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ABSTRACT

Highly distributed systems such as grids are used today for the execution of large-scale
parallel applications. Some characteristics of these systems are the complex resource in-
terconnection that might be present and the scalability. The interconnection complexity
comes from the different number of hops to provide communication among applications
processes and differences in network latencies and bandwidth. The scalability means that
the resources can be added indefinitely just by connecting them to the existing infrastruc-
ture. These characteristics influence directly the way parallel applications performance
must be analyzed. Current traditional visualization schemes to this analysis are usually
based on Gantt charts with one dimension to list the monitored entities and the other
dimension dedicated to time. These visualizations are generally not suited to parallel ap-
plications executed in grids. The first reason is that they were not built to offer to the
developer an analysis that also shows the network topology of the resources. The second
reason is that traditional visualization techniques do notscale well when thousands of
monitored entities must be analyzed together.

This thesis tries to overcome the issues encountered on traditional visualization tech-
niques for parallel applications. The main idea behind our efforts is to explore techniques
from the information visualization research area and to apply them in the context of par-
allel applications analysis. Based on this main idea, the thesis proposes two visualization
models: the three-dimensional and the visual aggregation model. The former might be
used to analyze parallel applications taking into account the network topology of the re-
sources. The visualization itself is composed of three dimensions, where two of them are
used to render the topology and the third is used to representtime. The later model can be
used to analyze parallel applications composed of several thousands of processes. It uses
hierarchical organization of monitoring data and an information visualization technique
called Treemap to represent that hierarchy. Both models represent a novel way to visual-
ize the behavior of parallel applications, since they are conceived considering large-scale
and complex distributed systems, such as grids.

The implications of this thesis are directly related to the analysis and understanding
of parallel applications executed in distributed systems.It enhances the comprehension
of patterns in communication among processes and improves the possibility of matching
this patterns with real network topology of grids. Althoughwe extensively use the net-
work topology example, the approach could be adapted with almost no changes to the
interconnection provided by a middleware of a logical interconnection. With the scalable
visualization technique, developers are able to look for patterns and observe the behavior
of large-scale applications.

Keywords: Parallel Applications, Performance Analysis, Visualization, 3D Visualization,
Treemap, Scalability, Grid.





RESUMO

Alguns Modelos de Visualização aplicados para a Análise de Aplicações Paralelas

Sistemas distribuídos tais como grids são usados hoje para aexecução de aplicações
paralelas com um grande número de processos. Algumas características desses sistemas
são a presença de uma complexa rede de interconexão e a escalabilidade de recursos. A
complexidade de rede vem, por exemplo, de largura de banda e latências variáveis ao
longo do tempo. Escalabilidade é a característica pela qualnovos recursos podem ser
adicionados em um grid apenas através da conexão em uma infraestrutura pré-existente.
Estas características influenciam a forma como o desempenhode aplicações paralelas
deve ser analisado. Esquemas tradicionais de visualizaçãode desempenho são usualmente
baseados em gráficos Gantt com uma dimensão para listar entidades monitoradas e outra
para o tempo. Visualizações como essa não são apropriadas para a análise de aplicações
paralelas executadas em grid. A primeira razão para tal é queelas não foram concebidas
para oferecer ao desenvolvedor uma análise que mostra a topologia dos recursos e a re-
lação disso com a aplicação. A segunda razão é que técnicas tradicionais não são es-
caláveis quando milhares de entidades monitoradas devem ser analisadas conjuntamente.

Esta tese tenta resolver estes problemas encontrados em técnicas de visualização tradi-
cionais para a análise de aplicações paralelas. A idéia principal consiste em explorar téc-
nicas da área de visualização da informação e aplicá-las no contexto de análise de pro-
gramas paralelos. Levando em conta isto, esta tese propõe dois modelos de visualização:
o de três dimensões e o modelo de agregação visual. O primeiropode ser utilizado para
analisar aplicações levando-se em conta a topologia da rededos recursos. A visualização
em si é composta por três dimensões, onde duas são usadas paramostrar a topologia e a
terceira é usada para representar o tempo. O segundo modelo pode ser usado para analisar
aplicações paralelas com uma grande quantidade de processos. Ela explora uma organi-
zação hierárquica dos dados de monitoramento e uma técnica de visualização chamada
Treemap para representar visualmente a hierarquia. Os doismodelos representam uma
nova forma de analisar aplicação paralelas visualmente, uma vez que eles foram conce-
bidos para larga-escala e sistemas distribuídos complexos, como grids.

As implicações desta tese estão diretamente relacionadas àanálise e ao entendimento
do comportamento de aplicações paralelas executadas em sistemas distribuídos. Um dos
modelos de visualização apresentados aumenta a compreensão dos padrões de comuni-
cação entre processos e oferece a possibilidade de observartal padrão com a topologia de
rede. Embora a topologia de rede seja usada, a abordagem podeser adaptada sem grandes
mudanças para levar em conta interconexões lógicas de bibliotecas de comunicação. Com
a técnica de agregação apresentada nesta tese, os desenvolvedores são capazes de observar
padrões de aplicações paralelas de larga escala.

Palavras-chave:Aplicações Paralelas, Análise de Desempenho, Visualização, Visualiza-
ção 3D, Treemap, Escalabilidade, Grid.





RÉSUMÉ

Quelques Modèles de Visualisation pour l’Analyse des Applications Parallèles

Les systèmes distribués, tels que les grilles, sont utilisés aujourd’hui pour l’exécution
des grandes applications parallèles. Quelques caractéristiques de ces systèmes sont l’in-
terconnexion complexe de ressources qui pourraient être présent et de la facile passage à
l’échelle. La complexité d’interconnexion vient, par exemple, d’un nombre plus grand de
directives de routage pour la communication entre les processus et une latence variable
dans le temps. La passage à l’échelle signifie que des ressources peuvent être ajoutées
indéfiniment simplement en les reliant à l’infrastructure existante. Ces caractéristiques
influencent directement la façon dont la performance des applications parallèles doit être
analysée. Les techniques de visualisation traditionnelles pour cette analyse sont générale-
ment basées sur des diagrammes de Gantt que disposent la liste des composants de l’appli-
cation verticalement et metent la ligne du temps sur l’axe horizontal. Ces représentations
visuelles ne sont généralement pas adaptés à l’analyse des applications exécutées en par-
allèle dans les grilles. La première raison est qu’elles n’ont pas été conçues pour offrir
aux développeurs une analyse qui montre aussi la topologie du réseau des ressources. La
deuxième raison est que les techniques de visualisation traditionnels ne s’adaptent pas
bien quand des milliers d’entités doivent être analysés ensemble.

Cette thèse tente de résoudre les problèmes des techniques traditionnelles dans la vi-
sualisation des applications parallèles. L’idée principale est d’exploiter le domaine de la
visualisation de l’information et essayer d’appliquer sesconcepts dans le cadre de l’anal-
yse des programmes parallèles. Portant de cette idée, la thèse propose deux modèles de
visualisation : les trois dimensions et le modèle d’agrégation visuelle. Le premier peut
être utilisé pour analyser les programmes parallèles en tenant compte de la topologie
du réseau. L’affichage lui-même se compose de trois dimensions, où deux sont utilisés
pour indiquer la topologie et la troisième est utilisée pourreprésenter le temps. Le sec-
ond modèle peut être utilisé pour analyser des applicationsparallèles comportant un très
grand nombre de processsus. Ce deuxième modèle exploite une organisation hiérarchique
des données utilisée par une technique appelée Treemap pourreprésenter visuellement la
hiérarchie.

Les implications de cette thèse sont directement liées à l’analyse et la compréhension
des applications parallèles exécutés dans les systèmes distribués. Elle améliore la com-
préhension des modes de communication entre les processus et améliore la possibilité
d’assortir les motifs avec cette topologie de réseau réel sur des grilles. Bien que nous util-
isons abondamment l’exemple de la topologie du réseau, l’approche pourrait être adapté,
avec presque pas de changements, à l’interconnexion fournipar un middleware d’une in-
terconnexion logique. Avec la technique d’agrégation, lesdéveloppeurs sont en mesure de
rechercher des patterns et d’observer le comportement des applications à grande échelle.

Mots-clés:Applications Parallèles, Analyse de Performance, Visualisation, Visualisation
en 3D, Treemap, Passage à l’Échelle, Grid.
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1 INTRODUCTION

Distributed systems are related to hardware and software that contain more than one
single processor entity (COULOURIS; DOLLIMORE; KINDBERG, 2005). In such sys-
tems, processors are interconnected and communicate over anetwork. The computer pro-
grams that execute in these systems are split into multiple parts and must deal with dif-
ferent levels of parallelism and with communication paradigms, such as message-passing
and shared memory. A kind of distributed systems is grids (FOSTER; KESSELMAN,
2003. ISBN 1-558-60933-4.). They are often structured in virtual organizations (FOS-
TER; KESSELMAN; TUECKE, 2001), possibly composed by thousands of machines
distributed geographically. Two examples of this type of system are the french Grid’5000 (BOLZE
et al., 2006) and the american TeraGrid (CATLETT, 2002).

Characteristics shared by almost all grid platforms are dynamism, heterogeneity of re-
sources and software, and presence of multiple administrative domains. Dynamism means
that the resources that participate in the grid can be unavailable at any time, without any
prior notification of that. Parallel applications must dealwith that in the application-level
or through a middleware capable of handling resources fluctuations. The heterogeneity
means that different configurations of resources can be present in the same grid infras-
tructure. This is also valid for software libraries and middlewares. A grid can be scat-
tered through multiple administrative domains, each part handled independently by their
administrators. Besides these characteristics, a grid might also have a complex network
interconnection and be easily extensible in terms of resources.

The interconnection among resources of a grid can be composed of different types
of networks. They include Ethernet, Myrinet, Infiniband, oroptical fiber technologies. A
model of a grid with several types of interconnection is a desktop grid (KONDO et al.,
2004), like the projects BOINC (ANDERSON, 2004) and Seti@home(ANDERSON
et al., 2002), where the network is the internet. Another example for the presence of
multiple types of interconnection is a lightweight grid, where a strong hierarchy is used
to interconnect a set of homogeneous clusters of computers (BOLZE et al., 2006). The
presence of several interconnections come from the naturalheterogeneity and geographic
distribution characteristics of grids. These aspects impose a higher network complexity,
greater number of hops to provide communication among applications processes, and in-
creasing differences in network latencies and bandwidth.

Grid platforms are also easily extensible. New resources can be indefinitely added
just by connecting them to the existing participants. Usually, these additions bring more
heterogeneity to the grid and increment the network complexity. As of today, there are
global grids that are composed of several thousands of computers, such as the example
of BOINC. Another example of how easy it is to add new resources to a grid is the case
of Grid’5000, where new clusters and sites can be added to themain backbone of the
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infrastructure. The extensibility of these grid platformsis a good characteristic from the
point of view of parallel applications, which need an increasing amount of resources to
complete their execution faster.

All these grid characteristics influence directly the behavior of the parallel applications
during their development and execution. Because of this, it is important for the developer
to understand the impact of the distributed system on the application. An example of this
type of analysis is the observation of application monitoring data with information from
the network topology. The application can have a better or worse performance, depend-
ing on which resources are chosen and the interconnection among them. This influence is
even more evident when network aspects are considered, suchas latency or bandwidth,
on network-bound parallel applications. The grid extensibility is another aspect that influ-
ences directly the behavior of applications, because turning available new resources for
the application might not always result in a better performance.

Considering these situations, we can notice that it is important to analyze the parallel
application behavior along with information about the gridresources. This analysis can
help the developer to understand the impact of the network topology on the application
behavior. Comparing, for instance, the communication pattern of the application with
the network topology can give hints to the developer to adaptthe application in order to
better exploit the interconnection. Moreover, if the network is hierarchically organized,
the applications can follow the hierarchy to avoid bottlenecks.A good analysis must also
lead to conclusions about all processes of parallel applications, including global and local
patterns that can appear among them. If the number of processes is large, the analysis
must also scale.

Visualization is a way to perform the analysis of parallel applications. It has been ex-
tensively used through the last 30 years to understand and observe applications that are
developed with different levels of parallelism. The most traditional way of visualizing ap-
plication behavior is through an adaptation of Gantt charts(WILSON, 2003), also known
as space-time graphics. They list the components of the application vertically and their
evolution over time is placed on the horizontal axis. Examples that provide this kind of
visualization are Pajé (KERGOMMEAUX; STEIN; BERNARD, 2000), Vampir (NAGEL
et al., 1996) and many others (ARNOLD et al., 2007a; KAZI et al., 2000; PILLET et al.,
1995). This visualization is already widely used in existing architectures, such as clusters,
where data is simpler and uniform.

Many of these tools were adapted to observe the behavior of applications of highly
distributed systems like grids. Generally, they keep on using the same visualization tech-
niques. Considering only the space-time representation, the first issue that arises is that
they cannot represent, together with the application data,the complex network topology
of grid systems. As discussed, the impact of the network cannot be excluded from an
application analysis when a complicated interconnection is present among the resources.
The second problem is the visualization scalability of the space-time approach. Using
such representations, the number of components of the application that can be visualized
in a screen is limited to the vertical resolution of the screen.

This thesis tries to overcome the issues encountered on traditional visualization tech-
niques for parallel applications. The main idea behind our efforts is to explore techniques
from the information visualization research area and to apply them in the context of par-
allel applications analysis. Based on this main idea, the thesis proposes two visualization
models: the three-dimensional and the visual aggregation model. The former might be
used to analyze parallel applications taking into account the network topology of the re-
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sources. The visualization itself is composed of three dimensions, where two of them are
used to render the topology and the third is used to representtime. The later model can
be used to analyze parallel applications composed of several thousands of processes. It
uses hierarchical organization of monitoring data and an information visualization tech-
nique called Treemap (SHNEIDERMAN, 1992) to represent that hierarchy. Both models
represent a novel way to visualize the behavior of parallel applications, since they are
conceived considering large-scale and complex distributed systems, such as grids.

The implications of this thesis are directly related to the analysis and understanding
of parallel applications executed in distributed systems.It enhances the comprehension
of patterns in communication among processes and improves the possibility of match-
ing them with real network topology of grids. Although we extensively use the network
topology example, the approach could be adapted with almostno changes to the intercon-
nection provided by a middleware of a logical interconnection. With our scalable visu-
alization technique, developers are able to look for patterns and observe the behavior of
large-scale applications.

In this work, we are considering parallel applications thatintend to obtain high per-
formance in grid environments. Additionally, these applications must be composed of
processes that intercommunicate during the execution of the application, either as point-
to-point communications or collective operations. Each process is composed of functions
related to calculations or to communicate with other processes. Besides this, we also con-
sider that the number of processes of the same application can scale up to a large number.
To analyze these applications, we consider that traces can be generated during application
execution. A trace is divided in timestamped events, each one identified by a type and
additional information according to this type. Several types of events might be registered,
for instance, the start and end of functions, the communications, and so on.

The text of the thesis is composed of six chapters, as follows:

Chapter 2: Visualization of Parallel Applications
This Chapter presents works related to this thesis. It startswith a historical presen-
tation of tools since their first use to analyze computer programs, then goes to the
description of some of them. The Chapter ends with a summary ofvisualization
techniques, classified according to three types according to the information they
represent.

Chapter 3: The Three-Dimensional Model
This Chapter presents the three dimensional model. We first describe its visual con-
ception, detailing the components and concepts of the 3D visualization. Afterwards,
we describe the abstract model that is conceived to generatethese visualizations.
During this description, we detail three different cases that can be rendered with the
approach to help the performance analysis of parallel applications.

Chapter 4: Visual Aggregation Model
The fourth Chapter presents the visual aggregation model, proposed in this thesis to
be combined with the treemap representation so the analysisof parallel applications
can be done with a large number of components. The Chapter firstdetails how
monitoring data can be hierarchically organized, then it goes through the description
of the proposed Time-Slice algorithm and the aggregation model. The Chapter ends
with the use of the treemap technique to visualize the hierarchies created by the
proposed algorithms.

Chapter 5: Triva Prototype Implementation
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The fifth Chapter presents Triva, a prototype that includes the implementation of
the three-dimensional and the visual aggregation model. A performance evaluation
of some Pajé components is included in the beginning of this Chapter, in order to
introduce the use of these components inside Triva. The restof the Chapter presents
the implementation decisions and the description of the several modules, such as the
DIMVisualReader, to read traces, the TrivaView, to the 3D views, and the TimeS-
liceView, related to the aggregation model.

Chapter 6: Results and Evaluation
The sixth Chapter presents the results obtained with the Triva prototype and its eval-
uation, through a set of synthetic and real scenarios that lists the main benefits of the
proposed approaches. A traces description is given in the beginning, detailing the
synthetic, KAAPI and MPI traces used in the experiments and how they were ob-
tained. Then, we present the resulting 3D visualizations rendered by the prototype
and finish the Chapter with the presentation of several treemaps whose hierarchies
were created by the Time-Slice and aggregation algorithm.

Chapter 7: Conclusion
The main contributions of this thesis are reminded and the perspectives that are
opened by its concepts are detailed.
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2 VISUALIZATION OF PARALLEL APPLICATIONS

The main objective of the performance analysis of programs is to improve the behav-
ior of applications. This analysis is more complex in a parallel or distributed execution
environment, since there is a large number of variables thatinfluence the execution of the
applications. Common problems are network contentions, bottlenecks, dead-locks, and so
on.

The performance visualization of parallel applications isan alternative to perform the
analysis. It explores graphical representations and techniques to represent the applica-
tion behavior. A lot of efforts have been applied in the development of new visualization
schemes and techniques in the last 25 years. Most of this development is focused in the
adaptation of the visualization techniques to new programming paradigms and libraries
for parallel applications. An example of that is the appearance of the MPI Standard, in the
middle 90’s, and the development of large-scale clusters. In this Chapter we present the
techniques and tools that contribute to the area of performance visualization of parallel
applications.

The Chapter is organized as follows. We start by describing the evolution of perfor-
mance visualization tools in Section 2.1, including a correlation between the tools and
their creators. In Section 2.2, we detail a representative set of these tools, based on the in-
novative visualizations they provided when they were published. The Chapter ends with a
classification of the visualization techniques, in Section2.3, and a summary of the Chap-
ter.

2.1 Historical Evolution

The history of visualization tools for program analysis is closely related to the first
successful appearance of graphical user interfaces in 1984, with the release of the Macin-
tosh, by Apple. With a wider availability, graphical interfaces have begun to be explored
by a series of projects in the United States, almost at the same time. Figure 2.1 depicts
a timeline view of a selected set of visualization tools for parallel program analysis. The
timeline covers almost 25 years, from 1985 up to now. The yearassociated with each
visualization tool is only an approximation based on publications and technical reports.

The first known project that discusses the possibility of using graphical analysis for
the comprehension of parallel programs is the Programming and Instrumentation Environ-
ment for Parallel Processing – PIE (SEGALL; RUDOLPH, 1985),developed at the Uni-
versity Carnegie-Mellon. Although the project has started in 1985, first results showing a
complete use of visualization techniques of PIE have appeared only in 1989 (LEHR et al.,
1989). The IPS (MILLER; YANG, 1987; YANG; MILLER, 1989) proposes, in 1987, a
hierarchical model for constructing parallel applications. Its second generation (MILLER
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et al., 1990) features an interactive user interface with graphics showing resources metrics
that were registered during program execution. On top of thehierarchical model proposed
by IPS, the second generation presents graphics with different hierarchy levels, such as
machines, processes and threads.

Figure 2.1: Timeline of significant visualization tools forparallel program analysis.

ParaGraph (HEATH; ETHERIDGE, 1991), initially developed atthe University of
Illinois, is a software that provides a detailed, dynamic, graphical animation of the behav-
ior of message-passing parallel programs and graphical summaries of their performance.
At least 25 different types of views are available for the developer to understand the
application behavior. Their authors were the first to use theterm “simulation” to mean
graphical animation, stating that there is nothing artificial about the analysis, but that the
behavior of the application is reconstructed with a simulation based on real trace data. Its
implementation uses the Portable Instrumented Communication Library – PICL (GEIST
et al., 1990) as data source. Because of this dependence on PICL, the tool was considered
limited since it was not possible to analyze other types of parallel applications, such as
the ones with multiple threads or a combination of message-passing and threads.

The first effort in direction of a more general-purpose tool appears in TraceView (MAL-
ONY; HAMMERSLAG; JABLONOWSKI, 1991). The notion of a general-purpose tool
was developed to avoid a particular trace format, a specific execution paradigm or execu-
tion system. According to the authors of TraceView, the architecture of the tool is flexible
enough to select different analysis and display alternatives, but rigid enough to combine
these alternatives based on the resources of the tool.

The evolution of parallel computer systems and larger applications presented new
challenges in terms of performance visualization. The firsttool to address this issue is
Pablo (REED et al., 1993). The tool is built as a series of interconnected components.
As trace data moves through these components, it is transformed in a way to provide
different views. The development of the tool brings the proposal of SDDF (AYDT, 1993),
a self-describing trace format.

AIMS, for Automated Instrumentation and Monitoring System, is a toolkit developed
at NASA in 1994 to facilitate the performance evaluation of parallel applications via mea-
surement and visualization of execution traces (YAN, 1994). It has four main compo-
nents: a source-code instrumentor; a run-time performancemonitoring library; two trace-
file analysis tools and a trace post-processor to compensatethe intrusion caused by the
tool in the application execution.

The main characteristic of Paradyn (MILLER et al., 1995) is the Performance’s Con-
sultant that helps the developer to dynamically set instrumentation points in the parallel
programs. By doing this, the authors argue to improve scalability by reducing intrusion
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problems during application execution. Paraver (PILLET etal., 1995) also appears in 1995
and offers the possibility to choose different filters to select what is going to be displayed.

Vampir (NAGEL et al., 1996), by Pallas GmbH, is a commercial visualization tool for
the analysis of parallel applications following the MPI standard. It offers to the developers
a wide range of graphical views, such as state diagrams, activity charts, timeline displays
and so on. It also has flexible filter operations to reduce the amount of information dis-
played. The tool has been improved with techniques such as the hierarchical visualization
in time-space diagrams (BRUNST et al., 2001) to handle large applications.

Annai (CLéMENçON et al., 1996) is an integrated environment for performance vi-
sualization of applications developed with High Performance Fortran and with MPI.

In 1999, Virtue (SHAFFER et al., 1999) brings to the performance visualization new
concepts where human sensory capabilities are explored with a 3D immersive visualiza-
tion. At the same time, the development of MPI results in the first Jumpshot visualization
tool (ZAKI et al., 1999), developed in Java. Jumpshot is the evolution of the first MPI
analysis tool of the same team. The new version contains a number of enhancements in
order to make it suitable for large-scale analysis. Jumpshot is still in development and is
now in its fourth version. The general purpose visualization tool Pajé (STEIN; KERGOM-
MEAUX; BERNARD, 2000), presented in 2000, proposes a file formatwithout semantic
and strongly related to visual objects. The tool is extensible, interactive and scalable, be-
ing capable to visualize any kind of monitoring data that canbe described in its format.
Kojak (MOHR; WOLF, 2003) appears in 2003 and is developed by the Julich Super-
computing Center in Germany. It supports programming modelssuch as MPI, OpenMP,
Shared memory and combinations of them. Its main idea is the automatic search of event
traces that indicate inefficient behavior. The results are presented with a graphical user
interface. Also in 2003, the ParaProf (BELL; MALONY; SHENDE,2003) is presented
as a portable, extensible and scalable tool for parallel performance profile analysis. The
idea of Paraprof is to gather in the same tool the best capabilities from all previous perfor-
mance analysis tools. The Projections tool (KALÉ et al., 2006), introduced as a prelimi-
nary study in 1992, but only available around 2005, is developed to visualize the behavior
of Charm++ (KALE; KRISHNAN, 1993) parallel applications. It has multiple views and
techniques to reduce the amount of trace data.

More recently, in 2007, the TuningFork (BACON et al., 2007) proposes visualiza-
tion techniques to analyze large-scale real-time systems.Although not directly related
to the analysis of parallel applications, many of the problems faced by TunningFork are
the same of traditional parallel applications. Examples ofthese problems are trace col-
lection, very large traces analysis, vertical integrationof data, and so on. Another tool
is StreamSight (DE PAUW; ANDRADE; AMINI, 2008), a tool developed to understand
the dynamic behavior of streaming applications. It has the ability to visualize applications
with thousands of nodes and interconnections.

As a conclusion, we can notice that the first tools were mainlyfocused in the way
applications should be instrumented. Dynamic and automatic instrumentation techniques
were also proposed. Then, the focus moved to more general andmodular tools that are ex-
tensible to other programming paradigms. The visualization techniques evolved rapidly
in the beginning and are continuously explored till today. Recent tools try to solve the
problem of visualizing enormous amount of data, acting directly with reducing and ag-
gregation mechanisms or with new visualization schemes that support more data to be
represented.
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Mapping Tools to Authors

The timeline evolution of performance visualization tools, together with their respec-
tive authors, can be used to analyze how the research area hasevolved in the last 25 years.
Figure 2.2 shows a mapping between performance visualization tools and their authors.
Some authors created more than one tool over time, improvingthe area of performance
visualization analysis. An example is Barton P. Miller, who has worked in the IPS project
and is active today working in the same area, with the Paradyntool. Another author that
is still active in the research area is Allen D. Malony, who in1991 proposed TraceView
and currently is working in the TAU’s ParaProf performance visualization tool.

Figure 2.2: A mapping between performance visualization tools and their authors.

Another possible analysis of Figure 2.2 is to check where thetools and their ideas have
been proposed. Up to 1995, all performance tools of the Figure came from two places: the
University of Wisconsin, Madison (as it is the case of Barton P. Miller, after finishing his
Ph.D. at the University of California, Berkeley) and the University of Illinois at Urbana-
Champaign (Michael T. Heath, Allen D. Malony and Daniel A. Reed). After 1994, with
the definition of the MPI Standard at the Argonne National Laboratory (ANL), the area
of performance visualization starts to be explored in otherplaces: Vampir in 1996 and
Kojak in 2003, in the Julich Supercomputing Center in Germany; Jumpshot in 1999, at
the Argonne National Laboratory in the United States; Pajé in 2000, in the ID Laboratory,
France and at the Federal University of Santa Maria, Brazil, for example.

2.2 Some Performance Visualization Tools

A lot of efforts have already been made in the performance visualization area by dif-
ferent research projects. These efforts resulted in a considerable amount of visualization
techniques, from specific tools attached to a programming paradigm, to more generic or
evolutive tools that have been adapting to new challenges and evolutions of the high per-
formance domain.

The positive side of specific tools is the number of users thatincreases rapidly, since
they do not need to learn too much to use them. Their main drawback, however, is that
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they might become obsolete shortly. This is usually caused by a new parallel programming
paradigm that cannot be represented in the tool, or by scalability issues, when the tool is
no longer able to handle an increasing amount of monitored entities for instance. On the
other side, generic or evolutive tools live longer, but their use stays limited because users
must continuously learn to keep up with their changes, or must spend more initial effort
in learning how to use them.

We present here some performance visualization tools that were developed by differ-
ent performance research groups. Although the list of toolswe describe here is not ex-
haustive, we think that they represent well the state of the art of the area of performance
visualization. Some of them are no longer supported, such asParaGraph, TraceView and
Pablo. Some are still under development and available for the community. For all of them,
we present the more relevant ideas, especially the ones related to visualization techniques.

