the period of time-out doubles to 
2T0 this doubling is repeated for each unsuccessful retransmission, we mean 4T0, 8T0,  
16T0, 32T0, until 64T0 (PADHYE, 2000). 

It is important to mention in this chapter the key points of Stallings (2004, P. 239) 
about TCP traffic Control: 

• TCP uses a sliding-window flow control mechanism that allows multiple 
segments to be in transit at a time. 

• The throughput on a TCP connetion depends on the window size, 
propagation delay, and data rate. 

• Although the TCP credit-based mechanism was designed for end-to-end flow 
control, it is also used to assist in internetwork congestion control. When a 
TCP entity detects the presence of congestion in the Internet, it reduces the 
flow of data  onto the Internet  until it detects an easing in congestion. 

• A Key element in TCP congestion control is the value of the retransmission 
timer.  A variety of algorithms and strategies have been introduced to make 
the most effective use of the timer. 

• Another important factor in TCP Congestion Control is the management of 
the window for segment transmission. Again, a variety of strategies are used 
to optimize performance. 
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• The most recent TCP congestion control technique, explicit congestion 
notification, involves explicit signals to the TCP endpoints from routers in 
the Internet indicating the onset of congestion Stallings (2004, P. 239). 

2.5 Congestion 

We cannot finish this chapter without understanding, the Congestion in Computer 
network.  As stated by Forouzan (2004), congestion in a network may occur if the load 
on the network --The number of packets sent to the network – is greater than the 
capacity of the network – the number of packet a network can handle. Therefore, 
Congestion Control refers to the mechanisms and techniques to control the congestion 
and keep the load below the capacity. Congestion happens in any system that involves 
waiting; as well as occurs because routers and switches have queues – buffers that hold 
the packets before and after processing. An example of Congestion Control in TCP is 
also provided by Forouzan (2004):  

As we have said, an internet is a combination of networks and connecting 
devices (e.g., routers). A packet from a sender may pass through several 
routers before reaching its final destination. A router has a buffer that stores 
the incoming packets, processes them, and forward them. If a router receives 
packets faster than it can process, congestion might occur and some packets 
could be dropped. When a packet does not reach the destination, no 
acknowledgement is sent for it. The sender has no choice but to restransmit 
the lost packet. This may create more congestion and more dropping of 
packets, which means more retransmission and more congestion. A Point 
may then be reached in  which the whole system callapses and no more data 
can be sent. TCP therefore need to find some way to avoide this situation. 
(FOROUZAN, 2004, P639-640).  

Moreover, here is where entering into action the algorithms before mention in this 
chapter to try to avoid the Congestion. 
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3 THE STANDARD AND RELATED WORKS 

''I can shake off everything if I write, my   
sorrows disappear, my courage is reborn''. 

                           Anne Frank, her Diary 

There is still nowadays, a great effort of scientific community to improve the 
performance of the Internet because of its tremendous growth in the world; in that 
respect enhancements of TCP Reno and new proposals for different network 
environments are arising, we choose some of them, all with the same characteristic of 
maintaining End-End TCP Semantics. 

3.1 TCP Reno - The Standard 

We cannot start to talk about TCP Reno if we do not talk about TCP Tahoe. 
Historically, TCP Tahoe was the first modification to TCP. The TCP Tahoe protocol 
includes Slow Start, Congestion Avoidance, and Fast Retransmit. It also implements a 
Round Trip Time (RTT) based estimation of retransmission time out. In the Fast 
Retransmit mechanism, a number of successive (usually set at three), duplicate 
acknowledgments (DACKS) carrying the same sequence number triggers a 
retransmission, without waiting for the associated timeout event to occur. 

The window adjustment strategy for this “early timeout” is the same as for a regular 
timeout; Slow Start is applied. The problem, however, is that Slow Start is not always 
efficient, especially if the error was purely transient or random in nature, and not 
persistent. In such a case, the shrinkage of the congestion window is, in fact, 
unnecessary, and renders the protocol unable to utilize the available bandwidth of the 
communication channel during the subsequent phase of window re-expansion 
(TSAOUSSIDIS; BADR, 2000). 

In addition to TCP Tahoe, TCP Reno introduces Fast Recovery in conjunction with 
Fast Retransmit. The idea behind Fast Recovery is that duplicate acknowledgments 
(DACK) are an indication of available channel bandwidth since a segment has been 
successfully delivered. This, in turn, implies that the congestion window (CWND) 
should actually be incremented. Receiving the threshold number of duplicate 
acknowledgments Fast Recovery is triggered; the sender retransmits the missing 
segment then, instead of entering Slow Start as in TCP Tahoe, increases CWND by the 
DACK threshold number.  

Thereafter, and for as long as the sender remains in Fast Recovery, CWND increased 
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by one for each additional DACK received. This procedure is called “inflating” CWND. 
The Fast Recovery stage is completed when an acknowledgment (ACK) for new data is 
received. The sender then halves CWND (“deflating” the window), sets the congestion 
threshold to CWND, and resets the DACK counter.  

In Fast Recovery, CWND is thus effectively set to half its previous value in the 
presence of DACKS, rather than performing Slow Start as for a general retransmission 
timeout. TCP Reno, however, is not optimized for multiple segment drops from a single 
window (TSAOUSSIDIS; BADR, 2000). The algorithm of TCP Reno has two 
parameters: current window size CWND and slow start threshold SSTHRESH, which are 
updated as follows (STEVENS, 1997) (FENG; MIN; CHUANSHAN, 2001) 

1. When new data is acknowledged and if CWND ≤ SSTHRESH, set CWND = 
CWND+1; (Slow Start Phase). Else set, CWND = CWND + 1/CWND. 

2. A Packet loss can be detected either by the reception of duplicate 
acknowledgements, i.e., four ACK with the same sequence number, or via timer 
expiry (time-out), as was mentioned in the section 2.4. Upon timer expiry, the 
algorithm goes into slow start phase as before: SSTHRESH = CWND/2, and 
CWND = 1.  Otherwise, fast retransmission and fast recovery are taken up. 

3. When triple duplicate ACKs are received in a row, TCP Reno performs a 
retransmission of what appears to be the missing packet, without waiting for a 
retransmission timer to expire, and set; SSTHRESH = CWND/2, and CWND = 
SSTHRESH + 3. 

4. For every other duplicate ACK received, set  
CWND = CWND + 1.  Transmit a packet if allowed by CWND (Fast Retransmit 
Phase) 

5. When the next ACK arrives, that acknowledges new data, set CWND = 
SSTHRESH, and a new cycle starts - Fast Recovery Phase. 

 
The following table 3.1 shows exactly what algorithms are currently involved 

with Tcp Reno; none of these algorithms extends or violates the original TCP 
standard, published in RFC 793 (DARPA, 1981). 

Table 3.1: Implementation of TCP Congestion Control Measures 

              MEASURE RFC 1122          TCP 
TAHOE 

      TCP 
RENO 

RTT Variation Estimation           X X X 

Exponential RTO Backoff X X X 

Karn’s Algorithm X X X 

Slow Start X X X 

Dynamic Window Sizing on 
Congestion                

[Congestion Avoidance] 

 
X 

 
X 

 
X             

Fast Retransmit  X X 

Fast Recovery              X 

                                       Source: STALLINGS, 2004, p. 249. 
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3.2 TCP New Reno 
This Protocol addresses the problem of multiple segment drops. In effect, it can 

avoid many of multiple retransmit timeouts of TCP Reno. The New Reno modification 
introduces a partial acknowledgment strategy in Fast Recovery. A partial 
acknowledgment is defined as an ACK for new data, which does not acknowledge all 
segments that were in flight at point when Fast Recovery was initiated.  

It is thus an indication that not all data sent before entering Fast Recovery has been 
received. In TCP Reno, a partial ACK causes exit from Fast Recovery. In the TCP New 
Reno it is an indication that (at least) one segment is missing and needs to be 
retransmitted.  

This retransmission is effectuated and Fast Recovery continues. In this way, when 
multiple segments are lost from a window of data, TCP New Reno can recover without 
waiting for a retransmission timeout.  

3.3 TCP SACK 
TCP SACK was defined in RFC 2018 by Mathis et al. in 1996, and later extended in 

RFC2883 by Floyd et al. in 2000. TCP SACK further improves TCP performance by 
allowing the sender to retransmit packets based on the selective ACKs provided by the 
receiver. The implementation constitutes a SACK field that contains a number of SACK 
blocks. The first block reports the most recently received packets. The additional blocks 
repeat the most recently reported SACK blocks (ELAARAG, 2002).  

The TCP SACK uses the basic congestion control algorithms and uses retransmit 
timeouts as a last option for recovery. The main difference is the way it handles the loss 
of multiple packets from the same window, in fast recovery. Like Reno, SACK enters 
fast recovery upon receiving duplicate ACKs. It then retransmits a packet and cuts its 
congestion window in half. In addition to that, SACK has a new variable called the 
pipe, and a data structure called the scoreboard. The pipe is incremented when the 
sender sends a new or a retransmitted packet (ELAARAG, 2002), and is decremented 
when the receiver receives a new packet. This is indicated when the sender receives a 
duplicate ACK with a SACK option. The scoreboard stores ACKs from previous SACK 
options, allowing the sender to retransmit packets that are implied to be missing at the 
receiver. Like New-Reno, the sender exits fast recovery (ELAARAG, 2002). 

3.4 TCP Santa Cruz  

This is a new implementation of TCP that detects not only the initial stages of 
congestion in the network but also identifies the direction of congestion i.e., it 
determines whether congestion is developing in the forward or reverse path of the 
connection. TCP Santa Cruz is able to isolate the forward throughput from events such 
as congestion that may occur in the reverse path.  Congestion is determined by 
calculating the relative delay that a packet experiences with respect to another as it 
traverses the network (PARSA; GARCIA-LUNA-ACEVES, 2000).   

This relative delay is the foundation of their congestion control algorithm. The 
relative delay is used to estimate the number of packets residing in the bottleneck 
queue; the congestion control algorithm keeps the number of packets in the bottleneck 
queue at a minimum level by adjusting the TCP source’s congestion window. The 
congestion window is reduced if the bottleneck queue length increases (in response to 
increasing congestion in the network) beyond a desired number of packets. The window 
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is increased when the source detects additional bandwidth available in the network (i.e., 
after a decrease in the bottleneck queue length) (PARSA; GARCIA-LUNA-ACEVES, 
2000).  

TCP Santa Cruz can be implemented as a TCP option by utilizing the extra 40 bytes 
available in the options field of the TCP header (PARSA; GARCIA-LUNA-ACEVES, 
2000). 

3.5 TCP Vegas  

TCP Vegas was introduced in 1994 as an alternative to TCP Reno. It improves upon 
each of the three mechanisms of TCP Reno. The first enhancement is a more prudent 
way to grow the window size during the beginning of slow-start and leads to fewer 
losses. The second enhancement is an improved retransmission mechanism where time-
out is checked on receiving the first duplicate acknowledgment, rather than waiting for 
the third duplicate acknowledgment (as Reno would), and leads to a more timely 
detection of loss (LOW; PETERSON; WANG, 2002).  

The third enhancement is a new congestion avoidance mechanism that corrects the 
oscillatory behavior of Reno. In contrast to the Reno algorithm, which induces 
congestion to learn the available network capacity, a Vegas source anticipates the onset 
of congestion by monitoring the difference between the rate it is expecting to see and 
the rate it is actually realizing. Vegas’ strategy is to adjust the source’s sending rate 
(window size) in an attempt to keep a small number of packets buffered in the routers 
along the path (LOW; PETERSON; WANG, 2002].  

Although experimental results presented by Brakmo and Peterson in 1995, and 
duplicated in Ahn et al. in 1995, showed that TCP Vegas achieves better throughput and 
fewer losses than TCP Reno under many scenarios. At least two concerns remained 
whether TCP Vegas is stable, and if so, whether it stabilizes to a fair distribution of 
resources; and whether Vegas results in persistent congestion. In short, TCP Vegas has 
lacked a theoretical explanation of why it works (LOW; PETERSON; WANG, 2002). 

An advantage of TCP Vegas is that achieve higher throughput with less 
retransmission, nevertheless  fairness problems has been reported: (1) when a TCP 
Vegas connection shares a link with TCP Reno connection, The TCP Reno connection 
uses most of the buffer space and the TCP Vegas backs off, interpreting this as a signal 
of network congestion. (2) There is Unfairness between TCP Vegas Connections. The 
connections that start up later could observe a larger RTT, causing the congestion 
window to be lower (SANADIDI, 2002). 

3.6 TCP Westwood 
TCP Westwood is a sender-side-only modification to TCP Reno that is intended to 

better handle bandwidth-delay product paths, with potential packet loss due to 
transmission or others errors, and with dynamic load. TCP Westwood relies on mining 
the ACK stream for information to help it better set the congestion control parameters - 
Congestion Window and Slow Start Threshold (UCLA, 2004). 

TCP Westwood Modules for ns-2 come in two flavors: TCP Westwood based on 
TCP Reno; and TCP WestwoodNR that is a TCP Westwood based in TCP New Reno. 
We use in this the dissertation the first one with its default filter type, set to 3 (filter 
type_ 3) for more details see (UCLA, 2004). 

As explained by their authors (GERLA et al., 2001), in TCP Westwood the sender 
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continuously computes the Connection Bandwidth Estimate (BWE) that is defined as 
the share of bottleneck bandwidth used by the connection. Thus, BWE is equal to the 
rate at which data is delivered to the TCP receiver. The estimate is based on the rate at 
which ACKs are received and on their payload. After a packet loss indication, (i.e., 
reception of 3 duplicate ACKs, or timeout expiration, the sender resets the congestion 
window and the slow start threshold based on BWE. More precisely, cwin = BWE x 
RTTmin.  

Finally, we may say that the experimental results of TCP Westwood shows that it 
can handle losses caused by link errors more efficiently than TCP Reno and converges 
to ''Fair Share'' at steady state under uniform path conditions. For a deeper 
understanding of the fuctionality of TCP Westwood, you may look at (GERLA et al., 
2001). 

3.7 TCP Veno 
 TCP Veno is a sender-side protocol, without requiring any changes of the receiver 

stack or intervention of the intermediate network nodes. It can be deployed in server 
applications over the current Internet, coexisting with TCP Reno, the standard (FU; 
LIEW, 2003). 

TCP Veno makes use of mechanism similar to that of TCP Vegas to estimate the 
state of the connection; however, such a scheme is used to deduce what kind of packet 
loss -- Congestion loss or random loss – is most likely to have occurred, rather than to 
pursue preventing packets loss as in TCP Vegas. If a packet loss is detected while the 
connection is in the congestive state, TCP Veno assumes the lost is due to congestion; 
otherwise, it assumes the loss is random (FU; LIEW, 2003). 

The results of the experiments (FU; LIEW, 2003), show that TCP Veno can obtain 
significant throughput improvements without adversely affecting other concurrent TCP 
connections, as well as with TCP Reno Connections. Also was observed that in wireless 
networks with 1% of random packet loss rate, throughput improves up to 80% in 
comparison with TCP Reno. 
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4 TCP HolyWood 

"Dear children! With great joy, also today, I carry my Son 
Jesus in my arms to you; He blesses you and calls you to 
peace. Pray, little children, and be courageous witnesses 
of Good News in every situation. Only in this way, will 
God bless you and give you everything you ask of Him in 
faith. I am with you as long as the Almighty permits me. I 
intercede for each of you with great love. Thank you for 
having responded to my call."              December 25, 2004. 

Bosnia-Herzegovina, Medjugorje. 
                                               Blessed Virgin Mary 

As stated by Stallings (2004, P239), to get a good performance for end-to-end 
systems in a network environment, the design and implementation of the Transport 
protocol is a vital ingredient. With this idea in mind, we started to make different trials 
on TCP Reno with the unique purpose of finding a better throughput gain and a less 
variable jitter. Other important caracteristic of TCP HolyWood is that it inherited all the 
dynamic characteristics of TCP Reno. It is a sender-side protocol. So there is no need to 
reconfigure intermediate router or the receiver in a communication to start to work, 
even though it is only a simulated model the results as we will see in chapter 6 are 
promising. In addition, we may consider our proposal as a fine-tuning of TCP Reno. 

TCP HolyWood will be desirable for the following standpoints:  usability: due to 
that the modification we made in our proposal are small, simple and easy to set, an only 
one side requires change for the two ends of communication terminal. Interaction, as 
we observed in the result section, our proposal is as fair as TCP Reno and may work 
perfectly and harmoniously together with the standard. Competence, our proposal 
showed a good performance in term of throughput and jitter against, TCP Reno, 
Westwood and Vegas. Certainly this will compell us to implement it in a real operative  
system and make future tests to sclutinize TCP HolyWood in other network 
environments as wireless, and heterogeneous networks.  
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4.1 The Model 

Our model is derived from TCP Reno, we made some calibrations in order to 
achieve higher throughput performance but without the desire to change the essence of 
the standard TCP, our modifications were as follows: 

1. We modified the slow start algorithm of TCP Reno from CWND = CWND + 1      
to CWND= CWND + 9/5, to have a rapid start. We used 9/5 or 1.8; nevertheless, 
it is not a magical number but fruit of several unsuccessful trials until we arrived 
to Table 4.1. In the Table 4.1, for example, assuming a slow start threshold 
(SSTHRESH) of 65536 bytes, our proposal was faster than slow start. TCP Reno 
required 16 steps instead TCP HolyWood that needed only 11 steps to get to an 
approximately value meaning that our proposal is  more or less 1/3 faster than the 
slow start  of TCP Reno. 

Table 4.1: Slow start in TCP Reno and TCP HolyWood 
Steps TCP Reno 

 CWND = CWND + 1 
Bytes 

TCP HolyWood 
CWND=CWND+9/5 

Bytes 

TCP HolyWood 
CWND=CWND+9/51 

Bytes 
1 2 2.0 2 
2 4 5.6 6 
3 8 16.8 17 
4 16 47.6 48 
5 32 134.4 134 
6 64 375.2 375 
7 128 1050.0 1050 
8 256 2940.0 2940 
9 512 8232.0 8232 

10 1024 23049.6 23050 
11 2048 64540.0 64540 
12 4096 - - 
13 8192 - - 
14 16384 - - 
15 32768 - - 
16 65536 - - 

 
We consider this a moderate values but we will really know only after the 
experimental simulations. We may  also notice that the Table 4.1 in step 1, we 
started it with a  Congestion Window of 2 for both TCPs, it is due to  RFC 
2581(ALLMAN; PAXSON; STEVENS, 1999) and the network simulator we 
deployed here (ns-1b8a ) also consider this value as default parameter.  

2. Because we make a change that made faster the slow start of TCP Reno we 
compensate it in Congestion Avoidance phase diminishing it  from:  

CWND = CWND + 1/CWND to, 
CWND = CWND + 1/ (4.CWND) 

The idea behind this was to have approximately a constant function with a 
vertical slope and a plane top. In other words that our throughput curve 
resembles a constant line with value of the bottleneck bandwidth. 

3. After three duplicate ACK, TCP Reno reduces the SSTHRESH to a half (50%) 
and the Congestion window to the half plus three (+3).  TCP HolyWood instead 
reduce the Slow start threshold to five sixth (83%) and the congestion window to 

                                                           
1 x indicates maximum integer of x 
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five sixth plus three (+3), decreasing the window by a factor of 1/6.  We took the 
idea from TCP Veno (FU; LIEW, 2003) that reduce them four fifth (80%), we 
used a slightly higher value with the intuition to win in the performance 
competition arena for one head, nevertheless  based in background provided by 
TCP Veno. 

4.  When timeout occurs due to Congestion or higher Error Rate TCP Reno reduce 
the Slow Start Threshold to the half (50%) and set the Congestion Window to 1; 
TCP HolyWood instead Reduce the Slow start Threshold  to Thirteen Twentieth 
(65%) and set the Congestion Window to 3. We decided to use an increase of 
15% more than the TCP Reno because after a timeout occurs we are unaware if 
there is still congestion or not, we may intuit that there is equal probability. So 
why do not give a bias to the possibility, that there is no more congestion. After 
all, if the congestion persists, other timeout will occur and the time of this 
timeout will double as explained in section 2.4. We decided to set the Congestion 
Window to 3 instead of 1 after the timeout finishes and when a new Slow Start 
begins based on the RFC 2414 (ALLMAN; FLOYD; PARTRIDGE, 1998) 
briefly explained in section 2.3.3.  

We may summarize the previous ideas of TCP HolyWood as follows: 
a) When new data is acknowledged, and if CWND ≤ SSTHRESH, set CWND =   

CWND + 9/5, (Rapid Start).  Else set CWND = CWND + 1 / (4.CWND)  (New 
Congestion Avoidance Phase) 

b) A Packet loss can be detected either by the reception of duplicate 
acknowledgments, i.e., four ACK with the same sequence number, or via timer 
expiry (timeout), as was explained in the section 2.4. Upon timer expiry, the 
algorithm goes into slow start phase as before: 
SSTHRESH = (13 / 20).CWND,   and CWND = 3, it means timeout   
Otherwise, fast retransmission and fast recovery are taken up. 

c) When triple duplicate ACKs are received in a row TCP Reno performs a 
retransmission of what appears to be the missing packet, without waiting for a 
retransmission timer to expire, and set. 
SSTHRESH = (5/6).CWND,   CWND = SSTHRESH + 3 

d) For every other duplicate ACK received, set   
CWND = CWND + 5/6. Transmit a packet if allowed by     
CWND (Fast Retransmit Phase) 

e) When the next ACK arrives that acknowledges new data,                            
set CWND = SSTHRESH, and a new cycle starts - Fast Recovery Phase. To 
clarify this ideas observe Figure 4.1. 
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Figure 4.1: TCP HolyWood 

4.2 The TCP HolyWood Code in NS-2 
The code of TCP-holywood.cc is based on the code of TCP-reno.cc of the network 

simulator ns-2.1b8a. We created a HolyWood TCP agent in the network simulator as 
well as an independent c++ header function called TCP-holywood.h. The main 
functions that TCP HolyWood code is made up are:  

a) timeout(int tno); 
b) dupack_action(); 
c) opencwnd(); 
d) slowdown(int how); 
e) process_qoption_after_send (); 
f) rtt_counting(); 

We will give a brief description of the TCP Holywood code with the main 
modifications we made. 

In function dupack_action(), we changed the method from: 
slowdown(CLOSE_SSTHRESH_HALF|CLOSE_CWND_HALF), that produced 50% in 
the values of CWND and SSTHRESH to: 
slowdown(CLOSE_SSTHRESH_FIVE_SIXTH|CLOSE_CWND_FIVE_SIXTH)                              
that produced 83.33% in the Values of CWND and SSTHRESH 

In the function timeout (int tno), we changed the CWND=1 to   CWND=3, using the 
function slowdown from: slowdown(CLOSE_CWND_ONE) to 
slowdown(CLOSE_CWND_THREE). 

the function timeout(int tno) calls other function named ''slowdown'' that let us 
change the SSTHRESH from 50 % to 65% in this way, from: 
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slowdown(CLOSE_SSTHRESH_HALF|CLOSE_CWND_RESTART) to: 
slowdown(CLOSE_SSTHRESH_THIRTEEN_TWENTIETHCLOSE_CWND_THREE) 

In the function opencwnd(), we made the changes of the slow start ( cwnd_ += 1) to 
rapid start (cwnd_ += 9/5) and  the congestion avoidance 

from:  cwnd_ += increase_num_ / cwnd_     
to:  cwnd_ += increase_num_ /(4 * cwnd_) 
The necessary changes for obtaining the SSTHRESH  and CWND values  as 

required for proper work of TCP  HolyWood are in the function slowdown(int how)  
The function process_qoption_after_send() checks if the sender has been idle or 

application-limited for more than an RTO, and if so, reduce the congestion window. 
 Finally, the function rtt_counting() checks  if the sender has been idle or 

application-limited for more than an RTO, and if so, reduce the congestion window, for 
a TCP sender that "counts RTTs" by estimating the number of RTTs that fit into a single 
clock tick. 

We intentionally clean the properties of the functions: process_qoption_after_send() 
and  rtt_counting(), because when the sender transmits again or after the idleness of the 
sender finishes, we do not want a reduced congestion window, so the performance will 
not be diminished. 

For a better visualization of the pictures of this dissertation, in colors, as well as the 
TCP HolyWood ns-2.1b8a code, you may find them available at the following sites: 

http://www.inf.ufrgs.br/~oscar/TCP_HolyWood/ 
http://www.geocities.com/oscar_n_mori/TCP_HolyWood/ 
http://oscarnmori.freesuperhost.com/TCP_HolyWood/ 

4.3 Window Behavior 
In the Figure 4.2 when the error rate is 0%, we may see that the congestion window 

(cwnd) and the slow start threshold (ssthresh) of TCP HolyWood are bigger than the 
TCP Reno. We may also observe that after 4 seconds the curves start to stabilize and the 
congestion window of TCP HolyWood present fewer variations for the same 
environment of the last Figure. Nevertheless, changing the error rate from 0% to 0.01% 
and 1% respectively and discounting the first 4 seconds due to transient state of the 
simulation we see that in Figure 4.3 the values of TCP HolyWood keeps higher than 
those of the TCP Reno for both congestion window and slow start threshold. Depending 
on the increase of the error rate the variation in the Congestion windows and slow start 
threshold increase it is because both TCPs are in full action preventing congestion. 
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 Figure 4.2: Congestion window behavior 

 

 
Figure 4.3: Window Congestion Behavior with different Error Rates 
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4.4 Performance Metrics 
In order to measure the performance of our proposal with the Standard TCP and 

other protocols in a Network Environment, we need to define Performance Metrics. It is 
here that came to our help Raj Jain  through his famous book “The Art of Computer 
Systems Analysis” (JAIN 1991), as stated by him, Considering the problem  of 
comparing two different congestion controls for packets sent in order, it is required the 
following metrics: 

1) Response Time: the delay inside the network for individual packets (Packet 
Delay) 

2) Throughput  
3) Processor time per packet on the source end system  
4) Processor time per packet on the destination end systems 
5) Processor time per packet on the intermediate systems 
6) The variance of the response time or Jitter 
7) The probability of out-of-order arrivals 
8) The Probability of duplicated packets  
9) The Probability of lost packets  
10) The probability of disconnections 
11) The Fairness 
 

We used some of these detailed metrics for the following reasons as stated by Jain 
(1991, p.35-37): 

- The packet delay (1) and the throughput (2)  are redundant metrics; Jain  also 
suggested that to use the power, that is a ratio of Throughput divided by Packet 
Delay, nevertheless in scientific papers is common use throughput (2), and it 
was our choice. 

- The probability of duplicated packets (8) and the probability of the 
disconnection (10) is redundant with the jitter (6). 

- Even though the processor time per packet on the source end system (3), On 
the destination end system (4), and on the intermediate system (5), are 
important metrics, in the case we have slower processors certainly the 
performance of network will diminish.   Nevertheless, if they are faster ones as 
nowadays especially in high-speed networks, the processor time per packet 
could be rejected, moreover this metrics are vital to measure Computer 
systems. 

- Regrettably, we could not use "The probability of out-of-order arrivals metric 
due to that the post processing package, Trace graph, deployed in this 
dissertation, in his last version, does not implement it. 

For the reasons explained above and remembering the words of Jain (1991) that 
stated that “The right metric to measure the performance of an analyst is not the number 
of analyzes performed but the number of analyzes that helped the decision makers”, in 
that sense, we used the following metrics: throughput, jitter, fairness and friendliness. 

Throughput we consider as the most significant metric. It is defined as the rate at 
which a system can process a given computation (LILJA, 2000). For Networks, the 
throughput is measured in packets per second (pps) or bits per second (bit/s) 

The Jitter, or variance of the response time, is the variability of the packet delay; 
other way of say the same thing is that, the jitter is the successive subtraction of packet 
delays. 
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Fairness, as stated by Jain (1991), is defined as a function of variability of 
throughputs per TCP connections. For any given set of TCP connections, with 
throughputs x1, x2,..., xn, the following function can be used to assign a fairness index to 
the set. 
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In other words Fairness is how equitable is resource sharing among a set of 
connections that use the same TCP Version (SANADIDI, 2002). 

Friendliness is a variation of fairness and it tests the effects that the introduction of 
a new protocol has on the other protocols. The idea is that the proposed protocol should 
not hurt the standard one, and is of crucial importance to choose the varied parameter 
that makes the most impact in our network environment. 

4.5 Factors  

The factors are parameters that are varied in the script of our chosen ns-2.1b8a 
simulator and its values are called levels, we alter the factors to monitor the perturbation 
in the behavior of the TCP protocols under test. Factors now to be mentioned are: 

a. Error rate 
b. Propagation time 
c. Bottleneck Bandwidth 

Error rate can be a metric of accuracy (JAIN, 1991), but we use it here as a factor as 
well. It is a rate of random error affecting the network link due to external conditions as 
for example electromagnetic interferences that affect copper cables, as well as wireless 
links.  It is used a normal distribution function to get random values.  

Propagation Time is the time that a packets last to go from a source end system to a 
destination end system. It is proportional to the distance between the source and 
destination 

Bandwidth is the maximum amount of information per unit of time (bit/s) that can 
be transmitted along a link. If there are several nodes connected in a chain topology, and 
each link with different bandwidth values, the link with smaller bandwidth will be the 
Bottleneck Bandwidth.  
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5 SIMULATION                                                                 

 
“Since I left Birtwick I had never been so happy as with my dear 

master, Jerry; but three years of cab work, even under the best 
conditions, will tell one's strength, and I felt I was not the horse 

that I had been.” 
 

Anna Sewell, Black Beauty 
 

 
Due to our limited research time and resources, we choose a medium level of 

accuracy, among the evaluation performance techniques that are analytical model, 
measuring a real system and simulation, the latter was selected, using in this dissertation 
the Network Simulator 2, (ns-2), version ns-2.1b8a. We deployed in this work a laptop 
computer Toshiba; model Satellite A20-S207. It has an INTEL Pentium IV processor 
with 2.66 GHz, with a hard disk of approx. 40GB. 

