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ABSTRACT

Highly distributed systems such as grids are used todaphé&oexecution of large-scale
parallel applications. Some characteristics of theseegysiare the complex resource in-
terconnection that might be present and the scalabilitg ifiterconnection complexity
comes from the different number of hops to provide commuiunaamong applications
processes and differences in network latencies and batidwide scalability means that
the resources can be added indefinitely just by connectam tb the existing infrastruc-
ture. These characteristics influence directly the way llghrapplications performance
must be analyzed. Current traditional visualization scletoehis analysis are usually
based on Gantt charts with one dimension to list the mordterities and the other
dimension dedicated to time. These visualizations arergéypeot suited to parallel ap-
plications executed in grids. The first reason is that theyewmt built to offer to the
developer an analysis that also shows the network topolbthyeaesources. The second
reason is that traditional visualization techniques dosuatie well when thousands of
monitored entities must be analyzed together.

This thesis tries to overcome the issues encountered aitidread visualization tech-
nigues for parallel applications. The main idea behind dforis is to explore techniques
from the information visualization research area and tdyafiyem in the context of par-
allel applications analysis. Based on this main idea, theish@oposes two visualization
models: the three-dimensional and the visual aggregatiodein The former might be
used to analyze parallel applications taking into accouatetwork topology of the re-
sources. The visualization itself is composed of three dsians, where two of them are
used to render the topology and the third is used to repréisesit The later model can be
used to analyze parallel applications composed of sevevakands of processes. It uses
hierarchical organization of monitoring data and an infation visualization technique
called Treemap to represent that hierarchy. Both modelgsept a novel way to visual-
ize the behavior of parallel applications, since they areetved considering large-scale
and complex distributed systems, such as grids.

The implications of this thesis are directly related to thalgsis and understanding
of parallel applications executed in distributed systelinenhances the comprehension
of patterns in communication among processes and impraegsassibility of matching
this patterns with real network topology of grids. Althouglk extensively use the net-
work topology example, the approach could be adapted witltosi no changes to the
interconnection provided by a middleware of a logical intemection. With the scalable
visualization technique, developers are able to look fotepas and observe the behavior
of large-scale applications.

Keywords: Parallel Applications, Performance Analysis, Visualiaat 3D Visualization,
Treemap, Scalability, Grid.






Alguns Modelos de Visualizac&o aplicados para a Andlise de Apacdes Paralelas

RESUMO

Sistemas distribuidos tais como grids sdo usados hoje matecacao de aplicacdes
paralelas com um grande namero de processos. Algumaserésticas desses sistemas
sdo a presenca de uma complexa rede de interconexao e d#isizala de recursos. A
complexidade de rede vem, por exemplo, de largura de banat&mcias variaveis ao
longo do tempo. Escalabilidade € a caracteristica pela muals recursos podem ser
adicionados em um grid apenas através da conexdo em unesinfitara pré-existente.
Estas caracteristicas influenciam a forma como o desemmmiaplicacdes paralelas
deve ser analisado. Esquemas tradicionais de visualiseod@sempenho séo usualmente
baseados em graficos Gantt com uma dimensao para listaadedidhonitoradas e outra
para o tempo. Visualizacbes como essa hao séo apropriadas paalise de aplicacdes
paralelas executadas em grid. A primeira razdo para tal @lgeendo foram concebidas
para oferecer ao desenvolvedor uma anélise que mostralad@pdos recursos e a re-
lacdo disso com a aplicagdo. A segunda razéo € que técréchsidnais nao sdo es-
calaveis quando milhares de entidades monitoradas deveanaéesadas conjuntamente.

Esta tese tenta resolver estes problemas encontradosrecatéde visualizacao tradi-
cionais para a analise de aplicacdes paralelas. A idéiaipainconsiste em explorar téc-
nicas da area de visualizacao da informacao e aplica-lasmexto de analise de pro-
gramas paralelos. Levando em conta isto, esta tese progdmddelos de visualizagéo:
o de trés dimensdes e o modelo de agregacéo visual. O pripmdeser utilizado para
analisar aplicacdes levando-se em conta a topologia dalosdeecursos. A visualizagao
em si € composta por trés dimensdes, onde duas sédo usadasogénar a topologia e a
terceira € usada para representar o tempo. O segundo modelsgr usado para analisar
aplicacdes paralelas com uma grande quantidade de prec&ae@xplora uma organi-
zagdo hierarquica dos dados de monitoramento e uma téanigsuhlizacdo chamada
Treemap para representar visualmente a hierarquia. Osmmiglos representam uma
nova forma de analisar aplicacdo paralelas visualmenta,u#&n que eles foram conce-
bidos para larga-escala e sistemas distribuidos compleso® grids.

As implicacdes desta tese estéo diretamente relacionadadise e ao entendimento
do comportamento de aplicacdes paralelas executadas temassdistribuidos. Um dos
modelos de visualizacdo apresentados aumenta a compretospadroes de comuni-
cacao entre processos e oferece a possibilidade de obsepadrdo com a topologia de
rede. Embora a topologia de rede seja usada, a abordagermgrataptada sem grandes
mudancas para levar em conta interconexdes légicas detbitdis de comunicag¢do. Com
atécnica de agregacao apresentada nesta tese, os deseorgs\sa0 capazes de observar
padrbes de aplicacbes paralelas de larga escala.

Palavras-chave:Aplicacdes Paralelas, Analise de Desempenho, Visualizaggualiza-
¢ao 3D, Treemap, Escalabilidade, Grid.






Quelques Modéles de Visualisation pour I'’Analyse des Applations Paralléles

RESUME

Les systemes distribués, tels que les grilles, sont wibsgourd’hui pour I'exécution
des grandes applications paralléles. Quelques carditjges de ces systemes sont I'in-
terconnexion complexe de ressources qui pourraient ésept et de la facile passage a
I'échelle. La complexité d’interconnexion vient, par exge) d’'un nombre plus grand de
directives de routage pour la communication entre les ggaeet une latence variable
dans le temps. La passage a I'échelle signifie que des ressopeuvent étre ajoutées
indéfiniment simplement en les reliant a l'infrastructureseante. Ces caractéristiques
influencent directement la facon dont la performance dekcapipns paralléles doit étre
analysée. Les techniques de visualisation traditionselbeir cette analyse sont générale-
ment basées sur des diagrammes de Gantt que disposem tieBstomposants de I'appli-
cation verticalement et metent la ligne du temps sur I'axizbatal. Ces représentations
visuelles ne sont généralement pas adaptés a I'analys@plesations exécutées en par-
allele dans les grilles. La premiére raison est qu’ellesnfzas été concues pour offrir
aux développeurs une analyse qui montre aussi la topologiésttau des ressources. La
deuxiéme raison est que les techniques de visualisatiditioranels ne s’adaptent pas
bien quand des milliers d’entités doivent étre analysésrabte.

Cette these tente de résoudre les problemes des technigdiéietinelles dans la vi-
sualisation des applications paralleles. L'idée prinigpst d’exploiter le domaine de la
visualisation de I'information et essayer d’appliquer sescepts dans le cadre de I'anal-
yse des programmes paralléles. Portant de cette idée,da fpinepose deux modeles de
visualisation : les trois dimensions et le modéle d’agiiégatisuelle. Le premier peut
étre utilisé pour analyser les programmes paralléles eantecompte de la topologie
du réseau. L'affichage lui-méme se compose de trois dimesisa deux sont utilisés
pour indiquer la topologie et la troisieme est utilisée paprésenter le temps. Le sec-
ond modele peut étre utilisé pour analyser des applicaparalléles comportant un trés
grand nombre de processsus. Ce deuxieme modéele exploitegaresation hiérarchique
des données utilisée par une technique appelée Treemapepoésenter visuellement la
hiérarchie.

Les implications de cette these sont directement licesnalyae et la compréhension
des applications paralléles exécutés dans les systemgbudis. Elle améliore la com-
préhension des modes de communication entre les procesausebore la possibilité
d’assortir les motifs avec cette topologie de réseau réalesigrilles. Bien que nous util-
isons abondamment I'exemple de la topologie du réseawpriahe pourrait étre adapté,
avec presque pas de changements, a l'interconnexion fparnin middleware d’une in-
terconnexion logique. Avec la technique d’agrégationdiseloppeurs sont en mesure de
rechercher des patterns et d’observer le comportemenpgésations a grande échelle.

Mots-clés: Applications Paralléles, Analyse de Performance, Visadln, Visualisation
en 3D, Treemap, Passage a I'Echelle, Grid.
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1 INTRODUCTION

Distributed systems are related to hardware and softwatectintain more than one
single processor entity (COULOURIS; DOLLIMORE; KINDBERG, 2005) such sys-
tems, processors are interconnected and communicate oet&wvark. The computer pro-
grams that execute in these systems are split into multgtes @nd must deal with dif-
ferent levels of parallelism and with communication pagaas, such as message-passing
and shared memory. A kind of distributed systems is gridsSFER; KESSELMAN,
2003. ISBN 1-558-60933-4.). They are often structured itugirorganizations (FOS-
TER; KESSELMAN; TUECKE, 2001), possibly composed by thousaafimachines
distributed geographically. Two examples of this type aiteyn are the french Grid’5000 (BOLZE
et al., 2006) and the american TeraGrid (CATLETT, 2002).

Characteristics shared by almost all grid platforms are ohysia, heterogeneity of re-
sources and software, and presence of multiple adminigmdmains. Dynamism means
that the resources that participate in the grid can be uladlaiat any time, without any
prior notification of that. Parallel applications must dedth that in the application-level
or through a middleware capable of handling resources fitictos. The heterogeneity
means that different configurations of resources can beeptas the same grid infras-
tructure. This is also valid for software libraries and meldares. A grid can be scat-
tered through multiple administrative domains, each panidted independently by their
administrators. Besides these characteristics, a gridtralgb have a complex network
interconnection and be easily extensible in terms of ressur

The interconnection among resources of a grid can be cordpafsdifferent types
of networks. They include Ethernet, Myrinet, Infiniband optical fiber technologies. A
model of a grid with several types of interconnection is akttgs grid (KONDO et al.,
2004), like the projects BOINC (ANDERSON, 2004) and Seti@hddEDERSON
et al., 2002), where the network is the internet. Anothemgda for the presence of
multiple types of interconnection is a lightweight grid, @vk a strong hierarchy is used
to interconnect a set of homogeneous clusters of compuB&E4E et al., 2006). The
presence of several interconnections come from the ndtatatogeneity and geographic
distribution characteristics of grids. These aspects sephigher network complexity,
greater number of hops to provide communication among egipdns processes, and in-
creasing differences in network latencies and bandwidth.

Grid platforms are also easily extensible. New resourcesbeaindefinitely added
just by connecting them to the existing participants. Ugutiese additions bring more
heterogeneity to the grid and increment the network conifgleXs of today, there are
global grids that are composed of several thousands of ctargsuch as the example
of BOINC. Another example of how easy it is to add new resourgesdrid is the case
of Grid’5000, where new clusters and sites can be added tontie backbone of the
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infrastructure. The extensibility of these grid platforres good characteristic from the
point of view of parallel applications, which need an inieg amount of resources to
complete their execution faster.

All these grid characteristics influence directly the bebiewf the parallel applications
during their development and execution. Because of this,important for the developer
to understand the impact of the distributed system on thécapipn. An example of this
type of analysis is the observation of application monitgrilata with information from
the network topology. The application can have a better asevperformance, depend-
ing on which resources are chosen and the interconnection@them. This influence is
even more evident when network aspects are consideredasueltency or bandwidth,
on network-bound parallel applications. The grid exteitisfis another aspect that influ-
ences directly the behavior of applications, becausengravailable new resources for
the application might not always result in a better perfarosa

Considering these situations, we can notice that it is ingmbiio analyze the parallel
application behavior along with information about the gedources. This analysis can
help the developer to understand the impact of the netwg@légy on the application
behavior. Comparing, for instance, the communication patté the application with
the network topology can give hints to the developer to ati@application in order to
better exploit the interconnection. Moreover, if the neatkvis hierarchically organized,
the applications can follow the hierarchy to avoid bottlekseA good analysis must also
lead to conclusions about all processes of parallel agpits, including global and local
patterns that can appear among them. If the number of presésdarge, the analysis
must also scale.

Visualization is a way to perform the analysis of parallgblgations. It has been ex-
tensively used through the last 30 years to understand asehabapplications that are
developed with different levels of parallelism. The moatiitional way of visualizing ap-
plication behavior is through an adaptation of Gantt ch@ME.SON, 2003), also known
as space-time graphics. They list the components of thecagiph vertically and their
evolution over time is placed on the horizontal axis. Exaaghat provide this kind of
visualization are Pajé (KERGOMMEAUX; STEIN; BERNARD, 2000),pir (NAGEL
et al., 1996) and many others (ARNOLD et al., 2007a; KAZI et2000; PILLET et al.,
1995). This visualization is already widely used in exigtarchitectures, such as clusters,
where data is simpler and uniform.

Many of these tools were adapted to observe the behaviorgicapons of highly
distributed systems like grids. Generally, they keep ongithe same visualization tech-
nigues. Considering only the space-time representatienirt issue that arises is that
they cannot represent, together with the application dagacomplex network topology
of grid systems. As discussed, the impact of the network ataba excluded from an
application analysis when a complicated interconnecsqgmrésent among the resources.
The second problem is the visualization scalability of tpace-time approach. Using
such representations, the number of components of thecagiph that can be visualized
in a screen is limited to the vertical resolution of the soree

This thesis tries to overcome the issues encountered aitidraad visualization tech-
niques for parallel applications. The main idea behind diorts is to explore techniques
from the information visualization research area and tdyayem in the context of par-
allel applications analysis. Based on this main idea, theishroposes two visualization
models: the three-dimensional and the visual aggregatiogem The former might be
used to analyze parallel applications taking into accouatetwork topology of the re-
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sources. The visualization itself is composed of three dsians, where two of them are
used to render the topology and the third is used to représeat The later model can

be used to analyze parallel applications composed of davenasands of processes. It
uses hierarchical organization of monitoring data and &rmmation visualization tech-

nique called Treemap (SHNEIDERMAN, 1992) to represent tieinchy. Both models

represent a novel way to visualize the behavior of parajpglieations, since they are
conceived considering large-scale and complex distribsystems, such as grids.

The implications of this thesis are directly related to thalgsis and understanding
of parallel applications executed in distributed systelinenhances the comprehension
of patterns in communication among processes and impriovepdssibility of match-
ing them with real network topology of grids. Although we exsively use the network
topology example, the approach could be adapted with alntoshanges to the intercon-
nection provided by a middleware of a logical interconr@ttiwWith our scalable visu-
alization technique, developers are able to look for pastand observe the behavior of
large-scale applications.

In this work, we are considering parallel applications tinéénd to obtain high per-
formance in grid environments. Additionally, these apgtiiens must be composed of
processes that intercommunicate during the executioneapiplication, either as point-
to-point communications or collective operations. Eaatpss is composed of functions
related to calculations or to communicate with other preessBesides this, we also con-
sider that the number of processes of the same applicatiosazde up to a large number.
To analyze these applications, we consider that tracesecgaterated during application
execution. A trace is divided in timestamped events, ea&hidentified by a type and
additional information according to this type. Severaypf events might be registered,
for instance, the start and end of functions, the commuioicgtand so on.

The text of the thesis is composed of six chapters, as follows

Chapter 2: Visualization of Parallel Applications
This Chapter presents works related to this thesis. It stattsa historical presen-
tation of tools since their first use to analyze computer o, then goes to the
description of some of them. The Chapter ends with a summawysaglization
techniques, classified according to three types accordirnge information they
represent.

Chapter 3: The Three-Dimensional Model
This Chapter presents the three dimensional model. We fisstithe its visual con-
ception, detailing the components and concepts of the Axalimation. Afterwards,
we describe the abstract model that is conceived to gentvage visualizations.
During this description, we detail three different cased tan be rendered with the
approach to help the performance analysis of parallel eajpdins.

Chapter 4: Visual Aggregation Model

The fourth Chapter presents the visual aggregation modgdosed in this thesis to
be combined with the treemap representation so the analysasallel applications
can be done with a large number of components. The Chaptedétatls how
monitoring data can be hierarchically organized, thenésgbrough the description
of the proposed Time-Slice algorithm and the aggregatiodehdhe Chapter ends
with the use of the treemap technique to visualize the hoares created by the
proposed algorithms.

Chapter 5: Triva Prototype Implementation
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The fifth Chapter presents Triva, a prototype that includesirtiplementation of
the three-dimensional and the visual aggregation modeérfopmance evaluation
of some Pajé components is included in the beginning of thegpn, in order to
introduce the use of these components inside Triva. Th@fés¢ Chapter presents
the implementation decisions and the description of thers¢modules, such as the
DIMVisualReader, to read traces, the TrivaView, to the 3Dmggand the TimeS-
liceView, related to the aggregation model.

Chapter 6: Results and Evaluation

The sixth Chapter presents the results obtained with tha prietotype and its eval-
uation, through a set of synthetic and real scenarios statthe main benefits of the
proposed approaches. A traces description is given in tgmiieg, detailing the
synthetic, KAAPI and MPI traces used in the experiments awl they were ob-
tained. Then, we present the resulting 3D visualizationsl@esd by the prototype
and finish the Chapter with the presentation of several treemdiose hierarchies
were created by the Time-Slice and aggregation algorithm.

Chapter 7: Conclusion

The main contributions of this thesis are reminded and thspeetives that are
opened by its concepts are detailed.
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2 VISUALIZATION OF PARALLEL APPLICATIONS

The main objective of the performance analysis of prograns improve the behav-
ior of applications. This analysis is more complex in a dafalr distributed execution
environment, since there is a large number of variablesiifiaence the execution of the
applications. Common problems are network contentionsigoeicks, dead-locks, and so
on.

The performance visualization of parallel applicationansalternative to perform the
analysis. It explores graphical representations and tqube to represent the applica-
tion behavior. A lot of efforts have been applied in the depetent of new visualization
schemes and techniques in the last 25 years. Most of thidogewent is focused in the
adaptation of the visualization techniques to new progrargrparadigms and libraries
for parallel applications. An example of that is the appeeesof the MPI Standard, in the
middle 90’s, and the development of large-scale clustarghis Chapter we present the
techniques and tools that contribute to the area of perfocaaisualization of parallel
applications.

The Chapter is organized as follows. We start by describiegetiolution of perfor-
mance visualization tools in Section 2.1, including a datren between the tools and
their creators. In Section 2.2, we detail a representaéivefshese tools, based on the in-
novative visualizations they provided when they were li@dd. The Chapter ends with a
classification of the visualization techniques, in Secd$ and a summary of the Chap-
ter.

2.1 Historical Evolution

The history of visualization tools for program analysis ligsely related to the first
successful appearance of graphical user interfaces in ¥88vthe release of the Macin-
tosh, by Apple. With a wider availability, graphical intackes have begun to be explored
by a series of projects in the United States, almost at theegame. Figure 2.1 depicts
a timeline view of a selected set of visualization tools fargllel program analysis. The
timeline covers almost 25 years, from 1985 up to now. The ysapciated with each
visualization tool is only an approximation based on pudilans and technical reports.

The first known project that discusses the possibility ohgsiraphical analysis for
the comprehension of parallel programs is the Programmmddrestrumentation Environ-
ment for Parallel Processing — PIE (SEGALL; RUDOLPH, 19&veloped at the Uni-
versity Carnegie-Mellon. Although the project has startetid85, first results showing a
complete use of visualization techniques of PIE have agpleanly in 1989 (LEHR et al.,
1989). The IPS (MILLER; YANG, 1987; YANG; MILLER, 1989) propes, in 1987, a
hierarchical model for constructing parallel applicasolts second generation (MILLER
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et al., 1990) features an interactive user interface wigiplgics showing resources metrics
that were registered during program execution. On top ofitarchical model proposed

by IPS, the second generation presents graphics with @iftdrierarchy levels, such as
machines, processes and threads.

= ™
o 0 =3 9 -
o ~ || o
ollu > © o o o ollo
g 8 — o) N N 8 oo
== 25 = 2 5N LS
olls 181515 313 2:/8= &2s 8% |£ |35
® || o o ol & A o b= o 8 S L ||
o) o) © — < c HE o _ © n
2119 A= > || iD. c 1511« N| © 3 [=2] =
-1 QO ] - - S < (O - x"o- 5} k=

TTRRNY) Nl s % 2119 I =} N < = c||l®
Tl wi|cs|| 2 8|2 5 E T 5 e S| e
= a|ajF Q|| < o > o > R =aR7s
| | | >

1985 1995 2005

Figure 2.1: Timeline of significant visualization tools foarallel program analysis.

ParaGraph (HEATH; ETHERIDGE, 1991), initially developedtla¢ University of
lllinois, is a software that provides a detailed, dynamiepdical animation of the behav-
ior of message-passing parallel programs and graphicaisuies of their performance.
At least 25 different types of views are available for the eleper to understand the
application behavior. Their authors were the first to useténe “simulation” to mean
graphical animation, stating that there is nothing artafiabout the analysis, but that the
behavior of the application is reconstructed with a simafabased on real trace data. Its
implementation uses the Portable Instrumented Commuaicatbrary — PICL (GEIST
et al., 1990) as data source. Because of this dependence ontRétbol was considered
limited since it was not possible to analyze other types odlpe applications, such as
the ones with multiple threads or a combination of messagsipg and threads.

The first effort in direction of a more general-purpose tqears in TraceView (MAL-
ONY; HAMMERSLAG; JABLONOWSKI, 1991). The notion of a generalipose tool
was developed to avoid a particular trace format, a speciéicigion paradigm or execu-
tion system. According to the authors of TraceView, the ieckure of the tool is flexible
enough to select different analysis and display altereatibut rigid enough to combine
these alternatives based on the resources of the tool.

The evolution of parallel computer systems and larger apptins presented new
challenges in terms of performance visualization. The fost to address this issue is
Pablo (REED et al., 1993). The tool is built as a series of auenected components.
As trace data moves through these components, it is tranetbin a way to provide
different views. The development of the tool brings the s of SDDF (AYDT, 1993),
a self-describing trace format.

AIMS, for Automated Instrumentation and Monitoring Systesma toolkit developed
at NASA in 1994 to facilitate the performance evaluation afgslel applications via mea-
surement and visualization of execution traces (YAN, 19®%4has four main compo-
nents: a source-code instrumentor; a run-time performarwetoring library; two trace-
file analysis tools and a trace post-processor to competisatatrusion caused by the
tool in the application execution.

The main characteristic of Paradyn (MILLER et al., 1995his Performance’s Con-
sultant that helps the developer to dynamically set insémgation points in the parallel
programs. By doing this, the authors argue to improve sdalaby reducing intrusion
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problems during application execution. Paraver (PILLE3lgt1995) also appears in 1995
and offers the possibility to choose different filters teeselwhat is going to be displayed.

Vampir (NAGEL et al., 1996), by Pallas GmbH, is a commerciatmalization tool for
the analysis of parallel applications following the MPIrgfard. It offers to the developers
a wide range of graphical views, such as state diagramsijtgatharts, timeline displays
and so on. It also has flexible filter operations to reduce theumt of information dis-
played. The tool has been improved with techniques suchedsi¢inarchical visualization
in time-space diagrams (BRUNST et al., 2001) to handle lapgéications.

Annai (CLEMENCON et al., 1996) is an integrated environmentgerformance vi-
sualization of applications developed with High PerforecaRortran and with MPI.

In 1999, Virtue (SHAFFER et al., 1999) brings to the perfonceavisualization new
concepts where human sensory capabilities are explorédan8D immersive visualiza-
tion. At the same time, the development of MPI results in tist fumpshot visualization
tool (ZAKI et al., 1999), developed in Java. Jumpshot is thawgion of the first MPI
analysis tool of the same team. The new version contains d@eauaf enhancements in
order to make it suitable for large-scale analysis. Jumipistgiill in development and is
now in its fourth version. The general purpose visualizatam| Pajé (STEIN; KERGOM-
MEAUX; BERNARD, 2000), presented in 2000, proposes a file forwiliout semantic
and strongly related to visual objects. The tool is extdasinteractive and scalable, be-
ing capable to visualize any kind of monitoring data that bardescribed in its format.
Kojak (MOHR; WOLF, 2003) appears in 2003 and is developed leyXhlich Super-
computing Center in Germany. It supports programming mosiete as MPI, OpenMP,
Shared memory and combinations of them. Its main idea isutwraatic search of event
traces that indicate inefficient behavior. The results aesgnted with a graphical user
interface. Also in 2003, the ParaProf (BELL; MALONY; SHENDE)03) is presented
as a portable, extensible and scalable tool for paralldbpeance profile analysis. The
idea of Paraprof is to gather in the same tool the best capadirom all previous perfor-
mance analysis tools. The Projections tool (KALE et al.,®0Mhtroduced as a prelimi-
nary study in 1992, but only available around 2005, is deyedicto visualize the behavior
of Charm++ (KALE; KRISHNAN, 1993) parallel applications. las multiple views and
techniques to reduce the amount of trace data.

More recently, in 2007, the TuningFork (BACON et al., 2007)pprses visualiza-
tion techniques to analyze large-scale real-time systéitisough not directly related
to the analysis of parallel applications, many of the protddaced by TunningFork are
the same of traditional parallel applications. Exampleshete problems are trace col-
lection, very large traces analysis, vertical integratdrdata, and so on. Another tool
is StreamSight (DE PAUW; ANDRADE; AMINI, 2008), a tool develed to understand
the dynamic behavior of streaming applications. It has Hikyato visualize applications
with thousands of nodes and interconnections.

As a conclusion, we can notice that the first tools were mamtysed in the way
applications should be instrumented. Dynamic and aut@anragtrumentation techniques
were also proposed. Then, the focus moved to more generahaddlar tools that are ex-
tensible to other programming paradigms. The visualipatézhniques evolved rapidly
in the beginning and are continuously explored till todaycéte tools try to solve the
problem of visualizing enormous amount of data, actingadiyewith reducing and ag-
gregation mechanisms or with new visualization schemessilgport more data to be
represented.
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Mapping Tools to Authors

The timeline evolution of performance visualization toatgyether with their respec-
tive authors, can be used to analyze how the research areadiasd in the last 25 years.
Figure 2.2 shows a mapping between performance visuaizébols and their authors.
Some authors created more than one tool over time, imprdhm@rea of performance
visualization analysis. An example is Barton P. Miller, wiashwvorked in the IPS project
and is active today working in the same area, with the Par&atyin Another author that
is still active in the research area is Allen D. Malony, whdlBB1 proposed TraceView
and currently is working in the TAU’s ParaProf performancaualization tool.
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Figure 2.2: A mapping between performance visualizati@fstand their authors.

Another possible analysis of Figure 2.2 is to check wherédbks and their ideas have
been proposed. Up to 1995, all performance tools of the Eigame from two places: the
University of Wisconsin, Madison (as it is the case of BartoMMer, after finishing his
Ph.D. at the University of California, Berkeley) and the Umsrgy of Illinois at Urbana-
Champaign (Michael T. Heath, Allen D. Malony and Daniel A. Reddter 1994, with
the definition of the MPI Standard at the Argonne Nationaldrakory (ANL), the area
of performance visualization starts to be explored in offlaces: Vampir in 1996 and
Kojak in 2003, in the Julich Supercomputing Center in Germdmynpshot in 1999, at
the Argonne National Laboratory in the United States; Rafi00, in the ID Laboratory,
France and at the Federal University of Santa Maria, Bramilekample.

2.2 Some Performance Visualization Tools

A lot of efforts have already been made in the performanceadigation area by dif-
ferent research projects. These efforts resulted in a deradble amount of visualization
techniques, from specific tools attached to a programmingdigm, to more generic or
evolutive tools that have been adapting to new challengeé®anlutions of the high per-
formance domain.

The positive side of specific tools is the number of usersiti@eases rapidly, since
they do not need to learn too much to use them. Their main drelybhowever, is that
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they might become obsolete shortly. This is usually caugedriew parallel programming
paradigm that cannot be represented in the tool, or by stigtabsues, when the tool is
no longer able to handle an increasing amount of monitorétesnfor instance. On the
other side, generic or evolutive tools live longer, but thesie stays limited because users
must continuously learn to keep up with their changes, ortrspsnd more initial effort
in learning how to use them.

We present here some performance visualization tools tbet developed by differ-
ent performance research groups. Although the list of ta@slescribe here is not ex-
haustive, we think that they represent well the state of thefahe area of performance
visualization. Some of them are no longer supported, suétaesGraph, TraceView and
Pablo. Some are still under development and available &cdmmunity. For all of them,
we present the more relevant ideas, especially the onasddtavisualization techniques.

2.2.1 ParaGraph

ParaGraph (HEATH; ETHERIDGE, 1991) was initially develomdhe Oak Ridge
National Laboratory, in Tennessee, United States. AftedsjaParaGraph started to be
hosted and developed at the Center for Simulation of Advameckets, at Urbana-
Champaign.

The tool is the first to use the term simulation during the toeaof a visual repre-
sentation of trace data. The term is used because the totd hasreate the behavior of
the application based on real events collected during tha&lpbhapplication execution.
This behavior is then visualized through different viseation techniques, some of them
illustrated in Figure 2.3. The first implementation of Paragh was able to visualize only
message-passing parallel programs developed with the RBELST et al., 1990) com-
munication library, through the use of specific functionsttexchange messages among
processes. In the beginning, this coupling between PapdGrad PICL was seen as posi-
tive, because the cycle of development, execution and sisalias straightforward. How-
ever, as new communication libraries have started to appiéabetter performance, the
coupling between ParaGraph and PICL became a limitatiorgusecthey were attached
to a specific communication library. After the appearancthefMessage-Passing Inter-
face (MPI) specification (GROPP; LUSK; SKJELLUM, 1994. ISBN262-57104-8.),
around 1994, the PICL evolved with a new trace format and iemamed to MPICL,
addressing parallel applications developed followingNt# specification.

The architecture of ParaGraph is based on events. The vigpr@sentations are up-
dated as new events are read from the trace files. The toslisahsidered as an interac-
tive interface, the user has access to more than 25 disglaiegorized in three families:
utilization, communication and tasks. If the user decidegitualize more than one dis-
play at the same time, they are kept synchronized. Besidgghkedimit for visualization
of most displays is 512 processors.

The utilization family is composed by 7 displays: the utilization count, showirgy th
total number of processes in each of three states (busyheagrand idle); the Gantt
Chart, showing the activity of individual processors thriougne; the Kiviat Diagram,
that gives a geometric representation of the utilizatiomdividual processors and the
load balance across all processors; the Streak, showiightasof patterns in parallel
programs or imbalances among the processors; the Utidliz&8ummary, showing the
cumulative percentage of time that each processor spersicim @f the three states; the
Utilization Meter, that shows the same information as thkzation count, but saving
screen space; and the Concurrency Profile, showing the pageeaf time that a set of
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Figure 2.3: Four different visualizations of ParaGraph.

processors remained in the same state.

The communication family of displays has 10 different views. The Communication
Traffic, showing the total traffic in the communication systas a function of time. The
Spacetime Diagram, showing the interactions among process a function of time.
Message Queues, which is a graph showing the evolution obeuwf buffer messages
through time. Communication Matrix is a two-dimensionaégnwhere rows and columns
represent processors and each position in the matrix mpiea communication between
two processors. The Communication Meter uses a verticahbairtdicates the amount of
communications in transit (sent but not received). The Aation display shows a graph
where the nodes are the processors and the arcs are the carathamamong them. The
nodes can be arranged in pre or user-defined configuratigperelibe is another display
that looks like the animation display, but focused on hypbkes. The Network display
shows the path that each message takes to go from one protesswther, including
routing through intermediate nodes. This display needpalégy description to be ren-
dered. Node Data presents statistical data in graphicad, feuch as given variable of the
application in function of time. The last one is the Color Codpldy, helping to define
colors that are used through the other displays. The Ananaind Network display of
ParaGraph are limited to 128 processors, because of tlgtiehdetail level. Hypercube
is limited to 16 processors and the Node Data is limited to@®8essors.

Summarizing, ParaGraph’s utilization and communicatimpldys only show infor-
mation about the processors used by the parallel applicalivetask family of displays
intend to give developers more insights about the reasondémose behaviors, showing
application details. The events shown by these displays beugenerated by parallel ap-
plication developers, through instrumentation of pargtegrams. Among the available
displays, users have the count, gantt, status, summaragssf hey use the same visual-
ization techniques of the communication family of displays showing application-level
traces.

Besides these three types of displays, ParaGraph has alfweaset of views that
does not fit in one of these types, or fit in more than one typeowgrnthem, there is
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the Critical Path display, which is a variant of the spacetthsplay, showing a different
color coding to highlight the longest serial thread in theaial computation. ParaGraph
architecture has also the ability to receive new displaygpoesent in different ways the
traces.

The main contribution of ParaGraph is the large set of vigaabn techniques that
could be applied to the same set of traces. Even if appliedawacale up to 512 pro-
cessors with some techniques, the visualizations developide tool have inspired sub-
sequent tools.

2.2.2 TraceView

TraceView (MALONY; HAMMERSLAG; JABLONOWSKI, 1991) is a tracasual-
ization tool developed at the Center for Supercomputing Resesnd Development, at
Urbana-Champaign, United States. The main idea behind Viewsas to be a general-
purpose trace-visualization system. To achieve thatablesses the concept of visualiza-
tion session, defined as a hierarchical structure with tleneds: the trace files, the views
and the displays. There is also a session management coniploaiehelps users to define
the specific hierarchical structure needed for the anabfgis/en set of trace files. Trace-
View avoids semantic interpretation of the actions regésten the events, meaning that
the tool can adapt to different types of traces. In terms sdialization, TraceView offers
two types of display, both based on gantt-charts: the GarartGNidget and the Rates
Display. The former creates a visualization focused oredtansitions of processes; the
latter displays the number of times a given state is entered.

As conclusion, TraceView was the first to mention the gerpuapose idea in trace
visualization systems. The term “general” was used by its@s to mean the way trace
files, views and displays should be organized, to build atyaisaenvironment.

2.2.3 Pablo

Pablo (REED et al., 1993, 1992) is a performance analysis@anwient designed to
provide performance data capture, analysis, and pregamtéttis developed at the De-
partment of Computer Science in the University of lllinoistabana-Champaign. The
tool is conceived to support portability, scalability andemnsibility.

The tool is composed of different modules that can be intereoted as a graph. The
modules are responsible for data transformations thatrgenperformance metrics for
the analysis. There are modules for operations like selecérithmetical and logarithm
operations, statistical functions and so on. Besides thatlpRromes with components
to read and write trace files. The user of Pablo is then redpen®r visually arrang-
ing a graph of these modules in order to analyze the tracésnddules developed for
Pablo have no semantics, working with any data that is dailay the reading modules,
independent of what they mean.

Input files of Pablo must conform to the SDDF format (AYDT, B%9The format is
also used internally by the tool. With that, the user canchtta any module an output
trace file writer that will write in files the results obtaingdthe middle of a performance
analysis.

In terms of visualization, Pablo offers different techrequo represent the perfor-
mance data generated by the graph of modules. Basic chartsdilgraphs, bubble, strip,
and pie charts, contour and interval plots are availabléhferuser by attaching them to
the output of a module. Other visual representations, sdntkeon already present in
tools such as ParaGraph (see Section 2.2.1), like matgagis and kiviat diagrams, can
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also be used. A notable visualization technique, preseattin time of its creation, is the
3-dimensional scatter plot: the technique is used to shicthveasame time, three different
performance metrics.

Pablo’s main contributions are the use of trace files in th®BEbormat, and its in-
ternal organization in modules, allowing extensions to la@en Its drawback, however,
is related to the way these extensions must be develope® aihmodules must be inte-
grated in the same binary to make the tool work.

2.2.4 Paradyn

Paradyn (MILLER et al., 1995) is a tool to measure the peréoroe of large-scale par-
allel applications. It is developed at the University of ¥asin, Madison, in the United
States. The main idea of the tool is to support the dynamicuneentation of parallel
applications in order to be less intrusive and to avoid gatireg trace data for regions
of parallel code that are not under analysis. Paradyn atse & be scalable, to provide
well-defined data abstraction, to support heterogeneovisobements and to offer open
interfaces for visualization and new data sources.

Perhaps the more interesting idea of Paradyn is the dynasiimimentation of par-
allel programs. It works by inserting instrumentation fsito detect general high-level
performance problems. If a problem is found, Paradyn irsgg¢éhe instrumentation level
in those areas that are presenting performance issues. ef@ditbof this technique of
instrumentation is that it decreases the intrusion caugathbhecessary code insertions,
with the drawback of being tightly related to the parallebgmamming paradigm used.
This technique is implemented within Paradyn through it§dPsmance Consultant, an
implementation of the W3 Search Model (HOLLINGSWORTH, 1994)

In terms of visualization, Paradyn has a set of pre-defireattistrd visualizations, like
time histograms, and bar graphs. Some examples of thesasthrniews are in Figure 2.4.
According to Paradyn’s authors, the process of adding newalizations to the tool is
easy because of a special mechanism dedicated to that. itnelt=r of the visualizations
runs as a separate process. It can contact Paradyn’s maespes to collect data, which
is stored in a data structure called a time histogram. Andtegure of its visualization
system is that Paradyn can incorporate displays from otwds such as ParaGraph and
Pablo.

Barchart Visualization 3D-Histogram Display
ﬁ “ Tr i - - - e
File Actions View | yn: File View v
Phase: Global From top: 60.000 degs e |: o From x-z: 30.000 degs
anneal.c Ji cpu
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I
graph.c
outchan.c -
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Figure 2.4: Two visualizations of Paradyn, including theldBtogram (at right).

The time histogram visualization of Paradyn plots perfarogadata for metric over
time. The horizontal axis represents time and the vertixial )@present the metric that is
currently being observed. Several metrics can be analyzéte aame time, and in this
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case, the vertical axis receives different scales to reptesach of them. The number of
metrics displayed at the same time is limited to eleven. PPgremd zooming within time
histograms are possible through the use of scroll bars attdrisuin the graphical user
interface. With that, users can navigate over time to seevbkition of each metric. The
barchart visualization enables the visualization of dateeal-time and it is designed to
view a considerable amount of metrics. The drawback of tiei s that it has no histori-
cal representation. The display has as horizontal axisiffezeht metrics being analyzed
and in the vertical axis the different components of the Ifgrapplication, for example.
The third standard display of Paradyn is the Table VisuabnaThe view actually shows
the data textually: columns are metrics and rows are parteeapplication, typically
source files or a specific function. The data in the table istgutlin real-time. The fourth
display of Paradyn is the 3D “Terrain” visualization. Itadls the performance data to be
analyzed using a surface rather than curves, as in the tstaginam, or bars, like the bar-
chart visualization. The three dimensions allow the vigadon of two different metrics
at the same time and their evolution over time.

The Paradyn visualization tool is still developed at theaBlgn Parallel Tools Project,
with publications in 2008. New developments of the tool ilde STAT — Stack Trace
Analysis Tool (ARNOLD et al., 2007b) and challenges to pedestool development (LEE
et al., 2008). Paradyn’s main contribution is the dynamstrummentation of parallel ap-
plications. This idea was materialized through the W3 Sebfotel. Besides that, it is
important to notice that the tool is available for at leastygdrs, since its conception in
1995.

2.2.5 Vampir

Vampir (NAGEL et al., 1996) was initially developed at thdidln Research Center
in Germany, but later on transformed in a commercially adéd tool managed by Pal-
las GmbH. The tool appears after the definition of the MPI d&ad, being one of the
first tools to be able to visualize the behavior of MPI patadpplications over time.
After its creation, Vampir development goes toward scaaplalysis of parallel applica-
tions (BRUNST et al., 2001) and to analyze hybrid OpenMP/M#iliaations (WOLF;
MOHR, 2003). Some of the visualizations provided by the toeldepicted in Figure 2.5.

Vampir has a set of flexible filter operations, which are usectiuce the amount of
information displayed and to help its users to spot morelyepsirformance problems.
Another feature of Vampir is the possibility to read traceadiat is distributed across
many computers, in a cluster or grid-like environment.

In its efforts to turn the tool more scalable, the Vampir tedgmeloped a hierarchical
visualization based on Gantt charts (BRUNST et al., 2001)hisview, users navigate
through data in different levels of abstraction such aselumachine, process and thread.
The technique they propose attacks a major problem of Ghatts; where the vertical
size of the screen is a limit to the number of entities thattemanalyzed at the same time.
Without this technique, Vampir is able to analyze up to 20fependent objects at the
same time. When applied, it allows the visualization of as1d®000 processing entities,
even if only 200 are shown on the screen at the same time. Enarbhical structure of
their model allows up to 3 layers. This hierarchical viseatiion works for timelines and
statistical displays of Vampir.

The performance visualization available in Vampir can badeid in different cate-
gories: single time system snapshots, when data for a pbiimhe is shown graphically;
animation, giving the users the possibility to analyze diggstep the dynamic behavior
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Figure 2.5: Visualizations of Vampir, using the matrix tejue (top left and top right) to
summarize communications and its Gantt-chart (bottom).

of the application under analysis; statistics, that are ablsummarize system behavior
for the interval of time under investigation; and a timeelgystem view, showing detailed
system activities with a time axis. The visualization teges applied include matrix
chart, summary chart, Gantt-charts, summary timeline andter timeline.

Vampir is the tool available commercially. It uses a spediface format and a set of
programs that can be converted from other formats to the see Iy the tool. Its space-
time view attacks the scalability problem by proposing adaggregation mechanism to
reduce the amount of data that is visualized at one time.