2.2.1 ParaGraph

ParaGraph (HEATH; ETHERIDGE, 1991) was initially developedat the Oak Ridge
National Laboratory, in Tennessee, United States. Afterwards, ParaGraph started to be
hosted and developed at the Center for Simulation of AdvancedRockets, at Urbana-
Champaign.

The tool is the first to use the term simulation during the creation of a visual repre-
sentation of trace data. The term is used because the tool hasto re-create the behavior of
the application based on real events collected during the parallel application execution.
This behavior is then visualized through different visualization techniques, some of them
illustrated in Figure 2.3. The first implementation of ParaGraph was able to visualize only
message-passing parallel programs developed with the PICL (GEIST et al., 1990) com-
munication library, through the use of specific functions that exchange messages among
processes. In the beginning, this coupling between ParaGraph and PICL was seen as posi-
tive, because the cycle of development, execution and analysis was straightforward. How-
ever, as new communication libraries have started to appearwith better performance, the
coupling between ParaGraph and PICL became a limitation, because they were attached
to a specific communication library. After the appearance ofthe Message-Passing Inter-
face (MPI) specification (GROPP; LUSK; SKJELLUM, 1994. ISBN 0-262-57104-8.),
around 1994, the PICL evolved with a new trace format and it is renamed to MPICL,
addressing parallel applications developed following theMPI specification.

The architecture of ParaGraph is based on events. The visualrepresentations are up-
dated as new events are read from the trace files. The tool is also considered as an interac-
tive interface, the user has access to more than 25 displays,categorized in three families:
utilization, communication and tasks. If the user decides to visualize more than one dis-
play at the same time, they are kept synchronized. Besides that, the limit for visualization
of most displays is 512 processors.

Theutilization family is composed by 7 displays: the utilization count, showing the
total number of processes in each of three states (busy, overhead and idle); the Gantt
Chart, showing the activity of individual processors through time; the Kiviat Diagram,
that gives a geometric representation of the utilization ofindividual processors and the
load balance across all processors; the Streak, showing insights of patterns in parallel
programs or imbalances among the processors; the Utilization Summary, showing the
cumulative percentage of time that each processor spent in each of the three states; the
Utilization Meter, that shows the same information as the utilization count, but saving
screen space; and the Concurrency Profile, showing the percentage of time that a set of
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Figure 2.3: Four different visualizations of ParaGraph.

processors remained in the same state.
Thecommunication family of displays has 10 different views. The Communication

Traffic, showing the total traffic in the communication system as a function of time. The
Spacetime Diagram, showing the interactions among processors as a function of time.
Message Queues, which is a graph showing the evolution of number of buffer messages
through time. Communication Matrix is a two-dimensional array where rows and columns
represent processors and each position in the matrix represents a communication between
two processors. The Communication Meter uses a vertical bar that indicates the amount of
communications in transit (sent but not received). The Animation display shows a graph
where the nodes are the processors and the arcs are the communication among them. The
nodes can be arranged in pre or user-defined configurations. Hypercube is another display
that looks like the animation display, but focused on hypercubes. The Network display
shows the path that each message takes to go from one processor to another, including
routing through intermediate nodes. This display needs a topology description to be ren-
dered. Node Data presents statistical data in graphical form, such as given variable of the
application in function of time. The last one is the Color Code display, helping to define
colors that are used through the other displays. The Animation and Network display of
ParaGraph are limited to 128 processors, because of their higher detail level. Hypercube
is limited to 16 processors and the Node Data is limited to 256processors.

Summarizing, ParaGraph’s utilization and communication displays only show infor-
mation about the processors used by the parallel application. Thetask family of displays
intend to give developers more insights about the reason behind those behaviors, showing
application details. The events shown by these displays must be generated by parallel ap-
plication developers, through instrumentation of parallel programs. Among the available
displays, users have the count, gantt, status, summary displays. They use the same visual-
ization techniques of the communication family of displays, but showing application-level
traces.

Besides these three types of displays, ParaGraph has also another set of views that
does not fit in one of these types, or fit in more than one type. Among them, there is
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the Critical Path display, which is a variant of the spacetimedisplay, showing a different
color coding to highlight the longest serial thread in the parallel computation. ParaGraph
architecture has also the ability to receive new displays torepresent in different ways the
traces.

The main contribution of ParaGraph is the large set of visualization techniques that
could be applied to the same set of traces. Even if applied in alow scale up to 512 pro-
cessors with some techniques, the visualizations developed in the tool have inspired sub-
sequent tools.

2.2.2 TraceView

TraceView (MALONY; HAMMERSLAG; JABLONOWSKI, 1991) is a trace visual-
ization tool developed at the Center for Supercomputing Research and Development, at
Urbana-Champaign, United States. The main idea behind TraceView is to be a general-
purpose trace-visualization system. To achieve that, the tool uses the concept of visualiza-
tion session, defined as a hierarchical structure with threelevels: the trace files, the views
and the displays. There is also a session management component that helps users to define
the specific hierarchical structure needed for the analysisof given set of trace files. Trace-
View avoids semantic interpretation of the actions registered in the events, meaning that
the tool can adapt to different types of traces. In terms of visualization, TraceView offers
two types of display, both based on gantt-charts: the Gantt Chart Widget and the Rates
Display. The former creates a visualization focused on state transitions of processes; the
latter displays the number of times a given state is entered.

As conclusion, TraceView was the first to mention the general-purpose idea in trace
visualization systems. The term “general” was used by its authors to mean the way trace
files, views and displays should be organized, to build an analysis environment.

2.2.3 Pablo

Pablo (REED et al., 1993, 1992) is a performance analysis environment designed to
provide performance data capture, analysis, and presentation. It is developed at the De-
partment of Computer Science in the University of Illinois atUrbana-Champaign. The
tool is conceived to support portability, scalability and extensibility.

The tool is composed of different modules that can be interconnected as a graph. The
modules are responsible for data transformations that generate performance metrics for
the analysis. There are modules for operations like selection, arithmetical and logarithm
operations, statistical functions and so on. Besides them, Pablo comes with components
to read and write trace files. The user of Pablo is then responsible for visually arrang-
ing a graph of these modules in order to analyze the traces. All modules developed for
Pablo have no semantics, working with any data that is available by the reading modules,
independent of what they mean.

Input files of Pablo must conform to the SDDF format (AYDT, 1993). The format is
also used internally by the tool. With that, the user can attach to any module an output
trace file writer that will write in files the results obtainedin the middle of a performance
analysis.

In terms of visualization, Pablo offers different techniques to represent the perfor-
mance data generated by the graph of modules. Basic charts like bar graphs, bubble, strip,
and pie charts, contour and interval plots are available forthe user by attaching them to
the output of a module. Other visual representations, some of them already present in
tools such as ParaGraph (see Section 2.2.1), like matrix displays and kiviat diagrams, can
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also be used. A notable visualization technique, presentedat the time of its creation, is the
3-dimensional scatter plot: the technique is used to show, at the same time, three different
performance metrics.

Pablo’s main contributions are the use of trace files in the SDDF format, and its in-
ternal organization in modules, allowing extensions to be made. Its drawback, however,
is related to the way these extensions must be developed, since all modules must be inte-
grated in the same binary to make the tool work.

2.2.4 Paradyn

Paradyn (MILLER et al., 1995) is a tool to measure the performance of large-scale par-
allel applications. It is developed at the University of Wisconsin, Madison, in the United
States. The main idea of the tool is to support the dynamic instrumentation of parallel
applications in order to be less intrusive and to avoid generating trace data for regions
of parallel code that are not under analysis. Paradyn also aims to be scalable, to provide
well-defined data abstraction, to support heterogeneous environments and to offer open
interfaces for visualization and new data sources.

Perhaps the more interesting idea of Paradyn is the dynamic instrumentation of par-
allel programs. It works by inserting instrumentation points to detect general high-level
performance problems. If a problem is found, Paradyn increases the instrumentation level
in those areas that are presenting performance issues. The benefit of this technique of
instrumentation is that it decreases the intrusion caused by unnecessary code insertions,
with the drawback of being tightly related to the parallel programming paradigm used.
This technique is implemented within Paradyn through its Performance Consultant, an
implementation of the W3 Search Model (HOLLINGSWORTH, 1994).

In terms of visualization, Paradyn has a set of pre-defined standard visualizations, like
time histograms, and bar graphs. Some examples of these standard views are in Figure 2.4.
According to Paradyn’s authors, the process of adding new visualizations to the tool is
easy because of a special mechanism dedicated to that. The controller of the visualizations
runs as a separate process. It can contact Paradyn’s main processes to collect data, which
is stored in a data structure called a time histogram. Another feature of its visualization
system is that Paradyn can incorporate displays from other tools such as ParaGraph and
Pablo.

Figure 2.4: Two visualizations of Paradyn, including the 3Dhistogram (at right).

The time histogram visualization of Paradyn plots performance data for metric over
time. The horizontal axis represents time and the vertical axis represent the metric that is
currently being observed. Several metrics can be analyzed at the same time, and in this
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case, the vertical axis receives different scales to represent each of them. The number of
metrics displayed at the same time is limited to eleven. Panning and zooming within time
histograms are possible through the use of scroll bars and buttons in the graphical user
interface. With that, users can navigate over time to see theevolution of each metric. The
barchart visualization enables the visualization of data in real-time and it is designed to
view a considerable amount of metrics. The drawback of this view is that it has no histori-
cal representation. The display has as horizontal axis the different metrics being analyzed
and in the vertical axis the different components of the parallel application, for example.
The third standard display of Paradyn is the Table Visualization. The view actually shows
the data textually: columns are metrics and rows are parts ofthe application, typically
source files or a specific function. The data in the table is updated in real-time. The fourth
display of Paradyn is the 3D “Terrain” visualization. It allows the performance data to be
analyzed using a surface rather than curves, as in the time histogram, or bars, like the bar-
chart visualization. The three dimensions allow the visualization of two different metrics
at the same time and their evolution over time.

The Paradyn visualization tool is still developed at the Paradyn Parallel Tools Project,
with publications in 2008. New developments of the tool include STAT – Stack Trace
Analysis Tool (ARNOLD et al., 2007b) and challenges to petascale tool development (LEE
et al., 2008). Paradyn’s main contribution is the dynamic instrumentation of parallel ap-
plications. This idea was materialized through the W3 SearchModel. Besides that, it is
important to notice that the tool is available for at least 14years, since its conception in
1995.

2.2.5 Vampir

Vampir (NAGEL et al., 1996) was initially developed at the Julich Research Center
in Germany, but later on transformed in a commercially available tool managed by Pal-
las GmbH. The tool appears after the definition of the MPI standard, being one of the
first tools to be able to visualize the behavior of MPI parallel applications over time.
After its creation, Vampir development goes toward scalable analysis of parallel applica-
tions (BRUNST et al., 2001) and to analyze hybrid OpenMP/MPI applications (WOLF;
MOHR, 2003). Some of the visualizations provided by the tool are depicted in Figure 2.5.

Vampir has a set of flexible filter operations, which are used to reduce the amount of
information displayed and to help its users to spot more easily performance problems.
Another feature of Vampir is the possibility to read trace data that is distributed across
many computers, in a cluster or grid-like environment.

In its efforts to turn the tool more scalable, the Vampir teamdeveloped a hierarchical
visualization based on Gantt charts (BRUNST et al., 2001). Inthis view, users navigate
through data in different levels of abstraction such as cluster, machine, process and thread.
The technique they propose attacks a major problem of Gantt charts, where the vertical
size of the screen is a limit to the number of entities that canbe analyzed at the same time.
Without this technique, Vampir is able to analyze up to 200 independent objects at the
same time. When applied, it allows the visualization of at least 10000 processing entities,
even if only 200 are shown on the screen at the same time. The hierarchical structure of
their model allows up to 3 layers. This hierarchical visualization works for timelines and
statistical displays of Vampir.

The performance visualization available in Vampir can be divided in different cate-
gories: single time system snapshots, when data for a point of time is shown graphically;
animation, giving the users the possibility to analyze step-by-step the dynamic behavior
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Figure 2.5: Visualizations of Vampir, using the matrix technique (top left and top right) to
summarize communications and its Gantt-chart (bottom).

of the application under analysis; statistics, that are able to summarize system behavior
for the interval of time under investigation; and a time-line system view, showing detailed
system activities with a time axis. The visualization techniques applied include matrix
chart, summary chart, Gantt-charts, summary timeline and counter timeline.

Vampir is the tool available commercially. It uses a specifictrace format and a set of
programs that can be converted from other formats to the one used by the tool. Its space-
time view attacks the scalability problem by proposing a data aggregation mechanism to
reduce the amount of data that is visualized at one time.

2.2.6 Virtue

Virtue (SHAFFER et al., 1999) is developed at the Universityof Illinois at Urbana-
Champaign. The main objective of the tool is to offer an immersive visualization envi-
ronment for the analysis of performance data from parallel applications. It is the first
attempt to use virtual reality in the performance analysis domain. The tool connects to
Autopilot (RIBLER et al., 1998) to receive its monitoring dataand helps the performance
analysis by trying to enhance rendering with human sensory capabilities.

As visualizations, Virtue offers three types of 3D visualization, depicted in Figure 2.6.
The first is the wide-area geographic display, where nodes are placed following their
geographic location. The second is the time-tunnel display, showing a cylinder where
the internal part of the cylinder is used to represent processors state evolution over time
and chords illustrate cross-process interactions. The last is the call-graph display, which
forshows in a 3D space the functions that were executed and the call procedures among
them.

Although not further explored, Virtue is the first to try to use virtual reality combined
with 3D graphical representations in the analysis of parallel applications. It was developed
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Figure 2.6: Virtue’s 3D visualizations, from left to right,the wide-area, the time-tunnel
and the call-graph displays.

by the same team that created Pablo (see Section 2.2.3).

2.2.7 Jumpshot

Jumpshot (ZAKI et al., 1999) is developed at the Mathematicsand Computer Science
Division at the Argonne National Laboratory, in the United States. Its authors have par-
ticipated in the development of the MPI specification and therelease of the first draft.
Currently, the development of the tool is attached to the MPICHimplementation of MPI.
The tool is written using Java, designed to receive a file format with time-stamped events.
Initially, the file format to be used was called CLOG. With the evolution of parallel and
distributed systems, especially related to scalability issues, the file format also evolved
to SLOG, and now SLOG-2 (CHAN; GROPP; LUSK, 2008). Jumpshot isnow in its
fourth version, providing accumulative enhancements suchas previews to increase detail
as needed in the timeline window.

Jumpshot offers the traditional package of visual graphs, such as histograms, accu-
mulative state durations and series of zoomable and scrollable timelines. Two examples
are available at Figure 2.7. A more specific type of visualization is called the "mountain
range" view, showing the aggregate number of processes in each state at each time.

Figure 2.7: Histogram and Gantt-chart view of Jumpshot.

Probably the most evident contribution of the Jumpshot series tools is that it is tightly
coupled with a MPI implementation. This facilitates its usefor MPI users, since a small
period of time is needed to understand the way the tool works.
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2.2.8 ParaProf

ParaProf (BELL; MALONY; SHENDE, 2003) is a portable, extensible and scalable
tool for parallel performance profile analysis. It attemptsto unite, as its authors say, the
“best of breed” capabilities already proposed in other tools. The tool was initially focused
on profiling techniques, rather than using tracing techniques as other tools did. Today, the
tool is able to deal with traces gathered from parallel application executions. The group
that develops ParaProf has also proposed a framework for data mining (HUCK; MAL-
ONY, 2005). ParaProf is integrated in a bigger project namedTAU – Tuning and Analysis
Utilities, that is being developed jointly by the University of Oregon, Los Alamos Na-
tional Laboratory, in the United States, and Julich ResearchCenter, Germany.

The architecture of ParaProf has four key components: the Data Source System (DSS),
the Data Management System (DMS), the Event System (ES), andthe Visualization Sys-
tem (VS). Well-defined interfaces are used for each component so they can interact with
each other at the same time they run separately. This organization allows the tool to be ex-
tensible and flexible, enabling the evolution of the tool to other programming paradigms
and new techniques.

The visualization system component of ParaProf’s architecture is responsible for cre-
ating visual representations of the data. They are based on Java2D, but 3D visualizations
are also present to represent profile data. There are four categories of visualization in the
tool: 3D-visualization, thread based displays, function based displays, and phase based
displays. The 3D visualizations are rendered using OpenGL hardware acceleration tech-
niques. Each window has rotation, translation and zooming capabilities. There are three
types of visualization in this category: the Triangle Mesh Plot, that shows two metrics for
all functions and all threads. The height represents one metric and the color another. The
resulting visualization creates a surface where data is represented; the 3D Bar Plot, that
works like the mesh, but using bars; and the 3D Scatter Plot, that uses points instead of
mesh or bars. The other category is the Thread Based, with a series of graphs that show
statistics of the application and also a call graph, all related to the threads of the parallel
application. The third category is the function based displays, composed of two views that
show statistical data: a function bar chart and a function histogram. The fourth category
is the Phase Based displays, focused on showing statistical data from pre-defines phases
of the parallel application. Examples of the views generated by ParaProf are available in
Figure 2.8.

ParaProf has a modern design in its software implementation, through separate com-
ponents that interact with a defined programming interface.Besides that, it provides an
extensive set of visualization techniques, and it is tied tothe TAU project.

2.2.9 Pajé

Pajé (OLIVEIRA STEIN, 1999; KERGOMMEAUX; STEIN, 2000; STEIN;KER-
GOMMEAUX; BERNARD, 2000) is a generic visualization tool designed to be inter-
active, scalable and extensible. The tool was initially developed at the LIG Laboratory
(former ID Laboratory), in Grenoble, France, but is now developed at the Federal Univer-
sity of Santa Maria – UFSM, Brazil. The interactive part of Pajé means that the user is
able to interrogate monitored entities, through its time-space visualization window. The
scalable feature of Pajé is related to the possibility to cope with a large number of program
entities, such as threads and processes, and the details about each of them. The extensi-
bility of the tool relates to the easy addition of new features, new types of traces, new
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Figure 2.8: The call-graph and the 3D bar plot of ParaProf.

graphical displays, new programming models to adapt the tool to the evolution of parallel
programming interfaces and visualization techniques.

The Pajé file format is also part of the visualization tool. The format is textual and
without semantic, where events describe the behavior of a set of monitored entities. The
basic types that can be used in the format are container, state, event, link and variable.
Containers can be used to group other types, creating a hierarchical definition of types.
Virtually any kind of monitoring system or trace generationtool can use these types to
describe the behavior of monitored entities, from parallelapplications to distributed re-
sources of a parallel system. This level of flexibility in thedescription of monitored enti-
ties behavior is not found on related work. If the trace file has information about source-
code correlation in events, the user will be able to click-back to see which part of the
source code caused the creation of a visual object rendered in the graphical displays of
Pajé.

The architecture of Pajé is composed of modules that are connected through a graph
that is usually fixed, but can be changed to adapt the tool to new types of components.
The components can be any self-contained part that behaves following a certain protocol
and operates over the events that are read from trace files. The traditional set of Pajé
components includes a trace file reader, a event decoder, a simulator, a storage controller,
aggregation, reduce and ordering filters, for example. Despite the number of components,
the three classical components of Pajé are the controller, trace readers and the simulator.

Pajé offers to its users two types of visualization techniques to represent graphically
containers, state, events, variables and links. The first and most used is the space-time
window, which actually draws a Gantt-chart display improved with arrows to represent
interactions among processes. The second type of display isused to dynamically show
statistical information about a selected slice of time in the space-time window. These two
techniques are represented in Figure 2.9.

Probably the main feature of Pajé is its flexibility. The toolwas originally used to
visualize traces from Athapascan applications (GALILÉE etal., 1998), but it evolved
to visualize traces obtained with Java applications (SILVA; SCHNORR; STEIN, 2003;
OTTOGALLI et al., 2001), message-passing parallel applications, thread-based applica-
tions and hybrid approaches. It was also used to see related monitoring information with
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Figure 2.9: The two visualizations of Pajé, including its space-time view and the pie-chart
statistical view.

a multi-level approach (SCHNORR; NAVAUX; OLIVEIRA STEIN, 2006)as, for exam-
ple, traces from application-level (MPI) and traces from resources and operating systems.
Pajé’s simulation component, the core of the tool implementation, and the aggregation
filter, are able to handle a big amount of trace data spread in long periods of time.

2.3 Summary of Visualization Techniques

The last two sections addressed the historical evolution ofthe performance visual-
ization area and the description of a representative set of visualization tools for parallel
applications. The objective of this Section is to try to summarize the visualization tech-
niques used. We divide the techniques in three types: behavioral, structural and statistical.
When possible, we make reference to the tools that implement these techniques.

2.3.1 Behavioral

This Section presents the visualization techniques that have a timeline and show the
behavior evolution of metrics and components through time.

Gantt-Charts

Gantt-chart (WILSON, 2003) is a visualization technique created more than 100 years
ago. Initially, it was used to organize and schedule the tasks of projects. It was one of the
first techniques to be used to analyze parallel applications. Figure 2.10 shows a simple
Gantt-chart with the behavior evolution of a set of entities. These entities can be anything
related to the parallel application or the execution environment. For each of them, the
rectangles represent a state that has a duration in the timeline. Arrows can be used to
illustrate an interaction between two entities. This type of visualization can also be used
to show the user the critical path of the parallel application. ParaGraph, for instance, has
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a special feature about that.

Figure 2.10: A simple Gantt-Chart showing the behavior evolution of an application with
5 processes: the bars indicate different states and arrows indicate interactions between
processes.

Almost all tools that show performance visualization implement a Gantt-chart like
technique. In some of them, this type of representation is called “Spacetime”. Although
very useful to represent the behavior of a set of processes from a parallel application, the
common issue with Gantt-charts is related to scalability. Computer screens are limited in
terms of vertical resolution, and this is reflected in the technique. Some tools such as Pajé
and Vampir implement hierarchical grouping mechanisms that allow the observation of a
larger number of processes.

Variables in two and three dimensions

This type of display is a graph where one of the axis represents time. Figure 2.11
shows an example with two metrics being displayed. The vertical axis represents the
values that the variable can reach over the period of time being analyzed. Observing a
significant metric can give hints about the CPU or memory utilization of a machine dur-
ing the execution of a parallel application. Almost all performance visualization tools
also provide some sort of representation of variables behavior through time. Examples
are the “variables” visual object of Pajé, the “Communication Traffic” and the “Utiliza-
tion Count” displays of ParaGraph, and the “Performance Counters” representation of
Vampir.

Two cases that are similar to this 2D approach is the “Time Histogram” of Paradyn,
where performance data for metric/focus pairs are represent with a time axis (focus is a
piece of code of a parallel application); and the “Node Statistics” technique of ParaGraph,
when a specific metric is shown for one node with a timeline.

Figure 2.11: Showing the evolution of two different metricsover time.

Another visualization technique extends the 2D approach bycombining two related
metrics and representing them with a timeline. This 3D approach can in fact show more
information to the users. The technique is named as “3D Terrain Visualization” and is
present in Paradyn.



40

Time-Tunnel

The only occurrence of the time-tunnel display is on Virtue.The technique works un-
der 3 dimensions, where two of them are used to place processes, in a circle, and the third
dimension represents time. The observation point is placedin the middle of the circle.
The interactions among the processes are placed within this3D environment, taking into
account the position of processes and the time of occurrence. The resulting visualization
looks like a cylinder, where the user observes arrows crossing the interior of the cylinder.
Figure 2.6, of previous Section, illustrates the approach.

Phase Portraits

Phase portraits are the result of a technique commonly used in other areas of science,
such as physics. They show the evolution in time of two related variables, or metrics. Fig-
ure 2.12 shows the resulting visualization. The performance data is collected through a
period of time, between regular intervals. The idea is to create points in the graphical rep-
resentation and connect these points following the order intime among them. ParaGraph
is again the only tool to implement this technique.

Figure 2.12: A phase portrait showing the relation among twometrics.

2.3.2 Structural

This Section presents the visualization techniques that try to visually represent the
structure of applications. By structure, we mean the different types of relations that con-
nect the components of parallel applications, such as processes and threads.

Call Graphs

Call graphs are used to give to the user a representation wherethe interactions among
the application’s components are shown. Figure 2.13 is an example of that. Nodes can
represent functions or methods, and the arrows between themrepresent a function call or
method call. This method of visualization is especially useful in the analysis of parallel
applications that are organized as a data-flow graph.

Some tools implement this technique, such as ParaProf and Virtue. The latter imple-
ments call graph within a 3D environment, giving the user different forms of interaction
to highlight parts of the graph with additional information, such as the name of the node,
associated values and so on. This was implemented to avoid the representation of all data
for large graphs.

Matrix

The matrix of communication is a technique where a two dimensional representation
is organized with one of the axis showing the senders processes, and the other axis, the
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Figure 2.13: The call graph displays showing the function call of two regions of a given
program.

receivers. For a point in time, the matrix shows different pairs sender/receiver by coloring
the matrix. Colors can also be used to show additional information, such as the type of
the communication, if it is collective or not, or the size of the data transmitted. The left
image of Figure 2.14 depicts this technique.

Figure 2.14: Matrix of communications among processes and also the grouping technique.

ParaGraph was the first to propose this technique, with a limited number of processes
involved. The scalability of this approach is related directly with the number of processes.
Vampir tries to solve this problem by grouping processes according to their number of
other characteristics. This is shown in the right image of Figure 2.14.

Graph with Communications

A graph is used in the ParaGraph tool to represent the communications among a set
of processes in a given time. The Figure 2.15 illustrates theapproach, with the commu-
nication pattern among three processes. ParaGraph has alsoa set of pre-defined hardware
interconnections, such as the Hypercube, and allows the observation of which links are
used by the application at a specific point in time. Differentlayouts for the hypercube
representation were possible, such as the linear view. The problem of the approach of
ParaGraph is that no additional information about the linkswere provided to the user.
The technique was used only to show when a certain interaction happened during the
application execution.

2.3.3 Statistical

This Section presents the visualization techniques used torepresent statistical data
based on the traces available for the analysis.
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Figure 2.15: Communication pattern with three processes fora given time.

Bar and Pie Charts

Bar and Pie charts are a traditional way to show the values of a certain metric for
a number of processes. For example, they can be used to show how many messages a
process has received, or the amount of memory used in a machine. Figure 2.16 shows an
example of a barchart and another example of a piechart.

Figure 2.16: Barchart and Piechart displays.

These types of charts have been available since ParaGraph. Other tools have also im-
plemented them using different metrics and techniques. Paradyn, for example, implements
horizontal barcharts with more than one metric, each of themwith one different scale in
the horizontal axis. Pajé’s piechart implements the technique to quantify, in a given pe-
riod of time, how much time a certain process spent in different states. The user can then
compare two processes to look for performance problems.

Kiviat Diagrams

Kiviat diagrams, also known as radar map, are a chart that consists of a sequence of
equally distributed spokes, each one representing one of the monitored entities. In the area
of performance visualization, the spokes are used to represent processes, and each process
has a scale of value for its spoke. Then, for a given metric about one process, a point is
chosen in the spoke. Connecting these points form a geometricfigure that can be used to
detect irregularities among processes, if a similar value is expected for all of them (load
balancing, for example). Figure 2.17 shows a schematic example of the technique, with 3
metrics shown for 4 processes.