We formated the hard disk and created two partitions just of the same size, and a 
swap memory 944MB. After that, we made a full installation of the Operative FreeBSD 
4.10 (University of California in Berkeley, 2005).  We installed also the netwok 
simulator, ns-2.1b8a (ns-2, 2004) and a post-processing tool called Trace Graph 
(MALEK, 2003). Then, we installed a word processor called OpenOffice 1.1.3 
(OPENOFFICE, 2004), we also installed a Plotting tool called Gnuplot 4 (WILLIAMS; 
KELLEY, 2004) and finally after a proper configuration we install xcdroast 
(NIEDERREITER, 2004). Xcdroast is the software that let us burn Compact disks 
(CDs) as multi sessions in order to record our advances. With all these ready, we started 
our journey through the world of the discrete event simulation.  

5.1 Verification 
It is worthless if we do not trust in our simulations, and in order to obtain credibility, 

the following four figures show the verification of our simulator. Figure 5.1 (Variation 
of cwnd and sstresh for TCP Westwood using the script test-1-simple.tcl) and figure 5.3 
(TCP Westwood Bandwidth Estimation using script test-1-simple.tcl) are exhibited in 
(UCLA, 2004).  After download the TCP Westwood code from (UCLA, 2004) and 
installed it together with the ns-2 simulator, we required to verify the proper functioning 
of it. We proved if the verification was correct, generating two figures (5.2 and 5.3) in 
our equipment and comparing them with their equivalents in (UCLA, 2004). Then we 
may discern that figure 5.1 and figure 5.2 are practically similar, the same thing we 
affirm for figures 5.3 and figure 5.4.  For this evidence, we claim that the simulator 
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version ns-2.b18a and TCP Westwood deployed in our equipment are verified. With the 
intention to verify also the ns-2 TCP HolyWood code, we used the same script (test-1-
simple.tcl) that uses TCP Westwood in its web page. It helped us also to verify, the 
modifications we made with other script but always based in test-1-simple.tcl script.  

 Figure 5.1: Variation of cwnd and sstresh for TCP Westwood using the script test-1-
simple.tcl (UCLA, 2004) 

 
Figure 5.2:  Variation of cwnd and sstresh for TCP Westood using the script test-1-

simple.tcl-Verification 
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Figure 5.3: TCP Westwood Bandwidth Estimation using script test-1-simple.tcl  
(UCLA,, 2004)                                   

 

Figure 5.4: TCP Westwood Bandwidth Estimation using  script test-1-simple.tcl-
Verification  
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5.2 Simulation Methodology 
About the installation, a complete systematic guide of how to install ns-2 Version 

ns-2.1b8a in our operative system FreeBSD 4.10 is in the appendix D.1. We used, in all 
the experiments the default values of ns-21b8a found in the file ''ns-default.tcl''; the path 
to get there is ''/usr/local/ns-allinone-2.1b8a/ns-2.1b8a/tcl/lib'' in the supposition we 
install it in the directory ''/usr/local'' from FreeBSD Operative System. 

All the simulations we made where of 150 seconds, but the question arise. Why that 
value?  

The answer is simple, we wanted to diminish the warm up time or transient time 
before the system is stabilized. Nevertheless, another question arise, is enough 150 
seconds? 

Well this time obtain the answer was not so simple we tested several time values 
until we get approximately  to 700 Sec.  as a highest time value  due to the post 
processing tool, Trace Graph (MALEK, 2003), we used for our specific simulation (that 
is the same of test-1-simple.tcl but with 700 Sec.) did not worked properly for more 
time. We compared the result of 150 Sec. with 700 Sec. with four TCP protocols and we 
get the Table 5.1. 

Table 5.1: Comparison between simulations of 150s, and 700s. 
TCP 

Protocol 
 

Time 
[sec] 

Average 
troughput 

[bit/s] 

COV 
[%] 

C1 [95%] 
[bit/s] 

C1 [95%] 
[bit/s] 

Ratio 
150s/700s 

[%] 

Relative 
change 

150 4896404.8 12.95 4794968.3 4997841.2 HolyWood 
700 4977689.5 5.96 4956722.0 4999657.0 

98.367 -1.633 

150 3895673.6 40.24 3644827.2 4146520.1 Westwood 
700 3964193.3 38.07 3852398.3 4075988.4 

98.272 -1.728 

150 4865326.6 13.64 4759143.1 4971510.1 Reno 
700 4957941.7 6.31 4934760.6 4981122.8 

98.132 -1.868 

150 4896106.0 12.33 4799527.6 4992684.3 Vegas 
700 4977625.1 5.68 4956685.7 4998564.5 

98.362 -1.638 

 
After analyzing the Table 5.1 we conclude that adding to our 150 seconds simulation 

550 seconds to get to 700 seconds we have a relative change of less than 1.9%. 
Therefore, we will work with this small error because 1.9% is not representative and we 
may say that the results of our 150s experiments are approximately equal to 700 
seconds experiment with and Error in the Average of less than 1.9% with relation to 
700-second-experiments 

About the script test-1-simple.tcl, which we used as reference, it deploys the default 
FTP protocol of the Network Simulator 2, version ns-2.1b8a, with a normal error rate 
distribution, a fixed packet size of 1400, a bottleneck bandwidth of 5 Mbit/s, a 
propagation time of 35 ms, a simulation time of 40 Sec. The script before mentioned, 
was used to test TCP HolyWood in the Topology 1, in section 5.3.2, and the script also 
plot automatically the figures, Congestion window versus Time, Slow Start threshold 
versus Time and the Estimation Bandwidth versus Time used in the Verification, 
section 5.1. A copy of this script may be found in the Appendix B.3 
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5.3 Simulated Network Topologies 
We have used in our simulations two network scenarios, called network topology 1 

and network topology 2. The latter is an evolution of the former. Figure 5.5 presents the 
first topology, where n0 and n3 are the sender and receiver respectively and n1 and n2 are 
node routers. Between these routers is the bottleneck link. 

 
Figure 5.5: Simulated Network Topology 1 

In Network Topology 2, Figure 5.6, we add 10 node transmitters (n101, n102, ..., n110) 
and 10 node receivers  (n201, n202, ..., n210) each one attached with its respective TCP  
agent  in the sender and a TCP-sink in the receiver. The nodes no, n1, n2, n3 became 
node routers and the bottleneck link is the same as in the topology 1. 
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Figure 5.6: Simulated Network topology 2 

5.4 Discrete-Event Simulators  

A simulator using a discrete-state model of the system is called a discrete event 
simulator. Observe that the term ''discrete'' does not apply to the time values used in the 
simulation. A discrete-event simulator may use a discrete or continues time values. All 
the discrete-event simulators have a common structure. No matter of the system under 
modeling the simulator will have some of the following components: Event Scheduler, 
Simulation clock and a Time advancing Mechanism, System State variables, Event 
Routings, Input routings, Report Generator, Initialization Routings, Trace Routings, 
Dynamic Memory Management, an the Main Program, that brings all the routing 
together (JAIN, 1991, p.406-408) more information may be found in  (LUL 2000, 
p185). 

In this regard, we start the chase of a proper simulator for our proposal. First, we 
think to use the well-known simulator ns-2, but being considering ns-2 by the Computer 
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science Department of the University of Boston (2004), as probably the most user-
unfriendly software in this world, as well as our own little experience we considered the 
same, so we tried to find other respecTable simulators to help to model   our proposal 
5.4.1 GloMoSim 

 Glomosim (UCLA, 2003) is a scalable simulation library that works with a 
discrete event simulator parsec (PARallel Simulation Environment for Complex 
Systems). It works with wired and wireless environments, being created especially for 
the latter; it has just a single TCP (TCP Tahoe) implementation. Moreover, to work with 
it meant for us to make an extra work creating TCP Reno, and also it do not have other 
flavors of TCP to compare. 
5.4.2 NCTUns 2.0  

A Discrete Event simulator as NCTUns 1.0 as stated by Wang (2003) was a good 
choice; nevertheless, currently during the development of this dissertation appeared 
NCTUns 2.0; because, it has an attractive graphical interface and post-processing data 
trace built-in. We were ready to work with it if not for a small detail, it uses a tunnel 
network interface, it means that it deploys existing real-world FreeBSD Protocol stack 
to provide high-fidelity TCP/IP network simulation results. Therefore, if we would like 
to use it, for our proposal, we had to recompile the real-world UNIX kernel code, and 
create a real implementation of TCP Holy Wood, goal that was out of our time and 
effort. Well after a good voyage through the world of other discrete event driven 
simulators we came back to the same point where we started, use the Network 
Simulator 2.  
5.4.3 Network Simulator 2 

Also called by its initials ns-2, is the standard Network Simulator deployed world 
wide, researchers of institutions as INRIA and Several Universities as University of 
Berkeley, even in this alma mater is used for modeling networks for Papers, dissertation 
and theses. We will not be the exception, nevertheless we deployed a past version of 
NS-2, the version ns-2.1b8a, because, that version was used by the creators of TCP 
Westwood, and aid us to verify our proposal. 

The ns-2 uses two languages; C++ and Otcl (MIT's Object Tool Command 
Language). C++ is fast to run and is used for protocol implementations, as ours, Otcl 
runs much slower but can be changed quickly, it  is ideal for simulation configuration, 
that is why we use scripts as  test-1-simple.tcl where we test a myriad of possibilities. 
NS-2 provides glue (tclcl) to make object and variables appear on both languages. 

As explaining by a tutorial we advise to use (ALTMAN; JIMENEZ, 2003), the ns-2 
is a discrete event driven simulator, where the advance of time depends on the timing of 
events, which, are maintaining by a scheduler. An event is an object composed of: an 
unique identification, a scheduled time, and a pointer to an object that handle the event; 
and the scheduler  maintains an ordered data structure with the events to be executed 
and discharge them one by one, invoking the handler of the event. Other source of 
consult besides the ns Manual (FALL; VARADHAN, 2004), that we found interesting 
is a Brazilian tutorial called: '' Network Simulator: Guia Básico para Iniciantes'' 
(COUTINHO, 2003), and (ROCHOL, et al. 2003) where it is found a comparison of the 
three simulators before mentioned, also in Portuguese. 

 

 



 

 

47

5.5 Post-Processing Stage 
We use two softwares for the post-processing stage: The Trace graph 

(MALEK,2003) package and the Awk program (GOEBEL, 2004) . The Trace Graph 
202 package for linux is a powerful tool that works with a library of Matlab 6.1 
(MATHWORKS, 2004). It converts your ''tr'' ns-2 trace into a ''mat'' format ready to use 
with Trace Graph. You may also get a graph in 2 and 3 dimensions; in addition you may 
get ready made Figures of throughput Versus Time, Jitter Vs time and others as in our 
case, in a relatively fast way, at least in the laptop we used.  

Because Trace Graph was intended for Linux and not for FreeBSD, we use a Linux 
emulator that comes with FreeBSD to unpack the Matlab 6.1 libraries. Trace Graph is a 
didactic tool, nevertheless it lacks of enough documentation and the version we are 
using Trace Graph 2.02 for Linux is the last. We honestly hope that the author changes 
his mind and keeps on maintaining it, due to that ns-2 misses of a post-processing tool 
integrated to it. For details about Trace Graph may be found in (MALEK, 2003), and a 
systematic guide to install it on FreeBSD 4.10 (UC Berkeley, 2005) is the appendix D.2.  
Finally, we had some troubles for example the graphical interface of KDE 3.2 (2004) 
did not start after using Trace Graph. It should be that some libraries of Trace Graph 
with the libraries of Matlab 6.1 (MATHWORKS, 2004) are conflicting with KDE 3.2 
(2004). That is why we start to use the light graphical interface WINDOW MAKER 
(KOJIMA, 2004). Other post-processing program we used is AWK. AWK is a text-
processing language that comes with the default FreeBSD 4.10, distribution. The basic 
function of AWK is to search patterns in each line of a file we choose. When a line fit 
one of the patterns, AWK executes specified actions on that line, and it goes on until the 
last line of a chosen file (ROBBINS, 2003). 

Common programs as BASIC, C or PASCAL are procedural ones, it means that you 
have to describe in detail every step the program is to take and it is clearly harder to 
depict the data your program will process. AWK instead is data-driven, that is, you 
describe the data you want to work with and then what to do when you find it. For 
example in a file with several columns you may choose any of them, compare with the 
others and make calculations that is what we did to get the Coefficient of Variation 
(COV) and the Confidence intervals. Examples of AWK programs you may find in the 
appendix B.6 B.7, B.8, and B9. If it is of interest of the reader, we may recommend 
using an on line tutorial called “A Guided Tour of Awk” by Goebel (2004) and of 
course, GAWK:  Effective AWK Programming by Robbins (2003). 

5.6 Limitations and Assumptions 
In our experiments, we did not use a complete repetitions of our simulations with the 

exactly equal experimental configuration as that in a previous run of simulation, Using 
different Seeds simply, because the script used (test-1-simple.tcl, original script from 
TCP Westwood of University of California. Los Angeles,) to verify our simulation does 
not deploy it. Even though the replication of our simulations by one hand would let us 
to have a closer approach to real experimental environment in the other hand it would 
consume more time of our manpower resources and the traceability of our simulations 
for interested scientists would be injured. 

Other limitation of our experiments as deployed by the script test-1-simple.tcl is that 
we have a fixed size of packets. Certainly using a large, medium and small size of 
packets, we would be closer to reality.  

In our simple experimental design, each factor was changed one by one in order to 
monitor the perturbations between TCP protocols under test. In spite of that, it could 
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lead us to wrong conclusions if our chosen factors would interact such that the effect of 
one factor depends upon the value of other factors (JAIN, 1991) (LILJA, 2000), in other 
words, whether one factor is a function of the others. 

In our case, guided by our intuition, and because we did not make further tests, we 
assume that factors used in our experiments as propagation time, bottleneck bandwidth 
and error rate are independent among them. However, it should be advisable for future 
experimental designs, if the case, that the factors would be dependent among them to 
use the full factorial experiment designs and fractional factorial designs (JAIN 1991) 
(LILJA, 2000). For better it would be our TCP model, it is a simulation and not reality, 
so all our results are approximations to get enough insight for a future implementation. 

Because we could not suppress the transient time (or warm up time) due to a bug in 
the post processing Trace Graph package when working with intervals, to diminish the 
effects of the transient time we prolonged the simulation time from 40 seconds to 150 
seconds. But the question arose if with that time the error introduced by the transient 
time would be sufficient diminished to discard it, that is why we decide to use the 
highest simulation time that our post processing package could tolerate. It was 700 
seconds, for our experiments.  

We assumed that 700 seconds were enough to suppress the unstable time before 
mention, and as explained in section 5.2 we used 150 seconds in all the tests. 

Finally, in our experiments, we deployed the default values of the Network 
Simulator 2, version ns-2.1b8a. 
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6 RESULTS AND ANALYSIS                                              

“How all this will terminate, I know not, but I had rather die 
than return shamefully, my purpose unfulfilled. Yet I fear such 

will be my fate; the men, unsupported by ideas of glory and 
honor, can never willingly continue to endure their present  

hardships.” 
          Mary Wollstonecraft Shelley, Frankenstein 

In this chapter, we present the methodology to get our results, a common 
terminology, and mainly in section 6.3 a performance comparison of throughput and 
jitter as well as Fairness of TCP HolyWood with TCP Reno, the standard. Finally, in 
section 6.4 we showed also a performance comparison of Throughput and Jitter, 
nevertheless of TCP HolyWood with other protocols --TCP Westwood and TCP Vegas. 
In addition, we used Error Rate, Propagation Time and Bottleneck Bandwidth as 
factors. 

6.1 Methodology of the Analysis  
The sections Impact of Error Rate, Propagation time, and bottleneck bandwidth on 

throughput and jitter we simple used the Trace Graph (MALEK, 2003) outputs ''.trg'' 
deploying Gnuplot (WILLIAMS; KELLEY, 2004) for a more appropriated 
presentations, we used several small figures compounding a bigger picture  to the reader 
should grasp the idea in a single view. In the other graphs, we used the statistics 
generated from the Trace Graph with ''.trg'' extension too.  When we used Trace graph 
we configure it as follows: 

• In the Trace Graph 2.02 main window (MALEK, 2003), we set in ‘‘Options’’ 
the option ''Count Packets ID only once’’ to ON, for topology 1 and 2; and we 
changed ''Current node'' option to 3 (destination node) for topology 1 and for 
topology 2 was varied according how many receivers we had one at a time. The 
rest was the default Trace graph configuration.  

• In the Trace Graph  ''Graphs'' window we set always options ''Save graphs'', 
''Save graphs statistics'' to ON, in order to generate the ''.trg'' files needed for 
Gnuplot.  

• At last, in  the Trace Graph ''Network information'' window, we set in ''Options'' 
the option ''Save Information'' ON and in ''Network Informations we set the 
option ''Simulation information'' ON. There, we found the information of the 
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Sent packet and lost packets of each protocol. 
The statistics we made were the Average or arithmetic mean, the standard deviation, 

Coefficient of Variation, and the Confidence intervals; all this concepts are well 
explained in the next section 6.2, Terminology. All the statistics we made from STAT 
files of Trace graph and were processed after, with the AWK programs (appendix B.6 
B.7, B.8 and B.9) are in the appendix A. 

We used Coefficient of Variation (COV) to compare the relative size of the 
variations among the TCPs protocols used here and Confidence intervals of the average 
values to quantify the precision of our simulated measurements. To calculate Percentage 
of COV is divide the Standard Deviation by the Average and multiplies the result for 
100. We worked with confidence intervals of 95%; for further information read (LILJA, 
2000, p.48-52), and t distribution values at page (LILJA 2000, p.250) or also read 
(JAIN, 1991, p.204-208) and t distribution values at (JAIN, 1991, p.630-631).  

 The Standard Deviation formula that we used is from (LILJA, 2000, p.38-39), and 
the idea to make the Awk program considering the standard deviation is from 
(ALTMAN; JIMENEZ, 2003, p.34). 

Besides, in the simulations if we did not specify  Error Rate, Propagation Time, etc; 
it meant, we used an Error Rate of 0.1%, Propagation time of 35ms, a simulation time 
of 150 seconds, a Bottleneck Bandwidth of 5Mbit/s and a buffer size calculated by the 
automatic pipe size setting of the script test-1-simple.tcl, usually 32. In all the Figures 
used here, we processed the output ''.trg'' from Trace Graph with Gnuplot version 4, an 
excellent tutorial is found in (KAWANO, 2004). In the appendix B.10 and B.11, the 
reader may find examples of the Gnuplot programs we deployed in this dissertation. 
Finally, for the analysis of the ratios of this dissertation, in the case of lower is better as 
it is with jitter we did as Jain (1991, p.171)  to take our protocol TCP HolyWood as 
base. Furthermore, in the case of higher is better as it is with throughput we use TCP 
Reno, or TCP Westwood or TCP Vegas, according the case, as a base. 

Note that all the test made in this chapter, were made in the reception side as 
reference to measure the metrics, specifically in topology 1, we used node n3 (TCP 
Sink) and in topology 2 we used, nodes n201, n202 … n210 (TCP Sinks) 

6.2 Terminology 
The terminology used in our analysis of performance can sometimes be confusing. 

Here we define some of the most important terms used. 
Accuracy: The absolute difference between a measured value and 
corresponding reference value (LILJA, 2000). 
Coefficient of Variation (COV): The ratio of the sample's standard deviation to 
the corresponding mean of the sample. (Standard Deviation / Mean). It provides 
a dimensionless value that compares the relative size of the variation in a set of 
measurements with the mean value of those measurements (LILJA, 2000). 
Confidence Interval: It is not possible to get a perfect estimate of the 
population mean from any finite number of finite size samples. The best we can 
do is to obtain probabilistics bounds; these bonds are called Confidence interval 
(JAIN, 1991, p.204). 
Confidence level: The probability that a confidence interval actually contains 
the real means (LILJA, 2000) 
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Factors: The input variables of an experiment that can be controlled or changed 
by the experimenter (LILJA, 2000). 
Interaction: When the effect of one factor depends on the level of another 
factor (LILJA, 2000). 
Levels: The specific values to which the factors of an experiment may be set 
(LILJA, 2000). 
Outlier: a measured value that is significantly different than the other values in 
a set of measurements (LILJA, 2000). 
Perturbation: The Changes in a system's behavior caused by measuring some 
aspects of its performance (LILJA, 2000). 
Precision: The amount of scatter in a set of measurements. Corresponds to the 
repeatability of the measurements (LILJA, 2000). 
Random Errors: Errors in measurements that are completely unpredictable, 
nondeterministic, and perhaps not controllable. They are unbiased in that a 
random error has an equal probability of either increasing or decreasing a 
measurement (LILJA, 2000). 
Range: The difference between the largest and smallest values in a set of 
measurement (LILJA, 2000). 
Replication: a complete repetition of an experiment performed with exactly the 
same experimental configuration as that in a previous run of experiment (LILJA, 
2000). 
Resolution: The smallest incremental change that can be detected and displayed 
by a measuring tool (LILJA, 2000). 
Significance level: The probability tipically denoted by α, that a confidence 
interval does not contain the actual mean (LILJA, 2000).  
Systematic Error: Errors in measurements that are the result of some 
experimental "mistake” such as a change in the experimental environment or an 
incorrect procedure that introduces a constant or slowly changing bias into the 
measurements  
Trace:  A time-ordered sequence of events (LILJA, 2000). 
Validation: Determine how close the results of a simulation are to what would 
be produced by an actual system (LILJA, 2000). 
Verification: To determine whether a simulation model is implemented 
correctly (LILJA, 2000). 

6.3 TCP Holy Wood versus TCP Reno 
We present here a set of results of two metrics throughput and jitter using three 

factors, error rate, propagation time, and bottleneck bandwidth to appreciate the 
perturbations and interactions of TCP HolyWood in network environment in 
comparison with the standard, TCP Reno. We also present two additional metrics 
fairness and friendliness.  

We did not use replication in our experiments because even if we repeat several 
times the same simulation and considering a normal random error rate, and with the 
same configuration values, apparently there were no changes in the output of the 
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simulation using test-1-simple.tcl script.  
The accuracy of our result is limited to what ns-2.1b8a may offer to us. Only after 

validating it in a real network and with a real implementation of our proposal, we will 
know how accurate our results will be. We zoomed figures of our results where they 
were appropriated, using logarithmic and linear scales to obtain through Gnuplot the 
best possible visual resolution. Finally, the round number was of 10 in Trace Graph by 
default in all its outputs but in order to fit the results into tables as presented in appendix 
A. we use integer arithmetic with round numbers of different decimal places, from 1, 2, 
3, 4 until 5. 

We try to suppress all the systematic errors while we were handling the results. 
However, if you realize any involuntary mistake we made, please we appreciate you 
report it to us.  Moreover, it brings to our memory the words of the English writer, 
Oscar Wilde, in his novel the The Picture of Dorian Gray, '' ... that is one of the secrets 
of life. Nowadays most people die of a sort of  creeping common sense, and discover 
when is too late that the only  things  one never regrets are one's mistakes.''. Well now 
with no more preambles let us start the analysis of the results. 

6.3.1 Impact of Error Rate on Throughput 
In this subsection, we analyze how the throughput was affected by a varying and 

increasing error rate. When we analyze Throughput, we hope to find a higher Value and 
as stable as possible. In the Figure 6.1, we presented the Throughput Versus Time with 
different Error Rates; a different TCP was used in Topology 1, one at a time. Besides, in 
all the simulated experiments of this subsection, we used Propagation Time of 35 ms 
and a Bottleneck bandwidth of  5 Mbit/s. We discounted the first 10% of the simulation 
time in our observations; it means 15 Sec. from 150 Sec., as a rule of thumb due to 
warm up time (COUTINHO, 2003) (MACDOUGALL, 1987). 

In Figure 6.1.a, with an error rate of 0.1% we may notice that TCP HolyWood 
shows a more stable appearance than TCP Reno with three thin significant outliers that 
reduce the performance from the maximum available Bottleneck Bandwidth of 5 Mbit/s 
to approx. 3.5 Mbit/s, 3 Mbit/s and 3.7 Mbit/s respectively. Instead, TCP Reno presents 
several (eight) thick negative outliers that reduce its average performance, being the 
range of them between approx. from 4 Mbit/s to 1 Mbit/s. When there were not errors in 
figure 6.1.b both TCPs outperformed very stable at the maximum bottleneck bandwidth; 
nevertheless accordingly the error rate was increasing also the instability of the 
throughput increased; but in all the cases (Figure 6.1.c, 6.1.d, 6.1.e) TCP HolyWood 
exhibited a smoother throughput curve that TCP Reno. You may find in appendix C.1.1 
the complete set of simulations we made about this subsection. 
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Figure 6.1: Throughput versus Time with Different Error Rates 
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Now we will observe if TCP HolyWood or TCP Reno presented better average 

throughput performance; at a glance, figure 6.2, shows that TCP HolyWood 
outperforms TCP Reno, with the exception of one point with an error rate of 8.0%. In 
addition, the Coefficient of variation (COV) of TCP HolyWood is smaller than the TCP 
Reno from Error Rate of 0% to 6%, and from 8.0 % to 60.0% the Coefficient of 
Variation of TCP HolyWood is bigger. The exact percentage of COV and Confidence 
intervals of both TCPs are found in appendix A, Table A.1.1. 

 
Figure 6.2 - Average Throughput versus Error Rate 

Nevertheless, a question arise how much is the gain of throughput of our proposal 
with the TCP Standard. This answer we get in the next Figure 6.3 where we present a 
percentage of throughput ratios between TCP Holywood and TCP Reno. From an error 
rate of 0% to 0.01%, TCP HolyWood is slightly better than TCP Reno with a value of 
3.22% with TCP Reno as a base. From an error rate of 0.01% to 1.0 %, TCP HolyWood 
throughput is 49.7% more than the standard. From an error rate of 1% to 6.0%, TCP 
HolyWood throughput is 111.26% more than the standard. In all the cases, we used 
TCP Reno as a base. In an error rate of 8.0%, TCP Reno wins with a throughput of 
57.47%; and finally in the Error rate interval between 8% until 60% our proposal wins 
with approximately 155.81% with TCP Reno as a base.  

Making a total average from Error rates of 0% to 60%, we get a gain in throughput 
of TCP HolyWood over TCP Reno of 73.46% with TCP Reno as a base. We calculate 
this general average using the Awk program in the appendix B.9. 
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Figure 6.3 - Throughput Ratio versus Error Rate 

 

6.3.2 Impact of Propagation Time on Throughput  
We used an error rate of 0.1% and a bottleneck bandwidth of 5 Mbit/s in all the 

simulated experiments of this subsection. In Figure 6.4.a we worked with a propagation 
time of 50 ms. We also discount the first 15 seconds of the analysis of Figure 6.4. 

In Figure 6.4, we do not consider as in the previous subsection, the first 15 seconds 
of simulation due to warm up time or better explained, 15 seconds onwards, a steady-
state cyclic regime of TCP is attained and TCP is always in Congestion avoidance 
phase. However, before 15 seconds approximately, we see a transient behavior in which 
TCP is in the slow start phase, but in second 3.5 of the Figure 6.4.a we observe a 
timeout that affects both TCPs. 

We observe in Figure 6.4.a that our proposal works better than TCP Reno, 
presenting just two thick negative outliers or falls in second 22 and 45 approximately of 
approximately of the half or 2.5 Mbit/s of the maximum bottleneck bandwidth of 5 
Mbit/s. In general, we observe an oscillation of the TCP HolyWood curve in the range 
of 5 Mbit/s to 4 Mbit/s. TCP Reno instead presented different throughput behavior 6 
thick negative outliers plus 2 thin negative outliers or falls and its throughput range 
oscillate between 5 Mbit/s to 0.5 Mbit/s. 
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When TCP HolyWood presented its two falls in the seconds approximately 22 and 

45, TCP Reno also did but thicker and deeper. We may intuit that this situation was due 
to lost packets and the algorithms fast retransmit and fast recovery was at full work. In 
both TCPs the congestion avoidance phase is occurring. Nevertheless, because TCP 
HolyWood thresholds are bigger than TCP Reno the recovery of our proposal was 
faster. 

In the same environment but working with propagation, time of 1 ms there was no 
difference of the performance of both TCPs. In 10 ms, for example, our TCP is slightly 
better, whereas with bigger propagation times of 100 ms and 1000 ms, the TCP 
HolyWood presented better throughout performance, meanwhile, working both TCP in 
Congestion avoidance phase. Just with a unique exception, that in Figure 6.4.e there was 
a timeout in second 27.15 that brought down the performance of both TCPs. You may 
find in appendix C.1.2 the complete set of simulations we made about this subsection. 
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Figure 6.4: Throughput versus Time with Different Propagation Time Values 
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Now we will observe how the impact of Propagation Time affects the throughput. In 

Figure 6.5, Average Throughput Versus Propagation Time, in all the points we 
measured the TCP HolyWood has a higher throughput in comparison with TCP Reno, 
with exception of one point with propagation time of 5 ms in which the latter is higher 
with a slighter difference of 3.49 Kbit/s. 

The coefficient of variation that TCP HolyWood presents in all the point of Figure 
6.5 is lower than TCP Reno, but as before our proposal lost against the standard slightly 
in the point of 5 ms. A detailed statistical table may be found in the appendix A, Table 
A.1.2 In the next Figure 6.6, we will see how much the gain in throughput performance 
of TCP HolyWood versus TCP Reno is. 

