


Copolimerização de eteno com olefinas sintetizadas in situ empregando um complexo de níquel(II)-beta-diimina na presença de dois cocatalisadores

Augusto Henriques Lunelli (IC), Roberto Fernando de Souza (PQ) e Katia Bernardo Gusmão (PQ) augustohlunelli @hotmail.com

Laboratório de Reatividade e Catálise, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, Rio Grande do Sul, Brasil.

INTRODUÇÃO

O uso dos complexos de níquel-alfa-diiminas como catalisadores em meio homogêneo foi introduzido por Brookhart [1], nos anos 90. Apesar do vasto estudo sobre essa família, os exemplos na literatura do uso dos complexos de níquel(II)-beta-diimina como precursores catalíticos ainda são poucos. Dentre eles, está a polimerização de eteno usando um desses associado alquilalumínio complexos ao metilaluminoxano (MAO) como cocatalisador, descrito por Feldman [2]. O objetivo da presente pesquisa é desenvolver um sistema catalítico com o complexo níquel(II)-beta-diimina aliando a síntese in situ de oligômeros de eteno com o uso do sesquicloreto de etilalumínio (EASC) à posterior polimerização desses oligômeros empregando o trimetilalumínio (TMA).

Figura 1. Representação do complexo bis-[N,N-(2,6-diisopropilfenil)-2,4-pentanodiimina bromoníquel(II)] utilizado.

RESULTADOS E DISCUSSÃO

Primeiramente, as reações de oligomerização e de polimerização foram feitas separadamente, buscando as condições ótimas de reação. Os resultados das reações de polimerização estão na Tabela 1.

Tabela 1. Resultados das reações de polimerização, utilizando TMA 10% v/v, com pressão de eteno igual a 20 atm, a 27°C e em 90 minutos. Temperatura de fusão do polietileno determinada por DSC.

Entra- da	nNi (μmol)	AI/Ni	Produtividade (KgPE.molNi ⁻ ¹ .h ⁻¹)	Frequência de Rotação (h ⁻¹)	Tm (°C)	X _c (%)
1	93	17	42	1488	129	24
2	93	52	84	3001	131	24
3	93	102	39	1406	127	26
4	47	52	26	926	128	26
5	140	52	56	1997	127	23

A partir destes resultados, conclui-se que as condições ótimas de polimerização são aquelas utilizadas na Entrada 2. Os polietilenos obtidos nas reações apresentam as mesmas características, inclusive temperaturas de amolecimento e cristalinidades semelhantes. As reações de oligomerização de eteno foram realizadas seguindo as condições abaixo listadas.

Tabela 2. Resultados das reações de oligomerização, utilizando EASC 10% v/v, com pressão de eteno igual a 20 atm, em 90 minutos e com número de mols de precursor catalítico fixo em 93 µmol. Percentagens calculadas a partir de cromatograma.

Entrada	T (°C)	AI/ Ni	Frequência de Rotação (h ⁻¹)	C ₄ (%)	1- Buteno (%)	Cis- buteno (%)	Trans- buteno (%)
6	27	52	21552	56	48	33	19
7	10	52	38530	62	40	39	21
8	10	25	44507	74	41	37	22

Conclui-se que as melhores condições para oligomerização são aquelas correspondentes às da Entrada 8, já que apresenta maior frequência de rotação, maior seletividade para C_4 e boa seletividade para 1-buteno, principal isômero na reação de copolimerização. Além da fração correspondente a C_4 , ainda existem outras correspondentes a C_6 e, em menor quantidade, a C_8 e C_{10} .

CONSIDERAÇÕES FINAIS

Por meio destes dados, será possível estabelecer os principais parâmetros para as reações de copolimerização. Devem ser estudados os efeitos da variação de proporção entre os tempos reacionais e as quantidades dos compostos alquilalumínio sobre os copolímeros resultantes, de modo a identificá-los e estabelecer as melhores condições para obtê-los.

REFERÊNCIAS

[1] Ittel, S.D.; Johnson, L.K.; Brookhart, M.; Chem. Rev., 2000, 100(4), 11.

[2] Feldman, J.; McLain, S.J.; Parthasarathy, A.; Marshall, W.J.; Calabrese, J.C.; Arthur, S.D.; *Organometallics*, **1997**, 16, 1514.

[3] de Souza, C.G. Síntese de um precursor catalítico níquel-beta-diimina heterogeneizado a partir do método Sol-gel e sua utilização em reações de polimerização do eteno. 2008. 55p. Dissertação (Mestrado em Química). Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre.

AGRADECIMENTOS

