Reatividade de Complexos à Base de Ródio e Rutênio com Ligantes Ciclopentadienilas Funcionalizados com Alcoxissilanos em Relação à Sílica: Estudos de Hidrogenação Catalítica

Maria Francisca da R. Cirne (IC) e Silvana Inês Wolke(PQ) francirne@hotmail.com

Instituto de Química — Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500 — Porto Alegre - RS - CEP: 91505-970

Introdução:

A química dos complexos organometálicos encontra uma de suas principais aplicações em catálise. Catalisadores homogêneos apresentam altas taxas de conversão e seletividade, no entanto seu uso fica restringido devido à dificuldade de separá-los dos produtos e recuperá-los ao fim do processo. A síntese de catalisadores heterogeneizados alia a alta atividade e seletividade de complexos solúveis com a facilidade de separação de catalisadores sólidos.

Objetivo:

Estudar a imobilização dos complexos [Rh(Cp')(MeCN)₃(PF₆)₂]e [RhCp'Cl₂]₂ em sílica e suas respectivas atividades catalíticas em hidrogenação do 1-hexeno.

Cp'= Tetrametilpropiltrietoxissilano ciclopentadienila

Resultados:

A estratégia utilizada foi a síntese dos complexos com os ligantes ciclopentadienila funcionalizados com alcoxissilanos para posterior ancoramento à superfície da sílica tratada. No entanto, foram necessárias quatro tentativas de síntese do ciclopentadienila funcionalizado com o alcoxissilano com diferentes reagentes; dessas, a tentativa efetiva foi aquela utilizando BuLi como agente desprotonante do ciclopentadieno.

