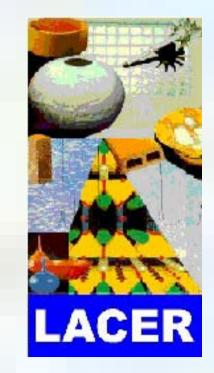


AVALIAÇÃO DE ADITIVOS ANTIOXIDANTES AQUOSOS NA RESISTÊNCIA À OXIDAÇÃO DE GRAFITE LAMINAR APLICADOS A REFRATÁRIOS



Maria Luísa Fasolo Klein

e-mail: malufk@yahoo.com.br

DEPARTAMENTO DE MATERIAIS / ESCOLA DE ENGENHARIA / UFRGS

1. INTRODUÇÃO

O grafite é um material amplamente usado em diversos setores da indústria por aliar propriedades como alta condutividade térmica e elétrica, dureza e resistência à oxidação. É empregado na composição de cadinhos para fusão de metais, aditivos para refratários, eletrodos de fusão, entre outros.

Na área de siderurgia, entra na formulação de refratários de MgO-C como um aditivo, melhorando assim sua condutividade térmica e reduzindo a molhabilidade da escória. Entretanto, a aplicação do grafite é severamente limitada devido a sua tendência a oxidar quando exposto às altas temperaturas na presença de oxigênio, o quê faz com que o refratário perca resistência mecânica, devido ao aumento da porosidade do material, e acelerando o processo de deterioração.

Para tentar resolver esse problema, uma classe de antioxidantes aquosos vem sendo estudada para a proteção do grafite. Eles agem no carbono do grafite, reduzindo a velocidade de consumo ou taxa de oxidação, provocando uma expansão volumétrica, diminuindo a porosidade do sistema e com isso a permeabilidade e difusão do oxigênio no sistema.

2.OBJETIVO

O trabalho teve como objetivos estudar os métodos de proteção da oxidação do grafite às altas temperaturas, desenvolvendo para isso uma metodologia para o tratamento e incorporação de aditivos solúveis em água no grafite, com custo de processamento baixo e isento de resíduos danosos ao ambiente ou de difícil manipulação.

3.MATERIAIS E MÉTODOS

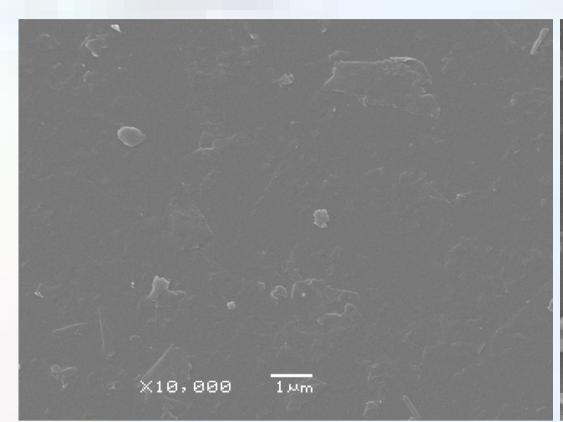
Os aditivos estudados neste trabalho possuem composição a base de fosfatos ácidos solúveis em água. A preparação e incorporação do aditivo é realizada de acordo com o fluxograma abaixo.

Precursor sólido Digestão de H₃PO₄ Cura do aditivo Digestão do aditivo do aditivo

Dependendo do precursor utilizado, podemos ter apenas H₂O como resíduo do processo.

O grafite utilizado neste trabalho é o Graflake (grafite mineral lamelar, fornecido pela Companhia Nacional de Grafite), que possui teor de cinzas de aproximadamente 3%, e é utilizado na fabricação de refratários MgO-C.