 

 
Figure 6.5 - Average Throughput versus Propagation Time 
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In this Figure 6.6, the ratio of TCP HolyWood to TCP Reno versus Propagation 
time, we observed that in the interval of propagation time from 0.1 ms to 10 ms there 
was not much difference, TCP HolyWood is higher for 0.67%. From Propagation Time 
of 10 ms to 100 ms the throughput of TCP HolyWood is still higher with an average 
throughput of 57.17%. In the propagation time interval of 100 ms to 1000 ms the 
throughput of TCP HolyWood is the highest of all the intervals we measured, with an 
average throughput of 83.82% in all the cases as before as shown we used TCP Reno as 
a base. This methodology of analysis was taken from Jain (1991, p.165-167).  In all the 
values of propagation time, we measured; the average throughput of TCP HolyWood 
outperforms TCP Reno in 53.59% with the latter as a base. We used an Awk program to 
do the measurement; it is in the appendix B.9 

 

 
Figure 6.6: Throughput Ratio versus Propagation Time 
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 6.3.3 Impact of Bottleneck Bandwidth in Throughput 
In this subsection, we want to know, what was going on with the throughput of TCP 

HolyWood and TCP Reno, when we varied the Bottleneck Bandwidth from 1 Mbit/s to 
100 Mbit/s. In the Figure 6.7, we presented the throughput Versus Time with different 
Bottleneck Bandwidth values; a different TCP was used in Topology 1 at a time. In all 
the simulated experiments of this subsection, we used Propagation Time of 35ms and an 
error rate of 0.1% 

We did not take into account as before, the first 10% of the simulation time in our 
observations, it meant 15 seconds from 150 seconds as a rule of thumb due to warp up 
time (COUTINHO, 2003)(MACDOUGALL, 1987). In Figure 6.7.a, analyzing the 15 
seconds onwards, a steady-state cyclic regime of TCP is attained and TCP is always in 
Congestion avoidance phase, even in this simulation, TCP HolyWood presented better 
throughput performance both TCPs oscillate more. The range of TCP HolyWood is 
from approximately 11 Mbit/s to 2 Mbit/s and the range of TCP Reno went from 7.8 
Mbit/s to 1 Mbit/s. In Figure 6.7.b, practically both TCPs had just the same throughput 
Performance, except that TCP Reno has two small falls.  Figure 6.7.b, 6.7.c, 6.7.d had 
slightly difference, but TCP HolyWood kept always higher than TCP Reno. A detailed 
statistical Table may be found in the appendix A, Table A.1.3 
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Figure 6.7: Throughput versus Time with different Bottleneck Bandwidth values 

 
 



 

 

62

In Figure 6.8, we observe the average Throughput Versus Bottleneck Bandwidth, 
and we may discern that in all the points of bottleneck bandwidth with an error rate of 
0.1%, a propagation time of 35 ms and a different TCP being used in Topology 1 at a 
time the TCP HolyWood outperform higher than TCP Reno.  

In all the bandwidth-axis, the Coefficient of Variation of TCP HolyWood was 
smaller than TCP Reno. This information and the confidence Intervals of the data of 
figure 6.8 is found in appendix A, Table A.1.3. In the next Figure 6.9 we will see how 
much is that increase of throughput performance. 

 

 
Figure 6.8: Average Throughput versus Bottleneck Bandwidth 
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In the Figure 6.9, Throughput Ratio Versus Bandwidth, the interval of 1 Mbit/s to 10 
Mbit/s the average of throughput of TCP HolyWood to TCP Reno was 41.42% higher 
than TCP Reno; this value was not so precise since we just had two Values. From 10 
Mbit/s to 50 Mbit/s, the average of throughput of TCP HolyWood is 82.04 % higher 
than TCP Reno. From 50 Mbit/s to 100 Mbit/s, the average of throughput of TCP 
HolyWood was 87.13% higher than TCP Reno. 

A general measurement of all the point of Bottleneck bandwidth in Figure 6.9, gave 
us an average throughput of TCP HolyWood of 77.49% higher than TCP Reno. In all 
the cases, we took TCP Reno as a base or denominator. This analytical methodology 
was taken from Jain (1991, p165-167).  

 

 
Figure 6.9: Throughput Ratio versus Bandwidth 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

64

6.3.4 Impact of Error Rate on Jitter 
In this subsection, we analyze how the Jitter was affected by a varying and 

increasing error rate. When we worked with a jitter metric, what we hope to find was a 
lower or smaller value and a smooth curve, much better if it is constant, because we 
may affirm that the jitter is zero, meaning that we would not have variations of delays or 
expressed in other words constant packet latency. 

In the Figure 6.10 we presented the Jitter Versus Sequence Number for different 
Error Rates, a different TCP was used in Topology 1, one at a time. In all the simulated 
experiments of this subsection, we used Propagation Time of 35 ms and a bottleneck 
bandwidth of 5 Mbit/s. We started to analyze Figure 6.10 since a sequence number of 
500 or 0.5K due to that approximately after this values the system became stable. 

In Figure 6.10.a, we might examine that TCP HolyWood, with color red, displayed 
less variations than TCP Reno. If it would not be for two positive outlier before the 
sequence number 20 K. and two small outliers between sequence number 60K and 65K 
we might declare that our proposal was practically constant, instead, TCP Reno 
demonstrate several positive outliers, more than 20. Whereas, in figure 6.10.a. We 
might also discern that the last sequence number of TCP Reno is approx. 45K and TCP 
HolyWood is 65K. 

In Figure 6.10b both TCP were practically constant with the last same sequence 
number of approx. 65 K., nevertheless our proposal presented slightly less Jitter. In 
Figure 6.10.c, TCP HolyWood was practically constant and TCP Reno displayed more 
than 8 outliers. In Figure 6.10.d, both TCPs showed an average jitter of less than 200 ms 
and TCP Reno revealed a higher sequence number. 

Finally, in Figure 6.10e, both TCPs presented positive and negative outliers and the 
curves were quite rough. In general, we might scrutinize for both TCPs when the Error 
Rate increased also was increased the Jitter together with the outliers. You may find in 
appendix C.1.4 the complete set of simulations we made about this subsection. 
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Figure 6.10: Jitter versus Sequence Number for different Error Rates 
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In Figure 6.11a and 6.11b, average jitter versus error rate, in the error rate-axis, from 
the interval of 0% to 6%, approximately the Average jitter of TCP HolyWood was 
lower than TCP Reno; TCP Reno had 32.21% more jitter than TCP HolyWood, using 
the latter as a base for the calculation of this percentage. From 6% to 60%, TCP Reno 
was higher than TCP HolyWood with 35.74% more jitter with the latter as a base as we 
observed in Figure 6.11b, this interval was strongly influence with negative outlier after 
10% of error rate.  If we analyze in all the measured values from an error Rate of 0% to 
60% with TCP HolyWood as a base, TCP Reno had 38.28% more jitter than our 
proposal. 

Due to the presence of negative jitter in the average values of both TCPs and 
because we were using ratios, we calculated the absolute value of the ratio TCP Reno to 
HolyWood. So in this way, would be presented as higher those values that would be far 
away from zero being them positive or negatives and will be presented as lower 
otherwise. 

Moreover, in Figure 6.12, COV of the average jitter versus error rate, and with 
appropriate scale, we observed that Coefficient of variation of TCP HolyWood was 
smaller and linear than the TCP Reno with the exception of one point in 0.04% of error 
rate. About the interval of confidence of both TCPs, you may find them in Appendix A, 
Table A.1.4.1. To arrive, this analysis we extracted that information from appendix A, 
Tables A.1.4.1, and A.1.4.2, the latter Table was based in  Jain  (1991, p.167). 
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Figure 6.11: the Average Jitter versus Error Rate 
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Figure 6.12: COV of the Average Jitter versus Error Rate 
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6.3.5 Impact of Propagation Time on Jitter 
As we observed, in figure 6.13.a, jitter versus sequence number with different 

propagation time values, with an error rate of 0.1% and a bottleneck bandwidth of 5 
Mbit/s, the TCP HolyWood presented lower jitter than TCP Reno as well as produced a 
higher sequence number. The jitter in both cases were rougher than in Figure 6.10.a due 
to  great number of positive jitter outliers giving the aspect of  a saw shaped figure. TCP 
Reno produced the highest outlier with 100 ms against 60 ms of TCP HolyWood. 
Mostly the TCP Reno produced higher positive jitter outliers than TCP Reno causing 
that is average jitter would be higher than our proposal. 

According to the increase of the propagation time as we observed in Figure 6.13.b, 
6.13.b, 6.13.d and 6.13.e, the jitter increased as well. Besides, in figure 6.13.b for 
instance the jitter was practically a constant, meant that there was not variation of 
packet delay; nevertheless in Figure 6.13.e the positive jitter outliers and irregularity in 
the shape of the figure were the constant. As always, you may find in appendix C.1.5 
the complete set of simulations we made about this subsection. 
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Figure 6.13: Jitter Versus Sequence Number with different Propagation Time Values 
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We calculate, now, how much greater or lower was the Jitter of TCP HolyWood 
against the TCP Reno. As we observed, in Figure 6.14, average jitter versus propagation 
time, in the entire propagation time axis TCP HolyWood showed a lesser jitter than 
TCP Reno. From the interval of 0.1 ms to 50 ms, with TCP HolyWood as a base, TCP 
Reno showed 14.84% more jitter than TCP HolyWood. From the interval of 50 ms to 
1000 ms, with TCP HolyWood as a base, TCP Reno showed 82.15% more jitter than 
TCP HolyWood 

Generally, in all the route of propagation time, with TCP HolyWood as a base, TCP 
Reno showed 52.49% more jitter than TCP HolyWood. As before, to obtain this 
percentages we extracted these information, after a proper processing based in Jain 
(1991, p.167), from appendix A, Tables A.1.5.1, and A.1.5.2.  
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Figure 6.14: Average Jitter versus Propagation Time 
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About the coefficient of variation of the curves of both TCPs, in figure 6.15, looked 
like enlaced each other giving the impression of a continuous hug in several point 
avoiding us to observe which one had more variations, moreover our proposal was  a 
slightly more linear shaped figure than TCP Reno, for  all the route of propagation time 
axis. As a conclusion, we declare that both TCPs had similar Coefficient of variation.  A 
list of the values of the coefficient of variation, as well as, the confidence intervals at 
95% are found in appendix A, Table A.15.1. 

 

 
Figure 6.15:  COV of Average Jitter versus Propagation Time 
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6.3.6 Impact of Bottleneck Bandwidth on Jitter 
In figure 6.16.a, jitter versus sequence number with different bottleneck bandwidth 

values, we do not consider the first 500 sequence numbers due to warm up time, with 
error rate of 0.1%, propagation time of 35 ms, and bottleneck bandwidth of 20 Mbit/s. It 
was used the Topology 1, each TCP one at a time, we might scrutinize that TCP 
HolyWood presented lesser positive jitter than TCP Reno, and approximately a double 
value of Sequence Number. Both TCP presented a rough jitter. Besides, in figure 6.16.b 
with 1 Mbit/s, we observed that the jitter shift from zero to 10ms in the entire bottleneck 
bandwidth axis route and with a sequence number of 13 K. Whereas, in figure 6.16.c, 
TCP Reno displayed more jitter than TCP HolyWood and approximately with a 
maximum sequence number of the half.  

Finally, in Figure 6.16.d and 6.16.e, with a bottleneck bandwidth of 50 Mbit/s and 
100 Mbit/s both TCP presented similar jitter being TCP Reno slightly higher in jitter 
and with a half of the maximum sequence number than our proposal. As always, you 
may find in appendix C.1.6 the complete set of simulations we made about this 
subsection. 
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Figure 6.16: Jitter versus Sequence Number with Different Bottleneck Bandwidth 

values 
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In the same way, we explained earlier, we quantized how much was the Jitter of 

TCP HolyWood against the TCP Reno. As we observed, in figure 6.17, average jitter 
versus bottleneck bandwidth, in the entire propagation time axis TCP HolyWood 
showed a lesser jitter than TCP Reno. 

Analyzing the interval from of 1 Mbit/s to 10 Mbit/s, with TCP HolyWood as a 
base, TCP Reno showed 40.96% more jitter than TCP HolyWood. We might declare 
that because of calculating this interval with just two values this average was not so 
representative. From the interval of 10 Mbit/s to 100 Mbit/s, with TCP HolyWood as a 
base, TCP Reno showed 84.77% more jitter than TCP HolyWood 

Predominantly, in all the route of bottleneck bandwidth, with TCP HolyWood as a 
base, TCP Reno showed 76.81% more jitter than TCP HolyWood. As before, to obtain 
this percentages we extracted these information, after a proper processing based in Jain 
(1991, p.167), from appendix A, Tables A.1.6.1, and A.1.6.2. 

 

 
Figure 6.17: Average Jitter versus Bottleneck Bandwidth 
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However, in this subsection, we had a drawback in the statistics, as it may be seen 

the coefficient of variation of TCP Reno is lesser than TCP HolyWood, this time the 
former, in Figure 6.18, COV of the average jitter versus bandwidth was better than our 
proposal. A list of the values of the coefficient of variation, as well as, the confidence 
intervals at 95% are found in appendix A, Table A.16.1 

 

 
Figure 6.18: COV of the Average Jitter versus Bandwidth 
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6.3.7 Percentage of lost packets 
In figure 6.19.a, percentage of lost packets of TCP HolyWood versus TCP Reno, 

from an error rate interval of 0% to 0.08% TCP Reno presented a lower percentage of 
lost packets of 14.82% in comparison with TCP HolyWood, being the latter as a base.  

In Figure 6.19.a also, from an error rate interval of 0.08% to 1% TCP Reno 
presented a lower percentage of lost packets of 7.87% in comparison with TCP 
HolyWood, being the latter as a base. In Figure 6.19.b from an error rate interval of 1% 
to 60%, TCP Reno presented a lower percentage of lost packets of 15.31% in 
comparison with TCP HolyWood, being the latter as a base.  

In all the route of error rate axis of Figure 6.19 TCP Reno presented a lower 
percentage of lost packets of 8.61% in comparison with TCP HolyWood, being the 
latter as a base. We noticed that both TCP has sent different quantity of packets for the 
same simulation. We extracted this information from Trace graph, the window of 
nerwork information, one point for each Error Rate value. Arranged the data and 
process it as shown in appendix A.3.1 Tables A.3.1.1, A.3.1. Moreover, for finding the 
final comparison Percentages of TCP HolyWood and TCP Reno we used the methology 
of Jain (1991, p.165-167). 
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Figure 6.19: Percentage of Lost Packets of TCP HolyWood Vs. TCP Reno 
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6.3.8 Latency  
As stated by Jain (1991) ‘‘After a few experiments it was clear that throughput and delay were 

redundant metrics. All schemes that resulted in higher throughput also resulted in higher delay''. To test 
this statement with a minimum, medium and maximum value of error rate in our 
topology 1 with 35ms of propagation time, the results were as follows: 

Table 6.1: Statistics of Latency of TCP HolyWood and TCP Reno 
Error Rate Protocol Average Standard COV C1 (95%) C2 (95%)

[%] [TCP] Latency [ms] Dev. [ms] [%] [ms] [ms]

0 Reno 62.615 25.163 40.187 58.588 66.642
0 HolyWood 75.74 28.936 38.204 71.109 80.37

0.1 Reno 44.243 11.745 26.547 42.363 46.123
0.1 HolyWood 56.519 20.149 35.652 53.294 59.744
10 Reno 39.218 1.982 5.056 38.901 39.535
10 HolyWood 41.854 10.798 25.799 40.126 43.583  

 
In all the tested we accomplished, between TCP Reno and TCP  HolyWood, our 

proposal had the higher average latency or packet delay as shown in the Table with a 
difference of  approximately  of 13.6 ms, 12.3 ms and 2.6 ms with error rates of 0.0%,  
0.1% and 10% respectively. We observed as well as that, the difference was 
diminishing while the Error rate of the link increased together with the variability of the 
data. 

6.3.9 Fairness 
In Figure 6.20.a, Fairness of TCP HolyWood and TCP Reno, using the Jain’s index 

(JAIN, 1991, p.36).  We observed that TCP HolyWood is as fair as TCP Reno both TCP 
are practically in one, with slight variations.  

In order to clarify those variations we did a zoom and obtained Figure 6.20.a and 
TCP Reno presented more variability than our proposal. The values of the coefficient of 
variation and the confidence intervals with 95% of the Figure 6.20 may be found in 
appendix A, Table A.1.7. 
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Figure 6.20: Fairness of TCP HolyWood and TCP Reno 
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In order to have an additional insight of the fairness, in Figure 6.21 average 

throughput versus increasing number of flows, we observed that the average throughput 
until three (3) TCP flows of TCP HolyWood was bigger than of the TCPs Reno; but 
from then to 10 flows both kind of TCPs presented similar average. 

We used topology 2 and script B.5 of the appendix B, increasing the number of 
TCPs in script B.5 from 1 to 10 to get Figures 6.20 to 6.22. We simulate a kind of TCPs 
at a time.  

 

 
Figure 6.21: Average Throughput versus Increasing Number of  Flows 
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6.3.10 Friendliness 
In Figure 6.22, friendliness between TCP HolyWood and TCP Reno, we deployed, a 

propagation time of 35 ms, a bottleneck bandwidth of 5 Mbit/s, an error rate of 0.1% 
and the topology 2 with a modification, the first flux of TCP Reno was changed by TCP 
HolyWood and the others remaining fluxes were TCP Renos. We observed also that 
accordingly the increase of the number of TCPs Reno competing with a single TCP 
HolyWood, the latter became friendlier with the other TCP Renos. 

Lastly, the coefficient of variation in Figure 6.22 of the Average throughput of TCP 
Westwoood was always smaller in comparison with the average of the increasing 
number of TCPs Reno. The values of the coefficient of variation and the confidence 
intervals with 95% of the Figure 6.22 may be found in appendix A, Table A.1.8. 

  

 
Figure 6.22: Friendliness between TCP HolyWood and TCP Reno 
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6.4 TCP Holy Wood versus Other TCP Protocols 
We present as in subsection 6.3, a set of results of two metrics throughput and jitter 

using 3 factors, Error Rate, Propagation Time, and Bottleneck Bandwidth to scrutinize 
the perturbations and interactions of TCP HolyWood in comparison with TCP 
Westwood and TCP Vegas in a Network Environment. 

We did not use replication in our experiments because even if we repeat several 
times the same simulation and considering a Normal Random Error Rate, and with the 
same configuration, values apparently there were no changes in the output of the 
simulation using script the test-1-simple.tcl.  

The accuracy of our result is limited to what the Network simulator 2, version ns-
2.1b8a may offer to us. Only after validating it in a real network with a real 
implementation of our proposal, we will know how accurate our results will be. We 
zoomed figures of our results where they were appropriated, using logarithmic and 
linear scales to obtain through Gnuplot the best possible visual resolution. The round 
number was of 10 in Trace Graph by default in all its outputs, but in order to fit the 
results into tables as presented in appendix A, we used integer arithmetics with round 
numbers of different decimal places, from 1, 2, 3, 4 until 5. 

6.4.1 Impact of Error Rate on Throughput 

In this subsection, we analyze how the throughput was affected by a varying and 
increasing error rate. When we analyzed throughput, we hope to find a higher value and 
as stable as possible. In addition, in the figure 6.23, throughput versus time with 
different Error rates over TCP HolyWood with other Protocols, in all the simulated 
experiments of this subsection, a different TCP was used one at a time, we deployed 
Topology 1;   we used propagation time of 35 ms and a bottleneck bandwidth of 5 
Mbit/s. We discounted the first 10% of the simulation time in our observations, it meant 
15 Sec. from 150 Sec. as a rule of thumb due to warp up time (COUTINHO, 2003) 
(MACDOUGALL, 1987). 

Moreover, in Figure 6.23.a with an error rate of 0.1%  we might notice that TCP 
HolyWood showed a more stable  and continuous appearance than TCP Vegas and TCP 
Westwood with two falls  approximately in second 20 and 40. Our proposal is followed 
closer by TCP Vegas with more falls, and instability in shape.  TCP Westwood 
presented the most variable throughput performance with more than 19 falls 
diminishing its performance in those points from 5 Mbit/s to less than 1Mbit/s. Besides, 
in figure 6.23.b without error rate (0%) and 6.23.c with error rate of 0.01% TCP 
HolyWood and TCP Vegas used the channel link to its maximum values were 
presenting almost a constant value of 5 Mbit/s. In addition in Figure 6.23.d, with an 
error rate of 1% the winner was TCP Westwood, presented a better throughput 
performance, nevertheless our proposal was as good as TCP Vegas. However, TCP 
HolyWood and TCP Vegas presented lesser variability of the throughput. 

Finally, in figure 6.23.e we observed that the Three TCPs were trying to do its better 
effort, but with a high error rate, we might not distiguish a winner but TCP HolyWood 
and TCP Westwood seemed to be slightly better in througput performance than TCP 
Vegas. In all the cases, the variability of the throughput was high. You may find in 
appendix C.2.1 the complete set of simulations we made about this subsection. 
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Figure 6.23: Throughput versus Time with different Error Rates over TCP HolyWood 
with other Protocols 
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Now we observe, if TCP HolyWood presented better average throughput 
performance or not against TCP Westwood and TCP Vegas. At a glance in figure 6.24, 
average throughput versus error rate, from an error rate of Approx. 0.0% to 0.6%, TCP 
HolyWood outperformed better than TCP Westwood and TCP Vegas; from error rate 
interval of 0.6% to 8%, TCP Westwood outperformed better nevertheless TCP 
HolyWood was as good as TCP Vegas. Finally, from the interval of 10% to 60% our 
proposal outperformed better, nevertheless TCP Westwood was a good as TCP Vegas. 

In addition, calculating the appropriated, the coefficient of variation (COV) of TCP 
HolyWood and TCP Vegas were smaller than the TCP Westwood from Error Rate of 
0% to 1%, TCP HolyWood and TCP Vegas presented similar Coefficient of variation. 
From 2.0% to 60.0% the coefficient of variation of TCP HolyWood and TCP Westwood 
in almost all the points was bigger than TCP Vegas. The exact percentage of COV and 
Confidence intervals of amongst TCPs are found in appendix A, Tables A.2.1.1 and 
A.2.1.2. 

 
Figure 6.24: Average Throughput versus Error Rate of TCP HolyWood with other 

Protocols 

Besides, in figure 6.25, throughput ratio versus error rate of TCP HolyWood with 
other Protocols, the results of this subsection in the search of the best throughput 
performance were as follows: 

From 0% to 0.6%, TCP HolyWood presented 33.66% more throughput than TCP 
Westwood with latter as a base; and 8.57% more throughput than TCP Vegas as this last 
as a base. From 0.6% to 8%, TCP HolyWood presented 29.77% less throughput than 
TCP Westwood with latter as a base, and 9.34% less throughput than TCP Vegas as this 
last as a base. From 10% to 60%, TCP HolyWood presented 115.08% more throughput 
than TCP Westwood with latter as a base; and 335% more throughput than TCP Vegas 
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as this last as a base. 
At last, in all the route of error rate axis, TCP HolyWood presented 30.65% more 

throughput than TCP Westwood with latter as a base; and 67.46% more throughput than 
TCP Vegas as this last as a base. 

 

 
Figure 6.25: Throughput Ratio versus Error Rate of TCP HolyWood with other 

Protocols 
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6.4.2   Impact of Propagation Time on Throughput 
In this subsection, each TCP was deployed each one at a time. We used an Error 

Rate of 0.1% and a bottleneck bandwidth of 5 Mbit/s in all the simulated experiments of 
this subsection. In figure 6.26.a, we worked with a propagation time of 50 ms and we 
discounted the first 15 seconds of the analysis of Figure 6.26. 

In addition, in Figure 6.26.a, we observed that even before 15 seconds, 
approximately since second 5 of simulation due to warm up time or better explained 
that 5 seconds onwards a steady-state cyclic regime of TCP is attained.  TCP was 
always in Congestion avoidance phase, but before 5 seconds approximately, we 
observed a transient behavior in which TCP was in the slow start phase. We also 
observed that our proposal presented better Throughput performance and with less 
variations than TCP Westwood and TCP Vegas. Besides, in figure 6.26.b (1 ms) and 
6.26.c (5 ms), TCP HolyWood, together with TCP Vegas present an ideal performance 
using practically the maximum bottleneck bandwidth in the steady state of TCP 
Westwood displayed several falls in the same simulation decreasing its performance. In 
Figure 6.26.d (100 ms) TCP HolyWood presented better throughput performance and 
less variability in the the throughput than TCP Westwood and TCP Vegas. 

Lastly, in figure 6.26.e (1000 ms) after second 40 presented better throughput 
performance and more stable in throughput than TCP Westwood and TCP Vegas. You 
may find in appendix C.2.2 the complete set of simulations we made about this 
subsection. 
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Figure 6.26: Throughput versus Time with Propagation Time of 50ms of TCP 
HolyWood with other Protocols 
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In Figure 6.27, average throughput versus propagation time of TCP HolyWood with 
other protocols, from 0.1 ms to 10 ms TCP HolyWood and TCP Vegas presented much 
better average throughput performance than TCP Westwood, being TCP Vegas a little 
greater than our proposal. Besides, in figure 6.27 also, from 10 ms to 1000 ms 
definitively, presented a better average throughput performance than TCP Westwood 
and TCP Vegas. 

 

 
Figure 6.27: Average Throughput versus Propagation Time of TCP HolyWood with 

other Protocols 
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Now we observe exactly with what percentage was our proposal better or worse than 
the TCP Westwood and TCP Vegas. Moreover, in figure 6.28, the throughput ratio 
versus propagation time of  TCP HolyWood with other protocols,  from 0.1 ms to 10 
ms, TCP HolyWood presented 54.45% more throughput performance than TCP  
Westwood, with latter as a base, and 0.77% more Throughput than TCP Vegas with the 
last as a base. Additionally, in figure 6.28, from 10 ms to 1000 ms, TCP HolyWood 
presented 44.55% more throughput performance than TCP Westwood, with latter as a 
base, and 91.59% more Throughput than TCP Vegas with the last as a base.  

Finally, In all the route of propagation time axis, in Figure 6.28, TCP HolyWood 
presented 47.76%  more throughput performance than TCP  Westwood, with latter as a 
base, and 66.42% more Throughput than TCP Vegas with the last as a base.  
 

 
Figure 6.28: Throughput Ratio versus Propagation Time of TCP HolyWood with other 

Protocols 
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6.4.3   Impact of Bottleneck Bandwidth on Throughput of TCP Holywood, TCP 
Westwood, and TCP Vegas 

In this subsection, we observe, what happening with the throughput of TCP 
HolyWood, TCP Westwood and TCP Vegas, when we varied the bottleneck bandwidth 
from 1 Mbit/s to 100 Mbit/s. In the figure 6.29, we presented the throughput versus time 
with different bottleneck bandwidth values; a different TCP was used in Topology 1, 
one at a time. In all the simulated experiments of this subsection, we used propagation 
time of 35 ms and an error rate of 0.1%. We discounted as before, the first 10% of the 
simulation time it means 15 Sec. from 150 Sec. as a rule of thumb due to warp up time 
(COUTINHO, 2003) (MACDOUGALL, 1987). 

Additionally, in figure 6.29.a with a bottleneck bandwidth of 20 Mbit/s, we observed 
that TCP Westwood presented higher outliers of throughput than TCP HolyWood and 
TCP Vegas, nevertheless TCP HolyWood presented less variations of throughput 
performance than TCP Westwood and higher throughput than TCP Vegas. 

In figure 6.29.b, with a bottleneck bandwidth of 1 Mbit/s after aproximately 15 
seconds the three TCPs under test used the entire bandwidth available one each at a 
time. Besides, in Figures 6.29.c with of bottleneck bandwidth of 10 Mbit/s TCP 
HolyWood presented more throughputs and less variability of throughput than TCP 
Westwood and TCP Vegas. Additionally, in Figures 6.29.d and 6.29.e are similar to 
Figure 6.29.c with the difference that TCP Westwood presented 3 outliers of throughput 
in Figure 6.29.d and approximately 14 outliers of throughput in Figure 6.29.e.  

Lastly, we observed that TCP HolyWood was higher in throughput performance 
than TCP Vegas in Figures 6.29.c, 6.29.d, and 6.29.e. A detailed list of all the 
experiments we made, may be found in the appendix C.2.3 
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Figure 6.29: Throughput versus Time with different Bottleneck Bandwidth values of 

TCP HolyWood with other Protocols 
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 In Figure 6.30, average throughput versus bottleneck bandwidth of TCP HolyWood 
with other protocols, we observed that the average throughput of TCP HolyWood was 
much better than the average throughput of TCP Westwood and TCP Vegas in all the 
route of bottleneck bandwidth axis. Additionally, in Figure 6.30, also, coefficient of 
variation of TCP HolyWood, in all most all the point, is smaller than TCP Westwood 
and TCP Vegas, we may find in appendix A. Table 2.3, as well as with the confidence 
intervals. In the next Figure 6.31 we will observe how much is that increase of 
throughput performance. 

 

 

Figure 6.30 - Average Throughput versus Bottleneck Bandwidth of TCP HolyWood 
with other Protocols 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

95

 
In the Figure 6.31, throughput ratio versus bandwidth of TCP HolyWood with other 

protocols, we observed than the proportion TCP HolyWood to TCP Westwood was 
40% higher than the proportion TCP HolyWood to TCP Vegas. A general measurement 
of all the point of bottleneck bandwidth in Figure 6.31, TCP HolyWood presented 
76.7% higher throughput performance than TCP Westwood, with the latter as a base; 
and 17.71% higher than TCP Vegas with the last as a base. This analytical methodology 
was taken from Jain (1991, p.165-167).   

 

 

Figure 6.31: Throughput Ratio versus Bandwidth of TCP HolyWood with other 
Protocols 
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6.4.4 Impact of Error Rate on Jitter 
Recapitulating, in this subsection we analyzed how the Jitter was affected by a 

varying and increasing error rate. When we worked with a jitter metric, what we hoped 
to find is a lower or smaller value and a smooth curve, much better if it was constant, 
because we might declare that the jitter is zero, meaning that we would not have 
variations of delays or expressed in other words constant packet latency.  

Besides, in the figure 6.32, jitter versus sequence number with different error rates, 
TCP HolyWood with other protocols, a different TCP was used in Topology 1, one at a 
time. In all the simulated experiments of this subsection, we used Propagation Time of 
35 ms and a bottleneck bandwidth of 5 Mbit/s. We started to analyze Figure 6.32, since 
a sequence number of 500 or 0.5 K due to that approximately after this values the 
system became stable. 