2.2.6 Virtue

Virtue (SHAFFER et al., 1999) is developed at the Universityllinois at Urbana-
Champaign. The main objective of the tool is to offer an imnversisualization envi-
ronment for the analysis of performance data from paralpglieations. It is the first
attempt to use virtual reality in the performance analysisdin. The tool connects to
Autopilot (RIBLER et al., 1998) to receive its monitoring datad helps the performance
analysis by trying to enhance rendering with human sensampgluilities.

As visualizations, Virtue offers three types of 3D visuation, depicted in Figure 2.6.
The first is the wide-area geographic display, where nodegpkaced following their
geographic location. The second is the time-tunnel disghpwing a cylinder where
the internal part of the cylinder is used to represent psmssstate evolution over time
and chords illustrate cross-process interactions. Theddke call-graph display, which
forshows in a 3D space the functions that were executed andath procedures among
them.

Although not further explored, Virtue is the first to try toeugirtual reality combined
with 3D graphical representations in the analysis of paralpplications. It was developed
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Figure 2.6: Virtue’s 3D visualizations, from left to righthe wide-area, the time-tunnel
and the call-graph displays.

by the same team that created Pablo (see Section 2.2.3).

2.2.7 Jumpshot

Jumpshot (ZAKI et al., 1999) is developed at the MathematimsComputer Science
Division at the Argonne National Laboratory, in the Unite@t8s. Its authors have par-
ticipated in the development of the MPI specification andrilease of the first draft.
Currently, the development of the tool is attached to the MPiGplementation of MPI.
The tool is written using Java, designed to receive a file &anwvith time-stamped events.
Initially, the file format to be used was called CLOG. With thelaition of parallel and
distributed systems, especially related to scalabilisyés, the file format also evolved
to SLOG, and now SLOG-2 (CHAN; GROPP; LUSK, 2008). Jumpshota® in its
fourth version, providing accumulative enhancements sisgbreviews to increase detail
as needed in the timeline window.

Jumpshot offers the traditional package of visual grapbesh @s histograms, accu-
mulative state durations and series of zoomable and sbleltanelines. Two examples
are available at Figure 2.7. A more specific type of visuéilirais called the "mountain
range" view, showing the aggregate number of processesimsate at each time.
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Figure 2.7: Histogram and Gantt-chart view of Jumpshot.
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Probably the most evident contribution of the Jumpshogsédaols is that it is tightly
coupled with a MPI implementation. This facilitates its dieseMPI users, since a small
period of time is needed to understand the way the tool works.
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2.2.8 ParaProf

ParaProf (BELL; MALONY; SHENDE, 2003) is a portable, extdisiand scalable
tool for parallel performance profile analysis. It attemjatsinite, as its authors say, the
“best of breed” capabilities already proposed in otherdo®he tool was initially focused
on profiling techniques, rather than using tracing techescas other tools did. Today, the
tool is able to deal with traces gathered from parallel ajapion executions. The group
that develops ParaProf has also proposed a framework farndating (HUCK; MAL-
ONY, 2005). ParaProf is integrated in a bigger project nafifdd — Tuning and Analysis
Utilities, that is being developed jointly by the Univeysiof Oregon, Los Alamos Na-
tional Laboratory, in the United States, and Julich Rese@ettiter, Germany.

The architecture of ParaProf has four key components: the Sa@urce System (DSS),
the Data Management System (DMS), the Event System (ES}harMsualization Sys-
tem (VS). Well-defined interfaces are used for each compaeethey can interact with
each other at the same time they run separately. This orgémzallows the tool to be ex-
tensible and flexible, enabling the evolution of the tool tikes programming paradigms
and new techniques.

The visualization system component of ParaProf’s arctuteds responsible for cre-
ating visual representations of the data. They are basedwa2D, but 3D visualizations
are also present to represent profile data. There are foegaades of visualization in the
tool: 3D-visualization, thread based displays, functiasdd displays, and phase based
displays. The 3D visualizations are rendered using Operdétvirare acceleration tech-
niques. Each window has rotation, translation and zoomapgbilities. There are three
types of visualization in this category: the Triangle Me#bt Rhat shows two metrics for
all functions and all threads. The height represents onecreetd the color another. The
resulting visualization creates a surface where data iesepted; the 3D Bar Plot, that
works like the mesh, but using bars; and the 3D Scatter Plat,uses points instead of
mesh or bars. The other category is the Thread Based, withes sérgraphs that show
statistics of the application and also a call graph, alltegldo the threads of the parallel
application. The third category is the function based digp| composed of two views that
show statistical data: a function bar chart and a functistolgram. The fourth category
is the Phase Based displays, focused on showing statistitafidm pre-defines phases
of the parallel application. Examples of the views generaie ParaProf are available in
Figure 2.8.

ParaProf has a modern design in its software implementatioough separate com-
ponents that interact with a defined programming interfBasides that, it provides an
extensive set of visualization techniques, and it is tietthéoTAU project.

2.2.9 Pajé

Pajé (OLIVEIRA STEIN, 1999; KERGOMMEAUX; STEIN, 2000; STEINKER-
GOMMEAUX; BERNARD, 2000) is a generic visualization tool dasagl to be inter-
active, scalable and extensible. The tool was initiallyedeped at the LIG Laboratory
(former ID Laboratory), in Grenoble, France, but is now deped at the Federal Univer-
sity of Santa Maria — UFSM, Brazil. The interactive part oféajeans that the user is
able to interrogate monitored entities, through its tirpaee visualization window. The
scalable feature of Pajé is related to the possibility teeasjph a large number of program
entities, such as threads and processes, and the detailsestoh of them. The extensi-
bility of the tool relates to the easy addition of new feagiineew types of traces, new
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Figure 2.8: The call-graph and the 3D bar plot of ParaProf.

graphical displays, new programming models to adapt theadbe evolution of parallel
programming interfaces and visualization techniques.

The Pajé file format is also part of the visualization tooleTbrmat is textual and
without semantic, where events describe the behavior of af seonitored entities. The
basic types that can be used in the format are containee, statnt, link and variable.
Containers can be used to group other types, creating a ¢tiésal definition of types.
Virtually any kind of monitoring system or trace generationl can use these types to
describe the behavior of monitored entities, from paralfgblications to distributed re-
sources of a parallel system. This level of flexibility in @hescription of monitored enti-
ties behavior is not found on related work. If the trace fils hdiormation about source-
code correlation in events, the user will be able to clickkbtb see which part of the
source code caused the creation of a visual object render igraphical displays of
Pajé.

The architecture of Pajé is composed of modules that areecteth through a graph
that is usually fixed, but can be changed to adapt the toolwotppes of components.
The components can be any self-contained part that beha@sihg a certain protocol
and operates over the events that are read from trace filestratitional set of Pajé
components includes a trace file reader, a event decodenudasor, a storage controller,
aggregation, reduce and ordering filters, for example. Dedpe number of components,
the three classical components of Pajé are the contrabiee readers and the simulator.

Pajé offers to its users two types of visualization techegto represent graphically
containers, state, events, variables and links. The fidtnaost used is the space-time
window, which actually draws a Gantt-chart display impmbweth arrows to represent
interactions among processes. The second type of displaseis to dynamically show
statistical information about a selected slice of time m$pace-time window. These two
techniques are represented in Figure 2.9.

Probably the main feature of Pajé is its flexibility. The teas originally used to
visualize traces from Athapascan applications (GALILEEakt 1998), but it evolved
to visualize traces obtained with Java applications (SIL8€HNORR; STEIN, 2003;
OTTOGALLI et al., 2001), message-passing parallel appboa, thread-based applica-
tions and hybrid approaches. It was also used to see relaiadarnng information with
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Figure 2.9: The two visualizations of Pajé, including itasg-time view and the pie-chart
statistical view.

a multi-level approach (SCHNORR; NAVAUX; OLIVEIRA STEIN, 2008}, for exam-
ple, traces from application-level (MPI) and traces frosouarces and operating systems.
Pajé’s simulation component, the core of the tool implemon, and the aggregation
filter, are able to handle a big amount of trace data spreazhipperiods of time.

2.3 Summary of Visualization Techniques

The last two sections addressed the historical evolutioth@fperformance visual-
ization area and the description of a representative seisalization tools for parallel
applications. The objective of this Section is to try to suanize the visualization tech-
niques used. We divide the techniques in three types: betayvstructural and statistical.
When possible, we make reference to the tools that implerhesettechniques.

2.3.1 Behavioral

This Section presents the visualization techniques tha haimeline and show the
behavior evolution of metrics and components through time.

Gantt-Charts

Gantt-chart (WILSON, 2003) is a visualization techniqueated more than 100 years
ago. Initially, it was used to organize and schedule thestagkrojects. It was one of the
first techniques to be used to analyze parallel applicatibiggire 2.10 shows a simple
Gantt-chart with the behavior evolution of a set of entitiBsese entities can be anything
related to the parallel application or the execution emuiment. For each of them, the
rectangles represent a state that has a duration in thaenenérrows can be used to
illustrate an interaction between two entities. This typ&isualization can also be used
to show the user the critical path of the parallel applicatidaraGraph, for instance, has
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a special feature about that.

Processes

4 —:I

1 = <

: [ A I |

0‘ Timeline ™

Figure 2.10: A simple Gantt-Chart showing the behavior evatuof an application with
5 processes: the bars indicate different states and arrmisate interactions between

processes.

Almost all tools that show performance visualization inmpént a Gantt-chart like
technique. In some of them, this type of representationllsd&Spacetime”. Although
very useful to represent the behavior of a set of proceseasdrparallel application, the
common issue with Gantt-charts is related to scalabilitynfoter screens are limited in
terms of vertical resolution, and this is reflected in thénteégue. Some tools such as Pajé
and Vampir implement hierarchical grouping mechanismsahew the observation of a
larger number of processes.

Variables in two and three dimensions

This type of display is a graph where one of the axis represémie. Figure 2.11
shows an example with two metrics being displayed. The cadrixis represents the
values that the variable can reach over the period of timegoanalyzed. Observing a
significant metric can give hints about the CPU or memoryaatilon of a machine dur-
ing the execution of a parallel application. Almost all merhance visualization tools
also provide some sort of representation of variables beh#wough time. Examples
are the “variables” visual object of Pajé, the “Communicafizaffic’ and the “Utiliza-
tion Count” displays of ParaGraph, and the “Performance Guahtrepresentation of
Vampir.

Two cases that are similar to this 2D approach is the “Timeéddimm” of Paradyn,
where performance data for metric/focus pairs are reptagiéma time axis (focus is a
piece of code of a parallel application); and the “Node Stas” technique of ParaGraph,
when a specific metric is shown for one node with a timeline.

Metric's Value for a given process

. Metric 1
D Metric 2

PNWwbho

>

! Timeline

Figure 2.11: Showing the evolution of two different metra®r time.

Another visualization technique extends the 2D approachdmgbining two related
metrics and representing them with a timeline. This 3D apginacan in fact show more
information to the users. The technique is named as “3D ifeNsualization” and is

present in Paradyn.
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Time-Tunnel

The only occurrence of the time-tunnel display is on Virfliee technique works un-
der 3 dimensions, where two of them are used to place praga@ssecircle, and the third
dimension represents time. The observation point is plateke middle of the circle.
The interactions among the processes are placed withi@Ehenvironment, taking into
account the position of processes and the time of occurr@ieeresulting visualization
looks like a cylinder, where the user observes arrows anggbie interior of the cylinder.
Figure 2.6, of previous Section, illustrates the approach.

Phase Portraits

Phase portraits are the result of a technique commonly useithér areas of science,
such as physics. They show the evolution in time of two relaggiables, or metrics. Fig-
ure 2.12 shows the resulting visualization. The perforreastata is collected through a
period of time, between regular intervals. The idea is tater@oints in the graphical rep-
resentation and connect these points following the ordéma among them. ParaGraph
Is again the only tool to implement this technique.

Metric 1

Figure 2.12: A phase portrait showing the relation amongrtvedrics.

2.3.2 Structural

This Section presents the visualization techniques tlyatiotivisually represent the
structure of applications. By structure, we mean the diffetgpes of relations that con-
nect the components of parallel applications, such as pseseand threads.

Call Graphs

Call graphs are used to give to the user a representation Wieeheteractions among
the application’s components are shown. Figure 2.13 is ampie of that. Nodes can
represent functions or methods, and the arrows betweenrdyam@sent a function call or
method call. This method of visualization is especiallyfusi the analysis of parallel
applications that are organized as a data-flow graph.

Some tools implement this technique, such as ParaProf atueVirhe latter imple-
ments call graph within a 3D environment, giving the usefedént forms of interaction
to highlight parts of the graph with additional informatj@uch as the name of the node,
associated values and so on. This was implemented to awreépinesentation of all data
for large graphs.

Matrix

The matrix of communication is a technique where a two dinograd representation
is organized with one of the axis showing the senders presessd the other axis, the
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Figure 2.13: The call graph displays showing the functidhafawo regions of a given
program.

receivers. For a point in time, the matrix shows differentgpsender/receiver by coloring
the matrix. Colors can also be used to show additional infionasuch as the type of
the communication, if it is collective or not, or the size bétdata transmitted. The left
image of Figure 2.14 depicts this technique.
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Figure 2.14: Matrix of communications among processes madlae grouping technique.

ParaGraph was the first to propose this technique, with addmumber of processes
involved. The scalability of this approach is related diyewith the number of processes.
Vampir tries to solve this problem by grouping processe®tiog to their number of
other characteristics. This is shown in the right image gliFe 2.14.

Graph with Communications

A graph is used in the ParaGraph tool to represent the conuatimms among a set
of processes in a given time. The Figure 2.15 illustratesapioach, with the commu-
nication pattern among three processes. ParaGraph has sg¢sof pre-defined hardware
interconnections, such as the Hypercube, and allows thengditson of which links are
used by the application at a specific point in time. Differiyouts for the hypercube
representation were possible, such as the linear view. Tol@lgm of the approach of
ParaGraph is that no additional information about the linese provided to the user.
The technique was used only to show when a certain interati@ppened during the
application execution.

2.3.3 Statistical

This Section presents the visualization techniques usedpesent statistical data
based on the traces available for the analysis.
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Figure 2.15: Communication pattern with three processea fven time.

Bar and Pie Charts

Bar and Pie charts are a traditional way to show the values efrtaio metric for
a number of processes. For example, they can be used to shewnaoy messages a
process has received, or the amount of memory used in a nea¢higure 2.16 shows an
example of a barchart and another example of a piechart.

12
10 O Metric 0
E Metric 2
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6
4
: [l
0
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Figure 2.16: Barchart and Piechart displays.

These types of charts have been available since ParaGrédr. tQols have also im-
plemented them using different metrics and techniquesdyar, for example, implements
horizontal barcharts with more than one metric, each of tinéim one different scale in
the horizontal axis. Pajé’s piechart implements the teplmito quantify, in a given pe-
riod of time, how much time a certain process spent in diffestates. The user can then
compare two processes to look for performance problems.

Kiviat Diagrams

Kiviat diagrams, also known as radar map, are a chart thatistsnof a sequence of
equally distributed spokes, each one representing one ofitmitored entities. In the area
of performance visualization, the spokes are used to rept@socesses, and each process
has a scale of value for its spoke. Then, for a given metriciaboe process, a point is
chosen in the spoke. Connecting these points form a georfigurie that can be used to
detect irregularities among processes, if a similar vaduexpected for all of them (load
balancing, for example). Figure 2.17 shows a schematic pbeaaf the technique, with 3
metrics shown for 4 processes.

ParaGraph has been the only tool to implement the techniduetype of display also
has scalability issues when the number of processes oedatagtrics increases. After its
first appearance in ParaGraph, no further development e $bis scalability issue has
been present in other tools.

Statistical 3D representations

3D representations without a time axis are already presdiei literature. The idea
Is to plot in a tri-dimensional space drawings that are gaeer using three different
metrics. The ParaProf tool has three displays that follow tlesign: “Triangle Mesh
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Figure 2.17: The Kiviat Diagram for 4 processes with 3 degfgrmetrics.

Plot”, “Triangle Bar Plot” and the “Triangle Scatter Plot’h& first connects the points
using a mesh, resulting in a visualization like a terrairnvelievations in some points. The
second represents data as vertical bars and the last justltggoints in the 3D space.

2.4 Summary

Several visualization techniques exist today for the asislgf parallel applications.
These techniques help the developer to obtain a betterrpsafece and also provide a
way to understand the behavior of programs in a given exatetvironment. A possible
classification of the visualization techniques is the dibrisn three typesbehavior, such
as the space/time and phase-portrait views, showing thetewo of entities over time;
structural , focused in the observation of communications, such asttetques matrix,
communication graph and call graph; and finaligtistical, which summarizes trace data.

The two next Chapters present the visualization techniquesoged in this thesis.
In the beginning of each Chapter, we show that existing vizatbn tools are not fully
suitable for the analysis of grid parallel applicationseTirst Chapter deals with the
lack of support from visualization tools to the analysis afallel applications mixed
with network topology. The second Chapter proposes a vizatadin scheme that achieves
visualization scalability and can be used to analyze parajpplications composed by
thousands of processes.
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3 THE THREE-DIMENSIONAL MODEL

The previous Chapter has listed tools and techniques thateased to analyze the
behavior of parallel applications. The presented toolsevekstailed in terms of features
and capabilities, including which visualization techreguare implemented. At the end
of the Chapter, we presented a classification of the techsiguthree types: structural,
behavioral and statistical. Generally, most tools weré tuhandle precise environments,
such as clusters, where the dynamics of the resources afelinby applications since
usually the access to the resources is made exclusivelyCifapter goes through the grid
characteristics to show that the traditional visualizasochemes are not able to fully help
the developer to analyze parallel applications, partitplahen network characteristics
must be taken into account.

The performance of grid parallel applications is direc#jated to the characteris-
tics of the network interconnection (LACOUR; PEREZ; PRIOL, 2D04hen the grid
resources have a strong hierarchy among them, as in the tadebtweight grid, the
choice of resources given to an application can be decisives performance and later
understanding of its behavior. For instance, if two setsrotesses perform more com-
munications between them and are placed in two distinctilmesof a grid that does not
offer the lowest latency, the application can suffer a logsarformance. Sometimes, the
analyst is not able to make the link between application atdork characteristics. The
decisions taken from a traditional analysis may lead to wroonclusions about the bad
performance. In this case, if we were able to analyze theiggin behavior together
with the network characteristics, we would see more clehyreason of the application
behavior.

This example can be more explicit if we consider that eachlf@application has a
communication pattern. These patterns are defined wherpilieation is implemented,
through the use of paradigms such as master-slave, dinvides@nquer and so on. During
an application analysis, it would be interesting to viszmlhis pattern together with the
network topology. With this, it would be possible to optimithe match between the
network interconnection and the application’s commuimacest. If this optimization is not
possible, the analysis could be used to help the developelapt the application in order
to better explore the network characteristics.

Looking at the tools presented in last Chapter, we can natigerhost of the tech-
niques they present are not able to handle an analysis tkeg tato account the net-
work interconnection. ParaGraph (see Section 2.2.1) istietool that has the notion
of interconnection in its visualization techniques, altbb providing only hypercube vi-
sualizations and program communication patterns, segarat fact, ParaGraph was not
designed to analyze large-scale applications, with thmlsaf processing entities. Other
techniques, such as the space-time visualizations or grvapéd views, present in almost
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all visualization tools, are also not able to depict the mekinterconnection together with
the communications of parallel applications. In this cdlse,limitation is related to the
way resources and components of application are drawnjmvgimade on a linear space.
As the architecture gets larger and more complex, highhgtits topology becomes im-
practical. And even if some sort of simple topology orgatic@acan be represented using
one of the axis, labeling the platform representation widbi#gonal characteristics like
throughput and latency usually degrades the readabilitigetvhole picture.

Our proposition to make a link between application analgsid network topology is
based on a visualization scheme composed of three dimensore of the dimensions
is the timeline, where the components of application canrnadyaed using a behavioral
view. The other two dimensions are used to draw either atsiraicor statistical repre-
sentation. In the context of the problem being addressedgettwo dimensions are used
to draw a visual representation of the network topology. Blypapeaking, our proposal
combines at different levels the three types of visualmatechniques we discussed in
Section 2.3, resulting in a mixed behavioral-structutatistical representation.

Some visualization tools for parallel application anayaiready have 3D visualiza-
tions. ParaGraph, for instance, has a 3D representati@forus Network Topology, but
its focus is in the instantaneous analysis of the intercctor utilization, with no axis
reserved to work as timeline. Another example is Paradyat, ¢bntains its 3D Terrain
Visualization being able to show the relation between twdricee and their evolutions
over time. Since the two dimensions of the 3D Terrain are noteived to draw graphs,
Paradyn is not able to visualize the network topology andiegipon evolution at the
same time. The third example of tool that uses 3D visuabmatiis Virtue. Among its
visualization techniques, the time-tunnel is the only dra seems like our approach, but
it is fundamentally different, since it was not developedhow the network topology or
parallel application communications pattern. Virtue oplgices the processes of an ap-
plication in a circular manner in two of the dimensions,itejtthe third dimension act as
timeline. The view of the developer is always pointing to¢kater of the circle. Commu-
nications and interactions are drawn inside that circle,3D space. TAU'’s ParaProf also
has its 3D visualization, but focused on the analysis ofssiedl data. This means that
ParaProf is able to visualize three types of related everttsel same visualization, using
the three dimensions. However, ParaProf is not able to useobthese dimensions as
timeline and it is incapable of drawing graphs in the two regnmg dimensions. In sum-
mary, we can see that there are tools that already provide sont of 3D visualization,
but none of them have the same approach as we have, mergimgrkedpology to the
application analysis.

The rest of the Chapter is organized as follows. We start bgritesg the visual
conception of the 3D approach, detailing its visual objects how application traces are
mapped into the 3D view. In Section 3.2, we explain the abstreodel that deals with
the monitoring data and generates the 3D visualizatioisyfed by a series of sections,
each one describing the components of the model: the traderghe extractor, the entity
matcher and the visualization component. During the desen of the entity matcher, we
detail three configurations that can be used inside the 3Bbapp.

3.1 Visual Conception

The visual conception of our model consists in the combomadif visualization tech-
nigues that show the behavior of the application with teghes that show the structure
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or statistical data. If a structural data is used in comlbdmatith the behavior representa-
tion technique, the user can observe the evolution of mmdtocomponent through time
and consider the structural organization. This is the cdsenwisers have to analyze the
parallel application with the network topology, for instan If statistical data is used in-
stead, the user can summarize in quantitative terms thevioelod the application, using
different time scales and slices. In a more practical wagsehcombinations allow the
representation of the notion of gantt-charts combined gi#iphs and summaries.

The result of this visual conception is the three-dimeraliomodel. The model has two
dimensions reserved for the representation of a structursiatistical view. We named
these two dimensions the visualization base of the 3D mddhe.third dimension is the
timeline. Figure 3.1(a) shows an example of the 3D approaatepresent application
data. The states of the processes are represented in thes@ization as vertical bars.
They are placed on top of the visualization base. The diftesates along the time axis of
a certain process are represented by different colors. &até representation is placed
vertically following the start and end timestamps. Commaténs can be represented
as arrows or links within the 3D environment, connecting twvamore processes that
communicate. The Figure 3.1(b) shows a different point efwilocated on top of the
visual objects. This vision allows the observation of thenownication pattern of the
application.

(a) Visual conception of the 3D approach. (b) Top-view of the same scene.

Figure 3.1: The visual conception of the 3D approach witHiagpon traces represented
by vertical bars showing processes behavior through time.

The visualization base of the model is composed of two dimess They are used to
depict either structural or statistical representatiamtégues. Structural representations,
as presented in Section 2.3, can be mainly graphs and nsaticany other technique
used to organize the components of the application. Statisechniques can be used to
summarize a particular part of the behavior of the companeeing visualized.

Lots of configurations are possible for the visualizatiosébdor instance, it can be
used to illustrate the communication pattern of the pdraflication, but also the net-
work topology involved in the execution of a parallel apation. In our model, we pro-
pose three types of configurations for the visualizatioreh@ge Section 3.5). Two of
them are structure-based, showing interconnection grafites other is an information
visualization technique called Treemap (JOHNSON; SHNHERMAN, 1991), used to
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represent hierarchical information data. Additional t@gles can be easily adapted to
our model to work as the visualization base.

The third dimension of our model is the timeline. It is usyakpresented as the
vertical axis of the 3D approach, as can be noticed in FigutéaR The timeline axis
Is used to show the component’s behavior evolution through.tin the case where the
components are processes, the vertical bars that repteeenimight have different colors
to represent states and arrows to represent point-to-poiodllective communications.
These representations characteristics are similar torthe present in space-time views,
but here in three dimensions. The timeline is configurabtefer the users different time
scales that can be dynamically changed.

When using graphical visualizations, users are interest@utéraction mechanisms,
like zooming, online information updates and so on. Theyroue the user perception
of specific parts of the information, enabling a deep appboaand platform behavior
analysis. Animations can also be applied to dynamicallyngeahe graphical visualiza-
tion. Resizing rectangles and changing their colors to reftecplatform state in given
time intervals are some examples. In this case, changesased by continuous infor-
mation updates coming from the monitoring system. Anotiipe tof graphical interac-
tion mechanism is constituted by distortion techniques (CERPALE; COWPERTH-
WAITE; FRACCHIA, 1997), which magnify only specific parts of thepresentation. The
fish-eye technique (SARKAR; BROWN, 1994) is a good example of sechnique. It
helps the user to obtain details about a picture area wilbsirg its context (as opposed
to a simple zoom).

Besides these interaction mechanisms, we have a set of |goisgdractions with the
3D approach. An example of that is the notion of observatiointpIn this context, the
view that the user is staring at any time is generated by a i@méis camera can be
moved inside the 3D space with rotation, translation and@pmation techniques. This
allows multiple views of the same data, from different asgle

3.2 Model Overview

In order to create a 3D visualization, the trace data cabbétom the application
execution must pass through a series of transformationsléfifee here an abstract com-
ponent model, in which these transformations are detafigplire 3.2 depicts the overall
organization of the model. As input, the model uses two tygfaaformation: the trace
files from the monitored application and a configuration filattholds the resource de-
scription of the execution environment used by the parajpglication.

D

Visualization ) &;é%;;

Monitoring Dat% A > B .

Trace Reader Extractor

CA

Resources Description Comm. Pattern

C.2
Network Topology

C
Entity Matcher

C3
Logical Organization

Figure 3.2: Abstract Component Model of the 3D approach, théthree different con-
figurations for the visualization base (represented by C24,, &d C.3).
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The visualization base is configured by the entity matcheduteo(C). We have im-
plemented three different configurations for it (they ar&aiked in Section 3.5): one that
shows the communication pattern of the application; andtiet shows this pattern com-
bined with the network topology of the execution environtand the last one is the
combination of application data with a logical organizatmf the resources. The entity
matcher chooses one of these configurations based on thegestscription defined by
the user.

Among the three alternatives modeled in the Entity Matctier,one that considers
the network topology (C.2) directly addresses the probleganding the influence of the
network interconnection in the application. The additidma alternatives are presented
to show other structural information (the communicatiotigra) and statistical represen-
tation together with behavior details through time.

We consider in the model that the trace data is availableaas files, under the form
of a flow of events that traverses the components of the Fg@r&om left to right. Nev-
ertheless, even if we take trace files as input, the compsmeatdescribed independently
of how trace data is offered to the model. Therefore, the misdable to deal with an
online generation of events in case the flow of these eventstiso bandwidth intensive.
Notifications can also occur from the visualization compune the others, in a right-to-
left fashion, in order to propagate configurations and behahanges triggered by user
commands.

Next sections detail the components of Figure 3.2. We stagXiplaining the Trace
Reader (A), including the mapping from the trace events t@bjects used by the model.
Section 3.4 shows the Extractor (B), followed by the desitipof the Entity Matcher
(C), considered as the main component of the model. We encewigtion of the model
with the Visualization (D) component.

3.3 The Trace Reader

The generation of traces during runtime is a classical tigci@to record the behavior
of parallel applications. If applied carefully with largeemory buffers and a selected set
of events, it can be used without disturbing too much theradapplication behavior. In
large-scale parallel applications, it is common to germeoak trace file per process. After
the end of the application execution, the different filesgathered and merged with dif-
ferent transformation techniques. This is modeled by DIl (SCHNORR; NAVAUX;
OLIVEIRA STEIN, 2006), which is a data integration model faswalization of paral-
lel applications. The model uses the synchronization tiectendeveloped by Maillet and
Tron (MAILLET; TRON, 1995).

One trace file is usually composed of events. An event hase yfimestamp and
additional information that goes with its type. They can bedito trace a high number of
information in parallel applications. The classical psinthere trace events are generated
are the beginning and the end of both communication and psawg functions. Point-
to-point and collective are commonly traced with eventgjstering the exact point in
time that a message is sent and received. Although mostaigranechanisms generate
timestamped events, this association with time is not airegpent. Events can be used
to simply count the number of times a certain behavior ocdorsexample, without the
need to know when it happened. Another characteristic oktleats of one trace file is
that their timestamps might not be synchronized with thentsv&om other files. This
happens because they are generated in different machiitleglifferent clocks.
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The trace reader component is the only part of our model talisddirectly with ap-
plication traces and events. Its responsibility consisteading, synchronizing and trans-
forming them into high-level visual objects. Although teexbjects represent the content
of traces, they have no semantic data and can be managed ireacgeay. This allows
the rest of our model to be independent from the trace file &rihhe high-level repre-
sentations are mainly composed of entities, states ansl. l&k entity can be a process, a
thread, or a machine. Generally speaking, an entity can ytiag that is observed dur-
ing a period of time and is related to the application analyStates and links are always
related to one or more entities. A state is defined as the bmtecertain entity may have
during a period of time. A link is used to represent an intéozicamong two or more
entities in a time interval.

Figure 3.3 shows the behavior of the component. The traceislaépresented in the
left of the Figure, showing the events that are in differeaté files. In this example,
we list the beginning of the behavior of two processes, thind8ievents already ordered.
Process 1 starts, then sends a message; and process 2rslablecks to receive the
message from 1. The trace reader transforms these evemthéntisual objects depicted
at the right of the Figure. In the example, they were tramséat into two entities, P1 and
P2, to represent processes; two states, Send (createdemith starandsend_enyland
Receive (based arceive_staraindreceive_enj] and one link, represented by the arrow
based ormsg_sendndmsg_receiveThe flow of visual objects in the output is ordered
by the object’s end time.

Time Process OperationType
0.0 start
start Monitoring Data Flow of Visual Objects

receive_start NGl

send_start

| A .

msg_send Trace Reader — > Receive ‘\‘ Send ‘
send_end R
msg_receive
receive_end

o
[$)]
DN = a4 app N o

Figure 3.3: The Trace Reader component transforms trace diethe left, to a visual
objects representation, on the right.

This component makes the rest of the model independent tnermput file format.
In the case a new format is available as input, only this carepbshould be changed or
replaced, the rest of the model will continue to work in theneavay as long as the output
generated by the trace reader is composed of the genetiegmie explained above. The
trace reader sends the output to the extractor module, whdgtailed in the next Section.

3.4 The Extractor

The main purpose of the extractor component is to seleaty fitee flow of visual
objects sent by the trace reader, the objects that the enéitgher component needs to
work. The entity matcher is focused on the set of entitiestaadhteractions among these
entities. This means in a more practical way that it wantsnovwkabout the processes,
threads and other execution flows that should be analyzedh&nohessage exchanges,
remote procedure calls and notifications that happen anirg.t

Taking the entity matcher’s needs into account, the exdragbrks by observing the
flow of visual objects and by selecting entities and linkgjufe 3.4 depicts the behavior
of the extractor with its two outputs, on the right of the Figluconsidering as input the
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data that came from the trace reader, at left. The first owtitlie component, composed
of the flow of visual objects received by the TraceReader, iid 8®the visualization
component. This enables the visualization component tdheta take into account all
the data that should be used to create a visual 3D representdte selected visual
objects are sent to the Entity Matcher component, compofsn @ntities and links that
are encountered in the flow of the input. There are 10 prosef®en P0 to P9, in the
example of the Figure. We have as input a flow of events witbetlkmsommunications
(P8 — P5,P0 — P3,P4 — P2), and six states, three send (procesBés P4 and
Pg8) and three receive (processEg, P5 and P3). The output to the entity matcher is
composed by the links and the processes entities, witheudtttes.

Flow redirected to the Visualization (as is)

>
B J Entities Links

Flow of Visual Objects

‘ Receive@ ‘PSMPS‘
‘ SendM ‘ Send@

Receive|P3 poF‘ P3 = mﬂ To the Entity Matcher
\—V e
[pa>P2] [P7] [ send]Ps] EHH"’

. pap>ip2

Time-Ordered

Figure 3.4: The Extractor component selects from the flowisdial objects the entities
and the links among them.

The extractor processes events and works whenever newsdatailable in its input.
A different configurable behavior is also possible: instefdcting on a per-input basis,
the extractor works on a given time interval. When this happ#re component acts by
treating only the events that are present in the given tirtegval. This increases analysis
possibilities by user interactions technique, such as zfwrsra given time interval with
increased details on trace data. This also influences thavimehof the entity matcher,
giving the model more control in terms of which part of the @en period will be
analyzed by the user.

The extractor component is also responsible for attrilgutive entities with the lo-
cations where they were executed. In some cases, the erdtgher component needs
this type of information for each entity. The informatiomiscessary, for instance, when
the visualization base of the 3D approach is configured tevgshe network topology.
On this occasion, the information of where processes egdaatimportant to correctly
place them in the visualization base. For the cases whea@idocattributes are necessary,
the extractor must find such information somehow. Usuailg,extractor obtains this in-
formation from the trace reader, through a specific evenhefttace file format. If this
location data is unavailable in the flow of objects and th#nitautes, though, additional
input should be used, probably in the form of a configuratita fi

3.5 The Entity Matcher

The entity matcher component is in charge of the visuabratiase configuration. It
does that by taking as input the resource description séicoyger and the selected visual
objects with application data. The resource descriptiayivien to the component in one
of two possible formats: either as a hierarchical structi@gcribing the logical organiza-
tion of the computational system, or as a graph describiaghg#twork topology of the
execution environment. With the application traces angddlresources descriptions, we
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have developed three possible configurations for the vimatadn base. Figure 3.5 depicts
the overall organization of the entity matcher and its salmgonents that implement the
three different cases that are later represented in thalizsation base.

Selected Entities ©

. o
by the Extractor Entity Matcher -

Comm. Pattern

Network
Interconnection

C.2
Network Topology

Hierarchical — c3 ‘ <
Organization Logical Organization » 'ﬁ ‘? £2

!

Figure 3.5: The Entity Matcher component send its input t® ofithe visualization base
configurations, depending on user actions.

An important aspect of the entity matcher is its extengipilklthough we have de-
veloped three different modules that illustrate the polssds of the approach, the entity
matcher could be extended to other types of organizatiossdban the entities and the
communications representation. An example of that coul@ Is¢éatistical module that
could group the entities according to some specificatioheOtypes of visual represen-
tations could also be supported by the module, such as Cushéemaps (WIJK; WE-
TERING, 1999) and Voronoi Treemaps (BALZER; DEUSSEN; LEWERENZA05).

The three cases we detail in the next sub-sections covelyes of visualizations for
parallel program analysis (as defined in Chapter 2): strattepresentations, as in the
cases 1 and 2; and statistical representations, as in tee3calith these cases, we are
able to combine a behavioral representation (with the timegland a structural/statistical
representation, increasing the possibles analysis dfterthe users.

3.5.1 Case 1: Parallel Application’s Communication Patten

The first configuration for the visualization base of the 3Prapch shows the com-
munication pattern of the application. The extractor congra (see Figure 3.4), selects
from the flow of visual objects the monitored entities and tbexmunications among
them. This selection is represented in the left most parhefRigure 3.6. The entity
matcher acts by merging this information into a graph thptagsents the communica-
tion pattern for the selected objects. The graph creatiaymamic and based solely on
the arrival of new monitoring data through the flow of everitsis graph can highlight
particular performance issues of the application, likelenecks or unbalance. Besides,
it can help the developer to develop its application whichsus particular communica-
tion pattern, such as master/slave or divide-and-conquetets. Another advantage is
that the application developer can see if some part of thécapipn is overloaded with
too many communications in a small period of time, increg&iattienecks effects. The
graph is then sent to the visualization component, whictvelthe graph in the visualiza-
tion base and the evolution of the application’s compongentise vertical axis of the 3D
environment.

The example of Figure 3.6 illustrates the generation of tharaunication pattern.
The component has as input 10 processes, from PO to P9, anedfaceenmunications
among them. As output, we can see a ring-like communicagimong the processes from
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Figure 3.6: Entity matcher configured to generate the conication pattern of the appli-
cation, based on the processes and the communications.

P5 to P9, an all-to-one communication among processes ffbta P4 and a one-to-one
communication between P4 and P5. This communication patter change dynamically
depending on the which visual objects are selected by thea&er module and sent to
the Entity Matcher component. As previously discussedctiramunication pattern can
reflect the application for a given time interval.

3.5.2 Case 2: Network Topology combined with Communicatiofattern

The second case for the visualization base is the combimatithe network topology
and the communication pattern of the application. Figured@picts this situation, where
the entity matcher receives as input the network topologjtdn part of the Figure)
and the application data selected by the extractor. Thacgipin processes must have
location information that defines where they were execuitad information comes with
the visual objects selected by the extractor. This is necgssecause the matcher needs
to combine them with the resource description. As outp@,cthbmponent generates two
graphs: one that represents the network topology itselfaamother that is rendered on top
of the first, showing the communications among the procdsséise selected objects.

Monitored Entities marked with location Communication Pattern over

Network Topology

m ....... »
C.2 - Entity Matcher ., 3

Communications Network Topology I NPyttt Py et

B D A T

m Network Topology m@ """

®.® ® g
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Figure 3.7: Entity matcher can receive the network topolagyesource description, cre-
ating as output the communication pattern over the netwadsg<¢onnection.

Figure 3.7 shows the same example as Figure 3.6, but with étveork topology
description as an additional input for the entity matchexcheprocess has a resource
associated with it, from RO to R4. The network topology coningcthe resources is on
the bottom part of the Figure. The right part of the Figurengha visual representation of
the output, composed of network topology representatidth, straight lines representing
the interconnections, and processes on top of the resaheessed during the execution.
Communications among processes are represented by thesavittwdashed lines. This
output is sent to the visualization module to be renderetieénvisualization base of the
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3D scene. The position of the processes in the visualizdtame will then be used by
the visualization module to render timestamped eventsdrvétical axis. Through this
combination, we are able to understand the applicationwehtaking into account the
network interconnection of the execution system.

The developer can benefit from this configuration in the \ligaton by seeing the
match between the communication pattern of the applicatiha specific network in-
terconnection. With this match, the application can bemedite from the network, avoid
concurrent communications and improving the number ofljghrecommunications that
can happen at the same time. Moreover, if the network toyohag bandwidth and la-
tency information, the developer is able, with our approaaladapt the application in a
way it obtains the highest bandwidth for the processes thantunicate more data and
the smallest latency for the processes that exchange nesssaaye intensively.

3.5.3 Case 3: Logical Organization and the Communication P&trn

The third configuration is a combination of the communicafoattern of the appli-
cation and a logical organization of the resources. Thetitgpthe sub-component of the
entity matcher in this case is the same as case 2. But for tberees, we use a hierar-
chical description instead of using a graph. Figure 3.8 shita same previous example,
but having as input a hierarchical structure where the ressuare grouped by their loca-
tion. In the Figure, the resources RO to R4 have been groupeddicg to a hypothetical
organization by clusters CO and C1 and then by grid. This streatan be customized
in the model to represent other types of organization, sscddaninistrative domains or
middleware dependent structures.

Monitored Entities marked with location

EOIDIECIE DI
" e

Resources Representation
influenced by Application Data

p5 RO R1
"o e e o e | | o e
Communications I?ogic:rg)lga'\:?zt;:g; ................. >‘.‘%
R2 TR
Hierarchical Structure 7Y =
-
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Figure 3.8: Entity matcher configured with a hierarchicalsture of the resources, gen-
erating as output a squarified treemap customized with@dgn components.

There are many ways to visually represent a hierarchicalozgtion. In this work, we
have used the treemap concept (JOHNSON; SHNEIDERMAN, 1@9Bdresent them.
This technique works by using recursively nested rectanigieepresent tree-structured
data. On the right of Figure 3.8, we show an example of treernegited using the hypo-
thetical hierarchical structure given to the entity matamedule. Each rectangle repre-
sents a resource and its size is directly related to the anobymocesses it contains. The
dashed arrows are the communications rendered in the sipaegart of the 3D space
and reflect the communication pattern of the applications ©htput is sent to the visu-
alization component, which is responsible for drawing ia ¥isualization base of the 3D
scene the treemap created by the entity matcher. An imgartemacteristic of this con-
figuration is that the entity matcher can be adapted to cor&ithe treemap using other
characteristics of the application data, such as the nuwibesmmunications, the time
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spent by the monitored application executing a certaintfancand so on.

The visualizations obtained with this technique in the alsation base can highlight
Important parts of the application in contrast with the teses. For example, it can be
used to see resources usage and the load balancing of theatipplby configuring the
treemap to show the time spent in the functions that do thegsing part of the applica-
tion. The same situation can be applied in order to observehydrocesses communicate
more or stay blocked more time due to message-passing.

3.6 The Visualization

The main goal of the visualization component is to creat@ihgisual representation.
It does that based on the flow of time-ordered visual objeatsthe base configuration
chosen by the user. As previously explained, the flow of Visbgects is composed of
entities, states and links. Since there are three diff@@migurations for the base, the vi-
sualization component can create three different 3D reptations. Figure 3.9 illustrates
the component behavior, where the base configurations &@ttain, the visual objects
at left and the three different visualizations on the right.

