

Análise da Progressão da Hipertensão Arterial

Pulmonar por Ecocardiografia Associada a Mudanças

no Estresse Oxidativo do Ventrículo Esquerdo

1Gustavo Júlio Dreher; 1,2 Leichsenring-Silva F; 1Taveres AMV; 1 Mosele F; 1 Berger B; 2Santos WA; 3Llesuy S; 1 Belló-Klein A. 1 Fisiologia, ICBS-UFRGS; 2 Faculdade Adventista da Bahia; 3Universidade de

Buenos Aires

INTRODUÇÃO

Geração de espécies reativas de oxigênio (EROs), tais como ânion superóxido e peróxido de hidrogênio (H₂O₂), tem sido implicada na patogênese da Hipertensão arterial pulmonar (HAP) e hipertrofia cardíaca.

A sobrecarga de pressão imposta pela HAP ao ventrículo direito pode levar à hipertrofia desta câmara cardíaca e predispor ao surgimento de insuficiência cardíaca. A longo prazo, a função ventricular esquerda pode ser também afetada.

OBJETIVO

O objetivo deste estudo foi avaliar a progressão da hipertensão arterial pulmonar através de ecocardiografia, bem como sua relação com a resposta oxidativa induzida por monocrotalina (MCT) no ventrículo esquerdo de ratos Wistar.

MATERIAIS E MÉTODOS

42 ratos Wistar (160±20 g) foram divididos em 6 grupos:

Controles (C) 7, 21 e 31 dias → Injeção i.p. de Salina

Monocrotalina (MCT) 7, 21 e 31 dias Injeção i.p. de MCT 60 mg/Kg Animais foram submetidos a ecocardiografia antes (avaliação basal) 7, 21 e 31 dias após tratamento.

Razão AT/ET (tempo de aceleração/ejeção pela artéria pulmonar) e fluxo mitral

GSSG/GSH → espectrofotometria

Concentração de H₂O₂ (nmol/g tecido)

Ácido ascórbico (em μmol/g de tecido)
Tiorredoxina redutase (TrxR)

RESULTADOS

	Dia 7		Dia 21		Dia 31	
	Controle	MCT	Controle	MCT	Controle	MCT
IPM	0.25 ± 0.03	0.32 ± 0.05	0.30 ± 0.03	0.33 ± 0.04	0.27 ± 0.03	0.65 ± 0.01***
Pico E	1.50 ± 0.03	1.40 ± 0.04	1.50 ± 0.07	1.40 ± 0.03	1.51 ± 0,07	0.80 ± 0.09***
Pico A	0.80 ± 0.04	0.70 ± 0.05	0.80 ± 0.04	0.80 ± 0.03	0.98 ± 0.05	0.60 ± 0.07**
DDVE	0.32 ± 0.01	0.35 ± 0.02	0.30 ± 0.02	0.28 ± 0.01	0.33 ± 0.01	0.21 ± 0.02***
DSVE	0.70 ± 0.01	0.70 ± 0.01	0.60 ± 0.02	0.60 ± 0.01	0.73 ± 0.01	0.50 ± 0.02***
MAF	0.70 ± 0.02	0.70 ± 0.02	0.80 ± 0.01	0.80 ± 0.02	0.52 ± 0.03	0.80 ± 0.07***
FEVE	54.00 ± 1.44	49.00 ± 2.48	56.00 ± 1.84	57.00 ± 1.86	53.00 ± 1.77	68.00 ± 5.13***

Tabela 1. Parâmetros Ecocardiográficos - IPM (índice de performance miocárdica); DDVE(diâmetro diastólico do ventrículo esquerdo); DSVE (diâmetro sistólico do ventrículo esquerdo); MAF (mudança de área fracional); FEVE (fração de encurtamento do ventrículo esquerdo).