In Figure 6.32.a with error rate of 0.1%,  we observed that TCP HolyWood, red 
colored, presents less jitter than TCP Westwood and TCP Vegas;TCP Westwood 
presented the highest outliers of the three protocols (3); and our proposal presented the 
highest sequence number (approx. 65) followed closely by TCP Vegas (Approx. 56 K.)  
and after it  was TCP Westwood (Approx. 40 K.). In Figure 6.32.b, with error rate of 
0.0% and 6.32.c, with error rate of 0.01%, TCP HolyWood outperformed better than 
TCP Westwood and TCP Vegas showing a linear shape figure closest to zero. 

Additionally, in Figure 6.32.d, with error rate of 1% TCP Westwood presented 
highest sequence number (30 K.) of the three TCPs under test, nevertheless the highest 
outliers as well. On the, other hand TCP HolyWood and TCP Vegas, presented similar 
jitter and just the same maximum sequence number (approx. 22 K.).  Finally, in Figure, 
6.3.2.e the three TCPs presented high jitter, but TCP Vegas presented smaller outliers 
than the other TCPs and the least sequence number (aprox 1.8 K.) in comparison to a 
sequence number aproximately of 2.8K.  As appreciated in apendix C.2.4. 

Mostly, we observed that, the three TCPs under test when the error rate increased 
also increased the jitter together with the outliers. Moreover, the sequence number 
diminished signicantly. You may find in appendix C.2.4 the complete set of simulations 
we accomplished about this subsection. 
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Figure 6.32: Jitter Versus Sequence Number with different Error Rates TCP HolyWood 
with other Protocols 
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Following with the analysis of this subsection,  in the figure 6.33, we extracted this 
information from appendix A, Tables A.2.4.1, and A.2.4.2, to get the Table A.2.4.3 that 
was based in Jain (1991, p.167), and  that uses always TCP HolyWood as a base. 

Additionally, in figure 6.33, average jitter versus error rate of  TCP HolyWood with 
other protocols, we observed that the error rate interval from 0% to 0.4%, TCP 
Westwood presented 25.84% more jitter than TCP HolyWood, with latter as a base; and 
TCP Vegas presented 8.89% more jitter than TCP HolyWood, with TCP HolyWood as 
a base. In the error rate interval from 0.4% to 10%, TCP Westwood presented 41.63% 
less jitter than TCP HolyWood, and TCP Vegas presented 12.87% less jitter than TCP 
HolyWood. In the error rate interval from 10% to 60%, TCP Westwood presented 
14.48% more jitter than TCP HolyWood, and TCP Vegas presented 1300.14% more 
jitter than TCP HolyWood. Finally, for values, greater than 20% of error rate the jitter 
was extremely high in comparison with the other values of the curve of Figure 6.33. 

In all the route of error rate axis from 0% to 60%, TCP Westwood presented 0.11% 
less jitter than TCP HolyWood, with latter as a base, and TCP Vegas presented 
265.32% more jitter than TCP HolyWood, with latter as a base. However, this value is 
hardly influence by the error rate higher than 20%. Therefore, we thought more 
apropriate to finish this analysis with a shorter route of error rate axis from 0.0% 
to 20% due to the higher jitter outlier from all the TCPs in highly noisy link. In 
this context, TCP Westwood presented 5.23% more jitter than TCP HolyWood, 
and TCP Vegas presented 12.67% more jitter than TCP HolyWood, showing us 
that our proposal outperformed better. 

Due to the presence of negative jitter in the average values of both TCPs and 
because we were using ratios, we calculate the absolute value of the ratio TCP Reno to 
HolyWood. So in this way, we would present higher those values that would be far 
away from zero being them positive or negatives and and would also present lower 
those values otherwise. Additionally, in figure 6.34.a and 6.34.b, we observed that the 
Coefficient of Variation of TCP HolyWood is generally smaller than TCP Westwood 
and TCP Vegas and presented a linear shaped figure with the exception of one point in 
error rate of 0.04%. A list of the COV of the three TCP together with 95% confidence 
intervals is in appredix A, Tables A.2.4.1 and A.2.4.2 
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Figure 6.33: Average Jitter versus Error Rate of TCP HolyWood with other Protocols 
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Figure 6.34: COV of the Average Jitter versus Error Rate of TCP HolyWood with Other 

Protocols 
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6.4.5 Impact of Propagation Time on Jitter 
As we may observe, in Figure 6.35.a, jitter versus sequence number with different 

propagation time values of TCP HolyWood with other protocols, with an error rate of 
0.1%, a bottleneck bandwidth of 5 Mbit/s, and a propagation time of 50 ms, the TCP 
HolyWood presented lower jitter than TCP Westwood and TCP Vegas as well as 
produced a higher sequence number. In addition, TCP Vegas outperformed better in 
jitter than TCP Westwood. The jitter in all the cases were rough due to great number of 
positive jitter outliers, especially in TCP Westwood  

Besides, in figure 6.35.b (1 ms), TCP HolyWood and Vegas outperformed better in 
jitter than TCP Westwood, presenting both TCPs, a maximum sequence number of 
Approx. 68 K. and TCP Westwood a maximum sequence number of 39 K. TCP 
Westwood also displayed several positive outliers.  Whereas that the figure 6.35.c (10 
ms.) was quite similar to Figure 6.35.b with the difference that TCP Westwood 
presented several small positive and negative outlier in all its existence. At last, in 
figure 6.35.d (100 ms) and figure 6.35.e (1000 ms) there was an irregular variation of 
the jitter of the three TCPs under test, being TCP Vegas and our proposal smaller in 
jitter than TCP Westwood.  TCP Westwood again presented higher outliers, and TCP 
HolyWood displayed the highest value of sequence number.  

According to the increase of the propagation time as we observed in Figure 6.35.b, 
6.35.c, 6.35.d, and 6.35.e the jitter increased as well and the maximum sequence 
number of each TCP diminishes. As always, you may find in appendix C.2.5 the 
complete set of simulations we made about this subsection. 
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Figure 6.35: Jitter versus Sequence Number with Different Propagation Time Values of 
TCP HolyWood with other Protocols 
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Now we calculate, how much bigger or lower was the jitter of TCP HolyWood 
against the TCP Reno. As we may observe, in figure 6.36, average jitter versus 
propagation time, in the entire propagation time axis TCP HolyWood showed a lesser 
jitter than TCP Reno. From the interval of 0.1 ms to 50 ms, with TCP HolyWood as a 
base, TCP Reno showed 14.84% more jitter than TCP HolyWood. Then from the 
interval of 0.1 ms to 50 ms, with TCP HolyWood as a base, TCP Westwood  showed 
16.34% more jitter than TCP HolyWood and TCP Vegas showed 5.46%  more jitter  
than TCP HolyWood too. Finally, from the interval of 50 ms to 1000 ms, with TCP 
HolyWood as a base, TCP Westwood  showed 17.9% more jitter than TCP HolyWood 
and TCP Vegas showed 100.62%  more jitter  than TCP HolyWood too. 

In general, in all the route of propagation time, with TCP HolyWood as a base, TCP 
Westwood showed 13.6% more jitter than TCP HolyWood. In addition, TCP Vegas 
showed 64.17% more jitter than TCP HolyWood; with TCP HolyWood in both cases as 
a base. It meant that TCP HolyWood outperformed better in jitter than TCP Westwood 
and TCP Vegas with a lower value. As before, to obtain this percentages we extracted 
these information, after a proper processing, based in (JAIN 1991, p167), from 
appendix A, Tables A.2.5.1, and A.2.5.2 

At last, analyzing the statistics, in figure 6.37, the coefficient of variation (COV) of 
average jitter versus propagation time of TCP HolyWood with other Protocols, from the 
inteval of 0.1 ms to 50 ms, presented slightly bigger value than TCP Vegas. Moreover, 
both of them were smaller than TCP Westwood. Additionally in the Figure 6.37, also 
from the interval of 50 ms to 1000 ms, TCP HolyWood presented the smallest 
coefficient of variation.  A list of the values of the coefficient of variation, as well as, 
the Confidence intervals at 95% are found in appendix A, Table A.2.5.1 
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Figure 6.36: Average Jitter versus Propagation Time of TCP HolyWood with other 

Protocols 
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Figure 6.37: COV of Average Jitter versus Propagation Time of TCP HolyWood with 

other Protocols 
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6.4.6 Impact of Bottleneck Bandwidth on Jitter 
In Figure 6.38.a, jitter versus sequence number with different bottleneck bandwidth 

values of TCP HolyWood with other Protocol, we did not consider the first 500 
sequence numbers due to warm up time, with error rate of 0.1%, propagation time of 35 
ms, and bottleneck bandwidth 20 Mbit/s. It was used topology 1, and each TCP one at a 
time, we observed, also, that TCP HolyWood presented slightly less jitter than TCP 
Vegas and TCP Westwood, nevertheless TCP  Westwood  presented several positive 
and negative outliers. TCP HolyWood showed also the highest value of Sequence 
number, followed closely by TCP Vegas and after TCP Vegas, TCP Westwood. 

Besides, the jitter of TCP HolyWood in Figure 6.38.b (1 Mbit/s) and TCP 
Westwood and TCP Vegas were stabilized approximately in 11ms, nevertheless TCP 
Westwood and TCP Vegas presented several positive outliers of aproximately 18ms. 
Additionally, the figure, 6.38.c (10 Mbit/s) was similar to Figure 6.38.a (20 Mbit/s). 
Figure 6.38.d (50 Mbit/s) and 6.38.e (100 Mbit/s) were quite similar, whereas in this 
figures the three TCPs presented jitter of aproximatelly of 65ms. Nevertheless our 
proposal had the highest value of sequence number (91 K.) followed for TCP Vegas 
with 80 K., and after it TCP Westwood with approximately 40 K. for Figure 6.38.d and 
48 K. for Figure 6.38.e. As always, you may find in appendix C.2.6 the complete set of 
simulations we made about this subsection. 
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Figure 6.38: Jitter Versus Sequence Number with different Bandwidth values TCP 

HolyWood with other Protocol 
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Now we calculate how much was the jitter of TCP HolyWood against the TCP 

Westwood and TCP Vegas. As we observed, in Figure 6.39, average jitter versus 
bottleneck bandwidth, in the entire propagation time axis TCP HolyWood showed a 
lesser jitter than TCP Vegas and a higher jitter than TCP Westwood. 

Besides, from the interval of 1 Mbit/s to 10 Mbit/s, with TCP HolyWood as a base, 
TCP Westwood showed 29.12% more jitter than TCP HolyWood, and TCP Vegas 
showed 10.52% more jitter than TCP HolyWood. Finally, from the interval of 10 Mbit/s 
to 100 Mbit/s, with TCP HolyWood as a base, TCP Westwood showed 9.98% less jitter 
than TCP HolyWood, and TCP Vegas showed 19.29% more jitter than TCP HolyWood 
too. 

In general, in all the route of propagation time, with TCP HolyWood as a base, TCP 
Westwood showed 8.95% less jitter than TCP HolyWood and TCP Vegas also showed 
17.55% more jitter than TCP HolyWood. As before, to obtain this percentages 
extracting these information, after a proper processing based in (JAIN 1991, p167) from 
appendix A, Tables A.2.6.1, and A.2.6.2. 
 

 
Figure 6.39: Average Jitter versus Bandwidth of TCP HolyWood with other Protocols 
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Finally, to close this subsection, in figure 6.40, in all the points TCP HolyWood 

presented a lower coefficient of variation than TCP Westwood and in almost all the 
points, the coefficient of variation of TCP HolyWood was higher than TCP Vegas. In 
other words, the Coefficient of Variation of TCP HolyWood was between TCP 
Westwood and TCP Vegas. A list of the values of the coefficient of variation of this 
subsection, as well as, the confidence intervals at 95% are found in appendix A, Table 
A.2.6.1. 
 

 
Figure 6.40: COV of the Average Jitter versus Bandwidth of TCP HolyWood with other 

Protocols 
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6.4.7 Percentage of lost packets 
In Figure 6.41.a, percentage of lost packets of TCP HolyWood versus TCP 

Westwood and TCP Vegas, from an error rate interval of 0.0% to 1% and TCP 
HolyWood as a base; TCP Westwood presented 100.06%  more Lost packets than TCP 
HolyWood and  TCP Vegas presented 32.71%  less lost packets Than TCP HolyWood. 

 Besides, in figure 6.41.b, from an error rate interval of 1% to 60% and TCP 
HolyWood as a base, TCP WestWood presented 18.97% less lost packets than TCP 
HolyWood, and TCP Vegas presented 14.39% less lost packets than TCP HolyWood.   

Finally, in all the route of Error Rate axis of figure 6.41 with TCP HolyWood as a 
base, TCP Westwood presented 57.21% more lost packets than TCP HolyWood and 
TCP Vegas Presented 25.47% less lost packets than TCP HolyWood. 

In other words in figure 6.4.1 TCP HolyWood showed less percentage of lost 
packets than TCP Westwood and more percentage of lost packets than TCP Vegas in all 
the route of error rate axis. It is important to remark that TCPs sent different quantity of 
packets for the same simulation. We extracted this information from Trace graph, the 
window of network information, and one point for each error rate value. After we 
arranged the data and processed it as shown in appendix  A.3.2 Tables A.3.2.1, A.3.2.2 
and for finding the final comparison percentages of TCP HolyWood and TCP Reno we 
used the methodology  of Jain (1991, p.165-167). 
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Figure 6.41: Percentage of Lost Packets of TCP HolyWood versus TCP Westwood and 

TCP Vegas 
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6.4.8 Latency 

To find the latency of TCP HolyWood with TCP Westwood and TCP Vegas, we 
tested a minimum, medium, and a maximum value of error rate. In our chosen topology, 
the results were as follows: 

Table 6.2: Statistics of Latency of TCP Vegas, TCP Westwood, and                                     
TCP HolyWood 

Error Rate Protocol Average Standard COV C1 (95%) C2 (95%)
[%] [TCP] Latency [ms] Dev. [ms] [%] [ms] [ms]

Vegas 42.06 3.662 8.707 41.474 42.646
0 Westwood 57.953 24.274 41.885 54.069 61.838

HolyWood 75.74 28.936 38.204 71.109 80.37
Vegas 40.465 3.022 7.469 39.982 40.949

0.1 Westwood 47.644 15.904 33.379 45.099 50.19
HolyWood 56.519 20.149 35.652 53.294 59.744

Vegas 39.347 2.337 5.94 38.973 39.721
10 Westwood 40.658 69.256 170.336 29.575 51.742

HolyWood 41.854 10.798 25.799 40.126 43.583  
 

Even here, in this subsection dealing with other protocols (TCP Vegas and TCP 
Westwood) Jain (1991) was right. In all the tests, we made among TCP Holywood 
versus TCP Vegas and TCP Westwood; our proposal had the higher average latency or 
packet delay as shown in the table with a difference respect of TCP Vegas of Approx.  
33.7 ms, 16.1 ms and 2.5 ms; and respect to TCP Westwood of Approx. 17.8 ms, 8.9 ms 
1.2 ms with error rates of 0.0 %, 0.1% and 10% respectively. The same observation we 
obtained here with TCP Reno, the difference was diminishing while the error rate of the 
link increased. Finally, TCP Westwood and TCP HolyWood had relatively higher 
coefficient of variation of the average data in comparison with TCP Vegas. 

6.4.9 Fairness and Friendliness 
We did not do the fairness and friendliness of TCP HolyWood with TCP Westwood 

and TCP Vegas, simple because they are not the default standard, even though they are 
excellent proposals. Maybe in the future, their usability will be extended; we do not 
know, meanwhile, TCP Reno and its enhancements called TCP New Reno and TCP 
SACK are widely deployed nowadays.  
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7 Conclusion and Future Works                                   

           "Dear children! Today I call you to be my extended hands in 
this world that puts God in the last place. You, little children, put God 
in the first place in your life. God will bless you and give you strength 
to bear witness to Him, the God of love and peace. I am with you and 
intercede for all of you. Little children, do not forget that I love you 
with a tender love. Thank you for having responded to my call."                     
February 25, 2005.        Bosnia-Herzegovina, Medjugorje. 

                   Blessed Virgin Mary  
 

As stated by Jain (1991, p 171), if your performance metric is a Higher is Better for 
example throughput, it is better to use your opponent as the base. Moreover, if your 
performance metric is a Lower is Better metric, for example jitter; it is better your 
system as a base. In this line of thinking in our throughput calculations of ratios, we 
used TCP Reno, Westwood and Vegas as the bases respectively each at a time; and in 
our Jitter calculations of ratios, we used our proposal, TCP HolyWood as a base. With 
the supporting evidence collected in this work in a wired network environment, using 
the Network Simulator 2, version ns-2.1b8a, we arrive to the following conclusions: 

About Throughput 
With an interval of error rate from 0% to 60%, we get a gain in the average 

throughput of TCP HolyWood over TCP Reno of 73.46%; over TCP Westwood of 
30.65% and over TCP Vegas of 67.46%. In general, in the interval studied of 
propagation time from 0.1 ms to 1000 ms, we measured the average throughput of TCP 
HolyWood and found that it outperforms TCP Reno in 53.59%, to TCP Westwood in 
47.76% and to TCP Vegas in 66.42%. A General measurement of all the point of 
bottleneck bandwidth from 1 Mbit/s to 100 Mbit/s gave us an average throughput of 
TCP HolyWood of 77.49% over TCP Reno, 76.7% over TCP Westwood and 17.71% 
over TCP Vegas. 

We conclude that varying the factors error rate, propagation time and bottleneck 
bandwidth in a wired network environment, using the nework simulator ns-2, TCP 
HolyWood presented better throughput perfomance than TCP Reno, TCP Westwood 
and TCP Vegas. 

About Jitter 
In all the measured values from an error rate of 0.0% to 60%, TCP Reno had 

38.28% more jitter than our Proposal. TCP Westwood presented 0.11% less jitter than 
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TCP HolyWood, and TCP Vegas presented 265.32% more jitter than TCP HolyWood. 
In general, in all the route of propagation time 0.1 ms to 1000 ms, TCP Reno 

showed 52.49% more jitter than TCP HolyWood, TCP Westwood showed 13.6% more 
jitter than TCP HolyWood, and TCP Vegas showed 64.17% more jitter than TCP 
HolyWood. In general, in all the route of bottleneck bandwidth, TCP Reno showed 
76.81% more jitter than TCP HolyWood, TCP Westwood showed 8.95% less jitter than 
TCP HolyWood and TCP Vegas also showed 17.55% more jitter than TCP HolyWood. 

We conclude that varying the factor error rate, propagation time and bottleneck 
bandwidth in a wired network environment, using the nework simulator ns-2, TCP 
HolyWood presented better average jitter perfomance than TCP Reno, and TCP Vegas 
and slightly less average jitter performance than TCP Westwood  

About Fairness  
We conclude that TCP HolyWood is as fair as TCP Reno. 

About Friendliness  
We conclude that when the number of TCP Reno competing with a single TCP 

HolyWood increase, the latter become more and more friendly with the other TCP 
Renos. 

About Latency 
In all the tests, we made amongst TCP HolyWood versus TCP Reno, TCP Vegas 

and TCP Westwood; our proposal had the higher average latency or packet delay and 
the difference was diminishing while the error rate of the link increased.  

About Lost packets 
In the interval of error rate from 0% to 60%, with TCP HolyWood as a base in all 

the cases, TCP Reno and TCP Vegas presented 8.61% and 25.47% respectively less 
percentage of lost packets than TCP HolyWood. Nevertheless, TCP Westwood 
presented 57.21% more lost packets than our proposal. 

In other words, TCP HolyWood showed less percentage of lost packets than TCP 
Westwood and more percentage of lost packets than TCP Vegas and TCP Reno in all 
the route of error rate axis. It is important to remark that all TCPs sent different quantity 
of packets for the same simulation. 

As an overall conclusion with all the simulations we made, our TCP HolyWood 
could work efficiently in a Wired Environment with less than 8% of Error Rate, 
neverless further tests are required for other network environments.  

About future works 
We will test TCP HolyWood in other simulated network environment as wireless 

networks, celular networks, satellite networks and hybrid ones. 
We will bring TCP HolyWood to life implementing it in FreeBSD 4.x. or 5.x. 
We will fix an apropriate test-bed to make real measurement with the TCP 

HolyWood in order to validate our future experiments with the results of this 
dissertation. 
 
        Thank you very much. 
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APPENDIX A   STATISTICS OF THE RESULTS 

 As mentioned by Lilja (2000) to determine how much uncertainty exists in our 
measurements, and, therefore to determine what conclusions we can actually draw from 
them, we must use the tools and techniques of probability and statistics to quantify the 
errors. Without more preambles, we start this appendix. 
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A.1 Statistics of TCP HolyWood versus TCP Reno  

A.1.1 Statistics of Average throughput versus Error Rate of TCP HolyWood and 
TCP Reno 

Table A.1.1: Statistics of Average throughput versus Error Rate 

Error Rate Protocol Average [bps] Standard COV C1 (95%) C2 (95%)
[%] [TCP] Throughput Dev. [bps] [%] [bps] [bps]

Reno 4865326.62 663508.73 13.64 4759143.11 4971510.13
0 HolyWood 4896404.77 633845.59 12.95 4794968.35 4997841.19

Reno 4627530.6 822065.71 17.76 4495972.68 4759088.51
0.01 HolyWood 4896404.77 633845.59 12.95 4794968.35 4997841.19

Reno 4528733.25 856467.01 18.91 4391669.98 4665796.51
0.02 HolyWood 4889061.72 636948.72 13.03 4787128.7 4990994.75

Reno 4186131.92 1052124.63 25.13 4017756.91 4354506.93
0.04 HolyWood 4826237.88 771685.29 15.99 4702742.51 4949733.25

Reno 3956791.52 1149937.9 29.06 3772763.13 4140819.91
0.06 HolyWood 4872669.67 647185.33 13.28 4769098.45 4976240.89

Reno 3623016.69 1172662.72 32.37 3435351.57 3810681.81
0.08 HolyWood 4861098.81 650241.49 13.38 4757038.5 4965159.12

Reno 3352807.42 1249225.86 37.26 3152889.64 3552725.19
0.1 HolyWood 4791376.95 718808.28 15 4676343.67 4906410.24

Reno 2638529.27 1168046.8 44.27 2451602.85 2825455.69
0.2 HolyWood 4326094.83 838073.81 19.37 4191975.09 4460214.58

Reno 1799938.54 862173.06 47.9 1661962.12 1937914.97
0.4 HolyWood 3210470.99 932419.57 29.04 3061252.78 3359689.2

Reno 1341406.09 661411 49.31 1235558.29 1447253.9
0.6 HolyWood 2507837.88 784043.24 31.26 2382364.83 2633310.93

Reno 1014455.1 538890.88 53.12 928214.6 1100695.6
0.8 HolyWood 2021268.34 686692.64 33.97 1911374.64 2131162.05

Reno 883615.36 487870.93 55.21 805539.75 961690.97
1 HolyWood 1669247.15 656142.39 39.31 1564242.5 1774251.8

Reno 533300.13 390551.99 73.23 470798.8 595801.47
2 HolyWood 992129.27 565662.21 57.01 901604.46 1082654.08

Reno 228823.31 208900.97 91.29 195392.19 262254.43
4 HolyWood 590857.75 420985.86 71.25 523485.98 658229.52

Reno 168224.64 158803.42 94.4 142810.8 193638.48
6 HolyWood 356399.47 324604.72 91.08 304451.9 408347.04

Reno 132251.13 131483.6 99.42 111209.37 153292.88
8 HolyWood 56242.29 177354 315.34 27859.73 84624.84

Reno 101692.19 101083.87 99.4 85515.4 117868.97
10 HolyWood 254931.92 256813.37 100.74 213833.22 296030.62

Reno 39090.86 54004.73 138.15 30448.3 47733.42
20 HolyWood 98482.29 215278.09 218.6 64030.62 132933.96

Reno 7409.03 17887.45 241.43 4546.44 10271.62
40 HolyWood 22715.52 81925.11 360.66 9604.78 35826.27  
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A.1.2 Statistics of Average throughput versus Propagation Time of TCP 
HolyWood and TCP Reno 

Table A.1.2: Statistics of Average throughput versus Propagation Time 
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A.1.3 Statistics of Average throughput versus Bottleneck Bandwidth of TCP 
HolyWood and TCP Reno 

Table A.1.3: Statistics of Average throughput versus Bottleneck Bandwidth 
Bottleneck
Bandwidth Protocol Average [bps] Standard COV C1 (95%) C2 (95%)

[Mb] [TCP] Throughput Dev. [bps] [%] [bps] [bps]

1 Reno 964314.7 149417.1 15.49 940402.99 988226.42
HolyWood 971954.44 138942.7 14.3 949718.97 994189.9

10 Reno 3592680.26 1590733.87 44.28 3338109.83 3847250.7
HolyWood 6540060.4 1768192.58 27.04 6257090.65 6823030.14

20 Reno 3662476.29 1612779.86 44.04 3404377.76 3920574.82
HolyWood 6685957.09 1832154.7 27.4 6392751.27 6979162.9

30 Reno 3689474.97 1645676.51 44.6 3426111.87 3952838.06
HolyWood 6722672.32 1839144.84 27.36 6428347.85 7016996.79

40 Reno 3703790.2 1653917.34 44.65 3439108.3 3968472.1
HolyWood 6742105.43 1845212.49 27.37 6446809.93 7037400.93

50 Reno 3714916.03 1663338.75 44.77 3448726.39 3981105.67
HolyWood 6737432.58 1873226.01 27.8 6437653.99 7037211.18

60 Reno 3719218.01 1647535.16 44.3 3455557.48 3982878.55
HolyWood 7011795.5 1779664.56 25.38 6726989.85 7296601.14

70 Reno 3726264.37 1660979.91 44.57 3460452.23 3992076.52
HolyWood 7015578.28 1777549.77 25.34 6731111.07 7300045.49

80 Reno 3730195.5 1664218.13 44.61 3463865.13 3996525.87
HolyWood 7019286.89 1779583.9 25.35 6734494.15 7304079.63

90 Reno 3730195.5 1666108.96 44.67 3463562.53 3996828.46
HolyWood 7023069.67 1776242.47 25.29 6738811.67 7307327.67

100 Reno 3734052.45 1664344.9 44.57 3467701.79 4000403.11
HolyWood 7026407.42 1779231.04 25.32 6741671.15 7311143.68  
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A.1.4 Statistics of the Average Jitter Versus Error Rate of TCP HolyWood with 
TCP Reno 

Table A.1.4.1: Statistics of the Average Jitter versus Error Rate 

Error Rate Protocol Average Standard COV C1 (95%) C2 (95%)
[%] [TCP] Jitter [ms] Dev. [ms] [%] [ms] [ms]

 Reno 2.265 1.168 51.572 2.078 2.452
0 HolyWood 2.251 1.108 49.238 2.074 2.428
 Reno 2.375 2.061 86.756 2.046 2.705

0.01 HolyWood 2.251 1.108 49.249 2.073 2.428
 Reno 2.424 2.271 93.687 2.061 2.788

0.02 HolyWood 2.252 1.114 49.491 2.073 2.43
 Reno 2.615 3.379 129.219 2.075 3.156

0.04 HolyWood 2.281 4.41 193.331 1.575 2.987
 Reno 2.76 4.004 145.063 2.119 3.401

0.06 HolyWood 2.258 1.15 50.928 2.074 2.442
 Reno 3.005 4.752 158.149 2.245 3.766

0.08 HolyWood 2.26 1.168 51.705 2.073 2.447
 Reno 3.238 5.738 177.192 2.32 4.157

0.1 HolyWood 2.29 1.431 62.48 2.061 2.519
 Reno 4.087 7.949 194.527 2.814 5.359

0.2 HolyWood 2.52 2.012 79.848 2.198 2.842
 Reno 5.869 12.222 208.235 3.913 7.825

0.4 HolyWood 3.346 4.707 140.671 2.593 4.1
 Reno 7.807 16.426 210.396 5.179 10.436

0.6 HolyWood 3.346 4.707 140.671 2.593 4.1
 Reno 9.519 23.505 246.93 5.757 13.281

0.8 HolyWood 5.169 9.92 191.905 3.582 6.757
 Reno 10.654 25.334 237.783 6.6 14.709
1 HolyWood 6.059 12.283 202.725 4.093 8.025
 Reno 12.772 49.884 390.558 4.789 20.756
2 HolyWood 8.661 21.869 252.501 5.161 12.161
 Reno 9.728 113.522 1166.934 -8.439 27.895
4 HolyWood 10.169 40.999 403.189 3.608 16.73
 Reno 3.643 140.253 3849.488 -18.802 26.089
6 HolyWood 11.366 91.805 807.699 -3.326 26.058
 Reno -2.553 172.285 -6748.516 -30.124 25.018
8 HolyWood 19.199 252.426 1314.799 -21.198 59.595
 Reno -13.261 218.624 -1648.655 -48.248 21.726

10 HolyWood 6.773 91.522 1351.279 -7.874 21.419
 Reno -116.062 729.863 -628.858 -232.864 0.741

20 HolyWood 23.621 551.257 2333.787 -64.599 111.84
 Reno 8.691 3696.827 42536.961 -582.925 600.306

40 HolyWood -111.431 872.937 -783.388 -251.13 28.268
 Reno -139.133 7202.566 -5176.733 -1291.784 1013.517

60 HolyWood -187.86 921.797 -490.683 -335.378 -40.342  
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Table A.1.4.2:  Ratio with TCP HolyWood as a base for the Average Jitter versus Error 
Rate of TCP HolyWood and TCP Reno 

Error Avg. Jitter Avg. Jitter TCP [ms] TCP [ms]
Rate TCP [ms] TCP [ms] HolyWood abs(Reno /
[%] HolyWood Reno As a Base HolyWood)