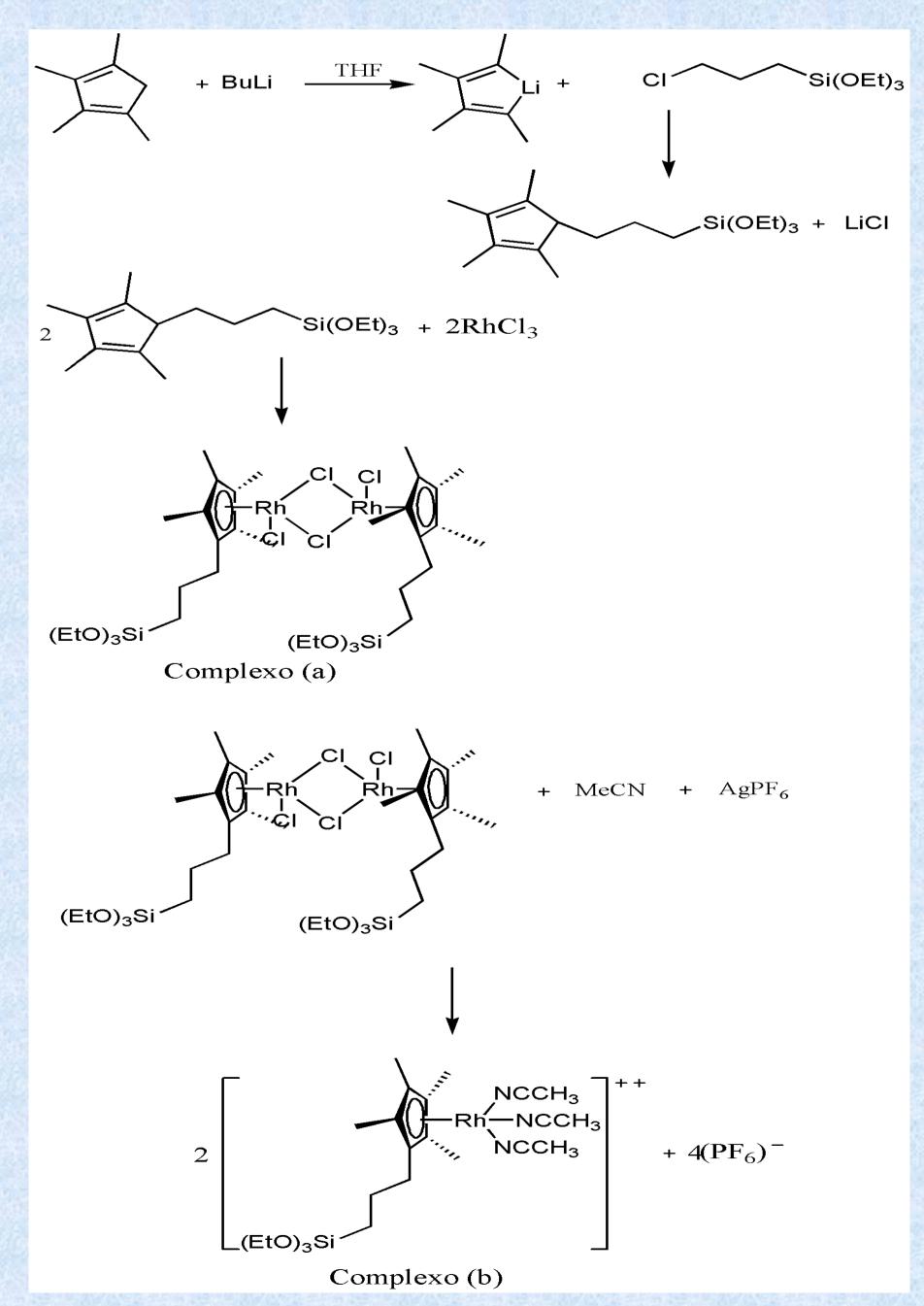


Figura 1. Síntese do complexo [Rh(Cp')(MeCN)3(PF6)2]

Caracterização:

Os complexos foram analisados por Espectroscopia no infravermelho e por RMN de ¹H.

Testes catalíticos:

A reação de hidrogenação de olefinas num sistema 1-hexeno /CH₂Cl₂, em reator de aço e pressão de H₂ de 10 bar. O perfil de queda de pressão é mostrado na figura 2.

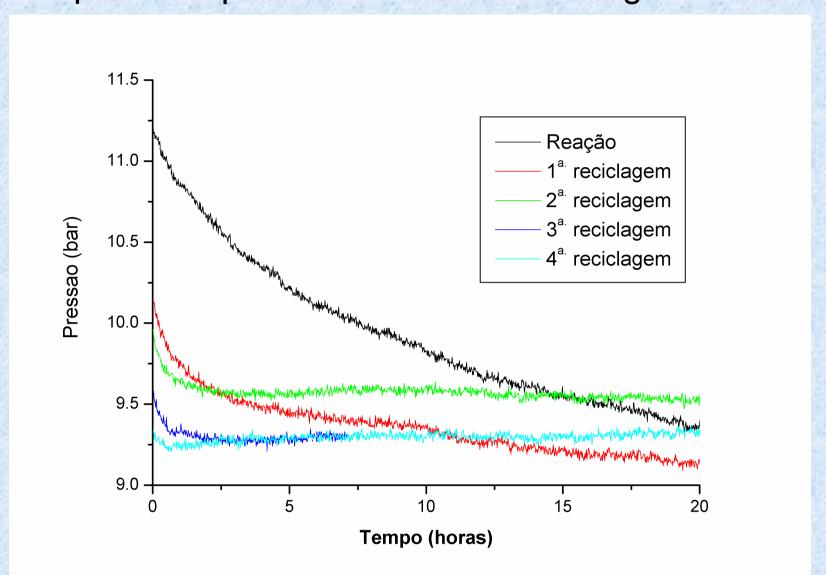


Figura 2. Perfil de queda de pressão

Os perfis indicam que não há tempo de indução. Provavelmente durante a reação houve vazamento de H₂ pois a conversão foi 9%. Para as reciclagens, o consumo de H₂ que levou à formação de produtos ocorreu em menos de 5 horas.

Na tabela 1 são apresentados os resultados de conversão e seletividade.

Tabela1. Hidrogenação do 1 - hexeno, T = 21°C, PH2 = 10 bar, com o complexo (a)

	Conversão	Seletividade(%)		
	(%)	Hexano	E - 2-hexeno	Z - 2-hexeno
Reação	9	60	0	40
1 ^a . Reciclagem	28	100	0	0
2 ^a . Reciclagem	21	78	12	9
3 ^a . Reciclagem	27	72	17	11
4ª. Reciclagem	39	78	13	9

mols de catalisador = 0.0137 mmol, mols de 1-hexeno = 4.03 mmol [1-Hexeno]/[Rh] = 100

O catalisador apresentou baixa atividade catalítica, com conversões em torno de 20%. Em relação a seletividade, além do produto de hidrogenação também foram observados os produtos de isomerização, Z e E – 2 – hexeno. No entanto, verifica-se que não houve perda de atividade nas reciclagens. Cabe salientar que dados da literatura⁽¹⁾ revelaram que o complexo [RhCp*Cl₂]₂, análogo homogêneo, não apresenta atividade catalítica.

Conclusões:

É preferível a utilização de BuLi para a desprotonação do ligante ciclopentadienila. Além disso, observou-se nos testes catalíticos que, embora a conversão não seja muito alta, o complexo não apresenta perda de atividade nas reciclagens.

Agradecimentos:

O presente trabalho foi realizado com o apoio da Pró-Reitoria de Pesquisa - UFRGS - Brasil

Bibliografia:

(1). A. Tavares, Dissertação de Mestrado, RPGQ – UFRGS, 2006