

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL LABORATÓRIO DE MATERIAS POLIMÉRICOS

Porto Alegre – RS – Brasil

Joiani Fritscher (<u>joba.fritscher@gmail.com</u>), Rafael S. Peres, Carlos A. Ferreira Telefone: (51) 33089416 FAX: (51) 33089414

Desenvolvimento de pigmentos não-convencionais à base de extratos vegetais para aplicação em tintas *antifouling*

1-INTRODUÇÃO

As incrustações, ocasionadas por organismos marinhos, nas superfícies submersas das embarcações acarretam uma redução na vida útil destas superfícies e também um aumento no consumo de combustível de até 70% em viagens de maior percurso. Desta forma, o desenvolvimento de tintas anti-incrustantes (antifouling) é de grande importância para a redução ou eliminação da fixação destes organismos marinhos no casco das embarcações.

A utilização de taninos como pigmento antifouling mostrou-se bastante eficaz no controle de incrustações. Estes pigmentos orgânicos à base de extrato vegetal são importantes devido à substituição do óxido cuproso, proporcionando assim uma redução ou eliminação da quantidade de cobre utilizado nestas tintas. Esse recurso leva a uma diminuição considerável nos custos de formulação das tintas anti-incrustantes e em um menor impacto ao ambiente marinho.

2-OBJETIVOS

Este trabalho visa o desenvolvimento de pigmentos orgânicos à base de extrato vegetal (taninos) e sua aplicação na obtenção de tintas anti-incrustantes ambientalmente corretas.

3- MATERIAIS E MÉTODOS

3.1 Síntese do Tanato de Cobre (Figura 1)

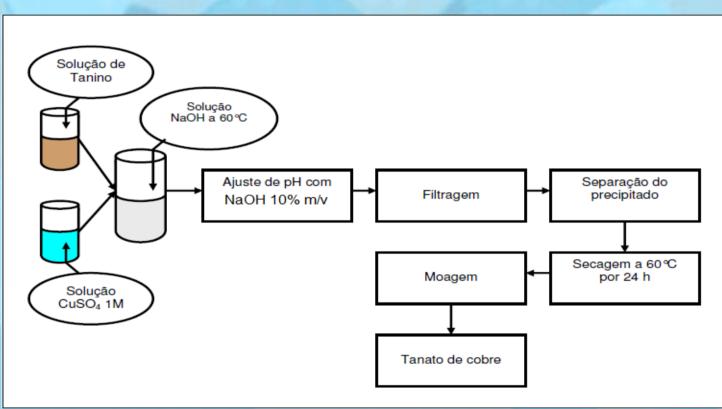


Figura 1 – Diagrama ilustrativo da síntese para obtenção do tanato de cobre.

3.2 Síntese do Tanato de Ferro (Figura 2)

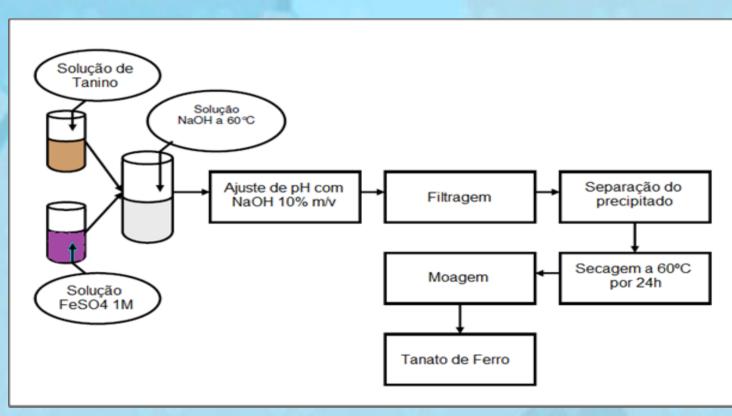


Figura 2 – Diagrama ilustrativo da síntese para obtenção do tanato de ferro.

3.3 Composição das tintas

Tabela 1 - Tinta com Tanato de Ferro

Componente	Quantidade em base seca (%)
Resina	56,08
Pigmentos	33,98
Aditivos de processo	9,94

Tabela 2 - Tinta com Tanato de Cobre

Componente	Quantidade em base seca (%)
Resina	55,12
Pigmentos	34,23
Aditivos de processo	10,65

3.4 Preparação dos corpos de prova

As placas de aço carbono SAE 1010 com dimensões de (250x200x2)mm foram previamente lixadas com uma lixa de granulometria #150 e desengraxadas com acetona. Após esta etapa, foram pintadas com uma demão de primer anticorrosivo Intergard 269 da Akzo Nobel. Após a secagem do primer anticorrosivo, aplicouse as tintas antifouling preparadas no laboratório.

4-RESULTADOS E DISCUSSÃO

4.1 Caracterização das amostras

✓ <u>Medidas de espessura</u>: utilizou-se o método da corrente difusa com uma unidade de medida Byko-test 7500 fabricada pela BYK GARDNER. As medidas foram repetidas 8 vezes e a média e o desvio padrão foram calculados.

Tabela 3 - Espessuras das tintas utilizadas

Tintas	Espessura ± Desvio padrão (µm)
Antifouling Intermarine	219,24 ± 11,42
Tinta Tanato de Cobre	213,49 ± 12,64
Tinta Tanato de Ferro	236, 74 ± 11,36

✓ <u>Análises FT-IR</u>: As análises por FT-IR evidenciaram a formação dos pigmentos desejados devido a presença de estiramentos característicos dos tanatos (compostos organometálicos).