0.0001 ~ 0 2.2509 2.2647 1 1.0061
0.01 2.2507 2.3753 1 1.0554
0.02 2.2517 2.4243 1 1.0766
0.04 2.2809 2.6153 1 1.1466
0.06 2.2582 2.76 1 1.2222
0.08 2.2596 3.005 1 1.3299
0.1 2.29 3.2383 1 1.4141
0.2 2.5198 4.0865 1 1.6218
0.4 3.3464 5.8694 1 1.7539
0.6 4.2121 7.8073 1 1.8535
0.8 5.1694 9.5191 1 1.8414
1 6.059 10.6544 1 1.7584
2 8.661 12.7724 1 1.4747
4 10.1686 9.7282 1 0.9567
6 11.3662 3.6434 1 0.3205
8 19.1988 -2.5529 1 0.133
10 6.773 -13.2608 1 1.9579
20 23.6207 -116.062 1 4.9136
40 -111.431 8.6909 1 0.078
60 -187.86 -139.133 1 0.7406
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A.1.5 Statistics of Average Jitter Versus Propagation Time of TCP HolyWood with 
TCP Reno 

Table A.1.5.1: Statistics of Average Jitter versus Propagation Time 
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Table A.1.5.2: Ratio with TCP HolyWood as a Base for Statistics of Average Jitter 

versus Propagation Time 
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A.1.6 Statistics of the Average Jitter Versus Bottleneck Bandwidth of TCP 
HolyWood with TCP Reno 

Table A.1.6.1: Statistics of the Average Jitter versus Bottleneck Bandwidth 
Bottleneck
Bandwidth Protocol Average Standard COV C1 (95%) C2 (95%)

[Mb] [TCP] Jitter [ms] Dev. [ms] [%] [ms] [ms]

1 Reno 11.311 4.419 39.068 10.604 12.018
HolyWood 11.217 4.86 43.327 10.439 11.994

10 Reno 3.038 9.611 316.307 1.5 4.576
HolyWood 1.678 5.997 357.417 0.718 2.638

20 Reno 2.98 11.81 396.281 1.09 4.87
HolyWood 1.636 7.117 435.027 0.497 2.775

30 Reno 2.958 12.831 433.793 0.904 5.011
HolyWood 1.626 8.263 508.058 0.304 2.949

40 Reno 2.946 13.378 454.104 0.805 5.087
HolyWood 1.627 9.478 582.666 0.11 3.144

50 Reno 2.938 13.713 466.8 0.743 5.132
HolyWood 1.622 9.435 581.595 0.112 3.132

60 Reno 2.935 13.947 475.263 0.703 5.167
HolyWood 1.564 9.402 601.107 0.06 3.069

70 Reno 2.929 14.107 481.665 0.671 5.187
HolyWood 1.563 9.643 616.908 0.02 3.106

80 Reno 2.926 14.232 486.404 0.648 5.203
HolyWood 1.562 9.826 628.943 -0.01 3.135

90 Reno 2.925 14.332 490.023 0.631 5.218
HolyWood 1.562 9.97 638.392 -0.034 3.157

100 Reno 2.922 14.408 493.033 0.617 5.228
HolyWood 1.561 10.084 645.897 -0.053 3.175  
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Table A.1.6.2: Ratio with TCP HolyWood as a Base for Statistics of the Average Jitter 
versus Bottleneck Bandwidth 

Bottleneck Jitter Jitter TCP [ms] TCP [ms]
Bandwidth TCP [ms] TCP [ms] HolyWood Reno/

[Mb] HolyWood Reno As a Base HolyWood
1 11.2165 11.3109 1 1.0084
10 1.6779 3.0384 1 1.8109
20 1.636 2.9803 1 1.8217
30 1.6263 2.9578 1 1.8187
40 1.6267 2.9459 1 1.8109
50 1.6222 2.9377 1 1.811
60 1.5641 2.9346 1 1.8762
70 1.5631 2.9289 1 1.8737
80 1.5624 2.9259 1 1.8727
90 1.5617 2.9248 1 1.8728
100 1.5613 2.9224 1 1.8718  

 

A.1.7 Statistics of Average Throughput Versus Increasing Number of  Flows -
Fairness 

Table A.1.7: Statistics of Average Throughput versus Increasing Number of Flows 
(Fairness) 

Number of
Independent Protocol Average [bps] Standard COV C1 (95%) C2 (95%)

Flows [TCP] Throughput Dev. [bps] [%] [bps] [bps]
Reno 3124950.464 1247706.15 39.927 2925938.2 3323962.8

1 HolyWood 4766455.099 741493.323 15.556 4648185 4884725.2
Reno 2284505.43 798191.942 34.939 2194481.1 2374529.8

2 HolyWood 2450539.868 650791.425 26.557 2377140.1 2523939.6
Reno 1612381.81 661978.185 41.056 1551421 1673342.6

3 HolyWood 1621999.47 575782.618 35.498 1568976.3 1675022.6
Reno 1212828.609 616188.432 50.806 1163686.8 1261970.4

4 HolyWood 1224659.073 539292.076 44.036 1181649.8 1267668.3
Reno 976849.801 485416.209 49.692 942224.2 1011475.4

5 HolyWood 978140.397 481300.915 49.206 943808.4 1012472.4
Reno 817874.083 439888.94 53.784 789230 846518.2

6 HolyWood 819110.287 415002.543 50.665 792086.7 846133.9
Reno 699763.708 408942.182 58.44 675110.1 724417.3

7 HolyWood 696913.377 387348.306 55.581 673561.6 720265.2
Reno 612312.052 368278.427 60.146 591543.9 633080.2

8 HolyWood 614815.364 332967.691 54.157 596038.4 633592.3
Reno 545447.888 360450.329 66.083 526283.6 564612.1

9 HolyWood 542744.724 364115.834 67.088 523385.6 562103.9
Reno 491480.981 297716.308 60.575 476459.5 506502.5

10 HolyWood 492379.338 297295.677 60.379 477384 507374.7
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A.1.8 Statistics Friendliness between TCP HolyWood and TCP Reno 

          Table A.1.8: Statistics Friendliness between TCP HolyWood and TCP Reno 
Number

Of Protocol Average [bps] Standard COV C1 (95%) C2 (95%)
Renos [TCP] Throughput Dev. [bps] [%] [bps] [bps]

Reno 1681485.562 598564.14 35.597 1586013.1 1776958.1
1 HolyWood 3193114.702 685228.424 21.46 3083819.1 3302410.4

Reno 1327610.066 607534.063 45.761 1259089.1 1396131
2 HolyWood 2220643.179 733902.616 33.049 2103583.8 2337702.5

Reno 1065411.391 480227.006 45.074 1021187.8 1109634.9
3 HolyWood 1699064.371 477029.656 28.076 1622976.9 1775151.8

Reno 862068.344 484704.104 56.226 823412.6 900724.1
4 HolyWood 1437384.9 634145.834 44.118 1336237 1538532.8

Reno 740746.95 393026.176 53.058 712693.1 768800.8
5 HolyWood 1210418.013 466836.3 38.568 1135956.4 1284879.6

Reno 647859.073 373961.677 57.723 623507.9 672210.2
6 HolyWood 1012007.417 516640.616 51.051 929601.9 1094412.9

Reno 565861.722 346493.718 61.233 544972.9 586750.5
7 HolyWood 948367.682 390339.161 41.159 886107.6 1010627.8

Reno 506748.766 313893.185 61.943 489040.2 524457.4
8 HolyWood 862698.808 366472.824 42.48 804245.5 921152.2

Reno 465102.929 316005.709 67.943 448301.7 481904.2
9 HolyWood 711684.238 403751.161 56.732 647284.9 776083.6  
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A.2 Statistics of TCP HolyWood versus Other Protocols 

A.2.1 Statistics of Average Throughput versus Error Rate of TCP HolyWood with 
other Protocols 

 Table A.2.1.1: Statistics of the Average Throughput versus Error Rate of TCP 
HolyWood with other Protocols. (1 of  2) 

Error Rate Protocol Average [bps] Standard COV C1 (95%) C2 (95%)
[%] [TCP] Throughput Dev. [bps] [%] [bps] [bps]

Vegas 4896105.96 603488.8 12.33 4799527.64 4992684.28
0 Westwood 3895673.64 1567463.81 40.24 3644827.19 4146520.1

HolyWood 4896404.77 633845.59 12.95 4794968.35 4997841.19
Vegas 4797531.13 652481.41 13.6 4693112.35 4901949.9

0.01 Westwood 3739912.05 1603356.57 42.87 3483321.56 3996502.54
HolyWood 4896404.77 633845.59 12.95 4794968.35 4997841.19

Vegas 4752879.47 639777.21 13.46 4650493.79 4855265.15
0.02 Westwood 3549957.09 1668102.71 46.99 3283005.05 3816909.12

HolyWood 4889061.72 636948.72 13.03 4787128.7 4990994.75
Vegas 4626490.07 699349.53 15.12 4514570.83 4738409.3

0.04 Westwood 3399239.21 1710892.88 50.33 3125439.32 3673039.09
HolyWood 4826237.88 771685.29 15.99 4702742.51 4949733.25

Vegas 4509075.5 764934.23 16.96 4386660.52 4631490.47
0.06 Westwood 3365787.55 1688169.21 50.16 3095624.21 3635950.89

HolyWood 4872669.67 647185.33 13.28 4769098.45 4976240.89
Vegas 4369186.75 784669.74 17.96 4243613.44 4494760.07

0.08 Westwood 3210470.99 1709455.63 53.25 2936901.12 3484040.87
HolyWood 4861098.81 650241.49 13.38 4757038.5 4965159.12

Vegas 4184646.36 869428.44 20.78 4045508.83 4323783.89
0.1 Westwood 3155954.44 1680946.43 53.26 2886946.98 3424961.89

HolyWood 4791376.95 718808.28 15 4676343.67 4906410.24
Vegas 3628354.97 896806.86 24.72 3484835.98 3771873.95

0.2 Westwood 2852516.03 1595126.38 55.92 2597242.64 3107789.41
HolyWood 4326094.83 838073.81 19.37 4191975.09 4460214.58

Vegas 2859782.78 819541.98 28.66 2728628.75 2990936.81
0.4 Westwood 2566285.56 1501043.55 58.49 2326068.56 2806502.56

HolyWood 3210470.99 932419.57 29.04 3061252.78 3359689.2
Vegas 2256911.26 691586.92 30.64 2146234.3 2367588.22

0.6 Westwood 2377517.35 1408168.06 59.23 2152163.53 2602871.17
HolyWood 2507837.88 784043.24 31.26 2382364.83 2633310.93

Vegas 1909785.43 609636.56 31.92 1812223.26 2007347.6
0.8 Westwood 2399027.28 1327363.91 55.33 2186604.82 2611449.75

HolyWood 2021268.34 686692.64 33.97 1911374.64 2131162.05
Vegas 1612651.66 554736.63 34.4 1523875.31 1701428.01

1 Westwood 2312616.69 1239234.29 53.59 2114297.9 2510935.48
HolyWood 1669247.15 656142.39 39.31 1564242.5 1774251.8  
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Table A.2.1.2: Statistics of Average Throughput versus Error Rate of TCP HolyWood 
with other Protocols (2 of 2) 

Error Rate Protocol Average [bps] Standard COV C1 (95%) C2 (95%)
[%] [TCP] Throughput Dev. [bps] [%] [bps] [bps]

Vegas 1026543.05 438971.51 42.76 956292.97 1096793.12
2 Westwood 1565925.3 962055.37 61.44 1411964.37 1719886.22

HolyWood 992129.27 565662.21 57.01 901604.46 1082654.08
Vegas 631353.64 340312 53.9 576892.38 685814.9

4 Westwood 782060.8 611963.59 78.25 684126.23 879995.37
HolyWood 590857.75 420985.86 71.25 523485.98 658229.52

Vegas 373605.3 288355.51 77.18 327458.81 419751.79
6 Westwood 488055.1 429660.17 88.04 419295.15 556815.05

HolyWood 356399.47 324604.72 91.08 304451.9 408347.04
Vegas 197075.5 201534.36 102.26 164823.28 229327.71

8 Westwood 317186.13 341407.43 107.64 262549.56 371822.7
HolyWood 56242.29 177354 315.34 27859.73 84624.84

Vegas 147899.34 181887.99 122.98 118791.2 177007.48
10 Westwood 207684.24 249262.14 120.02 167793.99 247574.49

HolyWood 254931.92 256813.37 100.74 213833.22 296030.62
Vegas 45986.75 60246.59 131.01 36345.29 55628.22

20 Westwood 45395.5 68306.81 150.47 34464.13 56326.86
HolyWood 98482.29 215278.09 218.6 64030.62 132933.96

Vegas 6675.5 16213.78 242.89 4080.75 9270.24
40 Westwood 7409.03 17887.45 241.43 4546.44 10271.62

HolyWood 22715.52 81925.11 360.66 9604.78 35826.27
Vegas 605.41 2549.88 421.19 197.34 1013.47

60 Westwood 2865.78 7794.78 272 1618.35 4113.2
HolyWood 6133.72 25079.13 408.87 2120.23 10147.22  
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A.2.2 Statistics of Average Throughput versus Propagation Time of  TCP 
HolyWood with other Protocols 

Table A.2.2:  Statistics of Average Throughput Versus Propagation Time of TCP 
HolyWood with other Protocols 
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A.2.3 Statistics of Throughput Versus Bottleneck Bandwidth of  TCP HolyWood 
with other Protocols 

  Table A.2.3: Statistics of Throughput versus Bottleneck Bandwidth of  TCP 
HolyWood with other Protocols 

Bottleneck
Bandwidth Protocol Average [bps] Standard COV C1 (95%) C2 (95%)

[Mb] [TCP] Throughput Dev. [bps] [%] [bps] [bps]
Vegas 985006.62 96161.75 9.76 969617.54 1000395.71

1 Westwood 959048.48 145950.91 15.22 935691.47 982405.49
HolyWood 971954.44 138942.7 14.3 949718.97 994189.9

Vegas 5409154.97 1472850.61 27.23 5173449.78 5644860.15
10 Westwood 3592086.89 2395508.68 66.69 3208725.66 3975448.12

HolyWood 6540060.4 1768192.58 27.04 6257090.65 6823030.14
Vegas 5409377.48 1873395.21 34.63 5109571.81 5709183.16

20 Westwood 3804367.68 3394824.23 89.23 3261082.66 4347652.71
HolyWood 6685957.09 1832154.7 27.4 6392751.27 6979162.9

Vegas 5537769.54 1850213.62 33.41 5241673.69 5833865.38
30 Westwood 3856362.38 3863139.08 100.18 3238131.37 4474593.39

HolyWood 6722672.32 1839144.84 27.36 6428347.85 7016996.79
Vegas 5829933.77 1606934.64 27.56 5572770.67 6087096.88

40 Westwood 3515021.99 4039414.66 114.92 2868581.01 4161462.97
HolyWood 6742105.43 1845212.49 27.37 6446809.93 7037400.93

Vegas 5841282.12 1605638.26 27.49 5584326.48 6098237.76
50 Westwood 3205427.28 3451029.48 107.66 2653147.54 3757707.02

HolyWood 6737432.58 1873226.01 27.8 6437653.99 7037211.18
Vegas 5849663.58 1599060.15 27.34 5593760.66 6105566.5

60 Westwood 3888404.77 4402173.39 113.21 3183910.3 4592899.23
HolyWood 7011795.5 1779664.56 25.38 6726989.85 7296601.14

Vegas 5853965.56 1615523.32 27.6 5595427.99 6112503.14
70 Westwood 3855620.66 4472059.89 115.99 3139942.03 4571299.3

HolyWood 7015578.28 1777549.77 25.34 6731111.07 7300045.49
Vegas 5858341.72 1601653.08 27.34 5602023.85 6114659.6

80 Westwood 3842492.19 4292188.91 111.7 3155598.9 4529385.47
HolyWood 7019286.89 1779583.9 25.35 6734494.15 7304079.63

Vegas 5859825.17 1615703.18 27.57 5601258.81 6118391.52
90 Westwood 3880542.52 4372591.87 112.68 3180782.08 4580302.95

HolyWood 7023069.67 1776242.47 25.29 6738811.67 7307327.67
Vegas 5862643.71 1603188.46 27.35 5606080.12 6119207.3

100 Westwood 3853618.01 4400213.27 114.18 3149437.23 4557798.8
HolyWood 7026407.42 1779231.04 25.32 6741671.15 7311143.68  
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A.2.4 Statistics of Average Jitter Versus Error Rate of TCP  HolyWood with other 
Protocols  

       Table A.2.4.1:  Statistics of Average Jitter versus Error Rate of   TCP HolyWood 
with other Protocols. (1 of 2) 

Error Rate Protocol Average Standard COV C1 (95%) C2 (95%)
[%] [TCP] Jitter [ms] Dev. [ms] [%] [ms] [ms]

Vegas 2.272 1.399 61.586 2.048 2.496
0 Westwood 2.554 3.957 154.943 1.921 3.187

HolyWood 2.251 1.108 49.238 2.074 2.428
Vegas 2.315 1.618 69.907 2.056 2.574

0.01 Westwood 2.671 9.297 348.092 1.183 4.159
HolyWood 2.251 1.108 49.249 2.073 2.428

Vegas 2.334 1.624 69.581 2.074 2.593
0.02 Westwood 2.794 12.844 459.747 0.738 4.849

HolyWood 2.252 1.114 49.491 2.073 2.43
Vegas 2.392 1.911 79.889 2.086 2.698

0.04 Westwood 2.982 18.026 604.503 0.097 5.867
HolyWood 2.281 4.41 193.331 1.575 2.987

Vegas 2.452 2.045 83.41 2.125 2.779
0.06 Westwood 2.941 15.886 540.084 0.399 5.484

HolyWood 2.258 1.15 50.928 2.074 2.442
Vegas 2.525 2.321 91.906 2.154 2.896

0.08 Westwood 3.116 19.303 619.502 0.027 6.205
HolyWood 2.26 1.168 51.705 2.073 2.447

Vegas 2.627 2.896 110.235 2.164 3.091
0.1 Westwood 3.111 18.76 603.088 0.108 6.113

HolyWood 2.29 1.431 62.48 2.061 2.519
Vegas 3.015 3.899 129.308 2.391 3.639

0.2 Westwood 3.35 21.954 655.406 -0.164 6.863
HolyWood 2.52 2.012 79.848 2.198 2.842

Vegas 3.782 5.699 150.688 2.87 4.694
0.4 Westwood 3.639 25.92 712.293 -0.509 7.787

HolyWood 3.346 4.707 140.671 2.593 4.1
Vegas 4.743 8.174 172.328 3.435 6.051

0.6 Westwood 3.657 25.486 696.997 -0.422 7.735
HolyWood 3.346 4.707 140.671 2.593 4.1

Vegas 5.511 10.513 190.746 3.829 7.194
0.8 Westwood 3.625 25.52 703.976 -0.459 7.709

HolyWood 5.169 9.92 191.905 3.582 6.757
Vegas 6.447 12.373 191.913 4.467 8.427

1 Westwood 3.504 22.931 654.396 -0.166 7.174
HolyWood 6.059 12.283 202.725 4.093 8.025  
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Table A.2.4.2:  Statistics of Average Jitter versus Error Rate of TCP HolyWood with 
other Protocols. (2 of 2) 

Error Rate Protocol Average Standard COV C1 (95%) C2 (95%)
[%] [TCP] Jitter [ms] Dev. [ms] [%] [ms] [ms]

Vegas 8.87 23.08 5.17 12.56
2 Westwood 3.95 18.62 0.97 6.93

HolyWood 8.66 21.87 5.16 12.16
Vegas 11.32 36.26 320.23 5.52 17.13

4 Westwood 5.49 34.59 630.49 -0.05 11.02
HolyWood 10.17 41 403.19 3.61 16.73

Vegas 10.64 76.08 714.77 -1.53 22.82
6 Westwood 5.68 50.57 889.76 -2.41 13.78

HolyWood 11.37 91.8 807.7 -3.33 26.06
Vegas 6.82 139.79 2050.45 -15.55 29.19

8 Westwood 4.07 68.74 1687.64 -6.93 15.07
HolyWood 19.2 252.43 1314.8 -21.2 59.6

Vegas -0.18 181.46 -102705.9 -29.22 28.86
10 Westwood 2.1 109.26 5206.03 -15.39 19.58

HolyWood 6.77 91.52 1351.28 -7.87 21.42
Vegas -89.01 702.38 -789.09 -201.42 23.39

20 Westwood -81.51 607.29 -745.06 -178.7 15.68
HolyWood 23.62 551.26 2333.79 -64.6 111.84

Vegas -1121.35 7418.68 -661.58 -2308.59 65.88
40 Westwood 8.69 3696.83 42536.96 -582.92 600.31

HolyWood -111.43 872.94 -783.39 -251.13 28.27
Vegas 8025.55 36700.85 457.3 2152.19 13898.91

60 Westwood -139.13 7202.57 -5176.73 -1291.78 1013.52
HolyWood -187.86 921.8 -490.68 -335.38 -40.34

260.2996
471.2044
252.5013
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Table A.2.4.3: Ratio with TCP HolyWood as a Base for Statistics of Average Jitter 
versus Error Rate of TCP HolyWood with other Protocols. 

Error Jitter Jitter Jitter TCP [ms] TCP [ms] TCP [ms]
Rate TCP [ms] TCP [ms] TCP [ms] HolyWood abs(Westwood/ abs(Vegas/
[%] HolyWood Westwood Vegas as a Base HolyWood) HolyWood)

0.0001~0 2.2509 2.5538 2.2718 1 1.1346 1.0093
0.01 2.2507 2.6709 2.3147 1 1.1867 1.0284
0.02 2.2517 2.7937 2.3335 1 1.2407 1.0363
0.04 2.2809 2.9819 2.3923 1 1.3074 1.0488
0.06 2.2582 2.9413 2.4521 1 1.3025 1.0859
0.08 2.2596 3.1158 2.5249 1 1.3789 1.1174
0.1 2.29 3.1107 2.6274 1 1.3584 1.1473
0.2 2.5198 3.3497 3.0153 1 1.3294 1.1966
0.4 3.3464 3.639 3.7822 1 1.0874 1.1302
0.6 4.2121 3.6565 4.7433 1 0.8681 1.1261
0.8 5.1694 3.6252 5.5114 1 0.7013 1.0662
1 6.059 3.5041 6.4471 1 0.5783 1.0641
2 8.661 3.9515 8.8672 1 0.4562 1.0238
4 10.1686 5.4855 11.3241 1 0.5395 1.1136
6 11.3662 5.6831 10.6435 1 0.5 0.9364
8 19.1988 4.0732 6.8175 1 0.2122 0.3551
10 6.773 2.0987 -0.1767 1 0.3099 0.0261
20 23.6207 -81.5089 -89.0115 1 3.4507 3.7684
40 -111.431 8.6909 -1121.35 1 0.078 10.0632
60 -187.86 -139.133 8025.55 1 0.7406 42.7209  
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A.2.5 Statistics of Average Jitter Versus Propagation Time of TCP HolyWood with 
other Protocols 

Table A.2.5.1: Statistics of Average Jitter versus Propagation Time of TCP HolyWood 
with other Protocols 
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Table A.2.5.2: Ratio with TCP HolyWood as a Base for Statistics Average Jitter versus 
Propagation Time of TCP HolyWood with other Protocols 
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A.2.6 Statistics of Average Jitter Versus Bandwidth of TCP HolyWood with other 
Protocols 

Table A.2.6.1: Statistics of Average Jitter versus Bandwidth of                   
TCP HolyWood with other Protocols 

Bottleneck
Bandwidth Protocol Average Standard COV C1 (95%) C2 (95%)

[Mb] [TCP] Jitter [ms] Dev. [ms] [%] [ms] [ms]
Vegas 11.238 2.525 22.468 10.834 11.642

1 Westwood 11.366 10.236 90.062 9.728 13.004
HolyWood 11.217 4.86 43.327 10.439 11.994

Vegas 2.027 4.527 223.289 1.303 2.752
10 Westwood 2.633 23.847 905.763 -1.184 6.449

HolyWood 1.678 5.997 357.417 0.718 2.638
Vegas 1.999 9.615 480.924 0.461 3.538

20 Westwood 1.564 9.828 628.477 -0.009 3.137
HolyWood 1.636 7.117 435.027 0.497 2.775

Vegas 1.955 10.238 523.802 0.316 3.593
30 Westwood 1.414 9.075 641.654 -0.038 2.867

HolyWood 1.626 8.263 508.058 0.304 2.949
Vegas 1.879 9.338 497.106 0.384 3.373

40 Westwood 1.354 9.518 703.029 -0.169 2.877
HolyWood 1.627 9.478 582.666 0.11 3.144

Vegas 1.874 9.781 521.828 0.309 3.44
50 Westwood 1.557 9.385 602.772 0.055 3.059

HolyWood 1.622 9.435 581.595 0.112 3.132
Vegas 1.872 10.068 537.874 0.261 3.483

60 Westwood 1.213 8.274 682.399 -0.112 2.537
HolyWood 1.564 9.402 601.107 0.06 3.069

Vegas 1.872 9.878 527.65 0.291 3.453
70 Westwood 1.216 8.428 692.983 -0.133 2.565

HolyWood 1.563 9.643 616.908 0.02 3.106
Vegas 1.871 10.084 539.048 0.257 3.485

80 Westwood 1.167 9.96 853.836 -0.427 2.761
HolyWood 1.562 9.826 628.943 -0.01 3.135

Vegas 1.87 10.249 547.941 0.23 3.511
90 Westwood 1.176 8.516 724.03 -0.187 2.539

HolyWood 1.562 9.97 638.392 -0.034 3.157
Vegas 1.869 10.378 555.274 0.208 3.53

100 Westwood 1.19 8.636 725.558 -0.192 2.572
HolyWood 1.561 10.084 645.897 -0.053 3.175  
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Table A.2.6.2: Ratio with TCP HolyWood as a Base for Statistics of Average Jitter 
versus Bandwidth of TCP HolyWood with other Protocols 

Bottleneck Jitter Jitter Jitter TCP [ms] TCP [ms] TCP [ms]
Bandwidth TCP [ms] TCP [ms] TCP [ms] HolyWood Westwood/ Vegas/

[Mb] HolyWood Westwood Vegas as a Base HolyWood HolyWood
1 11.2165 11.3657 11.2383 1 1.0133 1.0019
10 1.6779 2.6328 2.0275 1 1.5692 1.2084
20 1.636 1.5639 1.9993 1 0.9559 1.222
30 1.6263 1.4142 1.9546 1 0.8696 1.2018
40 1.6267 1.3538 1.8785 1 0.8322 1.1548
50 1.6222 1.5571 1.8743 1 0.9599 1.1554
60 1.5641 1.2125 1.8718 1 0.7752 1.1967
70 1.5631 1.2161 1.872 1 0.778 1.1976
80 1.5624 1.1665 1.8707 1 0.7467 1.1974
90 1.5617 1.1762 1.8704 1 0.7531 1.1977
100 1.5613 1.1902 1.869 1 0.7623 1.1971

 
 
A.3.1 Percentage of Lost Packets of TCP HolyWood versus TCP Reno  

Table A.3.1.1:  List of Packets Sent and Lost of TCP HolyWood and TCP Reno. 
Error TCP TCP TCP TCP
Rate HolyWood HolyWood Reno Reno
[%] Sent Lost Sent Lost

Packets Packets Packets Packets
0.0001~0 100658 132 99161 78

0.01 100683 133 94408 112
0.02 100565 134 92442 111
0.04 99350 136 85546 105
0.06 100401 136 80924 82
0.08 100223 138 74206 109
0.1 98928 136 68747 111
0.2 89778 176 54305 112
0.4 67152 184 37269 108
0.6 52811 209 27977 123
0.8 42777 224 21233 128
1 35759 281 18596 137
2 21950 391 11386 147
4 14235 547 5041 144
6 8765 389 3753 137
8 1539 136 2999 138
10 6614 417 2359 138
20 2789 355 1023 129
40 748 181 200 50
60 270 118 77 31
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Table A.3.1.2:   Ratio with TCP HolyWood as a Base Percentage of Lost  Packets of 
TCP HolyWood versus TCP  Reno 

Error TCP  TCP TCP TCP
Rate HolyWood Reno HolyWood (Reno/
[%] Lost Packets Lost Packets As a base HolyWood)

[%] [%] [%] [%]
0.0001~0 0.1311 0.0787 1 0.5998

0.01 0.1321 0.1186 1 0.8981
0.02 0.1332 0.1201 1 0.9011
0.04 0.1369 0.1227 1 0.8966
0.06 0.1355 0.1013 1 0.7481
0.08 0.1377 0.1469 1 1.0668
0.1 0.1375 0.1615 1 1.1745
0.2 0.196 0.2062 1 1.0521
0.4 0.274 0.2898 1 1.0576
0.6 0.3958 0.4396 1 1.1109
0.8 0.5236 0.6028 1 1.1512
1 0.7858 0.7367 1 0.9375
2 1.7813 1.2911 1 0.7248
4 3.8426 2.8566 1 0.7434
6 4.4381 3.6504 1 0.8225
8 8.8369 4.6015 1 0.5207
10 6.3048 5.8499 1 0.9279
20 12.7286 12.61 1 0.9907
40 24.1979 25 1 1.0331
60 43.7037 40.2597 1 0.9212

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

143

A.3.2 Percentage of Lost Packets of TCP HolyWood versus other Protocols 

Table A.3.2.1: List of Sent andLost Packets of TCP HolyWood versus other Protocols 
Error TCP TCP TCP TCP TCP TCP
Rate HolyWood HolyWood Westwood WestWood Vegas Vegas
[%] Sent Lost Sent Lost Sent Lost

Packets Packets Packets Packets Packets Packets
0.0001~0 100658 132 79753 179 99035 28

0.01 100683 133 76750 234 97249 39
0.02 100565 134 73078 234 96535 50
0.04 99350 136 70119 245 94184 61
0.06 100401 136 69525 251 91935 70
0.08 100223 138 66536 256 89303 77
0.1 98928 136 65547 251 85700 93
0.2 89778 176 59838 297 74781 123
0.4 67152 184 54535 267 59481 154
0.6 52811 209 51199 270 47333 193
0.8 42777 224 52395 351 40295 217
1 35759 281 51270 376 34250 235
2 21950 391 35749 446 22295 303
4 14235 547 18511 435 14132 356
6 8765 389 11926 398 8593 310
8 1539 136 7850 346 4627 220
10 6614 417 5248 290 3547 203
20 2789 355 1196 147 1204 149
40 748 181 200 50 211 53
60 270 118 77 31 16 8  
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Table A.3.2.2: Ratio with TCP HolyWood as a Base Percentage of Lost Packets of TCP 
HolyWood Vs. Other Protocols 

Error TCP TCP TCP TCP TCP TCP
Rate HolyWood Westwood Vegas HolyWood (Westwood/ (Vegas/
[%] Lost Packets Lost Packets Lost Packets As a base HolyWood) HolyWood)

[%] [%] [%] [%] [%] [%]
0.0001 0.1311 0.2244 0.0283 1 1.7115 0.2156
0.01 0.1321 0.3049 0.0401 1 2.308 0.3036
0.02 0.1332 0.3202 0.0518 1 2.4031 0.3887
0.04 0.1369 0.3494 0.0648 1 2.5525 0.4731
0.06 0.1355 0.361 0.0761 1 2.6652 0.5621
0.08 0.1377 0.3848 0.0862 1 2.7943 0.6262
0.1 0.1375 0.3829 0.1085 1 2.7855 0.7894
0.2 0.196 0.4963 0.1645 1 2.5318 0.839
0.4 0.274 0.4896 0.2589 1 1.7868 0.9449
0.6 0.3958 0.5274 0.4077 1 1.3325 1.0303
0.8 0.5236 0.6699 0.5385 1 1.2793 1.0284
1 0.7858 0.7334 0.6861 1 0.9333 0.8731
2 1.7813 1.2476 1.3591 1 0.7004 0.7629
4 3.8426 2.35 2.5191 1 0.6115 0.6556
6 4.4381 3.3373 3.6076 1 0.752 0.8129
8 8.8369 4.4076 4.7547 1 0.4988 0.5381
10 6.3048 5.5259 5.7232 1 0.8765 0.9077
20 12.7286 12.291 12.3754 1 0.9656 0.9723
40 24.1979 25 25.1185 1 1.0331 1.038
60 43.7037 40.2597 50 1 0.9212 1.1441
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APPENDIX B   COMPUTER CODES 

B.1 Main Code of TCP HolyWood for ns-2.1b8a 
TCP-holywood.cc 
 
            // AD MAJOREM DEI GLORIAM 
           // 
          //   TCP HOLYWOOD ns-2.1b8a Code     
         // 
        //     TCP-holywood.cc        
       //                      
      //\\     Oscar Núñez Mori (PERU)                                                                      
        //     Copyright (c) 2004, 2005.  
       //      All rights reserved. 
      //\\                                                                         
       //     Copyright (c) 1990, 1997 Regents of the University of California.   
      //      All rights reserved.                                                                                                                
     //       Redistribution and use in source and binary forms are permitted     
    // \\      provided that the above copyright notice and this paragraph are      
       //     duplicated in all such forms and that any documentation,            
      //      advertising materials, and other materials related to such 
     //\\     distribution and use acknowledge that the software was developed 
       //     by the University of California, Lawrence Berkeley Laboratory, 
      //      Berkeley, CA.  The name of the University may not be used to 
     //\\     endorse or promote products derived from this software without 
       //     specific prior written permission.  
      //      THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY  
     //       EXPRESS  OR IMPLIED WARRANTIES, INCLUDING, WITHOUT    
    //        LIMITATION, THE  IMPLIED WARRANTIES OF MERCHANTIBILITY     
   //        AND FITNESS FOR A  PARTICULAR  PURPOSE. 
      