ParaGraph has been the only tool to implement the technique.This type of display also
has scalability issues when the number of processes or related metrics increases. After its
first appearance in ParaGraph, no further development to solve this scalability issue has
been present in other tools.

Statistical 3D representations

3D representations without a time axis are already present in the literature. The idea
is to plot in a tri-dimensional space drawings that are generated using three different
metrics. The ParaProf tool has three displays that follow this design: “Triangle Mesh
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Figure 2.17: The Kiviat Diagram for 4 processes with 3 different metrics.

Plot”, “Triangle Bar Plot” and the “Triangle Scatter Plot”. The first connects the points
using a mesh, resulting in a visualization like a terrain with elevations in some points. The
second represents data as vertical bars and the last just draw the points in the 3D space.

2.4 Summary

Several visualization techniques exist today for the analysis of parallel applications.
These techniques help the developer to obtain a better performance and also provide a
way to understand the behavior of programs in a given execution environment. A possible
classification of the visualization techniques is the division in three types:behavior, such
as the space/time and phase-portrait views, showing the evolution of entities over time;
structural , focused in the observation of communications, such as the techniques matrix,
communication graph and call graph; and finallystatistical, which summarizes trace data.

The two next Chapters present the visualization techniques proposed in this thesis.
In the beginning of each Chapter, we show that existing visualization tools are not fully
suitable for the analysis of grid parallel applications. The first Chapter deals with the
lack of support from visualization tools to the analysis of parallel applications mixed
with network topology. The second Chapter proposes a visualization scheme that achieves
visualization scalability and can be used to analyze parallel applications composed by
thousands of processes.
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3 THE THREE-DIMENSIONAL MODEL

The previous Chapter has listed tools and techniques that canbe used to analyze the
behavior of parallel applications. The presented tools were detailed in terms of features
and capabilities, including which visualization techniques are implemented. At the end
of the Chapter, we presented a classification of the techniques in three types: structural,
behavioral and statistical. Generally, most tools were built to handle precise environments,
such as clusters, where the dynamics of the resources are notfelt by applications since
usually the access to the resources is made exclusively. This Chapter goes through the grid
characteristics to show that the traditional visualization schemes are not able to fully help
the developer to analyze parallel applications, particularly when network characteristics
must be taken into account.

The performance of grid parallel applications is directly related to the characteris-
tics of the network interconnection (LACOUR; PÉREZ; PRIOL, 2004). When the grid
resources have a strong hierarchy among them, as in the case of a lightweight grid, the
choice of resources given to an application can be decisive for its performance and later
understanding of its behavior. For instance, if two sets of processes perform more com-
munications between them and are placed in two distinct locations of a grid that does not
offer the lowest latency, the application can suffer a loss in performance. Sometimes, the
analyst is not able to make the link between application and network characteristics. The
decisions taken from a traditional analysis may lead to wrong conclusions about the bad
performance. In this case, if we were able to analyze the application behavior together
with the network characteristics, we would see more clearlythe reason of the application
behavior.

This example can be more explicit if we consider that each parallel application has a
communication pattern. These patterns are defined when the application is implemented,
through the use of paradigms such as master-slave, divide-and-conquer and so on. During
an application analysis, it would be interesting to visualize this pattern together with the
network topology. With this, it would be possible to optimize the match between the
network interconnection and the application’s communications. If this optimization is not
possible, the analysis could be used to help the developer toadapt the application in order
to better explore the network characteristics.

Looking at the tools presented in last Chapter, we can notice that most of the tech-
niques they present are not able to handle an analysis that takes into account the net-
work interconnection. ParaGraph (see Section 2.2.1) is theonly tool that has the notion
of interconnection in its visualization techniques, although providing only hypercube vi-
sualizations and program communication patterns, separately. In fact, ParaGraph was not
designed to analyze large-scale applications, with thousands of processing entities. Other
techniques, such as the space-time visualizations or graph-based views, present in almost
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all visualization tools, are also not able to depict the network interconnection together with
the communications of parallel applications. In this case,the limitation is related to the
way resources and components of application are drawn, which is made on a linear space.
As the architecture gets larger and more complex, highlighting its topology becomes im-
practical. And even if some sort of simple topology organization can be represented using
one of the axis, labeling the platform representation with additional characteristics like
throughput and latency usually degrades the readability ofthe whole picture.

Our proposition to make a link between application analysisand network topology is
based on a visualization scheme composed of three dimensions. One of the dimensions
is the timeline, where the components of application can be analyzed using a behavioral
view. The other two dimensions are used to draw either a structural or statistical repre-
sentation. In the context of the problem being addressed, these two dimensions are used
to draw a visual representation of the network topology. Broadly speaking, our proposal
combines at different levels the three types of visualization techniques we discussed in
Section 2.3, resulting in a mixed behavioral-structural/statistical representation.

Some visualization tools for parallel application analysis already have 3D visualiza-
tions. ParaGraph, for instance, has a 3D representation fora Torus Network Topology, but
its focus is in the instantaneous analysis of the interconnection utilization, with no axis
reserved to work as timeline. Another example is Paradyn, that contains its 3D Terrain
Visualization being able to show the relation between two metrics and their evolutions
over time. Since the two dimensions of the 3D Terrain are not conceived to draw graphs,
Paradyn is not able to visualize the network topology and application evolution at the
same time. The third example of tool that uses 3D visualizations is Virtue. Among its
visualization techniques, the time-tunnel is the only one that seems like our approach, but
it is fundamentally different, since it was not developed toshow the network topology or
parallel application communications pattern. Virtue onlyplaces the processes of an ap-
plication in a circular manner in two of the dimensions, letting the third dimension act as
timeline. The view of the developer is always pointing to thecenter of the circle. Commu-
nications and interactions are drawn inside that circle, ina 3D space. TAU’s ParaProf also
has its 3D visualization, but focused on the analysis of statistical data. This means that
ParaProf is able to visualize three types of related events in the same visualization, using
the three dimensions. However, ParaProf is not able to use one of these dimensions as
timeline and it is incapable of drawing graphs in the two remaining dimensions. In sum-
mary, we can see that there are tools that already provide some sort of 3D visualization,
but none of them have the same approach as we have, merging network topology to the
application analysis.

The rest of the Chapter is organized as follows. We start by describing the visual
conception of the 3D approach, detailing its visual objectsand how application traces are
mapped into the 3D view. In Section 3.2, we explain the abstract model that deals with
the monitoring data and generates the 3D visualizations, followed by a series of sections,
each one describing the components of the model: the trace reader, the extractor, the entity
matcher and the visualization component. During the description of the entity matcher, we
detail three configurations that can be used inside the 3D approach.

3.1 Visual Conception

The visual conception of our model consists in the combination of visualization tech-
niques that show the behavior of the application with techniques that show the structure



47

or statistical data. If a structural data is used in combination with the behavior representa-
tion technique, the user can observe the evolution of monitored component through time
and consider the structural organization. This is the case when users have to analyze the
parallel application with the network topology, for instance. If statistical data is used in-
stead, the user can summarize in quantitative terms the behavior of the application, using
different time scales and slices. In a more practical way, these combinations allow the
representation of the notion of gantt-charts combined withgraphs and summaries.

The result of this visual conception is the three-dimensional model. The model has two
dimensions reserved for the representation of a structuralor statistical view. We named
these two dimensions the visualization base of the 3D model.The third dimension is the
timeline. Figure 3.1(a) shows an example of the 3D approach to represent application
data. The states of the processes are represented in the 3D visualization as vertical bars.
They are placed on top of the visualization base. The different states along the time axis of
a certain process are represented by different colors. Eachstate representation is placed
vertically following the start and end timestamps. Communications can be represented
as arrows or links within the 3D environment, connecting twoor more processes that
communicate. The Figure 3.1(b) shows a different point of view, located on top of the
visual objects. This vision allows the observation of the communication pattern of the
application.

(a) Visual conception of the 3D approach. (b) Top-view of the same scene.

Figure 3.1: The visual conception of the 3D approach with application traces represented
by vertical bars showing processes behavior through time.

The visualization base of the model is composed of two dimensions. They are used to
depict either structural or statistical representation techniques. Structural representations,
as presented in Section 2.3, can be mainly graphs and matrices or any other technique
used to organize the components of the application. Statistical techniques can be used to
summarize a particular part of the behavior of the components being visualized.

Lots of configurations are possible for the visualization base. For instance, it can be
used to illustrate the communication pattern of the parallel application, but also the net-
work topology involved in the execution of a parallel application. In our model, we pro-
pose three types of configurations for the visualization base (see Section 3.5). Two of
them are structure-based, showing interconnection graphs. The other is an information
visualization technique called Treemap (JOHNSON; SHNEIDERMAN, 1991), used to
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represent hierarchical information data. Additional techniques can be easily adapted to
our model to work as the visualization base.

The third dimension of our model is the timeline. It is usually represented as the
vertical axis of the 3D approach, as can be noticed in Figure 3.1(a). The timeline axis
is used to show the component’s behavior evolution through time. In the case where the
components are processes, the vertical bars that representthem might have different colors
to represent states and arrows to represent point-to-pointor collective communications.
These representations characteristics are similar to the ones present in space-time views,
but here in three dimensions. The timeline is configurable tooffer the users different time
scales that can be dynamically changed.

When using graphical visualizations, users are interested in interaction mechanisms,
like zooming, online information updates and so on. They improve the user perception
of specific parts of the information, enabling a deep application and platform behavior
analysis. Animations can also be applied to dynamically change the graphical visualiza-
tion. Resizing rectangles and changing their colors to reflect the platform state in given
time intervals are some examples. In this case, changes are caused by continuous infor-
mation updates coming from the monitoring system. Another type of graphical interac-
tion mechanism is constituted by distortion techniques (CARPENDALE; COWPERTH-
WAITE; FRACCHIA, 1997), which magnify only specific parts of therepresentation. The
fish-eye technique (SARKAR; BROWN, 1994) is a good example of suchtechnique. It
helps the user to obtain details about a picture area withoutlosing its context (as opposed
to a simple zoom).

Besides these interaction mechanisms, we have a set of possible interactions with the
3D approach. An example of that is the notion of observation point. In this context, the
view that the user is staring at any time is generated by a camera. This camera can be
moved inside the 3D space with rotation, translation and approximation techniques. This
allows multiple views of the same data, from different angles.

3.2 Model Overview

In order to create a 3D visualization, the trace data collected from the application
execution must pass through a series of transformations. Wedefine here an abstract com-
ponent model, in which these transformations are detailed.Figure 3.2 depicts the overall
organization of the model. As input, the model uses two typesof information: the trace
files from the monitored application and a configuration file that holds the resource de-
scription of the execution environment used by the parallelapplication.

Figure 3.2: Abstract Component Model of the 3D approach, withthe three different con-
figurations for the visualization base (represented by C.1, C.2, and C.3).
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The visualization base is configured by the entity matcher module (C). We have im-
plemented three different configurations for it (they are detailed in Section 3.5): one that
shows the communication pattern of the application; another that shows this pattern com-
bined with the network topology of the execution environment and the last one is the
combination of application data with a logical organization of the resources. The entity
matcher chooses one of these configurations based on the resource description defined by
the user.

Among the three alternatives modeled in the Entity Matcher,the one that considers
the network topology (C.2) directly addresses the problem regarding the influence of the
network interconnection in the application. The additional two alternatives are presented
to show other structural information (the communication pattern) and statistical represen-
tation together with behavior details through time.

We consider in the model that the trace data is available as trace files, under the form
of a flow of events that traverses the components of the Figure3.2 from left to right. Nev-
ertheless, even if we take trace files as input, the components are described independently
of how trace data is offered to the model. Therefore, the model is able to deal with an
online generation of events in case the flow of these events isnot so bandwidth intensive.
Notifications can also occur from the visualization component to the others, in a right-to-
left fashion, in order to propagate configurations and behavior changes triggered by user
commands.

Next sections detail the components of Figure 3.2. We start by explaining the Trace
Reader (A), including the mapping from the trace events to theobjects used by the model.
Section 3.4 shows the Extractor (B), followed by the description of the Entity Matcher
(C), considered as the main component of the model. We end the description of the model
with the Visualization (D) component.

3.3 The Trace Reader

The generation of traces during runtime is a classical technique to record the behavior
of parallel applications. If applied carefully with large memory buffers and a selected set
of events, it can be used without disturbing too much the natural application behavior. In
large-scale parallel applications, it is common to generate one trace file per process. After
the end of the application execution, the different files aregathered and merged with dif-
ferent transformation techniques. This is modeled by DIMVisual (SCHNORR; NAVAUX;
OLIVEIRA STEIN, 2006), which is a data integration model for visualization of paral-
lel applications. The model uses the synchronization technique developed by Maillet and
Tron (MAILLET; TRON, 1995).

One trace file is usually composed of events. An event has a type, a timestamp and
additional information that goes with its type. They can be used to trace a high number of
information in parallel applications. The classical points where trace events are generated
are the beginning and the end of both communication and processing functions. Point-
to-point and collective are commonly traced with events, registering the exact point in
time that a message is sent and received. Although most of tracing mechanisms generate
timestamped events, this association with time is not a requirement. Events can be used
to simply count the number of times a certain behavior occurs, for example, without the
need to know when it happened. Another characteristic of theevents of one trace file is
that their timestamps might not be synchronized with the events from other files. This
happens because they are generated in different machines, with different clocks.
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The trace reader component is the only part of our model that deals directly with ap-
plication traces and events. Its responsibility consists in reading, synchronizing and trans-
forming them into high-level visual objects. Although these objects represent the content
of traces, they have no semantic data and can be managed in a generic way. This allows
the rest of our model to be independent from the trace file format. The high-level repre-
sentations are mainly composed of entities, states and links. An entity can be a process, a
thread, or a machine. Generally speaking, an entity can be anything that is observed dur-
ing a period of time and is related to the application analysis. States and links are always
related to one or more entities. A state is defined as the behavior a certain entity may have
during a period of time. A link is used to represent an interaction among two or more
entities in a time interval.

Figure 3.3 shows the behavior of the component. The trace data is represented in the
left of the Figure, showing the events that are in different trace files. In this example,
we list the beginning of the behavior of two processes, through 8 events already ordered.
Process 1 starts, then sends a message; and process 2 starts and blocks to receive the
message from 1. The trace reader transforms these events into the visual objects depicted
at the right of the Figure. In the example, they were transformed into two entities, P1 and
P2, to represent processes; two states, Send (created withsend_startandsend_end) and
Receive (based onreceive_startandreceive_end); and one link, represented by the arrow
based onmsg_sendandmsg_receive. The flow of visual objects in the output is ordered
by the object’s end time.

Figure 3.3: The Trace Reader component transforms trace files, on the left, to a visual
objects representation, on the right.

This component makes the rest of the model independent from the input file format.
In the case a new format is available as input, only this component should be changed or
replaced, the rest of the model will continue to work in the same way as long as the output
generated by the trace reader is composed of the generic entities we explained above. The
trace reader sends the output to the extractor module, whichis detailed in the next Section.

3.4 The Extractor

The main purpose of the extractor component is to select, from the flow of visual
objects sent by the trace reader, the objects that the entitymatcher component needs to
work. The entity matcher is focused on the set of entities andthe interactions among these
entities. This means in a more practical way that it wants to know about the processes,
threads and other execution flows that should be analyzed andthe message exchanges,
remote procedure calls and notifications that happen among them.

Taking the entity matcher’s needs into account, the extractor works by observing the
flow of visual objects and by selecting entities and links. Figure 3.4 depicts the behavior
of the extractor with its two outputs, on the right of the Figure, considering as input the
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data that came from the trace reader, at left. The first outputof the component, composed
of the flow of visual objects received by the TraceReader, is sent to the visualization
component. This enables the visualization component to be able to take into account all
the data that should be used to create a visual 3D representation. The selected visual
objects are sent to the Entity Matcher component, composed of the entities and links that
are encountered in the flow of the input. There are 10 processes, fromP0 to P9, in the
example of the Figure. We have as input a flow of events with three communications
(P8 → P5, P0 → P3, P4 → P2), and six states, three send (processesP0, P4 and
P8) and three receive (processesP2, P5 andP3). The output to the entity matcher is
composed by the links and the processes entities, without the states.

Figure 3.4: The Extractor component selects from the flow of visual objects the entities
and the links among them.

The extractor processes events and works whenever new data is available in its input.
A different configurable behavior is also possible: insteadof acting on a per-input basis,
the extractor works on a given time interval. When this happens, the component acts by
treating only the events that are present in the given time interval. This increases analysis
possibilities by user interactions technique, such as zoomfor a given time interval with
increased details on trace data. This also influences the behavior of the entity matcher,
giving the model more control in terms of which part of the execution period will be
analyzed by the user.

The extractor component is also responsible for attributing the entities with the lo-
cations where they were executed. In some cases, the entity matcher component needs
this type of information for each entity. The information isnecessary, for instance, when
the visualization base of the 3D approach is configured to show the network topology.
On this occasion, the information of where processes executed is important to correctly
place them in the visualization base. For the cases where location attributes are necessary,
the extractor must find such information somehow. Usually, the extractor obtains this in-
formation from the trace reader, through a specific event of the trace file format. If this
location data is unavailable in the flow of objects and their attributes, though, additional
input should be used, probably in the form of a configuration file.

3.5 The Entity Matcher

The entity matcher component is in charge of the visualization base configuration. It
does that by taking as input the resource description set by the user and the selected visual
objects with application data. The resource description isgiven to the component in one
of two possible formats: either as a hierarchical structuredescribing the logical organiza-
tion of the computational system, or as a graph describing the network topology of the
execution environment. With the application traces and these resources descriptions, we
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have developed three possible configurations for the visualization base. Figure 3.5 depicts
the overall organization of the entity matcher and its sub-components that implement the
three different cases that are later represented in the visualization base.

Figure 3.5: The Entity Matcher component send its input to one of the visualization base
configurations, depending on user actions.

An important aspect of the entity matcher is its extensibility. Although we have de-
veloped three different modules that illustrate the possibilities of the approach, the entity
matcher could be extended to other types of organizations based on the entities and the
communications representation. An example of that could bea statistical module that
could group the entities according to some specification. Other types of visual represen-
tations could also be supported by the module, such as CushionTreemaps (WIJK; WE-
TERING, 1999) and Voronoi Treemaps (BALZER; DEUSSEN; LEWERENTZ, 2005).

The three cases we detail in the next sub-sections cover two types of visualizations for
parallel program analysis (as defined in Chapter 2): structural representations, as in the
cases 1 and 2; and statistical representations, as in the case 3. With these cases, we are
able to combine a behavioral representation (with the timeline), and a structural/statistical
representation, increasing the possibles analysis offered to the users.

3.5.1 Case 1: Parallel Application’s Communication Pattern

The first configuration for the visualization base of the 3D approach shows the com-
munication pattern of the application. The extractor component (see Figure 3.4), selects
from the flow of visual objects the monitored entities and thecommunications among
them. This selection is represented in the left most part of the Figure 3.6. The entity
matcher acts by merging this information into a graph that represents the communica-
tion pattern for the selected objects. The graph creation isdynamic and based solely on
the arrival of new monitoring data through the flow of events.This graph can highlight
particular performance issues of the application, like bottlenecks or unbalance. Besides,
it can help the developer to develop its application which uses a particular communica-
tion pattern, such as master/slave or divide-and-conquer models. Another advantage is
that the application developer can see if some part of the application is overloaded with
too many communications in a small period of time, increasing bottlenecks effects. The
graph is then sent to the visualization component, which draws the graph in the visualiza-
tion base and the evolution of the application’s componentsin the vertical axis of the 3D
environment.

The example of Figure 3.6 illustrates the generation of the communication pattern.
The component has as input 10 processes, from P0 to P9, and a set of communications
among them. As output, we can see a ring-like communication,among the processes from
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Figure 3.6: Entity matcher configured to generate the communication pattern of the appli-
cation, based on the processes and the communications.

P5 to P9, an all-to-one communication among processes from P0 to P4 and a one-to-one
communication between P4 and P5. This communication pattern can change dynamically
depending on the which visual objects are selected by the Extractor module and sent to
the Entity Matcher component. As previously discussed, thecommunication pattern can
reflect the application for a given time interval.

3.5.2 Case 2: Network Topology combined with CommunicationPattern

The second case for the visualization base is the combination of the network topology
and the communication pattern of the application. Figure 3.7 depicts this situation, where
the entity matcher receives as input the network topology (bottom part of the Figure)
and the application data selected by the extractor. The application processes must have
location information that defines where they were executed.This information comes with
the visual objects selected by the extractor. This is necessary because the matcher needs
to combine them with the resource description. As output, the component generates two
graphs: one that represents the network topology itself, and another that is rendered on top
of the first, showing the communications among the processesfor the selected objects.

Figure 3.7: Entity matcher can receive the network topologyas resource description, cre-
ating as output the communication pattern over the network interconnection.

Figure 3.7 shows the same example as Figure 3.6, but with the network topology
description as an additional input for the entity matcher. Each process has a resource
associated with it, from R0 to R4. The network topology connecting the resources is on
the bottom part of the Figure. The right part of the Figure shows a visual representation of
the output, composed of network topology representation, with straight lines representing
the interconnections, and processes on top of the resourcesthey used during the execution.
Communications among processes are represented by the arrows with dashed lines. This
output is sent to the visualization module to be rendered in the visualization base of the
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3D scene. The position of the processes in the visualizationbase will then be used by
the visualization module to render timestamped events in the vertical axis. Through this
combination, we are able to understand the application behavior taking into account the
network interconnection of the execution system.

The developer can benefit from this configuration in the visualization by seeing the
match between the communication pattern of the applicationand a specific network in-
terconnection. With this match, the application can benefitmore from the network, avoid
concurrent communications and improving the number of parallel communications that
can happen at the same time. Moreover, if the network topology has bandwidth and la-
tency information, the developer is able, with our approach, to adapt the application in a
way it obtains the highest bandwidth for the processes that communicate more data and
the smallest latency for the processes that exchange messages more intensively.

3.5.3 Case 3: Logical Organization and the Communication Pattern

The third configuration is a combination of the communication pattern of the appli-
cation and a logical organization of the resources. The input to the sub-component of the
entity matcher in this case is the same as case 2. But for the resources, we use a hierar-
chical description instead of using a graph. Figure 3.8 shows the same previous example,
but having as input a hierarchical structure where the resources are grouped by their loca-
tion. In the Figure, the resources R0 to R4 have been grouped according to a hypothetical
organization by clusters C0 and C1 and then by grid. This structure can be customized
in the model to represent other types of organization, such as administrative domains or
middleware dependent structures.

Figure 3.8: Entity matcher configured with a hierarchical structure of the resources, gen-
erating as output a squarified treemap customized with application components.

There are many ways to visually represent a hierarchical organization. In this work, we
have used the treemap concept (JOHNSON; SHNEIDERMAN, 1991) to represent them.
This technique works by using recursively nested rectangles to represent tree-structured
data. On the right of Figure 3.8, we show an example of treemapcreated using the hypo-
thetical hierarchical structure given to the entity matcher module. Each rectangle repre-
sents a resource and its size is directly related to the amount of processes it contains. The
dashed arrows are the communications rendered in the space-time part of the 3D space
and reflect the communication pattern of the application. This output is sent to the visu-
alization component, which is responsible for drawing in the visualization base of the 3D
scene the treemap created by the entity matcher. An important characteristic of this con-
figuration is that the entity matcher can be adapted to configure the treemap using other
characteristics of the application data, such as the numberof communications, the time
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spent by the monitored application executing a certain function, and so on.
The visualizations obtained with this technique in the visualization base can highlight

important parts of the application in contrast with the resources. For example, it can be
used to see resources usage and the load balancing of the application by configuring the
treemap to show the time spent in the functions that do the processing part of the applica-
tion. The same situation can be applied in order to observe which processes communicate
more or stay blocked more time due to message-passing.

3.6 The Visualization

The main goal of the visualization component is to create the3D visual representation.
It does that based on the flow of time-ordered visual objects and the base configuration
chosen by the user. As previously explained, the flow of visual objects is composed of
entities, states and links. Since there are three differentconfigurations for the base, the vi-
sualization component can create three different 3D representations. Figure 3.9 illustrates
the component behavior, where the base configurations are atbottom, the visual objects
at left and the three different visualizations on the right.

Figure 3.9: The Visualization component receives the flow ofvisual objects and one of
the configurations from the entity matcher, creating a 3D scene.

The timeline composes one of the characteristics of the 3D scene. It is usually rendered
in the scene as a vertical line with labeled tics. The initialtimestamp, usually0, means
the beginning of the application traces. It is placed right on top of the visualization base.
Although this is the normal behavior for rendering the timeline, an offset can be applied
if the user is interested in other parts in time of the application traces. In this case, the
labeled tic that is placed just on top of the visualization base will have the time defined by
the user.

An important part of the visualization component is how it handles the representation
of states and links. Every state object has two timestamps, one for the start and other for
the end, a value that indicates which of the possible states it represents and a referring
general entity. Links have the same information as states, but have additional information
to indicate the source entity and the destination entity. A special case of links might be
considered when there are several destinations (to represent a broadcast, for instance),
but this can be also defined as a set of links objects with the same origin but different
destinations.

Figure 3.10 shows a schematic representation of how the visualization component
handles states and links to create them in the representation. In this Figure, there are
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two entities that were placed in the visualization base. Based on the referring entities
of state and link visual objects, the visualization component defines their position in the
visualization base. In the example, we have two states and one link. The link represents
a communication between them. After defining the position inthe visualization base, the
component obtains the timestamps of the visual objects to define their size in the timeline.

Figure 3.10: Representation of State and Link Visual Objectsin the 3D scene.

Another characteristic of the 3D scene is the visualizationbase. As previously dis-
cussed, we created three different configurations that are rendered in the base. Next Sec-
tion details how the three different cases generated by the entity matcher are rendered in
the 3D scene. The Section 3.6.2 presents the possible interaction mechanisms that can be
applied in the 3D scene.

3.6.1 Rendering the Visualization Base

Figure 3.11 shows how the communication pattern is renderedin the visualization
base. As input, the visualization component (D) has on its left the visual objects, which
are composed of links and entities in this example, and on itsbottom the communication
pattern generated by the entity matcher. On the right of the Figure, the scheme shows how
the visualization of the communication pattern on the base is rendered. The vertical bars
are the states of the processes through time.

Figure 3.11: The representation of the communication pattern in the 3D Scene.

Still on Figure 3.11, we can notice that the links among the processes are undirected.
In real situations, the trace data can have information about the origin and destination of
a certain communication. This data, together with the set ofother communications may
enable a more complete representation of the communicationpattern. The visualization
component is able to enhance the definition of the positions for every process trying to
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avoid crossing links, improving the perception and understanding of the communication
pattern. Another possibility appears when there are several communications between two
processes for a given interval of time. The visualization component, in these cases, can
generate a visualization where the width of a connection in the visualization base will be
larger for pairs that communicate more.

Figure 3.12 shows the second configuration of the entity matcher, composed of the
network topology and the communication pattern. The component has as input the flow
of visual objects, on the left, and the network topology (represented by the darker and
larger lines) on the bottom. The 3D scene is on the right, withthe visualization base
holding the network topology and the communication pattern. The states represented in
the timeline are in the Figure only for information purposes. The links were not drawn in
the schematic 3D scene.