	Grupos	Ácido ascórbico	Atividade daTrxR
		(µmol)	(nmol/mg prot)
D 4	Control	23.92±6.02 (5)	0.11±0.05 (5)
Day 7	MCT	35.27±5.10 (5)	0.10±0.04 (6)
D 41	Control	21.75±5.54 (4)	0.13±0.03 (6)
Day 21	MCT	25.69±4.60 (4)	0.13±0.02 (6)
D 41	Control	29.47±4.88 (5)	⊖ 0.14±0.04 (6)
Day 31	MCT	9.58±3.17* (4)	0.21±0.05* (6)

Tabela 2. Ácido ascórbico e TrxR

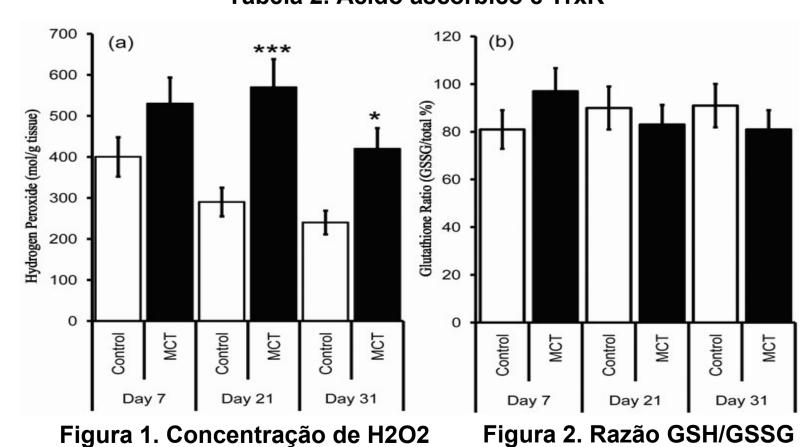


Figura 3. Fluxo pela Artéria Pulmonar

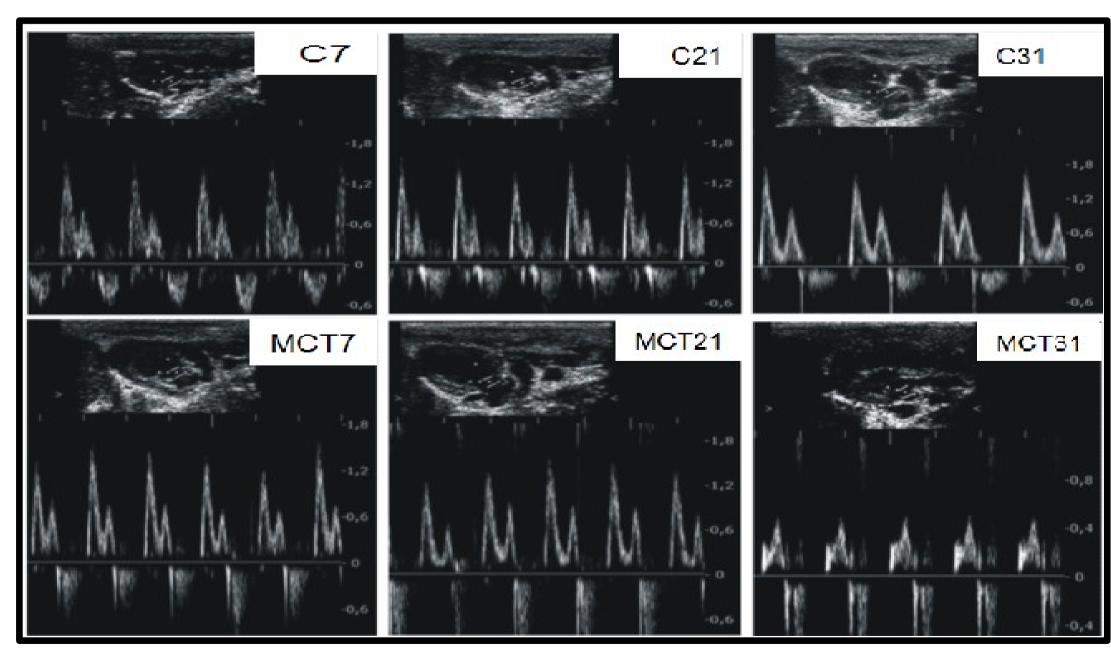


Figura 4. Fluxo pela Valva Mitral

* control vs MCT, p<0.05 * * control vs MCT, p< 0.01 * * * control vs MCT, p< 0.001

Nossos achados demonstram uma elevação progressiva da resistência arterial pulmonar após 7 dias da injeção de MCT. Aos 31 dias, aparece disfunção de VE, o que se mostrou associado ao aumento das concentrações de H2O2 e redução de ácido ascórbico no VE. A TrxR, enzima responsável pela reciclagem de tiorredoxina, mostrou-se aumentada aos 31 dias, sugerindo uma maior detoxificação de espécies radicais neste período.