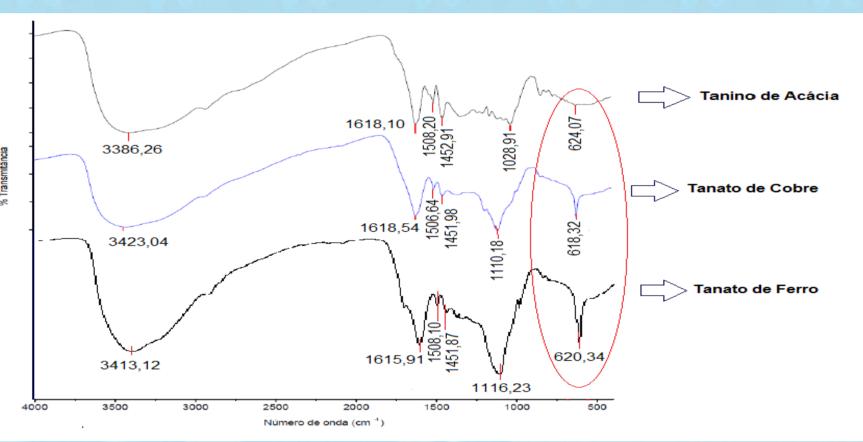
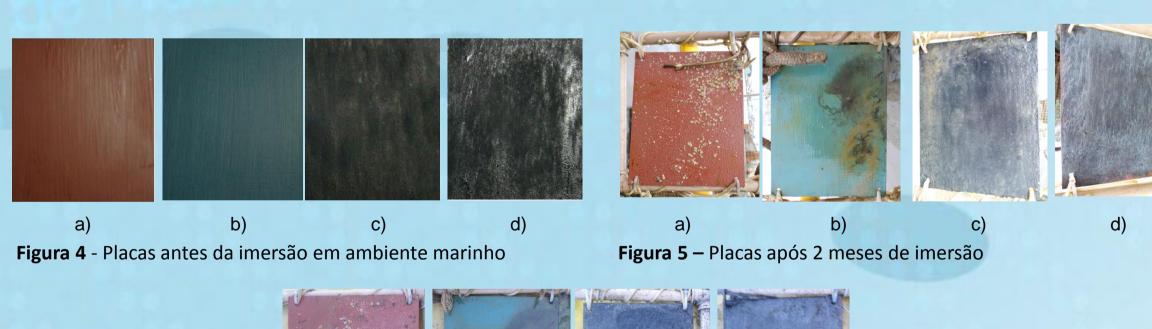



Figura 3 - Espectros de infravermelho

4.2 Análise do comportamento antifouling

Os corpos de prova foram preparados para realização do teste de imersão in situ na praia de Imbé, na posição geográfica 29°58'35"5 (sul), 50°07'23"0 (oeste).

Nas Figuras a seguir: (a) Placa de controle com primer anticorrosivo (branco); (b) Placa com *antifouling* Intermarine (referência); (c) Placa com formulação tanato de ferro; (d) Placa com formulação tanato de cobre.

a) b) c) d)

Figura 6 - Placas após 4 meses de imersão

5-CONCLUSÃO

Os procedimentos propostos para a síntese dos tanatos foram eficientes para a sua obtenção conforme mostrados pelos espectros de infravermelho. São necessários maiores tempos de imersão das placas em ambiente marinho para uma melhor avaliação das propriedades *antifouling* das tintas preparadas à base destes pigmentos. Os resultados com até 4 meses de imersão mostraram que as placas pintadas com a tinta comercial e as tintas formuladas com tanato de cobre e ferro ainda não apresentaram sinais de incrustação.

6-REFERÊNCIAS BIBLIOGRÁFICAS

[1] M. Pérez, et al. *Cupric tannate: A low copper content antifouling pigment*. Progressin Organic Coatings, 55 (2006) 311.

[2] J.M. Andrade, Desenvolvimento de Pigmento não-convencional à base de extratos vegetais para aplicação em Tintas Antifouling. Dissertação de Mestrado, Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais, UFRGS – Porto Alegre/RS (2010).

[3] Bandekar, J.; Sethna, R.; Kirschner, M.; Appl. Spectrosc. 1995, 49, 1577.
 [4] A. O. Souza, M. C. Rangel, O. L. Alves. Síntese e caracterização de α-fosfato de zircônio(iv) contendo agregados de cobre metálico. Química Nova, 28 (2005) 46.

[5] R. J. Cruz Lima, et al. Taninos hidrolisáveis em Bixa orellana L. Química Nova, 29 (2006) 507.
 [6] L. Xu, Y. Fang. Temperature-induced effect on surface-enhanced Raman scattering of m,p-hydroxybenzoic acid on silver nanoparticles. Spectroscopy, 18

[7] Rahim, A.A.; Kassim, M.J. Rocca, E.; Steinmetz, J.; The European Corrosion Congress (EUROCORR), 2008.
[8] M. Thouvenin, J.J. Peron, C. Charreteur, P. Guerin, J.Y. Langlois, K. Vallee-Rehel. A study of the biocide release from antifouling paints. Progress in Organic

[9] A.F. Baldissera. *Desenvolvimento de tinta antifouling não-convencional para proteção de embarcações e estruturas metálicas*. Tese de Doutorado, Programa de Pós-graduação em Engenharia de Minas, Metalúrgica e de Materiais, UFRGS — Porto Alegre/RS (2008).