Figure 3.12: The representation of the network topology andthe communication pattern
in the 3D Scene.

The second configuration for the visualization base (Figure3.12) is especially impor-
tant when network-bounded parallel applications are analyzed. In these cases, the repre-
sentation can be improved with additional information suchas the bandwidth and latency
for each link. This combination of characteristics from thenetwork may help the detec-
tion of possible communication bottlenecks caused by extreme utilization of one network
link, for instance. The representation in the base can be altered to show larger width for
network links with higher bandwidth, and different colors to represent latency informa-
tion in a given time. If routing information is also present,the user may observe which
path the messages took during the execution, enabling the analyst to view if an alternative
deployment of process would result in benefits in terms of execution performance.

The representation of the third configuration of the base is depicted in Figure 3.13.
The logical organization of the components, generated as a hierarchy and represented
with a treemap by the entity matcher, is drawn on the base by the visualization compo-
nent. The resulting scene appears on the right of the Figure.As previous configurations,
the representation includes the states representation in the timeline just to show a view of
what the 3D scene would look like. Links in the visualizationbase were removed from
the example in order to focus on the treemap generated by the entity matcher. This rep-
resentation serves mostly as statistical summaries of the application that are rendered in
the same scene that detailed behavioral events. The rectangles in the base, that normally
represent resources, can be calculated following several characteristics of the application
behavior, such as the number of communications, their size,the amount of time in a given
state and combinations of these. The work of customizing this representation to different
needs must be done through a cooperation between the entity matcher and the visualiza-
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tion component, since the former has hierarchical information about the organization of
the resources and the latter has timestamped visual objects, such as states.

Figure 3.13: The representation of the hierarchical logical organization in the 3D Scene.

The rendering of the treemap in the visualization base has some peculiarities that must
be taken into account. The first one is related to the size of the main square used in the
representation. This size is usually defined by the user, butin cases where an increasing
number of resources is present, it would be interesting to see the size of the main square
increasing automatically. Considering that the 3D space is unlimited, this size could be-
come too big to generate an easy understanding of the representation. To solve this situa-
tion, aggregation and reduction mechanisms should be used to downscale the quantity of
data that is drawn. The aggregation mechanism that is presented in next Chapter could be
applied here.

Another characteristic of the treemap visualization base is when the squares represent
machines, for instance. If there are too many processes in the same machine, the visual-
ization will result in a larger number of processes that must“fit” in a given square. If the
square is too small, the resulting alternatives are either to aggregate the processes in one
entity, or to increase the size of the main square of the treemap. Both alternatives have
their drawbacks and benefits and must be balanced to provide an aesthetic visualization
to the end user of the 3D representation.

3.6.2 Interaction Mechanisms

The 3D visualization also comes with a number of different interaction mechanisms.
Some of these mechanisms were already discussed in Section 3.1. Here, we investigate
a step further by giving more details and exploring some examples. First of all, we must
first remind of the notion of camera inside the scope of the 3D representation. The visual
conception of the 3D approach, described in this Chapter, expects the presence of a cam-
era. This artifact must be present because it is from this viewpoint that the visualizations
are created.

Different mechanisms can act on the camera. The first and morerelevant is translation
operations inside the 3D space. The translation of the camera position allows the camera
to go forward and backward through time, for instance. Besides, the camera can also
be rotated in the three axis to give the analyst other viewingangles. Figure 3.14 shows
how these mechanisms act to provide different points of view. The first image at left is
a replica of the image depicted in Figure 3.12. Subsequent images to the right show the
point-of-view from different angles of the same scene.

Other possible interaction mechanisms of the 3D approach isthe use of animations
and replays. Animations can be used to give the analyst the possibility to analyze the



59

Figure 3.14: Different points of view of a 3D scene, generated with camera translation.

chain of events step by step, viewing the representation of every event one at a time. The
dynamic of the animation can also help the observation of repeating patterns during the
events evolution. These animations can be combined with thereplay technique, showing
again specific intervals of time.

Classical interaction mechanisms already present in other visualization tools can also
be applied in the 3D approach. Zoom, for example, can be applied by changing the time
scale rendering in the timeline, allowing a more detailed analysis when zoomed, and gen-
eral views of the whole scene when the user has a more significant time slice rendered in
the scene. The changes in the time scale can also lead to performance improvements in the
way the visual objects are stored. In general views, much of the details that are rendered
could be discarded without losing the major understanding of the events.

3.7 Summary

The Chapter has presented the visual conception of the 3D model, explaining the
meaning of the three dimensions and the definition of the visualization base and timeline.
The proposed model tries to solve the lack of a visualizationtechnique that is able to
show application behavior together with network characteristics. We made a step further
through a general approach that can show two combinations ofrepresentation techniques.
The first is the mix betweenbehavioral andstructural representations, that solves the
previously cited problem of analysis of application behavior with the network topology.
In the context of our 3D approach, the behavioral representation consists in the visual
objects rendered along the time axis, and the structural representations are the communi-
cation pattern and the network topology rendered in the visualization base. The second
combination is between abehavioral and astatistical representation, the later being the
treemap shown on the visualization base. We also have presented the abstract component
model that is able to generate a 3D representation. The subsequent Sections are dedicated
to the description of each component of the model: the trace reader, the extractor, the en-
tity matcher with its three sub-components, and the visualization component. We believe
that the proposal of the 3D approach can be a viable solution to enable the performance
visualization of parallel applications that takes into account the network influence dur-
ing the execution. The Triva prototype, that implements the3D model, is presented in
Chapter 5. Results obtained with the prototype are described in Chapter 6.

The next Chapter describes the visual aggregation model thatis developed in this
thesis to obtain visualization scalability in the parallelapplication analysis. One of the
main ideas behind this approach is the use of the treemap technique for the representation
of aggregated monitoring data. This is in part inspired by the development of the third
configuration of the base, which also uses treemaps.
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4 VISUAL AGGREGATION MODEL

The previous Chapter has presented our proposal to handle theperformance visual-
ization of parallel applications that take into account thenetwork topology. As explained,
our solution deals with a three dimensional visualization that is able to show the network
topology and the behavior evolution of application components.

Another issue related to grid applications is that they can be composed of a large
number of processes. Some analysis is already possible withapplications composed by
thousands of processes (LEE et al., 2008), but in clusters. Several issues arise in grid
environments when analyzing large-scale applications. A first one is the huge quantity
of monitoring data that can be generated by grid applications, depending on two factors:
the number of monitored entities and the detail of behavior collected for each of those
entities. Another issue in the analysis of large-scale parallel applications is the visual
scalability (EICK; KARR, 2002), which is about the quantity of data that can be displayed
in the screen without losing the ability to understand what is represented.

The fact is that the representations provided by visualization tools must also scale in
order to analyze big parallel applications. If we consider only the number of monitored
entities, we must be able to represent at least a few thousands of processes in the same
visualization. A certain amount of details about each of these entities over time have to be
present in the visualization in order to analyze the processes. An example of the lack of
scalability in the visualization is the space-time representation, where the amount of data
that can be represented is limited by the vertical space available in computer screens.

Among the visualization tools reviewed in Chapter 2, Vampir (Section 2.2.5) offers
in its space-time view a hierarchical visualization that increases the amount of processes
that can be visualized at once. The technique works by aggregating processes’s behav-
ior according to a hierarchical representation. The problem of the approach is that the
information shown in each level is represented differently, turning out to be difficult the
analysis of the Vampir’s aggregated views. Other tools, such as Pajé and Jumpshot, for in-
stance, use scrolling mechanisms to deal with the big numberof monitored entities. This
has a potential negative impact in the analysis since not allentities’s behavior are shown
at the same time.

Our approach uses time intervals to dynamically create an annotated hierarchical
structure that represents the application behavior for that period of time. We also present
an aggregation mechanism that can be applied when there are too many monitoring en-
tities to be analyzed in the same screen. We employ the treemap technique (JOHNSON;
SHNEIDERMAN, 1991) to create a visual representation of the hierarchies. The com-
bination of the Time-Slice technique, the aggregation model and treemaps increases the
number of monitored entities that can be visualized at the same time, and allows a direct
comparison among their behavior.
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The treemap visualization is already used to observe monitoring data from distributed
environments. CoVisualize (SAENGSUWARN; PAI, 2009), for instance, is a grid visu-
alization tool developed for PlanetLab. The tool uses values such as CPU, Memory and
Bandwidth of nodes to render the treemaps. Besides, it can be configured to show also
efficiency images, based on CPU and memory, and usage images, based on slices, slivers
and nodes according to the terminology of PlanetLab platform. Another example is the
visualization of workloads (HEISIG, 2003), where the values of the represented hierar-
chies are calculated based on the workloads applied to resources. In both approaches, the
time variable is not used and only the visualization of resources state is represented.

This Chapter is organized as follows. We begin with a description that shows that
monitoring data can be hierarchically organized. We present then the Time-Slice algo-
rithm responsible for creating an annotated hierarchical structure that represents the pro-
gram behavior for a given interval of time. The aggregation model is presented, working
by merging data by similarity and moving it to upper levels ofhierarchical structures.
We then present the basic concepts of the treemap visualization, a technique proposed in
1991 to solve the problem of visualization scalability for hierarchical structures, and its
application to visualize the output of the Time-Slice technique and the aggregation model.

4.1 Hierarchical Organization of Monitoring Data

Traditional monitoring systems for distributed environments periodically gather data
about the behavior of a pre-defined set of entities. This set can contain resources of the
computing system, such as processors and memory, and components from parallel ap-
plications, like processes and threads. For each entity, several other types of information
are also registered, like events for functions calls, or changes in the value of a variable
associated with the entity. An example is Ganglia (MASSIE; CHUN; CULLER, 2004),
able to collect monitoring data from several computers and for each of them, the level of
CPU utilization, input/output, and memory. For Ganglia, theentity is the computer. Other
cases, more focused on the application level, are tracing libraries such as JRastro (SILVA;
SCHNORR; STEIN, 2003), or the VampirTrace tool. In this later case, it results in appli-
cation traces that register the behavior of processes and threads, which can be identified
as the monitored entities. The states for the processes and threads, their events, are the
information associated with them.

An important characteristic of monitored entities is that they can be organized as a
hierarchy. This organization lists the observed entities as bottom-level nodes, or leaves,
leaving intermediary nodes of the hierarchy to group them based on logical or location
characteristics. In the example shown in Figure 4.1, the monitoring system collected data
from processes and threads. A possible hierarchical organization of these entities is to
group the threads by processes and the processes by machines. If the application were
executed in a grid environment composed by clusters, the machines could be also grouped
by cluster. Additional information about the processes andthreads can also be present
in the hierarchy, such as the statesBlocked andRunning below theProcess entity,
Created andJoin belowThread.

Usually, the nodes of Figure 4.1 are types of the monitored entities. The hierarchical
structure serves as a guideline to organize the monitoring data collected by a tool that
provides such information. During the collection of eventsabout processes and threads,
the monitoring system creates instances of these types. Figure 4.2 shows an instantiation
of the hierarchical organization, where the application iscomposed byNp processes (each
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Figure 4.1: Hierarchy of Entity Types.

with one thread), grouped byNm machines,Nc clusters, finally all belonging to the same
grid.

Figure 4.2: Hierarchy of instances of the entity types.

The types of a hierarchical structure can be related to any kind of entity that can be
monitored. If, for example, we are monitoring an object-oriented application, the resulting
collected data would be composed by traces from the objects that were instantiated and
the methods executed. Another level of the hierarchy is composed of packages that hold
the classes. The resulting hierarchical organization would be a tree having as root a type
Package, with a single child of typeClasswith a child of typeMethod.

The notion of type hierarchy was implemented and validated in the visualization tool
Pajé (KERGOMMEAUX; STEIN; BERNARD, 2000). Its format is considered generic
since it can be adapted to represent virtually any kind of monitoring data. It was applied
to the visualization of Java Applications (SILVA; SCHNORR; STEIN, 2003), MPI appli-
cations and multi-level analysis of parallel applicationsexecuted in clusters (SCHNORR;
NAVAUX; OLIVEIRA STEIN, 2006). One of the reasons for the generic capability of
Pajé is the use of a hierarchical definition of the data, beingable to adapt to a broad range
of monitoring systems, from the ones focused in the analysisof resources to systems used
to trace parallel applications.

The type hierarchy of Pajé is enhanced with four additional basic types to describe
an entity behavior. They are states, events, variables and links. A state of an entity means
that the entity spent an interval of time in that state. An event has just one timestamp and
can be used to describe singular events in time. A variable isused to visually describe the
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evolution of a certain metric over time and a link is used to describe an interaction between
two entities. Because these types can describe a broad range of application behavior, we
decided to adapt them in the development of the Time-Slice algorithm. This adaptation is
described in the next Section.

4.2 The Time-Slice Algorithm

The objective of the Time-Slice algorithm consists in creating a hierarchical structure
that reflects the program behavior for a given interval of time. For that, the nodes of the
hierarchy must receive values that are calculated based on two factors: the definition of a
time interval and a summary of the events for each monitored entity on that time interval.

Different configurations to define the time interval are possible. For example, its length
can be changed dynamically in order to find visual patterns from the data being analyzed.
This allows the detection of patterns that might appear in a small slices of time but not
in larger ones. The user can also move the slice of time being analyzed, allowing the
observation of the evolution of the entities through time ata small time scale.

The summary of events is done by taking into account the interval of time specified
and additional information about an entity, which is present in the monitoring data. The
objective is to find a numerical value that represents the behavior of each entity. There
are different ways to define the numerical value for each entity. We can consider, for
instance, that this number is the amount of time, or the number of times an event happens,
or any other information that can be counted somehow. Before getting into the details of
how each of these methods is used to calculate the numerical value, let us proceed to an
overview of the variables terminology used in next sections.

Figure 4.3 shows an example where there are two processes,A andB, that have been
executed in the machineM , which was part of clusterC and the gridG (hierarchy shown
on left of the Figure). The time slice defined for the algorithm begins atTi and goes toTf

(represented by the two vertical lines). Singular events are denoted byXE1, whereX is
the identifier for the entity andE the type of the event. The number next toE is a counter
to identify uniquely that event. States are defined byXS1ti andXS1tf , whereX denotes
the entity,S the type of the state and a number to uniquely identify that state instance.
Links have their beginning denoted byXYL1ti and end byXYL1tf , whereX is the origin
of the link andY is the destination. Variables are represented by a series oftimestamped
events that hold the current value for that variable. The resulting visual representation is
denoted by the variableV in the Figure.

In the example of the Figure 4.3, there is one state for the entity A (AS1ti to AS1tf )
and two for the entityB (BS1ti to BS1tf andBS2ti to BS2tf ). There are two singular
events in the entityA, denoted byAE1 andAE2, and one link (BAL1ti toBAL1tf ). There
is one variable for the entityM , denoted by the letterV . We must also define a variable
Xval that will hold the calculated numerical value for a givenX entity.

The next subsections detail how the algorithm works in the presence of states, vari-
ables, links and events. The general principle is to separately sum the values for the each
type of state, variable, link and event, and then intersect the obtained value with the time
slice used. This Section ends with a complete example of the algorithm.

4.2.1 States

A state is defined by a value and two timestamps, one for its beginning and another
for its end. An entity can have states with different values through time. Figure 4.4 shows
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Figure 4.3: Example showing the mathematical variables used in the algorithm.

five entities, fromA to E, grouped by location in machinesM1 to M3, and by clusters
C1 andC2. In this example, we use only one value for the state, represented by the darker
tone rectangles in the horizontal axis.

For the example of this Figure, theXval values for the entities will hold the amount
of time each one stayed in the state in question. There are fivedifferent ways to calculate
Xval for the entities fromA to E. These cases are divided taking into account how the
state is positioned in time in relation to the selected time slice (Ti up toTf ). The first case
is represented in the behavior of entityA (see Figure 4.4), where the value for the entity
Aval is defined byTf − AS1ti, because the end of the state is after the end of the time
slice. The second case of entity for entityB, the value will be defined byBS2tf − BS2ti,
without considering the amount of time entityB spent in stateBS1, since this state is
out of the selected time slice. The third case is the entityC, where the state starts before
the beginning of the timeline, resulting in the formulaCS1tf − Ti. Entity D has no state
inside the selected time slice, so its value is simply zero. Entity E has two states within
the time slice, we must then consider both to findEval, with the formula(ES1tf−ES1ti)+
(ES2tf − ES2ti).

Figure 4.4: Time-Slice algorithm working to summarize states using amount of time.

Considering all these situations and normalizing to the timeslice, we obtain:

Xval =

∑n
z=0

(min (Tf , XSztf )−max (Ti, XSzti))

Tf − Ti

(4.1)

During the execution of an entity (e.g. process, thread), itis common to find more
than one type of state. When this happens, their values must becalculated separately with
the formula. Taking as example the hierarchy of Figure 4.1 with theProcess entity, there
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are two types of states:Blocked andRunning. The calculation for their values results in
Processval−blocked andProcessval−running. These values are stored in the entityProcess
like a vector.

4.2.2 Variables

Observation tools gather information about different metrics during the monitoring of
a system. Examples of these metrics are the bytes per second transferred by the network
card, CPU or memory utilization. They are often collected as events, with different gath-
ering mechanisms. In an ideal situation, monitoring tools must sample metrics using very
small time intervals, improving the accuracy of the values collected. The metricMemory
in the top part of Figure 4.5 shows how the drawing of the collected values for this metric
are in this ideal situation.

Figure 4.5: Approximation measurement caused by the frequency of collection mecha-
nisms; the Time-Slice algorithm works using the discrete values collected.

For the ideal situation depicted on top of Figure 4.5, the Time-Slice algorithm per-
forms the integration of the function that defines the value for the metric for that period of
time. Considering theMemory variable and the time slice of the Figure, the equation is:

Xval =

∫ Tf

Ti
mem(x)dx

Tf − Ti

(4.2)

wheremem(x) is the function that defines the value of the variable andTi to Tf is the
time slice. In the example of the Figure, the final value forMval is the area ofmem(x)
limited by the interval of time.

The accuracy brought by the ideal situation in the collection of a performance met-
ric is hard to obtain in the real world. If the gathering system collects the metric value
too often, the intrusion caused may lead to a different behavior of the observed system.
This behavior might be significantly different from the normal behavior of the system.
This can result in the lack of meaning of the monitoring data,since the normal behavior
(without observation) is too much affected. To alleviate this problem, and at the same time
obtaining a good accuracy of metric’s value, monitoring tools use periodic samples be-
tween fixed or variables intervals of time. Another perspective for this situation that may
solve the problem is an agreement between the collection mechanism and who demands
the monitoring data. The agreement can specify the amount ofintrusion allowed, or the
amount of intrusion obtained when a set of metrics are configured to be collected.

The bottom part of Figure 4.5 shows the metricMemory2 and its measured values,
inside the time slice, denoted fromMeV 1 to MeV 13. Each variable is valid between a
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defined interval of time:MeV 1ti to MeV 1tf , for instance. ConsideringMemory2, the
Time-Slice algorithm operates by adding the area of the rectangles. Therefore, the equa-
tion used by the algorithm for a more real situation of measurement of metrics is:

Xval =

∑n
z=0

(Metricztf −Metriczti)×MetricV aluez
Tf − Ti

(4.3)

whereMetricV aluez is the value of the metric betweenMetriczti andMetricztf , with
n samples collected inside the time slice (Ti to Tf ).

4.2.3 Links

Links are used to represent interactions among different entities. Figure 4.6 shows an
example where five processes, fromA to E, have some interactions among them. A link
is denoted byXYLn, whereX is the origin andY is the destination. If there is more than
one link fromX to Y , the subscripted number is used to differentiate them. A link can
also have a value associated, which is represented by the variable itself. The value can
be, for example, the quantity of data transferred. Besides this, a link also has a start time,
represented byti appended to the variable, and an end time, represented bytf . As before,
Ti andTf are used to define the time slice.

Figure 4.6: Time-Slice algorithm treating links presence in the time slice using amount of
time versus data transferred.

The way the Time-Slice algorithm works to summarize links isdifferent from states
and variables. Instead of simply associating a unique valueto the entity, the links are used
to create two values. One of them is created when the entity isthe origin of the links, and
the other appears when the entity is the destination. Therefore, for an entityX, we define
in the following equationsXval−as−origin andXval−as−destination:

Xval−as−origin =

∑n
z=0

(XYLztf −XYLzti)×XYLz

Tf − Ti

for any entity X (4.4)

Xval−as−destination =

∑n
z=0

(Y XLztf − Y XLzti)× Y XLz

Tf − Ti

for any entity Y (4.5)

whereXYLz is the value of the linkz of a given entityX, andY XLz is the value of the
link z of a given entityY . It is important to notice that links that cross the time slice
boundaries are not considered here.
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Adaptations to these equations are possible in different situations. If we want to view
only the amount of time spent by a link between two entities, we can ignore the value
attribute of the link in the equation. Another perspective is when we want to view the
performance of each link, by dividing the quantity of data transferred by the time it con-
sumed to do the transfer. With this calculation, the value for a given entity matches the
performance of the entity’s communication either as originor destination of the links. A
third situation happens when we need to know only the amount of data transferred by a
single entity. In this case, we ignore the variables of time in the equation. Several other
combinations are possible depending on the additional dataavailable in each link, such as
overhead for creating the packets and emitting or receivingthem and so on.

A special case for summarization of links is to count the destinations, for example, for
a given origin. For the entityB of Figure 4.6, for instance, it results in three links with
destinationA and one link with destinationC. This adaptation of the algorithm enables
the observation of groups that communicate more intensively in a parallel application.

4.2.4 Events

Events are singular points in the time axis that indicate when something happens for
a given entity. They can represent the act of changing the value of a variable, or the
reception of a message. To summarize their existence in the behavior of a given entity,
the easiest way is to count them by their type. The resulting value for the entities can
be composed of these counts: number of times a variable changed, how many message
receptions occurred, and so on. Different adaptations are also possible if additional data
is available in each singular event.

4.2.5 More statistics

In previous subsections, states, variables, links and events were detailed separately. In
the context of states, we presented the algorithm working with only one state at a time.
Additional meaningful statistics can also be extracted when we consider more than one
state for a given entity. This situation depends on what the meaning of the states is and
how they can be combined. An example for that is the combination of states that mean
actual processing and states that mean communication. Their combination can give the
analyst a view of the ratio computation/communication for all the entities of the parallel
application.

The same techniques also apply to other types of monitoring data, variables, links and
events. These combinations depend on what is the nature of the summarized value. Up
to now, we have seen that these values can be related to the amount of time (in the states
case), accumulated value of a metric (variables case), quantity of data in bytes (links
case), simple counts (events case). Additional information that might be present in the
monitoring data can also increase the range of possible summarization values. Table 4.1
gives an overview of possible combinations that can be used to obtain more statistics from
the basic types of monitoring data.

4.2.6 Example

Figure 4.7 shows an example with five monitored entities, from A to E, grouped by
their execution machines, represented by the rectanglesM1, M2 andM3. The machines
are grouped by their clustersC1 andC2, which are part of the gridG. The selected in-
terval of time is 9 seconds, limited by the two vertical bars (small vertical bars mean
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Table 4.1: Non-exhaustive set of combinations to obtain more statistics from traces.
Combination Unity Application

Bytes per second Quantity/Time Communications Performance
Computation vs. Communication Time/Time Efficiency of processes

Blocked State vs. Number of Links Time/Count Mean time blocked per link
Computing State vs. CPU Utilization Time/Value Efficiency

intervals of one second). In this example, we intend to summarize three different informa-
tion: the amount of time of the statesBlocked (darker rectangles),Executing (light gray
rectangles), and the bytes per second of the linksCommunication (represented by the
non-dashed arrows in the middle of the time slice). The numbers in the beginning of the
communications represents the quantity of data transferred, in bytes. The link summary
is attributed in this example to the origin entity.

Figure 4.7: Complete example showing different aspects of the Time-Slice algorithm.

Considering the case shown in Figure 4.7 with two states represented, Table 4.2 lists
the values of the entities for the three summaries. The first column shows the five entities;
the second column shows the time in seconds each entity stayed in theBlocked state
within the time slice; the third column shows the time in seconds for each entity in the
Executing state; and the fourth column shows the bytes per second associated with each
origin entity of the linkCommunication. For instance, to summarize the amount of time
of theBlocked state of the entityA, we sum up its duration of 5 seconds that is within
the time slice. To summarize the links, we use the bytes transferred divided by the time
the origin process took to the transfer. For entityA, theCommunication summary must
be the sum of10bytes/2seconds and40bytes/2seconds, resulting in25bytes/second.

Table 4.2: Summaries for the three different aspects analyzed in Figure 4.7, considering
the time slice of 9 seconds.
Entity Blocked (Time in sec.) Executing (Time in sec.) Link (Bytes per second)

A 5 4 10/2 + 40/2 = 25
B 2 7 36/2 = 18
C 6 3 10/1 = 10
D 0 9 5/1 + 45/3 = 20
E 5 4 30/2 = 15

Figure 4.8 shows three hierarchical organizations of the example of Figure 4.7, con-
sidering the three summaries presented in Table 4.2. These hierarchies are the result of
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the Time-Slice algorithm, representing the behavior of different aspects of the parallel
application inside the selected interval of time. The values of the leaves of the structure
are defined based on the calculated summaries in a per processfashion.

Figure 4.8: Hierarchical summaries generated by the Time-Slice algorithm considering
the three aspects presented in Table 4.2.

When different types of events are present in the interval of time selected by the user
(as the example of Figure 4.7, with two different states and links), the Time-Slice algo-
rithm creates as output a single hierarchy where the leaves have the calculated values for
those types. Figure 4.9 shows the output for the current example, where each leaf node
has three values that show the blocked state, executing state and communication link,
respectively. These values are the same found on the leaves of the three hierarchies of
Figure 4.8.

Figure 4.9: Single hierarchy, based on the ones of Figure 4.8, with multiple summaries on
the leaves, generated by the Time-Slice Algorithm.

4.3 The Aggregation Model

Depending on the number of monitored entities present in thetraces, the hierarchy
generated as output by the Time-Slice algorithm can become too large. If we take as
example an application composed by one thousand processes,each one with four threads,
the resulting hierarchy in this case will have four thousandleaves. The aggregation model
presented here intends to explore the hierarchical organization of the monitoring data in
order to provide aggregated values for intermediary levelsof the hierarchy.
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Figure 4.9 shows the output of the Time-Slice algorithm, represented by a hierarchy
with a vector of summary values on the leaves. Considering only the first two values of the
leaves’s vectors, we obtain the leftmost hierarchy of Figure 4.10. This left hierarchy shows
on the leaves the summary value for theBlocked and theExecuting states. The Figure
also shows three modifications in the hierarchy, caused by the aggregation model. In the
example, there are three intermediate levels: Process (P ), Machine (M ) and Cluster (C).
The main goal of the aggregation model is to group the summaryvalues of a level to the
level immediately higher. Therefore, after the first aggregation, the values of the processes
in the same machine are added and attributed to the machine node. The algorithm can be
applied again to pursue the aggregation, up to the root level, as shown with the second
and third aggregation steps of the Figure.

Figure 4.10: Three aggregations to decrease the hierarchy depth and improve the final
visualization with treemaps.