Flow of Visual Objects

‘ Receive‘PZ‘ ‘ Receive‘PS‘ ©

‘ Send‘PS‘ ‘ Send‘P4‘ » Visuall:i)zation 0
pap»lp2| [Pap»{Ps| [ Receive P3| [Pof>]P3 w74
Time-Ordered b

Figure 3.9: The Visualization component receives the flowisfial objects and one of
the configurations from the entity matcher, creating a 3Mesce

The timeline composes one of the characteristics of the 8Besdt is usually rendered
in the scene as a vertical line with labeled tics. The intilmlestamp, usually), means
the beginning of the application traces. It is placed rightap of the visualization base.
Although this is the normal behavior for rendering the time] an offset can be applied
if the user is interested in other parts in time of the applcatraces. In this case, the
labeled tic that is placed just on top of the visualizatiosébaill have the time defined by
the user.

An important part of the visualization component is how ihties the representation
of states and links. Every state object has two timestampsfar the start and other for
the end, a value that indicates which of the possible statepresents and a referring
general entity. Links have the same information as statéd)dve additional information
to indicate the source entity and the destination entityp@cgl case of links might be
considered when there are several destinations (to repraseroadcast, for instance),
but this can be also defined as a set of links objects with theesarigin but different
destinations.

Figure 3.10 shows a schematic representation of how thehzstion component
handles states and links to create them in the represantétidhis Figure, there are
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two entities that were placed in the visualization base. 8asethe referring entities
of state and link visual objects, the visualization compargefines their position in the
visualization base. In the example, we have two states aedimk The link represents
a communication between them. After defining the positiothévisualization base, the
component obtains the timestamps of the visual objectsfioadtheir size in the timeline.

Receive m

Visual Objects

:
4’ Visualization
ool

Figure 3.10: Representation of State and Link Visual Objexctise 3D scene.

Another characteristic of the 3D scene is the visualizaiage. As previously dis-
cussed, we created three different configurations thateswdered in the base. Next Sec-
tion details how the three different cases generated byritity enatcher are rendered in
the 3D scene. The Section 3.6.2 presents the possiblegtigranechanisms that can be
applied in the 3D scene.

3.6.1 Rendering the Visualization Base

Figure 3.11 shows how the communication pattern is rendrélde visualization
base. As input, the visualization component (D) has on ftshe visual objects, which
are composed of links and entities in this example, and drotm the communication
pattern generated by the entity matcher. On the right of itperg, the scheme shows how
the visualization of the communication pattern on the basendered. The vertical bars
are the states of the processes through time.

D

Visualization \

Flow of Visual objects
from the Extractor

Communication Pattern
generated by the Entity Matcher

Figure 3.11: The representation of the communication pattethe 3D Scene.

Still on Figure 3.11, we can notice that the links among tleegsses are undirected.
In real situations, the trace data can have information &ath@uorigin and destination of
a certain communication. This data, together with the setloér communications may
enable a more complete representation of the communicpaitiern. The visualization
component is able to enhance the definition of the positiong¥ery process trying to
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avoid crossing links, improving the perception and un@erding of the communication
pattern. Another possibility appears when there are sewenamunications between two
processes for a given interval of time. The visualizatiomponent, in these cases, can
generate a visualization where the width of a connectiohenvisualization base will be
larger for pairs that communicate more.

Figure 3.12 shows the second configuration of the entity Inesiftccomposed of the
network topology and the communication pattern. The corepbhas as input the flow
of visual objects, on the left, and the network topology (esgnted by the darker and
larger lines) on the bottom. The 3D scene is on the right, whth visualization base
holding the network topology and the communication patt@ire states represented in
the timeline are in the Figure only for information purpasBEse links were not drawn in
the schematic 3D scene.

HI
E=clac

Flow of Visual objects
from the Extractor

D
Visualization

Network Topology + Communication Pattern m,
generated by the Entity Matcher

Figure 3.12: The representation of the network topologytheccommunication pattern
in the 3D Scene.

The second configuration for the visualization base (Fi§ut@) is especially impor-
tant when network-bounded parallel applications are aealyln these cases, the repre-
sentation can be improved with additional information saslthe bandwidth and latency
for each link. This combination of characteristics from tregwork may help the detec-
tion of possible communication bottlenecks caused by eretilization of one network
link, for instance. The representation in the base can leeealtto show larger width for
network links with higher bandwidth, and different coloosrepresent latency informa-
tion in a given time. If routing information is also presetite user may observe which
path the messages took during the execution, enabling #igsamho view if an alternative
deployment of process would result in benefits in terms otetten performance.

The representation of the third configuration of the basee@aled in Figure 3.13.
The logical organization of the components, generated asrarbhy and represented
with a treemap by the entity matcher, is drawn on the base éyidualization compo-
nent. The resulting scene appears on the right of the Figuwr@revious configurations,
the representation includes the states representatibe tinteline just to show a view of
what the 3D scene would look like. Links in the visualizatioase were removed from
the example in order to focus on the treemap generated byntitg matcher. This rep-
resentation serves mostly as statistical summaries ofgpkcation that are rendered in
the same scene that detailed behavioral events. The réztanghe base, that normally
represent resources, can be calculated following sevieaahcteristics of the application
behavior, such as the number of communications, their gizegmount of time in a given
state and combinations of these. The work of customizirgrépresentation to different
needs must be done through a cooperation between the emiithen and the visualiza-
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tion component, since the former has hierarchical inforomaabout the organization of
the resources and the latter has timestamped visual ojgects as states.

D
Visualization

Logical Organization
generated by the Entity Matcher

Figure 3.13: The representation of the hierarchical Idgiaganization in the 3D Scene.

The rendering of the treemap in the visualization base hag g@culiarities that must
be taken into account. The first one is related to the sizeefrthin square used in the
representation. This size is usually defined by the useiinbcases where an increasing
number of resources is present, it would be interestingedlse size of the main square
increasing automatically. Considering that the 3D spacahsnited, this size could be-
come too big to generate an easy understanding of the repa¢isa. To solve this situa-
tion, aggregation and reduction mechanisms should be osdaiinscale the quantity of
data that is drawn. The aggregation mechanism that is pegbeannext Chapter could be
applied here.

Another characteristic of the treemap visualization basehien the squares represent
machines, for instance. If there are too many processe®isdime machine, the visual-
ization will result in a larger number of processes that nifistin a given square. If the
square is too small, the resulting alternatives are eithaggregate the processes in one
entity, or to increase the size of the main square of the tapeBoth alternatives have
their drawbacks and benefits and must be balanced to promidesthetic visualization
to the end user of the 3D representation.

3.6.2 Interaction Mechanisms

The 3D visualization also comes with a number of differegriaction mechanisms.
Some of these mechanisms were already discussed in SectioH&e, we investigate
a step further by giving more details and exploring some g@las First of all, we must
first remind of the notion of camera inside the scope of the@asentation. The visual
conception of the 3D approach, described in this Chapteeasgghe presence of a cam-
era. This artifact must be present because it is from thispaént that the visualizations
are created.

Different mechanisms can act on the camera. The first and relenant is translation
operations inside the 3D space. The translation of the capwsition allows the camera
to go forward and backward through time, for instance. Besitlee camera can also
be rotated in the three axis to give the analyst other viewaimgjes. Figure 3.14 shows
how these mechanisms act to provide different points of vidve first image at left is
a replica of the image depicted in Figure 3.12. Subsequesgés to the right show the
point-of-view from different angles of the same scene.

Other possible interaction mechanisms of the 3D approatteisise of animations
and replays. Animations can be used to give the analyst thsilpbty to analyze the
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Figure 3.14: Different points of view of a 3D scene, geneatatéh camera translation.

chain of events step by step, viewing the representationerfyeevent one at a time. The
dynamic of the animation can also help the observation afatpg patterns during the
events evolution. These animations can be combined withehlay technique, showing
again specific intervals of time.

Classical interaction mechanisms already present in oteealNzation tools can also
be applied in the 3D approach. Zoom, for example, can beegpply changing the time
scale rendering in the timeline, allowing a more detailealysis when zoomed, and gen-
eral views of the whole scene when the user has a more signifioze slice rendered in
the scene. The changes in the time scale can also lead torparfoe improvements in the
way the visual objects are stored. In general views, muchetietails that are rendered
could be discarded without losing the major understandirijeevents.

3.7 Summary

The Chapter has presented the visual conception of the 3D Im&d#aining the
meaning of the three dimensions and the definition of thealization base and timeline.
The proposed model tries to solve the lack of a visualizatemhnique that is able to
show application behavior together with network charasties. We made a step further
through a general approach that can show two combinatiorepoésentation techniques.
The first is the mix betweehehavioral andstructural representations, that solves the
previously cited problem of analysis of application bebawvith the network topology.
In the context of our 3D approach, the behavioral repretient@onsists in the visual
objects rendered along the time axis, and the structura¢septations are the communi-
cation pattern and the network topology rendered in thealization base. The second
combination is betweenlaehavioral and astatistical representation, the later being the
treemap shown on the visualization base. We also have peestire abstract component
model that is able to generate a 3D representation. The guéseSections are dedicated
to the description of each component of the model: the treadar, the extractor, the en-
tity matcher with its three sub-components, and the vigaibn component. We believe
that the proposal of the 3D approach can be a viable soluti@mable the performance
visualization of parallel applications that takes into@aut the network influence dur-
ing the execution. The Triva prototype, that implements3Bemodel, is presented in
Chapter 5. Results obtained with the prototype are describ€thapter 6.

The next Chapter describes the visual aggregation modelghaddveloped in this
thesis to obtain visualization scalability in the parabligiplication analysis. One of the
main ideas behind this approach is the use of the treemapitpehfor the representation
of aggregated monitoring data. This is in part inspired lgy dievelopment of the third
configuration of the base, which also uses treemaps.
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4 VISUAL AGGREGATION MODEL

The previous Chapter has presented our proposal to handfetf@@mance visual-
ization of parallel applications that take into accountrilbévork topology. As explained,
our solution deals with a three dimensional visualizatiat is able to show the network
topology and the behavior evolution of application compuse

Another issue related to grid applications is that they carcomposed of a large
number of processes. Some analysis is already possibleapjilications composed by
thousands of processes (LEE et al., 2008), but in clustengerdl issues arise in grid
environments when analyzing large-scale applicationsr& @ne is the huge quantity
of monitoring data that can be generated by grid applicatidepending on two factors:
the number of monitored entities and the detail of behavatlected for each of those
entities. Another issue in the analysis of large-scale ljghrapplications is the visual
scalability (EICK; KARR, 2002), which is about the quantity @ftd that can be displayed
in the screen without losing the ability to understand whaepresented.

The fact is that the representations provided by visuatimabols must also scale in
order to analyze big parallel applications. If we considellydhe number of monitored
entities, we must be able to represent at least a few thoasafrjgtocesses in the same
visualization. A certain amount of details about each o$éhentities over time have to be
present in the visualization in order to analyze the prazesan example of the lack of
scalability in the visualization is the space-time repn¢éaton, where the amount of data
that can be represented is limited by the vertical spacéadlaiin computer screens.

Among the visualization tools reviewed in Chapter 2, Vamfiedgtion 2.2.5) offers
in its space-time view a hierarchical visualization thatr@ases the amount of processes
that can be visualized at once. The technique works by agtinggprocesses’s behav-
lor according to a hierarchical representation. The probté the approach is that the
information shown in each level is represented differentlyning out to be difficult the
analysis of the Vampir's aggregated views. Other toolsh siscPajé and Jumpshot, for in-
stance, use scrolling mechanisms to deal with the big numi®onitored entities. This
has a potential negative impact in the analysis since nendillies’s behavior are shown
at the same time.

Our approach uses time intervals to dynamically create amotated hierarchical
structure that represents the application behavior fdrgbaod of time. We also present
an aggregation mechanism that can be applied when there@many monitoring en-
tities to be analyzed in the same screen. We employ the tigéchnique (JOHNSON;
SHNEIDERMAN, 1991) to create a visual representation of tleeanchies. The com-
bination of the Time-Slice technique, the aggregation rhadd treemaps increases the
number of monitored entities that can be visualized at thees@me, and allows a direct
comparison among their behavior.
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The treemap visualization is already used to observe mumitdata from distributed
environments. CoVisualize (SAENGSUWARN; PAI, 2009), fortarxce, is a grid visu-
alization tool developed for PlanetLab. The tool uses \@akiech as CPU, Memory and
Bandwidth of nodes to render the treemaps. Besides, it canrfggoeed to show also
efficiency images, based on CPU and memory, and usage imapes] bn slices, slivers
and nodes according to the terminology of PlanetLab platf@gknother example is the
visualization of workloads (HEISIG, 2003), where the valwé the represented hierar-
chies are calculated based on the workloads applied tomessaun both approaches, the
time variable is not used and only the visualization of resesi state is represented.

This Chapter is organized as follows. We begin with a desonpthat shows that
monitoring data can be hierarchically organized. We preten the Time-Slice algo-
rithm responsible for creating an annotated hierarchicatgire that represents the pro-
gram behavior for a given interval of time. The aggregatiadei is presented, working
by merging data by similarity and moving it to upper levelshid¢rarchical structures.
We then present the basic concepts of the treemap visuahzattechnique proposed in
1991 to solve the problem of visualization scalability faerdarchical structures, and its
application to visualize the output of the Time-Slice teige and the aggregation model.

4.1 Hierarchical Organization of Monitoring Data

Traditional monitoring systems for distributed enviromteeperiodically gather data
about the behavior of a pre-defined set of entities. This aetcontain resources of the
computing system, such as processors and memory, and centpdnom parallel ap-
plications, like processes and threads. For each entitgrakother types of information
are also registered, like events for functions calls, omgea in the value of a variable
associated with the entity. An example is Ganglia (MASSIE;UDH CULLER, 2004),
able to collect monitoring data from several computers an@éch of them, the level of
CPU utilization, input/output, and memory. For Ganglia, ¢ty is the computer. Other
cases, more focused on the application level, are tradingries such as JRastro (SILVA;
SCHNORR; STEIN, 2003), or the VampirTrace tool. In this latesezat results in appli-
cation traces that register the behavior of processes aedds, which can be identified
as the monitored entities. The states for the processeshasalds, their events, are the
information associated with them.

An important characteristic of monitored entities is tHayt can be organized as a
hierarchy. This organization lists the observed entitedattom-level nodes, or leaves,
leaving intermediary nodes of the hierarchy to group thesetdan logical or location
characteristics. In the example shown in Figure 4.1, theitoong system collected data
from processes and threads. A possible hierarchical agaon of these entities is to
group the threads by processes and the processes by madhihesapplication were
executed in a grid environment composed by clusters, théimas could be also grouped
by cluster. Additional information about the processes @mdads can also be present
in the hierarchy, such as the statBfocked and Running below the Process entity,
Created andJoin belowT hread.

Usually, the nodes of Figure 4.1 are types of the monitoreities The hierarchical
structure serves as a guideline to organize the monitoratg dollected by a tool that
provides such information. During the collection of evealt®ut processes and threads,
the monitoring system creates instances of these typestd~g2 shows an instantiation
of the hierarchical organization, where the applicaticzoisiposed by, processes (each
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Figure 4.1: Hierarchy of Entity Types.

with one thread), grouped hYy,, machines)V, clusters, finally all belonging to the same
grid.
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Figure 4.2: Hierarchy of instances of the entity types.

The types of a hierarchical structure can be related to amy &f entity that can be
monitored. If, for example, we are monitoring an objeceated application, the resulting
collected data would be composed by traces from the objeatsatere instantiated and
the methods executed. Another level of the hierarchy is am®g of packages that hold
the classes. The resulting hierarchical organization dibel a tree having as root a type
Packagewith a single child of typeClasswith a child of typeMethod

The notion of type hierarchy was implemented and validatetie visualization tool
Pajé (KERGOMMEAUX; STEIN; BERNARD, 2000). Its format is considd generic
since it can be adapted to represent virtually any kind ofitodng data. It was applied
to the visualization of Java Applications (SILVA; SCHNORR; SWE2003), MPI appli-
cations and multi-level analysis of parallel applicatiemecuted in clusters (SCHNORR,;
NAVAUX; OLIVEIRA STEIN, 2006). One of the reasons for the geiwecapability of
Pajé is the use of a hierarchical definition of the data, babig to adapt to a broad range
of monitoring systems, from the ones focused in the anabfsissources to systems used
to trace parallel applications.

The type hierarchy of Pajé is enhanced with four additiorzaid types to describe
an entity behavior. They are states, events, variablesiakeal A state of an entity means
that the entity spent an interval of time in that state. Amévas just one timestamp and
can be used to describe singular events in time. A variahlsed to visually describe the
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evolution of a certain metric over time and a link is used teadie an interaction between
two entities. Because these types can describe a broad raagplation behavior, we

decided to adapt them in the development of the Time-Slgersthm. This adaptation is

described in the next Section.

4.2 The Time-Slice Algorithm

The objective of the Time-Slice algorithm consists in dregt hierarchical structure
that reflects the program behavior for a given interval oktiffor that, the nodes of the
hierarchy must receive values that are calculated basedmfattors: the definition of a
time interval and a summary of the events for each monitongitiyeon that time interval.

Different configurations to define the time interval are fldss For example, its length
can be changed dynamically in order to find visual patterms fthe data being analyzed.
This allows the detection of patterns that might appear imallsslices of time but not
in larger ones. The user can also move the slice of time beiadyzed, allowing the
observation of the evolution of the entities through tima amall time scale.

The summary of events is done by taking into account thevataf time specified
and additional information about an entity, which is préserthe monitoring data. The
objective is to find a numerical value that represents theweh of each entity. There
are different ways to define the numerical value for eachtyenfe can consider, for
instance, that this number is the amount of time, or the nuwit@nes an event happens,
or any other information that can be counted somehow. Befetteng into the details of
how each of these methods is used to calculate the numeakasd, Vet us proceed to an
overview of the variables terminology used in next sections

Figure 4.3 shows an example where there are two proces$ses] B, that have been
executed in the machin®, which was part of cluster' and the grid= (hierarchy shown
on left of the Figure). The time slice defined for the algaritbegins aff; and goes td’;
(represented by the two vertical lines). Singular evergsd@noted byX z,, whereX is
the identifier for the entity and the type of the event. The number nextdas a counter
to identify uniquely that event. States are definedXay¢; and Xs,¢;, whereX denotes
the entity,S the type of the state and a number to uniquely identify thatesihstance.
Links have their beginning denoted B§Y;,¢; and end byX'Y7:t¢;, whereX is the origin
of the link andY” is the destination. Variables are represented by a serigne$tamped
events that hold the current value for that variable. Thaltieg visual representation is
denoted by the variable in the Figure.

In the example of the Figure 4.3, there is one state for thigyeAt(Ag ¢, to Agity)
and two for the entityB (Bgst; to Bgit; and Bgot; to Bgoty). There are two singular
events in the entityl, denoted bydz, andAg,, and one link BA;,t; to BA ts). There
Is one variable for the entity/, denoted by the lettdr. We must also define a variable
X, that will hold the calculated numerical value for a givErentity.

The next subsections detail how the algorithm works in tles@nce of states, vari-
ables, links and events. The general principle is to seglgratim the values for the each
type of state, variable, link and event, and then intersexbbtained value with the time
slice used. This Section ends with a complete example ofl¢fueitom.

4.2.1 States

A state is defined by a value and two timestamps, one for itshbeg and another
for its end. An entity can have states with different vallesugh time. Figure 4.4 shows
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Figure 4.3: Example showing the mathematical variabled usthe algorithm.

five entities, fromA to E, grouped by location in machinéd1 to M3, and by clusters
C'1 andC2. In this example, we use only one value for the state, repteddoy the darker
tone rectangles in the horizontal axis.

For the example of this Figure, th€,,, values for the entities will hold the amount
of time each one stayed in the state in question. There ardiffeeent ways to calculate
X, for the entities fromA to E£. These cases are divided taking into account how the
state is positioned in time in relation to the selected titm@<7; up to7). The first case
is represented in the behavior of entty(see Figure 4.4), where the value for the entity
A,q is defined byl'; — Agit;, because the end of the state is after the end of the time
slice. The second case of entity for entiy the value will be defined byt ; — Bgot;,
without considering the amount of time entify spent in stateBs;, since this state is
out of the selected time slice. The third case is the entitwhere the state starts before
the beginning of the timeline, resulting in the formdg, ¢t — 7;. Entity D has no state
inside the selected time slice, so its value is simply zeruitf £ has two states within
the time slice, we must then consider both to fiiyg;, with the formula( Es1tf — Es1t;) +
(Esaty — Esot;).
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Figure 4.4: Time-Slice algorithm working to summarize esatising amount of time.

Considering all these situations and normalizing to the siiee, we obtain:

> _o(min (Ty, Xg.tr) — max (T;, Xg.t;))
Ty 1T,
During the execution of an entity (e.g. process, thread} @ommon to find more

than one type of state. When this happens, their values musiib@ated separately with
the formula. Taking as example the hierarchy of Figure 4tfh tiie Process entity, there

Xval =

(4.1)
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are two types of states#t/ocked and Running. The calculation for their values results in
Processyqi—biocked ANAPT0CESS yai—running. 1NESE Values are stored in the enfityocess
like a vector.

4.2.2 Variables

Observation tools gather information about different metduring the monitoring of
a system. Examples of these metrics are the bytes per saemsferred by the network
card, CPU or memory utilization. They are often collectedwnts, with different gath-
ering mechanisms. In an ideal situation, monitoring toalsthsample metrics using very
small time intervals, improving the accuracy of the valugitected. The metrid/emory
in the top part of Figure 4.5 shows how the drawing of the ctdld values for this metric
are in this ideal situation.
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Figure 4.5: Approximation measurement caused by the fregyuef collection mecha-
nisms; the Time-Slice algorithm works using the discretfaes collected.

For the ideal situation depicted on top of Figure 4.5, theéFiglice algorithm per-
forms the integration of the function that defines the vatudtie metric for that period of
time. Considering théd/emory variable and the time slice of the Figure, the equation is:

ff_f mem(z)dx
Xval = —

Ty =T,
wheremem(x) is the function that defines the value of the variable &ntb 77 is the
time slice. In the example of the Figure, the final value fdy,, is the area ofnem/(x)
limited by the interval of time.

The accuracy brought by the ideal situation in the collectba performance met-
ric is hard to obtain in the real world. If the gathering systeollects the metric value
too often, the intrusion caused may lead to a different behaf the observed system.
This behavior might be significantly different from the n@inbehavior of the system.
This can result in the lack of meaning of the monitoring datiage the normal behavior
(without observation) is too much affected. To alleviate firoblem, and at the same time
obtaining a good accuracy of metric’s value, monitoringlsagse periodic samples be-
tween fixed or variables intervals of time. Another perspedbr this situation that may
solve the problem is an agreement between the collectiomamesm and who demands
the monitoring data. The agreement can specify the amountrokion allowed, or the
amount of intrusion obtained when a set of metrics are cordajto be collected.

The bottom part of Figure 4.5 shows the met¥iezmory2 and its measured values,
inside the time slice, denoted froM ey ; to Mey 3. Each variable is valid between a

(4.2)
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defined interval of timeMey+t; to Meyt;, for instance. Considering/emory?2, the
Time-Slice algorithm operates by adding the area of theangges. Therefore, the equa-
tion used by the algorithm for a more real situation of measant of metrics is:

7o (Metric,ty — Metric,t;) x MetricValue,
T, T,

whereMetricV alue, is the value of the metric betweédetric,t; andMetric,t s, with
n samples collected inside the time slide (0 7).

Xoal = (4.3)

4.2.3 Links

Links are used to represent interactions among differetitiesn Figure 4.6 shows an
example where five processes, frofrto E, have some interactions among them. A link
is denoted byX'Y;,,, whereX is the origin and” is the destination. If there is more than
one link from X to Y, the subscripted number is used to differentiate them. IA dizn
also have a value associated, which is represented by thablaitself. The value can
be, for example, the quantity of data transferred. BesidesadHink also has a start time,
represented by, appended to the variable, and an end time, represented Ag before,

T; andT are used to define the time slice.

BALt BAt
Time Axis —— o 5 T,
o I 2] [ A— s |
G [c]l N /- / |
A A
cz| [ [o]| | | = |
L] ]| - R = |
CEL1ti CEL1tf CELZti CEthf

Figure 4.6: Time-Slice algorithm treating links presenc#hie time slice using amount of
time versus data transferred.

The way the Time-Slice algorithm works to summarize linkdifferent from states
and variables. Instead of simply associating a unique \altlee entity, the links are used
to create two values. One of them is created when the entityeisrigin of the links, and
the other appears when the entity is the destination. Thexgfior an entityX, we define
in the following equations\,,q;—as—origin ANAX yai—as—destination

" o (XYt — XY t) x XY, ,
:ZZ*O( L=2t i) X L for any entity X

4.4
T (4.4)

Xval—as—m'igin

ZZ:O (YXthf — YXthZ‘) X YXLz
Ty — 1T,

for any entity Y (4.5)

Xvalfasfdestination =

where XY;. is the value of the link of a given entityX, andY X . is the value of the
link z of a given entityY". It is important to notice that links that cross the time elic
boundaries are not considered here.
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Adaptations to these equations are possible in differématons. If we want to view
only the amount of time spent by a link between two entities,oan ignore the value
attribute of the link in the equation. Another perspectisevhen we want to view the
performance of each link, by dividing the quantity of da&nsferred by the time it con-
sumed to do the transfer. With this calculation, the valueafgiven entity matches the
performance of the entity’s communication either as or@imnlestination of the links. A
third situation happens when we need to know only the amoudaia transferred by a
single entity. In this case, we ignore the variables of timéhie equation. Several other
combinations are possible depending on the additionalalatiéable in each link, such as
overhead for creating the packets and emitting or receitfiegh and so on.

A special case for summarization of links is to count theidaeibns, for example, for
a given origin. For the entity3 of Figure 4.6, for instance, it results in three links with
destinationA and one link with destinationy’. This adaptation of the algorithm enables
the observation of groups that communicate more intensiaed parallel application.

4.2.4 Events

Events are singular points in the time axis that indicatemdamething happens for
a given entity. They can represent the act of changing theevaf a variable, or the
reception of a message. To summarize their existence indhavior of a given entity,
the easiest way is to count them by their type. The resultadgesfor the entities can
be composed of these counts: number of times a variable edahgw many message
receptions occurred, and so on. Different adaptationslacepmssible if additional data
Is available in each singular event.

4.2.5 More statistics

In previous subsections, states, variables, links andievegre detailed separately. In
the context of states, we presented the algorithm workirtg amly one state at a time.
Additional meaningful statistics can also be extractedwve consider more than one
state for a given entity. This situation depends on what teanimg of the states is and
how they can be combined. An example for that is the comlmnatf states that mean
actual processing and states that mean communicationt dbmibination can give the
analyst a view of the ratio computation/communication fibttee entities of the parallel
application.

The same techniques also apply to other types of monitoaiey, eariables, links and
events. These combinations depend on what is the natures guthhmarized value. Up
to now, we have seen that these values can be related to thenaiofdime (in the states
case), accumulated value of a metric (variables case),tipah data in bytes (links
case), simple counts (events case). Additional informati@t might be present in the
monitoring data can also increase the range of possible suizetion values. Table 4.1
gives an overview of possible combinations that can be wsebthin more statistics from
the basic types of monitoring data.

4.2.6 Example

Figure 4.7 shows an example with five monitored entitieanfrb to £, grouped by
their execution machines, represented by the rectaddles\/2 and M 3. The machines
are grouped by their cluste€sl andC2, which are part of the grid-. The selected in-
terval of time is 9 seconds, limited by the two vertical basméll vertical bars mean
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Table 4.1: Non-exhaustive set of combinations to obtainenstaitistics from traces.

Combination \ Unity \ Application
Bytes per second Quantity/Time| Communications Performance
Computation vs. Communication| Time/Time Efficiency of processes
Blocked State vs. Number of Links Time/Count | Mean time blocked per link
Computing State vs. CPU Utilization Time/Value Efficiency

intervals of one second). In this example, we intend to sunaashree different informa-
tion: the amount of time of the statésocked (darker rectangles)yzecuting (light gray
rectangles), and the bytes per second of the litiksimunication (represented by the
non-dashed arrows in the middle of the time slice). The numimethe beginning of the
communications represents the quantity of data transfemebytes. The link summary
is attributed in this example to the origin entity.

Blocked | g 9 seconds >

MH ) 3

] — = e p |

G H o© | - [ ]

c2/ L [o]| \ , R 4 I

CS[EE] 3 ~ i : .
Executing Communication

Figure 4.7: Complete example showing different aspectseftime-Slice algorithm.

Considering the case shown in Figure 4.7 with two states septed, Table 4.2 lists
the values of the entities for the three summaries. The btshen shows the five entities;
the second column shows the time in seconds each entitydstayihe Blocked state
within the time slice; the third column shows the time in sat®for each entity in the
Ezxecuting state; and the fourth column shows the bytes per secondiassbwith each
origin entity of the linkC'ommunication. For instance, to summarize the amount of time
of the Blocked state of the entityd, we sum up its duration of 5 seconds that is within
the time slice. To summarize the links, we use the bytes feeaesl divided by the time
the origin process took to the transfer. For entltythe Communication summary must
be the sum ol 0bytes/2seconds and40bytes/2seconds, resulting in25bytes/second.

Table 4.2: Summaries for the three different aspects aedlyz Figure 4.7, considering

the time slice of 9 seconds. o
Entity | Blocked (Time in sec.)| Ezecuting (Time in sec.)| Link (Bytes per second)

A 5 4 10/2 + 40/2 = 25
B 7 36/2 = 18
C 6 3 10/1 = 10
D 0 9 5/1+ 45/3 = 20
E 5 4 30/2 = 15

Figure 4.8 shows three hierarchical organizations of tlempte of Figure 4.7, con-
sidering the three summaries presented in Table 4.2. Thesm¢hies are the result of
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the Time-Slice algorithm, representing the behavior ofedént aspects of the parallel
application inside the selected interval of time. The valakthe leaves of the structure
are defined based on the calculated summaries in a per pfasagm.

Blocked State (Time in seconds) Executing State (Time in seconds)  Communication Link (Bytes per second)
G G G
Clusters —------------- - C1 c2 Ci1 c2 C1 Cc2
Machines----------- - M1 M2 M3 M1 M2 M3 M1 M2 M3
Processes--------- - A B C D E A B C D E A B C D E
® @ © © (6 @ @ © @ (250 (18) (100 (20) (15)

Figure 4.8: Hierarchical summaries generated by the Tiliee-&lgorithm considering
the three aspects presented in Table 4.2.

When different types of events are present in the intervahoé selected by the user
(as the example of Figure 4.7, with two different states amkk), the Time-Slice algo-
rithm creates as output a single hierarchy where the leaaesthe calculated values for
those types. Figure 4.9 shows the output for the current pi@mhere each leaf node
has three values that show the blocked state, executing atat communication link,
respectively. These values are the same found on the le&tbe three hierarchies of
Figure 4.8.

G Hierarchy with vectors on leaves
Indicating the summaries calculated

by the Time-Slice Algorithm

Clusters-------------- - C1 c2
‘ /\ Leaf
Machines----------- - ) .
M1 M2 M3 (Blocked, Executing, Link)
Processes--------- - A B c D £

(5,4,25) (2,7,18) (6,3, 10) (0,9, 20) (5, 4, 15)

Figure 4.9: Single hierarchy, based on the ones of Figuremt multiple summaries on
the leaves, generated by the Time-Slice Algorithm.

4.3 The Aggregation Model

Depending on the number of monitored entities present irtrdees, the hierarchy
generated as output by the Time-Slice algorithm can becamdarge. If we take as
example an application composed by one thousand processdspne with four threads,
the resulting hierarchy in this case will have four thouskades. The aggregation model
presented here intends to explore the hierarchical orgaoizof the monitoring data in
order to provide aggregated values for intermediary levEthe hierarchy.
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Figure 4.9 shows the output of the Time-Slice algorithmyespnted by a hierarchy
with a vector of summary values on the leaves. Consideringtbelfirst two values of the
leaves’s vectors, we obtain the leftmost hierarchy of Fegu.0. This left hierarchy shows
on the leaves the summary value for tB&cked and theExecuting states. The Figure
also shows three modifications in the hierarchy, causeddwpdgregation model. In the
example, there are three intermediate levels: ProdessMachine (/) and Cluster ().
The main goal of the aggregation model is to group the sumwenes of a level to the
level immediately higher. Therefore, after the first aggtean, the values of the processes
in the same machine are added and attributed to the machilee Tibe algorithm can be
applied again to pursue the aggregation, up to the root,lagethown with the second
and third aggregation steps of the Figure.

Original Hierarchy generated Aggregated at Aggregated at Aggregated at

] ’ ) E i > A i . .
by the Time-Slice Algorithm ! lAgg’eia"O" Machine Level Eﬂé‘ﬁ"cn Cluster Level ¥ Agg’e?.a”"” Grid Level

6.4 2.7) (69 0,9 64
\+/ &/

Figure 4.10: Three aggregations to decrease the hierampiy dind improve the final
visualization with treemaps.

After applying the aggregation model, the intermediary e®dp to the root node
have values that were calculated based on the leaves oktheline resulting aggregated
tree, shown on the right of Figure 4.10, enables a per-levalyais of the data. Since
the summary values of the nodes of this tree areRheked and Executing states, an
analysis in the cluster level, by observing nodésandC2, enables the conclusion that
for the considered interval of time, the clustét stayed 7 seconds in th&locked state
and 11 seconds in thBxecuting state. The same conclusion can be made for the cluster
C'2 and to other intermediary nodes, such as the ones of the Kadhrel. When there
are too many leaf nodes, the analyst can choose to obseryaiprnb a level, avoiding
too many details and still being able to understand the dveeaavior of the parallel
application for the considered time slice.

4.3.1 Aggregation Functions

Besides the traditional addition operation (shown in Figi®0), the aggregation
model can be applied with other functions to aggregate galsiech as max, min, and
average. Their direct application depends on what type lolevis attributed to the leaf
nodes of the original hierarchy and can highlight particelaaracteristics when aggre-
gating data.

The search for low-throughput communication links, baddfar rates among pro-
cesses, small amount of time spent with calculus, for exangain be eased by using a
min function when aggregating data. The application of thisction can highlight, dur-
ing the aggregation, the part of the machine that contamsvthrst communication links,
or transfer rates, for instance. On the other hand, a maxibumcan be applied in the
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aggregation if the user searches for highest values, sustygsr amounts of time spent
to calculations, or transferred data.

4.4 Visualization of the Approach

The previous Sections have detailed the Time-Slice tecienand the aggregation
model. Taking into account an interval of time, the Timez8liechnique works by sum-
marizing different aspects of the monitoring data and angat hierarchical structure that
represents the behavior of the parallel application fot timae slice. The aggregation
model works by calculating values for intermediary nodethefhierarchies generated by
the time slice. There are several ways of creating a vispaésentation of a hierarchical
structure. This is what the node-link representation doesdate Figures 4.8 and 4.9.

Instead of using these classical node-link representafiomthe output of the Time-
Slice algorithm, the work presented here explores the Tapet@chnique (SHNEIDER-
MAN, 1992) in order to visually represent the created hienaral structures. The main
benefits of this technique are its scalability to show langé deep hierarchies, and the
fact that all the screen space is dedicated to its repraganta

The next subsection details the basic concepts of thesartinecal representations,
exploring more extensively why we have decided to use therifieg technique. After
this, we discuss the scalability issues related to the taperepresentation and how the
aggregation model can be used to improve the work on thisesm&tte end the Section
showing how the treemap is used to create a visual reprémentd the hierarchies cre-
ated in the example of previous Section.

4.4.1 Treemaps Basic Concepts

The traditional way of displaying hierarchical data is te nede-link diagrams (NAGY,
SETH, 1984). This representation is depicted in the leftrpag of the Figure 4.11. These
diagrams are easy to understand by explicitly showing thegioa among the nodes.
The problem with this approach appears when we try to vizedéirge scale trees with
thousands of nodes. This happens mostly because they doplottevell the screen
space (SHNEIDERMAN, 1992).

The treemap technigue was proposed in order to solve thalsligl problem of hi-
erarchical representations (SHNEIDERMAN, 1992). Instefadrawing nodes and links
between them, it uses the whole screen space with a spacg-&lgorithm. This algo-
rithm recursively divides the space dedicated to draw tleeanchy, following the tree
organization. The right-part of Figure 4.11 shows an exanoplthe steps performed by
the treemap algorithm to create a representation of thadaiey shown on the left. For
this example, we consider that each leaf node has a valueep$ortheir sizes are the same
in the final Figure. The parent nodAsB andC have their values, 6, 3 and 2 respectively,
defined based on their children. The algorithm starts by dloé modeA, represented in
the middle of the Figure as a big square. The algorithm rémugoes to the second level,
dividing the space of nodd among their childrerB, C, and D. Then, the third level is
considered, dividing the space Bfamong its childrent, I, andG; and the space af,
betweenH and/. The final representation is depicted on the right squaresFtgure. In
this simple example, the hierarchy is highlighted with tise of margins between inner
and outer rectangles in the representation. The presertbhesd# margins depends on the
importance of the hierarchy during the analysis. Sometittneyg are not present to avoid
the loss of pixels of the screen that can be better used to sfadwlata. Figure 4.11 shows
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a peculiar example. In the general case, the sizes of leaeembalways the same.

A Recursive Treemap Algorithm
Level 1 --------mommmomem s -
/\ Level 1 Representation Level 2 Representation Level 3 Representation

E H

Level 2 -~ - B . o .
g ’ 8 F |

D G D

Level 3 - | E F || G H I

Figure 4.11: Two types of representation of hierarchicahdtne classic node-link dia-
gram and the corresponding treemap technique applied &athe hierarchy.

The treemap algorithm has passed through several evaugiaoe its creation. One
of them is called the Cushion Treemaps (WIJK; WETERING, 1999gchrique that
works with the association to each rectangle of an intuisikading that improves the
user perception of what is being shown. Another work basetheroriginal technique
is called Squarified Treemaps (BRULS; HUIZING; WIJK, 2000)manages to keep
the rectangles shapes as close as possible to squaresgrttakivisualization of the in-
formation easier by avoiding rectangles with a big widtigheratio. Another proposal
called Ordered Treemaps (SHNEIDERMAN; WATTENBERG, 2001 )sttekeep nodes
proximity when zooming at different levels. Voronoi Tregmea BALZER; DEUSSEN;
LEWERENTZ, 2005) is a different approach to visualize hienaral data that uses poly-
gons to represent nodes, instead of the traditional reldsiog squares. The polygons are
constructed from median lines between pairs of points.

Examples of treemaps utilization include network secuMfANSMANN F.; VIN-
NIK, 2006), grid resource monitoring visualization (SAERGWARN; PAI, 2009), vi-
sual analysis of stock market (WATTENBERG, 1999) possiblyligdpto a million of
items (FEKETE; PLAISANT, 2002). These multiple applicaisoof the treemap tech-
nigue, including the possibility of showing big hierarchienotivate us to use it in the
analysis of parallel applications. The principal advagetafjthe treemap representation
Is the good use of screen space, correlating screen spdcéheivalues of the nodes of
large-scale hierarchies, and outlining the repartitiothes space. On the other side, the
drawback is that the hierarchy is less apparent and easyeotdirning out to be diffi-
cult when first analyzed. The benefits of the treemap, howavemrmore evident than its
drawbacks, since the representation can be interactiviow an easy highlighting of the
hierarchy when necessary.

4.4.2 The Scalability Issue

The main advantage of the treemap technique is its abiliréaav in an understand-
able way large-scale hierarchies. This is possible bedaus®lves a space-filling algo-
rithm that uses all the screen space available. If we contpsemap abilities to traditional
node-link representations, the scalability of the appnda@ven more obvious.

Although scalable, the traditional treemap techniquem#éd by the size of the screen
space dedicated to its representation. If the hierarchygoeipresented is composed by
a large number of nodes, the space-filling algorithm may ggaesquares that are too
small. If we consider a computer screen with a resolution0@41pixels in the horizontal
dimension and 768 pixels in the vertical dimension, we endvitp a total of 786432
pixels to be used by the treemap algorithm. Considering thet square size reasonably
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occupies at least 100 pixels (10x10 square), the maximumbeuwf leaf nodes of the
hierarchy being represented is 7864. Furthermore, if wd warepresent at least 2 differ-
ent states (executing and blocked) at same time, we end t@awdtawing that may deal
at most with 3932 processes. Today, it is not difficult to firzaglel applications larger
than that, especially if we want a visualization of threads@ with processes behavior.

The visualization scalability can be achieved with the trap technique by letting
the algorithm work only up to a certain level. Therefore hié thierarchy is composed of
many leaf nodes, they are ignored in the representatiors. diution is also recursive,
starting from the root level, and making it possible to lithié representation depending
only on desired depth.

The problem with this approach is that some part of the in&diom that is on the
leaves is lost. An example of this is depicted on Figure 4ndtfich takes as input the hi-
erarchy generated by the Time-Slice algorithm presentguiéi 4.9, only with the sum-
mary values for theBlocked and Executing states. Since this hierarchy did not pass
through the aggregating model, the intermediary nodes tlhawe aggregated data about
the states. They only have the added value of the nodes bty instance P1 has a
value of 9, which is the sum of 5 and &/ 1 has a value of 18, which is a sum of the values
of P1 andP2; and so on up to the root node. This information is necessahettreemap
algorithm, since it expects for each node of the tree an @&socvalue that indicates how
much space of the screen that node will take during the reptason. The vectors of the
leaves represent the amount of time each process, fibto P5, stayed in theBlocked
and Ezecuting states. The right part of the Figure shows different treesrfap which
rendering was limited to a given level of the hierarchy. Tight-most treemap, on the
bottom, actually shows the states for all the processesayt mave on this level squares
that are too small in situations with a large number of nodeslved. If this happens, the
treemap algorithm may be stopped in a higher level of the Triee Figure shows, through
the others treemaps, that information is lost if this hagpdime lost information in the
example is the partition of time between each state for eemtegs.

