

HEURÍSTICAS EFICIENTES PARA O PARTICIONAMENTO BALANCEADO DE GRAFOS

Bruno Menegola, Marcus Ritt

1 Objetivo

Investigar a eficácia da heurística Lock-gain associada a um GRASP (Greedy Randomized Adaptive Search Procedure) no biparticionamento balanceado de grafos.

2 Descrição do problema

- Encontrar uma partição dos vértices de um grafo.
- · O tamanho de cada parte difere por no máximo um.
- Deve-se minimizar o corte (número de arestas que ligam duas partes).
- Problema NP-difícil.
- Diversas heurísticas e meta-heurísticas já foram aplicadas e não há um método que se sobressai.

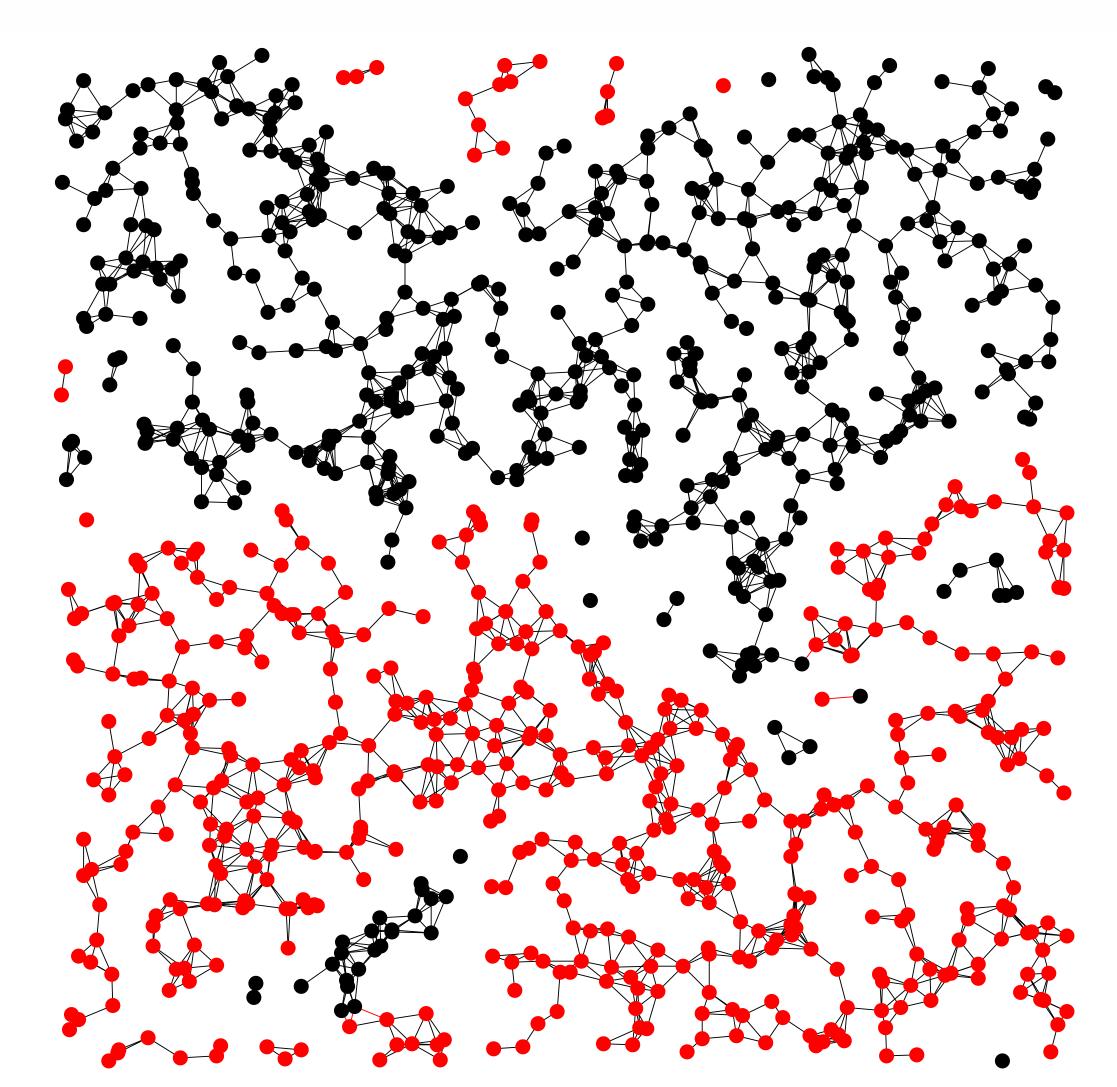


Figura 1: Bipartição de um grafo. Ambas as partes possuem o mesmo número de vértices. O valor do corte nesse exemplo é cinco, embora o corte mínimo seja um.