After applying the aggregation model, the intermediary nodes up to the root node
have values that were calculated based on the leaves of the tree. The resulting aggregated
tree, shown on the right of Figure 4.10, enables a per-level analysis of the data. Since
the summary values of the nodes of this tree are theBlocked andExecuting states, an
analysis in the cluster level, by observing nodesC1 andC2, enables the conclusion that
for the considered interval of time, the clusterC1 stayed 7 seconds in theBlocked state
and 11 seconds in theExecuting state. The same conclusion can be made for the cluster
C2 and to other intermediary nodes, such as the ones of the Machine level. When there
are too many leaf nodes, the analyst can choose to observe only up to a level, avoiding
too many details and still being able to understand the overall behavior of the parallel
application for the considered time slice.

4.3.1 Aggregation Functions

Besides the traditional addition operation (shown in Figure4.10), the aggregation
model can be applied with other functions to aggregate values, such as max, min, and
average. Their direct application depends on what type of value is attributed to the leaf
nodes of the original hierarchy and can highlight particular characteristics when aggre-
gating data.

The search for low-throughput communication links, bad transfer rates among pro-
cesses, small amount of time spent with calculus, for example, can be eased by using a
min function when aggregating data. The application of thisfunction can highlight, dur-
ing the aggregation, the part of the machine that contains the worst communication links,
or transfer rates, for instance. On the other hand, a max function can be applied in the
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aggregation if the user searches for highest values, such asbigger amounts of time spent
to calculations, or transferred data.

4.4 Visualization of the Approach

The previous Sections have detailed the Time-Slice technique and the aggregation
model. Taking into account an interval of time, the Time-Slice technique works by sum-
marizing different aspects of the monitoring data and creating a hierarchical structure that
represents the behavior of the parallel application for that time slice. The aggregation
model works by calculating values for intermediary nodes ofthe hierarchies generated by
the time slice. There are several ways of creating a visual representation of a hierarchical
structure. This is what the node-link representation does to create Figures 4.8 and 4.9.

Instead of using these classical node-link representations for the output of the Time-
Slice algorithm, the work presented here explores the Treemap technique (SHNEIDER-
MAN, 1992) in order to visually represent the created hierarchical structures. The main
benefits of this technique are its scalability to show large and deep hierarchies, and the
fact that all the screen space is dedicated to its representation.

The next subsection details the basic concepts of these hierarchical representations,
exploring more extensively why we have decided to use the Treemap technique. After
this, we discuss the scalability issues related to the treemap representation and how the
aggregation model can be used to improve the work on this matter. We end the Section
showing how the treemap is used to create a visual representation of the hierarchies cre-
ated in the example of previous Section.

4.4.1 Treemaps Basic Concepts

The traditional way of displaying hierarchical data is to use node-link diagrams (NAGY;
SETH, 1984). This representation is depicted in the leftmost part of the Figure 4.11. These
diagrams are easy to understand by explicitly showing the relation among the nodes.
The problem with this approach appears when we try to visualize large scale trees with
thousands of nodes. This happens mostly because they do not exploit well the screen
space (SHNEIDERMAN, 1992).

The treemap technique was proposed in order to solve the scalability problem of hi-
erarchical representations (SHNEIDERMAN, 1992). Instead of drawing nodes and links
between them, it uses the whole screen space with a space-filling algorithm. This algo-
rithm recursively divides the space dedicated to draw the hierarchy, following the tree
organization. The right-part of Figure 4.11 shows an example of the steps performed by
the treemap algorithm to create a representation of the hierarchy shown on the left. For
this example, we consider that each leaf node has a value of one, so their sizes are the same
in the final Figure. The parent nodesA, B andC have their values, 6, 3 and 2 respectively,
defined based on their children. The algorithm starts by the root nodeA, represented in
the middle of the Figure as a big square. The algorithm recursion goes to the second level,
dividing the space of nodeA among their childrenB, C, andD. Then, the third level is
considered, dividing the space ofB among its children:E, F , andG; and the space ofC,
betweenH andI. The final representation is depicted on the right square of the Figure. In
this simple example, the hierarchy is highlighted with the use of margins between inner
and outer rectangles in the representation. The presence ofthese margins depends on the
importance of the hierarchy during the analysis. Sometimesthey are not present to avoid
the loss of pixels of the screen that can be better used to showreal data. Figure 4.11 shows
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a peculiar example. In the general case, the sizes of leaves are not always the same.

Figure 4.11: Two types of representation of hierarchical data: the classic node-link dia-
gram and the corresponding treemap technique applied to thesame hierarchy.

The treemap algorithm has passed through several evolutions since its creation. One
of them is called the Cushion Treemaps (WIJK; WETERING, 1999), a technique that
works with the association to each rectangle of an intuitiveshading that improves the
user perception of what is being shown. Another work based onthe original technique
is called Squarified Treemaps (BRULS; HUIZING; WIJK, 2000). Itmanages to keep
the rectangles shapes as close as possible to squares, making the visualization of the in-
formation easier by avoiding rectangles with a big width/height ratio. Another proposal
called Ordered Treemaps (SHNEIDERMAN; WATTENBERG, 2001) tries to keep nodes
proximity when zooming at different levels. Voronoi Treemaps (BALZER; DEUSSEN;
LEWERENTZ, 2005) is a different approach to visualize hierarchical data that uses poly-
gons to represent nodes, instead of the traditional rectangles or squares. The polygons are
constructed from median lines between pairs of points.

Examples of treemaps utilization include network security(MANSMANN F.; VIN-
NIK, 2006), grid resource monitoring visualization (SAENGSUWARN; PAI, 2009), vi-
sual analysis of stock market (WATTENBERG, 1999) possibly applied to a million of
items (FEKETE; PLAISANT, 2002). These multiple applications of the treemap tech-
nique, including the possibility of showing big hierarchies, motivate us to use it in the
analysis of parallel applications. The principal advantage of the treemap representation
is the good use of screen space, correlating screen space with the values of the nodes of
large-scale hierarchies, and outlining the repartition ofthis space. On the other side, the
drawback is that the hierarchy is less apparent and easy to detect, turning out to be diffi-
cult when first analyzed. The benefits of the treemap, however, are more evident than its
drawbacks, since the representation can be interactive to allow an easy highlighting of the
hierarchy when necessary.

4.4.2 The Scalability Issue

The main advantage of the treemap technique is its ability todraw in an understand-
able way large-scale hierarchies. This is possible becauseit involves a space-filling algo-
rithm that uses all the screen space available. If we comparetreemap abilities to traditional
node-link representations, the scalability of the approach is even more obvious.

Although scalable, the traditional treemap technique is limited by the size of the screen
space dedicated to its representation. If the hierarchy being represented is composed by
a large number of nodes, the space-filling algorithm may generate squares that are too
small. If we consider a computer screen with a resolution of 1024 pixels in the horizontal
dimension and 768 pixels in the vertical dimension, we end upwith a total of 786432
pixels to be used by the treemap algorithm. Considering that each square size reasonably
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occupies at least 100 pixels (10x10 square), the maximum number of leaf nodes of the
hierarchy being represented is 7864. Furthermore, if we want to represent at least 2 differ-
ent states (executing and blocked) at same time, we end up with a drawing that may deal
at most with 3932 processes. Today, it is not difficult to find parallel applications larger
than that, especially if we want a visualization of threads along with processes behavior.

The visualization scalability can be achieved with the treemap technique by letting
the algorithm work only up to a certain level. Therefore, if the hierarchy is composed of
many leaf nodes, they are ignored in the representation. This solution is also recursive,
starting from the root level, and making it possible to limitthe representation depending
only on desired depth.

The problem with this approach is that some part of the information that is on the
leaves is lost. An example of this is depicted on Figure 4.12,which takes as input the hi-
erarchy generated by the Time-Slice algorithm present in Figure 4.9, only with the sum-
mary values for theBlocked andExecuting states. Since this hierarchy did not pass
through the aggregating model, the intermediary nodes do not have aggregated data about
the states. They only have the added value of the nodes below it For instance,P1 has a
value of 9, which is the sum of 5 and 4;M1 has a value of 18, which is a sum of the values
of P1 andP2; and so on up to the root node. This information is necessary to the treemap
algorithm, since it expects for each node of the tree an associated value that indicates how
much space of the screen that node will take during the representation. The vectors of the
leaves represent the amount of time each process, fromP1 to P5, stayed in theBlocked
andExecuting states. The right part of the Figure shows different treemaps for which
rendering was limited to a given level of the hierarchy. The right-most treemap, on the
bottom, actually shows the states for all the processes. It may have on this level squares
that are too small in situations with a large number of nodes involved. If this happens, the
treemap algorithm may be stopped in a higher level of the tree. The Figure shows, through
the others treemaps, that information is lost if this happens. The lost information in the
example is the partition of time between each state for each process.

Figure 4.12: Limiting the treemap representation up to a certain level of the hierarchy to
obtain visualization scalability.

The aggregation model proposed in previous Section tries toachieve visualization
scalability through the use of treemaps without losing information that may be on leaves
of the represented hierarchies. As presented, the model works by merging data from one
level of the hierarchy and moving the resulted merged data towards the root of the tree.
The next subsection describes treemap representations generated with hierarchies created
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with the Time-Slice algorithm and the aggregation model.

4.4.3 Using Treemap in the Example

First, let us proceed to treemap representations of the hierarchies created with the
Time-Slice algorithm, without any aggregation. The hierarchical structures of Figure 4.8
are sent to the treemap algorithm. Its drawing procedures take into account the values
for each of the nodes in order to generate the maximum utilization of the screen space
dedicated to represent the structure. The results of these drawings are depicted on the
three different treemaps of Figure 4.13. The left-most treemap was constructed taking
into account the hierarchy that defines the behavior for theBlocked state of the processes
from A to E. The area of each rectangle represents the amount of time in seconds that
each process stayed on that state. Below the main treemap drawing at the left of the Figure,
there are three smaller representations that show the summarized view for each level of
the hierarchy. We can also use these representations to makehigher-level comparisons
among the resources that contributed to the application execution.

Figure 4.13: Treemap representations for the hierarchies depicted on Figure 4.8.

The center treemap of Figure 4.13 shows the behavior of the processes for theExecuting
state. It was built based on the center hierarchy of Figure 4.8. We can see through this
representation that processB andD stayed more than others processes on the executing
state. Taking into account the smaller treemaps below, we can see also that machineM2
contributed more to the execution, when compared to machinesM1 andM3.

The last treemap, on the right-most part of Figure 4.13, shows the representation for
the bytes transmitted per second among processes on the selected time slice. The analysis
of this Figure enables the observation of which process obtained a higher throughput.

Generally speaking, the Time-Slice technique presents quantitative data in a more syn-
thetic way. This means that the user can visually and almost instantaneously compare the
size of all rectangles. Analyzing the treemaps of Figure 4.13, we can easily see which
process has spent more time than others on each particular state. If this representation is
used to analyze parallel applications behavior and the state is a blocking operation, the
visualization will show which processes spent more time blocked than actually execut-
ing. Other types of states and events from the application can be taken into account and
combined in the same visualization.
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Another characteristic of the representations of Figure 4.13 is to draw the treemap
using only available values up to a certain level of the hierarchy. This is depicted in
the smaller treemaps at bottom, showing the representationof level Grid, Cluster and
Machine for each case. These per-level views allow an analysis with less details when a
considerable amount of data is present in the deepest level of the hierarchy, maintaining
the representation understandable even with a higher number of processes to analyze.

Aggregated hierarchies generated by our aggregation modelcan also be represented
with treemaps. Figure 4.14 shows the treemap visualizations that are generated based on
the hierarchies of Figure 4.10. The left most treemap shows the visualization of the orig-
inal hierarchy, withBlocked (represented by the letterB in gray areas) andExecuting
(represented byE in white areas) squares being grouped according to the processes. The
dashed circle shows the area that corresponds to processP3. In this first treemap, the
rendering is performed taking into account the values of theProcess level of the hierar-
chical structure. The size of the areas marked by B and E are based on the vector values
of the nodes. The aggregation algorithm group these values according to the machines,
cluster and the grid. The second treemap of the Figure shows in a comparable way the
B and E values for each machine. These values are calculated based on the ones defined
for the processes of each machine. The dashed circle in this case highlights the area for
machineM2. The other two treemaps to the right shows the aggregated view of the values
according to the cluster level and the root level.

Figure 4.14: Treemap visualizations based on the original and aggregated hierarchies pre-
sented in Figure 4.10.

4.5 Summary

Large-scale parallel applications that run on parallel anddistributed architectures exist
today, being composed of thousands of processes. These applications need to be analyzed
in terms of performance and resources utilization. The lackof visualization tools that can
adapt to the large-scale characteristics of these applications motivated the visual aggrega-
tion model.

The Chapter has started with a description of the hierarchical organization of moni-
toring data, a pre-requisite to the model itself. Then, we have presented the Time-Slice
technique, which works by summarizing the behavior of a parallel application in a time
interval. The output of this technique consists in an annotated hierarchical structure, that
serves as input to the aggregation model. Basic concepts of the treemap representation
have also been presented, together with its application to visualize the hierarchies gener-
ated by the Time-Slice technique and modified by the aggregation model.
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The next Chapter details the implementation of this technique, and the three-dimensional
model described in the previous Chapter, in the Triva prototype.
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5 TRIVA PROTOTYPE IMPLEMENTATION

The last two Chapters have presented the visualization models developed in this thesis:
the 3D visualization, focused on the highlight of the network topology in contrast with
parallel application’s processes; and the Time-Slice algorithm with its aggregation model
and the treemap visualization. Those Chapters described themodels from a theoretical
point of view.

This Chapter describes the developed prototype in order to implement the visualiza-
tion models proposed. The description here details the software decisions taken during the
development and the internal algorithms of the implementation. The prototype is named
Triva, to stand for ThRee dimensional Interactive and VisualAnalysis.

One of the main guidelines to implement the prototype Triva is to build it on top of
existing tools and libraries, mainly to avoid the re-implementation of already validated
implementations. The first decision following this guideline is the adoption of some parts
of the visualization tool Pajé. The main reasons that motivated its adoption are listed in
the next Section. This includes a description of the most important components regarding
Triva and a performance evaluation of the Pajé Simulator. Other decisions considering
software re-use appear in other parts of the Triva prototype. They relate to the input data,
the file format used to describe resources, the rendering calculation of graphs of network
topology, and so on.

The rest of this Chapter is organized as follows. After the description of Pajé, we
present the Triva architecture and how the implementation components are organized.
Details about the architecture are presented in three parts: input, the 3D-based and the
treemap-based visualization. There is one Section to describe each one of these categories.
We end the Chapter with a summary that lists the main decisionsabout the implementa-
tions of the Triva prototype.

5.1 Using the Generic Visualization Tool Pajé

Pajé is a generic visualization tool that has characteristics such as extensibility, inter-
activity and scalability. The architecture of the tool, depicted in Figure 5.1, is composed
of a set of interconnected modules and filters. There are modules that deal directly with
the arrival of trace data from trace files, shown on the left ofthe Figure. These are the
FileReader and the EventDecoder. Their responsibility is toconvert the events in the Pajé
file format to internal objects used by the tool. The trace data, after this transformation,
follows the path through the PajeSimulator up to the StorageController, where it is stored
in memory in scalable data structures.

The PajeSimulator is the main part of the tool, since it simulates the behavior of the
traced parallel application with real traces. As result, itgenerates high-level, generic and
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abstract objects that are called Pajé objects, detailed in the next subsection. The Figure 5.1
also shows the set of possible filters that can alter the flow ofPajé objects towards the
two visualization modules on the right: the SpaceTimeViewer and the StatViewer. More
details about Pajé’s visualization techniques are reviewed in Chapter 2.

One of the main filters of Pajé is the AggregatingFilter. The filter is responsible for
reducing the amount of information in a given container based on the level of zoom cur-
rently being used by the analyst. The filter, when used, can increase dramatically the
scalability and interactivity of the tool by giving fast response to the queries of the vi-
sualization components. Another component that is important in Pajé architecture is the
PajeTraceController, depicted on the bottom of the Figure 5.1. It controls the initialization
of the modules and the appearance of the menu with several options offered to the parallel
application analyst.

Figure 5.1: Pajé Architecture.

The components of Pajé use a protocol, composed of notifications, commands and
queries. As depicted in Figure 5.1, notifications go from theStorageController through
the filters to the visualization modules. These notifications mainly announce changes in
trace data, such as modifications in the trace structure or the presence of new information.
Commands and queries go from the visualization components tothe StorageController.
Commands are forwarded to filters to change their behavior andare generally triggered
by user interaction, such as the configuration of a given filter by Pajé’s graphical interface.
Queries, on the other hand, are responses to notifications and are generated by visualiza-
tion components to obtain information about the traces. A typical query is the request for
events information for a given time frame, that is eventually drawn in the visualization
window of Pajé. The queries and their respective responses navigate through the set of
filters. If a filter is properly configured, it can act on the data changing its information
content that will be returned to the query’s origin.

The next subsection presents notions related to the type hierarchy and the Pajé ob-
jects. Afterwards, we present a performance simulation experiment with Pajé to test the
scalability of the tool. An analysis of the obtained resultswith the main advantages and
disadvantages of Pajé adoption in the Triva prototype are presented in subsection 5.1.3.

5.1.1 Type Hierarchy and Pajé Objects

As stated in previous Section, Pajé is a generic visualization tool. This means that it
can be used to perform analysis of a wide spectrum of situations. Initially conceived to
visualize parallel and distributed applications, the generic capability of Pajé is achieved
by using abstract types that can be adapted to any kind of data. There are five types in
Pajé: container, state, variable, links and events.

A container type is the only type that contain other types, including another container
type. It has an identifier and a name, and usually a start and anend timestamp. All other
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types must be enclosed within a container. A state type may beused to represent that a
given container type can remain in a given state for an amountof time. A variable type
usually represents a metric which value changes through time. A link type is used to rep-
resent interactions between two container types; and an event type is to mark something
that happens in a point in time.

Besides the events produced by the monitored system, a Pajé trace file (OLIVEIRA STEIN;
KERGOMMEAUX; MOUNIÉ, 2002) must also have the definition of the type hierarchy
for that file. A type hierarchy is a hierarchy formed by the definition of containers, states
and so on. An example for that might be a type hierarchy that reflects the monitoring of
parallel applications composed by processes and threads. In this example, the type hierar-
chy has a container typeprocess, that has a state type to indicate the state for that process,
and a sub-container typethread, also with a state type to indicate the possible states re-
lated to that thread. Other information can be defined using the event, variable and link
types to reflect the behavior for that application. The terminology of Pajé types is used in
next Sections extensively.

Considering the presence of a type hierarchy in a Pajé trace file, the subsequent events
must instantiate the defined types, with the creation of containers and the attribution of
values to states, links, variables and events that might be present on the type hierarchy
previously defined. When treated by the Pajé Simulator component, these events are trans-
formed Pajé Objects, which are generic representations of the events present in the trace
file. These objects can be generically treated by the filters and components that are con-
nected at the output of the Pajé Simulator.

The overall organization of a Pajé trace file is composed of three parts: the declaration
of events used in the file; the type hierarchy and the timestamped events. In the first part,
all the events that can be found in the trace file must be declarated. The lines starting
with % of listing 5.1 shows the declaration of the eventPajeCreateContainer, with its
unique identifier – 4; and the rest of its fields: Time, Alias, Type, Container and Name.
The other lines show an example of use of this event, appearing usually in the third part
of the Pajé trace file, after the declaration of the type hierarchy. The first of these lines
indicates that in time 0.1, a container of name “Site Nancy” is created with the alias
Nancy. The other two lines indicate that in times 0.2 and 0.3, two containers are created:
Grelon andGrillon, both inside the containerNancy. More details about the Pajé trace
file, including all other events, can be found in (OLIVEIRA STEIN; KERGOMMEAUX;
MOUNIÉ, 2002).

Listing 5.1: Declaration of the PajeCreateContainer event.
%EventDef P a j e C r e a t e C o n t a i n e r 4
% Time d a t e
% A l i a s s t r i n g
% Type s t r i n g
% C o n t a i n e r s t r i n g
% Name s t r i n g
%EndEventDef

4 0 .1 Nancy 0 0 " S i t e Nancy "
4 0 .2 Gre lon 1 Nancy " C l u s t e r Gre lon "
4 0 .3 G r i l l o n 1 Nancy " C l u s t e r G r i l l o n "

5.1.2 Simulator Performance Evaluation

As stated, the Pajé components transform the trace data intohigher-level objects.
Among the components, the one that plays a key-role in this transformation is the Pa-
jeSimulator and the StorageController. We perform a set of performance tests in order to
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assess the scalability of these components when the number of entities present in trace
files increases. This performance evaluation has been performed both in terms of execu-
tion time and memory use.

A measurement tool was implemented to conduct this performance evaluation. Fig-
ure 5.2 shows the overall organization of the tool, where thewhite components are from
Pajé and the gray rectangle indicates the implemented module. The FileReader compo-
nent of Pajé has the definition of the chunk size, which gives the amount of data that
will be read at once by the component. For our performance tests, Pajé was configured to
have a chunk size of 500 megabytes. This was necessary to avoid multi-chunk file read
overhead that might influence a part of the obtained results.Since the largest trace file we
generated for the tests is less than 500 megabytes, all measurements are conducted with
the same software behavior.

Figure 5.2: Organization of Performance Tests developed with Pajé components.

We decided to remove the filters that depend on user interactions, since we are mea-
suring only the performance of the core Pajé components. Figure 5.2 shows the configu-
rations without these filters. The only filter we left is the AggregatingFilter, in charge of
the scalability of the answers to the queries by the performance measurement component,
and that does not require configuration by the user.

The basic algorithm for the performance measurements is to read the whole trace file
and, after its completion, navigate through all objects in the memory. The Figure 5.2 also
illustrates both steps with the dashed lines. Time measurements of both steps have been
taken and the memory utilization is obtained at the end of program execution, just before
the release of all objects stored in memory.

Synthetic generated traces were used as input for the tool. Since Pajé’s Aggregat-
ingFilter solves the scalability problem caused by the amount of data per container, the
generated trace files vary in their number of containers. As mentioned in previous Sec-
tion, containers can be used to represent processes, threads, so changing their number in
different inputs is reasonable enough to evaluate the simulator. The hierarchy used in the
trace files is flat, meaning that all containers defined in the trace file are children of the
same root container node. The different traces range from 10containers to 9 millions con-
tainers. We stopped the tests at 9 millions because of memorylimitations of the machine
used to run the tests. The containers of these inputs also have one thousand events that
change their state through time.

In order to execute the performance evaluation, we used the nodes of the clusterxiru
of the Parallel and Distributed Processing Group of the Federal University of Rio Grande
do Sul. Each node has 8 Intel Xeon E5310 (1.60 GHz) processorswith 16 gigabytes of
main memory. The number of executions for a given trace file depends on the size of the
file. For smaller files, we executed at least 100 times, but forlargest files, at least 10 times.
For all measurements for a given trace file, we removed 20% of the results (the 10% best
and the 10% worst results) to keep the obtained results within a confidence interval. The
remaining 80% of the results are used to create the average value, and then analyzed.

Figure 5.3 shows the results we obtained with the execution.The left graph depicts
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the execution time for both steps (step 1: Read and step 2: processing) of Figure 5.2. The
x-axis of this graph shows the number of millions of containers, ranging from 1 to 15
millions. The y-axis is the time in seconds. The points indicate the measured values, up to
9 millions containers. The lines depict the linear regression technique generated with the
measured points. We can clearly see that the evolution of execution times are linear, with
the read step being more costly in terms of time than the processing.
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Figure 5.3: Execution time and memory utilization obtainedduring performance experi-
ments with Pajé.

The right graph of Figure 5.3 shows the memory utilization for the same experiment.
Horizontal dimension indicates the number of millions of containers and the vertical di-
mension is the memory utilization in gigabytes. Points are measured and the line indicates
the linear regression defined with the measured points. We can also observe a linear be-
havior in memory utilization required by the Pajé components.

5.1.3 Analyzing Pajé’s Adoption

The advantages of using Pajé come from the software reuse, the scalability of the
tool and the fact that Pajé deals with generic objects. The software reuse enables a fast
development of additional components, the scalability hasbeen shown through the per-
formance evaluation tests presented in the previous Section (results in Figure 5.3). We
have been able to see that Pajé has a linear behavior in response times to queries and also
in memory utilization. In the tests, we extrapolated the number of containers to see if Pajé
can handle bigger quantities of containers in reasonable time. For one million containers,
Pajé can read the trace file in about 25 seconds and return the data to the visualization
components in about 3 seconds. Considering that each container is a process of a parallel
application, we can argue that Pajé can manage trace files of parallel applications with
one million processes in reasonable time.

The disadvantages of Pajé’s adoption could be that a specificlanguage and environ-
ment must be adapted to reuse its components. Furthermore, in terms of implementation,
the tool that uses the components of Pajé must also have a GNUstep loop. Depending
on which development environment is used, this means that another tool based on Pajé
components must have at least two internal loops that must work together.

Considering advantages and disadvantages, we decided to adopt Pajé’s components
in the Triva prototype. The main reason behind this adoptionis the possibility to handle
generic objects, allowing the Triva implementation to be also generic, and the fact that
Pajé is highly scalable. Next Section starts the Triva prototype description.
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5.2 Triva Prototype Architecture and Overview

Figure 5.4 depicts the overall organization of the prototype, composed of modules that
transform the trace data into Pajé objects, and then into thetwo types of visualizations:
the 3D and the Time-Slice with treemaps. Because of the use of generic objects, the only
trace-dependent part of the prototype is the one represented on the left of the Figure,
denoted mainly by the DIMVisual Integrator and its sub-components specific to particular
trace file formats. The white rectangles are existing libraries and tools that were re-used
with minor adaptations; gray rectangles were implemented to be part of Triva prototype.
This convention is used through the rest of this Chapter.

Figure 5.4: Triva Architecture and Implementation Layout.

The TrivaController, written in C++ language, is in charge of the initialization of all
the components and connecting them following the architecture presented in Figure 5.4. It
also presents to the user a graphical interface, created using the wxWidgets library, under
the form of a main window, with configuration options, menus and interaction mecha-
nisms. The three dimensional scene and the treemap rendering is also initially configured
and rendered.

The Pajé filters, represented by the dashed rectangle of the Figure 5.4, are the same
as the ones used by the Pajé Visualization Tool (KERGOMMEAUX;OLIVEIRA STEIN,
2003). Their implementation takes into account several issues like scalability and low re-
sponse time to requests from the user interface. The first of the filters, PajeEventDecoder,
handles the input generated by the DIMVisualReader and prepares it for the next module.
The PajeSimulator transforms the events into visual objects. This transformation consists
in the creation of a hierarchical structure of traces, usingthe basic types of Pajé. This
structure, which represents the same information as in the trace files, is optimized for the
visualization, and stored in the StorageController.

In the right most part of Figure 5.4, the interactions among the modules work in a
two-way fashion. The interactions from right to left are therequests for new data. They
are mostly triggered by user commands or changes in the configurations given as resource
description. The interactions from left to right are the responses for the requests generated
by the visualization.

To give a better description of the prototype, we split the explanation in three parts:
one that details how the input is managed by the DIMVisualReader, another that explains
the TrivaView and how the 3D visualization model is implemented, and the third named
TimeSliceView, which explains the implementation of the second visualization model
proposed in this thesis. Next sections detail these three parts in this order.