C1
(18)

Values represent Time in Seconds

c2 M1
(27) (18)
- . P1 P2
) )
- (18) )
P3| P4 | PS5 P1 | P1pP2 P2
9 | © | © G | @l o
(wi-te]  [ve-1e] [wo-s] >
‘ P3 BS
©6) P4 ®)
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Figure 4.12: Limiting the treemap representation up to agefevel of the hierarchy to
obtain visualization scalability.

The aggregation model proposed in previous Section triesckoeve visualization
scalability through the use of treemaps without losingiinfation that may be on leaves
of the represented hierarchies. As presented, the modé&bkvigrmerging data from one
level of the hierarchy and moving the resulted merged dataras the root of the tree.
The next subsection describes treemap representatioasaged with hierarchies created
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with the Time-Slice algorithm and the aggregation model.

4.4.3 Using Treemap in the Example

First, let us proceed to treemap representations of tharasi@es created with the
Time-Slice algorithm, without any aggregation. The hiehégal structures of Figure 4.8
are sent to the treemap algorithm. Its drawing procedules itedo account the values
for each of the nodes in order to generate the maximum utdizaf the screen space
dedicated to represent the structure. The results of theseirdys are depicted on the
three different treemaps of Figure 4.13. The left-mostrir@e was constructed taking
into account the hierarchy that defines the behavior foriheked state of the processes
from A to E. The area of each rectangle represents the amount of timeconds that
each process stayed on that state. Below the main treemamdratthe left of the Figure,
there are three smaller representations that show the supethaiew for each level of
the hierarchy. We can also use these representations to mgthker-level comparisons
among the resources that contributed to the applicatiooutica.

Blocked State (Area is seconds) Executing State (Area is seconds) Communication Link (Area is Bytes per second)

A B A B A B
C
C
C E E
E
2 D
Per Level Treemap Construction
Ct M1 Ct M1 Ci M1
G G G
Cc2 M2 M3 Cc2 M2 M3 c2 M2 M3

Figure 4.13: Treemap representations for the hierarcl@petkd on Figure 4.8.

The center treemap of Figure 4.13 shows the behavior of teepses for th€zecuting
state. It was built based on the center hierarchy of Figue We can see through this
representation that processand D stayed more than others processes on the executing
state. Taking into account the smaller treemaps below, wesea also that maching 2
contributed more to the execution, when compared to mashifieand M 3.

The last treemap, on the right-most part of Figure 4.13, shibvw representation for
the bytes transmitted per second among processes on tbtesdiene slice. The analysis
of this Figure enables the observation of which processmdxdea higher throughput.

Generally speaking, the Time-Slice technique presentstijative data in a more syn-
thetic way. This means that the user can visually and almesamtaneously compare the
size of all rectangles. Analyzing the treemaps of Figur&Awle can easily see which
process has spent more time than others on each particater Btthis representation is
used to analyze parallel applications behavior and the sad blocking operation, the
visualization will show which processes spent more timeckdal than actually execut-
ing. Other types of states and events from the applicatiorbeataken into account and
combined in the same visualization.
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Another characteristic of the representations of Figuie3 4s to draw the treemap
using only available values up to a certain level of the m@ma This is depicted in
the smaller treemaps at bottom, showing the representatitevel Grid, Cluster and
Machine for each case. These per-level views allow an analysis gt tletails when a
considerable amount of data is present in the deepest IEte dierarchy, maintaining
the representation understandable even with a higher nuphipeocesses to analyze.

Aggregated hierarchies generated by our aggregation noatkehlso be represented
with treemaps. Figure 4.14 shows the treemap visualizatioat are generated based on
the hierarchies of Figure 4.10. The left most treemap shbesisualization of the orig-
inal hierarchy, withBlocked (represented by the lettét in gray areas) and'zecuting
(represented by in white areas) squares being grouped according to the ggeseThe
dashed circle shows the area that corresponds to prd¢gshk this first treemap, the
rendering is performed taking into account the values ofRfaxess level of the hierar-
chical structure. The size of the areas marked by B and E aedlzn the vector values
of the nodes. The aggregation algorithm group these valees@ding to the machines,
cluster and the grid. The second treemap of the Figure showscomparable way the
B and E values for each machine. These values are calculased lon the ones defined
for the processes of each machine. The dashed circle indh&s ltighlights the area for
machine)M 2. The other two treemaps to the right shows the aggregatedofithe values
according to the cluster level and the root level.

Original Hierarchy Aggregated by Machine Aggregated by Cluster Aggregated by Grid

B | Els| E B E B E
B E
8 B B
E B E B E
| E G
T p3 T e -

Figure 4.14: Treemap visualizations based on the origmélkagregated hierarchies pre-
sented in Figure 4.10.

4.5 Summary

Large-scale parallel applications that run on paralleldiattibuted architectures exist
today, being composed of thousands of processes. Theseatigpls need to be analyzed
in terms of performance and resources utilization. The tdaksualization tools that can
adapt to the large-scale characteristics of these apipinsamotivated the visual aggrega-
tion model.

The Chapter has started with a description of the hierartbiganization of moni-
toring data, a pre-requisite to the model itself. Then, weeharesented the Time-Slice
technique, which works by summarizing the behavior of alpgrapplication in a time
interval. The output of this technique consists in an artedthierarchical structure, that
serves as input to the aggregation model. Basic conceptedfébmap representation
have also been presented, together with its applicatiorst@lize the hierarchies gener-
ated by the Time-Slice technique and modified by the agggatodel.
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The next Chapter details the implementation of this techaigund the three-dimensional
model described in the previous Chapter, in the Triva prpity
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5 TRIVA PROTOTYPE IMPLEMENTATION

The last two Chapters have presented the visualization mddgtloped in this thesis:
the 3D visualization, focused on the highlight of the netwtmpology in contrast with
parallel application’s processes; and the Time-Slicerélgn with its aggregation model
and the treemap visualization. Those Chapters describeohdidlels from a theoretical
point of view.

This Chapter describes the developed prototype in order péeimment the visualiza-
tion models proposed. The description here details thevaodtdecisions taken during the
development and the internal algorithms of the implem@maihe prototype is named
Triva, to stand for ThRee dimensional Interactive and Viguadlysis.

One of the main guidelines to implement the prototype Trs/toibuild it on top of
existing tools and libraries, mainly to avoid the re-impéstation of already validated
implementations. The first decision following this guideliis the adoption of some parts
of the visualization tool Pajé. The main reasons that mtovés adoption are listed in
the next Section. This includes a description of the mosbntgmt components regarding
Triva and a performance evaluation of the Pajé Simulatdne©tlecisions considering
software re-use appear in other parts of the Triva prototypey relate to the input data,
the file format used to describe resources, the renderimgledion of graphs of network
topology, and so on.

The rest of this Chapter is organized as follows. After thecdps8on of Pajé, we
present the Triva architecture and how the implementatmnponents are organized.
Details about the architecture are presented in three: papist, the 3D-based and the
treemap-based visualization. There is one Section toitbeseach one of these categories.
We end the Chapter with a summary that lists the main decisiboat the implementa-
tions of the Triva prototype.

5.1 Using the Generic Visualization Tool Pajé

Pajé is a generic visualization tool that has charactesistiich as extensibility, inter-
activity and scalability. The architecture of the tool, ogd in Figure 5.1, is composed
of a set of interconnected modules and filters. There are fesdiiat deal directly with
the arrival of trace data from trace files, shown on the lefthef Figure. These are the
FileReader and the EventDecoder. Their responsibility totwert the events in the Pajé
file format to internal objects used by the tool. The tracadatter this transformation,
follows the path through the PajeSimulator up to the StaCagroller, where it is stored
in memory in scalable data structures.

The PajeSimulator is the main part of the tool, since it sated the behavior of the
traced parallel application with real traces. As resulgeiherates high-level, generic and
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abstract objects that are called Pajé objects, detaildebindxt subsection. The Figure 5.1
also shows the set of possible filters that can alter the floRapé objects towards the
two visualization modules on the right: the SpaceTimeViearad the StatViewer. More
details about Pajé’s visualization techniques are review&hapter 2.

One of the main filters of Pajé is the AggregatingFilter. Tlterfis responsible for
reducing the amount of information in a given container dase the level of zoom cur-
rently being used by the analyst. The filter, when used, carease dramatically the
scalability and interactivity of the tool by giving fast pEsse to the queries of the vi-
sualization components. Another component that is impbitaPajé architecture is the
PajeTraceController, depicted on the bottom of the Figutelbcontrols the initialization
of the modules and the appearance of the menu with severahseptffered to the parallel
application analyst.

8’"" FileReader }—b EventDecoderH PajeSimulator ”’StorageController}—, ReductionFilter
FieldFilter | |.__.__________ ificati
Trace data \ - notifications
. ContainerFilter queries
- - commands
- » Pl 4 OrderFilter
e ST Entity TypeFilter
-2 Initialization and Control pacelimeViews
PajeTraceController |- . [ ImbricationFilter |—| Aggregaﬂn‘gFllter\
StatViewer

Figure 5.1: Pajé Architecture.

The components of Pajé use a protocol, composed of notifitgticommands and
gueries. As depicted in Figure 5.1, notifications go from $terageController through
the filters to the visualization modules. These notificagiomainly announce changes in
trace data, such as modifications in the trace structureegrésence of new information.
Commands and queries go from the visualization componertet&torageController.
Commands are forwarded to filters to change their behaviormamdenerally triggered
by user interaction, such as the configuration of a givemn figePajé’s graphical interface.
Queries, on the other hand, are responses to notificati@harargenerated by visualiza-
tion components to obtain information about the traces.pical query is the request for
events information for a given time frame, that is eventudiawn in the visualization
window of Pajé. The queries and their respective responségate through the set of
filters. If a filter is properly configured, it can act on thealahanging its information
content that will be returned to the query’s origin.

The next subsection presents notions related to the typarbigy and the Pajé ob-
jects. Afterwards, we present a performance simulatioreexpgent with Pajé to test the
scalability of the tool. An analysis of the obtained reswtth the main advantages and
disadvantages of Pajé adoption in the Triva prototype asgnted in subsection 5.1.3.

5.1.1 Type Hierarchy and Pajé Objects

As stated in previous Section, Pajé is a generic visuatinatiol. This means that it
can be used to perform analysis of a wide spectrum of sitostimitially conceived to
visualize parallel and distributed applications, the geneapability of Pajé is achieved
by using abstract types that can be adapted to any kind of da&ae are five types in
Pajé: container, state, variable, links and events.

A container type is the only type that contain other typesluiding another container
type. It has an identifier and a name, and usually a start amth@mimestamp. All other
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types must be enclosed within a container. A state type maysbd to represent that a
given container type can remain in a given state for an amottine. A variable type
usually represents a metric which value changes through #nlink type is used to rep-
resent interactions between two container types; and ant &yee is to mark something
that happens in a point in time.

Besides the events produced by the monitored system, a &egdite (OLIVEIRA STEIN;
KERGOMMEAUX; MOUNIE, 2002) must also have the definition oéttype hierarchy
for that file. A type hierarchy is a hierarchy formed by the digifon of containers, states
and so on. An example for that might be a type hierarchy tHbgats the monitoring of
parallel applications composed by processes and threattsslexample, the type hierar-
chy has a container tygeocess that has a state type to indicate the state for that process,
and a sub-container tyghread, also with a state type to indicate the possible states re-
lated to that thread. Other information can be defined usiegevent, variable and link
types to reflect the behavior for that application. The teotagy of Pajé types is used in
next Sections extensively.

Considering the presence of a type hierarchy in a Pajé tragéd subsequent events
must instantiate the defined types, with the creation ofaioets and the attribution of
values to states, links, variables and events that mightrésept on the type hierarchy
previously defined. When treated by the Pajé Simulator coeqppthese events are trans-
formed Pajé Objects, which are generic representatiortseaévtents present in the trace
file. These objects can be generically treated by the filledsc@mponents that are con-
nected at the output of the Pajé Simulator.

The overall organization of a Pajé trace file is composedre&tiparts: the declaration
of events used in the file; the type hierarchy and the timgs¢éghevents. In the first part,
all the events that can be found in the trace file must be ddeldr The lines starting
with % of listing 5.1 shows the declaration of the evéhtjeCreateContainer, with its
unique identifier — 4; and the rest of its fields: Time, Aliagp&, Container and Name.
The other lines show an example of use of this event, appeasgnally in the third part
of the Pajé trace file, after the declaration of the type hédna The first of these lines
indicates that in time 0.1, a container of name “Site Nansytrieated with the alias
Nancy. The other two lines indicate that in times 0.2 and 0.3, twat@mers are created:
Grelon andGrillon, both inside the containéVancy. More details about the Pajé trace
file, including all other events, can be found in (OLIVEIRA SNEKERGOMMEAUX;
MOUNIE, 2002).

Listing 5.1: Declaration of the PajeCreateContainer event.

%EventDef PajeCreateContainer 4

% Time date

% Alias string

% Type string

% Container string

% Name string

%EndEventDef

4 0.1 Nancy 0 0 "Site Nancy"

4 0.2 Grelon 1 Nancy "Cluster Grelon"
4 0.3 Grillon 1 Nancy "Cluster Grillon"

5.1.2 Simulator Performance Evaluation

As stated, the Pajé components transform the trace datehigher-level objects.
Among the components, the one that plays a key-role in thisstormation is the Pa-
jeSimulator and the StorageController. We perform a set dbpmance tests in order to



82

assess the scalability of these components when the nurhieetities present in trace
files increases. This performance evaluation has beenrpertbboth in terms of execu-
tion time and memory use.

A measurement tool was implemented to conduct this perfoce&valuation. Fig-
ure 5.2 shows the overall organization of the tool, whereathi#&e components are from
Pajé and the gray rectangle indicates the implemented raodibe FileReader compo-
nent of Pajé has the definition of the chunk size, which gixesamount of data that
will be read at once by the component. For our performands,teajé was configured to
have a chunk size of 500 megabytes. This was necessary t andii-chunk file read
overhead that might influence a part of the obtained ressilt€e the largest trace file we
generated for the tests is less than 500 megabytes, all negasuts are conducted with
the same software behavior.

,,,,, - ooeoormmmmm----==---1 PajeTraceController |-------------------------——_.._____________1. Read All Trace File to Memory

2. Obtain All Pajé Objects

»
@‘ FileReader P EventDecoder H PajeSimulator P

StorageControIIerH AggregatingFilter PerformanceMeasurer|
Figure 5.2: Organization of Performance Tests developduRajé components.

We decided to remove the filters that depend on user interegtsince we are mea-
suring only the performance of the core Pajé componentsr&ig.2 shows the configu-
rations without these filters. The only filter we left is thegkggatingFilter, in charge of
the scalability of the answers to the queries by the perfao@aneasurement component,
and that does not require configuration by the user.

The basic algorithm for the performance measurements esit the whole trace file
and, after its completion, navigate through all objecthmmemory. The Figure 5.2 also
illustrates both steps with the dashed lines. Time measemeof both steps have been
taken and the memory utilization is obtained at the end afjfanm execution, just before
the release of all objects stored in memory.

Synthetic generated traces were used as input for the toule $ajé’s Aggregat-
ingFilter solves the scalability problem caused by the amaf data per container, the
generated trace files vary in their number of containers. Astianed in previous Sec-
tion, containers can be used to represent processes, shemachanging their number in
different inputs is reasonable enough to evaluate the astmulThe hierarchy used in the
trace files is flat, meaning that all containers defined in theet file are children of the
same root container node. The different traces range froooftitainers to 9 millions con-
tainers. We stopped the tests at 9 millions because of melnatgtions of the machine
used to run the tests. The containers of these inputs also drev thousand events that
change their state through time.

In order to execute the performance evaluation, we useddtdeshof the clustexiru
of the Parallel and Distributed Processing Group of the F@déniversity of Rio Grande
do Sul. Each node has 8 Intel Xeon E5310 (1.60 GHz) procesgtrsl6 gigabytes of
main memory. The number of executions for a given trace fifeedds on the size of the
file. For smaller files, we executed at least 100 times, buafgest files, at least 10 times.
For all measurements for a given trace file, we removed 20%eofdésults (the 10% best
and the 10% worst results) to keep the obtained resultsméltionfidence interval. The
remaining 80% of the results are used to create the average, wnd then analyzed.

Figure 5.3 shows the results we obtained with the execufibe.left graph depicts
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the execution time for both steps (step 1: Read and step 2egsg) of Figure 5.2. The
x-axis of this graph shows the number of millions of contasneanging from 1 to 15
millions. The y-axis is the time in seconds. The points iatkdhe measured values, up to
9 millions containers. The lines depict the linear reg@ssechnique generated with the
measured points. We can clearly see that the evolution @iugx® times are linear, with
the read step being more costly in terms of time than the geicg.

Measured execution time and their corresponding linear regressions Measured memory utilization and linear regression
30

T T T T T T T T T T T T
Read Linear Regression Measured memory utilization ~ +

Processing Linear Regression ---—---- Linear regression with the measured points -------
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Measured processing time ~ x
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@
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8

on in gigabytes

Timi
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,,,,,,,,,,,,,,,
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Number of Containers (x 1000000) Number of Containers (x 1000000)
Figure 5.3: Execution time and memory utilization obtainkeding performance experi-
ments with Pajé.

The right graph of Figure 5.3 shows the memory utilizationtfee same experiment.
Horizontal dimension indicates the number of millions oht@ners and the vertical di-
mension is the memory utilization in gigabytes. Points aeasured and the line indicates
the linear regression defined with the measured points. Wals® observe a linear be-
havior in memory utilization required by the Pajé composent

5.1.3 Analyzing Pajé’s Adoption

The advantages of using Pajé come from the software reusesctilability of the
tool and the fact that Pajé deals with generic objects. THigvace reuse enables a fast
development of additional components, the scalability been shown through the per-
formance evaluation tests presented in the previous Se@#sults in Figure 5.3). We
have been able to see that Pajé has a linear behavior in sespores to queries and also
in memory utilization. In the tests, we extrapolated the hanof containers to see if Pajé
can handle bigger quantities of containers in reasonable fror one million containers,
Pajé can read the trace file in about 25 seconds and returrathealthe visualization
components in about 3 seconds. Considering that each centsia process of a parallel
application, we can argue that Pajé can manage trace filearaligl applications with
one million processes in reasonable time.

The disadvantages of Pajé’s adoption could be that a spéaifiziage and environ-
ment must be adapted to reuse its components. Furthermdegms of implementation,
the tool that uses the components of Pajé must also have a @plld®p. Depending
on which development environment is used, this means th@hantool based on Pajé
components must have at least two internal loops that mudt together.

Considering advantages and disadvantages, we decided fib Raié’'s components
in the Triva prototype. The main reason behind this adopsdhe possibility to handle
generic objects, allowing the Triva implementation to b&ajeneric, and the fact that
Pajé is highly scalable. Next Section starts the Triva piypi® description.
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5.2 Triva Prototype Architecture and Overview

Figure 5.4 depicts the overall organization of the protetygpmposed of modules that
transform the trace data into Pajé objects, and then intbwbaypes of visualizations:
the 3D and the Time-Slice with treemaps. Because of the usenarig objects, the only
trace-dependent part of the prototype is the one represemdhe left of the Figure,
denoted mainly by the DIMVisual Integrator and its sub-comgnts specific to particular
trace file formats. The white rectangles are existing liesaand tools that were re-used
with minor adaptations; gray rectangles were implemertadaktpart of Triva prototype.
This convention is used through the rest of this Chapter.

Integrator

TrivaController TrVasDErame
DIMVisual DIMVisualReader h wxWidgets W

i
-4----- User Interactions

A [
StorageController

PajeEventDecoder}—» PajeSimulator }—>
\ Triva2DFrame

PajeFileReader ~—p» TimeSlice
Paje Filters

Figure 5.4: Triva Architecture and Implementation Layout.

The TrivaController, written in C++ language, is in chargeld# tnitialization of all
the components and connecting them following the architegiresented in Figure 5.4. It
also presents to the user a graphical interface, creatad the wxWidgets library, under
the form of a main window, with configuration options, menusl anteraction mecha-
nisms. The three dimensional scene and the treemap regdeatso initially configured
and rendered.

The Pajé filters, represented by the dashed rectangle ofigleeFs.4, are the same
as the ones used by the Pajé Visualization Tool (KERGOMMEAOUKIVEIRA STEIN,
2003). Their implementation takes into account severakissike scalability and low re-
sponse time to requests from the user interface. The firbedilters, PajeEventDecoder,
handles the input generated by the DIMVisualReader and psjitefor the next module.
The PajeSimulator transforms the events into visual objddtis transformation consists
in the creation of a hierarchical structure of traces, usirggbasic types of Pajé. This
structure, which represents the same information as irréee files, is optimized for the
visualization, and stored in the StorageController.

In the right most part of Figure 5.4, the interactions amdmg modules work in a
two-way fashion. The interactions from right to left are tiegquests for new data. They
are mostly triggered by user commands or changes in the coafigns given as resource
description. The interactions from left to right are thep@sses for the requests generated
by the visualization.

To give a better description of the prototype, we split thplaxation in three parts:
one that details how the input is managed by the DIMVisualReahother that explains
the TrivaView and how the 3D visualization model is impler®eh and the third named
TimeSliceView, which explains the implementation of them®d visualization model
proposed in this thesis. Next sections detail these three jpethis order.
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5.3 DIMVisualReader

The existing DIMVisual Integrator (SCHNORR; NAVAUX; OLIVEIRAEEIN, 2006)
is a software library to integrate traces from differentedsdurces into a common format.
As of today, the integrator is capable of generating a flowehs in the Pajé file format.
The trace-dependent part of DIMVisual must be implementecbpe with specific for-
mats. During this thesis, we implemented two trace-depetnaedules: a KAAPI trace
file reader and a MPI reader capable of reading traces geddrgtMPI applications.

Each sub-component of the DIMVisual Integrator is calledade, instantiated using
the GNUSstep library. A bundle means a self-contained biadjgct that can be dynam-
ically loaded and linked during runtime within another marm. After the initialization
of Triva prototype, the user can configure the bundle it laddsugh the graphical in-
terface. This interface acts through a configuration ptomplemented in the DIMVi-
sualReader module. Listing 5.2 shows the five methods of tbqol. The first three
methods are used to check the bundles available, if a bunitheancertain name is al-
ready loaded and to load a specific bundle based on its naspeatévely. The last two
methods are used to configure a bundle that has been loadstdtite function to get the
configuration options is executed, returning a hierardtatracture with the options that
must be defined to configure the bundle. These options areeddfinthe user through the
graphical interface of the prototype. After this definitidhe method setConfiguration is
used to configure the bundle. A typical configuration holderimation about trace files
location in the file system, possible synchronization fild #re kind of events that must
be read by the module. Other options are also possible bluaidie-specific.

Listing 5.2: Bundle Protocol Configuration.

(NSArray =) dimvisualBundlesAvailable;
(BOOL) isDIMVisualBundleLoaded: (NSStringt) name;
(BOOL) loadDIMVisualBundle: (NSStringx) name;

— (NSDictionary %) getConfigurationOptionsFromDIMVisualBundle: (NSSmg x)name;
— (BOOL) setConfiguration: (NSDictionaryx) conf forDIMVisualBundle: (NSStringx) name;

Figure 5.5 depicts the behavior of the DIMVisualReader afated components. The
DIMVisual Integrator generates as output a flow of timestadhpbjects that represents
the application behavior. These objects are a high-lepeesentation of traces, composed
of Pajé events. The flow is received by the DIMVisualReaderutegadvhich implemen-
tation follows the internal protocol of Pajé (KERGOMMEAUXTEIN; BERNARD,
2000). The responsibility of the DIMVisualReader is to tifans the flow of objects in
textual representations using the Pajé file format. Thegesentations are sent to the
existing PajeEventDecoder filter and transformed to sule®gPajé components. The
DIMVisualReader does not send the objects directly to the$mulator or the Stor-
ageController because the data generated by DIMVisual fierdiit from the one used
internally in Pajé.

The PajeEventDecoder is the first of the chain of re-usedfi&jés. The flow of tex-
tual events sent by the DIMVisualReader is received by thisrfdnd transformed into a
Pajé internal representation. As can be seen in Figurerte agixt filter in the chain of Pajé
filters is the simulator. The simulator receives the decaaeshts and creates high-level
objects based on the events. This high-level representitinasically an instantiation of
the type hierarchy with timestamped objects, such as statesits and links. It is then
stored in memory by the StorageController.

The main flow of information inside this part of the prototyp@mmes from the trace
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Figure 5.5: DIMVisualReader Implementation and interadiwith TrivaController.

files, depicted on the left part of Figures 5.5 and 5.4, to thig Riters, depicted in the
dash rectangle of Figure 5.4. This flow of information, tfansied in different ways
by each component, stops in the StorageController. Therg,sitored in memory and
made available to the visualization parts of the Triva prgie. The flow is triggered
periodically by the main loop of the prototype, handled bg ffrivaController. More
often than each half second, the controller sends a messdge DIMVisualReader to
check if there is new data available. If this is the case, #ve tnace data is read and sent
to the chain of filters up to the StorageController, where thw 6f information stops.

Although the Triva prototype was mainly conceived to workhirace files, the imple-
mentation is also capable of handling events in an onlin@das For that, the DIMVisual
Integrator must be attached to a source of events duringltdereation time of an appli-
cation. Even if possible, no tests have been performed to@eathe online use of the
prototype. The reason behind this decision is based on tbeminof data generated in an
online observation and the typical centralization of thalgsis. We also intend with our
approach to avoid the cost caused by the gathering and totiexf data that is potentially
distributed.

5.4 TrivaView

The 3D visualization model, presented in Chapter 3, is impleted in the Triva pro-
totype through the TrivaView and related components. [Edu6 presents the overall
organization of these components. The TrivaView moduldements the Extractor part
of the 3D model, retrieving from the flow of Pajé objects thatamers and links, and
redirecting the flow to the DrawManager component. The gr¥atcher part of the
3D model is implemented in three components of the prototypeaApplicationGraph,
TrivaResourcesGraph and TrivaTreemapSquarified. Theyweettee containers and links
from TrivaView, and the resource description in files. Theudlization part of the 3D
model, shown through the dashed line on the right of Figuée iS.implemented with
four components: the Triva3DFrame, which holds the 3D scaneé the three managers
that change this frame, the DrawManager, the AmbientMaragegthe CameraManager.

DrawManager

t»| TrivaApplicationGraph |
TrivaResourcesGraph
f rivaTreemapSquarified—

Triva3DFrame P \3‘:‘
: 223

| 3D Rendered

‘ AmbientManager

CameraManager

Resource
Description

Figure 5.6: TrivaView Implementation Layout
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The details of the components related to the implementaifoimne 3D model are
presented in next subsections. We start the descriptiondsgpting the two main libraries
that are used in the implementation: the Ogre3D and GrapliMiaries. GraphViz is
mainly used in the implementation of the visualization hageich description comes
next with the algorithms and file format used as resourcesigi®n. We end the details
with the presentation of the 3D rendering scene.

5.4.1 External Libraries: Ogre3D and GraphViz

Two external libraries were used for the implementatiomef3D visualization model.
The first one is called OGRE - Object-oriented Graphics Renddfngine, which is a
scene-oriented and flexible 3D rendering engine (JUNKERGRAOIs written in C++,
designed to abstract the details of using libraries liker@ie and is released under the
terms of GNU Lesser General Public License. Since Ogre3Beises-oriented, it requires
the creation of a hierarchical structure of scene nodeaclat to the Root Scene Node.
Everything that is attached to this root node is supposee tehdered.

When creating a scene, the scene nodes do not appear. Thavebggscene node
is to hold information about the position and scale in the BBcg. The objects that are
rendered in the 3D space, such as cubes, cylinders, plamsoaon, must be attached
to a scene node. All position and size operations that mugteb®rmed on a certain
object should happen to a scene node in which this objectasledd. Typical operations
applied to scene nodes are rotations, translations, rdlpaoh. If one of these operations
is performed on a given scene node, all the objects that taehad to its descendants
also receives the update. This hierarchical propagatia@pefations is especially useful
since complex hierarchical structures can be changed Hyiagphe operation to a single
scene node. Besides, it is possible to remove one of thestusa simply by removing
the scene node that attaches it to the hierarchy headed hpdhecene node. If the
developer wants to make the structure visible again, it tily to attach it to the main
hierarchy.

A scene is also composed by lights and camera. The Ogre regasgine is able to
manage ambient light and other types of lights, such as pdirgctional and spotlight.
A scene must have at least one light to make objects appéanose it is completely
black. The developer must attach a camera to the scene intoride able to observe in a
computer what is rendered in the 3D scene. A camera is usaiédighed to a scene node
where traditional position operations are performed. Way, the camera can rotate and
move through the 3D space. The image that is usually seenamauwter screen window
Is what is visualized by the camera.

The second library used in the implementation of the 3D m@détaphViz (ELLSON
etal., 2002; GANSNER; NORTH, 2000). GraphViz is an open segraph visualization
software. It gathers different graph drawing algorithmghi@ same tool. The basic usage
of the tool is the generation of graphical images from thenitedn of graphs in a textual
file format. Besides this traditional basic usage, Graphlda works as a library that can
be incorporated in other computer programs.

GraphViz, in its library form, is used extensively in thefdient base configurations
of the 3D model, especially for the implementation of theleagion and the network/ap-
plication graph combinations. The main functions of thedry areagnode to create a
node, anchgedgeto create an arc between two nodes. After the definition ®@fgttaph
with these functions, the developer must call the funcgehayout passing as parame-
ter the name of the algorithm to position and render the dcaphepresentation. At this
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moment, we can have access to several information regatdengraph, including for
example the position of the nodes in a bi-dimensional spgheesize of the nodes repre-
sentation, the bezier curved lines that represented tiseéthe graph, and so on. Itis this
information that is used in the Triva prototype, especitlly part related to the position
information.

The GraphViz library is integrated in the prototype as diéstt in the next Section,
and the OGRE concepts are used in the description of the 32megdf the Triva pro-
totype, in Section 5.4.3.

5.4.2 Base Configuration

Three types of base configuration were proposed in the 3@Nzstion model, back
in Chapter 3. This Section explains how they were implemenigidg as input the visual
objects selected by the TrivaView module. Among the threealizations, two of them
must use graphs in their implementations: the applicationraunication pattern and the
combination of the network topology and communicationgrattWe use the GraphViz
library to implement them. The other base configuration tugusists in the treemap al-
gorithm has been implemented from scratch.

Graph of the Application Communication Pattern

The application communication pattern, represented inr€i%.6 by the component
TrivaApplicationGraph, receives as input two types of Rdjgects: containers and links.
As previously discussed in Section 5.1.1, containers mpyesent processes, threads,
machines and so on, while a link is used to represent an atiengbetween two contain-
ers. For this part of the implementation, the relevant im@tion present in container and
link objects is the container identifiers. A container objeas one identifier; and a link
has two containers identifiers, one for the sender and anfithéhe receiver. The algo-
rithm that creates the graph using the GraphViz library isgosed by two functions:
updateGraphData(and updateGraphLayout()Their simplified behavior are shown in
listing 5.3.

Listing 5.3: Algorithm to create the Application Communiocat Pattern based on con-
tainers and links.

graph_t xupdateGraphData (graph_sfgraph, list containers, list links)
for container in containers
agnode (graph, container.identifier);
for link in links
agedge (graph, link.send_identifier, link.recv_idenitf);
return graph;

GVC_t xupdateGraphLayout (GVC_klayout, graph_txgraph, string algorithm)
gvFreeLayout (layout);
gvLayout (layout, graph, algorithm);
return layout;

The component responsible for the algorithm to create tmenmonication pattern
does not control how many information arrives. It is the oesbility of the TrivaView,
in its controller form, to consider specific time intervaésied on user choices. This means
that if the user wants to see the communication pattern oapipéication occurring in a
given time interval, the TrivaView must reset the graphadisecreated by the TrivaAppli-
cationGraph component and send it only containers and présent in that time frame.
This has been implemented in the prototype by letting the cis@ose which time frame
to analyze.
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The functionupdateGraphLayout()shown in Figure 5.3, defines the graphical lay-
out of the graph. After calling GraphVizigvLayout()function, there is enough informa-
tion available to actually draw an image file with the visugbnresentation of the graph.
Among all this information, the Triva prototype uses onlg thi-dimensional position of
each node and the list of the arcs among them. So, after éxgdbe function to up-
date the graph layout based on the nodes and edges, the ppMe#&ionGraph sends
the bi-dimensional position (x,y) of each container to thaiMManager. This manager is
responsible for creating and positioning the visual olgj¢icht represent the graph in the
visualization base of the 3D scene.

The user can also customize the layout by choosing whichlGiajs algorithm will
be used to define the positions. As of today, there are fivewogiilot, neatq fdp, twopi,
circo. These options are extensively documented in the “Drawraglts with GraphViz”
documentation (GANSNER, 2009).

Graph of the Network Topology

The second type of base configuration is the mixing of the adtwopology and
the application communication pattern. The implementetibthis configuration is done
in the TrivaResourcesGraph component. It is based on thenasdescription file pro-
vided to the component, as shown in Figure 5.6, and contarat links selected by the
TrivaView component.

The resource description file matches dot’s GraphViz forfBat. SON et al., 2002).
An example of such file is shown in listing 5.4, below. This gienexample shows a list
of machines that are interconnected by a switch. The comp@aeeives a configuration
file like this and use the GraphViz’s layout function to defihe position of each node in
the visualization base. As in the previous base configuratioly the bi-dimensional data
defined by one the GraphViz’s algorithm is used and passedjdtothe DrawManager
component.

Listing 5.4: Example of resources description showing thevork topology, used to
configure the TrivaResourcesGraph component.

graph G {
"xiru —0.portoalegre.grenoble.grid5000. fr*— "switch";
"xiru —1.portoalegre.grenoble.grid5000. fr*— "switch";
"Xxiru —2.portoalegre.grenoble.grid5000. fr*— "switch";
"xiru —3.portoalegre.grenoble.grid5000. fr— "switch";
"Xxiru —4.portoalegre.grenoble.grid5000. fr*— "switch";
"xiru —5.portoalegre.grenoble.grid5000. fr— "switch";
"Xiru —6.portoalegre.grenoble.grid5000. fr*— "switch";
"Xxiru —7.portoalegre.grenoble.grid5000. fr— "switch";
"xiru —8.portoalegre.grenoble.grid5000. fr*— "switch";
"xiru —9.portoalegre.grenoble.grid5000. fr— "switch";

}

The second input given to the TrivaResourcesGraph is madeeofdntainers and
links, that come from the parallel application trace filenc® the component is pre-
configured with the resource description file, the objectsvéo act upon the reception
of containers by searching on which node of the network tmgppleach container from
the application trace should be placed. It is necessarystucesge to each container from
the trace to a location on the network topology, enablingtimeiltaneous analysis of both
information.

There are several limitations to provide a successful #stsoc of containers from the
trace to the nodes in the network topology. Usually, the amigrmation present in the
resources description file is the name of the machine. Togea successful association
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with containers from the application trace files, the cordes must hold some kind of lo-
cation data. This data must come from trace events, regast®r the monitoring system.
In the Triva prototype, we used traces from KAAPI and MPI &gilons. For KAAPI,
there are events that register the name of the machine wharegses execute. Our trac-
ing mechanism for MPI applications also registers the nahtlkeomachines involved in
the execution.

When the association of containers to nodes of the networidgy is successful,
the TrivaResourcesGraph component sends to the DrawMatiegposition in the base
for every node of the network topology and the position ofrgw®ntainer inside a given
node. By doing this, the DrawManager has all the informatienaessary to place the
visual objects in the visualization base of the 3D scene.pldsition of application con-
tainers inside a node of the network topology is also defiryed graph and implemented
inside the TrivaResourcesGraph component.

Logical representation using Treemaps

The third base configuration is a logical representatioh@fésources using treemaps.
For the Triva implementation, we decided to use the squdniesion of treemaps (BRULS,;
HUIZING; WIJK, 2000), since it provides a better width/heightio in the nodes repre-
sentation. We implemented it in the component named TrivaBfiedTreemap, receiving
as input two types of data: a resource description file andah&iners of the application
trace.

The format used for the resource description file that hagtprbvided to the com-
ponent is in the Property List Format (APPLE, 2008). Figu® $hows an example of
this file. The example defines a hierarchical organizatiomathines, that are grouped
by cluster, then by site which composes a grid. For each nbttedierarchy in the de-
scription file, there must be an attribute named type that#tds the type of the node on
that level.

Listing 5.5: Example of resources description showing thgidal organization of re-
sources, used to configure the TrivaTreemapSquarified coempo

{
name = Grid5000;

type = grid;

children = (
{
name = portoalegre;
type = site;

children = (
{ .
name = Xiru;
type = cluster;
children = (

xiru —0.portoalegre.grenoble.grid5000. fr,
xiru —1.portoalegre.grenoble.grid5000. fr,
Xiru —2.portoalegre . grenoble.grid5000. fr,
xiru —3.portoalegre .grenoble.grid5000. fr,
xiru —4.portoalegre.grenoble.grid5000. fr,
xiru —5.portoalegre . grenoble.grid5000. fr,
xiru —6.portoalegre.grenoble.grid5000. fr,
Xiru —7.portoalegre .grenoble.grid5000. fr,
xiru —8.portoalegre . grenoble.grid5000. fr,
xiru —9.portoalegre .grenoble.grid5000. fr,
)
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The treemap algorithm is a space-filling technique that piesall the space available
for its drawing. The user defines, through the prototypelycgbinterface, the area in the
visualization base that will be used to render the treemafs iiformation is passed to
the algorithm implementation which starts a top-down amdrgve traversal through the
input hierarchy that came from the description file. Aftex #xecution, all the nodes have
their rectangles and their position defined in the bi-dinmre space of the visualization
base.

The other type of input for the component is composed of ¢oata from the paral-
lel application trace. This second input is necessary Iscthe TrivaSquarifiedTreemap
must also define the position in the visualization base feryegontainer of the application
trace. This information will be used later by the DrawManageplace the containers on
top of the areas reserved for a certain machines. The sameiassn between resource
and application container, present in the previous vigatibn base configuration, must
be made here.

We have also implemented in the prototype the possibilityetz#ting the size of each
rectangle that represents a machine on the visualizateswih the trace characteristics.
This calculation is made depending on the options that teealsoses. Up to now, it is
possible to use the number of containers in a given mactheesdunt of a specific states
that appear in containers, and the amount of time of a givate §h a container. After
defining which metric will be used as squares size in the Vizaiton base, the values
for the leaf nodes of the hierarchy are defined and the treesnagmputed. This can be
performed at any time during an analysis.

As output, the TrivaSquarifiedTreemap send to the DrawManihg computed treemap
data structure, that contains the position of each node amiginer.

5.4.3 Rendering the 3D Scene

The rendering of the 3D scene is controlled by three differeanagers: Ambient-
Manager, CameraManager and DrawManager. The AmbientMaigmgesponsible for
creating the initial static drawings of the 3D scene and toaga the dynamic time scale
rendered in the vertical axis. The static drawings do nohgkaluring the visualization of
a trace file, but the timescale changes depending on ini@maetth the user. Figure 5.7
shows the scene nodes and entities organization creatbe bbyanager. The black circles
represent scene nodes and gray squares represent ehétiappear in the 3D scene. The
static part is on the left of the vertical dashed line, andimposed of the Origin, and the
three axis scene nodes, the ground plane and the threedisasw the three dimensions
in the scene.

The dynamic time scale managed by the AmbientManager istiepon the right of
Figure 5.7, withN scene nodes and the same number of textual entities to iadioa
timestamps that are rendered along the vertical axis ofddees Whenever the time scale
is changed by the user, all the objects on the right are fraddaanew scale drawing is
placed. The scene nodes of the time scale are attached té\iie stene node, but they
are placed in the vertical axis according to the time scaieeatly in use.

The CameraManager is another component that helps to mahaed@bt scene. Its
responsibility is to create and track the camera entityuileig.8 depicts the Ogre3D’s
components used to manage the camera: there is a CameraNidi®f the root scene
node, and two entities attached to it, the camera itself dightthat always point to the
direction where the camera is looking at.

Configured by the TrivaController, the CameraManager alsksréite mouse and
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Figure 5.7: Ogre3D’s scene node and entities created bynfitgehtManager to maintain
the static part of the 3D scene and the time scale.
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Figure 5.8: Ogre3D’s scene node created by the CameraMatiodgesp the camera entity
of the 3D scene.

some keys of the keyboard to move the camera through the 3i2 s€ke implementation
receives as input the arrow keys of the keyboard and tramsfttem into operations that
are applied to the CameraNode. Every time the user uses ohe afrows, the prototype
calculates a vector to move the camera. This vector is thpheapto the CameraNode
through a translation operation that also considers trentation of the node in the 3D
space. The manager also tracks the moves made by the usdaheithouse. Based on
them, the prototype determines two angles, one relativeddt plane and another rel-
ative to theY plane, to be applied to the camera node through the opesaymmn and
pitch, respectively. This allows the camera to point to pifieections based on mouse
movements.

Rendering and Placement of the Visualization Base

The DrawManager is the main component that renders the 3iestigeceives as in-
put the configuration of the base already calculated by pusvtomponents, the positions
of the containers in the base, and the timestamped Pajé&shjdue placed in the vertical
dimension according to their containers. The DrawManagjezs these inputs and start
the creation of a hierarchical structure of Ogre3D’s scesgier and entities. This struc-
ture is then rendered by the Ogre3D library in the Triva3D#eaf the Triva prototype.