#ifndef lint 
static const char rcsid[] = 
"@(#) $Header: /usr/home/oscar/ns-allinone-2.1b8a/ns-2.1b8a/TCP-holywood.cc,v 
00.00 2004/08/15 00:13 ONmori  
#endif 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <sys/types.h> 
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#include "ip.h" 
#include "TCP.h" 
#include "flags.h" 
#include "TCP-holywood.h" 
 
static class HolyWoodTCPClass : public TclClass { 
public: 
 HolyWoodTCPClass() : TclClass("Agent/TCP/HolyWood") {} 
 TclObject* create(int, const char*const*) { 
  return (new HolyWoodTCPAgent()); 
 } 
} class_holywood; 
 
int HolyWoodTCPAgent::window() 
{ 
    // the same as TCP-reno.cc 
  // reno: inflate the window by dupwnd_                     
              // dupwnd_ will be non-zero during fast recovery,      
            //  at which time it contains the number of dup acks     
          // 
 int win = int(cwnd_) + dupwnd_; 
 if (win > int(wnd_)) 
  win = int(wnd_); 
 return (win); 
} 
 
double HolyWoodTCPAgent::windowd() 
{ 
  //The same as TCP-reno.cc 
              // reno: inflate the window by dupwnd_ 
            // dupwnd_ will be non-zero during fast recovery, 
          //         at which time it contains the number of dup acks 
        // 
 double win = cwnd_ + dupwnd_; 
 if (win > wnd_) 
  win = wnd_; 
 return (win); 
} 
 
HolyWoodTCPAgent::HolyWoodTCPAgent() : TCPAgent(), dupwnd_(0) 
{ 
} 
 
 // 
// 
 
void HolyWoodTCPAgent::recv(Packet *pkt, Handler*) 
{ 
 hdr_TCP *TCPh = hdr_TCP::access(pkt); 
#ifdef notdef 
 if (pkt->type_ != PT_ACK) { 
  fprintf(stderr, 
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   "ns: confiuration error: TCP received non-ack\n"); 
  exit(1); 
 } 
#endif 
 ++nackpack_; 
 ts_peer_ = TCPh->ts(); 
 
 if (hdr_flags::access(pkt)->ecnecho() && ecn_) 
  ecn(TCPh->seqno()); 
 recv_helper(pkt); 
 if (TCPh->seqno() > last_ack_) { 
  dupwnd_ = 0; 
  recv_newack_helper(pkt); 
  if (last_ack_ == 0 && delay_growth_) { 
   cwnd_ = initial_window(); 
  } 
 } else if (TCPh->seqno() == last_ack_) { 
  if (hdr_flags::access(pkt)->eln_ && eln_) { 
   TCP_eln(pkt); 
   return; 
  } 
  if (++dupacks_ == numdupacks_) { 
   dupack_action(); 
   dupwnd_ = numdupacks_; 
  } else if (dupacks_ > numdupacks_) { 
   ++dupwnd_; // fast recovery 
  } else if (dupacks_ < numdupacks_ && singledup_ ) { 
   send_one(); 
  } 
 } 
 Packet::free(pkt); 
#ifdef notyet 
 if (trace_) 
  plot(); 
#endif 
 
   // 
   // Try to send more data 
              // 
 
 if (dupacks_ == 0 || dupacks_ > numdupacks_ - 1) 
  send_much(0, 0, maxburst_); 
} 
 
 // 
// 
 
int 
HolyWoodTCPAgent::allow_fast_retransmit(int last_cwnd_action_) 
{ 
 return (last_cwnd_action_ == CWND_ACTION_DUPACK); 
} 
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          //                                                                 
        // Dupack-action: what to do on a DUP ACK.  After the initial check  
      //   of 'recover' below, this function implements the following truth 
    //     Table: 
  //   
 //\\  bugfix   ecn   last-cwnd == ecn     action   
   //     
 //       0       0       0                HolyWood_action 
//\\      0       0       1                HolyWood_action    [impossible] 
    //    0       1       0                HolyWood_action 
  //      0       1       1                retransmit, return   
//\\      1       0       0                nothing  
    //    1       0       1                nothing        [impossible] 
  //      1       1       0                nothing  
//        1       1       1                retransmit, return 
  
     
void 
HolyWoodTCPAgent::dupack_action() 
{ 
 int recovered = (highest_ack_ > recover_); 
 int allowFastRetransmit = allow_fast_retransmit(last_cwnd_action_); 
        if (recovered || (!bug_fix_ && !ecn_) || allowFastRetransmit) { 
  goto HolyWood_action; 
 } 
 
 if (ecn_ && last_cwnd_action_ == CWND_ACTION_ECN) { 
  last_cwnd_action_ = CWND_ACTION_DUPACK; 
     //  
               // What if there is a DUPACK action followed closely by ECN 
             // followed closely by a DUPACK action? 
           // The optimal thing to do would be to remember all 
          // congestion actions from the most recent window 
       // of data.  Otherwise "bugfix" might not prevent 
     // all unnecessary Fast Retransmits. 
   // 
  reset_rtx_timer(1,0); 
  output(last_ack_ + 1, TCP_REASON_DUPACK); 
  return;  
 } 
 
 if (bug_fix_) { 
                           // 
           // The line below, for "bug_fix_" true, avoids 
         // problems with multiple fast retransmits in one 
       // window of data. 
     // 
  return; 
 } 
 
HolyWood_action: 
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 // we are now going to fast-retransmit and will trace that event 
 trace_event("RENO_FAST_RETX"); 
 recover_ = maxseq_; 
 last_cwnd_action_ = CWND_ACTION_DUPACK; 
   // 50 % is : 
                // slowdown(CLOSE_SSTHRESH_HALF|CLOSE_CWND_HALF); 
               //  Added  
             // 83.33 % is : 
 slowdown(CLOSE_SSTHRESH_FIVE_SIXTH|CLOSE_CWND_FIVE_SIXTH
); 
       
   reset_rtx_timer(1,0); 
 output(last_ack_ + 1, TCP_REASON_DUPACK); // from top 
 return; 
} 
 
 
void HolyWoodTCPAgent::timeout(int tno) 
{ 
 // retransmit timer  
       if (tno == TCP_TIMER_RTX) { 
 
  // There has been a timeout - will trace this event 
  trace_event("TIMEOUT"); 
 
      // if (cwnd_ < 1) cwnd_ = 1; 
  // added  
                if (cwnd_ < 3) cwnd_ = 3; 
  if (highest_ack_ == maxseq_ && !slow_start_restart_) { 
                            // TCP option: 
            // If no outstanding data, then don't do anything.   
          // Should this return be here? 
          // What if CWND_ACTION_ECN and cwnd < 1? 
      // return; 
   } else { 
   recover_ = maxseq_; 
   if (highest_ack_ == -1 && wnd_init_option_ == 2) 
       // 
     // First packet dropped, so don't use larger 
                 // initial windows.  
               //   
         wnd_init_option_ = 1; 
   if (highest_ack_ == maxseq_ && restart_bugfix_) 
                 // 
                             // if there is no outstanding data, don't cut  
              // down ssthresh_. 
             // 
            // slowdown(CLOSE_CWND_ONE); 
                                                  //  
                             slowdown(CLOSE_CWND_THREE);     
 
   else if (highest_ack_ < recover_ && 
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     last_cwnd_action_ == CWND_ACTION_ECN) { 
         // 
        // if we are in recovery from a recent ECN, 
       // don't cut down ssthresh_. 
     // 
                 //slowdown(CLOSE_CWND_ONE); 
               //  
    slowdown(CLOSE_CWND_THREE); 
   } 
   else { 
    ++nrexmit_; 
    last_cwnd_action_ = CWND_ACTION_TIMEOUT; 
           
    // 
slowdown(CLOSE_SSTHRESH_HALF|CLOSE_CWND_RESTART); 
   // 65% of slow start threshold and start for 3 
                       
 slowdown(CLOSE_SSTHRESH_THIRTEEN_TWENTIETH|CLOSE_CWND_
THREE); 
    } 
  } 
  // if there is no outstanding data, don't backoff rtx timer  
  if (highest_ack_ == maxseq_ && restart_bugfix_) { 
   reset_rtx_timer(0,0); 
  } 
  else { 
   reset_rtx_timer(0,1); 
  } 
  last_cwnd_action_ = CWND_ACTION_TIMEOUT; 
  send_much(0, TCP_REASON_TIMEOUT, maxburst_); 
 }  
 else { 
  timeout_nonrtx(tno); 
 } 
} 
 
void HolyWoodTCPAgent::opencwnd() 
{ 
 double increment; 
 if (cwnd_ < ssthresh_) { 
     // slow-start (exponential)  
  // cwnd_ += 1; 
        // fast-starter 
        cwnd_ += 1.8;  
 
 } else { 
           //    reducing the slope of Congestion Avoidance 
                       //     increment_num_ default is 1     
        //  This is the standard algorithm. */ 
         //  cwnd_ += increase_num_ / cwnd_; 
    // 
             cwnd_ += increase_num_ /(4 * cwnd_); 
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        } 
 
            //maxcwnd_ is maximum number of congestion window that can ever be 
          // if maxcwnd_ is set (nonzero), make it the cwnd limit 
        // but maxcwnd_ is 0 (zero) by default in ns-default.tcl. Zero means false 
 if (maxcwnd_ && (int(cwnd_) > maxcwnd_)) 
  cwnd_ = maxcwnd_; 
 
 return; 
} 
 
void 
HolyWoodTCPAgent::slowdown(int how) 
{ 
 double fiveSixthWin, thirteenTwentiethWin, decreasewin; 
 int slowstart = 0; 
 // we are in slowstart for sure if cwnd < ssthresh 
    if (cwnd_ < ssthresh_) { 
        // a switch  
        slowstart = 1;   
                // Because we are in slowstart - need to trace this event.  
          trace_event("SLOW_START"); 
           } 
 
           if (precision_reduce_) { 
 
  fiveSixthWin = 5 * windowd() / 6; 
 
                thirteenTwentiethWin = 13 * windowd() / 20;  
 
          decreasewin = decrease_num_ * windowd();  
   
              } else  { 
       int temp; 
          //                     
                                   // --- added 
             temp = (int)(5 * window() / 6); 
      fiveSixthWin = (double) temp; 
                 
             temp = (int)(13 * window() / 20); 
      thirteenTwentiethWin = (double) temp; 
                 //  
                            // decrease_num_ is a factor for multiplicative decrease 
                           //  decrease_num_ default is 0.5 
                    temp = (int)(decrease_num_ * window());   
      decreasewin = (double) temp; 
       } 
 
       if (how & CLOSE_SSTHRESH_FIVE_SIXTH) 
     // For the first decrease, decrease by three Fifth 
   // even for non-standard values of decrease_num_. 
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  if (first_decrease_ == 1 || slowstart ||  
                        last_cwnd_action_ == CWND_ACTION_TIMEOUT) { 
      // Do we really want fiveSixthWin  instead of decreasewin 
                // in fast recovery algorithm ? 
   ssthresh_ = (int) fiveSixthWin; 
  } else { 
   ssthresh_ = (int) decreasewin; 
  } 
 
 if (how & CLOSE_SSTHRESH_THIRTEEN_TWENTIETH) 
    // For the first decrease, decrease by thirteen twentienth (65%) 
  // even for non-standard values of decrease_num_. 
  if (first_decrease_ == 1 || slowstart || 
   last_cwnd_action_ == CWND_ACTION_TIMEOUT) { 
    // Do we really want thirteen twentieth instead of decreasewin 
                // after a timeout? 
   ssthresh_ = (int) thirteenTwentiethWin; 
  } else { 
   ssthresh_ = (int) decreasewin; 
  } 
 
 if (how & CLOSE_CWND_FIVE_SIXTH) 
     // For the first decrease, decrease by five sixth 
  // even for non-standard values of decrease_num_. 
                              //  The default value of decrease_num is 0.5 in ns-2 
  if (first_decrease_ == 1 || slowstart || decrease_num_ == 0.5) { 
   cwnd_ = fiveSixthWin; // added by oscar Nunez Mori 
  } else cwnd_ = decreasewin; 
 
 else if (how & CLOSE_CWND_THREE)   
  cwnd_ = 3; // added by Oscar Nunez Mori 
 
             // if (ssthresh_ < 2) 
           //        ssthresh_ = 2; 
         //  added by Oscar Nunez Mori 
        if (ssthresh_ < 3) 
                ssthresh_ = 3; 
 
 if (how & (CLOSE_CWND_FIVE_SIXTH|CLOSE_CWND_THREE)) 
       // cong_action: Congestion Action is True to indicate  
   // that the sender responded to congestion  
       cong_action_ = TRUE; 
 
 
        //fcnt_ and count_ are used in window increment algorithms   
 fcnt_ = count_ = 0; 
 if (first_decrease_ == 1) 
       //  First decrease of congestion window.  
     //  Used for decrease_num_ != 0.5.  
   // first_decrease_ is 1 by default defined in TCP.cc line 78 
    first_decrease_ = 0; 
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} 
 
      // 
    // Check if the sender has been idle or application-limited for more 
  // than an RTO, and if so, reduce the congestion window. 
// 
void HolyWoodTCPAgent::process_qoption_after_send () 
{ 
           // we intentionally clean the properties of this function 
         // because when the sender transmits again or after the  
       // idleness of the sender finishes, we do not want a  
     // reduced congestion window, so the performance  
   // will not be diminished 
} 
 
       // Check if the sender has been idle or application-limited for more 
     // than an RTO, and if so, reduce the congestion window, for a TCP sender 
   // that "counts RTTs" by estimating the number of RTTs that fit into 
 // a single clock tick. 
void 
HolyWoodTCPAgent::rtt_counting() 
{ 
       // we intentionally clean the properties of this function 
      // because when the sender transmits again or after the  
     // idleness of the sender finishes, we do not want a  
    // reduced congestion window, so the performance  
   // will not be diminished 
} 

B.2 Addendum to Main Code of TCP HolyWood for ns-2.1b8a 
TCP-holywood.h 
   
     //  DEO GRATIAS   
   // 
 //\\  TCP-holywood.h   2004/08/15    
      //                 
    //    Oscar Núñez Mori (PERU) 
  //  
//\\   Copyright (c)  2004, 2005. All right reserved  
    // 
  //    @(#) $Header: /onunezmori/TCP-holywood.h,v 0.1 2004/08/15 00:13:00 
onunezmori  
   
  
#ifndef TCP_holywood_h 
#define TCP_holywood_h 
 
#include "TCP.h" 
  // TCP HOLY WOOD   
 //  
// bits to modify the ssthresh and cwnd 
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#define CLOSE_SSTHRESH_FIVE_SIXTH                            0x00000800 
#define CLOSE_CWND_FIVE_SIXTH                                    0x00001000 
#define CLOSE_CWND_THREE                                              0x00002000 
#define CLOSE_SSTHRESH_THIRTEEN_TWENTIETH  0x00004000 
 
class HolyWoodTCPAgent : public virtual TCPAgent { 
 public: 
 HolyWoodTCPAgent(); 
 virtual int window(); 
 virtual double windowd(); 
 virtual void recv(Packet *pkt, Handler*); 
 virtual void timeout(int tno); 
 virtual void dupack_action(); 
 // added and modified 
 // these where originally in class TCPAgent (file: TCP.h)  
     virtual void opencwnd(); 
     virtual void slowdown(int how); 
 virtual void process_qoption_after_send (); 
 virtual void rtt_counting(); 
 protected: 
 int allow_fast_retransmit(int last_cwnd_action_); 
 unsigned int dupwnd_; 
}; 
 
#endif // TCP_holywood_h  

B.3 Base Script: test-1-simple.tcl  
# Original Script from TCP-Westwood.  CS Department. 
# University of California. Los Angeles 
#  Available at: <http://www.cs.ucla.edu/NRL/hpi/tcpw/> . Visited Feb. 2004. 
                 # 

### Default Values 
set proto "Westwood" 
set buffer 0 
set psize 1400 
set lrate 0.0 

 
### Read command line arguments 
If {$argc > 1} { 

     set proto  [lindex $argv 0]  
     set buffer [lindex $argv 1] 
     set lrate  [lindex $argv 2]  

} else { 
     puts "usage: ns test-1-simple.tcl <protocol> <buffer> <error rate>" 
     puts " " 
     puts "<protocol> is Reno, Newreno, Westwood or WestwoodNR" 
     puts "<buffer> is the buffer size, use 0 for automatic pipe size setting" 
     puts "<erro rate> is the link error rate (0.001 = 0.1%). Use 0 for no errors" 
    
     exit 1 

} 
 

set ns [new Simulator] 
 

$ns color 1 Blue 
$ns color 2 Red 

 
set tr_f        [open out.tr w] 
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set nam_f       [open out.nam w] 
set record_f    [open out.data w] 

 
$ns trace-all $tr_f 
$ns namtrace-all $nam_f 

 
### Finish proc 
proc finish {} { 

      global ns tr_f record_f nam_f 
      $ns flush-trace 
      close $tr_f 
      close $record_f 
      close $nam_f 
      
      exec awk { { print $1, $2 } } out.data > temp.cwnd 
      exec awk { { print $1, $3 } } out.data > temp.sst 
      exec awk { { print $1, $4 } } out.data > temp.bwe 
      
      exec xgraph temp.cwnd temp.sst -m -x time -y seq_no -geometry 600x200 & 
      exec xgraph temp.bwe -m -x time -y bit/s -geometry 600x200 & 
      
      exec gnuplot cwnd_and_sst.g & 
      exec gnuplot bwe.g & 
  
      exit 0 

} 
 
 

# Network topology 1 : 
#                                   
#                                   
#   100Mbit/s, 1ms      5Mbit/s, 35 ms        100Mbit/s, 1ms 
#  n0 --------------- n1------------------- n2 ------------------ n3 TCP-Sink 
# TCP Source         30 buffer      
#                                  
#                                   
# backlogged FTP sources with 1400 bytes packet size 

 
set n0 [$ns node] 
set n1 [$ns node] 
set n2 [$ns node] 
set n3 [$ns node] 

 
#   object      from  to  bandwith   delay    queue     
$ns duplex-link $n0  $n1   100Mb      1ms   DropTail 
$ns duplex-link $n2  $n3   100Mb     1ms   DropTail 

 
$ns duplex-link $n1  $n2     5Mb     35ms   DropTail 

 
#### BOTTLENECK BUFFER 
set rtd 72 
set bneck_bw 5 
# Set the queue size (queue size is in packets, default is 50) 
# We should set the buffer capacity equal to the pipe size: 
# buffer = bneck_bw * round_trip_delay / 8 / bytes_per_packet  
set buffer_calc [expr $bneck_bw*1000000 * $rtd/1000 / 8 / $psize] 
if {$buffer == 0} {  # no buffer provided 

     set buffer $buffer_calc 
} 
puts "Buffer: set:$buffer - calc: $buffer_calc" 

 
$ns queue-limit $n1 $n2 [expr $buffer *1] 

 
$ns duplex-link-op $n1 $n2 queuePos 0.5 

 
 

#### BOTTLENECK LINK ERRORS 
# Add bottleneck link errors  
set lossy_link 0 
if {$lrate > 0} { set lossy_link 1 } 
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if { $lossy_link == 1} { 

  set loss_module [new ErrorModel] 
  $loss_module unit pkt 
  $loss_module set rate_ $lrate 
  $loss_module ranvar [new RandomVariable/Uniform] 
  $loss_module drop-target [new Agent/Null] 
 
  $ns lossmodel $loss_module $n1 $n2 
  puts ">>>ErrorModel: lossy_link: $lossy_link - rate: $lrate" 

} 
 

#### TCP AGENT     
set TCP [new Agent/TCP/$proto] 
puts "Proto used: $proto" 
$TCP set fid_ 1 
$TCP set tau_ 1.0 
$TCP set filter_type_ 3 
$TCP set window_ 100 
$TCP set maxcwnd_ 2000 
$TCP set packetSize_ $psize 
$ns attach-agent $n0 $TCP 

 
set sink [new Agent/TCPSink/DelAck] 
$ns attach-agent $n3 $sink 

 
$ns connect $TCP $sink 

 
set ftp [new Application/FTP] 
$ftp attach-agent $TCP 

 
### Record proc 
proc record {} { 

     global ns TCP sink record_f proto 
     set now [$ns now] 
     
     set time 0.15 
     
     set cwin     [$TCP set cwnd_] 
     set ssthresh [$TCP set ssthresh_] 
 
     if { ($proto == "Westwood") || ($proto == "WestwoodNR")} { 
      set bwe  [$TCP set current_bwe_] 
     } else { 
      set bwe  0 
     } 
   
     puts $record_f "$now [expr $cwin*1] $ssthresh $bwe" 
     
     $ns at [expr $now+$time] "record "    

} 
 

$ns at 0.0 "record" 
$ns at 0.0 "$ftp start" 

 
$ns at 40.0 "finish" 

 
$ns run 
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B.4 Script of Network topology 1:               
test-1-simple-HOLYWOOD-150s.tcl 

# Script modified by Eng. Oscar  Nunez Mori  (PERU) 
# this test  is base in TCP-Westwood script  test1-simple.tcl (B.3) 
# 
# 
### Default Values 
 
set proto "HolyWood" 
set buffer 0 
set psize 1400 
 
set lrate 0.0 
 
### Read command line arguments 
if {$argc > 1} { 
    set proto  [lindex $argv 0]  
    set buffer [lindex $argv 1] 
    set lrate  [lindex $argv 2]  
} else { 
    puts "usage: ns test-1-simple.tcl <protocol> <buffer> <error rate>" 
    puts " " 
    puts "<protocol> is Reno, Newreno, Westwood, HolyWood etc." 
    puts "<buffer> is the buffer size, use 0 for automatic pipe size setting" 
    puts "<erro rate> is the link error rate (0.001 = 0.1%). Use 0 for no errors" 
    
    exit 1 
} 
 
set ns [new Simulator] 
 
set tr_f        [open test-1-simple-150s-Err-$lrate-holywood.tr w] 
set record_f    [open test-1-simple-150s-Err-0-holywood.data w] 
 
$ns trace-all $tr_f 
 
### Finish proc 
proc finish {} { 
    global ns tr_f record_f  ;# nam_f 
     $ns flush-trace 
     close $tr_f 
     close $record_f 
   
       
     exec awk { { print $1, $2 } } test-1-simple-150s-Err-0-holywood.data > test-1-
simple-150s-Err-0-holywood.cwnd 
     exec awk { { print $1, $3 } } test-1-simple-150s-Err-0-holywood.data > test-1-
simple-150s-Err-0-holywood.sst 
     exec awk { { print $1, $4 } } test-1-simple-150s-Err-0-holywood.data > test-1-
simple-150s-Err-0-holywood.bwe 
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     exec xgraph  test-1-simple-150s-Err-0-holywood.cwnd -m -x time -y seq_no -
geometry 600x200 & 
     exec xgraph  test-1-simple-150s-Err-0-holywood.sst  -m -x time -y seq_no -geometry 
600x200 & 
     exec xgraph  test-1-simple-150s-Err-0-holywood.bwe  -m -x time -y bit/s    -
geometry 600x200 & 
     exit 0 
} 
 
# Network topology 1: 
#                                   
#                                   
#   100Mbit/s, 1ms      5Mbit/s, 35 ms      100Mbit/s, 1ms 
#  n0 ----------- ---- n1 ------------------- n2 ----------------- n3 TCP-Sink 
# TCP Source         30 buffer      
#                                  
#                                   
# backlogged FTP sources with 1400 bytes packet size 
 
set n0 [$ns node] 
set n1 [$ns node] 
set n2 [$ns node] 
set n3 [$ns node] 
 
#   object      from  to  bandwith   delay    queue     
$ns duplex-link $n0  $n1   100Mb      1ms   DropTail 
$ns duplex-link $n2  $n3   100Mb      1ms   DropTail 
$ns duplex-link $n1  $n2       5Mb    35ms   DropTail 
 
#### BOTTLENECK BUFFER 
set rtd 72 
set bneck_bw 5 
# Set the queue size (queue size is in packets, default is 50) 
# We should set the buffer capacity equal to the pipe size: 
# buffer = bneck_bw * round_trip_delay / 8 / bytes_per_packet 
set buffer_calc [expr $bneck_bw*1000000 * $rtd/1000 / 8 / $psize] 
if {$buffer == 0} {  # no buffer provided 
    set buffer $buffer_calc 
} 
puts "Buffer: set:$buffer - calc: $buffer_calc" 
 
$ns queue-limit $n1 $n2 [expr $buffer *1] 
 
$ns duplex-link-op $n1 $n2 queuePos 0.5 
 
 
#### BOTTLENECK LINK ERRORS 
# Add bottleneck link errors  
set lossy_link 0 
if {$lrate > 0} { set lossy_link 1 } 
 
if { $lossy_link == 1} { 
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 set loss_module [new ErrorModel] 
 $loss_module unit pkt 
 $loss_module set rate_ $lrate 
 $loss_module ranvar [new RandomVariable/Uniform] 
 $loss_module drop-target [new Agent/Null] 
 
 $ns lossmodel $loss_module $n1 $n2 
 puts ">>>ErrorModel: lossy_link: $lossy_link - rate: $lrate" 
} 
 
#### TCP AGENT     
set TCP [new Agent/TCP/$proto] 
puts "Proto used: $proto" 
$TCP set fid_ 1 
$TCP set tau_ 1.0 
$TCP set filter_type_ 3 
$TCP set window_ 100 
$TCP set maxcwnd_ 2000 
$TCP set packetSize_ $psize 
$ns attach-agent $n0 $TCP 
 
set sink [new Agent/TCPSink/DelAck] 
$ns attach-agent $n3 $sink 
 
$ns connect $TCP $sink 
 
set ftp [new Application/FTP] 
$ftp attach-agent $TCP 
 
### Record proc 
proc record {} { 
    global ns TCP sink record_f proto 
    set now [$ns now] 
     
    set time 0.15 
     
    set cwin     [$TCP set cwnd_] 
    set ssthresh [$TCP set ssthresh_] 
 
    if { ($proto == "Westwood") || ($proto == "WestwoodNR")} { 
     set bwe  [$TCP set current_bwe_] 
    } else { 
     set bwe  0 
    }   
 
    puts $record_f "$now [expr $cwin*1] $ssthresh $bwe" 
     
    $ns at [expr $now+$time] "record "    
} 
$ns at 0.0 "record" 
$ns at 0.0 "$ftp start" 
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$ns at 150.0 "finish" 
 
$ns run 
 

B.5  script of  network topology 2:          
test-1-simple-10-flows-150s-Err-0.001-Fairness-x.tcl 