85

5.3 DIMVisualReader

The existing DIMVisual Integrator (SCHNORR; NAVAUX; OLIVEIRA STEIN, 2006)
is a software library to integrate traces from different data sources into a common format.
As of today, the integrator is capable of generating a flow of events in the Pajé file format.
The trace-dependent part of DIMVisual must be implemented to cope with specific for-
mats. During this thesis, we implemented two trace-dependent modules: a KAAPI trace
file reader and a MPI reader capable of reading traces generated by MPI applications.

Each sub-component of the DIMVisual Integrator is called a bundle, instantiated using
the GNUstep library. A bundle means a self-contained binaryobject that can be dynam-
ically loaded and linked during runtime within another program. After the initialization
of Triva prototype, the user can configure the bundle it loadsthrough the graphical in-
terface. This interface acts through a configuration protocol, implemented in the DIMVi-
sualReader module. Listing 5.2 shows the five methods of the protocol. The first three
methods are used to check the bundles available, if a bundle with a certain name is al-
ready loaded and to load a specific bundle based on its name, respectively. The last two
methods are used to configure a bundle that has been loaded. First, the function to get the
configuration options is executed, returning a hierarchical structure with the options that
must be defined to configure the bundle. These options are defined by the user through the
graphical interface of the prototype. After this definition, the method setConfiguration is
used to configure the bundle. A typical configuration holds information about trace files
location in the file system, possible synchronization file and the kind of events that must
be read by the module. Other options are also possible but arebundle-specific.

Listing 5.2: Bundle Protocol Configuration.
− ( NSArray ∗ ) d i m v i s u a l B u n d l e s A v a i l a b l e ;
− (BOOL) isDIMVisualBundleLoaded : ( NSSt r ing∗ ) name ;
− (BOOL) loadDIMVisualBundle : ( NSSt r ing∗ ) name ;

− ( NSDic t ionary ∗ ) ge tCon f igu ra t i onOpt ionsFromDIMVisua lBund le : ( NSSt r ing ∗ ) name ;
− (BOOL) s e t C o n f i g u r a t i o n : ( NSDic t ionary∗ ) con f forDIMVisua lBundle : ( NSSt r ing ∗ ) name ;

Figure 5.5 depicts the behavior of the DIMVisualReader and related components. The
DIMVisual Integrator generates as output a flow of timestamped objects that represents
the application behavior. These objects are a high-level representation of traces, composed
of Pajé events. The flow is received by the DIMVisualReader module, which implemen-
tation follows the internal protocol of Pajé (KERGOMMEAUX; STEIN; BERNARD,
2000). The responsibility of the DIMVisualReader is to transform the flow of objects in
textual representations using the Pajé file format. These representations are sent to the
existing PajeEventDecoder filter and transformed to subsequent Pajé components. The
DIMVisualReader does not send the objects directly to the PajeSimulator or the Stor-
ageController because the data generated by DIMVisual is different from the one used
internally in Pajé.

The PajeEventDecoder is the first of the chain of re-used Pajéfilters. The flow of tex-
tual events sent by the DIMVisualReader is received by this filter and transformed into a
Pajé internal representation. As can be seen in Figure 5.4, the next filter in the chain of Pajé
filters is the simulator. The simulator receives the decodedevents and creates high-level
objects based on the events. This high-level representation is basically an instantiation of
the type hierarchy with timestamped objects, such as states, events and links. It is then
stored in memory by the StorageController.

The main flow of information inside this part of the prototypecomes from the trace
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Figure 5.5: DIMVisualReader Implementation and interactions with TrivaController.

files, depicted on the left part of Figures 5.5 and 5.4, to the Pajé filters, depicted in the
dash rectangle of Figure 5.4. This flow of information, transformed in different ways
by each component, stops in the StorageController. There, itis stored in memory and
made available to the visualization parts of the Triva prototype. The flow is triggered
periodically by the main loop of the prototype, handled by the TrivaController. More
often than each half second, the controller sends a message to the DIMVisualReader to
check if there is new data available. If this is the case, the new trace data is read and sent
to the chain of filters up to the StorageController, where the flow of information stops.

Although the Triva prototype was mainly conceived to work with trace files, the imple-
mentation is also capable of handling events in an online fashion. For that, the DIMVisual
Integrator must be attached to a source of events during the observation time of an appli-
cation. Even if possible, no tests have been performed to evaluate the online use of the
prototype. The reason behind this decision is based on the amount of data generated in an
online observation and the typical centralization of the analysis. We also intend with our
approach to avoid the cost caused by the gathering and collection of data that is potentially
distributed.

5.4 TrivaView

The 3D visualization model, presented in Chapter 3, is implemented in the Triva pro-
totype through the TrivaView and related components. Figure 5.6 presents the overall
organization of these components. The TrivaView module implements the Extractor part
of the 3D model, retrieving from the flow of Pajé objects the containers and links, and
redirecting the flow to the DrawManager component. The Entity Matcher part of the
3D model is implemented in three components of the prototype: TrivaApplicationGraph,
TrivaResourcesGraph and TrivaTreemapSquarified. They receive the containers and links
from TrivaView, and the resource description in files. The Visualization part of the 3D
model, shown through the dashed line on the right of Figure 5.6, is implemented with
four components: the Triva3DFrame, which holds the 3D scene, and the three managers
that change this frame, the DrawManager, the AmbientManager and the CameraManager.

Figure 5.6: TrivaView Implementation Layout
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The details of the components related to the implementationof the 3D model are
presented in next subsections. We start the description by presenting the two main libraries
that are used in the implementation: the Ogre3D and GraphVizlibraries. GraphViz is
mainly used in the implementation of the visualization base, which description comes
next with the algorithms and file format used as resources description. We end the details
with the presentation of the 3D rendering scene.

5.4.1 External Libraries: Ogre3D and GraphViz

Two external libraries were used for the implementation of the 3D visualization model.
The first one is called OGRE - Object-oriented Graphics Rendering Engine, which is a
scene-oriented and flexible 3D rendering engine (JUNKER, 2006). It is written in C++,
designed to abstract the details of using libraries like OpenGL, and is released under the
terms of GNU Lesser General Public License. Since Ogre3D is scene-oriented, it requires
the creation of a hierarchical structure of scene nodes, attached to the Root Scene Node.
Everything that is attached to this root node is supposed to be rendered.

When creating a scene, the scene nodes do not appear. The objective of scene node
is to hold information about the position and scale in the 3D space. The objects that are
rendered in the 3D space, such as cubes, cylinders, planes, and so on, must be attached
to a scene node. All position and size operations that must beperformed on a certain
object should happen to a scene node in which this object is attached. Typical operations
applied to scene nodes are rotations, translations, roll and pitch. If one of these operations
is performed on a given scene node, all the objects that are attached to its descendants
also receives the update. This hierarchical propagation ofoperations is especially useful
since complex hierarchical structures can be changed by applying the operation to a single
scene node. Besides, it is possible to remove one of these structures simply by removing
the scene node that attaches it to the hierarchy headed by theroot scene node. If the
developer wants to make the structure visible again, it onlyhas to attach it to the main
hierarchy.

A scene is also composed by lights and camera. The Ogre rendering engine is able to
manage ambient light and other types of lights, such as point, directional and spotlight.
A scene must have at least one light to make objects appear, otherwise it is completely
black. The developer must attach a camera to the scene in order to be able to observe in a
computer what is rendered in the 3D scene. A camera is usuallyattached to a scene node
where traditional position operations are performed. Thisway, the camera can rotate and
move through the 3D space. The image that is usually seen in a computer screen window
is what is visualized by the camera.

The second library used in the implementation of the 3D modelis GraphViz (ELLSON
et al., 2002; GANSNER; NORTH, 2000). GraphViz is an open source graph visualization
software. It gathers different graph drawing algorithms inthe same tool. The basic usage
of the tool is the generation of graphical images from the definition of graphs in a textual
file format. Besides this traditional basic usage, GraphViz also works as a library that can
be incorporated in other computer programs.

GraphViz, in its library form, is used extensively in the different base configurations
of the 3D model, especially for the implementation of the application and the network/ap-
plication graph combinations. The main functions of the library areagnode, to create a
node, andagedge, to create an arc between two nodes. After the definition of the graph
with these functions, the developer must call the functiongvLayout, passing as parame-
ter the name of the algorithm to position and render the graphical representation. At this
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moment, we can have access to several information regardingthe graph, including for
example the position of the nodes in a bi-dimensional space,the size of the nodes repre-
sentation, the bezier curved lines that represented the arcs of the graph, and so on. It is this
information that is used in the Triva prototype, especiallythe part related to the position
information.

The GraphViz library is integrated in the prototype as described in the next Section,
and the OGRE concepts are used in the description of the 3D rendering of the Triva pro-
totype, in Section 5.4.3.

5.4.2 Base Configuration

Three types of base configuration were proposed in the 3D visualization model, back
in Chapter 3. This Section explains how they were implemented, using as input the visual
objects selected by the TrivaView module. Among the three visualizations, two of them
must use graphs in their implementations: the application communication pattern and the
combination of the network topology and communication pattern. We use the GraphViz
library to implement them. The other base configuration thatconsists in the treemap al-
gorithm has been implemented from scratch.

Graph of the Application Communication Pattern

The application communication pattern, represented in Figure 5.6 by the component
TrivaApplicationGraph, receives as input two types of Pajéobjects: containers and links.
As previously discussed in Section 5.1.1, containers may represent processes, threads,
machines and so on, while a link is used to represent an interaction between two contain-
ers. For this part of the implementation, the relevant information present in container and
link objects is the container identifiers. A container object has one identifier; and a link
has two containers identifiers, one for the sender and another for the receiver. The algo-
rithm that creates the graph using the GraphViz library is composed by two functions:
updateGraphData()andupdateGraphLayout(). Their simplified behavior are shown in
listing 5.3.

Listing 5.3: Algorithm to create the Application Communication Pattern based on con-
tainers and links.
g r a p h _ t ∗updateGraphData ( g r a p h _ t∗graph , l i s t c o n t a i n e r s , l i s t l i n k s )

f o r c o n t a i n e r i n c o n t a i n e r s
agnode ( graph , c o n t a i n e r . i d e n t i f i e r ) ;

f o r l i n k i n l i n k s
agedge ( graph , l i n k . s e n d _ i d e n t i f i e r , l i n k . r e c v _ i d e n t i fi e r ) ;

r e t u r n graph ;

GVC_t ∗updateGraphLayout ( GVC_t∗ l a you t , g r a p h _ t ∗graph , s t r i n g a l g o r i t h m )
gvFreeLayout ( l a y o u t ) ;
gvLayout ( l ayou t , graph , a l g o r i t h m ) ;
r e t u r n l a y o u t ;

The component responsible for the algorithm to create the communication pattern
does not control how many information arrives. It is the responsibility of the TrivaView,
in its controller form, to consider specific time intervals based on user choices. This means
that if the user wants to see the communication pattern of theapplication occurring in a
given time interval, the TrivaView must reset the graph already created by the TrivaAppli-
cationGraph component and send it only containers and linkspresent in that time frame.
This has been implemented in the prototype by letting the user choose which time frame
to analyze.
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The functionupdateGraphLayout(), shown in Figure 5.3, defines the graphical lay-
out of the graph. After calling GraphViz’sgvLayout()function, there is enough informa-
tion available to actually draw an image file with the visual representation of the graph.
Among all this information, the Triva prototype uses only the bi-dimensional position of
each node and the list of the arcs among them. So, after executing the function to up-
date the graph layout based on the nodes and edges, the TrivaApplicationGraph sends
the bi-dimensional position (x,y) of each container to the DrawManager. This manager is
responsible for creating and positioning the visual objects that represent the graph in the
visualization base of the 3D scene.

The user can also customize the layout by choosing which GraphViz’s algorithm will
be used to define the positions. As of today, there are five options:dot, neato, fdp, twopi,
circo. These options are extensively documented in the “Drawing graphs with GraphViz”
documentation (GANSNER, 2009).

Graph of the Network Topology

The second type of base configuration is the mixing of the network topology and
the application communication pattern. The implementation of this configuration is done
in the TrivaResourcesGraph component. It is based on the resource description file pro-
vided to the component, as shown in Figure 5.6, and containers and links selected by the
TrivaView component.

The resource description file matches dot’s GraphViz format(ELLSON et al., 2002).
An example of such file is shown in listing 5.4, below. This simple example shows a list
of machines that are interconnected by a switch. The component receives a configuration
file like this and use the GraphViz’s layout function to definethe position of each node in
the visualization base. As in the previous base configuration, only the bi-dimensional data
defined by one the GraphViz’s algorithm is used and passed along to the DrawManager
component.

Listing 5.4: Example of resources description showing the network topology, used to
configure the TrivaResourcesGraph component.
graph G {

" x i ru −0. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r "−− " s w i t c h " ;
" x i ru −1. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r "−− " s w i t c h " ;
" x i ru −2. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r "−− " s w i t c h " ;
" x i ru −3. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r "−− " s w i t c h " ;
" x i ru −4. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r "−− " s w i t c h " ;
" x i ru −5. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r "−− " s w i t c h " ;
" x i ru −6. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r "−− " s w i t c h " ;
" x i ru −7. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r "−− " s w i t c h " ;
" x i ru −8. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r "−− " s w i t c h " ;
" x i ru −9. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r "−− " s w i t c h " ;

}

The second input given to the TrivaResourcesGraph is made of the containers and
links, that come from the parallel application trace file. Since the component is pre-
configured with the resource description file, the objectiveis to act upon the reception
of containers by searching on which node of the network topology each container from
the application trace should be placed. It is necessary to associate to each container from
the trace to a location on the network topology, enabling thesimultaneous analysis of both
information.

There are several limitations to provide a successful association of containers from the
trace to the nodes in the network topology. Usually, the onlyinformation present in the
resources description file is the name of the machine. To provide a successful association
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with containers from the application trace files, the containers must hold some kind of lo-
cation data. This data must come from trace events, registered by the monitoring system.
In the Triva prototype, we used traces from KAAPI and MPI applications. For KAAPI,
there are events that register the name of the machine where processes execute. Our trac-
ing mechanism for MPI applications also registers the name of the machines involved in
the execution.

When the association of containers to nodes of the network topology is successful,
the TrivaResourcesGraph component sends to the DrawManagerthe position in the base
for every node of the network topology and the position of every container inside a given
node. By doing this, the DrawManager has all the information necessary to place the
visual objects in the visualization base of the 3D scene. Theposition of application con-
tainers inside a node of the network topology is also defined by a graph and implemented
inside the TrivaResourcesGraph component.

Logical representation using Treemaps

The third base configuration is a logical representation of the resources using treemaps.
For the Triva implementation, we decided to use the squarified version of treemaps (BRULS;
HUIZING; WIJK, 2000), since it provides a better width/height ratio in the nodes repre-
sentation. We implemented it in the component named TrivaSquarifiedTreemap, receiving
as input two types of data: a resource description file and thecontainers of the application
trace.

The format used for the resource description file that has to be provided to the com-
ponent is in the Property List Format (APPLE, 2008). Figure 5.5 shows an example of
this file. The example defines a hierarchical organization ofmachines, that are grouped
by cluster, then by site which composes a grid. For each node of the hierarchy in the de-
scription file, there must be an attribute named type that indicates the type of the node on
that level.

Listing 5.5: Example of resources description showing the logical organization of re-
sources, used to configure the TrivaTreemapSquarified component.
{

name = Grid5000 ;
t ype = g r i d ;
c h i l d r e n = (

{
name = p o r t o a l e g r e ;
t ype = s i t e ;
c h i l d r e n = (

{
name = x i r u ;
t ype = c l u s t e r ;
c h i l d r e n = (

x i ru −0. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r ,
x i ru −1. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r ,
x i ru −2. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r ,
x i ru −3. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r ,
x i ru −4. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r ,
x i ru −5. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r ,
x i ru −6. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r ,
x i ru −7. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r ,
x i ru −8. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r ,
x i ru −9. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r ,
) ;

} ,
) ;
} ,

) ;
}
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The treemap algorithm is a space-filling technique that occupies all the space available
for its drawing. The user defines, through the prototype graphical interface, the area in the
visualization base that will be used to render the treemap. This information is passed to
the algorithm implementation which starts a top-down and recursive traversal through the
input hierarchy that came from the description file. After the execution, all the nodes have
their rectangles and their position defined in the bi-dimensional space of the visualization
base.

The other type of input for the component is composed of containers from the paral-
lel application trace. This second input is necessary because the TrivaSquarifiedTreemap
must also define the position in the visualization base for every container of the application
trace. This information will be used later by the DrawManager to place the containers on
top of the areas reserved for a certain machines. The same association between resource
and application container, present in the previous visualization base configuration, must
be made here.

We have also implemented in the prototype the possibility ofrelating the size of each
rectangle that represents a machine on the visualization base with the trace characteristics.
This calculation is made depending on the options that the user chooses. Up to now, it is
possible to use the number of containers in a given machine, the count of a specific states
that appear in containers, and the amount of time of a given state in a container. After
defining which metric will be used as squares size in the visualization base, the values
for the leaf nodes of the hierarchy are defined and the treemapis computed. This can be
performed at any time during an analysis.

As output, the TrivaSquarifiedTreemap send to the DrawManager the computed treemap
data structure, that contains the position of each node and container.

5.4.3 Rendering the 3D Scene

The rendering of the 3D scene is controlled by three different managers: Ambient-
Manager, CameraManager and DrawManager. The AmbientManager is responsible for
creating the initial static drawings of the 3D scene and to manage the dynamic time scale
rendered in the vertical axis. The static drawings do not change during the visualization of
a trace file, but the timescale changes depending on interaction with the user. Figure 5.7
shows the scene nodes and entities organization created by the manager. The black circles
represent scene nodes and gray squares represent entities that appear in the 3D scene. The
static part is on the left of the vertical dashed line, and is composed of the Origin, and the
three axis scene nodes, the ground plane and the three lines to show the three dimensions
in the scene.

The dynamic time scale managed by the AmbientManager is depicted on the right of
Figure 5.7, withN scene nodes and the same number of textual entities to indicate the
timestamps that are rendered along the vertical axis of the scene. Whenever the time scale
is changed by the user, all the objects on the right are freed and a new scale drawing is
placed. The scene nodes of the time scale are attached to the YAxis scene node, but they
are placed in the vertical axis according to the time scale currently in use.

The CameraManager is another component that helps to manage the 3D scene. Its
responsibility is to create and track the camera entity. Figure 5.8 depicts the Ogre3D’s
components used to manage the camera: there is a CameraNode, child of the root scene
node, and two entities attached to it, the camera itself and alight that always point to the
direction where the camera is looking at.

Configured by the TrivaController, the CameraManager also tracks the mouse and



92

Figure 5.7: Ogre3D’s scene node and entities created by the AmbientManager to maintain
the static part of the 3D scene and the time scale.

Figure 5.8: Ogre3D’s scene node created by the CameraManagerto keep the camera entity
of the 3D scene.

some keys of the keyboard to move the camera through the 3D scene. The implementation
receives as input the arrow keys of the keyboard and transforms them into operations that
are applied to the CameraNode. Every time the user uses one of the arrows, the prototype
calculates a vector to move the camera. This vector is then applied to the CameraNode
through a translation operation that also considers the orientation of the node in the 3D
space. The manager also tracks the moves made by the user withthe mouse. Based on
them, the prototype determines two angles, one relative to theX plane and another rel-
ative to theY plane, to be applied to the camera node through the operations yaw and
pitch, respectively. This allows the camera to point to other directions based on mouse
movements.

Rendering and Placement of the Visualization Base

The DrawManager is the main component that renders the 3D scene. It receives as in-
put the configuration of the base already calculated by previous components, the positions
of the containers in the base, and the timestamped Pajé objects to be placed in the vertical
dimension according to their containers. The DrawManager takes these inputs and start
the creation of a hierarchical structure of Ogre3D’s scene nodes and entities. This struc-
ture is then rendered by the Ogre3D library in the Triva3DFrame of the Triva prototype.

Figure 5.9 shows the hierarchical structure that is createdby the DrawManager to
place the objects in the visualization base according to theinput. As in previous Figures,
the black circles indicate scene nodes, and the gray squaresmean entities. On the left of
the Figure, there is the scene node CurrentVisu, child of the root scene node. The use of
this scene node enables the possibility of drawing more thanone trace visualization on the
same 3D scene. At this time, the prototype has only one of suchnode. The CurrentVisu
scene node has two children: the ContainerPosition and the VisualizationBase. As the
name indicates, the container position scene node containsa list of scene nodes (C1,
C2, ...) that holds the position in the base of each container that comes as input to the
DrawManager component. Each of these scene nodes has a sub-hierarchy composed by
the visual representation and a 3D text (Draw and Text scene nodes). Each container scene
node is used latter when the timestamped objects are attached to the scene. The other
child of the CurrentVisu is the VisualizationBase scene node.It keeps the structure for the
current visualization base. In the Figure, the ResourcesGraph and the SquarifiedTreemap
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structures are depicted. The first one is the structure used for the drawing of the network
topology and application graph. The second is the one that shows the treemap as base.

Figure 5.9: Ogre3D’s scene nodes created by the DrawManagerto render the 3D scene
for the visualization model.

The ResourcesGraph of Figure 5.9 maintains a dynamic list of scene nodes to repre-
sent the resources (R0, R1, ...). The resources are the ones sent by the TrivaResources-
Graph component as part of the network topology read from theconfiguration file in
GraphViz’s format. Besides the information about the resources, there is also a list of
edges (E1, E2, ...) that are children from the ResourcesGraph scene node and repre-
sent the lines that interconnect the resources’s square in the base. The scene nodesR0
... Rn are positioned in the bi-dimensional visualization base according to the positions
calculated by the TrivaResourcesGraph component. The position of the edges are then
calculated based on who they connect.

The SquarifiedTreemap scene node of Figure 5.9 and its sub-hierarchy (L0, L1 −

0, L1 − 1, L1 − 2, ...) are created dynamically based on the configuration sent by the
TrivaSquarifiedTreemap component of the Triva prototype. The sub-hierarchy reflects the
hierarchy that comes from the logical organization of the configuration file. Each scene
node has a square drawing attached to an auxiliary scene nodeto maintain scale and
positioning.

Besides the two types for base configuration already described, there is also the appli-
cation communication graph. This configuration, generatedby the TrivaApplicationGraph
component, is always present in the visualization. The scene nodes, the lines and possible
arrows of its representation remain attached to the CurrentVisu scene node directly. This
attachment can be controlled through the graphical interface, allowing the user to enable
or disable to appearance of the communication graph of the application being analyzed.

As stated earlier, each Ogre3D scene node must have a defined position in the 3D
space. This position is represented using the 3 coordinates: x, z and y. In Figure 5.9, all
the scene nodes (the black circles) have the y coordinate setto zero. This places all scene
nodes on the visualization base, as defined in the 3D visualization model Chapter. The
other two coordinates (x and z) of all scene nodes of Figure 5.9 are defined by one of the
three components that implement the entity matcher (TrivaApplicationGraph, TrivaRe-
sourcesGraph and TrivaSquarifiedTreemap).
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Rendering Timestamped Pajé Objects

The DrawManager also receives as input a flow of timestamped Pajé objects to be
rendered in the 3D scene. In Section 5.1.1, we detailed that time-related objects are states,
links, variables and singular events. Among these objects,we implemented only the 3D
representation for states and links. These two types of objects can describe the behavior
of several types of applications, since they can represent the execution of a function or a
piece of code and also interactions among application’s components.

Figure 5.10 shows the structure made by the DrawManager whendrawing states and
links into a 3D scene. The states are attached to the scene nodes of containers (fromC0 to
Cn). In the example of the Figure, each container holdsn states, fromS0, C0 to Sn,C0.
The main reason for attaching the states to the containers scene nodes is that by doing so
the states are placed exactly on top of the representation ofcontainers in the visualization
base. The only position information that must be computed bythe DrawManager is the
vertical position in the time axis. This computation for each state allows the correct place-
ment of a visual representation of the state. This representation is a cube, and the color of
the cube is associated to the value for that state. By doing this, all states of the same type
will have the same color, facilitating their identification. The color scheme in fact is the
same as the one used in traditional space-time visualizations.

Figure 5.10: Ogre3D’s scene nodes created by the DrawManager to render the times-
tamped Pajé objects in the 3D scene.

The second type of timestamped-objects rendered is the links. When received by the
DrawManager, links are transformed into a scene node that isattached to the CurrentVisu
scene node. Figure 5.10 shows an example for that with the linksLink0 to LinkN scene
nodes. Each link scene node has also a visual representationthat is a line. The position of
this line in the base dimensions are calculated based on the origin and destination of the
links. For that, the DrawManager component obtains the x andz position of the containers
involved (since a link is always between two containers) andcreates the line between these
two points in the base. After this, the DrawManager attributes the y coordinate of the
beginning and end of the line by using its two timestamps: onethat indicate the beginning
of the link and another the end. With the three dimensions defined for each extremity of
the line, it is finally rendered in the 3D scene.

5.5 TimeSliceView

Previous Section described all the aspects of the implementation of the 3D visual-
ization model. Most of these aspects are related to the TrivaView prototype component.
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Now, we present the implementation of the visual aggregation model proposed in this
thesis. The main component of this implementation is the TimeSliceView, as can be seen
in Figure 5.11. Another component of this part of the Triva prototype is Triva2DFrame,
which responsibility is to draw the treemap in the visualization window of the prototype.

Figure 5.11: TimeSliceView Implementation Layout with Notifications.

Figure 5.11 also details the interactions and notificationsthat happen during the TimeS-
liceView execution. The arrival of objects from the Pajé simulator (see Figure 5.4 for de-
tails) is depicted on the left of the Figure. The user interaction with the prototype can cause
three different types of notifications that go from the Triva2DFrame to the TimeSlice: the
change of the window size, a new aggregation level and the change of the time slice. All
these notifications trigger the same chain of execution in the TimeSliceView component:
creation of the behavior hierarchy, possible application of the aggregation operators and
re-computation of the treemap. The resulting treemap configuration is sent as a response
to the notifications and then rendered by the Triva2DFrame component.

Next Section presents the implementation that creates the behavior hierarchy. After-
wards, we present some information regarding the drawing procedures using the wxWid-
gets library functions.

5.5.1 Creating the Hierarchy

The Pajé objects and the type hierarchy of a trace in the Pajé format were described in
Section 5.1.1. We observed that there are five different types of objects: container, state,
link, event and variable. Besides, there is also a definition of a type hierarchy for each
trace file in the Pajé file format. This definition enables, fora given trace file, to say that a
process of a parallel application is of type container, and its behavior is of type state, for
instance.