Figure 5.9 shows the hierarchical structure that is crebtethe DrawManager to
place the objects in the visualization base according tangwat. As in previous Figures,
the black circles indicate scene nodes, and the gray sqoegas entities. On the left of
the Figure, there is the scene node CurrentVisu, child ofdbescene node. The use of
this scene node enables the possibility of drawing moreahartrace visualization on the
same 3D scene. At this time, the prototype has only one of sade. The CurrentVisu
scene node has two children: the ContainerPosition and thealNzationBase. As the
name indicates, the container position scene node cordaliss of scene nodes’{l,
C2, ...) that holds the position in the base of each contairer cbmes as input to the
DrawManager component. Each of these scene nodes has #esaiteiy composed by
the visual representation and a 3D text (Draw and Text scedes). Each container scene
node is used latter when the timestamped objects are attdoht®e scene. The other
child of the CurrentVisu is the VisualizationBase scene ntdeeps the structure for the
current visualization base. In the Figure, the ResourcggGaiad the SquarifiedTreemap
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structures are depicted. The first one is the structure wsdtid drawing of the network
topology and application graph. The second is the one tletskhe treemap as base.
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Figure 5.9: Ogre3D’s scene nodes created by the DrawMarniagender the 3D scene
for the visualization model.

The ResourcesGraph of Figure 5.9 maintains a dynamic listefesnodes to repre-
sent the resourcesk(), R1, ...). The resources are the ones sent by the TrivaResources-
Graph component as part of the network topology read fromctirdiguration file in
GraphViz’'s format. Besides the information about the resesy there is also a list of
edges F1, E2, ...) that are children from the ResourcesGraph scene nadleegme-
sent the lines that interconnect the resources’s squateeibdse. The scene nodgs
... Rn are positioned in the bi-dimensional visualization bassosting to the positions
calculated by the TrivaResourcesGraph component. Theigosit the edges are then
calculated based on who they connect.

The SquarifiedTreemap scene node of Figure 5.9 and its suarbhy (.0, L1 —

0, L1 — 1, L1 — 2, ...) are created dynamically based on the configuratioh lsethe
TrivaSquarifiedTreemap component of the Triva prototyges ub-hierarchy reflects the
hierarchy that comes from the logical organization of thefiguration file. Each scene
node has a square drawing attached to an auxiliary scenetoanaintain scale and
positioning.

Besides the two types for base configuration already deskribere is also the appli-
cation communication graph. This configuration, generbyetie TrivaApplicationGraph
component, is always present in the visualization. Theescexes, the lines and possible
arrows of its representation remain attached to the Curremt8¢ene node directly. This
attachment can be controlled through the graphical inteffallowing the user to enable
or disable to appearance of the communication graph of thkcagion being analyzed.

As stated earlier, each Ogre3D scene node must have a debsésbmp in the 3D
space. This position is represented using the 3 coordinatesand y. In Figure 5.9, all
the scene nodes (the black circles) have the y coordinate seto. This places all scene
nodes on the visualization base, as defined in the 3D visiaiiz model Chapter. The
other two coordinates (x and z) of all scene nodes of Figl@afe defined by one of the
three components that implement the entity matcher (Tip@idationGraph, TrivaRe-
sourcesGraph and TrivaSquarifiedTreemap).
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Rendering Timestamped Pajé Objects

The DrawManager also receives as input a flow of timestampgél ¢bjects to be
rendered in the 3D scene. In Section 5.1.1, we detailedithatrtelated objects are states,
links, variables and singular events. Among these objessmplemented only the 3D
representation for states and links. These two types ottspgan describe the behavior
of several types of applications, since they can represengxecution of a function or a
piece of code and also interactions among application’spoom@ants.

Figure 5.10 shows the structure made by the DrawManager dtsving states and
links into a 3D scene. The states are attached to the scees nbdontainers (frord'0 to
Cn). In the example of the Figure, each container haldsates, from50, C0 to Sn, C0.
The main reason for attaching the states to the containereswdes is that by doing so
the states are placed exactly on top of the representaticontdiners in the visualization
base. The only position information that must be computethkbyDrawManager is the
vertical position in the time axis. This computation for leatate allows the correct place-
ment of a visual representation of the state. This repratientis a cube, and the color of
the cube is associated to the value for that state. By doisgdHistates of the same type
will have the same color, facilitating their identificatiohhe color scheme in fact is the
same as the one used in traditional space-time visualimtio

O O O O
$Q.CO} S1.C0; S2.C0} Sn.CO;

Application
States
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Figure 5.10: Ogre3D’s scene nodes created by the DrawMarnagender the times-
tamped Pajé objects in the 3D scene.

The second type of timestamped-objects rendered is the. ivken received by the
DrawManager, links are transformed into a scene node tladtiished to the CurrentVisu
scene node. Figure 5.10 shows an example for that with tke litmk0 to Link N scene
nodes. Each link scene node has also a visual represerttaios a line. The position of
this line in the base dimensions are calculated based orridie and destination of the
links. For that, the DrawManager component obtains the xgrabition of the containers
involved (since a link is always between two containers)@edtes the line between these
two points in the base. After this, the DrawManager attesuthe y coordinate of the
beginning and end of the line by using its two timestamps:tbatindicate the beginning
of the link and another the end. With the three dimensionsddffor each extremity of
the line, it is finally rendered in the 3D scene.

5.5 TimeSliceView

Previous Section described all the aspects of the impleatientof the 3D visual-
ization model. Most of these aspects are related to the Vievaprototype component.
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Now, we present the implementation of the visual aggregatimdel proposed in this
thesis. The main component of this implementation is theeBhteView, as can be seen
in Figure 5.11. Another component of this part of the Trivatptype is Triva2DFrame,
which responsibility is to draw the treemap in the visudl@awindow of the prototype.

On demand i
Pajé Objects ) - |\ Configured Treemap wxWidgets
4>‘ TimeSlice | ﬁ Triva2DFrame

/ Window Size Changed

Treemap Rendered
New Aggregation Level

A A A

/ Time Slice Changed

Figure 5.11: TimeSliceView Implementation Layout with Mioations.

Figure 5.11 also details the interactions and notificatibashappen during the TimeS-
liceView execution. The arrival of objects from the Pajé slator (see Figure 5.4 for de-
tails) is depicted on the left of the Figure. The user inteoaovith the prototype can cause
three different types of notifications that go from the TAlzd-rame to the TimeSlice: the
change of the window size, a new aggregation level and thegehaf the time slice. All
these notifications trigger the same chain of executionenlimeSliceView component:
creation of the behavior hierarchy, possible applicatibthe aggregation operators and
re-computation of the treemap. The resulting treemap cordtgpn is sent as a response
to the notifications and then rendered by the Triva2DFramepoment.

Next Section presents the implementation that createsehavior hierarchy. After-
wards, we present some information regarding the drawinggatures using the wxWid-
gets library functions.

5.5.1 Creating the Hierarchy

The Pajé objects and the type hierarchy of a trace in the Bajéat were described in
Section 5.1.1. We observed that there are five differentstgb@®bjects: container, state,
link, event and variable. Besides, there is also a definitioa type hierarchy for each
trace file in the Pajé file format. This definition enables,d@iven trace file, to say that a
process of a parallel application is of type container, antheéhavior is of type state, for
instance.

Figure 5.11 shows the implementation layout of the TimeSliew and related com-
ponents. The TimeSlice component is responsible for erg#tie behavior hierarchy that
will be shown in the visualization window through the Tri22rame component. In or-
der to calculate the behavior hierarchy, the TimeSlice ase of methods from the Pajé
filter protocol. The listing 5.6 shows the five methods (in @igective-C language) of
the protocol used by the TimeSlice component. The first isl teagavigate through the
type hierarchy, mainly through the containers, returningaay of containers type that
are children of another container type. The second methodtisised to confirm if a type
is a container type (it can be of another kind, such as state dtc.). The third method is
used to retrieve the Pajé type of an instance (containee, $itzk, event or variable). The
fourth method returns an enumerator for all containers @fgtileen type inside the given
container instance. The last method returns an enumerfatoe entities of the given type
inside the given container between two timestamps.
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Listing 5.6: The five methods of the Pajé protocol used by tineeElice component to
create the behavior hierarchy.

— (NSArray x)containedTypesForContainerType:(PajeEntityTyp@containerType;

— (BOOL)isContainerEntityType :(PajeEntityType)entityType;

(PajeEntityType %) entityTypeForEntity :(id<PajeEntity >)entity;

(NSEnumerator*)enumeratorOfContainersTyped:(PajeEntityTypg entityType
inContainer:(PajeContainer)container;

— (NSEnumeratorx)enumeratorOfEntitiesTyped :(PajeEntityTyp€)entityType
inContainer:(PajeContainer)container
fromTime :(NSDate x) start
toTime : (NSDate %) end
minDuration:(double)minDuration;

The TimeSlice component creates the behavior hierarcmgubie methods above.
The containers become the nodes of the hierarchical steictine values of leaf nodes
are calculated based on instances of the state type. At thigsemt, the implementation
does not handle links, events and variables. Listing 5.Wslhbe implemented algorithm
to create the behavior hierarchy. Each time the metheateBehaviorHierarchis called,

a node in the hierarchy is created. After the recursive caltan notice in the listing, the
created nodes are attached to the parent node. The last timelsting is executed when
no further recursion is necessary, since the container doekave any sub-container.
Being a leaf node of the behavior hierarchy, the node must fe&df ia value by calling
thetimeSliceAmethod informing the container and its type.

Listing 5.7: The implementation that creates the hieraalrstructure based on the con-
tainers of the trace file.

— createBehaviorHierarchy: containerlinstance
containerType = [filter entityTypeForEntity: containerstance];
listOfTypes = [filter containedTypesForContainerType orctainerType
inContainer: containerlnstance];
foreach type in listOfTypes
if [filter isContainerEntityType: type]
/+ Recursive call to create swmnodes x/
listOfContainers = [filter enumeratorOfContainersTypedype
inContainer: containerlnstance];
foreach container in listOfContainers
createBehaviorHierarchy: container
else
I/« Call the Time-Slice implementationx/
timeSliceAt: containerlnstance ofType: type

The implementation of the methdiuineSliceAis detailed in listing 5.8. The method
receives as parameter the container and the state type tisato®m used to compute the
values. The enumerator method, as previously statedneetilirthe instances of that state
type for the period of time betweeaticeStartTimendsliceEndTimeAfter receiving the
list of state instances, the algorithm iterates througth edcdhem, adding its value for
each possible state name. This happens in the last methdastiog 15.8. For example,
considering a process as a container with a state: thisrsi@yehave different names in
an execution (blocked, running, barrier and so on). Thertathod of thetimeSliceAt
implementation will attribute the value for each of thesenea that corresponds to the
intersection of the time slice and the duration of the stataultiple occurrences appear
in the same slice of time, the values are accumulated.

After the execution of implementations listed in 5.7 and & containers and states
will be reflected in the hierarchy as nodes and leaves, résplc The leaves, which are
created based on state Pajé instances, have values assdocititem. The next step in the
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algorithm is to define the values for the intermediary nodéss is implemented with a
bottom-up algorithm that define the values of a node basedsumeof the values of its
children.

Listing 5.8: The implementation that returns a value for\aegicontainers based on the
states instances for that container.

— timeSliceAt: containerinstance ofType: type
listOfStates = [filter enumeratorOfEntitiesTyped: type
inContainer: containerinstance
fromTime: sliceStartTime
endTime: sliceEndTime]
while state in listOfStates
stateName = [state name]

startTime = [state startTime]
endTime = [state endTime]

laterStart = [startTime laterDate: sliceStartTime]
earlierEnd = [endTime earlierDate: sliceEndTime]

addValue: [earlierEnd timelntervalSinceDate: laterStar
forName: stateName

The previous algorithms, one to create the hierarchicatgire and the other to define
the value for leaf nodes, are sufficient to apply the squdrifieemap visualization. The
result of these algorithms is a hierarchical organizatibalgects, following the object-
oriented pattern. The squarified treemap algorithm is implated in the class that defines
this hierarchical organization. This implementation ikexhjust before sending the result
to the Triva2DFrame component, which finally renders thertrap in the window.

In Chapter 4, we also presented the aggregation algorithimstlag@plied to simplify
the behavior hierarchy created by the Time-Slice algoritiitne aggregation model is
also implemented inside the TrivaView component, througheshod namedimitHier-
archywhich receives as parameter the hierarchy to be simplifiddl@new depth of the
tree. The implementation of this method is shown in listin@ he method is basically
divided in two parts, one that does the aggregation, anchantd do the recursion in the
hierarchical structure. The first part, where the aggregdtikes place, is implemented by
obtaining all the children for a given node, then removingstihnodes from the original
structure. The obtained nodes are summarized based omihiarsattributes. For exam-
ple, if an instance of machine container has multiple precestainers as children, which
in their turn have two types of states (each one with a valihe)aggregation algorithm
will sum all the values of the same state type, remove all tiaes process and create a
new node that is child of machine with the resulting aggregaalue.

Listing 5.9: Recursive implementation of the visual aggtegatechnique, applied to
simplify a hierarchical structure generated by the TimieeShlgorithm.

— limitHierarchy: hierarchyNode toDepth: depth
if [hierarchyNode depth] == depth &
[hierarchyNode depth] != [hierarchyNode maxDepth]
/x Create a summary of the children at this deptf
children = [hierarchyNode children];
[hierarchyNode removeAllChildren]
summary = [hierarchyNode summarize: children]

/% Inserting summary nodes back to the tresd
foreach sum in summary
[hierarchyNode addChild: sum]
else
I« recurse x/
foreach child in [hierarchyNode children]
[self limitHierarchy: child toDepth: depth]
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In the implementation of the aggregation method, we usey v sum function to
do the aggregation. This, however, can be easily changdtimtplementation or even
transformed in an option of the user. The possible operdtorthe aggregation can be
any of the operators discussed in Section 4.3.1.

5.5.2 Drawing with the wxWidgets library

After the creation of the behavior hierarchy, in its oridinoaaggregated form, the re-
sponsibility of the Triva2DFrame component is to actualigwd the rectangles, lines and
textual representations. As previously stated, the compioreceives from the TrivaView
a hierarchical object-oriented structure composed of s@dth treemap information al-
ready defined, based on the values defined by the Time-Sheithim and the visual
aggregation technique.

The Triva2DFrame receives as input this hierarchical stinecand goes through it
obtaining information during drawing procedures. Somecfioms from the wxWidgets
library (SMART; HOCK; CSOMOR, 2005) are used to draw in the vigadion window:
DrawRectangleDrawLine and DrawText The first function is used to draw the rectan-
gle that represents a given node of the hierarchy. The irdbam passed as parameter to
this function are the width, the height and the bi-dimenaigosition in the visualiza-
tion window. TheDrawLine function is used to draw the timeline in the bottom of the
visualization window. It appears only when the user movestluse pointer close to the
bottom region of the window. ThBrawTextfunction is used when the user click into a
rectangle: additional information about what that rectamgpresents is drawn.

5.6 Summary

This Chapter has presented the implementation of the twaNesion models pro-
posed in this thesis. The first one deals with the three-déimeal representation of ap-
plication traces to help developers visualize program wieh#&ogether with resources or-
ganization. The second is about the visualization scithapitoblem through a technique
called Time-Slice that describes the program behavior ireealchy for a given time in-
terval. This second technique is complemented by an aggwaegaodel that, combined
with a treemap representation, achieves scalable vistli@ins.

The two techniques are implemented in the Triva prototyg@ackvis composed of
several existing libraries and tools, such as the Pajé,GfiapOgre3D, wxWidgets and
others. The first part of the Chapter evaluates the advangagkdisadvantages of using
some Pajé components, especially its simulator compohbrdugh a set of performance
experiments, we shown that the current implementation®tdbl is scalable enough to
most existing parallel applications.

The second part of the Chapter presents the Triva prototyjétecture and its com-
ponents. We present the implemented DIMVisualReader modalgable of attaching
the DIMVisual into the Pajé components directly, withousgiag through a file in its
file format. Then, we present the details of the implemeoratif the three-dimensional
visualization model, giving special attention to the dggmn of the base configuration
and how the 3D rendering is implemented. We end the Chapthrthatimplementation
description of the Time-Slice technique and the aggregatiodel.

The next Chapter presents the results obtained with the Privetype in different
scenarios. The scenarios range from real experiments iGtitE5000 platform to the
use of synthetic traces to show the resulting visualizatmistained with the prototype.
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6 RESULTS AND EVALUATION

The last Chapter has presented the Triva prototype. It imghesnthe two visual-
ization models proposed in the thesis: the three-dimeasiammd the visual aggregation
model. The Chapter details the general architecture of tbk tiee implementation of
the components and the external libraries used to suppotiahdling of graphs and the
three-dimensional scene.

The current Chapter shows the results we obtained with thtgpe through the
visualization of different traces, some of them generayathetically, and others obtained
with real executions of applications in a distributed anchfjal platform. The results are
composed of the visualizations generated by the prototypenwthe traces are used as
input. The main objective is to verify if the 3D visualizat®enable a better understanding
of the traces considering the network topology and if thertrap visualizations computed
by the proposed models allow large-scale analysis. Forttiatesults are divided in two
parts: one that shows the three-dimensional visualizatiath the representation of the
network topology; and the other part is composed of treenapsy trying to solve the
visualization scalability problem of program analysis. @efdiving into the description
of the results, we detail in next Section the different teagged as input to the prototype.

6.1 Traces Description

As previously described in Chapter 5, the prototype mustiveces input a flow of
events in the Pajé format. The flow of events can be genergtedibg the DIMVisual-
Reader component, or a file containing all the events. Thealimiions offered to the
user are always the same, no matter which of these optionsacktto enter trace data in
the prototype.

This Section explains how the traces used in the prototype generated or collected.
By generation we mean that a set of traces used in the validatithe tool were synthet-
ically created. The synthetic traces are necessary tatédeithe analysis of the prototype
and the visualizations it creates. An example to justifydle of synthetic traces is the
complexity of finding real traces to large-scale situatiorise generation of such traces
that reflects the behavior of applications running in mamy#ands of nodes is only pos-
sible if a large amount of resources is available, which istihe case. For these reasons,
we implemented two tools to generate synthetic traces. Otieem generates large-scale
traces for the visual aggregation model implementatiod the other complex topologies
for the three-dimensional visualization.

Other set of traces were collected during the execution lighapplications in dis-
tributed and parallel platforms. KAAPI and MPI applicatsowere used in this case, the
former being executed in the french Grid’5000 platform amel later in a cluster of the
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Federal University of Rio Grande do Sul, in Brazil. MPI applioas are used for the sake
of demonstrating how the prototype can handle traces fréfarent types of communi-
cation libraries.

We believe that these two types of traces — synthetic andatelll — illustrate common
problems that are faced by parallel application developeuifferent situations. Next
sub-sections detail how these traces were obtained.

6.1.1 Synthetic Traces

Section 5.1.1 detailed that a Pajé trace file is composedrbg #ections: the header,
the type hierarchy and the timestamped events. The heattexr aly static part of file,
where events are defined with their particular fields. The tyierarchy defines the types
that will be present — such as cluster, machine, processmegses, functions — and the
hierarchy among them. The type hierarchy must be followeabith the rest of the file in
the timestamped events region.

Large-Scale Hierarchies

The first synthetic trace generator tool was created targelie visual aggregation
model. The tool is written in the Python language and reseageparameter a hierarchical
structure that configures the generation of the trace rig€iil shows an example of con-
figuration file that is passed as parameter to the tool. Thésfieganized hierarchically
to reflect the type hierarchy that is generated as output eael (eg, Site, Cluster, Ma-
chine and Processor) has an attribedatainerthat indicates the number of instances of
that type that must be created by the tool. In the examplegah&guration tells the tool
to create 5 different sites, each one with 3 clusters, eadteri with 100 machines and
each machine being composed of 4 processors. The attréidesindnameare used by
the tool to comply with a trace generation required by the Rajmat.

Listing 6.1: Example of configuration file for the large-scaiace generation tool.

config = {
‘container ': 5, 'name’: "Site", 'alias’': "S",
"child ": {
‘container ’': 3, 'name’: "Cluster", 'alias': "C",
‘child ": {
‘container ': 100, 'name’: "Machine", 'alias ': "M",
‘child ": {
‘container ': 4,
'name’: "Processor",
"alias ': "P",
'statealias ': "S",
‘statename ': "State",

}

ppduration ’: 20,
'cosine—maxx—axis—value ': 7.5,

}

Still on Figure 6.1, the last level of the structure — Prooegsthe example — receives
additional configurationsstatealiasand statenamendicating the presence of a state on
the containers created in that level. The time duration efsnthetic trace is configured
through theappduration The parameterosine-max-x-axis-valumntrols the distribution
of state values for the instances of containers in the laet.|#s value is used to configure
the cosine function from the intervakto the configured value. The tool maps the contain-
ers instances of the last level to theaxis of the cosine to find the amount of time — in
percentage from O to 1 in theaxis of the function — a given container stays in one of two
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possible states. The remaining percentage is used to safrtbent of time to the other
state.

The graph of Figure 6.1 is configured using the data of the plan listing 6.1.
The graph is used to define the duration of each of the twosstatglable for every leaf
instance container of the hierarchy. Using the configunatithe cosine function varies
within the x interval [0, 7.5]. There are 6000 processors (result of the multiplication of
all containerattributes value4 x 100 x 3 x 5). The Figure also shows the definition of
duration for the two states for the container number 400@.vEtlue of the corresponding
x value in the lower scale is 5. The cosine of 5 is 0.28. Sincevétheées of cosine vary
between -1 and 1 in the y-axis, we consider that this value28 epresents 64% of the
interval[—1, 1]. So, this percentage is used to define the amount of time @tdte-0 for
the container 4000, which is 12.8 seconds considering thédpplication duration of 20
seconds. The rest (7.2 seconds) is left to the State-1 oair@nt4000.

number of leaf container
0 1000 2000 3000 4000 5000 6000

T T T T T T T T
State-1]

ivision for container 4000:
64% for State-0, 36% for State-1

State-1

State-0 State-0

value for cosine equation

Figure 6.1: State distribution among leaf containers uiiegcosine function.

Although the tool is implemented using the cosine functiboguld be easily adapted
to use other trigonometric functions. The way the state ggiom is implemented limit
the study of different time intervals, as defined by the Visaggregation model. The
positive side of the implementation is that it allows the generation of traces composed
of hierarchies with thousands of nodes. The implementee ig@neration tool takes less
than 3 seconds to generate a hierarchy with more than 158dhds leaf containers in a
four-level hierarchy. A random state value generation vassiclered to implementation,
but initial tests have shown that the execution time fordasgale hierarchies is too big
when using a random number generator.

Typical Communication Patterns and Complex Topologies

The second synthetic trace generator tool targets the dimeensional approach. The
main objective is to generate trace files with traditionaihoounication patterns, such
as the ones used by master-slave or divide and conquergdaailications. Listing 6.2
shows the configuration file used by this tool. It earns thecbamnfigurations from the
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previous script, letting the user configure a hierarchicghnization of containers if nec-
essary. We implemented four types of communication pattenmg, fully connected, star
and hierarchical star. The user configures the type of patised through the opticapp-
pattern If the user uses the hierarchical star communication patéen additional option
callednchildrenis necessary to configure the number of children in the conications.
For example, if theaxchildrenparameter is set to 2, every container will communicate with
other 2 containers. Each one of these two containers wilhaomcation with other 2 con-
tainers, and so on, forming a hierarchical communicatidtepa The last options in the
bottom of the listing are related to the Pajé links configoratThe optiondinkalias and
linknameare used to configure the type hierarchy for the Pajé tracafibthdinksource
andlinkdestindicate which types of container can be used by these links.

Listing 6.2: Example of configuration file for the synthetmnemunication pattern trace

generation.

config = {
# hierarchical definition section
‘container ': 20, 'name’: "Machine", ’alias ': "M",
'statealias ': "E", ’'statename ’': "State",

"appduration ': 20, 'cosinemaxx—axis—value ': 7.5,
#'child ': {} # hierarchy with only one level in this example

# communication patterns section
‘apppattern’: "ring", # ring, or full, or star, or hierarchal—star

# parameters to "hierarchicalstar" apppattern
"nchildren ': 2, #number of children per node

# links configuration
"linkalias ': "P", ’'linkname ': "Link",
"linksource ': "M", ’linkdest ': "M",

As previously stated, the four types of communication patteat can be generated
by the tool are the ring, the fully connected, the star anchtbearchical star. In the ring
pattern, each container communicates exactly with otheictmtainers, forming a single
and continuous pattern among all nodes. Figure 6.2(a) isam@e of this pattern when
there are 6 containers participating of the communications

20 Ses!

() Ring (b) Fully connected (c) Star (d) Hierarchical Star

Figure 6.2: Different communication patterns generatedhgysecond synthetic trace
generation tool.

Figure 6.2(b) shows the fully-connected communicationgpat where all containers
communicate with all other containers. Figure 6.2(c) shtvesstar pattern, where all
nodes communicate with only one node. This type of pattetypisally found in master-
slave parallel applications. The last communication patteepresented in Figure 6.2(d),
Is a modified version of the star pattern, but with a hierax@horganization where each
node has communications with other two nodes. In the exawiplgure 6.2(d), the
hierarchy is binary, but other configurations are also fssi
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6.1.2 KAAPI Traces

KAAPI (GAUTIER; BESSERON; PIGEON, 2007) stands for Kernel fataptative,
Asynchronous Parallel and Interactive programming. It ibeary that can be used by
C++ developers to create parallel applications. The apgphica are composed of tasks
and the data dependencies among them. In the beginning apfglieation execution, the
KAAPI kernel spreads the tasks among the computing resswacailable. Afterward,
during application execution, the kernel performs loadbeing through work stealing
algorithms.

Each KAAPI process executes the tasks defined by the progeanen the tasks
given to a certain process are finished, the process triest¢al" the tasks from other
processes of the application. The target process thatrsudfsteal is chosen randomly
by the originating process. By doing this random steal, KAgBarantees good load
balancing for the application at a small cost.

The KAAPI library is internally organized in levels. Commaavéls of the imple-
mentation include the generic kernel work stealing of tise@Kernel), data flow graph
management (DFG), remote work stealing (WS), network (NBfBic scheduling (ST)
and the fault tolerant (FT) levels. Every level implemenssib-set of KAAPI functionali-
ties. The FT level (FAULT TOLERANCE AND AVAILABILITY AWARNESS INCOM-
PUTATIONAL GRIDS, to appear 2009), for instance, is respblesfor dealing with re-
sources outage, such as the loss of processes and taskg runtime.

Each level is instrumented in the implementation so its beha@an be traced during
application runtime. In our work, we have used the eventeggad in the generic kernel
(KERNEL) and work stealing (WS) levels. These events regtheremote work stealing
activities of KAAPI library, such as the stealing attemptsen a given process remains
without any task to execute. Figure 6.3 shows the KAAPI evéimat are considered in
our work and how their combination define the states of a KApRIcess. The events
Core_ldle_Oand Core_Idle_1are registered in the Kernel level and define the period
on which a given process is not executing tasks defined byrbgrgmmer. The events
Core_RsteabndCore_RetRstealefine the moment where the KAAPI library is trying
to steal a task from another process. Additional infornrmatiche steal was successful
or not, and the target process, are also registered. Alethesnts are registered by the
K-Processotthreads of the application, which are responsible for etveguasks during
runtime.

Core_ld |e_Q Core_Rsteal Core_RetRsteal core—l dle_1
Time o ¥ v v .
RSTEAL RSTEAL
B IDLE RUN

Figure 6.3: KAAPI Events to monitor the remote work stealawgivities of the library.

Still on Figure 6.3, the combination of the KAAPI events alfothe definition of
three possible states for a K-Processor: IDLE, RSTEAL and RUM IDLE state is
defined as the time where the processor is not executing taskisig the IDLE state, the
K-Processor can execute a number of remote work stealingests; which defines the
RSTEAL state. The RUN state is defined by the period where andfvBrocessor is not
in the IDLE state.

The traces of KAAPI applications have been obtained in thd’&300 platform. For
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every execution, the processes register on which machivegswere executed, the be-
ginning timestamp, and the global KAAPI identifier. Thisanation is registered by
another level of the KAAPI stack, named Util. The registedada is used to properly
convert the information to Pajé traces after the execution.

Considering the Grid’5000 platform as execution environthERAPI registers the
name of the machines used in an application execution. Thee rd the machines, as
obtained by the Domain Name Server (DNS) of Grid’5000, allbevdefinition of a type
hierarchy with the following levels: Grid, Site, Clusterdadachine. All this information
is obtained from the machine names. For instance, during ARA&xecution, each pro-
cess registers the name of the machine where it executesdéong a Sophia-Antipolis
machine with the namazur-7.sophia.grid5000.fFrom this name, it is possible to obtain
the machine -azur-7, the cluster -azur, and the Grid’5000 site sophia The rest of the
hierarchy is composed of the global KAAPI identifier and thstance of K-processor.
Therefore, the resulting Pajé hierarchy for the KAAPI taethe following: Grid, Site,
Cluster, Machine, Process, K-Processor. The hierarchynmplteded with the three possi-
ble states for a K-Processor (IDLE, RSTEAL and RUN).

The conversion of KAAPI traces to the Pajé file format happeith the help of
DIMVisual. The input modules are able to read the KAAPI trdoemat and convert
them to common Pajé events, suchPageSetStatePajePushStatand PajePopStateto
handle the definition of the three states of the K-Proces€dttser Pajé events, such as
PajeCreateContainerare used to create the containers of the type hierarchy gfiA
traces.

6.1.3 MPI Traces

One of the main benefits of using the Pajé file format as inpuihi® Triva prototype
is related to the generic use of the tool. In order to showfardift example, we used trace
files generated during the execution of MPI1 (GROPP; LUSK; BKJJM, 1994. ISBN
0-262-57104-8.) parallel applications. The differentlaggpions were the ones available
in the NAS Parallel Benchmark (NPB) (BAILEY et al., 1991), winimontains a number of
applications to handle numerical aerodynamic simulatiSinsce the benchmark includes
some applications developed in Fortran, we consideredhéiraces only the applications
implemented with the MPI specification and in the C language.

The traces of NAS applications were obtained through th&ungentation of the
Mpich library, using a wrapper for each MPI operation (FRESTAt al., 2009). The
wrapper can be enabled through the presence of the MPE —Rhaltiessing Environ-
ment, when compiled together with the Mpich library. All M&berations are registered
using this instrumentation tool. Additional informatiom point-to-point and collective
functions are also registered, such as the origin and @gsimof the messages. As of
result of an execution, a single trace file in the Pajé formatéated.

The top part of Figure 6.4 shows some events that are registgr the instrumen-
tation. For every MPI function, the instrumentation registthe moment it began and
when it returned. These events are transformed into thef®ag@t mainly by using the
PajeSetStatevent. The stat®UN is used to indicate that no MPI function is currently
in execution. Others states for MPI processes are direclyp®ad from the names of the
MPI operations, giving, for instance, a statd’|_BCASTfor a MPI_Bcast operation.
The operations that are related to message-passing, symirdgo-point or collective
operations also generafajeStartLinkandPajeEndLinkevents.

Since the objective of the MPI traces is to show only that ipassible to handle
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MPLlpiLEnter MPL‘IniLExit l\/‘IPLBCaSLEmer MPLBCaSLEXi‘t
Time _y, v v v
RankOfl \ip1 INIT |RUN_ |MPI_BCAST RUN |
Rank 1| \iP1INIT RUN MPI_BCAST RUN |

Figure 6.4: Events registered during the execution of an &iplication (all MPI opera-
tions are registered).

this type of data in the prototype, only small-scale exengiwere performed in a cluster
located in Porto Alegre, Brazil. The NAS benchmark execiosed at most 16 machines
of the cluster.

6.2 3D Visualizations

The 3D visualizations of the Triva prototype are createdHgy TrivaView (see Sec-
tion 5.4 for details). This component manages the base aoatign and the rendering
of timestamped objects in the 3D space. This Section presleat3D visualizations ob-
tained with the use of synthetic and real trace data. The oiggrctive is to observe the
capabilities of the 3D approach in the visual detection oicwnication patterns, and the
mapping with the network topology.

We start with a general description of the 3D visualizatiengrated by the prototype,
in next sub-section. Then, we show the visualization of km@@mmunication patterns
and finish the Section with the use of KAAPI traces and topclgepresentations of
Grid’5000 platform.

6.2.1 Description of the Visualization

The basic three dimensional visualization generated byTth@ prototype can be
observed in Figure 6.5. It shows two processes, A and B, thatact with each other.
Different tonalities of gray represent the possible stateshich a process can remain
through a period of time. In the Figure, the light gray repras the Blocked state, and
the dark gray represents Executing. RGB Colors are extegsiagd in the prototype
but were removed from the representations in this text. Tmencunication between two
processes is represented by a line connecting them.

Process A Process B

Executin ; \\ | |
\ A\ h y / = Executing

Blocked /< Y Communication \\:Ej— Blocked

Figure 6.5: Simple 3D visualization created by Triva witlotprocesses.

Every state in the visualization can be clicked with the neotasobtain more infor-
mation about it. The related information includes the stad end timestamps for that
state instance, which monitored entity it belongs and timeenaf the state. The lines that
interconnect the processes can also be clicked to obtaia mfmrmation.
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Figure 6.6 shows another configuration on the visualizdiase. In the screenshot, we
can notice the presence of two machines representationgd ¥,aand a line to represent
the interconnection among them. The application companeapresented by processes
from A to F, are placed according to the location in which theye executed. Processes
A, B and C on top of machine X, the rest on top of machine Y. Thediinterconnecting
these processes represent the communications among tesges. In the example, there
are inter and intra-machine communications.

When interacting with the visualization of Figure 6.6, thers able to obtain infor-
mation about every machine and the characteristics of teecionnection in the visualiza-
tion base. This information is given to the user if it is aghlk in the resource description
file used to configure the prototype.

Pro A Inter-Machine Intra-Machine Process E

Interconnectionj

: Machine X Between Machines t Machine Y

Figure 6.6: Processes representation with network interection among two machines.

The Figure 6.7 depicts the visualization window of the Tpvatotype. The graphical
interface is managed with the help of the wxWidgets, incigdhe menu, the status bar
and the scrolling bar on the right. The 3D scene is renderéteimiddle of the window,
as depicted. All the messages towards the user, such asfoneation about a state, a
process or a link, are shown through the status bar in therfotart of the window.
Through the menu, the user is able to configure the visualizdiase, the time slice
of the current analysis and the options regarding the momtsn& the camera inside
the 3D space. The menu also enables the configuration of doe files, through the
customization of how KAAPI trace files will be read into thefmtype.

The user 3D interactions are implemented directly in the 8&Mns, through keyboard
events or mouse movements. The user can, for instance, igp€ttl key and the left
mouse button to move one of the process representations indhalization base. Other
combinations of keys enable the selection of more than ooeegs representation to
move them together, and so on. Additional combinations @edsily implemented in
the prototype.

6.2.2 Communication Patterns Analysis

One of the first benefits obtained with the 3D approach is tlsemation of commu-
nication patterns. These patterns, when visualized thraraglitional space-time repre-
sentations, are hard to analyze since only one dimensiovaitahble to depict the way
processes interact among them. Using the synthetic traverg@on tool, explained in
previous Sections, we generated simple and known patfEney.include a ring, a fully-
connected and a star communication pattern. Figure 6.8 @ddpiese three patterns, cre-
ated using the Triva prototype with three different tracesegated by the automatic trace
generation tool.

The leftmost 3D view of Figure 6.8 shows a ring communicapattern, composed of
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-
Application View Camera Help

Figure 6.7: The visualization window of the Triva prototype

Ring Communication Pattern Fully-Connected Star

Process A Process E (Slave)

Process A Process E
Process B (Slave)

Process A (Master)
Process B Process D

Process D (Slave)

i
Process C

Process C (Slave)

Figure 6.8: A ring, a fully-connected, and a star commuimcapattern visualized with
the Triva prototype.

five processes from A to E. The communication starts in thege® A and goes through
processes B, C, D, E and it finally comes back to the origin. Weobaerve in the vertical
dimension that the beginning of a communication betweemptbeess D and E, happens
after the reception of a communication in process D, indigad sequential ring pattern.
This identification, brought by the 3D approach, enablesuser to see the difference
in cases that the communication occurs in parallel. Theece3 view of Figure 6.8
shows a fully-connected communication pattern among tieepiiacesses. Observing the
vertical axis, we can notice that the communications from process to others starts in
the beginning, close to the visualization base. The thirdroanication pattern is on the
rightmost part of the Figure, showing a star pattern withratreé process. This pattern is
commonly used in master-slave parallel applications. Téwevdew shows an example of
master-slave where process A is the master and the othems Bfito E, are the slaves.

In order to compare the 3D with the traditional space-tinsei@lization, we used Pajé
to visualize the fully connected trace. The final 2D représtgon is shown on Figure 6.9
with five processes listed vertically, along with their etain the x-axis. Links are repre-
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sented by the arrows. Comparing these views, we can notice sbthe benefits of the
3D approach, where the communication pattern is more gleaderved.

OMachine0

State

OMachine1

State

OMachine2

State

OMachine3

State

OMachine4

State

i

Figure 6.9: A fully-connected communication pattern withefprocesses represented in
the SpaceTimeView of Pajé.

The synthetic trace generator is also capable of generatimgrarchical star pattern.
Using a trace generated with this tool in the Triva protofype obtain the visualization of
Figure 6.10. The view shows seven processes with a firstheaster, the process A, that
communicates with the second level masters, processes B ahte others processes
are connected to the second level masters and behave as Jlhieecommunication pat-
tern can be observed in the beginning of applications basel on divide-and-conquer
algorithms. They show in a first phase the divisions of wdkk & hierarchy.

Process D

Process A
First Level Master

Process C
Second Level Master

Process B
Second Level Master

Process E Process G

Figure 6.10: A hierarchy star communication pattern, commased in divide-and-
conguer algorithms, with a visualization of Triva.

The analysis of these communication patterns enables thenaiion of possible
problems in the development of parallel applications. $spm@ developer decides to cre-
ate a divide-and-conquer algorithm. After the implemeatatthe Triva prototype can be
used to analyze if the communication pattern of the impleatem is correct. The devel-
oper can also guess if a different number of levels could anpthe performance of the
algorithm, by analyzing the time a certain configuratioreték execute. Another benefit
of the Triva prototype is when the communication patternrofpplication is unknown
to the developer. In this case, the only thing to do is to eteethe application once and
visualize it in the prototype to understand the possibléepas of the application under
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investigation. This is faster and easy to understand wherpeaced to a traditional code
analysis spread in several source files of the applicatissufaing it is even available).

6.2.3 KAAPI and the Grid’5000 Topology

This Section describes the results obtained with real egipdin traces gathered from
different experiments with KAAPI applications on the GBA0O0 platform. We selected
six different scenarios to present these results, whickidenas network interconnection
the topology present in the Grid’5000.

Scenario A: 26 processes, two sites, two clusters

The first scenario is a KAAPI application composed of 26 psses. Each process is
assigned to one distinct machine, resulting in an allooatfd26 machines. Half of them
are allocated in the cluste&iru, atportoalegre and the other half in the clustgrelon at
nancysite. Figure 6.11 depicts the 3D visualization generatethbyTriva prototype of
the application trace. The visualization base is configtioelabld the network topology
that interconnects both sites. In this example, we are wsmgpothetical topology just to
illustrate the analysis. The actual interconnection betvportoalegresite and the rest of
the Grid’5000 is a VPN, with several physical hops throughititernet.

L]

Steal

Run J

Nancy Router Porto Alegre Router
Grelon Xiru

Figure 6.11: A side-view generated by Triva with traces fi2@rprocesses.

The first thing to be noticed on Figure 6.11 is the verticaklrapresenting the pro-
cesses of the KAAPI application. The light gray represdmsstatdRunand the dark gray
represents the staitealof a given process, as indicated in the leftmost part of tige Fi
ure. We can also observe in this Figure the horizontal lioesecting the processes from
different sites. They represent the work stealing request®rmed among the processes
of the application. When the user is interacting with suclualization, it is possible to
obtain information for every state and link represented.iésource description with ad-
ditional data about the interconnections is provided tqitto¢otype, the user is capable to
obtain such data through the visualization, by pointingnttweise to the squares and lines
in the base. We can also notice in the Figure the distribudfsteal requests in time.

Scenario B: 60 processes, two sites, three clusters

The second scenario is a KAAPI application composed of 60ga®es, one per ma-
chine, that are executed in two sites of the Grid’5000. Tker&ncycontributes to the
execution with 30 machines from the clustgelon, at the same time that the siennes
has an allocation of 25 machines from clugparamountand 5 machines from cluster
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paraquad We consider in this case a topology where every site hasvitsrouter, where
all clusters from that site are connected to. The routerhetwo sites have a direct con-
nection. Therefore, in this example when a message is santdrcluster in one site to a
cluster in other site, it has to go through the two sites nsute

Figure 6.12 shows two screenshots of the Triva Prototypergéed during the visual-
ization of the trace file for this scenario. The text and dddimes were manually inserted
to improve the understanding of the example. The imagé this Figure shows the total
execution time with a small time scale, making all objectselto the visualization base.
The dashed line on this image depicts the site separati@rekatenneswith two clusters
andnancy with only one cluster. We can observe in this time scale éhlarge number
of work stealing requests occur betwagaelonandparaquadclusters, mostly because of
the higher number of processes executed on them. Analyzesgtrequests with the net-
work topology, the Triva prototype allows the user to vieattall the requests from these
clusters must go through two routers of the interconnect8urch situation might lead
to performance issues. A hierarchical work stealing is undestigation by the KAAPI
team in order to overcome these problems.

