

DESENVOLVIMENTO E VALIDAÇÃO DE MÉTODO ANALÍTICO POR CROMATOGRAFIA LÍQUIDA DE ALTA EFICIÊNCIA (CLAE) PARA DETERMINAÇÃO DE UM DERIVADO SINTÉTICO DE CHALCONA EM NANOEMULSÕES

Vânia B. Deponti; Cristiane B. Mattos; Letícia S. Koester

Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia – UFRGS

1. Introdução

As chalconas, compostos da família dos flavonóides, têm sido descritas como moléculas promissoras para o tratamento da leishmaniose, especialmente a forma cutânea, uma vez que possuem efeito inibitório do crescimento das formas promastigotas da *Leishmania braziliensis*, principal agente etiológico desta manifestação. Estudos recentes investigaram o efeito leishmanicida de uma série de sulfonamidas derivadas da 4-metoxichalcona e encontraram uma atividade promissora para a 5-(2-Benzoiletenila)-N-benzil-2-metoxibenzeno-sulfonamida (Fig. 1). Entretanto, o maior obstáculo no desenvolvimento de formas farmacêuticas para administração tópica de chalconas refere-se a sua baixa hidrossolubilidade. Neste contexto, a incorporação de compostos lipofílicos em nanoemulsões é uma estratégia que tem sido investigada, por poder promover a penetração dos mesmos através da pele. O presente trabalho teve por objetivo desenvolver e validar um método por CLAE, a fim de determinar o derivado sintético de chalcona em nanoemulsões.

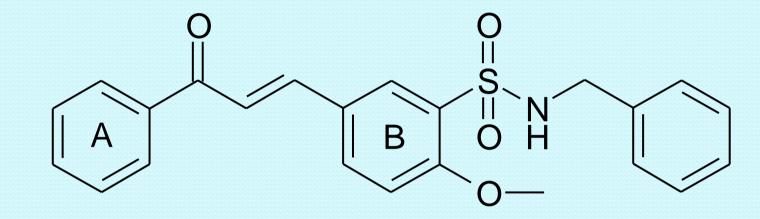


Fig. 1- Estrutura química da 5-(2-Benzoiletenila)-N-benzil-2-metoxibenzenosulfonamida

2. Materiais e Métodos

2.1. Desenvolvimento da nanoemulsão

Nanoemulsões compostas de misturas 1:1 de triglicerídeos de cadeia média e óleo de rícino (8%), lecitina de soja (4%), vitamina E (0,5%) e água foram preparadas pelo procedimento de emulsificação espontânea. As nanoemulsões foram avaliadas em termos de diâmetro médio, índice de polidispersão e potencial zeta.

2.2. Validação do método analítico

2.2.1. Instrumentação e condições analíticas

O equipamento consiste em bomba Shimadzu LC-20 AT; Detector SPD-20 AV UV/VIS; Auto injetor SIL-20 A com módulo desgaseificador. Foi empregada coluna Phenomenex Luna C18 (150 x 4,6 mm, 5 μ m) e pré-coluna preenchida com sílica Bondapak® C18 (Waters), e fase móvel: metanol:água (pH ajustado a 4,0 com ácido trifluorácetico) (70:30, V/V); sob fluxo de 1 mL/min; e leitura em λ de 330 nm.

2.2.2. Linearidade

A curva de calibração foi obtida com cinco concentrações na faixa de 0,5 a 4,0 μg/mL, em três dias diferentes.

2.2.3. Precisão

A precisão foi avaliada pela repetibilidade (intra-dia) e precisão intermediária (inter-dia). A repetiblidade foi realizada com a mesma amostra (n=6), na mesma concentração (2,5 μg/mL), durante o mesmo dia. A precisão intermediária foi avaliada pela comparação dos experimentos de diferentes dias (3 dias).

2.2.4. Exatidão e especificidade

A exatidão foi determinada pela recuperação de quantidades conhecidas de 5-(2-Benzoiletenila)-N-benzil-2-metoxibenzenosulfonamida adicionadas em amostras de nanoemulsões brancas. A especificidade foi avaliada a partir de amostras de nanoemulsões isentas de 5-(2-Benzoiletenila)-N-benzil-2-metoxibenzenosulfonamida.

3. Resultados e discussão

O procedimento de emulsificação espontânea produziu emulsões monodispersas (IP < 0,2) com tamanho médio de partícula de 98,5 nm e potencial zeta – 63,3 mV, o qual pode ser atribuído a presença de lipídios com carga negativa da lecitina de soja.

Os limites de detecção e quantificação foram de 0,035 e 0,118 µg/mL, respectivamente.

O método mostrou-se linear no intervalo de 0,5 a 4,0 µg/mL, apresentando coeficiente de determinação linear igual a 0,999, e específico, uma vez que não foram detectados componentes interferentes da nanoemulsão em 330 nm (Fig. 2).