Figure 5.11 shows the implementation layout of the TimeSliceView and related com-
ponents. The TimeSlice component is responsible for creating the behavior hierarchy that
will be shown in the visualization window through the Triva2DFrame component. In or-
der to calculate the behavior hierarchy, the TimeSlice usesa set of methods from the Pajé
filter protocol. The listing 5.6 shows the five methods (in theObjective-C language) of
the protocol used by the TimeSlice component. The first is used to navigate through the
type hierarchy, mainly through the containers, returning an array of containers type that
are children of another container type. The second method isjust used to confirm if a type
is a container type (it can be of another kind, such as state, link, etc.). The third method is
used to retrieve the Pajé type of an instance (container, state, link, event or variable). The
fourth method returns an enumerator for all containers of the given type inside the given
container instance. The last method returns an enumerator of the entities of the given type
inside the given container between two timestamps.
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Listing 5.6: The five methods of the Pajé protocol used by the TimeSlice component to
create the behavior hierarchy.
− ( NSArray ∗ ) con ta i nedTypesFo rCon ta i ne rType : ( P a j e E n t i t y T y p e∗ ) c o n t a i n e r T y p e ;

− (BOOL) i s C o n t a i n e r E n t i t y T y p e : ( P a j e E n t i t y T y p e∗ ) e n t i t y T y p e ;

− ( P a j e E n t i t y T y p e ∗ ) e n t i t y T y p e F o r E n t i t y : ( id < P a j e E n t i t y >) e n t i t y ;

− ( NSEnumerator ∗ ) enumera to rO fCon ta ine rsTyped : ( P a j e E n t i t y T y p e∗ ) e n t i t y T y p e
i n C o n t a i n e r : ( P a j e C o n t a i n e r∗ ) c o n t a i n e r ;

− ( NSEnumerator ∗ ) e n u m e r a t o r O f E n t i t i e s T y p e d : ( P a j e E n t i t y T y p e∗ ) e n t i t y T y p e
i n C o n t a i n e r : ( P a j e C o n t a i n e r∗ ) c o n t a i n e r

fromTime : ( NSDate ∗ ) s t a r t
toTime : ( NSDate ∗ ) end

minDura t ion : ( doub le ) minDura t ion ;

The TimeSlice component creates the behavior hierarchy using the methods above.
The containers become the nodes of the hierarchical structure. The values of leaf nodes
are calculated based on instances of the state type. At this moment, the implementation
does not handle links, events and variables. Listing 5.7 shows the implemented algorithm
to create the behavior hierarchy. Each time the methodcreateBehaviorHierarchyis called,
a node in the hierarchy is created. After the recursive call we can notice in the listing, the
created nodes are attached to the parent node. The last line of the listing is executed when
no further recursion is necessary, since the container doesnot have any sub-container.
Being a leaf node of the behavior hierarchy, the node must find itself a value by calling
thetimeSliceAtmethod informing the container and its type.

Listing 5.7: The implementation that creates the hierarchical structure based on the con-
tainers of the trace file.
− c r e a t e B e h a v i o r H i e r a r c h y : c o n t a i n e r I n s t a n c e

c o n t a i n e r T y p e = [ f i l t e r e n t i t y T y p e F o r E n t i t y : c o n t a i n e r In s t a n c e ] ;
l i s t O f T y p e s = [ f i l t e r con ta i nedTypesFo rCon ta i ne rType : co n t a i n e r T y p e

i n C o n t a i n e r : c o n t a i n e r I n s t a n c e ] ;
f o r e a c h type i n l i s t O f T y p e s

i f [ f i l t e r i s C o n t a i n e r E n t i t y T y p e : t ype ]
/∗ R e c u r s i v e c a l l t o c r e a t e sub−nodes ∗ /
l i s t O f C o n t a i n e r s = [ f i l t e r enumera to rO fCon ta ine rsTyped: t ype

i n C o n t a i n e r : c o n t a i n e r I n s t a n c e ] ;
f o r e a c h c o n t a i n e r i n l i s t O f C o n t a i n e r s

c r e a t e B e h a v i o r H i e r a r c h y : c o n t a i n e r
e l s e

/∗ C a l l t h e Time−S l i c e i m p l e m e n t a t i o n ∗ /
t i m e S l i c e A t : c o n t a i n e r I n s t a n c e ofType : t ype

The implementation of the methodtimeSliceAtis detailed in listing 5.8. The method
receives as parameter the container and the state type that must be used to compute the
values. The enumerator method, as previously stated, returns all the instances of that state
type for the period of time betweensliceStartTimeandsliceEndTime. After receiving the
list of state instances, the algorithm iterates through each of them, adding its value for
each possible state name. This happens in the last method of listing 5.8. For example,
considering a process as a container with a state: this statemay have different names in
an execution (blocked, running, barrier and so on). The lastmethod of thetimeSliceAt
implementation will attribute the value for each of these names that corresponds to the
intersection of the time slice and the duration of the state.If multiple occurrences appear
in the same slice of time, the values are accumulated.

After the execution of implementations listed in 5.7 and 5.8, the containers and states
will be reflected in the hierarchy as nodes and leaves, respectively. The leaves, which are
created based on state Pajé instances, have values associated to them. The next step in the
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algorithm is to define the values for the intermediary nodes.This is implemented with a
bottom-up algorithm that define the values of a node based on asum of the values of its
children.

Listing 5.8: The implementation that returns a value for a given containers based on the
states instances for that container.
− t i m e S l i c e A t : c o n t a i n e r I n s t a n c e ofType : t ype

l i s t O f S t a t e s = [ f i l t e r e n u m e r a t o r O f E n t i t i e s T y p e d : t ype
i n C o n t a i n e r : c o n t a i n e r I n s t a n c e
fromTime : s l i c e S t a r t T i m e
endTime : s l i ceEndT ime ]

wh i le s t a t e i n l i s t O f S t a t e s
s ta teName = [ s t a t e name ]

s t a r t T i m e = [ s t a t e s t a r t T i m e ]
endTime = [ s t a t e endTime ]

l a t e r S t a r t = [ s t a r t T i m e l a t e r D a t e : s l i c e S t a r t T i m e ]
e a r l i e r E n d = [ endTime e a r l i e r D a t e : s l i ceEndT ime ]

addValue : [ e a r l i e r E n d t i m e I n t e r v a l S i n c e D a t e : l a t e r S t a rt ]
forName : s ta teName

The previous algorithms, one to create the hierarchical structure and the other to define
the value for leaf nodes, are sufficient to apply the squarified treemap visualization. The
result of these algorithms is a hierarchical organization of objects, following the object-
oriented pattern. The squarified treemap algorithm is implemented in the class that defines
this hierarchical organization. This implementation is called just before sending the result
to the Triva2DFrame component, which finally renders the treemap in the window.

In Chapter 4, we also presented the aggregation algorithm that is applied to simplify
the behavior hierarchy created by the Time-Slice algorithm. The aggregation model is
also implemented inside the TrivaView component, through amethod namedlimitHier-
archywhich receives as parameter the hierarchy to be simplified and the new depth of the
tree. The implementation of this method is shown in listing 5.9. The method is basically
divided in two parts, one that does the aggregation, and another to do the recursion in the
hierarchical structure. The first part, where the aggregation takes place, is implemented by
obtaining all the children for a given node, then removing these nodes from the original
structure. The obtained nodes are summarized based on the similar attributes. For exam-
ple, if an instance of machine container has multiple process containers as children, which
in their turn have two types of states (each one with a value);the aggregation algorithm
will sum all the values of the same state type, remove all the nodes process and create a
new node that is child of machine with the resulting aggregated value.

Listing 5.9: Recursive implementation of the visual aggregation technique, applied to
simplify a hierarchical structure generated by the Time-Slice algorithm.
− l i m i t H i e r a r c h y : h ie ra rchyNode toDepth : dep th

i f [ h i e ra rchyNode dep th ] == dep th &&
[ h ie ra rchyNode dep th ] != [ h ie ra rchyNode maxDepth ]

/∗ C r e a t e a summary o f t h e c h i l d r e n a t t h i s dep th∗ /
c h i l d r e n = [ h ie ra rchyNode c h i l d r e n ] ;
[ h i e ra rchyNode removeA l lCh i l d ren ]
summary = [ h ie ra rchyNode summarize : c h i l d r e n ]

/∗ I n s e r t i n g summary nodes back t o t h e t r e e∗ /
f o r e a c h sum i n summary

[ h ie ra rchyNode addCh i ld : sum ]
e l s e

/∗ r e c u r s e ∗ /
f o r e a c h c h i l d i n [ h ie ra rchyNode c h i l d r e n ]

[ s e l f l i m i t H i e r a r c h y : c h i l d toDepth : dep th ]



98

In the implementation of the aggregation method, we used only the sum function to
do the aggregation. This, however, can be easily changed in the implementation or even
transformed in an option of the user. The possible operatorsfor the aggregation can be
any of the operators discussed in Section 4.3.1.

5.5.2 Drawing with the wxWidgets library

After the creation of the behavior hierarchy, in its original or aggregated form, the re-
sponsibility of the Triva2DFrame component is to actually draw the rectangles, lines and
textual representations. As previously stated, the component receives from the TrivaView
a hierarchical object-oriented structure composed of nodes with treemap information al-
ready defined, based on the values defined by the Time-Slice algorithm and the visual
aggregation technique.

The Triva2DFrame receives as input this hierarchical structure and goes through it
obtaining information during drawing procedures. Some functions from the wxWidgets
library (SMART; HOCK; CSOMOR, 2005) are used to draw in the visualization window:
DrawRectangle, DrawLine andDrawText. The first function is used to draw the rectan-
gle that represents a given node of the hierarchy. The information passed as parameter to
this function are the width, the height and the bi-dimensional position in the visualiza-
tion window. TheDrawLine function is used to draw the timeline in the bottom of the
visualization window. It appears only when the user moves the mouse pointer close to the
bottom region of the window. TheDrawTextfunction is used when the user click into a
rectangle: additional information about what that rectangle represents is drawn.

5.6 Summary

This Chapter has presented the implementation of the two visualization models pro-
posed in this thesis. The first one deals with the three-dimensional representation of ap-
plication traces to help developers visualize program behavior together with resources or-
ganization. The second is about the visualization scalability problem through a technique
called Time-Slice that describes the program behavior in a hierarchy for a given time in-
terval. This second technique is complemented by an aggregation model that, combined
with a treemap representation, achieves scalable visualizations.

The two techniques are implemented in the Triva prototype, which is composed of
several existing libraries and tools, such as the Pajé, GraphViz, Ogre3D, wxWidgets and
others. The first part of the Chapter evaluates the advantagesand disadvantages of using
some Pajé components, especially its simulator component.Through a set of performance
experiments, we shown that the current implementation of the tool is scalable enough to
most existing parallel applications.

The second part of the Chapter presents the Triva prototype architecture and its com-
ponents. We present the implemented DIMVisualReader module, capable of attaching
the DIMVisual into the Pajé components directly, without passing through a file in its
file format. Then, we present the details of the implementation of the three-dimensional
visualization model, giving special attention to the description of the base configuration
and how the 3D rendering is implemented. We end the Chapter with the implementation
description of the Time-Slice technique and the aggregation model.

The next Chapter presents the results obtained with the Trivaprototype in different
scenarios. The scenarios range from real experiments in theGrid’5000 platform to the
use of synthetic traces to show the resulting visualizations obtained with the prototype.
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6 RESULTS AND EVALUATION

The last Chapter has presented the Triva prototype. It implements the two visual-
ization models proposed in the thesis: the three-dimensional and the visual aggregation
model. The Chapter details the general architecture of the tool, the implementation of
the components and the external libraries used to support the handling of graphs and the
three-dimensional scene.

The current Chapter shows the results we obtained with the prototype through the
visualization of different traces, some of them generated synthetically, and others obtained
with real executions of applications in a distributed and parallel platform. The results are
composed of the visualizations generated by the prototype when the traces are used as
input. The main objective is to verify if the 3D visualizations enable a better understanding
of the traces considering the network topology and if the treemap visualizations computed
by the proposed models allow large-scale analysis. For that, the results are divided in two
parts: one that shows the three-dimensional visualizations, with the representation of the
network topology; and the other part is composed of treemap views, trying to solve the
visualization scalability problem of program analysis. Before diving into the description
of the results, we detail in next Section the different traces used as input to the prototype.

6.1 Traces Description

As previously described in Chapter 5, the prototype must receive as input a flow of
events in the Pajé format. The flow of events can be generated by using the DIMVisual-
Reader component, or a file containing all the events. The visualizations offered to the
user are always the same, no matter which of these options areused to enter trace data in
the prototype.

This Section explains how the traces used in the prototype were generated or collected.
By generation we mean that a set of traces used in the validation of the tool were synthet-
ically created. The synthetic traces are necessary to facilitate the analysis of the prototype
and the visualizations it creates. An example to justify theuse of synthetic traces is the
complexity of finding real traces to large-scale situations. The generation of such traces
that reflects the behavior of applications running in many thousands of nodes is only pos-
sible if a large amount of resources is available, which is not the case. For these reasons,
we implemented two tools to generate synthetic traces. One of them generates large-scale
traces for the visual aggregation model implementation, and the other complex topologies
for the three-dimensional visualization.

Other set of traces were collected during the execution of parallel applications in dis-
tributed and parallel platforms. KAAPI and MPI applications were used in this case, the
former being executed in the french Grid’5000 platform and the later in a cluster of the
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Federal University of Rio Grande do Sul, in Brazil. MPI applications are used for the sake
of demonstrating how the prototype can handle traces from different types of communi-
cation libraries.

We believe that these two types of traces – synthetic and collected – illustrate common
problems that are faced by parallel application developersin different situations. Next
sub-sections detail how these traces were obtained.

6.1.1 Synthetic Traces

Section 5.1.1 detailed that a Pajé trace file is composed by three sections: the header,
the type hierarchy and the timestamped events. The header isthe only static part of file,
where events are defined with their particular fields. The type hierarchy defines the types
that will be present – such as cluster, machine, processor, processes, functions – and the
hierarchy among them. The type hierarchy must be followed through the rest of the file in
the timestamped events region.

Large-Scale Hierarchies

The first synthetic trace generator tool was created targeting the visual aggregation
model. The tool is written in the Python language and receives as parameter a hierarchical
structure that configures the generation of the trace. Listing 6.1 shows an example of con-
figuration file that is passed as parameter to the tool. The fileis organized hierarchically
to reflect the type hierarchy that is generated as output. Each level (eg, Site, Cluster, Ma-
chine and Processor) has an attributecontainerthat indicates the number of instances of
that type that must be created by the tool. In the example, theconfiguration tells the tool
to create 5 different sites, each one with 3 clusters, each cluster with 100 machines and
each machine being composed of 4 processors. The attributesaliasandnameare used by
the tool to comply with a trace generation required by the Pajé format.

Listing 6.1: Example of configuration file for the large-scale trace generation tool.
c o n f i g = {

’ c o n t a i n e r ’ : 5 , ’ name ’ : " S i t e " , ’ a l i a s ’ : "S " ,
’ c h i l d ’ : {

’ c o n t a i n e r ’ : 3 , ’ name ’ : " C l u s t e r " , ’ a l i a s ’ : "C" ,
’ c h i l d ’ : {

’ c o n t a i n e r ’ : 100 , ’name ’ : " Machine " , ’ a l i a s ’ : "M" ,
’ c h i l d ’ : {

’ c o n t a i n e r ’ : 4 ,
’ name ’ : " P r o c e s s o r " ,
’ a l i a s ’ : "P " ,
’ s t a t e a l i a s ’ : "S " ,
’ s ta tename ’ : " S t a t e " ,

}
}

} ,
’ a p p d u r a t i o n ’ : 20 ,
’ cos ine−max−x−ax is−va lue ’ : 7 . 5 ,

}

Still on Figure 6.1, the last level of the structure – Processor in the example – receives
additional configurations:statealiasandstatenameindicating the presence of a state on
the containers created in that level. The time duration of the synthetic trace is configured
through theappduration. The parametercosine-max-x-axis-valuecontrols the distribution
of state values for the instances of containers in the last level. Its value is used to configure
the cosine function from the interval0 to the configured value. The tool maps the contain-
ers instances of the last level to thex axis of the cosine to find the amount of time – in
percentage from 0 to 1 in they axis of the function – a given container stays in one of two
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possible states. The remaining percentage is used to set theamount of time to the other
state.

The graph of Figure 6.1 is configured using the data of the example in listing 6.1.
The graph is used to define the duration of each of the two states available for every leaf
instance container of the hierarchy. Using the configurations, the cosine function varies
within the x interval [0, 7.5]. There are 6000 processors (result of the multiplication of
all containerattributes value:4 × 100 × 3 × 5). The Figure also shows the definition of
duration for the two states for the container number 4000. The value of the corresponding
x value in the lower scale is 5. The cosine of 5 is 0.28. Since thevalues of cosine vary
between -1 and 1 in the y-axis, we consider that this value of 0.28 represents 64% of the
interval[−1, 1]. So, this percentage is used to define the amount of time of theState-0 for
the container 4000, which is 12.8 seconds considering the total application duration of 20
seconds. The rest (7.2 seconds) is left to the State-1 of container 4000.

 0  1  2  3  4  5  6  7

 0  1000  2000  3000  4000  5000  6000

value for cosine equation

number of leaf container

State-0 State-0

State-1

State-1

Division for container 4000:
64% for State-0, 36% for State-1

Figure 6.1: State distribution among leaf containers usingthe cosine function.

Although the tool is implemented using the cosine function,it could be easily adapted
to use other trigonometric functions. The way the state generation is implemented limit
the study of different time intervals, as defined by the visual aggregation model. The
positive side of the implementation is that it allows the fast generation of traces composed
of hierarchies with thousands of nodes. The implemented trace generation tool takes less
than 3 seconds to generate a hierarchy with more than 150 thousands leaf containers in a
four-level hierarchy. A random state value generation was considered to implementation,
but initial tests have shown that the execution time for large-scale hierarchies is too big
when using a random number generator.

Typical Communication Patterns and Complex Topologies

The second synthetic trace generator tool targets the threedimensional approach. The
main objective is to generate trace files with traditional communication patterns, such
as the ones used by master-slave or divide and conquer parallel applications. Listing 6.2
shows the configuration file used by this tool. It earns the basic configurations from the



102

previous script, letting the user configure a hierarchical organization of containers if nec-
essary. We implemented four types of communication patterns: ring, fully connected, star
and hierarchical star. The user configures the type of pattern used through the optionapp-
pattern. If the user uses the hierarchical star communication pattern, an additional option
callednchildrenis necessary to configure the number of children in the communications.
For example, if thenchildrenparameter is set to 2, every container will communicate with
other 2 containers. Each one of these two containers will communication with other 2 con-
tainers, and so on, forming a hierarchical communication pattern. The last options in the
bottom of the listing are related to the Pajé links configuration. The optionslinkalias and
linknameare used to configure the type hierarchy for the Pajé trace file, and thelinksource
andlinkdestindicate which types of container can be used by these links.

Listing 6.2: Example of configuration file for the synthetic communication pattern trace
generation.
c o n f i g = {

# h i e r a r c h i c a l d e f i n i t i o n s e c t i o n
’ c o n t a i n e r ’ : 20 , ’name ’ : " Machine " , ’ a l i a s ’ : "M" ,
’ s t a t e a l i a s ’ : "E " , ’ s ta tename ’ : " S t a t e " ,
’ a p p d u r a t i o n ’ : 20 , ’ cos ine−max−x−ax is−va lue ’ : 7 . 5 ,
# ’ c h i l d ’ : {} # h i e r a r c h y wi th on ly one l e v e l i n t h i s example

# communicat ion p a t t e r n s s e c t i o n
’ a p p p a t t e r n ’ : " r i n g " , # r i ng , o r f u l l , o r s t a r , o r h i e r a r c h ic a l−s t a r

# p a r a m e t e r s t o " h i e r a r c h i c a l−s t a r " a p p p a t t e r n
’ n c h i l d r e n ’ : 2 , #number o f c h i l d r e n per node

# l i n k s c o n f i g u r a t i o n
’ l i n k a l i a s ’ : "P " , ’ l inkname ’ : " L ink " ,
’ l i n k s o u r c e ’ : "M" , ’ l i n k d e s t ’ : "M" ,

}

As previously stated, the four types of communication pattern that can be generated
by the tool are the ring, the fully connected, the star and thehierarchical star. In the ring
pattern, each container communicates exactly with other two containers, forming a single
and continuous pattern among all nodes. Figure 6.2(a) is an example of this pattern when
there are 6 containers participating of the communications.

(a) Ring (b) Fully connected (c) Star (d) Hierarchical Star

Figure 6.2: Different communication patterns generated bythe second synthetic trace
generation tool.

Figure 6.2(b) shows the fully-connected communication pattern, where all containers
communicate with all other containers. Figure 6.2(c) showsthe star pattern, where all
nodes communicate with only one node. This type of pattern istypically found in master-
slave parallel applications. The last communication pattern, represented in Figure 6.2(d),
is a modified version of the star pattern, but with a hierarchical organization where each
node has communications with other two nodes. In the exampleof Figure 6.2(d), the
hierarchy is binary, but other configurations are also possible.
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6.1.2 KAAPI Traces

KAAPI (GAUTIER; BESSERON; PIGEON, 2007) stands for Kernel forAdaptative,
Asynchronous Parallel and Interactive programming. It is alibrary that can be used by
C++ developers to create parallel applications. The applications are composed of tasks
and the data dependencies among them. In the beginning of theapplication execution, the
KAAPI kernel spreads the tasks among the computing resources available. Afterward,
during application execution, the kernel performs load balancing through work stealing
algorithms.

Each KAAPI process executes the tasks defined by the programmer. When the tasks
given to a certain process are finished, the process tries to “steal” the tasks from other
processes of the application. The target process that suffers a steal is chosen randomly
by the originating process. By doing this random steal, KAAPIguarantees good load
balancing for the application at a small cost.

The KAAPI library is internally organized in levels. Common levels of the imple-
mentation include the generic kernel work stealing of threads (Kernel), data flow graph
management (DFG), remote work stealing (WS), network (NET),static scheduling (ST)
and the fault tolerant (FT) levels. Every level implements asub-set of KAAPI functionali-
ties. The FT level (FAULT TOLERANCE AND AVAILABILITY AWARNESS INCOM-
PUTATIONAL GRIDS, to appear 2009), for instance, is responsible for dealing with re-
sources outage, such as the loss of processes and tasks during runtime.

Each level is instrumented in the implementation so its behavior can be traced during
application runtime. In our work, we have used the events generated in the generic kernel
(KERNEL) and work stealing (WS) levels. These events registerthe remote work stealing
activities of KAAPI library, such as the stealing attempts when a given process remains
without any task to execute. Figure 6.3 shows the KAAPI events that are considered in
our work and how their combination define the states of a KAAPIprocess. The events
Core_Idle_0and Core_Idle_1are registered in the Kernel level and define the period
on which a given process is not executing tasks defined by the programmer. The events
Core_RstealandCore_RetRstealdefine the moment where the KAAPI library is trying
to steal a task from another process. Additional information if the steal was successful
or not, and the target process, are also registered. All these events are registered by the
K-Processorthreads of the application, which are responsible for executing tasks during
runtime.

Figure 6.3: KAAPI Events to monitor the remote work stealingactivities of the library.

Still on Figure 6.3, the combination of the KAAPI events allows the definition of
three possible states for a K-Processor: IDLE, RSTEAL and RUN. The IDLE state is
defined as the time where the processor is not executing tasks. During the IDLE state, the
K-Processor can execute a number of remote work stealing requests, which defines the
RSTEAL state. The RUN state is defined by the period where a given K-Processor is not
in the IDLE state.

The traces of KAAPI applications have been obtained in the Grid’5000 platform. For
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every execution, the processes register on which machines they were executed, the be-
ginning timestamp, and the global KAAPI identifier. This information is registered by
another level of the KAAPI stack, named Util. The registereddata is used to properly
convert the information to Pajé traces after the execution.

Considering the Grid’5000 platform as execution environment, KAAPI registers the
name of the machines used in an application execution. The name of the machines, as
obtained by the Domain Name Server (DNS) of Grid’5000, allowthe definition of a type
hierarchy with the following levels: Grid, Site, Cluster, and Machine. All this information
is obtained from the machine names. For instance, during a KAAPI execution, each pro-
cess registers the name of the machine where it executes. Considering a Sophia-Antipolis
machine with the nameazur-7.sophia.grid5000.fr. From this name, it is possible to obtain
the machine –azur-7, the cluster –azur, and the Grid’5000 site –sophia. The rest of the
hierarchy is composed of the global KAAPI identifier and the instance of K-processor.
Therefore, the resulting Pajé hierarchy for the KAAPI traces is the following: Grid, Site,
Cluster, Machine, Process, K-Processor. The hierarchy is completed with the three possi-
ble states for a K-Processor (IDLE, RSTEAL and RUN).

The conversion of KAAPI traces to the Pajé file format happenswith the help of
DIMVisual. The input modules are able to read the KAAPI traceformat and convert
them to common Pajé events, such asPajeSetState, PajePushStateandPajePopState, to
handle the definition of the three states of the K-Processors. Other Pajé events, such as
PajeCreateContainer, are used to create the containers of the type hierarchy of KAAPI
traces.

6.1.3 MPI Traces

One of the main benefits of using the Pajé file format as input for the Triva prototype
is related to the generic use of the tool. In order to show a different example, we used trace
files generated during the execution of MPI (GROPP; LUSK; SKJELLUM, 1994. ISBN
0-262-57104-8.) parallel applications. The different applications were the ones available
in the NAS Parallel Benchmark (NPB) (BAILEY et al., 1991), which contains a number of
applications to handle numerical aerodynamic simulations. Since the benchmark includes
some applications developed in Fortran, we considered for the traces only the applications
implemented with the MPI specification and in the C language.

The traces of NAS applications were obtained through the instrumentation of the
Mpich library, using a wrapper for each MPI operation (FREITAS et al., 2009). The
wrapper can be enabled through the presence of the MPE – Multi-Processing Environ-
ment, when compiled together with the Mpich library. All MPIoperations are registered
using this instrumentation tool. Additional information in point-to-point and collective
functions are also registered, such as the origin and destination of the messages. As of
result of an execution, a single trace file in the Pajé format is created.

The top part of Figure 6.4 shows some events that are registered by the instrumen-
tation. For every MPI function, the instrumentation registers the moment it began and
when it returned. These events are transformed into the Pajéformat mainly by using the
PajeSetStateevent. The stateRUN is used to indicate that no MPI function is currently
in execution. Others states for MPI processes are directly mapped from the names of the
MPI operations, giving, for instance, a stateMPI_BCASTfor a MPI_Bcast operation.
The operations that are related to message-passing, such aspoint-to-point or collective
operations also generatePajeStartLinkandPajeEndLinkevents.

Since the objective of the MPI traces is to show only that it ispossible to handle



105

Figure 6.4: Events registered during the execution of an MPIapplication (all MPI opera-
tions are registered).

this type of data in the prototype, only small-scale executions were performed in a cluster
located in Porto Alegre, Brazil. The NAS benchmark executions used at most 16 machines
of the cluster.

6.2 3D Visualizations

The 3D visualizations of the Triva prototype are created by the TrivaView (see Sec-
tion 5.4 for details). This component manages the base configuration and the rendering
of timestamped objects in the 3D space. This Section presents the 3D visualizations ob-
tained with the use of synthetic and real trace data. The mainobjective is to observe the
capabilities of the 3D approach in the visual detection of communication patterns, and the
mapping with the network topology.

We start with a general description of the 3D visualization generated by the prototype,
in next sub-section. Then, we show the visualization of known communication patterns
and finish the Section with the use of KAAPI traces and topological representations of
Grid’5000 platform.

6.2.1 Description of the Visualization

The basic three dimensional visualization generated by theTriva prototype can be
observed in Figure 6.5. It shows two processes, A and B, that interact with each other.
Different tonalities of gray represent the possible statesin which a process can remain
through a period of time. In the Figure, the light gray represents the Blocked state, and
the dark gray represents Executing. RGB Colors are extensively used in the prototype
but were removed from the representations in this text. The communication between two
processes is represented by a line connecting them.