B Differences in Number of

A Small Time-Scale, Application Objects on top of Network Topology
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Figure 6.12: Two screenshots of the prototype Triva dudmgvisualization of an appli-
cation composed of 60 processes, with different time scales

The prototype also allows the dynamic change of the timeeseaaing the mouse
wheel. The imag® of Figure 6.12 shows the total execution time for the tradethis
scenario, but with a larger time scale. Through this image,gossible to see differences
in the work stealing behavior in different intervals of timoéthe execution. It can be
noticed that in the beginning there is less work stealingiests when compared to the
end. It is during the end of the execution that less tasks\ai#ahle for execution and
processes start to try to steal more. This behavior is egdeobnsidering the current
implementation of KAAPI, where random steal requests arbopeed when processes
are idle.

Scenario C: 100 processes, three sites, four clusters

The third scenario is an application composed by 100 presessie per machine,
allocated in four clusters that are in three different siteGrid’5000. The allocation is as
follows: clustergrelonwith 30 machines atancysite; pastelwith 40 attoulouse and 25
machines fronparamountand 5 fromparaquadatrennessite. The network interconnec-
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tion here is constructed as in the previous example. In tteéaario, we consider that the
three routers are fully connected.

In previous scenarios, we observed screenshots whereeadixibcution time is rep-
resented, sometimes with different time scales. The Figut8 shows two screenshots
where only a part of the execution time is drawn. This is gaesn the prototype through
an interactive configuration where the user specifies wimeé slice is rendered. The im-
ageA of the Figure shows the work stealing requests at the beggrofi the application.
The dashed lines separates the three different sites. Asemiops cases, each cluster
name has a number which indicates how many processes ardexen that cluster. We
can clearly observe that in the beginning the number ofisgaéquests is considerably
lower compared to the end of execution, shown on the inage

A Work Stealing Requests in the Beginning of the Execution B End of the Execution
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Figure 6.13: Two visualizations with different time slicafsan application composed of
100 processes.

The imageB of Figure 6.13 also shows, through the dashed arrow, thetpatrall
work stealing requests must follow from the clugpasstelto the clustegrelonand vice-
versa. We can see with the rendering of the network topolbgy these requests must
go through two routers in order to arrive in the destinatiime visualization in this case
may suggest that big cluster allocations for this particakecution should be placed in
the same site, avoiding two hops for stealing requests. [Sattatations could then be
placed on other sites, because of the smaller number ofrsigasts generated by these
small allocations.

Scenario D: 200 processes, 200 machines, two sites, fiveerdust

The KAAPI application of scenario D is composed of 200 prgessin 200 machines.
The machine allocation is divided in two sitesnnesandnancy The number of machines
allocated in each site is equal, but inside each site thealln differs in number of
machines per cluster. The imadeof Figure 6.14 shows the number of machines for
each cluster allocated and also the network topology thietdannects the two sites. As
in previous scenarios, the dashed line is used to sepamt&tds. In order to illustrate
another benefit of our visualization, we consider for thisnsgio additional information
regarding the network interconnection between the roatedshree clusters. We consider
here that the bandwidth available betwgxmaventandgrillon clusters, through the two
routers, is of 100 megabits. The link between trelon cluster and its router is of 1
megabit, as depicted in imadeof the Figure.

In this scenario, there are 87 processes runningrelon and 61 orparaventcluster.
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A Initial Execution of Application with Link Properties B Interconnection becomes bottleneck, possible hints to better allocation
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Figure 6.14: Two top-views with a network topology annotiavath bandwidth limita-
tions, showing the benefits brought by the 3D approach.

Let us consider only the work stealing requests betweerettves clusters, as depicted
by the dashed circle of the right image of Figure 6.14. Thenddsarrow of the same
image indicates that these requests must pass through tegabinhlink. The visualization
suggests that a smaller number of processes should be pteecetlister with such a slow
bandwidth. If, for instance, the processes of clugtefonwere executed on clustgrillon
instead, the execution could have a better performance.

Through the example of this scenario, we can notice the itapoe of analyzing
the application performance together with a topologicar@sentation. If this type of
visualization, such as the one present in imBgd Figure 6.14, is not present, the analyst
could obtain wrong conclusions about the performance afgfdication.

Scenario E: 648 processes, two sites, five clusters

The KAAPI library has a random work stealing mechanism. langethat whenever
a process has no further tasks to process, it selects rapdmother process to perform
a stealing request. This random behavior is an easy andesiwvgy to perform load bal-
ancing, being a distributed solution that scales well. T¢enario E intends to show the
resulting communication pattern caused by the KAAPI wodabhg implementation in
a large-scale situation with topological data. The netwopology configuration is the
same of scenario D, and the same number of machines is uskd &xécution of the
application. The only difference here is that a higher nundferocesses is launched,
resulting in 648 processes.

Figure 6.15 shows a screenshot of the Triva prototype whefigroed to show the
behavior of all the execution time on top of the network tagygl We can see the pro-
cesses distribution among the clusters, which squarersiteibase is directly related to
the number of processes in the cluster. Considering the fiatears of this execution and
the random work stealing mechanism, it is expected to firal stguests from all clusters
to all others. The four arrows, drawn manually on the view,ipevidence this behavior
for the clustegrelon We can see that other clusters also perform steal reqiresssime
way, having as targets processes from all other clusters.
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Figure 6.15: Top-View generated by Triva showing the rangrk steal communication
pattern of KAAPI.

Scenario F: 2900 processes, four sites, thirteen clusters

The last scenario is an application composed of 2900 presgsgecuted in 310 ma-
chines that were allocated in clusters of four Grid’500@sifThe machine allocation is
as follows: 60 machines frotiile site (41 -chingchint 10 -chti, 3 - chuque 6 - chicon;
100 fromrennes(61 - paravent 6 - paramount 33 - paraquad; 50 from bordeaux(5 -
bordereay 22 -bordeplage23 -bordermej; and 100 fronsophiasite (48 -azur, 42 -sol,

10 - heliog. The objective of this scenario is to illustrate differavdrk stealing patterns
that arise in different intervals of time during the exeontof a large-scale application.
The interconnection topology follows the same policiesefsite: each site with a router,
all the clusters of a site connected to the site router. ThageA of Figure 6.16 shows
the overall organization of the network topology, with deghines dividing the sites and
each cluster representation with its respective name amtbauof processes allocated to
it.

The total execution time of this application is 74 seconde imageA of Figure 6.16
shows the work stealing requests that happened from thetsithe sixteenth second of
execution. In this time slice, most of the requests are pedd between thparaquad
andparamountclusters. The imagB shows the time slice between the seconds 16 and
26, showing a higher number of steal requests insideetheessite. The image& shows
another time slice, from the seconds 26 and 36, with even stesd requests among the
clusters and imagP shows the time slice from the second 36 to 50. This last image h
too many steal requests, causing problems in the percegptitre network topology in



114

A Beginning of execution, from second 6 to 16 B From second 16 o 26
Paravent (366) Earquiq_(gm)
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C From second 26 to 36 D From second 36 to 50

Figure 6.16: Four top-views of an application executed ur f@rid’5000 sites.

the visualization base. This problem can be alleviated énpitototype by changing the
transparency configuration of the links representatiorenEso, the example shows an
expected behavior from the KAAPI library, with more steajuests to the end of the
application execution.

6.3 Treemap Visualizations

The implementation of the Triva prototype included the digmment of the TimeS-
liceView and the Triva2DFrame (see Section 5.5 for detafls)discussed, the 2D frame
is developed to draw the treemap according to the execufitiredlime-Slice algorithm
and also the aggregation model implementation. A numbentefaction mechanisms
were also implemented in the prototype to facilitate thelymms Examples are the use
of the mouse wheel to navigate through the levels of the gadee hierarchies; the use
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of two mouse buttons to select one or more states to analgre separately; and the
selection of the time slice on-the-fly.

An additional and important feature of the treemap rendeiimplementation is the
use of the mouse pointer to highlight the hierarchy of a gieafi-node. The highlight-
ing works by drawing a line in the border of the the leaf-nodder the mouse pointer,
complemented by rectangles in the parent nodes up to thdenmit This drawings en-
able the identification of the hierarchy for a given leaf-aotforeover, the prototype
shows in the status bar of the window numerical informatiegarding the node under
investigation and also the identifications of the parentshSnteractive capabilities of
the Triva prototype can be observed in the large treemapgeir€i6.17, with the dashed
lines highlighting the hierarchical structure of a giveaflaode.

This Section presents the results obtained with the treesisaplizations of synthetic
and real trace data using the Triva Prototype. The treemegsepted in this Section
were generated by the prototype and automatically expdaeshcapsulated postscript
files. The main objective is to evaluate the potential of theppsed technique and to
detect if the implementation is capable of reaching vigadilon scalability in large-scale
situations.

We start with a general description of the treemap visuidina generated by the
prototype, in the next sub-section. Afterwards, we presieatvisualization of a large-
scale scenario created using synthetic trace files; andthigsas of different real-world
scenarios using the KAAPI library and an example of viswaion created with a MPI
trace file.

6.3.1 Description of the Visualization

To describe the treemap visualizations created by the fyyo let us proceed to
synthetic examples generated with the scripts describ#dteibeginning of this Chapter.
The first example is a hierarchy with three levels: Site — @lustMachine. There are
two sites, each one with three clusters, each cluster withrfiachines. Therefore, the
total number of machines is 30. Each machine can be in theuirgoor Blocked state.
Figure 6.17 depicts three treemaps that were generatediiffghent properties. The two
smaller treemaps on the left show only the Executing or thel&d state, separately.
Treemaps separated according to the state enable a direpadson of which machines
spent more time in a given state.

On the right side of Figure 6.17, the treemap shows in the sasnalization the two
states (Executing and Blocked) for all the machines. Theridashed rectangle indicates
the area reserved to one of the machines. The other dashadgiss indicate the area
that corresponds to the cluster that contains the machithé¢harsite that cluster belongs
to (the outermost dashed rectangle). These dashed reztamgie added manually to the
treemap of the Figure since the method used in the prototypmghlight the hierarchy is
not good for printing.

Moreover, we can notice that the visualization of more thaa state (treemap on
the right of Figure 6.17) enables a direct comparison ambagiachines but also the
relationship among the states. This relationship is onfyext if all the data being visual-
ized is calculated based on the same metric. In this exainglle Executing and Blocked
states are calculated based on the amount of time in the licee Since both metrics are
time-based, we can compare them. In terms of interactivigyuser of the prototype can
go from the treemap on the right to the treemaps on the leftoyslicking the state to
be analyzed separately. The user can go back to the prevmuswith all the states with
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another click of the mouse.

Executing State Hierarchy: Site (2) - Cluster (3) - M&hine (5)
(

Blocked State

Executing

Blocked

N W

[0 Ot = o

Figure 6.17: Two squarified treemaps showing the sBitmskedandExecutingseparately
on the left, and on the same treemap on the right.

The second example illustrates the treemap visualizatialifierent levels consider-
ing aggregated values. The example is depicted on FiguBVéth four treemaps. The
top-left treemap is the same of Figure 6.17, having the saemarchy and the same num-
bers of machines, clusters and sites. This treemap is retderthemachine level. As
before, the Blocked and Executing states are always refszsérhe treemap on the top-
right shows the aggregated values in thester level, the arrow between the top treemaps
indicates that the area indicated on the left (the machwed)les summarized to the area
on the right (the cluster level). In the middle of the top-leéemap there is a bold line
that separates the two sites. The second arrow indicategytiregation from the cluster
level to thesite level, shown on the bottom-left treemap. We can see on thésriap the
two sites separation and the aggregated values of Execatidd3locked for each site.
The last treemap on the bottom-right is generated using #xémum aggregation pos-
sible, where only the Executing and Blocked states are repted, considering all sites,
clusters and machines below in the hierarchy.

The aggregated treemaps of Figure 6.18 enable the anafytbis states in different
levels of the tree, showing their values for all the nodese Tp-right treemap of the
Figure shows, for instance, the Executing and Blocked stat¢he six clusters of the
example (as indicated by the rounded dashed rectanglestawelearly see the three
clusters per site and the two sites. The values for the diat@scluster are calculated by
the aggregation algorithm considering the Blocked and Bxsgstates for the machines
belonging to that cluster.

Next sub-sections make extensive use of these represerstatispecially the aggre-
gated treemaps. For each of the scenarios, we explain trerdhg used and the number
of items per level. Most of the following examples use onlg @n two states for each of
the leaves. The only exception for that is the MPI visuaigtwhere the amount of time
for three MPI operation is also represented.

6.3.2 Large-Scale Visualizations

One of the main benefits of the visual aggregation model,qseg in this thesis, is to
easily analyze a large number of monitored entities on theesscreen. In order to assess
the visualization scalability of the approach, we genelateseries of large-scale hierar-
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Figure 6.18: Four treemaps to show the per-level aggregafi@lockedand Executing
states.

chies using the synthetic trace generator. The objective show how the aggregation
model behaves when dealing with so much information, andthevgenerated treemaps
turn the data more understandable. A hierarchy compose@®yhbusand processors is
analyzed in this Section. Figure 6.19 depicts the analyfsiseochosen hierarchy, com-
posed of four levels: Site, Cluster, Machine, and Proce3dw.hierarchy has 10 sites,
each one with 10 clusters, each cluster with 10 machinesgand machine with 100

processors. Each processor can be in two possible stgtesseated in the Figure by the
dark and light tonalities of gray.

The large-scale analysis using the prototype starts withdp-right treemag of the
Figure 6.19, in therocessorlevel. In this treemap, there are 200 thousand rectangles:
100 thousand processors times the number of possible stdiesh is two. We can ob-
serve that some regions of this treemap are darker thanspihléowing some analysis.
However, any precise conclusion is hard to obtain with suebrap. The main reason
Is that treemaj\ has rectangles that are too small, turning out to be difficutibserve
differences in sizes among two states of one single proceBlse example is shown to
present the limitation of the traditional treemap représston.

The white rectangle drawn manually in the treendapf Figure 6.19 represents the
space dedicated to one machine. Although it is hard to nafiege are 200 rectangles
to represent the states of 100 processors inside this sneall Because of the fact that
is hard to understand clearly the pattern of states to allthi®@lGsand processors, the user
can interact with the prototype with the mouse wheel and shggregated values for
themachinelevel, as depicted in treemdpof the Figure. This treemap shows for each
machine the two possible states. In this view, it is alreadgsble to visually analyze
major differences among the machines: some of them ardisgymtly more often in one
state than other, in the time slice considered to computettreemaps. The highlighted
area on the left of treemdp, shown through a zoom drawn manually, corresponds to the
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Figure 6.19: Normal (A) and four aggregated treemap vigatbns (B — E) of two states
for 100 thousand processors (based on synthetic trace).

area highlighted through the white rectangle of treemap A.

Subsequent aggregations enable the user to visualizeattestin thecluster level,
as depicted on treemdp of Figure 6.19, and in thsite level, in treema®. Treemap C
shows the 100 clusters (10 per site). On the left part of teismap, the black rectangle
shows 10 clusters in the area dedicated for one site. The &eginning on this rectangle
points to the aggregated values for that site, on treemaphB.raximum aggregation
possible, shown on treem&p enables a per state view of the available information, in-
dicating that the state represented by the light gray cgpears more than the other for
the selected time slice.

Observing the example of Figure 6.19, we can see the bensdiigit by the aggre-
gation algorithm. Its implementation in the Triva prototypnables the visualization of
several thousands monitored entities, possibly with tlesgmce of a number of states.
The example also illustrates that the performed aggregagoable a better understand-
ing of the behavior of entities in different levels, by irdetively grouping the states in
the hierarchy. Moreover, we can also observe that even athengggregated treemaps,
the same general behavior can be visualized, with a mucHesimgpresentation.

6.3.3 KAAPI Work Stealing Analysis

This Section presents the treemap visualizations of the fmiototype using as input
trace files generated by the KAAPI library. As stated, theaeets register the behavior
of the work stealing activities of the library to provide tbhalancing to the parallel ap-
plications. The traces were obtained during the executiddAAPI applications in the
Grid’5000 platform. We selected four different scenarim&xplain the possible analysis
that can be performed with the prototype Triva. Each sceras a different configura-
tion of resource allocation to execute the applicationd,adifferent number of KAAPI
processes involved. For all the treemaps of this Sectian]igit gray color of rectan-
gles indicates the RUN state, and the darker gray indicaleRETEAL state, for every
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K-Process of a KAAPI application, or for every level when ajgeegated treemap is
presented.

Scenario A: 200 processes, 200 machines, two sites

The first scenario is the execution of a KAAPI application pased of 200 pro-
cesses. Each process is allocated to one machine of thes@@Iplatform, resulting in
an allocation of 200 machines divided equally in two sitethefgrid:rennesandnancy
The former site allocation is the following: 61 machinesifirolusterparavent 33 from
paraquad and 6 fromparamount the later is: 86 frongrelon, and 14 fromgrillon. The
treemaps depicted on Figure 6.20 illustrate the behavairttie application showed dur-
ing the execution on that allocation, in three differentdistices.
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Figure 6.20: KAAPI Scenario A with an application composé&@@0 processes.

The treemapA of the Figure 6.20 is computed using a time slice that comedp
to the beginning of the application. During this period, ves ®bserve that most of the
K-Process are actually running and not spending time triorgjeal tasks. Since the ap-
plication was launched in theancysite, we can observe that the K-Processes belonging
to this site occupy more space when compared to the spacpiedduy therennessite.
TreemaB is computed based on a time slice of the end of the executiercaif observe
that in the end of execution, the K-Processes spent morettymg to steal tasks from
others processes. This is a normal situation, since wheprtdggam approaches the end,
new tasks to execute become rare. The tree@epcomputed considering all the execu-
tion time for the application. By doing this broad analysishaa large time slice, we can
observe global patterns that might arise for a set of K-Fsse® This actually happens
in this example, since this treemap shows that most of Ké€&ses maintain the same
relation between time spent in Run and RSteal states. Thiseradd through the sizes
of each state for the processes.

Another thing that is possible to conclude analyzing trge@aof Figure 6.20 is the
load balancing between the two sites. Since this treemapnigated using the total ex-
ecution time and each site has an equal number of allocatetines, we can argue that
an ideal situation for this scenario will be that the areaupoed by each of the site in
the visualization should be the same. This will indicatet ta ideal load balancing is
achieved by the KAAPI work stealing algorithm. The treemamdicates that the area
for the nancysite is slightly bigger than the area for thennessite, letting us conclude
that an ideal load balancing is not achieved. The explan&biosuch behavior can be that
the application is launched in one machine of tla@cysite, allowing the K-Processes of
this site to start the execution of tasks before the prosesttherennessite. Even so,
considering that the areas for each site in the treemap #esloghtly different, we can
argue that the load balancing achieved by the work steainfigood quality.
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Scenario B: 400 processes, 50 machines, one site

The second scenario with KAAPI traces is an application coseg of 400 processes
executed in 50 machines of therdeauxsite of Grid’5000. In the experiment, the allo-
cation is composed of 23 machines from th@demercluster, 22 from thdordeplage
and 5 from thébordereau The two treemaps of Figure 6.21 are computed using thestrace
from this scenario. The bold lines in both treemaps sepénatéhree clusters involved in
the execution.

The treemap of Figure 6.21 shows all the processes with the Run and RS#tabst
We can notice in this treemap that there are some K-Procélsaespent an unusual
amount of time in the RSteal state when compared to the otllecegses. This might
indicate a problem in the machines that execute those @esgesince each machine re-
ceived eight K-Processes to execute. The treeBiapn the right, is computed using
as parameter the same time slice but only the RSteal statem@geB also shows the
amount of seconds for the larger areas, indicating thatgss®s with unusual behavior
spent around 40 seconds trying to steal tasks from otharse ®inly one Grid’5000 site
was used and the allocated clusters are interconnectedosdhnetworks, the probable
cause of these anomalies should not be attributed to theorletWhe only remaining
explanation for such behavior is related to the amount ofr6cBsses executed per each
machine.

The bordemerand bordeplageclusters have machines with 2 CPUs. Therdereau
cluster has machines with 4 CPUs. As stated, there is 400 gges@nd 50 machines on
this scenario, resulting in 8 processes per machine. Welzsaree in the Figure 6.21 that
only K-Processes in clusters with 2 CPUs ended with an unisslelvior. A possible ex-
planation is the overload of processes on those machines edmpared to the machines
of thebordereaucluster, with 4 CPUs each, that did not show the odd behavior.
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Figure 6.21: KAAPI Scenario B with an application composéd@D processes.
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Scenario C: 2900 processes, 310 processors, four sites

The third scenario is a KAAPI application with 2900 processxecuted in 310 ma-
chines that were allocated in clusters of four Grid’500@sifThe machine allocation is
as follows: 60 machines frotiile site (41 -chinqchint 10 -chti, 3 - chuque 6 - chicon);
100 fromrennes(61 - paravent 6 - paramount 33 - paraquad; 50 frombordeaux(5 -
bordereay 22 - bordeplage 23 - bordermej; and 100 fromsophiasite (48 -azur, 42 -
sol, 10 - heliog. The objective of this scenario is to show that the protetigable to
deal with large trace files with events from an applicatioeaexed in a real platform.
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As stated, there are two possible states for each of the 2@@@gses. This results in a
treemap that must draw 5800 rectangles. Figure 6.22 @tedy in treemag, all these
rectangles that together represent the behavior of 2908oKeBses. Bold lines indicate
Grid’5000 cluster division.

The treema of Figure 6.22 shows the Run and RSteal states for all the pgeses
The time slice used to compute the treemap is the total exectiine of the application.
We can notice in this scenario that the amount of time spethtwiark stealing requests is
very small. In the treema#, it is difficult to perceive the rectangles that represeetsate
RSteal. The treema, on the top-right, depicts only the Run state for all the psses.
Analyzing the screenshot, it is possible to conclude thabat all K-Processes spent the
same amount of time executing tasks. The only exceptioneisktProcesses located in
the chti cluster, in the bottom-middle region of treemBApThey have smaller rectangles
indicating less time in the Run state.

The treemayC of Figure 6.22 shows, on the other hand, only the RSteal stataf
K-Processes. Differently from the Run state, here we carcadlifferent rectangle sizes
indicating that some processes spent more time stealikg than others. This might
indicate for example which processes are executed on fasdehines, finishing their
tasks more frequently; or can indicate processes that exenare unsuccessful steal
requests when idle. The treemBypof the same Figure shows the RSteal state, but now
aggregated by machine. Analyzing this treemap, we are abtietect instantaneously
which machines spent more stealing. The white rectanglé®emap C and D indicate an
example of aggregation of the RSteal states of ten K-Prosésslee machine where they
executed. A possible reason for such behavior is the wongwation at the beggining of
the execution.
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Figure 6.22: KAAPI Scenario C with an application of 2900qesses.
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Scenario D: 188 processes, 188 machines, five sites

The fourth scenario is an application of 188 processesueeddn 188 machines, dis-
tributed in five sites of Grid’5000 including the clustermd®orto Alegre, Brazil. There
are 13 machines allocated from the clustien, atportoalegresite; 2 frombordereay 17
from bordemey and 6 frombordeplage atbordeauxsite; 45 frompaste] 5 fromviolette
attoulouse 14 fromparamount 36 fromparaquad atrennes and finally 50 fromgrelon
cluster atnancysite. The Figure 6.23 shows two treemaps calculated witkréloes gen-
erated by the application of this scenario.

The treema\ shows the Run and RSteal states for all the 188 processes. tdihos
processes show the same behavior, with a bigger Run stategfthgray areas) compared
to the RSteal state (the dark gray areas). The only exceppipeaas in the K-processes
executed in thgortoalegresite, highlighted manually with the dashed circle. Obsegvi
this treemap, we notice that these processes spent morstiaeng tasks than the pro-
cesses from other sites. The treengmn the right, shows the same time slice and the
same processes, but only the RSteal state. Here, the difgenerthe time spent stealing
tasks become even more evident. We believe that the maiorrdeehind this behavior
comes from the interconnection of the sites. Pploetoalegresite is located in Brazil, and
its connection with the Grid’5000 is made through a Virtual&e Network (VPN) that
is maintained through the internet. The latency of thisrodaanection compared to the
general latency among Grid’5000 sites located in Francégisfecant. The traditional
work stealing algorithm inside KAAPI do not differentiat®@in which processes a given
process will try to steal. This, in a heterogeneous intemegtion environment, may lead
to more time spent trying to steal, as indicated by the trgeocomputed with our Time-
Slice technique.

A Run and RSteal states B Showing only RSteal state

Rennes Toulouse Toulouse Nancy

| [ 1] ol T ]

\

~78s ~65s | ~43s

| \ 1 ~67s
N
Nancy Bordeaux Porto Alegre Rennes Porto Alegre Bordeaux

Figure 6.23: KAAPI Scenario D with an application composéd&8 processes.

Generally speaking, the Time-Slice algorithm combinedlite aggregation model
of this thesis enables an easy identification of performé&stees when comparing the be-
havior of processes of a parallel application. The aggreganodel brings these advan-
tages to large-scale situations, no matter how many presess involved in the analysis.
The only step necessary to make both proposals work weltgetacale environments is
to set a proper hierarchy with at least some levels. The tuleies used through out the
KAAPI scenarios have five levels, which already allows thalgsis of several thousands
of processes.
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6.3.4 MPI Operations Analysis

The experiment described here uses traces generated theimxecution of a MPI
application. The traces were described in the beginninghefGhapter, recording the
execution of MPI operations. The objective here is to shattie Triva prototype is also
capable of analyzing MPI applications, because of the usieeofeneric Pajé file format
as input.

The scenario for the MPI experiment is as follows. We exeattiie EP application,
part of the NAS benchmark, using 32 processes in a clusterendach node has 8 pro-
cessors. The tracing mechanisms registered the followiRfydperations during the ex-
ecution of the MPI applicatiorMPI_Init, MP1_Barrier andMPI_AlIReduceFor each of
these operations, there is one state of the same name. Weetstate Running to indicate
the time spent outside of MPI operations. The hierarchy ddfin the traces is flat, only
with the MPI process level.

The analysis of the scenario is depicted on the treemapgafé&6.24. The treemap
A shows the amount of time spent in each of the states. We cacertbat there are
some differences among the processes, as illustrated lo\agied rectangles of two MPI
processes. The square on the right of the treemap A showsratedbe MPI Process rank
21, where the correspondence of gray tonalities and thesssse noted. On the Figure,
the treemaB shows the amount of time all the processes spent irMBe& Init state.
The numbers in the rectangles indicate the amount of timehéoprocess, an information
that can be obtained by pointing the mouse to that region @fwtimdow in the Triva
prototype. We can notice significant differences of timengpa the init state. Treemap
has the same single state rendering, but here using the titnedPI|_Barrier operation.
We can observe that the behavior of the init and barrier stegesery similar, possibly
indicating that the implementation of the MPI init operatis close to the implementation
of a barrier. On the bottom of the Figure, the treemap shoesrthximum aggregation
considering all the 32 processes. Analyzing this aggrelgasay, it is possible to observe
that the time spent in MPI operations is greater than the Rugrstate, where the code of
the application is probably placed.

A With States Running, MPI_Init, MPI_Barrier and MPI_AllReduce B Only MPLLINIT state
Only Process Rank 21

~45s

Running MPI_Barrier

MPL_nit I
~0.9

C Only MPI_BARRIER state

Maximum Aggregation

~57s

Running MPI_Barrier

. 03
MPI_Init

Figure 6.24: Behavior of the EP application of the NAS Benclmasing treemaps and
the aggregation technique.



124



125

7/ CONCLUSION AND FUTURE WORK

Traditional visualization schemes for the analysis of fi@rapplications are designed
to handle monitoring data collected at small scale and inleggenvironments. The ne-
cessity of visualization techniques for the analysis oafjar applications on highly dis-
tributed systems, such as grids, motivated this work. Twtiqudar problems of the tra-
ditional analysis of applications have been identified ia thesis.

The first one is the impact of the network interconnectionhenexecution of parallel
applications. This impact must be outlined in the analysisrder to better understand
and improve the application performance. Traditional aimation techniques, such as
the space-time representation, are widely used for thgsisalf applications. These tech-
nigues, however, cannot show in the same screen the neteygwlogy and the monitoring
data from the application. This might lead to wrong con@asiduring the detection of
performance issues of applications. The second problene igisualization scalability of
traditional techniques. Usually, the number of monitoretities that can be analyzed on
the same screen is often limited to the vertical size of cdenscreens. Space-time rep-
resentations are a clear example of this matter, being nibswig=d to grid applications
composed of thousands of processes.

The main idea behind this thesis is to explore informaticoalization techniques that
can be used to visualize parallel applications. Our first@ggh is the three dimensional
visualization, where the base of this visualization is usatktail the resource/application
organization, and the third axis to show the evolution ofgpplication through time. We
have implemented three different base configurations witine 3D approach: the repre-
sentation of the network interconnection with applicati@navior; the representation of
the application communication pattern and another to ekserocesses balance on the
resources.

The second approach is the visual aggregation model, whergcalability problems
of traditional visualization tools are solved through a temation of the treemap tech-
nigue and the Time-Slice algorithm. This algorithm takds iccount intervals of time
to generate values and inject them in a hierarchical org#iniz of the application being
analyzed. This structure is then passed out to the treemhpitpie that renders the visu-
alization. The visualization scalability is achieved tigh the aggregation model, where
the levels of the hierarchy are explored to create interargdnformation that can be
used to help the analysis from the most detailed view to thst gpeneral one.

Both approaches are implemented in a prototype called Tareeloped using a 3D
rendering engine called Ogre, GraphViz, some of the Pajéooents, and an implemen-
tation of the squarified treemaps from scratch. The prototygs a reading mechanism
that links it with the DIMVisual integration library, capksof integrating monitoring data
from different sensors and formats. Synthetic traces, Isotraal trace data from KAAPI
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and MPI applications are used to validate the approachethanchplementation. KAAPI

traces used in this thesis were collected in the Grid’50@q@im. Although the proto-
type validation is attached to these traces, the use of thergePajé file format allows the
extension of the benefits brought by the implementation herfields and applications,
from resource visualization to other types of communicaliloraries.

The obtained results are promising. The three-dimensisaélization, analyzed in
the results Chapter, allows a better understanding of agifgits communications in con-
trast with the network topology. We were able to show in défe time slices that the work
stealing could benefit from more locality, since the curriemplementation of KAAPI
do not take into account network information to perform wetialing requests. On the
other hand, the results obtained with the visual aggregatiodel implementation al-
lowed the visualization of the states of 100 thousand psmrssgenerated synthetically.
The treemaps defined by the Time-Slice algorithm were alsemg¢ed using real trace
data from KAAPI and MPI applications. We were able to idgnitif KAAPI traces differ-
ent aspects, such as a different behavior in stealing mesrhampresented by some pro-
cesses, load-balancing efficiency considering all theuwsti@ttime, and the analysis of a
large-scale KAAPI application, composed of almost 3 thadgarocesses in Grid’5000.

In summary, the main achievements of this thesis are theogedpf the 3D approach,
the visual aggregation model combined with the Time-Skadhique and the Triva pro-
totype implementation. Other achievements include theraation between KAAPI and
the prototype, allowing the analysis of KAAPI work stealiacfivities.

Next Section presents the publications that came fromhesis. Section 7.2 discusses
the perspectives and implications of this thesis.

7.1 Publications

Some results of the thesis were published in the followinuepst

— Visual Mapping of Program Components to Resources Represeation: a 3D
Analysis of Grid Parallel Applications. The 21st Symposium on Computer Ar-
chitecture and High Performance Computing, SBAC-PAD. 20B8&H Press. Sao
Paulo, Brazil.

— This paper presents the use of the three-dimensional agiprio@ map paral-
lel applications components on top of a resource represemtd he paper de-
scribes the abstract model that generate this 3D configarashowing at the
end some examples of KAAPI parallel applications visuaitsgether with the
Grid’5000 network topology.

— Visualization of Parallel Applications: Results of an International Collabora-
tion. Colloque d’Informatique: Brésil / INRIA, Coopérations, Avaes et Défis.
Colibri 2009. Bento Goncalves, Brazil.

— This 4-page paper presents the overall proposal of th&shiecluding the two
visualization models. The paper is also focused on prasgiiie international
collaboration between UFRGS and INPG, through the co-aulyiagreement of
the student.

— Towards Visualization Scalability through Time Intervals and Hierarchical
Organization of Monitoring Data . The 9th IEEE/ACM International Symposium
on Cluster Computing and the Grid, CCGRID, 2009. Shanghai, China.

— This paper presents the Time-Slice algorithm when usedrtorsarize states of
a parallel application. The paper also presents basic ptsoéthe treemap rep-
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resentation and how they are used to provide a visualizétiothe hierarchies
generated with the Time-Slice algorithm. The hypothesth@paper is validated
with the visualization of KAAPI traces composed of almoseththousands pro-
cesses.

— 3D Approach to the Visualization of Parallel Applications and Grid Monitor-

ing Information . The 9th IEEE/ACM International Conference on Grid Comput-

ing, GRID, 2008. Tsukuba, Japan.

— The paper presents the overall view and general strucfuteed@3D approach.
Besides presenting the generic abstract model to createespidsentations, the
paper also detail the visualization of synthetic and walhkn communication
patterns, but also the visualization of KAAPI traces.

— Triva: Interactive 3D Visualization for Performance Analy sis of Parallel Appli-
cations Accepted in the Future Generation Computer Systems Jowifriglsevier.

— This 24-page journal paper presents the 3D approach, steaabcomponent
model and results. It is strongly based on Chapter 3 of thisigh&ith some
three-dimensional visualizations obtained with the prgie as presented in Chap-
ter 6.

7.2 Implications and Perspectives

There are several perspectives considering the two vimialh models proposed in
this thesis. The three-dimensional model, today, showmyaetail about all the monitor-
ing entities. A possible evolution of this behavior is thewiof aggregated data. There-
fore, instead of showing all the links in a time interval, {m®gram would show just
one link that represents the aggregated information. Wfisuhe link could be rendered
according to the information it represents: bigger whenarmoformation is contained
within, smaller otherwise. Such representation could Als@xtended to the states of a
monitored entity.

Many other types of information for the Time-Slice algonitistill need to be studied.
We basically analyzed only states in our results, becaust¢ ofiour traces are composed
by states for the processes. Other information, such as, lirdtiables, events, must also
be studied and explored. Particular investigation shoelddnducted in the case of the
links, where we left open in our model to which node attrituggimmary value: the origin
or the destination. Depending on the type of informatiomgeivaluated, a situation may
be better than another.

The evolution of the aggregation model with other aggregefinctions is also possi-
ble. Although we discussed briefly the use of other functi@resused in our results only
the addition aggregation. Functions such as max, min, megst Ine studied, particularly
when other type of summary data is generated by the Time-&xhnique. User defined
aggregation functions, based on the available monitoratg thust also be analyzed.

For the 3D approach, a possible perspective is to improveisoal mapping between
the network topology and the communication pattern of thaiegation, through the use
of curved lines to represent communications. Besides thehimaf that is already mod-
eled in the 3D approach, the abstract treatment of data dladsd consider other types
of information, such as the size of links and nodes. This khba reflected directly in
the visual representation. Generally speaking, this getsg means that a graph must
serve as a base to the rendering of another graph. The rafatse could also be guided
according to routing rules of the interconnection, whery thee available from the exe-
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cution environment. The 3D approach might also be used toithmlization of parallel
applications in many-core chips, where a network-on-chjgresent inside the processor.

A third possible evolution is the merging of the hierarchicaganization of moni-
toring data with a graph representation. This could be ergin the visual aggregation
model by defining in every level of the hierarchy, a graph fwresent interactions. The
links of this graph could be annotated with aggregated dataje already do in the Time-
Slice technique. An example of application for such evoluis the merging of processes
of a parallel application.

Perhaps the most significant implication of this work is thelg of information visu-
alization techniques applied to the parallel applicatioalgsis. Since we used a study like
this as inspiration for the thesis, we think that it can betiomously faced as motivation
for new work.
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APPENDIX A EXTENDED ABSTRACT IN PORTUGUESE

The Portuguese title for this thesis'’Alguns Modelos de Visualizacdo aplicados para
a Analise de AplicagBes ParalelasThe extended Portuguese abstract is presented here
to fulfill the requirements established in tbe-tutelleagreement of the author.

The abstract of this appendix is basically a Portuguesslaaon of the more impor-
tant parts of the English version of this thesis, espectallyintroduction of the chapters
and main concepts of the proposed visualization models. &perimental scenarios of
the main document were selected for the sake of demongiredime results in this ex-
tended abstract.
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A.1 Introducéao

Sistemas distribuidos consistem basicamente em hardwso#iveare que contém
mais de uma unica unidade de processamento (COULOURIS; DOOREt KIND-
BERG, 2005). Nestes sistemas, 0s processadores sao intgemosee comunicam através
de uma rede. Os programas de computador sdo quebrados esp&ites e devem lidar
com diferentes niveis de paralelismo e com algoritmos desotacao, como passagens
de mensagem e memoéria compartilhada. Um exemplo de siststriauddo € chamado
de Grid (FOSTER; KESSELMAN, 2003. ISBN 1-558-60933-4.). Esipo de sistema é
estruturado em organizacoes virtuais (FOSTER; KESSELMANETKE, 2001), pos-
sivelmente compostas por milhares de maquinas distribyjdagraficamente. Dois ex-
emplos de Grid séo o Grid’5000 francés (BOLZE et al., 2006) e@Grid americano
(CATLETT, 2002).

Caracteristicas compartilhadas por quase todas as phatgderid sdo dinamismo,
heterogeneidade de recursos e software, e presenca dplosittominios administra-
tivos. Dinamismo significa que o0s recursos que participanirdeGrid pode se tornar
indisponiveis a qualquer hora, sem nenhuma notificacéo elésqa pode acontecer em
um determinado momento. Aplicacdes paralelas devem lmfarisso no nivel da apli-
cacao ou através de uma biblioteca capaz de lidar com fllgaagd quantidade de re-
cursos disponiveis. A heterogeneidade significa que difeseconfiguracdes de recursos
pode estar presentes na mesma plataforma Grid. Isto tamb#itidé para bibliotecas
de software. Um Grid pode estar espalhado por diferentegnilmsradministrativos, cada
parte mantida independentemente por seus administraddées destas caracteristicas,
um Grid também pode ter uma rede de interconexdo complexda&cgmente escalavel
guanto aos seus recursos.

A interconexao entre os recursos de um Grid pode ser compastiéferentes tipos de
rede. Ela pode ser composta por tecnologias Ethernet, Btytirfiniband, ou fibra éptica.
Um exemplo de Grid com varios tipos de interconexao sdo anatias Desktop Grids
(KONDO et al., 2004), como os projetos BOINC (ANDERSON, 2008ati@Home
(ANDERSON et al., 2002), onde a interconexao é em geral fegaés da internet. Outro
exemplo que evidencia a presenca de multiplos tipos deorexao € um Grid composto
por clusters, onde uma hierarquia de interconexdo forteadaupara conectar clusters
homogéneos (BOLZE et al., 2006). A presenca de varios tipastdeconexao € um
reflexo natural da heterogeneidade e da distribuicdo gkcmide Grids. Estes aspectos
impde uma rede mais complexa, um namero maior de saltos pamanicacdo entre
processos e laténcia e largura de banda variaveis e disraationgo do tempo.

Plataformas Grid sdo também facilmente escalaveis, deammafque novos recursos
podem ser indefinidamente adicionados apenas conectassl@aas participantes exis-
tentes. Normalmente, estas adigdes de recursos trazerhetaiegeneidade e aumentam
a complexidade da rede. Atualmente, existem Grids glohsss§o compostos por mil-
hares de computadores, como o exemplo do projeto BOINC. Oxgra@o de quéao facil
€ a adicado de novos recursos a um Grid é o caso do Grid’5006, s clusters sao
adicionados ao backbone principal da plataforma. A esitidlatbe destas plataformas é
uma boa caracteristica do ponto de vista das aplicacdekelparajue necessitam cada
vez mais de mais recursos computacionais.

Todas essas caracteristicas de plataformas Grid influerdil@tamente o compor-
tamento das aplicacdes paralelas durante o seu desensnteira execucédo. Por causa
disto, é importante para o desenvolvedor entender o imphcgistema distribuido so-
bre a aplicagdo. Um exemplo disso € a analise de aplicac@s&lecando a topologia da
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rede. A aplicacédo pode ter um melhor ou pior desempenho depdn de quais recur-
sos foram escolhidos e a interconexao entre eles. Estannitué ainda mais evidente
quando os aspectos da rede sao considerados, como a l&énl@egura de banda, em
aplicacbes que sao limitadas pela rede. A escalabilidadend8rid é outro aspecto que
também influencia diretamente o comportamento das apksagéralelas, uma vez que
a disponibilidade de novos recursos para a aplicacdo n&aisdmpre que um melhor
desempenho sera alcancado.

Considerando estas situacdes, podemos perceber que éampanhalisar o com-
portamento das aplicacGes paralelas com informacdes do Exia analise pode ajudar
desenvolvedores a entender o impacto da topologia da redplicacéo por exemplo.
Contrastando o padrao de comunicacao da aplicagdo com agapdh rede pode dar di-
cas ao desenvolvedor de como adaptar a aplicacéo para ragfilorar tal interconexao.
Além disso, se a rede é hierarquicamente organizada, asagidis podem seguir a hier-
arquia da rede para evitar gargalos e outros problemas demgesho se a aplicacao néo
€ estruturada hierarquicamente. Uma boa andlise tambéenel@ar a conclusdes sobre
todos os processos da aplicacao, incluindo padrdes logaobais que podem aparecer
entre eles. Se existe uma grande quantidade de processudljse @leve ser capaz de
gerar resultados sobre todos eles.