# Fairness test 
# TCP Holy Wood together with increasing number of TCP Reno flows  
#                  _ 
#   Oscar Nunez Mori (PERU) 
#   2005. All Right Reserved. 
# 
#  [1]  modified from test-1-simple.tcl of 
#       TCP-Westwood. CS Department. UCLA. USA.  See (B.3) 
# 
 
### Default Values 
 
set stop 150.0 ;# seconds 
set flows 10   ;# only for label the trace .tr 
 
set proto Reno 
set buffer 0 
set psize 1400 
set lrate 0.0 
 
### Read command line arguments 
if {$argc > 1} { 
    set proto  [lindex $argv 0] 
    set buffer [lindex $argv 1] 
    set lrate  [lindex $argv 2]  
} else { 
 
    puts "usage: ns test-1-simple.tcl <buffer> <error rate>" 
    puts " " 
    puts "<proto> is the protocol. ie Reno Westwood, HolyWood, etc." 
    puts "<buffer> is the buffer size, use 0 for automatic pipe size setting" 
    puts "<erro rate> is the link error rate (0.001 = 0.1%). Use 0 for no errors" 
    
    exit 1 
} 
 
set ns [new Simulator] 
 
# $ns color 1 Blue 
# $ns color 2 Red 
# $ns color 3 yellow 
# $ns color 4 Brown 
# $ns color 5 Black 
# $ns color 6 Green 
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# $ns color 7 Purple 
# $ns color 8 Grey 
# $ns color 9  
# $ns color 10  
set tr_f        [open test-1-simple-$flows-flows-$proto-$lrate-150s-Friendliness.tr w] 
# set nam_f     [open test-1-simple-$flows-flows-$proto-$lrate-150s-Friendliness.nam 
w] 
 
$ns trace-all $tr_f 
# $ns namtrace-all $nam_f 
 
### Finish proc 
proc finish {} { 
    global ns tr_f ;# nam_f 
     $ns flush-trace 
     close $tr_f 
   #  close $nam_f 
     
     exit 0 
} 
 
# 
# 
# Network topology 2: 
# 
# 
# 
#   
#      (TCP1)                                                                    (TCP-sink1)                                          
#       n101                                                                              n201 
# n102  \                                                                                /  n202  
#          \  \ 15Mbit/s,1ms                                                     /  / 
#            \  \  ...                                                                    /  /    
#              \  \                                                                      /  /          
#    .   ..      \  \                                                                   /  / ...    
#    ...          \   | 100Mbit/s     5Mbit/s         100Mbit/s    | /  ...    
#                   \ |     1ms            35ms                 1ms        |/    
#    ...            n0 ------- n1 ----------------- n2 ------------- n3    ... 
#    ...            /                                                                    \   ... 
#                  /                                                                      \    
#       n110  /                                                                        \ n210 
#    
# backlogged FTP sources with 1400 bytes packet size 
 
set n0 [$ns node] ;# trace node 0 
set n1 [$ns node] ;# trace node 1 
set n2 [$ns node] ;# trace node 2  
set n3 [$ns node] ;# trace node 3 
 
set n101 [$ns node]  ;# trace node 4   TCP Reno #1, SOURCE 
set n102 [$ns node]  ;# trace node 5   TCP Reno #2 
set n103 [$ns node]  ;# trace node 6   TCP Reno #3 
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set n104 [$ns node]  ;# trace node 7   TCP Reno #4 
set n105 [$ns node]  ;# trace node 8   TCP Reno #5 
set n106 [$ns node]  ;# trace node 9   TCP Reno #6 
set n107 [$ns node]  ;# trace node 10  TCP Reno #7 
set n108 [$ns node]  ;# trace node 11  TCP Reno #8 
set n109 [$ns node]  ;# trace node 12  TCP Reno #9 
set n110 [$ns node]  ;# trace node 13  TCP Reno #10 
 
set n201 [$ns node]  ;# trace node 14  TCP Reno #1, SINK 
set n202 [$ns node]  ;# trace node 15  TCP Reno #2 
set n203 [$ns node]  ;# trace node 16  TCP Reno #3 
set n204 [$ns node]  ;# trace node 17  TCP Reno #4 
set n205 [$ns node]  ;# trace node 18  TCP Reno #5 
set n206 [$ns node]  ;# trace node 19  TCP Reno #6 
set n207 [$ns node]  ;# trace node 20  TCP Reno #7 
set n208 [$ns node]  ;# trace node 21  TCP Reno #8 
set n209 [$ns node]  ;# trace node 22  TCP Reno #9 
set n210 [$ns node]  ;# trace node 23  TCP Reno #10 
 
#   object      from  to  bandwith   delay    queue     
$ns duplex-link $n0  $n1   100Mb     1ms   DropTail 
$ns duplex-link $n2  $n3   100Mb     1ms   DropTail 
$ns duplex-link $n1  $n2      5Mb    35ms   DropTail ;# Bottleneck link 
 
#   object      from  to  bandwith   delay    queue 
$ns duplex-link $n101 $n0   15Mb      1ms   DropTail 
$ns duplex-link $n102 $n0   15Mb      1ms   DropTail 
$ns duplex-link $n103 $n0   15Mb      1ms   DropTail 
$ns duplex-link $n104 $n0   15Mb      1ms   DropTail 
$ns duplex-link $n105 $n0   15Mb      1ms   DropTail 
$ns duplex-link $n106 $n0   15Mb      1ms   DropTail 
$ns duplex-link $n107 $n0   15Mb      1ms   DropTail 
$ns duplex-link $n108 $n0   15Mb      1ms   DropTail 
$ns duplex-link $n109 $n0   15Mb      1ms   DropTail 
$ns duplex-link $n110 $n0   15Mb      1ms   DropTail 
 
#   object      from  to  bandwith   delay    queue 
$ns duplex-link $n3 $n201   15Mb      1ms   DropTail 
$ns duplex-link $n3 $n202   15Mb      1ms   DropTail 
$ns duplex-link $n3 $n203   15Mb      1ms   DropTail 
$ns duplex-link $n3 $n204   15Mb      1ms   DropTail 
$ns duplex-link $n3 $n205   15Mb      1ms   DropTail 
$ns duplex-link $n3 $n206   15Mb      1ms   DropTail 
$ns duplex-link $n3 $n207   15Mb      1ms   DropTail 
$ns duplex-link $n3 $n208   15Mb      1ms   DropTail 
$ns duplex-link $n3 $n209   15Mb      1ms   DropTail 
$ns duplex-link $n3 $n210   15Mb      1ms   DropTail 
 
#### BOTTLENECK BUFFER 
set rtd 72 
set bneck_bw 5 
# Set the queue size (queue size is in packets, default is 50) 
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# We should set the buffer capacity equal to the pipe size: 
# buffer = bneck_bw * round_trip_delay / 8 / bytes_per_packet 
set buffer_calc [expr $bneck_bw*1000000 * $rtd/1000 / 8 / $psize] 
if {$buffer == 0} {  # no buffer provided 
    set buffer $buffer_calc 
} 
puts "Buffer: set:$buffer - calc: $buffer_calc" 
 
$ns queue-limit $n1 $n2 [expr $buffer *1] 
 
$ns duplex-link-op $n1 $n2 queuePos 0.5 
 
#### BOTTLENECK LINK ERRORS 
# Add bottleneck link errors  
set lossy_link 0 
if {$lrate > 0} { set lossy_link 1 } 
 
if { $lossy_link == 1} { 
 set loss_module [new ErrorModel] 
 $loss_module unit pkt 
 $loss_module set rate_ $lrate 
 $loss_module ranvar [new RandomVariable/Uniform] 
 $loss_module drop-target [new Agent/Null] 
 $ns lossmodel $loss_module $n1 $n2 
 puts ">>>ErrorModel: lossy_link: $lossy_link - rate: $lrate" 
} 
 
#### TCP AGENTS     
 
set TCP1 [new Agent/TCP/$proto] 
puts "Proto used: $proto #1" 
$TCP1 set fid_ 1 
$TCP1 set tau_ 1.0 
$TCP1 set filter_type_ 3 
$TCP1 set window_ 100 
$TCP1 set maxcwnd_ 2000 
$TCP1 set packetSize_ $psize 
$ns attach-agent $n101 $TCP1 
set sink1 [new Agent/TCPSink/DelAck] 
$ns attach-agent $n201 $sink1 
$ns connect $TCP1 $sink1 
set ftp1 [new Application/FTP] 
$ftp1 attach-agent $TCP1 
 
set TCP2 [new Agent/TCP/$proto] 
puts "Proto used: $proto #2" 
$TCP2 set fid_ 2 
$TCP2 set tau_ 1.0 
$TCP2 set filter_type_ 3 
$TCP2 set window_ 100 
$TCP2 set maxcwnd_ 2000 
$TCP2 set packetSize_ $psize 
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$ns attach-agent $n102 $TCP2 
set sink2 [new Agent/TCPSink/DelAck] 
$ns attach-agent $n202 $sink2 
$ns connect $TCP2 $sink2 
set ftp2 [new Application/FTP] 
$ftp2 attach-agent $TCP2 
 
set TCP3 [new Agent/TCP/$proto] 
puts "Proto used: $proto #3" 
$TCP3 set fid_ 3 
$TCP3 set tau_ 1.0 
$TCP3 set filter_type_ 3 
$TCP3 set window_ 100 
$TCP3 set maxcwnd_ 2000 
$TCP3 set packetSize_ $psize 
$ns attach-agent $n103 $TCP3 
set sink3 [new Agent/TCPSink/DelAck] 
$ns attach-agent $n203 $sink3 
$ns connect $TCP3 $sink3 
set ftp3 [new Application/FTP] 
$ftp3 attach-agent $TCP3 
 
set TCP4 [new Agent/TCP/$proto] 
puts "Proto used: $proto #4" 
$TCP4 set fid_ 4 
$TCP4 set tau_ 1.0 
$TCP4 set filter_type_ 3 
$TCP4 set window_ 100 
$TCP4 set maxcwnd_ 2000 
$TCP4 set packetSize_ $psize 
$ns attach-agent $n104 $TCP4 
set sink4 [new Agent/TCPSink/DelAck] 
$ns attach-agent $n204 $sink4 
$ns connect $TCP4 $sink4 
set ftp4 [new Application/FTP] 
$ftp4 attach-agent $TCP4 
 
set TCP5 [new Agent/TCP/$proto] 
puts "Proto used: $proto #5" 
$TCP5 set fid_ 5 
$TCP5 set tau_ 1.0 
$TCP5 set filter_type_ 3 
$TCP5 set window_ 100 
$TCP5 set maxcwnd_ 2000 
$TCP5 set packetSize_ $psize 
$ns attach-agent $n105 $TCP5 
set sink5 [new Agent/TCPSink/DelAck] 
$ns attach-agent $n205 $sink5 
$ns connect $TCP5 $sink5 
set ftp5 [new Application/FTP] 
$ftp5 attach-agent $TCP5 
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set TCP6 [new Agent/TCP/$proto] 
puts "Proto used: $proto #6" 
$TCP6 set fid_ 6 
$TCP6 set tau_ 1.0 
$TCP6 set filter_type_ 3 
$TCP6 set window_ 100 
$TCP6 set maxcwnd_ 2000 
$TCP6 set packetSize_ $psize 
$ns attach-agent $n106 $TCP6 
set sink6 [new Agent/TCPSink/DelAck] 
$ns attach-agent $n206 $sink6 
$ns connect $TCP6 $sink6 
set ftp6 [new Application/FTP] 
$ftp6 attach-agent $TCP6 
 
set TCP7 [new Agent/TCP/$proto] 
puts "Proto used: $proto #7" 
$TCP7 set fid_ 7 
$TCP7 set tau_ 1.0 
$TCP7 set filter_type_ 3 
$TCP7 set window_ 100 
$TCP7 set maxcwnd_ 2000 
$TCP7 set packetSize_ $psize 
$ns attach-agent $n107 $TCP7 
set sink7 [new Agent/TCPSink/DelAck] 
$ns attach-agent $n207 $sink7 
$ns connect $TCP7 $sink7 
set ftp7 [new Application/FTP] 
$ftp7 attach-agent $TCP7 
 
set TCP8 [new Agent/TCP/$proto] 
puts "Proto used: $proto #8" 
$TCP8 set fid_ 8 
$TCP8 set tau_ 1.0 
$TCP8 set filter_type_ 3 
$TCP8 set window_ 100 
$TCP8 set maxcwnd_ 2000 
$TCP8 set packetSize_ $psize 
$ns attach-agent $n108 $TCP8 
set sink8 [new Agent/TCPSink/DelAck] 
$ns attach-agent $n208 $sink8 
$ns connect $TCP8 $sink8 
set ftp8 [new Application/FTP] 
$ftp8 attach-agent $TCP8 
 
set TCP9 [new Agent/TCP/$proto] 
puts "Proto used: $proto #9" 
$TCP9 set fid_ 9 
$TCP9 set tau_ 1.0 
$TCP9 set filter_type_ 3 
$TCP9 set window_ 100 
$TCP9 set maxcwnd_ 2000 
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$TCP9 set packetSize_ $psize 
$ns attach-agent $n109 $TCP9 
set sink9 [new Agent/TCPSink/DelAck] 
$ns attach-agent $n209 $sink9 
$ns connect $TCP9 $sink9 
set ftp9 [new Application/FTP] 
$ftp9 attach-agent $TCP9 
 
set TCP10 [new Agent/TCP/$proto] 
puts "Proto used: $proto #10" 
$TCP10 set fid_ 10 
$TCP10 set tau_ 1.0 
$TCP10 set filter_type_ 3 
$TCP10 set window_ 100 
$TCP10 set maxcwnd_ 2000 
$TCP10 set packetSize_ $psize 
$ns attach-agent $n110 $TCP10 
set sink10 [new Agent/TCPSink/DelAck] 
$ns attach-agent $n210 $sink10 
$ns connect $TCP10 $sink10 
set ftp10 [new Application/FTP] 
$ftp10 attach-agent $TCP10 
 
 
$ns at 0.0 "$ftp1 start" 
$ns at 0.0 "$ftp2 start" 
$ns at 0.0 "$ftp3 start" 
$ns at 0.0 "$ftp4 start" 
$ns at 0.0 "$ftp5 start" 
$ns at 0.0 "$ftp6 start" 
$ns at 0.0 "$ftp7 start" 
$ns at 0.0 "$ftp8 start" 
$ns at 0.0 "$ftp9 start" 
$ns at 0.0 "$ftp10 start" 
 
$ns at $stop "finish" 
 
$ns run 

B.6 AWK Script 1, to calculate Average, Standard Deviation, COV 
and Confidence Intervals: avg-s-cov-TESTED-END.awk 
#  Author: Oscar Nunez Mori (Republic of Peru) 
#  Advisor: Dr. Juergen Rochol 
#  UFRGS-RS_BRAZIL 
# 
#  little Statistical Program to calculate Average, Standard Deviation 
# Coefficient of Variation (COV) and Confidence Intervals 
# 
#   
#  Based on (ALTMAN; JIMENEZ, 2003) page 43 
# 
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#  USAGE: 
#  awk -v SDcol=? -v from=? -v to=? -f avg-s-cov-TESTED-END.awk  ? 
#  
BEGIN { 
minColumn = from; # Constants  here 
maxColumn = to; 
} 
{ 
   
column = $SDcol; # Standard Deviation Column Variables here 
 
if(NR >= minColumn && NR <= maxColumn ) {  
               
            matrix[tmp]= $SDcol; 
            tmp++; 
     n++; 
            sumData += $SDcol 
             }  
} 
 
END {  
 if(n-1 ==  1) tStudent = 12.706;           
 if(n-1 ==  2) tStudent =  4.303;        
 if(n-1 ==  3) tStudent =  3.182;      
 if(n-1 ==  4) tStudent =  2.776;  
 if(n-1 ==  5) tStudent =  2.571;       
 if(n-1 ==  6) tStudent =  2.447;      
 if(n-1 ==  7) tStudent =  2.365;       
 if(n-1 ==  8) tStudent =  2.306;       
 if(n-1 ==  9) tStudent =  2.262;  
 if(n-1 == 10) tStudent =  2.228;  
 if(n-1 == 11) tStudent =  2.201;  
 if(n-1 == 12) tStudent =  2.179;  
 if(n-1 == 13) tStudent =  2.160;  
 if(n-1 == 14) tStudent =  2.145;        
 if(n-1 == 15) tStudent =  2.131;       
 if(n-1 == 16) tStudent =  2.120;    
 if(n-1 == 17) tStudent =  2.110;  
 if(n-1 == 18) tStudent =  2.101; 
 if(n-1 == 19) tStudent =  2.093;  
 if(n-1 == 20) tStudent =  2.086;  
 if(n-1 == 21) tStudent =  2.080; 
 if(n-1 == 22) tStudent =  2.074; 
 if(n-1 == 23) tStudent =  2.069;  
 if(n-1 == 24) tStudent =  2.064;  
 if(n-1 == 25) tStudent =  2.060;  
 if(n-1 == 26) tStudent =  2.056;  
 if(n-1 == 27) tStudent =  2.052;  
 if(n-1 == 28) tStudent =  2.048;  
 if(n-1 == 29) tStudent =  2.045;  
 if(n-1 == 30) tStudent =  2.042;  
 if(n-1 >  30) tStudent =  1.960;  # for n>30 
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avg    =  sumData/n; 
 
tmp=0; # clean up tmp 
for(tmp in matrix) { 
 diff  = matrix[tmp] - avg; 
 var  += diff * diff; 
 } 
 
stdDev = sqrt(var/(n-1)); 
cov    = (stdDev/avg)*100; # COV PERCENT 
 
Confidence_const = tStudent * (stdDev / sqrt(n)); 
  C1 = avg - Confidence_const; 
  C2 = avg + Confidence_const; 
 
printf("\nSTATISTICS\n\n "); 
printf("   Number of Samples: n =  %d\n ", n); 
printf("   t Student's Distribution Value: n=%d  --->  %f\n\n ",n-1,tStudent); 
printf("   Average =  %f\n ", avg);  
printf("   Standard Deviation_(n-1)  =  %f\n ", stdDev); 
printf("   Coefficient of Variation  =  %f\%%\n ", cov); 
printf("   95\%% Confidence Interval: C1  =  %f\n ", C1); 
printf("   95\%% Confidence Interval: C2  =  %f\n ", C2); 
printf("   Average (+/-)Confidence Constant = %f (+/-)%f\n\n ",avg,Confidence_const); 
    
 } # the End 
 
# Usage 
# awk -v SDcol=? -v from=? -v to=? -f avg-s-cov-TESTED-END.awk  ? 
#  
#  > awk -v SDcol=2 -v from=3 -v to=4 -f avg-s-cov.awk test4.dat 
#  > awk -v SDcol=1 -v from=1 -v to=NR -f avg.awk xxxxx.dat 
#  
# Note the first line we mean from=? In the file could be 0 or 1, AWK,  according to  
# our observation consider the first position as 1; 

B.7  AWK Script 2,  To calculate COV and Confidence Intervals with 
known Average and standard deviation  
#  Awk program to Calculate Coeficient of Variance (COV) and Confidence Intervals 
# 
# awk -v TCP=? -v factor=? -v from=? -v to=NR -v avgC=? -v sdC=? -f cov-conf-
intervals-TESTED-Table.awk  ? 
#  
# awk -v TCP=HOLYWOOD -v factor=ErrorRate -v from=9 -v to=NR -v avgC=2 -v 
sdC=5 -f cov-conf-intervals-TESTED-Table.awk  xxxxx.dat 
 
#--------------------------------------------------------- 
BEGIN { 
# Initializing Constants 
TCPName = TCP; 
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factorName= factor; 
minColumn= from; 
maxColumn= to 
} # Finished BEGIN 
#---------------------------------------------------------- 
#---------------------------------------------------------- 
{ # Starts Search Pattern 1 
 
n=150; # 150s simulation time each line 
tStudent=1.960 # See Table below n --> infinity 
 
if(NR>=from && NR <= to) { 
 
firstCol  = $1 
avgCol    = $avgC; 
sdCol     = $sdC; 
 
confConst = tStudent * ( sdCol / sqrt(n) ); 
COV       =  (sdCol /  avgCol)*100; # COV PERCENT 
 
printf("%.4f     \t%.2f \t%.2f \t%.2f \t%.2f \t%.2f \n",firstCol ,avgCol 
,sdCol,COV,avgCol - confConst, avgCol + confConst ); 
 
          }#Finished if        
 
} # Finished Search Pattern 1 
#---------------------------------------------------------- 
#---------------------------------------------------------- 
END { 
printf("#"); 
printf("\n#%s[\%%]\tAverage  \tStand.Dev. \tCOV[\%%] \tC1 \t\tC2",factorName); 
printf("\n#"); 
printf("________________________________________________________________
_______________________________________________"); 
printf("\n# TCP %s;  Factor: %s;  C1 < C2;  n=150;  t Student's distribuions used: n > 
30 --> t = 1.960",TCPName, factorName); 
printf("\n#                 _"); 
printf("\n# Author: Oscar Nunez Mori (Republic of Peru)\n"); 
printf("# Advisor: Dr. Juergen Rochol\n") 
printf("# UFRGS-RS- Brazil\n#\n") 
}# Finished END section 

B.8 AWK Script 3, to calculate the lost packet Percent: lost-packet-
stat-6O_PERCENT_TESTED_END.awk 
#   Little Statistic Program  in AWK  
#   Author: Oscar Nunez Mori (PERU) 
#   Advisor: Dr. Juerge Rochol 
#   UFRGS-RS Brazil 
# 
#  Usage: 
# 



 

 

170

#  awk -f lost-packet-stat-TESTED.awk xxx.dat 
# 
#  xxx.dat = info-simulation-Err-x-150s-HolyWood-PERCENT.dat 
 
BEGIN {   
# Initializations       
      } 
 
#================SEARCH PATTERN 1==================#  
{   
 
sentPackets     = $3; 
lostPackets     = $6; 
 minColumnOfFile = 5; 
 MaxColumnOfFile = 20; 
 
 if(NR  >= minColumnOfFile &&  NR <= MaxColumnOfFile) {  
 
   n++;  # Total number of elements  
 
   matrixSentPkts[n] = sentPackets;  
          sentPacketsForAllErrorRates += sentPackets; 
    
   matrixLostPkts[n] = lostPackets;   
    lostPacketsForAllErrorRates += lostPackets;  
        } 
} 
 
#================SEARCH PATTERN 2=================# 
{ 
# Empty 
} 
#================SEARCH PATTERN 3===============# 
{ 
# Empty 
} 
 
 
#=================FINAL ACTIONS=================# 
 END {    
#{ 
 if(n-1 ==  1) tStudent = 12.706;           
 if(n-1 ==  2) tStudent =  4.303;        
 if(n-1 ==  3) tStudent =  3.182;      
 if(n-1 ==  4) tStudent =  2.776;  
 if(n-1 ==  5) tStudent =  2.571;       
 if(n-1 ==  6) tStudent =  2.447;      
 if(n-1 ==  7) tStudent =  2.365;       
 if(n-1 ==  8) tStudent =  2.306;       
 if(n-1 ==  9) tStudent =  2.262;  
 if(n-1 == 10) tStudent =  2.228;  
 if(n-1 == 11) tStudent =  2.201;  
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 if(n-1 == 12) tStudent =  2.179;  
 if(n-1 == 13) tStudent =  2.160;  
 if(n-1 == 14) tStudent =  2.145;        
 if(n-1 == 15) tStudent =  2.131;       
 if(n-1 == 16) tStudent =  2.120;    
 if(n-1 == 17) tStudent =  2.110;  
 if(n-1 == 18) tStudent =  2.101; 
 if(n-1 == 19) tStudent =  2.093;  
 if(n-1 == 20) tStudent =  2.086;  
 if(n-1 == 21) tStudent =  2.080; 
 if(n-1 == 22) tStudent =  2.074; 
 if(n-1 == 23) tStudent =  2.069;  
 if(n-1 == 24) tStudent =  2.064;  
 if(n-1 == 25) tStudent =  2.060;  
 if(n-1 == 26) tStudent =  2.056;  
 if(n-1 == 27) tStudent =  2.052;  
 if(n-1 == 28) tStudent =  2.048;  
 if(n-1 == 29) tStudent =  2.045;  
 if(n-1 == 30) tStudent =  2.042;  
 if(n-1 >  30) tStudent =  1.960;  # for n>30 
#} 
# END { 
 
#+++++ Average or Arithmetic Mean of SENT Packets for error rate  
#                    from 0% to  60%  ++++++++++++++++++++++++++++++ 
 
averageSentPacketsForAllErrorRates = sentPacketsForAllErrorRates / n; 
 
 
#--------- Standard Deviation of SENT Packets--------------------- 
 
for(i  in  matrixSentPkts) { 
 
   differenceSent    =  matrixSentPkts[i] - averageSentPacketsForAllErrorRates; 
   varianceSent     +=  differenceSent * differenceSent ; 
     } 
 
   standardDeviationSent = sqrt(varianceSent/(n-1));  
 
 
 
#--------- Coefficient of Variation of SENT Packets  COV -------- 
 
COV_SentPackets =   standardDeviationSent / averageSentPacketsForAllErrorRates;  
 
#---- Confidence intervals for SENT Packets  C1 < C2 u with 95% ----- 
 
 Confidence_Constant_Sent =  tStudent * ( standardDeviationSent / sqrt(n) ); 
 
 C1_SentPkts = averageSentPacketsForAllErrorRates + Confidence_Constant_Sent;  
 
 C2_SentPkts = averageSentPacketsForAllErrorRates - Confidence_Constant_Sent; 



 

 

172

 
 
#++++++++++ Average or Arithmetic Mean of LOST Packets for error rate  
#                         from 0% to 60% +++++++++++++++++++# 
 
 averageLostPacketsForAllErrorRates = lostPacketsForAllErrorRates / n; 
 
 
 
#--------- Standard Deviation of LOST Packets---------------------- 
 
for(i  in  matrixLostPkts) { 
          
   differenceLost    =  matrixLostPkts[i] -  averageLostPacketsForAllErrorRates; 
   varianceLost     +=  differenceLost * differenceLost; 
                          }  
  
   standardDeviationLost = sqrt(varianceLost / (n-1)); 
 
#--------- Coefficient of Variation of LOST Packets  COV ---------- 
  
 COV_LostPackets =   standardDeviationLost / averageLostPacketsForAllErrorRates;   
 
#----- Confidence intervals for LOST Packets  C1 < C2 u with 95%----- 
  
Confidence_Constant_Lost =  tStudent * ( standardDeviationLost / sqrt(n) ); 
 
C1_LostPkts = averageLostPacketsForAllErrorRates + Confidence_Constant_Lost; 
 
C2_LostPkts = averageLostPacketsForAllErrorRates - Confidence_Constant_Lost; 
 
 
 
 
#++++++++++ Percent Ratio of  Send Packets to  Lost Packets +++++++++ 
 
percentageLostPacketsToSentPackets = ( averageLostPacketsForAllErrorRates / 
averageSentPacketsForAllErrorRates ) * 100; 
 
 
printf("\n"); 
printf("       STATISTICS\n"); 
 
printf("     Number of Samples:  %f\n", n );  
printf("     t Student's distribution value used for Confidence Intervals:  n = %d ---> 
%.3f\n", n-1, tStudent ); 
 
printf("SENT Packet Statistics \n"); 
 
printf("     Average(or Mean) of Total Sent Packets:  %f\n",                                    
averageSentPacketsForAllErrorRates );   
printf("     Standard Deviation  of Total Sent Packets:  %f\n",                                 
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standardDeviationSent              ); 
printf("     Coefficient of variation of Total Sent Packets:   COV =  %f\n",                    
COV_SentPackets                    ); 
printf("     Minimum Bound Value of Total Average Sent Packets with 95\%% 
confidence interval: C1 =  %f\n",   C1_SentPkts          );   
printf("     Maximum Bound Value of Total Average Sent Packets with 95\%% 
confidence interval: C2 =  %f\n",   C2_SentPkts          ); 
printf("     Average (+/-)Confidence Constant :  %f (+/-)%f\n",    
averageSentPacketsForAllErrorRates, Confidence_Constant_Sent   ); 
printf("\n"); 
printf("LOST Packet Statistics \n"); 
printf("     Average(mean) of Total Lost Packets:  %f\n",                                       
averageLostPacketsForAllErrorRates ); 
printf("     Standard Deviation  of Total Lost Packets:  %f\n",                                 
standardDeviationLost              );     
printf("     Coefficient of variation of Total Lost Packets:   COV =  %f\n",                    
COV_LostPackets                    ); 
printf("     Minimum Bound Value of Total Average Lost Packets with 95\%% 
confidence interval: C1 =  %f\n",   C1_LostPkts          ); 
printf("     Maximum Bound Value of Total Average Lost Packets with 95\%% 
confidence interval: C2 =  %f\n",   C2_LostPkts          ); 
printf("     Average (+/-)Confidence Constant :  %f (+/-)%f\n",    
averageLostPacketsForAllErrorRates, Confidence_Constant_Lost   ); 
printf("\n"); 
printf("TOTAL Ratio of AverageLostPackets to AverageSentPackets:  %f\%%\n",                       
percentageLostPacketsToSentPackets);  
printf("\n"); 
} 

B.9 AWK script 4, to calculate the Average of an interval 
# little statistical program to Calculate the Average or Arithmetic mean 
# by intervals 
#  
# FORMAT 
#   
# awk -v col=? -v min=? -v max=? -f  avg-TESTED-OK.awk  ? 
# 
# 
BEGIN { 
minColumnValue = min;  # initial column Value  
maxColumnValue = max;  # final  Column Value 
printf("\n\n------ Average of an Interval ------\n\n  "); 
} 
{ 
column = $col; # Variables here 
if(NR >= minColumnValue && NR <=maxColumnValue) {  
            count++;   
            avg += column; 
printf("Values %d = %f\n  ",count,column); 
             }  
} 
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END {  
printf("------------------------------\n  ");  
printf(" Addition =  %f\n  ", avg); 
printf(" Average  =  %f\n  ", avg/count);  
printf("       n  =  %d\n  ", count); 
 