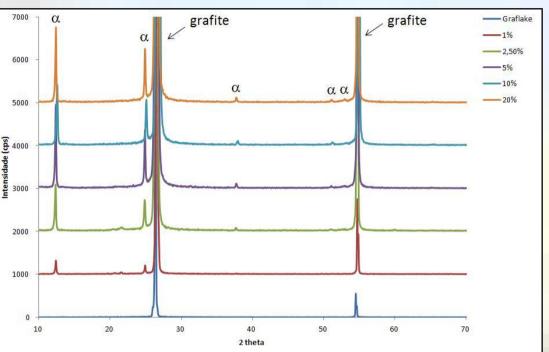
Os antioxidantes foram incorporados ao grafite mineral em diferentes proporções (1, 2.5, 5, 10 e 20% em peso com relação ao grafite), e as suas propriedades foram caracterizadas através das seguintes técnicas.


Microscopia Eletrônica de Varredura (MEV) Morfologia das partículas

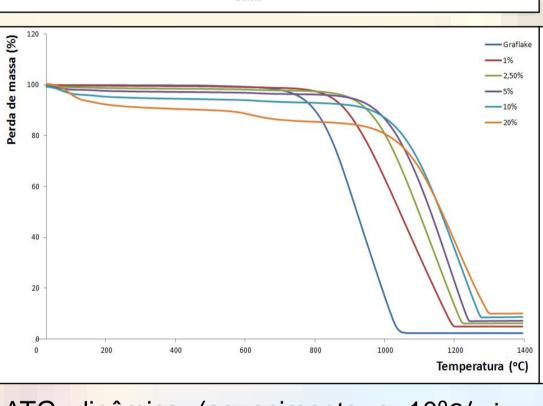
Análise Termogravimétrica (ATG)

Perda de massa em função da temperatura (dinâmica)
Perda de massa em função do tempo (isotérmica)
Taxa de oxidação

Difração de Raios X (DRX)
Formação de fases cristalinas


4. RESULTADOS E DISCUSSÃO

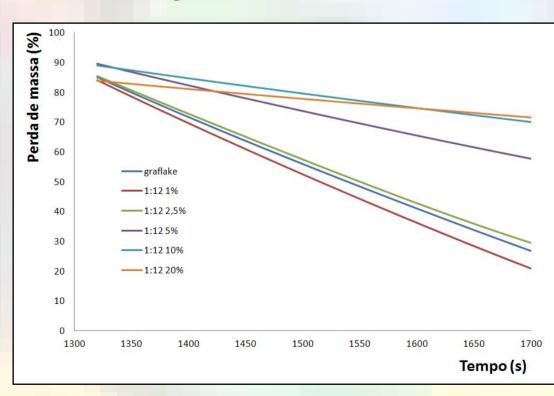
X10,000 I.mm


MEV das partículas de grafite lamelar sem adição de aditivo

MEV das partículas de grafite lamelar com 10% de aditivo

DRX das amostras de grafite tratadas com aditivo. Há formação de uma nova fase cristalina devido à cristalização do aditivo (fase α)

____2,50%



ATG isotérmico a 1000°C (aquecimento a 10°C/min em atmosfera de O₂ 99,99%)

Pode observar claramente na ATG dinâmica que há um aumento na temperatura de início do processo de oxidação quando da incorporação do aditivo, e uma relação entre o aumento da temperatura de início da oxidação em função do teor de aditivo incorporado.

Através da ATG isotérmica, observamos que a cinética de oxidação das amostras com até 2,5% de aditivo são praticamente iguais ao do grafite não tratado. Entretanto, com os teores de 5, 10 e 20%, a cinética de oxidação é bastante reduzida, onde mesmo após 1h de oxidação, ainda resta grafite intacto.

Logo após o início do processo de oxidação, a cinética de oxidação é até 5X menor (20% de aditivo) em relação ao do graflake puro, mostrando a efetividade do aditivo.

5.CONCLUSÕES

Os aditivos antioxidantes aquosos desenvolvidos apresentaram uma boa capacidade de proteção contra oxidação do grafite, nas condições avaliadas.

Em pequena quantidade, há um aumento na temperatura de início da oxidação, porém a cinética permanece inalterada.

Para teores maiores do que 5%, a temperatura de início da oxidação é significativamente aumentada (300-400°C) e a cinética reduzida (até 5X).

6. TRABALHOS FUTUROS:

Estudo da ação de formulações com a presença de mais de um tipo de antioxidante para a obtenção de resultados ainda melhores contra a degradação do grafite laminar.