A visualizacdo € uma forma de realizar a analise de aplicapéealelas. Ela tem
sido bastante utilizada nos ultimos 30 anos para entendeservar aplicacdes que sédo
focadas em diferentes niveis de paralelismo. A forma madidional de visualizacdo
acontece através de uma adaptacdo de graficos Gantt (WILSIDR), 2Zambém con-
hecido como gréaficos espaco-tempo. Estas visualizac@asliss componentes da apli-
cacdo verticalmente e sua evolucao no tempo é demonstraaiboortworizontal. Exemplos
de ferramentas que oferecem este tipo de analise sdo o FREGB®MMEAUX; STEIN;
BERNARD, 2000), Vampir (NAGEL et al., 1996) entre outras (KAZlad., 2000; PIL-
LET etal., 1995; ARNOLD et al., 2007a). Gréaficos espaco-tesmbastante usados em
plataformas existentes, como clusters, onde os dadosmgtesie uniformes.

Muitas dessas ferramentas de visualizacao foram adagtadasbservar o comporta-
mento de aplicagdes em sistemas distribuidos como Gri@dli@ente elas continuam us-
ando as mesmas técnicas de visualizacdo. Considerandotsaeesentacdes espacgo-
tempo, o primeiro problema que surge é que elas ndao podepsegptar, juntamente com
os dados da aplicacéo, a complexa topologia de rede degotates Grid. Como discutido,
o impacto dessa topologia ndo pode ser excluido de umaedéleplicacdo quando uma
interconexdo complicada existe entre os recursos. O seguoblema é relacionado com
a escalabilidade de visualizacao de gréficos espaco-tdispado tais representacdes, o
namero de componentes da aplicagdo que podem ser viswaizadh tela de computador
€ limitado a resolucao vertical da tela.

Esta tese tenta resolver estes problemas encontradosreoatide visualizagdo tradi-
cionais para aplicacfes paralelas. A idéia principal dfiis@ss consiste em explorar téc-
nicas da area de visualizacdo da informacao e tentar dphicde contexto de andlise
de programas paralelos. Levando em conta isto, esta tepéepamis modelos de vi-
sualizacéo: o de trés dimensdes e o modelo de agregacéd @spameiro pode ser
utilizado para analisar aplicagdes levando-se em contpadogia da rede dos recursos.
A visualizacdo em si € composta por trés dimensdes, ondesénasadas para mostrar a
topologia e a terceira € usada para representar o tempou@dsemodelo pode ser usado
para analisar aplicacdes paralelas com uma grande qudetigaprocessos. Ela explora
uma organizacao hierarquica dos dados de monitorament@aééaomica de visualizagcdo
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chamada Treemap para representar visualmente a hiera@gdois modelos represen-
tam uma nova forma de analisar aplicacédo paralelas visnédmema vez que eles foram
concebidos para larga-escala e sistemas distribuidoslexmspcomo Grids.

Alguns dos conceitos desta tese foram publicados e um atifoem processo de
avaliacao.

Este resumo estendido esta organizado em cinco secdestadeaseguir:

Secédo A.2: O Modelo Tri-Dimensional
Esta se¢do apresenta o primeiro modelo desta tese, condpaastordagem em trés
dimensdes. Nele, descrevemos a concepc¢éo do modelo visonal @sdo geral dos
componentes abstratos capaz de gerar visualizagdes 3D.

Secéao A.3: Modelo Visual de Agregacéao
A secao apresenta a concepc¢ao do algoritmo de fatia de tesanpa pransformacao
do comportamento de uma aplicacdo em uma hierarquia, alérodelo de agre-
gacao usado para se atingir escalabilidade visual no uspdesentacdes Treemap.

Secéao A.4: O Prototipo Triva
Esta secao apresenta o prototipo desenvolvido ao longa teesst. O foco da de-
scricao neste resumo fica na parte da visdo geral dos contpergre fazem parte
da implementacéo.

Secédo A.5: Resultados e Avaliacao
A secado apresenta os resultados obtidos com o protétipa fmevavaliacdo dos
modelos propostos. Dois cenarios sao apresentados: wioreldo ao tri-dimensional,
e outro ao modelo de agregacéo visual.

Secédo A.6: Concluséao
Os principais resultados séo relembrados e as perspedtiimsadas.
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A.2 O Modelo Tri-dimensional

O desempenho de aplicagBes Grid esta relacionado as cestécas da rede de in-
terconexdo (LACOUR; PEREZ; PRIOL, 2004). Quando os recursositaenforte hier-
arquia entre eles, a escolha dos recursos dados a uma aplpade ser decisivo para o
desempenho e também para o entendimento da aplicacéo. Bemagdes da topologia
da rede, o0 analista pode nao ser capaz de perceber que e&v@ntldemas na aplicacao
sao devido a limitac6es do nivel da rede. As decisdes tonpadasna visualizagao tradi-
cional da aplicagdo, neste caso, podem levar a conclusi@asrsobre 0 mau desem-
penho. Sendo assim, se fossemos capazes de analisar g&@apleegando-se em conta
caracteristicas da rede, n0s veriamos mais claramente@ssrdo comportamento da
aplicacao.

A maioria das ferramentas de visualizacdo ndo sdo capazefetlear uma analise
levando-se em conta a topologia da rede. ParaGraph é a éniaménta que apresenta
uma noc¢ao de interconexao em suas técnicas de visualizaghora provendo apenas vi-
sualizacéo de hiper-cubo e padrbes de comunicacao, sapsate. Na realidade, Para-
Graph nao foi concebido para a analise de aplicacbes dedaogda. Outras técnicas,
como espaco-tempo ou baseadas em grafo, usadas em outaasefgns de visualiza-
¢cdo, também nédo sdo capazes de apresenta a topologia deonedes comunicacfes
de aplicagbes paralelas. Neste caso, a limitagéo € retmoa forma como os recur-
sos e componentes da aplicacdo sao desenhados, feito enpago ésear. Quando a
plataforma de execucao se torna maior e mais complexa,anastopologia da rede em
uma visualizacdo espaco-tempo se torna impraticavel.

Nossa proposta de fazer uma ligacéo entre a analise dagaliea topologia da rede
€ baseada em um esquema composto de trés dimensdes. Untaelasidis € o tempo, e
as outras duas dimensfes sdo usadas para representa gitop@i@de. A proxima se¢édo
apresenta a concepcao visual do nosso modelo, e a secauseguesenta o modelo de
componentes abstratos que pode ser usado para se geranédizacao.

A.2.1 Concepc¢éo Visual

A concepcao visual do nosso modelo consiste na combinacéécdieas de visu-
alizacdo que mostram o comportamento da aplicacdo contéscgue mostram dados
estruturais ou estatisticos. Se dados estruturais s@adtk, a topologia da rede pode
ser usada juntamente com o comportamento da aplicacdodBe éstatisticos sao apli-
cados, o usuario pode simplificar quantitativamente o cotap®nto da aplicacdo, em
diferentes escalas e fatias de tempo.

O resultado da concepgéo visual € o modelo tri-dimensigdahodelo tem duas
dimensbes reservadas para as representacdes estrutesdisticas. NOs homeamos
estas duas dimensdes como a base da visualizacdo 3D. Adelovenséo é a linha
do tempo. A Figura A.1(a) mostra um exemplo da abordagem 3®rearesentacao de
dados da aplicacdo. Os estados dos processos séo repteseatao barras verticais que
séo posicionadas em cima da base da visualizagao. Os téferstados ao longo do eixo
do tempo podem ser representados por diferentes cores. a@santacdo de estado
€ colocada verticalmente seguindo suas marcacdes de enitiw. Comunicacdes sao
representadas como flechas ou linhas no ambiente 3D, cadedatais ou mais processos
que se comunicam. A Figura A.1(b) mostra a visualizacao ddiferente ponto de vista,
localizado sobre os objetos representados. Esta visaatpermbservacao do padrao de
comunicacao da aplicagéo, por exemplo.
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(a) Concepcdo visual da abordagem 3D. (b) Visualizacao a partir do topo.

Figura A.1: Concepcao visual da abordagem 3D com rastroslbaggo representados
por barras verticais representando o comportamento degsos ao longo do tempo.

A.2.2 Modelo de Componentes

Para criar uma visualizacdo 3D, os rastros coletados dasagipds devem passar
por uma série de transformacdes. Para tal, definimos aqui odelode componentes
abstratos. A Figura A.2 apresenta a organizacao geral desielo. Como entrada, o
modelo usa dois tipos de informacgdo: rastros de aplicacéedgtas e um arquivo de
configuracdo contendo a descricéo dos recursos do ambeeteeducao.

Monitoring Dati A B D
- > N —p | )
Trace Reader Extractor Visualization \ 1‘\«(‘” ;
N )7
4
- "
CA
Resources Description Comm. Pattern

C C.2

Entity Matcher Network Topology
C.3

Logical Organization

Figura A.2: Modelo de componentes abstratos da abordagens@d as trés configu-
racOes possiveis para a base da visualizacao.

A base da visualizacéo € configurada pelo compongntiy Matcher(C). Desen-
volvemos trés diferentes configuracdes para o mesmo: umengsia o padréo de co-
municacdo da aplicacdo; outro que mostra este padréo cadtboom a topologia da
rede; e o ultimo é a combinacdo dos dados da aplicacdo comepresentacao logica
dos recursos. O componente escolhe uma dessas visuaiizdég@deordo com a escolha
do usuério.

Entre as trés alternativas modeladagntity Matcher a que considerada topologia da
rede (C.2) lida diretamente com o problema da influéncia gadahexao na aplicacao.
As outras alternativas sdo apresentadas para mostras antbamacdes estruturais (0
padrdo de comunicacao) e uma representacao estatisticdetalimes de comportamento
ao longo do tempo.

NOs consideramos no modelo que existem arquivos de rasgpeniveis para a
leitura, os quais guardam eventos que geram um fluxo queeat@ws componentes
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da Figura A.2 da esquerda para a direita. Mesmo assumind&v@sccomo entrada, 0s
componentes podem funcionar independentes da como os ddastreamento séo in-
jetados no modelo. Sendo assim, 0 modelo é capaz de lidar c@mgeracéo online de
eventos quando a quantidade dos mesmos néo é tdo grandicagdéis podem também
ocorrer no modelo dos componentes de visualizagdo em diesgsgioutros componentes,

para propagar configuracdes e mudancas no comportametitalas por comandos de
USUario.
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A.3 O Modelo Visual de Agregacéo

Outra questéao relacionada a aplicac6es Grid é que elas mrletompostas de uma
grande quantidade de processos. Algumas andlises ja sSiwvgisom grandes apli-
cacodes (LEE et al., 2008), mas somente em clusters. Varassips surgem em ambientes
Grid ao analisar aplicacdes de larga-escala. Uma primaiigrénde quantidade de dados
de monitoramento, que dependem de dois fatores: o nimenmttidages monitoradas, e
a quantidade de detalhe coletada de cada entidade. Oustdgéea escalabilidade visual
(EICK; KARR, 2002) das técnicas de visualizacdo, que fala salopgantidade de dados
gue podem ser mostrados na tela sem que o usuario percaiddddie entender o que
€ representado.

E fato que as técnicas de visualizac&o das ferramentas davaném ser escalaveis
para analisar aplicacdes paralelas grandes. Se consmeepanas a quantidade de en-
tidades monitoradas, devemos ser capazes de represdotargmos alguns milhares de
processos na mesma tela. Uma certa quantidade de detatii@stadeve estar presente
na representacdo. Um exemplo de técnica de falta de edickldbié a representacao
espaco-tempo, onde a quantidade de dados a ser represetitaiiada pelo espaco ver-
tical disponivel em telas de computadores.

Entre as ferramentas de visualizacdo existentes, Vampiret@ sua visualizacao
espaco-tempo uma técnica hierarquica que aumenta a ca@datit processos que po-
dem ser visualizados ao mesmo tempo. A técnica funcioneéstda agregacédo do com-
portamento de processos de acordo com a representacaqhiesdO problema da abor-
dagem é que a informacgédo de cada nivel € apresentada de ieneata, tornando dificil
a andlise de visbes agregadas. Outras ferramentas, coéme Rappshot, usam mecanis-
mos de rolagem para lidar com um nimero grande de entidadetonaolas. Esta técnica
tem um impacto negativo uma vez que o comportamento de tadastalades nédo é
mostrado ao mesmo tempo.

Nossa abordagem usa intervalos de tempo para criar umaueathierarquica que
representa 0 comportamento da aplicacdo para o periodioseldo. N6s entdo usamos
a técnica Treemap (JOHNSON; SHNEIDERMAN, 1991) para criaa uepresentacao
visual da estrutura. A técnica proposta aumenta a quaetideentidades que podem ser
representadas ao mesmo tempo, e permite uma direta co@parace as mesmas. Além
disso, n6s também apresentamos um mecanismo de agregagdmdguser aplicado para
mudar a visualizacdo quando existem muitas entidades paranalisadas na mesma
tela. A combinacado destas dessas duas técnicas permitegeedcalabilidade visual na
analise de aplicacbes paralelas.

A.3.1 Algoritmo de Fatia de Tempo

O objetivo do algoritmo de fatia de tempo consiste em criaa @strutura hierarquica
que reflete 0 comportamento do programa para um dado imetegdempo. Para isso, 0s
nds da hierarquia devem receber valores que sdo calculadeadns em dois fatores: a
definicdo do intervalo de tempo e um sumario de eventos pdeaasgtidade monitorada
naquele intervalo. Diferente configuracdes para definiteywalo de tempo sdo possiveis,
desde intervalos pequenos até grandes, entre outros.

O sumario de eventos é feito levando-se em conta o inteneaterdpo especificado
e informacdes adicionais sobre uma entidade, presenteados dle monitoramento. O
objetivo € encontrar um valor numérico que represente o otmpento de cada enti-
dade. Existem diferentes jeitos de definir esses valore€ncms. Podemos considerar
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gue esse numero € a quantidade de tempo, ou a quantidadeedequezalgo acontece,
ou qualquer outra informacédo que pode ser contada de algiam@eprincipio geral do
algoritmo é somar separadamente os valores para cada uipaode dados que podem
ser encontrados para uma entidade, como estado, variéksleleventos, e entdo realizar
uma interseccao dessa soma com a fatia de tempo usada.

A.3.2 Agregacéo Visual

O uso de uma representacdo Treemap habilita a escalabildtadnalise. Isto sig-
nifica que se aumentamos o tamanho da hierarquia sendoizdglsla representacéo
permanece compreensivel do ponto de vista do usuério. Enioracontece na maio-
ria das situacdes, a técnica se mantém limitada pelo tanm@gmespaco dedicado a sua
representacao na tela do computador.

O modelo de agregacéao tenta superar esta limitacao atravésimanizacéo da hier-
arquia a ser visualizada. Ele age basicamente atravéseatgaggo de valores das folhas da
arvore para nos intermediarios da mesma. Com esta abordagengerizacao Treemap
pode ser parada em qualquer nivel sem perder a informac&otanpe que foi registrada
nos nos folhas da arvore.

Figura A.3 mostra trés modificagcdes na hierarquia causaelasnpodelo de agre-
gacao. A hierarquia original € mostrada na esquerda. Cadanatédo nos nos folhas
pode representar uma meétrica diferente, como a quantidagezis que algo acontece.
No nosso exemplo, existem trés niveis intermediarios: s (P), Maquina (M) e Clus-
ter (C). O objetivo principal da agregacéo é agrupar os valdeeP e fazé-los subir um
nivel da arvore. Sendo assim, ap0s a primeira agregacaejasy nos vetores sao so-
mados e atribuidos aos n6s M. O algoritmo pode ser aplicaganmente para continuar
a agregacao até o no raiz.

Original Hierarchy generated Aggregated at Aggregated at Aggregated at

] ’ ; E i > Y i ' ;
by the Time-Slice Algorithm ! lAgg’eLa"O" Machine Level Zﬂwn Cluster Level ¥ Aggm?i‘”"” Grid Level

6.4 2.7) (69 0,9 64
\+/ &/

Figura A.3: Trés agregacoes realizadas pelo modelo deagieg

Além da tradicional operacdo de soma (mostrada na Figurac®3odelo de agre-
gacdo pode ser aplicado usando outras funcfes, como maxrosios, média e medi-
ana. A aplicacdo dessas funcdes depende diretamente emtgpoatie informacao sendo
agregada e pode ser usado para evidenciar alguma catadgyésticular.

O beneficio trazido pelo modelo de agregacédo € evidentedguarmesmo é com-
binado com o algoritmo de fatia de tempo. Quando uma aplicpedalela € composta
por muitos processos, a técnica de agregacdo pode ser wadaglhorar a analise da
visualizacdo baseada em treemaps.
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A.4 O Protétipo Triva

Esta secdo descreve resumidamente o protétipo desenvglaigh implementar os
modelos apresentados nas secfes anteriores. Esta destogiiia as decisdes de imple-
mentacgdo tomadas. O protoétipo € chamado de Triva.

Um dos principais guias durante a implementacéo do pratéigue ele deveria ser
construido sobre ferramentas e bibliotecas existentegipalmente para evitar a desen-
volvimento de implementacdes ja validadas. A primeira sfecitomada é a adogdo de
algumas partes da ferramenta Pajé. As principais razdemqtiearam esta adocgéo é a
reutilizacdo de software e o bom desempenho dos compordmtesulacdo do Pajé.
Outras decisdes tomadas incluem o uso de formatos de desdegrecursos facilmente
reconhecidos textualmente, a adocéo da biblioteca GrapbaNire outros.

A Figura A.4 mostra a organizacdo geral do protétipo, corngpds mddulos que
transformam os dados de rastreamento em objetos Pajé,cere#ta@lois tipos de visu-
alizacdo: o 3D e a treemap. Pelo fato da ado¢éo de objetosigesiea Unica parte do
prototipo que é dependente do formato do rastro é aquelaseada na esquerda da
Figura, indicada pelo integrador DIMVisual e seus sub-comeptes. Os retangulos bran-
cos sao bibliotecas e ferramentas existentes que foraitizadds com poucas alteracoes;
retangulos cinzas foram desenvolvidos para fazerem paipecdotipo.

Integrator
v [

4
KAAPI PajeEventDecoderH‘ PajeSimulator HStorageController
Reader

MPI k Triva2DFrame

- ' PajeFileReader —= TimeSlice
! Paje Filters

TrivaController TivERDEEE
DIMVisual DIMVisualReader }_\ wxWidgets /W

ri
-&----- User Interactions

Replaceable Input

Figura A.4: Arquitetura Triva.

O componente TrivaController, escrito na linguagem C++, ficargo da inicializa-
¢ao de todos os componentes, conectando-os seguindo teanguda Figura A.4. Ele
também apresenta ao usuario a interface gréafica, criaddasabiblioteca wxWidgets,
através de uma janela, com opc¢des de configuracdo e mecardeniateracao. A cena
tri-dimensional e a renderizagédo treemap € também inieialenconfigurada por esse
componente.

Os filtros Pajé, representados pelos retangulos ponti#haaéigura A.4, sdo 0s mes-
mos utilizados na ferramenta de visualizacdo Pajé. Sudsnmeptacdes levam em conta
varias questdes ligadas a escalabilidade e baixo tempaplesta aos comandos da inter-
face com o usuério. O primeiro dos filtros, PajeEventDecdidier com a entrada gerada
pelo DIMVisualReader e prepara para o préximo médulo. O Rajeldtor transforma
0S eventos em objetos visuais. Esta transformacao comsisteriar uma estrutura hi-
erarquica dos rastros, usando os tipos basicos Pajé. Esitaies que representa a mesma
informacé&o encontrada nos rastros, € otimizada para aiz&s¢@o, e registrada no Stor-
ageController.

Na parte mais da direita da Figura A.4, as interacdes entradolilos funcionam
nos dois sentidos. Interacdes da direita para a esquergediims de novos dados. Eles
sao lancados por comandos de usuario ou mudancas nas cagdigsirAs interacdes da
esquerda para a direita sdo respostas aos pedidos.
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A.4.1 TrivaView

O modelo de visualizacdo, apresentado na secao A.2, é iraptado no prototipo
Triva através do componente TrivaView. A Figura A.5 aprésesua organizacao geral
incluindo os componentes relacionados. O mdédulo Triva\ieplementa a parte do Ex-
tractor do modelo 3D, obtendo do fluxo de objetos Pajé os rmrtae links, e redirecio-
nando o fluxo para o componente DrawManager. A parte do m@@etpue se chama En-
tity Matcher € implementada em trés components do protolipeaApplicationGraph,
TrivaResourcesGraph and TrivaTreemapSquarified. Elebeeteomo entrada os con-
tainers e links do TrivaView, e a descri¢cao dos recursosqle\ar. A parte Visualization
do modelo 3D mostrada através do ciculo pontilhado na didgtFigura A.5, é imple-
mentada com 4 componentes: o Triva3DFrame, que mantém 8Deraseus trés geren-
ciadores que podem mudar os aspectos visuais, 0 DrawMama§jerbientManager e o
CameraManager.

DrawManager

: TrivaApplicationGraph -
TrivaResourcesGraph
: rivaTreemapSquarified :

‘ AmbientManager

Triva3DFrame P\&;%}"

| 3D Rendered

CameraManager

Resource
Description

Figura A.5: Layout de implementacao do TrivaView.

A.4.2 TimeSliceView

O modelo de agregacao e o algoritmo de fatia de tempo forateimgmtados no com-
ponente TimeSliceView, como mostrado na Figura A.6. Outnmmonente importante
desta Figura é o Triva2DFrame, cuja responsabilidade éndasa treemap na janela de
visualizag&o do prototipo.

On demand .
Pajé Objects - | | Configured Treemap wxWidgets
4>‘ TimeSlice | ﬁ Triva2DFrame

/ Window Size Changed

Treemap Rendered
New Aggregation Level

A A A

/ Time Slice Changed

Figura A.6: Layout de implementacéo do TimeSliceView.

A Figura A.6 também detalha as intera¢gfes e notificacdes cueerem durante a
execucdo do componente. A chegada de objetos do simulagofveg Figura A.4 para
detalhes) é representada na esquerda da Figura. As irgei@@® o usuario podem causar
trés diferentes tipos de notificacdes que vao do componernt2DFrame para o TimeS-
lice: a mudanca do tamanho da janela, um novo nivel de agiegag mudanca da fatia
de tempo. Todas estas notificagOes disparam a mesma ca@eiardecimentos no com-
ponente: criacdo de uma hierarquia de comportamento vebsagiicacdo de operadores
de agregacao e calculo da nova treemap. A treemap resutenteada como resposta e
entdo desenha na janela pelo componente Triva2DFrame.
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A.5 Resultados e Avaliacéo

O principal objetivo desta parte do resumo é mostrar os gmis e visualizacdes
gerados pelo protétipo Triva, um deles tri-dimensional acom treemap. Em paralelo
a essas visualizacdes, € feita uma analise considerandstossrde execucéo utilizados
como entrada para o prototipo.

A.5.1 Tri-Dimensional

O principal objetivo do modelo tri-dimensional é realizanapeamento dos compo-
nentes da aplicacdo com a topologia de interconexao dososctPara apresentar um dos
resultados obtidos com este tipo de visualizacdo, selagios um cenario onde existem
60 processos, alocados em 2 sites diferentes do Grid’508@e @®ancycontribui para a
execucdo com 30 maquinas do clugpeion ao mesmo tempo que o siennesem uma
alocacao de 25 maquinas do clugtaramounte 5 maquinas do clust@araquad Con-
sideramos neste caso que uma topologia de rede no qual tadarsiém um roteador
proprio e todos os clusters de um site sdo conectados no sgecti®o roteador. Os
roteadores de sites diferentes estéo interconectada$o &esim, quando uma mensagem
€ enviado de um cluster de um site a um cluster de outro sitelese passar atraves dos
dois roteadores.

A Figura A.7 mostra duas capturas de tela do prototipo Traradas durante a visu-
alizacao do arquivo de rastro deste cenario. O texto e aadipbntilhadas foram man-
ualmente inseridas para aumentar o entendimento do exefplagemA desta Figura
mostra o tempo total de execu¢cdo com uma escala de tempongedamendo com que
todos os objetos figuem perto da base da visualizac&o. A fiohlhada desta imagem
mostra a separacao entre 0s si@snes com dois clusters, @aancy com apenas um
cluster. N0s podemos observar nesta escala de tempo queandegnimero de roubo
de tarefas acontece entre os clustgedon e paraquad provavelmente devido ao maior
numero de processos alocados neles. Analisando essas@@sicom a topologia da rede,
0 prototipo Triva permite que o usuario visualize que todopedidos de tarefas destes
clusters devem ser comunicados atraves dos dois roteationeterconexao.

A Pequena Escala de Tempo, Objetos sobre a Topologia da Rede B Diferengas na Quantidade de
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Figura A.7: Duas capturas de tela do prototipo Triva durantesualizacdo de uma apli-
cacao composta de 60 processes, em diferentes escalagpde tem

O prototipo também permite a mudanca dinAmica da escalandpoteusando o
mouse. A imagenB da Figura A.7 mostra o tempo total de execucéo para 0s rastros
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deste cenario, com uma maior escala de tempo. Atraves desgem, € possivel obser-
var as diferengas do comportamento do roubo de tarefas emauliés intervalos de tempo
da execucédo. Pode-se perceber que no inicio ha um numeificsifyramente menor de
roubos comparado com o fim. Isto ocorre porque no fim de umaag@dlo KAAPI as
tarefas disponiveis para execucao se tornam mais rara@sc@sportamento é esperado
na atual implementacédo do KAAPI, onde um roubo de tarefadd@ie € implementado.

Um segundo cenario € uma aplicacdo KAAPI composta por 20€epsos, em 200
maquinas. A alocacao de maquinas esta dividida em doisgtesese nancy O numero
de maquinas alocadas em cada um é igual, embora a alocagdmide cada um difere
em quantidade de maquinas por cluster. A imageda Figura A.8 mostra o nimero de
maquinas para cada cluster alocado e também a topologialdajue interconecta os
dois sites. A linha pontilhada é utilizada para separartes.9NGs consideramos para este
cenario informacdes adicionais relacionadas a inter@menxtre os roteadores e 0s trés
clusters. A largura de banda disponivel entre os clugpt@ravente grillon, através dos
dois roteadores, é de 100 megabits. O link entre o clugtdon e seu roteador € de 1
megabit, como mostrado na imagénda Figura.

A Inicio da Execugéo da Aplicagao B Interconex&o se torna gargalo, dicas possiveis para uma melhor alocagéo

Paravent (61) ) Paravent (61)

100 Megabit Link

Paraquad (33)

Pararﬁount (6)

S 1 Megabit Link
Rennes .-~

100 Megabit Link

Grillon (13) Grelon (87)

i
Grelon (87)

Figura A.8: Duas visbes de um exemplo com mais informacoaspmtziogia da rede,
como as limitagbes impostas pela largura de banda.

Neste cenario, existem 87 processos executando no ctsten e 61 noparavent
Considerando apenas os roubos de tarefas entre estes dtess;loomo mostrado no cir-
culo pontilhado daimagem a direita da Figura A.8. A flechaifftada da mesma imagem
indica que estes pedidos devem passar através do link degbimeygvisualizagdo sugere
gue um namero menor de processos deveria ser colocado enust@eradom largura de
banda limitada. Se, por exemplo, os processos do clgstéwn fossem executados no
clustergrillon, a execucao poderia obter um melhor desempenho.

Através do exemplo deste segundo cenario, n0s podemos anataportancia da
analise do desempenho de uma aplicacdo juntamente com presartacdo topolog-
ica da rede. Se este tipo de visualizagdo, como mostrado agemB da Figura A.8,
nao estiver presente, o analista pode obter conclustetasrsdbre o desempenho da
aplicacéo.
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A.5.2 Agregacéao

Um dos principais beneficios do modelo de agregacao de abita tese € a facil-
idade de andlise uma grande quantidade de entidades naoiaisona mesma tela. Para
avaliar quéo escalavel é a visualizacdo, ndés geramos ura sitgiético composto de 100
mil processadores, cada um com dois estados diferentase &egpguir a analise desse
rastro com a técnica de fatia de tempo e o algoritmo de agiiegac

A Figura A.9 mostra a analise do rastro, cuja hierarquia teatrg niveis: Site, Clus-
ter, Machine e Processor. A hierarquia tem 10 Sites, cadacgua 10 Clusters, cada
cluster com 100 Machines e cada machine com 100 processata.p@@cessador pode
estar em um de dois estados possiveis, representados na péjas tonalidades fraca e
forte de cinza.

A andlise em larga-escala usando o prototipo comeca conemayeA, localizada
no topo a esquerda da Figura A.9, no nivel processor. Nestenaip, existem 200 mil
retangulos: 100 mil processadores vezes a quantidade a#gosgtossiveis, que sao 2.
No6s podemos observar que algumas regides desta treemamsiescuras que outras,
permitindo algum tipo de concluséo. Entretanto, qualqoeciuséo precisa é dificil de
obter com esta treemap. A principal razdo disso € que a tge@ntam retangulos que
sdo muito pequenos, tornando dificil a observacéo de difasede tamanho entre dois
estados de um unico processador. O exemplo € mostrado pdararia limitacdo de uma
visualizag&o treemap tradicional.

A Hierarchy: Site (10) - Cluster(10) - Machine (10) - Processor (100) B Hierarchy: Site (10) - Cluster(10) - Machlne (10) Processor (100)
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Figura A.9: Treemap Normal (A) e quatro treemaps com dadeesgagos (B — E) de dois
estados para 100 mil processadores (gerados sinteticament

O retangulo branco da treemapna Figura A.9 representa o espaco dedicado para
uma maquina. Embora seja dificil de notar, existem 200 getés nesta pequena area
gue representam o estado dos 100 processadores desta an&ginfato de ser dificil
de entender o padréo de todos esses 100 processadorestio psda interagir com o
protétipo e mostrar valores agregados para o nivel maqoamag mostrado na treemap
B da Figura. Ela mostra para cada maquina os dois possivaiossiNesta visdo, ja €
possivel analisar diferencas entre as maquinas: algun@ssignificativamente mais em
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um estado do que em outro. A area em evidéncia no lado esqieettEemaB, mostrada
através de um zoom, corresponde a area do retangulo brateedepA.

As agregacdes seguintes permitem o usuario de visualizasties no nivel de clus-
ter, como mostrado na treem&pda mesma Figura, e no nivel de site na treeiap
A treemap C mostra 100 clusters (10 por site). Em seu ladoecedgua treemap apre-
senta um retangulo preto que mostra 10 clusters na areaadadiara um site. A flecha
comecando neste retangulo aponta para os valores agrgmadaste site, na treemap D.
A maxima agregacao possivel, mostrada na tredf@ermite uma visao por estado das
informacdes disponiveis, indicando que o estado reprasdemtela tonalidade mais clara
aparece mais vezes que o outro na fatia de tempo selecioaemlegie exemplo.

Um segundo cenario para a visualizagédo treemap é uma auickec188 processos,
executada em 188 maquinas, distribuidas em cinco sitesid®@0 incluindo o cluster
de Porto Alegre. Existem 13 maquinas alocadas do clxater em portoalegre 2 de
bordereay 17 debordemey e 6 debordeplage embordeaux 45 depaste] 5 deviolette
emtoulouse 14 deparamount 36 deparaquad emrennes e finalmente 50 dgrelonno
sitenancy A Figura A.10 mostra duas treemaps calculadas com os sagrados neste
cenario.

A treemapA mostra os estados Run e RSteal para todos os 188 processos. Quas
todos 0s processos mostram o mesmo comportamento, comdo éata maior (areas
com ton cinza claro) comparado com o estado RSteal (cinzad@séuunica excecao
aparece nos K-processos executados no sip@dealegre colocados em evidéncia man-
ualmente com o circulo pontilhado. Observando esta tregmdgpotamos que estes pro-
cessos passam mais tempo roubando tarefas que os procesadsod sites. A treemap
B, na direita, mostra a mesma fatia de tempo e 0S mesmos prec@sas somente 0
estado RSteal. Aqui, a diferenca de tempo despendida roaliarefas se torna ainda
mais evidente. NOs acreditamos que a principal razéo adsie domportamento vem da
interconexao entre os sites. O sitepetoalegreé localizado no Brasil, e a sua conexao
com o Grid’5000 é feita través de uma Rede Privada Virtual (V& é mantida através
da internet. A laténcia desta interconexao, comparada dat@racia geral entre os sites
do Grid’5000 localizados na Franca, é significativa. O rodbdarefas tradicional im-
plementado no KAAPI nédo diferencia quem sera o alvo do rolgho, em um ambiente
de interconexao heterogéneo, pode levar a mais tempo gastoqubar, como indicado
através da treemap calculada através do nosso algoritnadiaeé tempo.

A Run e RSteal B Mostrando apenas o estado RSteal

Rennes Toulouse Toulouse Nancy

[ ] [ ] ]

\

~148'5 ~110s

~78s ~65s ~43's
|| \
\ ] ~67s
N7

Nancy Bordeaux Porto T«Iegre Rennes Porto Alegre Bordeaux

pp—————

Figura A.10: Cenério KAAPI com uma aplicacdo composta de 188g3s0s.

No geral, o algoritmo de fatia de tempo combinado com o modielagregacao desta
tese possibilita uma facil identificacdo de questdes dentlgesgho ao comparar o com-
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portamento de processos de uma aplicacdo paralela. O numlafiregacéo aporta vanta-
gens para situagoes de larga-escala, ndo importanto gyantessos estdo envolvidos na
analise. O Unico passo necessario para as duas propostamfarem bem nestes ambi-

entes é a definicdo de uma hierarquia com ao menos alguns.igdiierarquias usadas

neste cenario KAAPI tem 5 niveis, tornando possivel a o bons resultados na

visualizacéao.
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A.6 Conclusao e Trabalhos Futuros

Esquemas de visualizacao tradicionais para analise dmeapés paralelas foram con-
cebidos para lidar com dados de monitoramento de pequeala @€sde ambientes equi-
librados. A necessidade de técnicas de visualizacdo paraiaeade aplicacdes para am-
bientes de larga-escala, tais como Grids, motiva estelli@baois problemas na anélise
de aplicacdes paralelas através da visualizacao sacficeds nesta tese.

O primeiro € o impacto da rede de interconexdao na execucapldagbes parale-
las. Este impacto deve estar presente na analise para serraptender e melhorar o
desempenho da aplicacdo. Técnicas de visualizacdo tradisj como a representacao
espacgo-tempo por exemplo, sdo largamento usadas paraeadéliaplicacdes. No en-
tanto, estas técnicas ndo conseguem mostrar na mesmadptdagta da rede e os dados
de monitoramento da aplicacdo. Isto pode levar a conclus@adas durante a deteccao
de problemas de desempenho das aplicacdes. O segundamabke escalabilidade vi-
sual das técnicas de visualizacdo. Normalmente, o nUmezntdades monitoradas que
pode ser analisado na mesma tela é limitado a resolucicaleda tela de um com-
putador. Representagcdes espaco-tempo sdo um claro exesspdgodoblema, ndo sendo
bem apropriadas para a anéalise de aplicacées Grid comgustasn niumero grande de
processos.

A idéia principal desta tese é a exploragéo de técnicas dalidacéo da informacéo
gue podem ser utilizadas para analisar o comportamentdidagjes paralelas. No nosso
caso, esta exploracédo também considera os dois probleradsrgamos resolver. Nossa
primeira abordagem mostra a rede de interconexao juntarnent os dados da aplicacao
usando uma visualizagéo tri-dimensional, onde a base destalizacdo € usada para
detalhar a interconexao entre 0s recursos, e 0 terceiropaired mostrar a evolugcao da
aplicacdo ao longo do tempo. NOs melhorarmos nossa soltigh@s da representacao
de padrdes de comunicacéo, oferecendo ao desenvolvedssibifidade de casar este
padrdo com o da topologia da rede.

A segunda abordagem é o modelo de agregacao visual, ondebdsrpas de escala-
bilidade sdo superados através da combinac¢do da técniemdpee 0 algoritmo de fatia
de tempo. Este algoritmo leva em conta intervalos de temgzogeaar valores e injeta-los
em uma organizac¢ao hierarquica da aplicacdo. Esta estimtao representada atraves
da técnica Treemap. A escalabilidade da visualizacdo §idéiratravés do modelo de
agregacao, onde os niveis da hierarquia sao exploradosyaralados intermediarios
gue pode ser usados para criar visualizagdes treemap [gis odm mais informacoes.

Ambas as abordagens foram implementadas em um prototipeactmaTriva, desen-
volvido usando um gerenciador de cena 3D chamado Ogre e uplanmentacdo de
Treemap prépria. O prototipo tem mecanismos de leitura gigam com a biblioteca
de integracéo DIMVisual, capaz de integrar dados de mamtento de diferentes fontes
e formatos. Rastros sintéticos e reais do KAAP| e MPI forandosgara validar as abor-
dagens e a implementacao. Os rastros KAAPI foram coletaalptataforma Grid’5000.
Embora a avaliacédo do protoétipo € ligada aos rastros usadss, do formato Pajé como
entrada permite a extensao dos beneficios da ferramemt@pos campos de pesquisa
e aplicagao, de visualizag&o de recursos a outros tipodtietecas de comunicagéao.

Os resultados obtidos sdo promissores. A visualizag&tinmensional permite um
melhor entendimento de padrdes de comunicacdo com a topalagede. Nos usamos
uma simplificacdo da topologia do Grid’5000 e o roubo de ek aplicagcbes KAAPI.
Fomos capazes de mostrar que em diferentes fatias de tempabo de tarefas pode-
ria se beneficiar mais da localidade, uma vez que a implegé@nttual de KAAPI ndo
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leva em conta dados da rede para realizar pedidos de rouboeflest Por outro lado, os
resultados obtidos com o0 modelo de agregacao permitirasuahzacao dos estados de
100 mil processadores, gerados sinteticamente. As treed®imidas pelo algoritmo de
fatia de tempo foram também definidas usando rastros rea#fsPKA& MPI. Fomos ca-
pazes de identificar nos rastros KAAPI diferentes carastieais, como o comportamento
diferente nos mecanismos de roubo apresentados por désrprocessos, a eficiéncia
do balanceamento de carga considerando todo o tempo decéredas aplicacoes, e a
analise em larga-escala de uma aplicacdo KAAPI compostguase 3 mil processos.

Em resumo, os principais objetivos alcangados nesta tesesé@posta da abordagem
3D, o modelo de agregacao visual combinado com o técnicdidel&atempo e prototipo
Triva. Além disso, se incluem a interacdo entre o prototipeale a biblioteca KAAPI,
permitindo uma analise das atividades de roubo de tarefia diblioteca.

Como perspectivas de trabalhos futuros, prevé-se a evollac@isualizacdo 3D para
a representacao de informacgdes geradas pelo modelo dag@vegriacao de represen-
tacOes de grafo com a técnica de fatia de tempo e agregacémdw @le outras funcdes
de agregacao e outros tipos de dados para o algoritmo deéaianpo. Acreditamos que
a implicacado mais significativa deste trabalho seja o estiedi@cnicas de visualizacéo
aplicadas para a analise de aplica¢cdes paralelas.



147

APPENDIX B EXTENDED ABSTRACT IN FRENCH

The French title for this thesis fQuelques Modéles de Visualisation pour 'Analyse
des Applications Paralléles'The extended french abstract is also presented here b fulfi
the requirements established in @ tutelleagreement of the author. This abstract is a
french translation of previous Portuguese extended aitstra
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B.1 Introduction

Les systémes distribués sont fondés sur du matériel et giesdis contenant et gérant
plus d’une unité d’exécution (COULOURIS ; DOLLIMORE ; KINDBERGQ@5). Dans
ces systemes, les processeurs sont interconnectés et oouent via un réseau. Les
programmes pour ces machines sont divisées en plusiedrgoci&s et doivent intera-
gir a différents niveaux de parallélisme, tels que le passkigmessages ou la mémoire
partagée. Un exemple de systeme distribué est représerigsmailles de calcul (FOS-
TER ; KESSELMAN, 2003. ISBN 1-558-60933-4.). Ce type de syst@&st structuré en
organisations virtuelles (FOSTER ; KESSELMAN ; TUECKE, 2D0dt peut-étre com-
posé de milliers de machines distribuées géographiquerdenix exemples de grilles
sont le projet francgais Grid’5000 (BOLZE et al., 2006) et lejpt américain TeraGrid
(CATLETT, 2002).

Les caractéristiques partagées par presque toutes les-fibames de type grille sont
le dynamisme, I'hétérogénéité des ressources et desdtgiei la présence de multi-
ples domaines administratifs. Le dynamisme signifie quedssources d’une grille peu-
vent devenir indisponibles & tout moment, sans aucune caitdn préalable. Les appli-
cations paralleles doivent considérer ces conditions myepaes typiquement pour faire
face aux fluctuations de la quantité de ressources disgoibiétérogénéité signifie que
différentes configurations de ressources sont présentésm@éme plate-forme de grille.
Ceci est également valable pour les logiciels de biblioteéqUne grille peut étre com-
posée par les différents domaines administratifs, ou ahpqutie est maintenue indépen-
damment par leur administrateurs. Au-dela de ces carsiitgres, une grille peut égale-
ment étre connectée par un réseau complexe et étre factietedue par I'ajout de
nouvelles ressources.