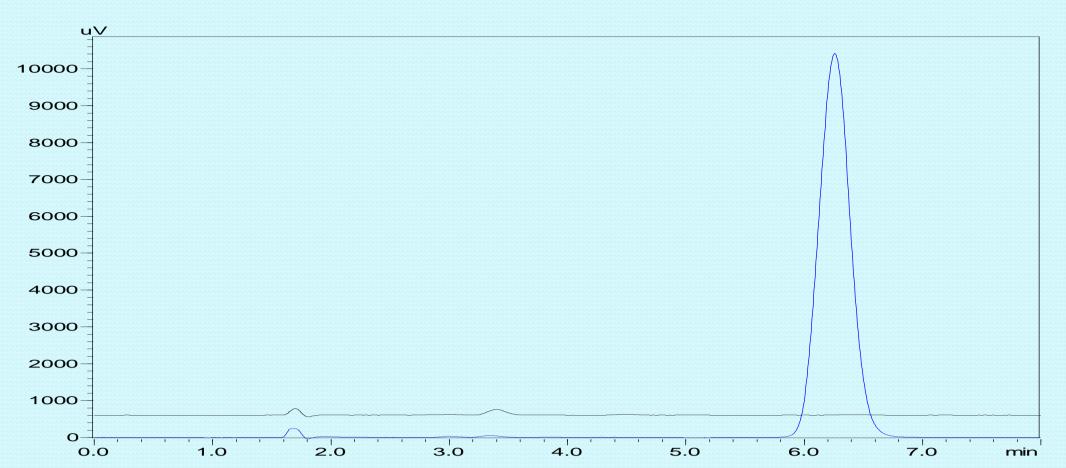


Fig. 2 – Cromatogramas obtidos durante o teste de especificidade.

- () Nanoemulsão contendo 5-(2-Benzoiletenila)-N-benzil-2metoxibenzenosulfonamida
- (___) Nanoemulsão branca

Os resultados dos testes de precisão e exatidão estão apresentados na Tabela 1 e 2, respectivamente. Os valores de DPR (< 0,17%) e recuperação (entre 99,71 e 100,99%) encontram-se dentro da faixa preconizada pelo ICH para esses parâmetros.

Tabela 1. Precisão inter e intra-dia da 5-(2-Benzoiletenila)-N-benzil-2-metoxibenzenosulfonamida nas nanoemulsões.

	Precisão Intra	adia (n=6)		
	Teor (%)	Média	DPR	
	93,33	94,16		
	94,38		0,46	
D'- 1	94,22			
Dia 1	94,26			
	94,58			
	94,18			
Dia 2	92,75		0,27	
	92,83	92,91		
	92,58			
	93,10			
	92,89			
	93,30			
Dia 3	89,84	90,27		
	90,55		0,27	
	90,17			
	90,31			
	90,39			
	90,37			
	Precisão Inte	rdia (n=18)		
Média (%)		92,44		
DPR	1,83			

Tabela 2. Exatidão da 5-(2-Benzoiletenila)-N-benzil-2-metoxibenzenosulfonamida nas nanoemulsões.

Conc.Teórica (μg/mL)	Conc.Experimental (μg/mL)	Recuperação	(%)	DPR (%)	
0,5	0,504	99,71			
2,5	2,52	100,99		0,64	
3,0	3,024	100,37			

A validação do método foi aplicada para determinar a quantidade de 5-(2-Benzoiletenila)-N-benzil-2-metoxibenzenosulfonamida incorporada nas nanoemulsões. Desse modo, encontrou-se um teor de 5-(2-Benzoiletenila)-N-benzil-2-metoxibenzenosulfonamida, de $92,44 \pm 1,83\%$.

4. Conclusão

O método mostrou-se específico, linear, preciso e exato para a quantificação do 5-(2-Benzoiletenila)-N-benzil-2-metoxibenzenosulfonamida nas nanoemulsões de uso tópico.

5. Referências

Medicinal Chemistry, v. 12, p. 3047-3054, 2004.

- ANDRIGHETTI-FROHNER *et al.* Synthesis, biological evaluation and SAR of sulfonamide 4-methoxychalcone derivates with potential antileishmanial activity. **European Journal of Medicinal Chemistry,** v.44, p. 755-763, 2009.
- ANVISA Agência Nacional de Vigilância Sanitária www.anvisa.gov.br

Reunião Anual da Sociedade Brasileira de Química, AS – 016, 1998.

- BOECK *et al.* Synthesis of chalcone analogues with increased antileishmanial activity. **Bioorganic & Medicinal Chemistry,** v. 14, p. 1538-1545, 2006.
- LUNARDI *et al.* Trypanocidal and leishmanicidal properties of substituition-containing chalcones. **Antimicrobial Agents and Chemotherapy,** v.47, n.4, 2003.
- NIELSEN *et al.* Antibacterial chalcones bioisosteric replacement of the 4'-hydroxy group. **Bioorganic &**
- RODRIGUES, A. T. et al. Síntese e ação antinociceptivo de chalconas substituídas. Livro de Resumos da 21ª