3 Aplicações

- Particionamento de circuitos VLSI
- Decomposição de redes de transporte
- Decomposição de domínios para computação paralela
- Segmentação de imagens
- Estruturação de redes de telefonia móvel
- Decomposição de matrizes

4 Algoritmo estudado

A heurística Lock-gain mostrou-se mais eficaz quando associada a algoritmos genéticos (Kim e Moon, 2004). A heurística padrão observa todos os vizinhos de um vértice. Essa nova técnica utiliza, como critério de desempate (Figura 2), o ganho com base nos vértices bloqueados (vértices que já foram movidos na iteração atual).

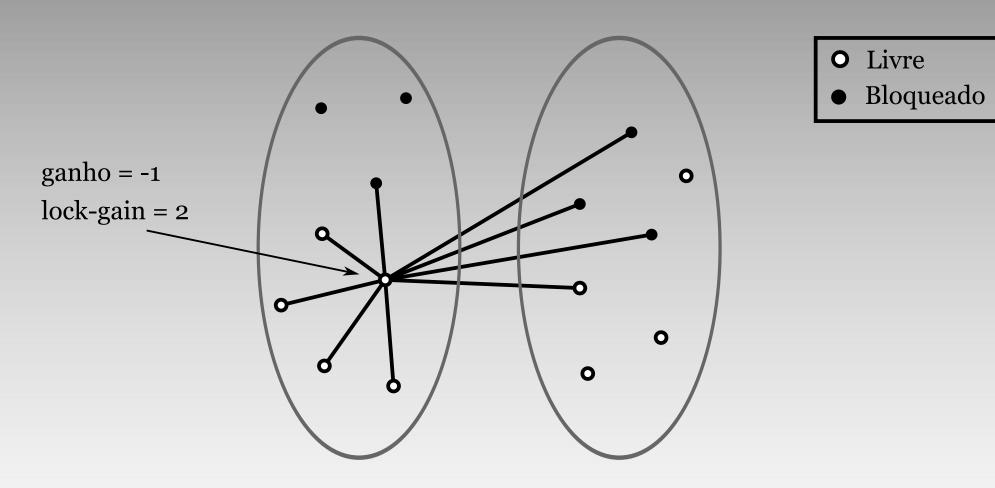


Figura 2: Exemplo de ganhos de um vértice ao movê-lo para a outra partição. O lock-gain serve como critério de desempate para o ganho.

5 Resultados

Tabela 1: Resultados do corte mínimo para diversas instâncias de teste. A coluna GRASP corresponde a nossa implementação com uma heurística padrão. GRASP-LGB, com a heurística Lock-gain.

Instância	GRASP	GRASP-LGB	Instância	GRASP	GRASP-LGB
add20	599	603	bcsstk30	6394	6394
data	189	189	bcsstk31	2762	2783
3elt	90	90	fe_pwt	340	341
uk	19	20	bcsstk32	4685	4709
add32	11	11	fe_body	2 77	279
bcsstk33	10171	10171	t60k	87	83
whitaker3	127	12 7	wing	855	822
crack	184	185	brack2	731	731
wing_nodal	1708	1709	finan512	162	162
fe_4elt2	130	130	fe_tooth	3853	3874
vidrobox	10343	10343	fe_rotor	2102	2113
bcsstk29	2843	2843	598a	2398	2421
4elt	139	139	fe_ocean	464	464
fe_sphere	386	386	144	6529	6600
cti	334	334	wave	8805	8858
memplus	5648	6005	m14b	3861	3853
cs4	376	373	auto	10264	10457

6 Conclusões

- Após uma série de testes, concluímos que o Lock-gain produz de fato cortes menores quando aplicado sem meta-heurísticas, em comparação com a heurística padrão nas mesmas condições.
- Embora o Lock-gain, como busca local do algoritmo genético de Kim e Moon (2004), melhore os resultados, no nosso GRASP ele não obteve o mesmo desempenho: das 34 instâncias testadas, 12 pioraram e apenas 4 melhoraram.
- Um próximo estudo poderia investigar a interação entre o Lock-gain e o GRASP para explicar tal dificuldade em sair de mínimos locais.