L'interconnexion entre les ressources d’'un réseau peata@mposée de différents
types de réseau : Ethernet, Myrinet, InfiniBand, ou fibre a@idJn exemple de grille
contenant plusieurs types d’interconnexion est appaisktop GridstKONDO et al.,
2004), comme les projets BOINC (ANDERSON, 2004) et Seti@HoANOERSON
et al., 2002), ou I'interconnexion se fait généralement@éaiais d’Internet. Autre exem-
ple qui montre la présence de plusieurs types d’intercaonexest une grille composée
declusters ou une forte hiérarchie d’interconnexion est utiliséerpmnnecter deslus-
tershomogenes (BOLZE et al., 2006). La présence de plusieurs typgerconnexion
est un reflet de I'hétérogénéité et la répartition géogpmnide grilles. Ces aspects im-
posent un réseau plus complexe, un nombre plus grand deiviBsede routage pour la
communication entre les processus et une latence variahkeld temps.

Les plate-formes de type grille passent facilement a I'elsar de nouvelles ressources
peuvent y étre ajoutées indéfiniment en les reliant auxgiaatits existants. En regle
générale, ces compléments apportent plus d’hétérogéatait complexité au niveau de
réseau. Actuellement, il existe des grilles globales ca®ps de milliers d’ordinateurs,
comme le montre I'exemple du projet BOINC. Un autre exemplengomntre comme |l
est facile d’ajouter de nouvelles ressources a une gritlé&sad’5000, ou de nouveaux
clusterssont ajoutés abackboneorincipal de la plate-forme. Le passage a I'échelle de
ces plate-formes est une bonne chose pour les applicatiwakigbes, qui exigent de plus
en plus de ressources informatiques.

Toutes ces caractéristiques de la grille influencent direent le comportement des
applications paralléles au cours de leur développemeruenhise en exécution. De ce
fait, il est important que le développeur comprenne les otgpdes systémes distribués
sur I'application. L'analyse d’'une application paralléjai depend de la topologie du
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réseau est un exemple. Lapplication peut avoir un perfageeagui varie en fonction
des ressources qui ont été sélectionnées et I'intercommexitre elles. Cette influence est
encore plus évidente lorsque les caractéristiques deuésad considérées, comme la
latence et la bande passante, pour les applications qulisotées par celui-ci. Le pas-
sage a I'échelle d’'une grille est un autre aspect qui inflaeliir@ctement le comportement
des applications paralléles, la disponibilité de nougelssources pour I'application ne
signifie pas que I'exécution aura une meilleure performance

Compte tenu de ces éléments, nous pouvons voir qu’il est tiaapal’analyser le com-
portement des applications paralleles en conjonction Bgmformations de la grille.
Cette analyse peut aider les développeurs a comprendrealinde la topologie du réseau
sur l'application, par exemple. En visualisant la fagontd@pplication communique et
la topologie du réseau, il est possible de determiner corhliaglapter afin de mieux ex-
ploiter cette interconnexion. En outre, si le réseau esalgiquement organise, les ap-
plications peuvent suivre sa hiérarchie pour éviter lesagowl’étranglement. Une bonne
analyse doit aussi conduire a des conclusions sur tousdesgsus qui sont mis en exécu-
tion, y compris sur les comportements locaux et globaux guvpnt apparaitre entre eux.
Quand il y a une grande quantité de processus, l'analysetteien mesure de générer
des résultats statistiques sur I'ensemble de ces processus

La visualisation est une forme d’aide a I'analyse des appbaos paralléles. Elle a été
largement utilisé au cours des 30 derniéres années, poyrendre et visualiser les ap-
plications qui sont axées sur différents niveaux de pdisite. La facon la plus classique
de construire une visualisation consiste a utiliser ungtadian des diagrammes de Gantt
(WILSON, 2003), également connue sous le nom de graphigespakte-temps. Ces vi-
sualisations disposent la liste des composants de |'agdjait verticalement et metent la
ligne du temps sur I'axe horizontal. Des exemples d’outilsajfrent ce type d’analyse
sont I'outil de visualisation générique Pajé (KERGOMMEAUXTEIN ; BERNARD,
2000), Vampir (NAGEL et al., 1996) et d’autres (ARNOLD et &Q07a; KAZI et al.,
2000; PILLET et al., 1995). Ces graphiques espace-tempsdsgatlargement utilisés
dans les plates-formes existantes, tels queclesters ou les données sont simples et
uniformes.

Beaucoup de ces outils de visualisation ont été adaptés afiselver le comporte-
ment des applications dans les systemes distribuées, coesgelles. Habituellement, ils
continuent a utiliser les méme techniques de visualisaGonsidérant les représentations
espace-temps, le premier probleme qui se pose est qu'@lpsuvent pas représenter,
avec les données de I'application, la complexité de la tgieldu réseau d’une grille.
Comme nous I'avons dit, I'impact de la la topologie ne peut &ias exclu de I'analyse
guand I'interconnexion entre les ressources est complexdeuxiéme probleme est lié
au passage a I'échelle de I'affichage graphique espacestefwmpc I'utilisation de ces
représentations, le nombre de composantes de I'applicgtio peuvent étre visualisés
dans un écran d’ordinateur est limité a la résolution velticle I'écran.

Cette thése tente de résoudre les problemes des technigdigéistinelles dans la vi-
sualisation des applications paralléles. L'idée prinigpsst d’exploiter le domaine de la
visualisation de I'information et essayer d’appliquer sescepts dans le cadre de I'anal-
yse des programmes paralleles. Portant de cette idée,sa finepose deux modeles de
visualisation : les trois dimensions et le modéle d’agriégatisuelle. Le premier peut
étre utilisé pour analyser les programmes paralléles esamtecompte de la topologie
du réseau. L'affichage lui-méme se compose de trois dimessal deux sont utilisés
pour indiquer la topologie et la troisieme est utilisée paprésenter le temps. Le sec-
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ond modele peut étre utilisé pour analyser des applicaparalléles comportant un trés
grand nombre de processsus. Ce deuxieme modéle exploitegareésation hiérarchique
des données utilisée par une technique appelée Treemapgmuasenter visuellement
la hiérarchie. Les deux modeles constituent une nouvejienfal’analyser visuellement
les applications paralleles , car ils ont été congus pousystemes distribués grands et
complexes, tels que les grilles.

Quelques concepts proposés dans cette these ont été mihli€article est en cours
d’évaluation.

Ce résumé étendu est organisé en cing sections, de la fagantsui

Section B.2 : Le Modele Tridimensionnel
Cette section présente le premier modele de cette thesdjteénzar I'approche
en trois dimensions. Nous décrivons la conception visugllene organisation
générale de composants pour la génération de visualise8Dn

Section B.3 : Le Modele d’agrégation des Données
La section présente I'algorithme de tranche de temps podedaription du com-
portement d’'une application sous forme d’une hiérarchike, modele d’agrégation
utilisé pour atteindre le passage a I'échelle dans la reptésonslreemap

Section B.4 : Limplementation du Prototype Triva
Cette section présente le prototype développé pour ceie.tBa description dans
cette partie comprend I'organisation générale de ses ceam®.

Section B.5 : Résultats obtenus et Evaluation
Les résultats obtenus avec le prototype Triva sont préseatgs cette section. Deux
études de cas y sont presentes : une par rapport au modétestiglonnel, I'autre
liée au modele d’agrégation visuelle.

Section B.6 : Conclusion
Les résultats et implications de la these sont présentés, @ie les perspectives
pour les travaux futurs.
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B.2 Le Modele Tridimensionnel

La performance des applications paralléles exécutéessugnille est liée aux carac-
téristiques de l'interconnexion du réseau (LACOUR ; PEREZ ;®1RR004). Quand les
ressources ont une forte hiérarchie entre elles, le chocellies assignées a une applica-
tion sera décisif pour sa performance mais aussi pour saréh@psion. Sans information
sur la topologie du réseau, I'analyste n’est pas en mesuveidque les problemes sont
dus a la mise en oeuvre des communications. Les décisiosespaipartir d’'une vision
traditionnelle dans ce cas peuvent conduire a des conakisivonées sur la performance.
Ainsi, si nous avons été en mesure d’examiner I'exécutioteaant compte des carac-
téristiques du réseau, nous pouvons voir plus clairememgisons du comportement de
I'application.

La plupart des outils de visualisation ne sont pas en meseiffectuer une analyse en
tenant compte de la topologie du réseau. ParaGraph estllew#qui offre un concept
de l'interconnexion dans ses techniques de visualisatnas seulement par I'affichage
séparés de I'hyper-cube et des modes de communicationféinRdraGraph n’a pas été
congu pour 'analyse des applications a grande échellaiti2sa techniques telles que le
graphique espace-temps, utilisé dans d’autres outilsslalsation, ne sont pas capables
de présenter la topologie du réseau de communication désatmms paralléles. Dans ce
cas, la limitation est lieée a la fagon dont les ressourcessatdmposants de I'application
sont représentés dans un espace linéaire. Lorsque lafptate-d’exécution devient de
plus en plus complexe, montrer la topologie du réseau darsdfichage espace-temps
devient impraticable.

Notre proposition d’établir une connexion entre I'analgied’application et la topolo-
gie du réseau est fondée sur un systeme composeé de troissitim&rJne des dimensions
est la ligne du temps, et les deux autres dimensions soisstppour représenter la topolo-
gie du réseau. La prochaine section présente la concepsioelle de notre modele, et la
section suivante présente le modéle abstrait de compagainieut étre utilisé pour pro-
duire ce resultat.

B.2.1 Conception Visuelle

La conception visuelle de notre modele est composée parntdicaison de tech-
nigues de visualisation qui montrent le comportement dgpliaation avec les don-
nées structurelles ou statistiques de celle-ci. Si les @emstructurelles sont choisies,
la topologie du réseau peut étre utilisée avec le comportedes’application. Si les don-
nées statistiques sont requises, I'utilisateur peut si@ptuantitativement les données a
tracer, a des échelles et des tranches de temps différentes.

Le résultat de la conception visuelle est le modeéle tridsimmel. Le modéle a deux
dimensions réservés pour la représentation des donnéesaias ou structurelles. Nous
avons nommeé ces deux dimensions la “base de la visualisziirLa troisieme dimen-
sion est la ligne de temps. La Figure B.1(a) montre un exengalapproche par représen-
tation en 3D avec les données d’'une application. Les étatpreessus sont représentés
par des barres verticales qui sont placées au-dessus deeld lea différents états le long
de I'axe du temps peut étre représenté par des couleursetifés. La représentation de
chaque état est placée verticalement selon ses marquebuleetéle fin. Les commu-
nications sont représentées par des fleches ou des lignesidanvironnement 3D en
reliant deux ou plusieurs processus qui communiquentr&igul(b) montre un point de
vue différent, situé au dessus des objets représentés. @alpaiue permet I'observation
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de la structure de la communication de I'application, panegle.

(a) Conception visuelle de I'approche 3D. (b) Différent point de vue.

FIGURE B.1 — La conception visuelle de I'approche 3D avec les tratgsedapplication
représentées par des barres verticales montrant I'’éenldés processus dans le temps.

B.2.2 Modele de Composants

Pour créer un affichage 3D, les traces collectées lors dedigion des applications
passent a travers une série de transformations. A cettediirs, proposons ici un mod-
ele abstrait de composants. Figure B.2 montre I'organisajlobale de ce modéle. En
entrée, le modele utilise deux types d’'informations : dasds d’applications paralleles
et un fichier de configuration contenant la description dssaerces de I'environnement
d’exécution.

Monitoring Dat A B D
4 o —— e N —p |
Trace Reader Extractor Visualization \ -

\ A
\ ¢ \///

y

CA

Resources Description Comm. Pattern
c c.2
Entity Matcher Network Topology

C.3
Logical Organization

FIGURE B.2 — Modéle abstrait de composants pour I'approche 3D, aweécdonfigura-
tions possibles pour la base de la visualisation.

La base de la visualisation est configuré paéty MatcherC). Nous avons développé
trois configurations différentes pour celui-ci : celle quamire le schéma de communica-
tion de I'application, celle qui montre ce modéle combinéaia topologie du réseau,
et la deniere qui combine les données provenant de I'apiglicavec une représentation
logique des ressources. Le composant selectionne une derdegurations selon le choix
de l'utilisateur.

Parmi les trois alternatives dantity Matcher celle qui considére la topologie du
réseau (C.2) traite directement le probléme de l'influencérerconnexion sur I'appli-
cation. Les autres variantes sont présentées pour mordugras informations, comme



153

les donnés structurelles (le modéle decommunication geli@ation) et une représenta-
tion statistique des détails de son comportement au fil dpgem

Nous considérons dans le modéle I'existence des tracesmjdsnc disponibles pour
la lecture et qui sont transformées en un flot qui traverséléasents de la Figure B.2 de
gauche a droite. Méme en supposant I'existence de ces 8atiemtrée, les composants
peuvent fonctionner indépendamment de la facon dont lesékmsont injectées dans
le modele. Ainsi, le modele est capable de faire face a unérgton d’événements “en
ligne” lorsque leur volume n’est pas trop gros. Des notiftoet peuvent également se
produire dans le modeéle, en direction des autres compodks propager les modifica-
tions de configuration correspondant aux commandes igipéel utilisateur.
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B.3 Le Modéle Visuelle d’agrégation

Une autre préoccupation relative aux applications de lbegest qu’elles peuvent
étre composées d’'un grand nombre de processus. Quelqugseansont déja possibles
avec des applications a grand échelle (LEE et al., 2008% s®ilement au niveau d’'un
cluster. Plusieurs questions se posent dans des environnemenifiel®os de 'analyse
de ces applications. L'une est la grande quantité de dordeégace, qui dépend de deux
facteurs : le nombre d’entités de I'application, et la gitédnde détails recueillis pour
chaque entité. Une autre question est le passage a |'édesltechniques de visualisation
(EICK; KARR, 2002), qui doivent s’adapter a la quantité de d@sngui peuvent étre
affichées sur I'écran sans que I'utilisateur ne perde la@spde comprendre ce qui est
représenté.

Les techniques de visualisation des outils doivent égai¢masser a I'échelle pour
I'analyse des applications paralléles. Si on consideréesent la quantité des entités
observées, les outils devraient étre en mesure de repeésenimoins quelques milliers
de processus sur le méme écran. Un certain nombre de dataientiégalement étre
présents dans la représentation. Un exemple d’'un manquassage a I'échelle est la
représentation espace-temps ou la quantité de donnéeséseapier est limitée par la
résolution verticale des écrans d’ordinateurs.

Parmi les outils existants pour la visualisation, Vampima technique hiérarchique
pour sa visualisation espace-temps qui augmente la g@detpprocessus qui peuvent étre
consultés en méme temps. La technique fonctionne en agidgeacomportements des
processus en fonction de la représentation hiérarchicquerdbleme de cette approche est
gue chaque niveau d’information est présenté différempeerqui rend difficile I'analyse
de I'ensemble des points de vue. D’autres oultils tels quepsbot et Pajé, grace a une
fenétre de défilement, peuvent faire face a un grand nomlergtitBs analysées. Cette
technique a un impact négatif car le comportement de toetesntités ne figure plus
dans la méme visualisation.

Notre approche utilise un intervalle de temps pour créersingture hiérarchique
qui représente le comportement de I'application pour léopérsélectionnée. Nous util-
isons ensuite la technique Treemap (JOHNSON ; SHNEIDERMAX 1) pour créer une
représentation visuelle de la structure. La techniqueqeép augmente le nombre d’en-
tités qui peuvent étre représentées en méme temps, et p@neepbmparaison directe
entre elles. En outre, nous présentons aussi un mécanisgegation qui peut étre ap-
pliqué pour changer la visualisation quand il y a de nomleeentités qui doivent étre
analysés dans le méme écran. La combinaison de ces deuigteshpermet d’atteindre
une passage a I'échelle de I'analyse visuelle des apmitaparalléles.

B.3.1 Lalgorithme de Tranche de Temps

L'objectif de I'algorithme de tranche de temps est de créer structure hiérarchique
qui reflete le comportement du programme pendant un tempséd&tour ce faire, les
sommets de la hiérarchie doivent étre des valeurs qui séciléas a partir de deux
facteurs : la définition d’une tranche de temps et un résura@dénements pour chaque
entité présente dans cette période. Différents réglagesdgidinir I'intervalle de temps
sont possibles, allant des petites aux grandes plages.

Le résumé des événements se fait en tenant compte du teneifgésgtéde I'informa-
tion sur une entité, présente dans les données de tracet lesthde trouver une valeur
numeérique qui représente le comportement de chaque dhttéste différentes fagons
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de définir cette valeur, comme la quantité de temps ou le neiddichangements d’état,
ou de toute autre information qui peut étre prise dans legsra_e principe général de
I'algorithme est d’ajouter séparément les valeurs de ohaype de données qui peuvent
étre trouvées pour une entité, et ensuite de réaliser urom wid cette somme avec la
tranche de temps utilisé.

B.3.2 Agrégation Visuelle

L'utilisation d’'une représentation Treemap permet la pgesa I'échelle de I'analyse.
Cela signifie que si la taille de la plateforme affichée est argée, la représentation reste
compréhensible du point de vue de l'utilisateur. Si ce pgessal’échelle se produit cor-
rectement dans la plupart des situations, la technique liestée par la taille de I'espace
dédié a la représentation sur I'écran de I'ordinateur.

Le modele d’agrégation essaie de surmonter cette limitq@o le biais de la réorgan-
isation de la hiérarchie a afficher. Il agit principalemeat pagrégation des valeurs des
feuilles de I'arbre dans les noeuds intermédiaires. Avéte epproche, le rendu Treemap
peut étre interrompu a tout niveau, sans perdre I'inforomaitmportante qui a été enreg-
istrée dans les feuilles.

Original Hierarchy generated N _ Aggregated at 2% Agaregation Aggregated at ) Aggregated at
by the Time-Slice Algorithm ! Agg(eﬁ"on Machine Level ﬂo Cluster Level s Agg'e?.a“"” Grid Level

FIGURE B.3 — Trois agrégations réalisées par le modéle.

La Figure B.3 montre trois changements dans la hiérarchigréimtion causés par
le modéle. La hiérarchie originale est indiqué sur I'exteégauche. Chaque informa-
tion dans les feuilles peut représenter différentes mégdgtelles que le nombre de fois
ou quelque chose se passe. Dans notre exemple, il exisentvgiaux intermédiaires :
Processus (P), Machine (M) et Cluster (C). Le principal offjelet 'agrégation est de
regrouper les valeurs de chaque processus et de les déglaceriveau plus haut dans
I'arbre. Par conséquent, apres la premiere agrégatiowalesrs dans les vecteurs sont
additionnées et stockées sur les noeuds machine. L'digmipeut étre appliqué de nou-
veau jusqu’a I'agrégation dans le noeud principal.

Outre I'opération d’addition (Figure B.3), le modéle d’agaéion peut étre appliqué
en utilisant d’autres fonctions telles que la teneur malemainimale, moyenne et mé-
diane. L'application de ces fonctions dépend directemenachature des informations
agrégeées et peut étre utilisée pour mettre en évidence waet@astique particuliere.

Le bénéfice apporté par le modéle d’agrégation est évidemtdjil est combiné avec
I'algorithme de la tranche de temps. Quand une applicatamaligéle est composée de
nombreux processus, la technique de regroupement peuitéigée pour ameéliorer I'-
analyse de I'affichage basé sur les treemaps.
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B.4 Limplementation du Prototype Triva

Cette section décrit brievement le prototype mis au point poettre en ceuvre les
modeles présentés dans les sections précédents. Cettgptilmsatécrit les decisions
d’'implementation prises. Le prototype est appelé Triva.

L'un des principaux guides pour la réalisation de ce prgtetgst qu’il doit étre con-
struit & partir d’outils et de bibliothéques existants, antipulier afin de prévenir la ré-
implementation d’outils déja validés. La premiére décisest I'adoption de certaines
parties de I'outil Pajé. Les principales raisons qui ontiw@otette adoption est la réutili-
sation de code et la performance de I'ensemble des compd2ajét Les autres décisions
prises sont notamment ['utilisation de formats de desionipties ressources faciles a re-
connaitre et I'adoption de la bibliotheque GraphViz.

La Figure B.4 montre I'organisation générale du prototypengosé de modules qui
convertissent les données de trace pour des objets Pagéélpbbrent les deux types de
visualisation : la 3D et treemap. L'adoption des traces ggués a fait que la seule partie
du prototype dépendante du format de la trace soit DIMVjgegarésenté sur la gauche de
la Figure. Les rectangles blancs sont des bibliothéquessebdtils qui ont été réutilisés
avec peu de changement ; rectangles gris ont été développesgmposer le prototype.

Integrator

Y [

PajeEventDecoder}—»‘ PajeSimulator H
\ Triva2DFrame

PajeFileReader —p» TimeSlice
Paje Filters

TrivaController Triva3DFrame
DIMVisual DIMVisualReader H /W

i
StorageController - User Interactions

FIGURE B.4 — L'architecture du prototype Triva.

Le composant TrivaController, écrit en langage C++, est ergehde la mise en route
de tous les composants en les reliant selon I'architectar&ad-igure B.4. Elle four-
nit également a l'utilisateur une interface graphiquegerén utilisant la bibliotheque
wxWidgets, sous la forme d’une fenétre, avec des option®dfiguration et des mécan-
ismes d’interaction. Les visualisations 3D et treemap a0t mises en route par cette
composante.

Les filtres, représentés par des rectangles en pointillés idaFigure B.4, sont les
mémes filtres que ceux utilisés dans Pajé. Leur implementatiend en compte plusieurs
guestions liées au passage a I'échelle et au temps de régemsemmandes de l'inter-
face utilisateur. Le premier de ces filtres, PajeEventDecddaite I'entrée générée par
DIMVisualReader et la prépare pour le prochain module. Le®ajulator transforme
les événements en objets visuels. Cette transformation anedbut la creation d’'une
structure hiérarchique de trace, en utilisant les typesade ajé. Cette structure, qui
représente la méme information que celle qui se trouve aafichiers d’entrée, est op-
timisée pour la visualisation, et enregistrée dans le §aggantroller.

Dans la partie droite de la Figure B.4, les interactions derenodules operent dans
les deux directions. Les interactions de la droite vers lecga sont les demandes de nou-
velles données. Elles sont initiées par I'utilisateur g dommandes ou par la modifica-
tion de paramétres. Les interactions de gauche a droitelssmponses a des demandes.
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B.4.1 TrivaView

Le modele de visualisation 3D, présenté dans la section Bt&jie en oeuvre dans le
prototype Triva par la composante TrivaView. La Figure B.5un@!'organisation globale
de cette composante. Le module implémente la partie Ertrdcat modéle. Il obtient du
flot des objets Pajé les conteneurs et les liens a envoyertéyNEaitcher, et envoie aussi
le flot au composant DrawManager. La partie du modele 3D éplpetityMatcher est
mise en ceuvre dans les trois composantes du prototype AppligationGraph, TrivaRe-
sourcesGraph et TrivaTreemapSquarified. lls recoivent@n gu flot d’objects Pajé, le
fichier de description des ressources. La visualisation oddéte 3D, representée dans la
droite de la Figure B.5, est mise en ceuvre avec 4 composastésva3DFrame, pour le
maintien de la scéne 3D, et de trois mainteneurs qui peuvemger les aspects visuels
de la scéne, le DrawManager, le AmbientManager et le Cameradés.

DrawManager

t»| TrivaApplicationGraph |
TrivaResourcesGraph
f rivaTreemapSquarified—

Triva3DFrame P \5‘;%} ’\

‘ AmbientManager

CameraManager

| 3D Rendered

Resource
Description

FIGURE B.5 — Structure d’implementation du TrivaView.

B.4.2 TimeSliceView

Le modele d’agrégation et I'algorithme de tranche de termp&t& mis en ceuvre dans
le composant TimeSliceView, comme le montre la Figure B.6e @ntre composante
importante de cette partie est le Triva2DFrame, dont laomesgbilité est de dessiner le
treemap dans la fenétre de visualisation du prototype.

Réponse avec un .
Objets Pajé - - | |\ treemap configuré wxWidgets
4% TimeSlice i ﬁ Triva2DFrame

Changement de taille de la fenétre Treemap dessiné

Changement de niveau d'agrégation

/ Changement de tranche de temps

A A A

FIGURE B.6 — Structure d’implementation du TimeSliceView.

La Figure B.6 détaille également les interactions et ledinations qui se produisent
pendant I'exécution de la composante. L'arrivée d’objetssonulateur Pajé (voir Fig-
ure B.4 pour plus de détails) est représentée sur la gauclaekigure. Les interactions
avec l'utilisateur peuvent provoquer des trois différeagpes de notifications qui partent
de la composante Triva2DFrame vers la composante TimeSticanger la taille de la
fenétre, changer de niveau d’agrégation ou modifier la braie temps. Toutes ces noti-
fications déclenchent la méme chaine d’événements dansifgosant : la création d’'une
hiérarchie de comportement, I'application possible desajeurs d’agrégation et le cal-
cul des nouveaux treemap. Le treemap résultant est envoggeaine réponse et est
dessiné dans la fenétre par le composant Triva2DFrame.
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B.5 Résultats Obtenus et Evaluation

L'objectif principal de cette partie du résumé est de préeseles deux types de vi-
sualisations générées par le prototype, une en trois diorenst l'autre sous forme de
treemap. Dans le méme temps, une analyse de ces resulfatteasimpte tenu des traces
d’exécution utilisées comme entrée pour le prototype.

B.5.1 Trois Dimensions

Le principal objectif du modéle 3D est de réaliser la comisioia en trois dimensions
des composants de I'application avec la topologie d’itenexion des ressources. Dans
un premier temps, Nous avons retenu un scenario compre@ambéessus, divisés en 2
sites différents de Grid’5000. Le siteancycontribue a la 'exécution avec 30 machines
du clustergrelon, tandis que le siteennesa une allocation de 25 machines du cluster
paramountet 5 machines du clustgraraquad Nous considérons ici une topologie du
réseau dans laquelle chaque site contient un routeur loiev# tous leglusterssont
connectés au routeur de leur site. Les routeurs de diffes#@s sont interconnectés via
un backbone. Ainsi, quand un message est envoyeé @uster d’'un site a partir d’'un
clusterd’un autre site, il doit passer par I'intermédiaire de denxteurs.

La Figure B.7 montre deux captures d’écran du prototype h@reérées lors de I'af-
fichage du fichier de trace de ce scénario. Le texte et lesdign@ointillés ont été ajoutés
manuellement pour accroitre la compréhension de I'exerhjileage A montre le temps
total d’exécution avec une petite échelle de temps, de qaddous les objets soient dans
la base de la visualisation. La ligne pointillée montre lpasation entre les sitasnnes
avec deuxclusters et nancy avec un seutluster Nous pouvons voir a cette échelle de
temps, un grand nombre de vols de travail entre les groggsn et paraquad proba-
blement d0 au nombre de processus qui leur sont attribugisalyse de ces interactions
en conjonction avec la topologie du réseau permet a l'atéisr de voir que toutes les
demandes de travail de celsistersdoivent passer a travers les deux routeurs de linter-
connexion.

A Petit Echelle du Temps, Application sur la Topologie Réseau B Differents nombre de requétes
Renneﬁ gNancy A de vol de travail

Plus de
requétes

_fh X =~/ i - s
Paraquad (25) & e Grelon (30)
/ N N \
/ H Nancy
/ ‘.‘ SN Router

e \ [t =

|
NN o
ral i g Paraquad|(25)

/
/
/
/ | § u \ v/
R i /
L |Rennes i %(g \ ; A
Router Paramount (5) ‘S i \ \ / Paramount (5)

- ST

\ /Rennes— Y Moins de
aiil < N
L Router requétes

FIGURE B.7 — Deux captures d’écran du prototype Triva pendant laalisation d’'une
application composé de 60 processus, a différentes éstugleemps.

Le prototype permet également de changer de facon dynaiénelle de temps,
en utilisant la souris. L'imag® dans la Figure B.7 indique le temps d’exécution total
pour les traces de ce scénario, mais avec une plus grandiedEeemps. Grace a cette
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image, il est possible d’observer des différences dansrigpoaement de vol de travail
a différentes périodes de temps de I'exécution. Il est ginssible d’apercevoir qu’au
début, il y a beaucoup moins de vols qu’a la fin. La raison da est qu’a la fin d'une
application KAAPI, les taches deviennent plus rares. Ce astament est normal, vu que
le vol de travail des taches implémenté dans la version betela bibliotheque KAAPI
est aléatoire.

Un deuxieéme scénario est une application KAAPI composé®@@icessus sur 200
machines. La répartition des machines est divisée en dmscgnnesetnancy Le nom-
bre de machines affectées a chacun d’eux est le méme, bida cggartition interne de
chacun differe au niveau du nombre de machines par clusteage A de la Figure B.8
indique le nombre de machines affectées a chatusterainsi que la topologie du réseau
qui relie les deux sites. La ligne pointillée est utilisé pseparer les sites distincts. Nous
considérons pour ce scénario I'existence d’'informatiammémentaires concernant I'in-
terconnexion entre les routeurs et les tidissters La bande passante disponible entre les
clusters paravengtgrillon, a travers les deux routeurs, est de 100 mégabits. Le liea ent
le cluster grelonet son routeur est de 1 mégabit, comme indiqué dans l'indade la
Figure.

A Debut d'execution de I'application B L'Interconnexion saturée

Paravent (61) Paravent (61)

100 Megabit Link

Paraquad (33)

Pararﬁount (6)

S 1 Megabit Link
Rennes .-~

100 Megabit Link

Grillon (13) Grelon (87)

i
Grelon (87)

FIGURE B.8 — Deux vues d'un exemple avec plus d’'informations sur f#lkagie du
réseau, telles que les limitations imposées par la bandaupizs

Dans ce scénario, il y a 87 processus en cours dans le cieten, et 61 dangar-
avent Considérons seulement les vols du travail entre ces desters indiqués dans le
cercle en pointillés de I'image sur la droite de la Figure BaBftéche en pointillés dans la
méme image indique que ces demandes doivent passer pardie liemégabit. La visual-
isation permet de déduire qu’un nombre plus restreint degssus devraient étre placés
dans urclusteravec une bande passante limitée. Si, par exemple, les przces cluster
grelonpouvaient étre exécutés dans le clugtglfon, I'application pourrait atteindre une
meilleure performance.

A travers I'exemple de ce deuxiéme scénario, nous pouvdes Fimportance d'anal-
yser la performance d’une application accompagnée d’'ysrésentation topologique du
réseau. Si ce type de visualisation, illustré dans I'imBgtans la Figure B.8, n'est pas
présent, I'analyste peut obtenir des conclusions incotepkur les performances de I'ap-
plication.
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B.5.2 Agrégation

Un des principaux avantages du modele d’agrégation de dsrdeécette thése est la
facilité qu’il apporte pour I'analyse d’'un grand nombremtieés dans le méme écran. Pour
évaluer la fagon dont la visualisation passe a I'échelle,ttacce de synthése composée de
100 milliers de processus a été utilisé€, chacun avec detsxdffrents. L'analyse qui suit
montre I'emploi de la technique de la tranche de temps etaligdfithme d’agrégation.

La Figure B.9 montre I'analyse de cette trace, qui compreredhi@rarchie a quatre
niveaux : Site, Cluster, Machine et Processor. La hiéradigient 10 sites, chacun avec
10 clusters, chaque cluster avec 100 machines et chaquenaanlec 100 processus.
Chaque processeur peut étre dans I'un des deux états pesediplsentée dans la Figure
par les différentes tonalités de gris.

L'analyse a grande échelle en utilisant le prototype conueeavec le treemap,
situé en haut a gauche de la Figure B.9, avec le niveau Proc&ssts ce treemap, il
y a 200 mille rectangles : 100 mille fois le nombre des étatssiiabes. Nous pouvons
observer que certaines régions du treemap sont plus somue@bautres, permettant une
sorte de conclusion concernant la repartition des étatgef@s, une conclusion précise
est difficile a atteindre avec cette representation. Largincipale est que le treemap
A comporte des rectangles qui sont tres petits, de sorte egtitlifficile de noter des
différences de taille entre deux états d’'un seul processfmxemple est montré pour
illustrer la limitation de la visualisation treemap traglitnelle.

A Hierarchy: Site (10) - Cluster(10) - Machine (10) - Processor (100) B Hierarchy: Site (10) - Cluster(10) - Machlne (10) Processor (100)
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i S jﬁi B iaasiie
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gy mEm
— 7]
L — ‘
‘ ‘ [ — — ‘__ ‘ /3—4’ ‘ E Maximum Aggregation

FIGURE B.9 — Visualisation treemap normale (A) and quatre agrégés B de deux
états pour 100 mille processeurs (trace synthétique).

Le rectangle blanc de la treemé&pdans la Figure B.9 représente I'espace dédié a
une machine. Bien qu’il soit difficile de le constater, il y aO2fectangles dans cette
petite région qui représente I'état des 100 processeurgitie machine. Comme il est
difficile de comprendre la structure de 'ensemble de cesat66essus, I'utilisateur peut
interagir avec le prototype et visualiser la valeur agrégéeriveau de la machine, comme
montré dans le treemdpde la Figure. Elle indique, pour chaque machine, les deus éta
possibles. Dans cette representation, il est possibleadimer les différences entre les
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machines : certaines passent beaucoup plus de temps data qoeedans un autre. La
zone en évidence sur le c6té gauche du treeBiyaprésentée par l'intermédiaire d’'un
zoom, est la zone du rectangle blanc du treeap

Les agrégations suivantes permettent a 'utilisateur dealiser les traces au niveau
Cluster, comme indiqué dans le treenfagle la méme Figure, et au niveau Site dans
le treemapD. Le treemap C montre 100 clusters (10 par site). Dans seepgatiche,
le treemap contient un rectangle noir qui montre les 10 etastlans la région dédiée
a un site. La fleche dans ce rectangle désigne les valeurgéagp®ur ce site, dans le
treemap D. L'agrégation maximale possible, le treefBapermet d’avoir une vue des
informations d’état disponibles globalement, en indidguare I'état représenté par le ton
plus claire apparait plus souvent que l'autre dans la trugightemps choisie pour cet
exemple.

Un second scénario pour la visualisation treemap est uieaippn de 188 processus,
réalisée sur 188 machines, réparties dans cinq sites dib@i@ dont le site de Porto
Alegre. Il y a 13 machines affectées dans le cluster, a portoalegre 2 debordereau
17 debordemey et 6 debordeplage a bordeaux 45 depaste] 5 deviolette atoulouse
14 deparamount 36 deparaquad a rennes et finalement 50 dgrelon a nancy La
Figure B.10 montre deux treemaps calculés avec les tracésggndans ce scénario.

Le treemapA montre les états Run et RSteal pour les 188 processus. Preague t
les processus exhibent le méme comportement, avec pluss fassé dans I'état Run
(zones avec un ton de gris clair) par rapport a I'état RSte#@ {gnce). La seule excep-
tion apparait dans le K-processus au sein du sitpattoalegre manuellement mis en
evidence avec le cercle en pointillés. Nous notons que @Eepsus sont restés plus de
temps a voler les taches que les processus d’autres sitégdmeapB, a droite, montre
la méme tranche de temps et les mémes processus, mais setieme’état RSteal. Ici,
la difference de temps passé a voler les tache devient eplarévidente. Nous pensons
gue la principale raison de ce comportement vient de I'atbenexion entre les sites. Le
site deportoalegrese trouve au Brésil, et son lien avec Grid’5000 n’est fait dreaers
d’un réseau privé virtuel (VPN) qui est maintenue grace arirgt. La latence de cette
connexion, par rapport a la latence globale entre les site5800 situés en France, est
significative. Le vol des taches traditionnellement mis ewm@dans KAAPI differencie
pas les cibles d’'un vol. Ce choix, dans un environnementeafaoinnexion hétérogene,
peut conduire a passer plus de temps a voler, comme indiqué fraemap calculé par
notre algorithme de tranche de temps.

A Run et RSteal B Seulement I'état RSteal
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FIGURE B.10 — Scénario KAAPI avec une application composée de 183pBuiS.

Globalement, I'algorithme de tranche de temps combiné Evewdele d’agrégation



162

de cette these permetent d’identifier facilement les probkde performance lorsqu’on
compare le comportement relatif des processus dans unieatppi paralléle. Le mod-
ele d’agrégation présente des avantages pour les sits@igrande échelle, peu importe
le nombre de processus impliqués dans I'analyse. La seludarm@écessaire pour per-
mettre I'application de nos propositions est la définiticeme hiérarchie avec au moins
guelques niveaux. Le hiérarchie utilisée dans le scénakibf dispose de 5 niveaux, ce
qui permet d’obtenir de bons résultats dans la visualisatio
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B.6 Conclusion

Les visualisations classiques pour I'analyse des apmitsiparalleles sont congues
pour traiter des données a petite échelle et équilibréebekein de techniques de visu-
alisation pour I'analyse a grande échelle, telles que audeigrilles de calcul, motive
ce travail. Deux problemes dans I'analyse des applicatp@malleéles par le biais de la
visualisation sont soulevés dans cette thése.

Le premier est 'impact de I'interconnexion des réseausdaxécution des applica-
tions paralleles. Cet impact devrait étre pris en compte tanalyse pour mieux com-
prendre et améliorer les performances de I'applicatios.teehniques traditionnelles de
visualisation, tels que les graphiques espace-temps pan@®, sont largement utilisés
pour I'analyse des applications. Toutefois, ces techrsquepeuvent pas montrer, dans
le méme affichage, la topologie du réseau et le suivi des @gsnaiéxécution de I'appli-
cation. Cela peut conduire a des conclusions erronées ddateletion des problemes de
performance des applications. Le deuxieme probléme esissage a I'échelle des tech-
nigues de visualisation. Généralement, le nombre d’entiéésuivi que I'on peut voir sur
le méme écran est limité a la résolution verticale de I'écfan ordinateur. Les représen-
tations espace-temps en 2D sont un exemple clair de ce prepb&les sont mal adaptées
a l'analyse des applications de grille composées d’'un gnanabre de processus.

L'idée principale de cette these est I'exploitation desitggues de visualisation d’in-
formation qui peuvent étre utilisées pour analyser le cateprent des applications paral-
leles. Notre premiére approche montre le réseau d’intelaan, ainsi que des données
de I'application en utilisant une vue en trois dimensiores.base de ce point de vue est
utilisée pour detailler I'interconnexion entre les regses, et le troisieme axe pour mon-
trer I'évolution de I'application dans le temps. Cette vigation est complétée par la
représentation des communication, qui donne la possilalit développeur de les com-
parer avec la topologie du réseau.

La deuxieme approche est le modele visuel d’agrégatioreoprbblémes de passage
a I'échelle sont surmontés par la combinaison de la tecleniyutreemap et de l'algo-
rithme de tranche de temps. Cet algorithme prend en compteathehes de temps pour
générer des valeurs et de les injecter dans une organisediarchique de I'application.
Cette structure est alors représentée par la technique elndpe Le passage a I'échelle
est réalisé par le modele d’agrégation, ou les niveaux deéfarichie sont utilisées pour
créer des données intermédiaires qui peuvent étre utilmésune représentation treemap
avec plus d’informations.

Les deux approches ont été implémentées dans un prototppé&alriva, développé
en utilisant un gestionnaire de scenes 3D appelé Ogre empiementation de I'algo-
rithme Treemap. Le prototype dispose de mécanismes poectiaré des traces fournis
par la bibliotheque DIMVisual, capable d’intégrer les déaes provenant de différentes
sources et formats. Des traces synthétiques et réelleplitaipons KAAPI et MPI ont
ete utilisées pour valider I'approche et I'implementatiba traces KAAPI ont été recueil-
lies sur la plate-forme Grid’5000. Bien que I'évaluation dotptype est liée a I'analyse
d’applications KAAPI et MPI, le format d’entrée Pajé perrd&itendre les avantages de
I'outil & d’autres domaines de recherche, pour visualisantdes types de ressources dans
les bibliothéques de communication.

Les résultats sont prometteurs. La visualisation en troiedsions permet de mieux
comprendre les communications en conjonction avec latgg®du réseau. En ayant re-
cours a une simplification de la topologie de Grid’5000, navsns pu montrer que dans
les différentes tranches de temps, le vol de travail dans RiAgourrait bénéficier davan-
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tage de la localité. En effet, 'implementation actuellekdAPI ne prend pas en compte
le réseau pour faire les requétes de vol de travail. En olesagsultats obtenus avec le
modele d’agrégation ont permis la visualisation des états0d milliers de processeurs,
générés de maniére synthétique. Les treemaps définis fgorithme de la tranche de
temps ont également été déterminés en utilisant des tradd®Ket MPI. Nous avons
été en mesure d’identifier dans les traces KAAPI des caistitires variées, telles que
le comportement de différents mécanismes de vol effectogedes processus distincts,
I'efficacité de I'’équilibrage de la charge pour I'ensembletemps d’exécution de appli-
cations, et I'analyse d’une application KAAPI a grande deheomposée de prés de 3
mille processus.

En résumé, les principaux objectifs atteints dans cettgetkent la proposition d’'une
approche tridimensionnelle, le modéle visuel d’agrégatombiné avec la tranche de
temps et le prototype Triva. En outre, il comprend l'inteéi@c entre Triva et la biblio-
theque KAAPI, permettant une analyse des activités de vivhglail de cette bibliothéque.

Comme perspectives, il est prévu I'extension de la visu#isa8D pour la représen-
tation de I'information produite par le modele d’agrégatita création des graphes d’ap-
plication réduits avec la technique de la tranche de temgiagtégation, I'étude d’autres
fonctions d’agrégation et I'utilisation d’autres donn@esir I'algorithme de la tranche de
temps. Nous pensons que la plus importante contributioe decail est I'étude des tech-
nigues du domaine de la visualisation appliquées a I'apalgs applications paralléles.
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