    } 
# Usage 
# awk -v col=1 -v min=6 -v max=15 -f avg.awk xxxxx.dat 
# awk -v col=1 -v min=1 -v max=NR -f avg.awk xxxxx.dat ; 
# without intervals 

B.10 Gnuplot script 1: for one Figure  
#!/bin/sh 
gnuplot << EOF 
 
# Gnuplot script file for plotting data from a file 
# made by Oscar Nunez Mori (PERU) 
# Reference: The Original idea is from KAWANO (KAWANO, 2004) 
# 
set title "THROUGHPUT GAIN" font "Times-Roman,25" 
set xlabel "(a)                                      Error Rate = 0.1%                            Time(s)" font 
"Times-Roman,20" 
set ylabel "Throughput (bit/s)" font "Times-Roman,20" 
set xrange [0:150] 
set format y " %.1s%c" 
set xtics 10 
 
plot "../../../$1/FILENAME1.trg" \ 
          u 1:2 t 'TCP-vegas' w linespoints 3, \ 
     "../../../$1/FILENAME2.trg" \ 
          u 1:2 t 'TCP-westwood' w linespoints 2, \ 
     "../../../$1/FILENAME3.trg" \ 
          u 1:2 t 'TCP-holywood' w linespoints 1 
# Outputing to a Postscript File 
 
 set term epslatex color solid 
 set output "Throughput-Gain--$1-END.tex" 
replot 
 set term postscript enhanced  
 set output "Throughput-Gain--$1-END.ps" 
replot 
 set term gif 
 set output "Throughput-Gain--$1-END.gif 
replot 
 set term png medium 
 set output "Throughput-Gain--$1-END.png" 
replot 
 set term post eps enhanced color solid  
 set output "Throughput-Gain-TIL_1-CN_3--$1-END.eps" 
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replot 
 
EOF 
 
# usage:  
# > ./PROGRAM1.gpt 0.001 

B.11 Gnuplot script 2: for four figures 
 #!/bin/sh 
gnuplot << EOF 
 
# Gnuplot script file for plotting data from a file 
# made by Oscar Nunez Mori (PERU) 
# Reference: The Original Idea is from Kawano (KAWANO, 2004) 
# Outputting to a Postscript File 
# Note: put out the commentaries one by one but not more than one 
 
 set term gif 
 set output "Throughput-Gain--four-Figures-END.gif" 
 
# set term postscript enhanced  
# set output "Throughput-Gain--four-Figures-END.ps" 
# set term post eps enhanced color solid  
# set output "Throughput-Gain—four-Figures-END.eps" 
# set term latex 
# set output "Throughput-Gain--four-Figures-END.tex" 
 
set title "THROUGHPUT GAIN" font "Times-Roman,16" 
#set xlabel "Time[s] \n a" font "Times-Roman,15" 
set ylabel "Throughput [bit/s]" font "Times-Roman,15" 
set xrange [0:150] 
set format y " %.1s%c" 
set xtics 20 
set samples 1000 
 set lmargin 8 
 set rmargin 8 
set multiplot 
 
#------------ Figure 1 ---------------# 
set origin 0.05, 0.50 
set size   0.5, 0.5 
# set label 1 "Error=0.0%" at 1,100 
 
set xlabel "(a)         Error=0.00%         Time[s]" font "Times-Roman,15" 
set ylabel "Throughput [bit/s]" font "Times-Roman,15" 
set nokey 
 
plot "../../../$1/FILENAME-$1-1.trg"\ 
          u 1:2 t 'TCP-vegas' w linespoints 3,\ 
     "../../../$1/FILENAME-$1-2.trg"\ 
          u 1:2 t 'TCP-westwood' w linespoints 2,\ 
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     "../../../$1/FILENAME-$1-3.trg" \ 
          u 1:2 t 'TCP-holywood' w linespoints 1 
 
#------------- Figure 2 -------------# 
set origin 0.5, 0.50 
set size  0.5, 0.5 
 
set xlabel "(b)         Error=0.01%         Time[s]" font "Times-Roman,15" 
set ylabel ""  
set nokey 
 
plot "../../../$2/FILENAME-$2-1.trg"\ 
          u 1:2 t 'TCP-vegas' w linespoints 3,\ 
     "../../../$2/FILENAME-$2-2.trg"\ 
          u 1:2 t 'TCP-westwood' w linespoints 2,\ 
     "../../../$2/FILENAME-$2-3.trg"\ 
          u 1:2 t 'TCP-holywood' w linespoints 1 
 
#------------- Figure 3 ------------# 
 
set origin 0.05, 0.00 
set size   0.5, 0.5 
 
# set title "" 
set xlabel "(c)         Error=1.00%         Time[s]" font "Times-Roman,15" 
set ylabel "Throughput [bit/s]" font "Times-Roman,15" 
set key right top 
 
plot "../../../$3/FILENAME-$3-1.trg"\ 
          u 1:2 t 'TCP-vegas' w linespoints 3,\ 
     "../../../$3/FILENAME-$3-2.trg"\ 
          u 1:2 t 'TCP-westwood' w linespoints 2,\ 
     "../../../$3/FILENAME-$3-3.trg"\ 
          u 1:2 t 'TCP-holywood' w linespoints 1 
#------------ Figure 4 -------------# 
set origin 0.5, 0.00 
set size  0.5, 0.5 
# set title "" 
set xlabel "(d)         Error=10.0%         Time[s]" font "Times-Roman,15" 
set ylabel "" 
set key right top 
 
plot "../../../$4/FILENAME1-$4.trg"\ 
          u 1:2 t 'TCP-vegas' w linespoints 3,\ 
     "../../../$4/FILENAME2-$4.trg"\ 
          u 1:2 t 'TCP-westwood' w linespoints 2, \ 
     "../../../$4/FILENAME3-$4.trg"\ 
          u 1:2 t 'TCP-holywood' w linespoints 1 
# ----------- END ------------------# 
set nomultiplot 
 pause -1 
EOF 
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# usage:  
#                 $1   $2    $3  $4  
# > ./PROGRAM.gpt   0   0.0001    0.01   0.1 
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APPENDIX C   COMPLETE SET OF RESULTS FIGURES  

C.1 TCP HolyWood versus TCP Reno (Standard) 
 
 We used the topology 1 in all the tests. 
 
C.1.1 Impact of Error Rate on Throughput 
 

Figure C.1.1.1:  Impact of Error Rate on Throughput (1 of 3) 
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    Figure C.1.1.2: Impact of Error Rate on Throughput (2 of 3) 
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  Figure C.1.1.3:  Impact of Error Rate on Throughput (3 of 3) 
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C.1.2 Impact of Propagation Time Throughput 

  Figure C.1.2.1:  Impact of Propagation Time Throughput (1 of 2) 
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Figure C.1.2.2:  Impact of Propagation Time Throughput (2 of 2)   
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C.1.3 Impact of Bottleneck Bandwidth on Throughput 
 

 
Figure C.1.3.1: Impact of Bottleneck Bandwidth on Throughput (1 of 2) 
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Figure C.1.3.2: Impact of Bottleneck Bandwidth on Throughput (2 of 2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

185

C.1.4 Impact of Error rate on  Jitter 

 
Figure C.1.4.1:  Impact of Error Rate on Jitter (1 of 3) 
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Figure C.1.4.2:  Impact of Error Rate on Jitter (2 of 3) 



 

 

187

 
 

 
Figure C.1.4.3:  Impact of Error Rate on Jitter (3 of 3) 
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C.1.5 Impact of Propagation Time on jitter 

 
Figure C.1.5.1:  Impact of Propagation Time on Jitter (1 of 2)  
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Figure C.1.5.2:  Impact of Propagation Time on Jitter (2 of 2)  
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C.1.6 Impact of Bottleneck Bandwidth on Jitter 
 

 

Figure C.1.6.1: Impact of Bottleneck Bandwidth on Jitter (1 of 2) 
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Figure C.1.6.2: Impact of Bottleneck Bandwidth on Jitter (2 of 2) 
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C.2 TCP HolyWood versus Other Protocols 

C.2.1 Impact of Error Rate on throughput of TCP HolyWood, TCP Westwood and 
TCP Vegas 

Figure C.2.1.1: Impact of Error Rate on throughput of TCPs (1 of 3) 
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 Figure C.2.1.2: Impact of Error Rate on throughput of TCPs (2 of 3) 
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Figure C.2.1.3: Impact of Error Rate on throughput of TCPs (3 of 3) 
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C.2.2 Impact of Propagation time on throughput of TCP HolyWood,  
         TCP Westwood and TCP Vegas 

Figure C.2.2.1: Impact of Propagation time on throughput of TCPs (1 of 2) 
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Figure C.2.2.2: Impact of Propagation time on throughput of TCPs (2 of 2) 
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C.2.3 Impact of Bottleneck Bandwidth on throughput of TCP HolyWood, TCP 
Westwood and TCP Vegas 

 
Figure C.2.3.1: Impact of Bottleneck Bandwidth on throughput of TCPs (1 of 2) 
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Figure C.2.3.2: Impact of Bottleneck Bandwidth on Throughput of TCPs (2 of 2) 
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C.2.4 Impact of Eror Rae on Jitter of TCP HolyWood, Westwood  and Vegas           

                                                     
Figure C.2.4.1:  Impact of Error rate on Jitter of TCPs (1 of 3) 
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Figure C.2.4.2:  Impact of Error rate on Jitter of TCPs (2 of 3) 
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Figure C.2.4.3:  Impact of Error rate on Jitter of TCPs (3 of 3) 
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C.2.5 Impact of Prop. Time on Jitter of TCP HolyWood, Westwood and Vegas 

Figure C.2.5.1: Impact of Propagation Time on Jitter of TCPs (1 of 2) 
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Figure C.2.5.2: Impact of Propagation Time on Jitter of TCPs (2 of 2) 
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C.2.6 Impact of Bottleneck Bandwidth on Jitter of TCP HolyWood, TCP 
Westwood and TCP Vegas 

 
Figure C.2.6.1: Impact of Bottleneck Bandwidth on Jitter of TCPs (1 of 2) 
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Figure C.2.6.2: Impact of Bottleneck Bandwidth on Jitter of TCPs (2 of 2) 
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APPENDIX D   SOFTWARE INSTALLATIONS 

D.1 Installation of NS-2.1b8a with TCP HolyWood in FreeBSD 4.10 

We install the Network Simulator ns-2 in the FreeBSD 4.10 Operative System as 
follows:  
 

1. Download the file "ns-allinone-2.1b8a.tar.gz" from the   
Source, section Getting Older Versions of NS in:  
< http://www.isi.edu/nsnam/dist/>  

             [  ns-allinone-2.1b8a.ta+ 26-Jun-01 09:33    49M ] 
             and with root attribute do the follow:  

> cd /usr/local    
> tar xvzf ns-allinone-2.1b8a.tar.gz  (ns-allinone-2.1b8a directory  

will be  created)      
2. /usr/local/ns-allinone-2.1b8a/tcl8.3.2/generic 

> touch tclStuInit.c 
3. In /usr/localns-allinone-2.1b8a/ 

> ./ install 
4. Add in .cshrc file of your personal account, the default values that are shown 

after  install ns-2. 
5. In /usr/local/ns-allinone-2.1b8a/ns-2.1b8a 

> make clean 
> ./conFigure - -enable-debug 
> (it creates a new make file) 

6. Modify here “Makefile” already created adding 
7. OBJ_CC =    .... 

1. .... 
2. TCP-holywood.o \ 
3. TCP-westwood.o \ (optional) 
4. .... 
5. .... 

8. Copy TCP-holywood.{cc,h} and TCPwestwood.{cc,h} (optional) 
 

> in /usr/local/ns-allinone-2.1b8a/ns-2.1b8a/ 
9. Modify ns-default.tcl in /usr/local/ns-allinone-2.1b8a/ns-2.1b8a/tcl/lib as a 

requeriment of TCP westwood (Optional) 
 

10.    Using an editor as pico, vi, or emacs 
> In the configuration file ''.cshrc'' of the User, for example Oscar  
or /usr/local directory or any other name, (because  we  are using  
TCSH shell) add the following 3 lines: 

 set path =( ...  /usr/local/ns-allinone-2.1b8a/bin /usr/local/ns-allinone-2.1b8a/tcl8.3.2/unix  …      
/usr/local/ns-allinone-2.1b8a/tk8.3.2/unix ...) 
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setenv  LD_LIBRARY_PATH /usr/local/ns-allinone-2.1b8a/otcl-1.0a7:/usr/local/ns-allinone-
2.1b8a/lib 

setenv TCL_LIBRARY /usr/local/ns-allinone-2.1b8a/tcl8.3.2/library     
After that save it, it is advisable to make a backup copy of ''.cshrc''   

11.   After that do: 
> source .cshrc 

      > env   (to see your changes) 
12.   In /usr/local/ns-allinone-2.1b8a/ns-21b8a/ do: 

> make  
>./ validate  

D.2 Installation of Trace Graph 2.02  

We installed the Trace graph tool in the operative system FreeBSD 4.10  and then  
do the following steps: 
 

1.  First we downloaded two files from  
 

 http://www.geocities.com/tracegraph/ 
  In order to do that, we have to fill in a form before downloading Trace graph. 
 The files are: 
 -  Trace graph 2.02 Linux version 966 894 bytes   
     (tracegraph202linux.tar.gz)  
 -   and the Matlab 6.1 Run Time Libraries 8 247 599 bytes 
      (mglinstaller.gz) 

 
      If there are problems with permissions as a Root user do: 

             >  chmod 771  tracegraph202linux.tar.gz  
 >  chmod 771  mglinstaller.gz 

 
2.   Now as a simple user decompress the first file with tar command as follows: 

 > tar xvzf tracegraph202linux.tar.gz 
  In addition, the directory ‘‘tracegraph202’’ should be created together with the     
  Binaries ready to use. However, they require the MATLAB Math and Graphics     
  Run-Time Libraries, (MGRTL)  

 
3.   You may copy "mglinstaller" where you want with the proper path, but 

  for simplicity we copy it into tracegraph202 directory: 
  > cp mglinstaller.gz tracegraph202/ 

       Then we decompressed it with gunzip command 
       gunzip mglinstaller.gz 
       Moreover, the mglinstaller files have to appear. 
  
4.   Because this software was intended for linux, we used a linux emulator in   
      FreeBSD to unpack the MGRTL libraries: 

 > /compat/linux/bin/sh mglinstaller 
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 that you will have a message: 
 Enter the directory to which to install the run-time libraries 
 [default: /home/oscar/tracegraph202]: 
 
 you may type MGRTL 
 MGRTL (MATLAB Math and Graphics Run-Time Libraries) and the directory    
 MGRTL is created. 

 
5.   Now, we have to configure the ".cshrc" file because we use shell TCSH 
 
      Adding: 
       setenv  LD_LIBRARY_PATH YOUR_PATH_USER/tracegraph202/MGRTL/bin/glnx86 
       for example: 
         setenv  LD_LIBRARY_PATH  /usr/home/oscar/tracegraph202/MGRTL/bin/glnx86 
        or 

   setenv  LD_LIBRARY_PATH /usr/local/ns-allinone-      
   2.1b8a/otcl1.0a7:/usr/local/ns- 
   allinone2.1b8a/lib:/usr/home/oscar/MGRTL/bin/glnx86 

       In the last example MGRTL  is together with ns-2 configuration settings. 
7.    After that do: 

        > source .cshrc 
        > env (to see your changes) 
        If in  LD_LIBRARY_PATH exist other paths separete them with ":" 
8.    Before we forget it, a last setting is important, in file     
        ~/tracegraph202/trgraph.cfg change 

               MAXIMAL NUMBER OF LINES=1000   to 
        MAXIMAL NUMBER OF LINES=10000000 (or more) 
9.     For more information, in the directory “tracegraph202/doc” read install.txt and  
        help.txt.  
10.   Finally, for easy use for simplicity, it is good to create a directory WORK  
        inside the Trace graph tool, as follows: 
        > /usr/home/oscar/tracegraph202 
        > mkdir WORK 

               in this directory you may organize your FILES.tr and FILES.mat and any time   
               You want to use Tracegraph  do as follows: 

        Inside the directory /usr/home/oscar/tracegraph202 do: 
   > ./trgraph   WORK/FILE-NS-2.tr or   
   > ./trgraph   WORK/FILE-NS-2.mat 
   or 

         > ./trgraph ANYWHERE-FILE.tr or 
         > ./trgraph ANYWHERE-FILE.mat 
        Because if you start Trace graph outside the next message will appear: 
 

ERROR: Configuration file does not exist! 
Default configuration has been set. 
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 For example: 
Sainte_Marie                                                                                                                                     
/usr/home/oscar/tracegraph202                                                                                                           
> ./trgraph  ~/temp/test-1-simple-150s-Err-0.001-MAT.mat 

In this example, we had our processed Trace graph “.mat”  files in a temp file 
outside of the “tracegraph202” directory, but  we fire the Trace Graph tool with the 
comand trgraph from  /usr/home/oscar/tracegraph202 directory.  
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APPENDIX E   TCP HolyWood 

     O Transmission Control Protocol (TCP) é baseado nos conceitos descritos 
primeiramente por Cerf e Kahn (1974).  A finalidade principal do TCP é fornecer um 
serviço de conexão fim-a-fim com confiabilidade. Tendo em vista que os protocolos da 
camada de rede IP não oferecem confiabilidade, a camada de transporte TCP deve 
garantí-la. 
     As primeiras versões do TCP possuíam somente um controle de fluxo através de um 
mecanismo de janela deslizante simples, sem nenhum controle de congestionamento. 
Não obstante, depois de uma série de colapsos na rede Internet, nos anos 80, procurou-
se solucionar este problema. Em 1988, Van Jacobson apresentou o TCP Tahoe e, dois 
anos mais tarde, introduziu o TCP Reno. O TCP Reno é composto dos seguintes 
algoritmos: estimação da variação do RTT (Round Trip Time), RTO (Round-trip Time-
Out) exponencial Backoff, algoritmo de Karn, Slow-Start, Congestion-Avoidance, Fast 
Retransmit e Fast Recovery, os quais são explicados em detalhe no capítulo 2. 

Após o trabalho de Van Jacabson nos anos 90, e até nossos dias, diversas propostas 
para melhorias do TCP apareceram. O TCP transformou-se num foco contínuo de 
pesquisa por parte da comunidade de informática. Isto é evidenciado pelas diversas 
propostas que apresentamos no capítulo 3, como por exemplo, TCP Veno, TCP 
Westwood, TCP Santa Cruz, entre outros. Em todas estas propostas, o que se tenta 
melhorar é a vazão em diferentes ambientes de rede, não obstante o padrão de-facto 
continuar sendo o TCP Reno. 

Com o objetivo de melhorar a vazão do TCP, apresentamos no capítulo 4 a nossa 
proposta, denominada “TCP HolyWood”. 

Como indicado por Stallings (2004, p.239), para se obter um bom desempenho em 
sistemas fim-a-fim em um ambiente de rede, o projeto e a execução do protocolo de 
transporte são ingredientes vitais. Seguindo esta orientação, começamos a fazer 
experimentos variando diferentes parâmetros do TCP Reno, no intuito de obter um 
maior ganho na vazão do TCP e um menor jitter fim-a-fim. Um aspecto importante que 
foi mantido em nossa proposta é manter todas as características dinâmicas do TCP 
Reno. As modificações introduzidas no protocolo TCP só afetam o lado do emissor. 
Assim, não há nenhuma necessidade de reconfigurar roteadores intermediários ou o 
receptor. Ainda que obtidos através de um modelo simulado do nosso protocolo, os 
resultados vistos no capítulo 6 são promissores; assim, podemos considerar nossa 
proposta como um ajuste fino do TCP Reno. 

O modelo proposto, portanto, é derivado do TCP Reno, fazendo-se algumas 
calibrações a fim conseguir um desempenho mais elevado da vazão, sem, no entanto 
mudar a essência do TCP padrão. Nossas modificações foram as seguintes: 
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1. Foi modificado o algoritmo Slow Start do TCP Reno, alterando-se o CWND = 
CWND + 1 para CWND = CWND + 9/5, para termos um Slow Start mais 
rápido. Usamos, portanto, 9/5 (ou 1.8) em vez de um. Este parâmetro não é um 
número mágico, mas fruto de diversos experimentos e medidas, até que se 
chegasse a ele. Supondo um ponto SSTHRESH de 65536 bytes, nossa proposta é 
mais rápida do que TCP Reno. Enquanto o TCP Reno requer 16 passos para 
chegar até o SSTHRESH, a nossa proposta requer somente 11 passos.  

2. Foi introduzida uma alteração que torna mais rápido o Slow Start do TCP Reno, 
compensando-o na fase de Congestion Avoidance. Diminuímos o valor original 
do CWND = CWND + 1/CWND para CWND = CWND + 1 (4.CWND). A idéia 
por trás disto é ter aproximadamente uma função constante. Em outras palavras, 
procuramos aproximar a nossa curva de vazão de uma linha constante, tendendo 
ao valor máximo da largura de banda. 

3. Depois de três ACKs duplicados o TCP Reno reduz o SSTHRESH à metade 
(50%) e a janela de congestionamento (CWND) à metade mais três (+3). O TCP 
HolyWood reduz o SSTHRESH a cinco sextos (83%) e a janela de 
congestionamento a cinco sextos mais três (+3), diminuindo a janela por um 
fator de 1/6. 

4. Quando ocorre timeout devido ao congestionamento ou a uma taxa de erro mais 
elevada, o TCP Reno reduz o SSTHRESH à metade (50%) e ajusta o CWND a 1; 
o TCP HolyWood  reduz o SSTHRESH a treze vigésimos (65%) e ajusta o 
CWND  em  3. Decidimos usar um aumento de 15% mais do que o TCP Reno 
por não saber se a congestão continua depois que ocorre um timeout. Podemos 
inferir que há uma probabilidade igual. Apesar de tudo, se o congestionamento 
persistir, o outro timeout (intervalo de parada) ocorrerá e o tempo deste timeout 
dobrará. Decidimos também, ajustar o CWND em 3, no lugar de 1, depois que o 
timeout termina e quando um Slow Start começa, baseado no RFC 2414 
(ALLMAN; FLOYD; PERDIZ, 1998). A figura E.1 mostra de forma 
comparativa o desempenho do TCP HolyWood com o TCP Reno. 
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Figura E.1: Comparativo do TCP HolyWood com o TCP Reno. 
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No capítulo 5, apresentam-se as técnicas de avaliação de desempenho que foram 
aplicadas à nossa proposta de protocolo, denominada TCP HolyWood. Devido a fatores 
como tempo limitado e recursos escassos, escolhemos a simulação como técnica de 
avaliação de desempenho. Tendo em vista sua larga aceitação na comunidade 
acadêmica e sua facilidade de uso, foi utilizada como ferramenta de simulação nesta 
dissertação o simulador de rede ns-2, versão ns-2.1b8a. 

Usamos em nossas simulações dois cenários de rede, chamados de topologia n.1 e a 
topologia n.2, representadas nas figuras E.2 e E.3 respectivamente. A topologia n.1, da 
figura E.2, apresenta quatro pontos sendo que n0 e n3 são o emissor e o receptor de uma 
conexão TCP respectivamente,  e n1 e n2 são roteadores de nó intermediários. Os enlaces 
de acesso dos terminais tem uma capacidade de 100 Mbit/s, enquanto o enlace entre os 
roteadores forma um gargalo, pois possui uma largura de banda de apenas 5 Mbit/s. 

 

Bottleneck Link 
5 Mbit/s 

35 ms 

Link 
100 Mbit/s 

1 ms 

Link 
100 Mbit/s 

1 ms 
n0 

TCP 
Source 

n1  
Router 

n2 
Router 

n3 
TCP 
Sink 

 
Figura E.2: Topologia simulada n.1 

Na figura E.3 apresenta-se a topologia n.2, que na verdade é uma extensão da 
topologia n.1, adicionando-se dez (10) transmissores, os nós n101, n102..., n110, e dez (10) 
receptores, n201, n202..., n210. Cada um dos processos de fonte (source) TCP está ligado a 
seu respectivo agente emissor TCP através de um enlace de 15 Mbit/s via nó n0. No lado 
remoto encontramos os dez processos de recepção (sink) TCP, também ligados ao 
agente TCP através de enlaces de 15 Mbit/s via nó n3. Os nós n0, n1, n2, n3, ao longo do 
caminho, são roteadores. Novamente temos um ponto de estrangulamento (bottleneck) 
formado pelo enlace de 5 Mbit/s entre os nós n1 e n2 respectivamente, 
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Figura E.3: Topologia simulada n.2 

Foram utilizadas as seguintes condições de contorno nos cenários experimentais: 
1. As simulações utilizaram pacotes de tamanho fixo. 
2. Para fins de comparação, cada cenário experimental era aplicado ao TCP 

Westwood, TCP Reno, TCP Vega e TCP HolyWood. 
3. Alterou-se um parâmetro por vez (taxa de erro, tempo de propagação ou largura 

de banda), para que se pudesse monitorar as mudanças entre os diferentes 
protocolos TCPs sob teste. 
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4. Foram usados os valores-padrão do simulador ns-2, versão ns-2.1b8a. 
5. O tempo de simulação foi de 150 segundos para cada teste. 

 
No capítulo 6 são apresentadas as curvas experimentais obtidas e as respectivas 

análises. Os resultados experimentais foram obtidos em relação aos padrões TCP Reno, 
TCP Vegas, TCP Westwood. As métricas principais foram vazão e jitter, e as condições 
de contorno experimentais foram taxa de erro, tempo de propagação e largura de banda.  
Foram usadas também as métricas definidas em Jain (1991), como justiça (fairness) e 
grau de amigabilidade (friendliness), no caso da comparação com o TCP Reno. 

Finalmente, no capítulo 7 apresentam-se as conclusões e sugestões de trabalhos 
futuros, que podem ser sumarizadas como a seguir: 

Quanto à Vazão 

     No intervalo da taxa de erro entre 0% a 60%, o TCP HolyWood  apresentou um 
ganho na vazão média  de 73.46% em relação ao TCP Reno, 30.65% em relação TCP 
Westwood e 67.46% em relação ao TCP Vegas. 
     No intervalo do tempo da propagação de 0.1 ms a 1000 ms, o TCP HolyWood 
obteve um ganho na vazão média  de  53.59% sobre o TCP Reno, 47.76% sobre o TCP 
Westwood e de 66.42% sobre o TCP Vegas. 
   No intervalo da largura de banda de 1 Mbit/s a 100 Mbit/s, o TCP Holywood obteve 
um ganho na vazão média de 77.49% sobre o TCP Reno, de 76.7% sobre o TCP 
Westwood e de 17.71% sobre o TCP Vegas.  
     Conclui-se daí que, variando a taxa de erro, o tempo da propagação e a largura de 
banda em um ambiente de rede cabeada, e usando-se o simulador ns-2, o TCP 
HolyWood apresenta melhor desempenho quanto à vazão do que o TCP Reno, TCP 
Westwood e TCP Vegas. 

Jitter (Variação de atraso) 

No intervalo da taxa de erro de 0% a 60%, quanto ao jitter em relação ao TCP 
HollyWood, o TCP Reno apresentou 38.28% a mais, o TCP Westwood apresentou 
0.11% a menos, e o TCP Vegas apresentou a 265.32% a mais. 

No intevalo de tempo de propagação de 0.1 ms a 1000 ms, o TCP Reno mostrou 
52.49% mais jitter do que TCP HolyWood, o TCP Westwood mostrou 13.6% a mais, e 
o TCP Vegas mostrou 64.17% a mais. 

No intervalo de largura de banda de 0 Mbit/s ate 100 Mbit/s, o TCP Reno mostrou  
76.81% mais jitter do que TCP HolyWood, o TCP Westwood mostrou 8.95% a menos, 
e o TCP Vegas mostrou 17.55% a mais. 

Conclui-se que, variando a taxa de erro, o tempo da propagação e a largura de banda 
faixa num ambiente de rede cabeado, e usando o simulador ns-2, a proposta de modelo 
apresenta melhor jitter médio em relação ao TCP Reno e ao TCP Vegas, tendo valor 
ligeiramente pior em relação ao TCP Westwood. 

Fairness (Imparcialidade) 

Conclui-se que o TCP HolyWood é tão imparcial quanto TCP Reno. 
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Friendliness (Amizade) 

Conclui-se que, quando o número de TCPs Reno que competem com um único TCP 
HolyWood aumenta, este se torna mais amigável com os outros TCPs Reno. 

Latência ou atraso 

Em todos os testes comparativos feitos entre o TCP HolyWood e os demais, ele 
apresentou latência média mais elevada, porém, a diferença diminui quando a taxa de 
erro aumenta. 

 Pacotes Perdidos 

No intervalo da taxa de erro de 0% a 60%, tendo o TCP HolyWood como  base em 
todos os casos, o TCP Reno e o TCP Vegas apresentaram, respectivamente,  8.61% e 
25.47% menos pacotes perdidos, enquanto que o TCP Westwood apresentou 57.21% 
mais pacotes perdidos. 

Ou seja, o TCP HolyWood mostrou menor percentual de pacotes perdidos em 
comparação ao TCP Westwood, e maior percentual comparativamente ao TCP Vegas e 
TCP Reno, ao longo de todo o eixo da taxa de erro. É importante observar que os TCPs 
emitiram  quantidades diferentes de pacotes para a mesma simulação. 

Considerando todas as simulações realizadas, pode-se concluir que o TCP 
HolyWood poderia trabalhar eficientemente em um ambiente cabeado de rede, com 
menos de 8% de taxa de erro. 

Para terminar este apêndice, nossa proposta será desejável segundo alguns pontos de 
vista. Em usabilidade: devido às modificações, pequenas, simples e fáceis de ajustar. 
Em interação: como observado na seção de resultados, a proposta é tão justa quanto 
TCP Reno, e pode trabalhar perfeita e harmoniosamente junto com o padrão. Em 
competência: a proposta mostrou um desempenho bom no que diz respeito à vazão e ao 
jitter. Certamente, isto convida a implementar a proposta em um sistema operacional 
real e a fazer novos testes em outros ambientes, como redes sem fio e redes 
heterogêneas. 

 
 
 
 

The End 