Figure 6.5: Simple 3D visualization created by Triva with two processes.

Every state in the visualization can be clicked with the mouse to obtain more infor-
mation about it. The related information includes the startand end timestamps for that
state instance, which monitored entity it belongs and the name of the state. The lines that
interconnect the processes can also be clicked to obtain more information.
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Figure 6.6 shows another configuration on the visualizationbase. In the screenshot, we
can notice the presence of two machines representation, X and Y, and a line to represent
the interconnection among them. The application components, represented by processes
from A to F, are placed according to the location in which theywere executed. Processes
A, B and C on top of machine X, the rest on top of machine Y. The lines interconnecting
these processes represent the communications among the processes. In the example, there
are inter and intra-machine communications.

When interacting with the visualization of Figure 6.6, the user is able to obtain infor-
mation about every machine and the characteristics of the interconnection in the visualiza-
tion base. This information is given to the user if it is available in the resource description
file used to configure the prototype.

Figure 6.6: Processes representation with network interconnection among two machines.

The Figure 6.7 depicts the visualization window of the Trivaprototype. The graphical
interface is managed with the help of the wxWidgets, including the menu, the status bar
and the scrolling bar on the right. The 3D scene is rendered inthe middle of the window,
as depicted. All the messages towards the user, such as the information about a state, a
process or a link, are shown through the status bar in the bottom part of the window.
Through the menu, the user is able to configure the visualization base, the time slice
of the current analysis and the options regarding the movements of the camera inside
the 3D space. The menu also enables the configuration of the trace files, through the
customization of how KAAPI trace files will be read into the prototype.

The user 3D interactions are implemented directly in the 3D scene, through keyboard
events or mouse movements. The user can, for instance, type the Ctrl key and the left
mouse button to move one of the process representations in the visualization base. Other
combinations of keys enable the selection of more than one process representation to
move them together, and so on. Additional combinations can be easily implemented in
the prototype.

6.2.2 Communication Patterns Analysis

One of the first benefits obtained with the 3D approach is the observation of commu-
nication patterns. These patterns, when visualized through traditional space-time repre-
sentations, are hard to analyze since only one dimension is available to depict the way
processes interact among them. Using the synthetic trace generation tool, explained in
previous Sections, we generated simple and known patterns.They include a ring, a fully-
connected and a star communication pattern. Figure 6.8 depicts these three patterns, cre-
ated using the Triva prototype with three different traces generated by the automatic trace
generation tool.

The leftmost 3D view of Figure 6.8 shows a ring communicationpattern, composed of
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Figure 6.7: The visualization window of the Triva prototype.

Figure 6.8: A ring, a fully-connected, and a star communication pattern visualized with
the Triva prototype.

five processes from A to E. The communication starts in the process A and goes through
processes B, C, D, E and it finally comes back to the origin. We canobserve in the vertical
dimension that the beginning of a communication between theprocess D and E, happens
after the reception of a communication in process D, indicating a sequential ring pattern.
This identification, brought by the 3D approach, enables theuser to see the difference
in cases that the communication occurs in parallel. The center 3D view of Figure 6.8
shows a fully-connected communication pattern among the five processes. Observing the
vertical axis, we can notice that the communications from one process to others starts in
the beginning, close to the visualization base. The third communication pattern is on the
rightmost part of the Figure, showing a star pattern with a central process. This pattern is
commonly used in master-slave parallel applications. The star view shows an example of
master-slave where process A is the master and the others, from B to E, are the slaves.

In order to compare the 3D with the traditional space-time visualization, we used Pajé
to visualize the fully connected trace. The final 2D representation is shown on Figure 6.9
with five processes listed vertically, along with their states in the x-axis. Links are repre-
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sented by the arrows. Comparing these views, we can notice some of the benefits of the
3D approach, where the communication pattern is more clearly observed.

Figure 6.9: A fully-connected communication pattern with five processes represented in
the SpaceTimeView of Pajé.

The synthetic trace generator is also capable of generatinga hierarchical star pattern.
Using a trace generated with this tool in the Triva prototype, we obtain the visualization of
Figure 6.10. The view shows seven processes with a first levelmaster, the process A, that
communicates with the second level masters, processes B andC. The others processes
are connected to the second level masters and behave as slaves. This communication pat-
tern can be observed in the beginning of applications built based on divide-and-conquer
algorithms. They show in a first phase the divisions of work like a hierarchy.

Figure 6.10: A hierarchy star communication pattern, commonly used in divide-and-
conquer algorithms, with a visualization of Triva.

The analysis of these communication patterns enables the observation of possible
problems in the development of parallel applications. Suppose a developer decides to cre-
ate a divide-and-conquer algorithm. After the implementation, the Triva prototype can be
used to analyze if the communication pattern of the implementation is correct. The devel-
oper can also guess if a different number of levels could improve the performance of the
algorithm, by analyzing the time a certain configuration take to execute. Another benefit
of the Triva prototype is when the communication pattern of an application is unknown
to the developer. In this case, the only thing to do is to execute the application once and
visualize it in the prototype to understand the possible patterns of the application under
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investigation. This is faster and easy to understand when compared to a traditional code
analysis spread in several source files of the application (assuming it is even available).

6.2.3 KAAPI and the Grid’5000 Topology

This Section describes the results obtained with real application traces gathered from
different experiments with KAAPI applications on the Grid’5000 platform. We selected
six different scenarios to present these results, which consider as network interconnection
the topology present in the Grid’5000.

Scenario A: 26 processes, two sites, two clusters

The first scenario is a KAAPI application composed of 26 processes. Each process is
assigned to one distinct machine, resulting in an allocation of 26 machines. Half of them
are allocated in the clusterxiru, atportoalegre, and the other half in the clustergrelon, at
nancysite. Figure 6.11 depicts the 3D visualization generated bythe Triva prototype of
the application trace. The visualization base is configuredto hold the network topology
that interconnects both sites. In this example, we are usinga hypothetical topology just to
illustrate the analysis. The actual interconnection betweenportoalegresite and the rest of
the Grid’5000 is a VPN, with several physical hops through the internet.

Figure 6.11: A side-view generated by Triva with traces from26 processes.

The first thing to be noticed on Figure 6.11 is the vertical bars representing the pro-
cesses of the KAAPI application. The light gray represents the stateRunand the dark gray
represents the stateStealof a given process, as indicated in the leftmost part of the Fig-
ure. We can also observe in this Figure the horizontal lines connecting the processes from
different sites. They represent the work stealing requestsperformed among the processes
of the application. When the user is interacting with such visualization, it is possible to
obtain information for every state and link represented. Ifa resource description with ad-
ditional data about the interconnections is provided to theprototype, the user is capable to
obtain such data through the visualization, by pointing themouse to the squares and lines
in the base. We can also notice in the Figure the distributionof steal requests in time.

Scenario B: 60 processes, two sites, three clusters

The second scenario is a KAAPI application composed of 60 processes, one per ma-
chine, that are executed in two sites of the Grid’5000. The site nancycontributes to the
execution with 30 machines from the clustergrelon, at the same time that the siterennes
has an allocation of 25 machines from clusterparamountand 5 machines from cluster
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paraquad. We consider in this case a topology where every site has its own router, where
all clusters from that site are connected to. The routers of the two sites have a direct con-
nection. Therefore, in this example when a message is sent from a cluster in one site to a
cluster in other site, it has to go through the two sites routers.

Figure 6.12 shows two screenshots of the Triva Prototype generated during the visual-
ization of the trace file for this scenario. The text and dashed lines were manually inserted
to improve the understanding of the example. The imageA of this Figure shows the total
execution time with a small time scale, making all objects close to the visualization base.
The dashed line on this image depicts the site separation betweenrenneswith two clusters
andnancy, with only one cluster. We can observe in this time scale thata large number
of work stealing requests occur betweengrelonandparaquadclusters, mostly because of
the higher number of processes executed on them. Analyzing these requests with the net-
work topology, the Triva prototype allows the user to view that all the requests from these
clusters must go through two routers of the interconnection. Such situation might lead
to performance issues. A hierarchical work stealing is under investigation by the KAAPI
team in order to overcome these problems.

Figure 6.12: Two screenshots of the prototype Triva during the visualization of an appli-
cation composed of 60 processes, with different time scales.

The prototype also allows the dynamic change of the time scale, using the mouse
wheel. The imageB of Figure 6.12 shows the total execution time for the traces of this
scenario, but with a larger time scale. Through this image, it is possible to see differences
in the work stealing behavior in different intervals of timeof the execution. It can be
noticed that in the beginning there is less work stealing requests when compared to the
end. It is during the end of the execution that less tasks are available for execution and
processes start to try to steal more. This behavior is expected considering the current
implementation of KAAPI, where random steal requests are performed when processes
are idle.

Scenario C: 100 processes, three sites, four clusters

The third scenario is an application composed by 100 processes, one per machine,
allocated in four clusters that are in three different sitesof Grid’5000. The allocation is as
follows: clustergrelonwith 30 machines atnancysite;pastelwith 40 attoulouse; and 25
machines fromparamountand 5 fromparaquadat rennessite. The network interconnec-
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tion here is constructed as in the previous example. In this scenario, we consider that the
three routers are fully connected.

In previous scenarios, we observed screenshots where all the execution time is rep-
resented, sometimes with different time scales. The Figure6.13 shows two screenshots
where only a part of the execution time is drawn. This is possible in the prototype through
an interactive configuration where the user specifies which time slice is rendered. The im-
ageA of the Figure shows the work stealing requests at the beginning of the application.
The dashed lines separates the three different sites. As on previous cases, each cluster
name has a number which indicates how many processes are executed on that cluster. We
can clearly observe that in the beginning the number of stealing requests is considerably
lower compared to the end of execution, shown on the imageB.

Figure 6.13: Two visualizations with different time slicesof an application composed of
100 processes.

The imageB of Figure 6.13 also shows, through the dashed arrow, the paththat all
work stealing requests must follow from the clusterpastelto the clustergrelonand vice-
versa. We can see with the rendering of the network topology that these requests must
go through two routers in order to arrive in the destination.The visualization in this case
may suggest that big cluster allocations for this particular execution should be placed in
the same site, avoiding two hops for stealing requests. Small allocations could then be
placed on other sites, because of the smaller number of stealrequests generated by these
small allocations.

Scenario D: 200 processes, 200 machines, two sites, five clusters

The KAAPI application of scenario D is composed of 200 processes, in 200 machines.
The machine allocation is divided in two sites:rennesandnancy. The number of machines
allocated in each site is equal, but inside each site the allocation differs in number of
machines per cluster. The imageA of Figure 6.14 shows the number of machines for
each cluster allocated and also the network topology that interconnects the two sites. As
in previous scenarios, the dashed line is used to separate the sites. In order to illustrate
another benefit of our visualization, we consider for this scenario additional information
regarding the network interconnection between the routersand three clusters. We consider
here that the bandwidth available betweenparaventandgrillon clusters, through the two
routers, is of 100 megabits. The link between thegrelon cluster and its router is of 1
megabit, as depicted in imageA of the Figure.

In this scenario, there are 87 processes running ongrelon, and 61 onparaventcluster.
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Figure 6.14: Two top-views with a network topology annotated with bandwidth limita-
tions, showing the benefits brought by the 3D approach.

Let us consider only the work stealing requests between these two clusters, as depicted
by the dashed circle of the right image of Figure 6.14. The dashed arrow of the same
image indicates that these requests must pass through the 1 megabit link. The visualization
suggests that a smaller number of processes should be placedin a cluster with such a slow
bandwidth. If, for instance, the processes of clustergrelonwere executed on clustergrillon
instead, the execution could have a better performance.

Through the example of this scenario, we can notice the importance of analyzing
the application performance together with a topological representation. If this type of
visualization, such as the one present in imageB of Figure 6.14, is not present, the analyst
could obtain wrong conclusions about the performance of itsapplication.

Scenario E: 648 processes, two sites, five clusters

The KAAPI library has a random work stealing mechanism. It means that whenever
a process has no further tasks to process, it selects randomly another process to perform
a stealing request. This random behavior is an easy and simple way to perform load bal-
ancing, being a distributed solution that scales well. The scenario E intends to show the
resulting communication pattern caused by the KAAPI work stealing implementation in
a large-scale situation with topological data. The networktopology configuration is the
same of scenario D, and the same number of machines is used to the execution of the
application. The only difference here is that a higher number of processes is launched,
resulting in 648 processes.

Figure 6.15 shows a screenshot of the Triva prototype when configured to show the
behavior of all the execution time on top of the network topology. We can see the pro-
cesses distribution among the clusters, which square size in the base is directly related to
the number of processes in the cluster. Considering the five clusters of this execution and
the random work stealing mechanism, it is expected to find steal requests from all clusters
to all others. The four arrows, drawn manually on the view, put in evidence this behavior
for the clustergrelon. We can see that other clusters also perform steal requests the same
way, having as targets processes from all other clusters.
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Figure 6.15: Top-View generated by Triva showing the randomwork steal communication
pattern of KAAPI.

Scenario F: 2900 processes, four sites, thirteen clusters

The last scenario is an application composed of 2900 processes, executed in 310 ma-
chines that were allocated in clusters of four Grid’5000 sites. The machine allocation is
as follows: 60 machines fromlille site (41 -chinqchint, 10 -chti, 3 - chuque, 6 - chicon);
100 fromrennes(61 - paravent, 6 - paramount, 33 - paraquad); 50 frombordeaux(5 -
bordereau, 22 -bordeplage, 23 -bordermer); and 100 fromsophiasite (48 -azur, 42 -sol,
10 - helios). The objective of this scenario is to illustrate differentwork stealing patterns
that arise in different intervals of time during the execution of a large-scale application.
The interconnection topology follows the same policies as before: each site with a router,
all the clusters of a site connected to the site router. The imageA of Figure 6.16 shows
the overall organization of the network topology, with dashed lines dividing the sites and
each cluster representation with its respective name and number of processes allocated to
it.

The total execution time of this application is 74 seconds. The imageA of Figure 6.16
shows the work stealing requests that happened from the sixth to the sixteenth second of
execution. In this time slice, most of the requests are performed between theparaquad
andparamountclusters. The imageB shows the time slice between the seconds 16 and
26, showing a higher number of steal requests inside therennessite. The imageC shows
another time slice, from the seconds 26 and 36, with even moresteal requests among the
clusters and imageD shows the time slice from the second 36 to 50. This last image has
too many steal requests, causing problems in the perceptionof the network topology in
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Figure 6.16: Four top-views of an application executed in four Grid’5000 sites.

the visualization base. This problem can be alleviated in the prototype by changing the
transparency configuration of the links representation. Even so, the example shows an
expected behavior from the KAAPI library, with more steal requests to the end of the
application execution.

6.3 Treemap Visualizations

The implementation of the Triva prototype included the development of the TimeS-
liceView and the Triva2DFrame (see Section 5.5 for details). As discussed, the 2D frame
is developed to draw the treemap according to the execution of the Time-Slice algorithm
and also the aggregation model implementation. A number of interaction mechanisms
were also implemented in the prototype to facilitate the analysis. Examples are the use
of the mouse wheel to navigate through the levels of the aggregated hierarchies; the use
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of two mouse buttons to select one or more states to analyze them separately; and the
selection of the time slice on-the-fly.

An additional and important feature of the treemap rendering implementation is the
use of the mouse pointer to highlight the hierarchy of a givenleaf-node. The highlight-
ing works by drawing a line in the border of the the leaf-node under the mouse pointer,
complemented by rectangles in the parent nodes up to the rootlevel. This drawings en-
able the identification of the hierarchy for a given leaf-node. Moreover, the prototype
shows in the status bar of the window numerical information regarding the node under
investigation and also the identifications of the parents. Such interactive capabilities of
the Triva prototype can be observed in the large treemap of Figure 6.17, with the dashed
lines highlighting the hierarchical structure of a given leaf node.

This Section presents the results obtained with the treemapvisualizations of synthetic
and real trace data using the Triva Prototype. The treemaps presented in this Section
were generated by the prototype and automatically exportedto encapsulated postscript
files. The main objective is to evaluate the potential of the proposed technique and to
detect if the implementation is capable of reaching visualization scalability in large-scale
situations.

We start with a general description of the treemap visualizations generated by the
prototype, in the next sub-section. Afterwards, we presentthe visualization of a large-
scale scenario created using synthetic trace files; and the analysis of different real-world
scenarios using the KAAPI library and an example of visualization created with a MPI
trace file.

6.3.1 Description of the Visualization

To describe the treemap visualizations created by the prototype, let us proceed to
synthetic examples generated with the scripts described inthe beginning of this Chapter.
The first example is a hierarchy with three levels: Site – Cluster – Machine. There are
two sites, each one with three clusters, each cluster with five machines. Therefore, the
total number of machines is 30. Each machine can be in the Executing or Blocked state.
Figure 6.17 depicts three treemaps that were generated withdifferent properties. The two
smaller treemaps on the left show only the Executing or the Blocked state, separately.
Treemaps separated according to the state enable a direct comparison of which machines
spent more time in a given state.

On the right side of Figure 6.17, the treemap shows in the samevisualization the two
states (Executing and Blocked) for all the machines. The inner dashed rectangle indicates
the area reserved to one of the machines. The other dashed rectangles indicate the area
that corresponds to the cluster that contains the machine and the site that cluster belongs
to (the outermost dashed rectangle). These dashed rectangles were added manually to the
treemap of the Figure since the method used in the prototype to highlight the hierarchy is
not good for printing.

Moreover, we can notice that the visualization of more than one state (treemap on
the right of Figure 6.17) enables a direct comparison among the machines but also the
relationship among the states. This relationship is only correct if all the data being visual-
ized is calculated based on the same metric. In this example,both Executing and Blocked
states are calculated based on the amount of time in the time slice. Since both metrics are
time-based, we can compare them. In terms of interactivity,the user of the prototype can
go from the treemap on the right to the treemaps on the left just by clicking the state to
be analyzed separately. The user can go back to the previous view with all the states with
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another click of the mouse.

Figure 6.17: Two squarified treemaps showing the statesBlockedandExecutingseparately
on the left, and on the same treemap on the right.

The second example illustrates the treemap visualization in different levels consider-
ing aggregated values. The example is depicted on Figure 6.18 with four treemaps. The
top-left treemap is the same of Figure 6.17, having the same hierarchy and the same num-
bers of machines, clusters and sites. This treemap is rendered in themachine level. As
before, the Blocked and Executing states are always represented. The treemap on the top-
right shows the aggregated values in thecluster level, the arrow between the top treemaps
indicates that the area indicated on the left (the machine level) is summarized to the area
on the right (the cluster level). In the middle of the top-left treemap there is a bold line
that separates the two sites. The second arrow indicates theaggregation from the cluster
level to thesite level, shown on the bottom-left treemap. We can see on this treemap the
two sites separation and the aggregated values of Executingand Blocked for each site.
The last treemap on the bottom-right is generated using the maximum aggregation pos-
sible, where only the Executing and Blocked states are represented, considering all sites,
clusters and machines below in the hierarchy.

The aggregated treemaps of Figure 6.18 enable the analysis of the states in different
levels of the tree, showing their values for all the nodes. The top-right treemap of the
Figure shows, for instance, the Executing and Blocked state for the six clusters of the
example (as indicated by the rounded dashed rectangles). Wecan clearly see the three
clusters per site and the two sites. The values for the statesfor a cluster are calculated by
the aggregation algorithm considering the Blocked and Executing states for the machines
belonging to that cluster.

Next sub-sections make extensive use of these representations, especially the aggre-
gated treemaps. For each of the scenarios, we explain the hierarchy used and the number
of items per level. Most of the following examples use only one or two states for each of
the leaves. The only exception for that is the MPI visualization, where the amount of time
for three MPI operation is also represented.

6.3.2 Large-Scale Visualizations

One of the main benefits of the visual aggregation model, proposed in this thesis, is to
easily analyze a large number of monitored entities on the same screen. In order to assess
the visualization scalability of the approach, we generated a series of large-scale hierar-
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Figure 6.18: Four treemaps to show the per-level aggregation of BlockedandExecuting
states.

chies using the synthetic trace generator. The objective isto show how the aggregation
model behaves when dealing with so much information, and howthe generated treemaps
turn the data more understandable. A hierarchy composed by 100 thousand processors is
analyzed in this Section. Figure 6.19 depicts the analysis of the chosen hierarchy, com-
posed of four levels: Site, Cluster, Machine, and Processor.The hierarchy has 10 sites,
each one with 10 clusters, each cluster with 10 machines, andeach machine with 100
processors. Each processor can be in two possible states, represented in the Figure by the
dark and light tonalities of gray.

The large-scale analysis using the prototype starts with the top-right treemapA of the
Figure 6.19, in theprocessorlevel. In this treemap, there are 200 thousand rectangles:
100 thousand processors times the number of possible states, which is two. We can ob-
serve that some regions of this treemap are darker than others, allowing some analysis.
However, any precise conclusion is hard to obtain with such treemap. The main reason
is that treemapA has rectangles that are too small, turning out to be difficultto observe
differences in sizes among two states of one single processor. The example is shown to
present the limitation of the traditional treemap representation.

The white rectangle drawn manually in the treemapA of Figure 6.19 represents the
space dedicated to one machine. Although it is hard to notice, there are 200 rectangles
to represent the states of 100 processors inside this small area. Because of the fact that
is hard to understand clearly the pattern of states to all 100thousand processors, the user
can interact with the prototype with the mouse wheel and showaggregated values for
themachine level, as depicted in treemapB of the Figure. This treemap shows for each
machine the two possible states. In this view, it is already possible to visually analyze
major differences among the machines: some of them are significantly more often in one
state than other, in the time slice considered to compute these treemaps. The highlighted
area on the left of treemapB, shown through a zoom drawn manually, corresponds to the
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Figure 6.19: Normal (A) and four aggregated treemap visualizations (B – E) of two states
for 100 thousand processors (based on synthetic trace).

area highlighted through the white rectangle of treemap A.
Subsequent aggregations enable the user to visualize the traces in thecluster level,

as depicted on treemapC of Figure 6.19, and in thesite level, in treemapD. Treemap C
shows the 100 clusters (10 per site). On the left part of this treemap, the black rectangle
shows 10 clusters in the area dedicated for one site. The arrow beginning on this rectangle
points to the aggregated values for that site, on treemap D. The maximum aggregation
possible, shown on treemapE, enables a per state view of the available information, in-
dicating that the state represented by the light gray color appears more than the other for
the selected time slice.

Observing the example of Figure 6.19, we can see the benefits brought by the aggre-
gation algorithm. Its implementation in the Triva prototype enables the visualization of
several thousands monitored entities, possibly with the presence of a number of states.
The example also illustrates that the performed aggregations enable a better understand-
ing of the behavior of entities in different levels, by interactively grouping the states in
the hierarchy. Moreover, we can also observe that even amongthe aggregated treemaps,
the same general behavior can be visualized, with a much simpler representation.

6.3.3 KAAPI Work Stealing Analysis

This Section presents the treemap visualizations of the Triva prototype using as input
trace files generated by the KAAPI library. As stated, these traces register the behavior
of the work stealing activities of the library to provide load balancing to the parallel ap-
plications. The traces were obtained during the execution of KAAPI applications in the
Grid’5000 platform. We selected four different scenarios to explain the possible analysis
that can be performed with the prototype Triva. Each scenario has a different configura-
tion of resource allocation to execute the applications, and a different number of KAAPI
processes involved. For all the treemaps of this Section, the light gray color of rectan-
gles indicates the RUN state, and the darker gray indicates the RSTEAL state, for every
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K-Process of a KAAPI application, or for every level when an aggregated treemap is
presented.

Scenario A: 200 processes, 200 machines, two sites

The first scenario is the execution of a KAAPI application composed of 200 pro-
cesses. Each process is allocated to one machine of the Grid’5000 platform, resulting in
an allocation of 200 machines divided equally in two sites ofthe grid:rennesandnancy.
The former site allocation is the following: 61 machines from clusterparavent, 33 from
paraquad, and 6 fromparamount; the later is: 86 fromgrelon, and 14 fromgrillon. The
treemaps depicted on Figure 6.20 illustrate the behavior that the application showed dur-
ing the execution on that allocation, in three different time slices.

Figure 6.20: KAAPI Scenario A with an application composed of 200 processes.

The treemapA of the Figure 6.20 is computed using a time slice that corresponds
to the beginning of the application. During this period, we can observe that most of the
K-Process are actually running and not spending time tryingto steal tasks. Since the ap-
plication was launched in thenancysite, we can observe that the K-Processes belonging
to this site occupy more space when compared to the space occupied by therennessite.
TreemapB is computed based on a time slice of the end of the execution. We can observe
that in the end of execution, the K-Processes spent more timetrying to steal tasks from
others processes. This is a normal situation, since when theprogram approaches the end,
new tasks to execute become rare. The treemapC is computed considering all the execu-
tion time for the application. By doing this broad analysis with a large time slice, we can
observe global patterns that might arise for a set of K-Processes. This actually happens
in this example, since this treemap shows that most of K-Processes maintain the same
relation between time spent in Run and RSteal states. This is observed through the sizes
of each state for the processes.

Another thing that is possible to conclude analyzing treemap C of Figure 6.20 is the
load balancing between the two sites. Since this treemap is computed using the total ex-
ecution time and each site has an equal number of allocated machines, we can argue that
an ideal situation for this scenario will be that the area occupied by each of the site in
the visualization should be the same. This will indicate that an ideal load balancing is
achieved by the KAAPI work stealing algorithm. The treemap Cindicates that the area
for thenancysite is slightly bigger than the area for therennessite, letting us conclude
that an ideal load balancing is not achieved. The explanation for such behavior can be that
the application is launched in one machine of thenancysite, allowing the K-Processes of
this site to start the execution of tasks before the processes of therennessite. Even so,
considering that the areas for each site in the treemap are only slightly different, we can
argue that the load balancing achieved by the work stealing is of good quality.
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Scenario B: 400 processes, 50 machines, one site

The second scenario with KAAPI traces is an application composed of 400 processes
executed in 50 machines of thebordeauxsite of Grid’5000. In the experiment, the allo-
cation is composed of 23 machines from thebordemercluster, 22 from thebordeplage
and 5 from thebordereau. The two treemaps of Figure 6.21 are computed using the traces
from this scenario. The bold lines in both treemaps separatethe three clusters involved in
the execution.

The treemapA of Figure 6.21 shows all the processes with the Run and RSteal states.
We can notice in this treemap that there are some K-Processesthat spent an unusual
amount of time in the RSteal state when compared to the others processes. This might
indicate a problem in the machines that execute those processes, since each machine re-
ceived eight K-Processes to execute. The treemapB, on the right, is computed using
as parameter the same time slice but only the RSteal state. Treemap B also shows the
amount of seconds for the larger areas, indicating that processes with unusual behavior
spent around 40 seconds trying to steal tasks from others. Since only one Grid’5000 site
was used and the allocated clusters are interconnected withlocal networks, the probable
cause of these anomalies should not be attributed to the network. The only remaining
explanation for such behavior is related to the amount of K-Processes executed per each
machine.

The bordemerandbordeplageclusters have machines with 2 CPUs. Thebordereau
cluster has machines with 4 CPUs. As stated, there is 400 processes and 50 machines on
this scenario, resulting in 8 processes per machine. We can observe in the Figure 6.21 that
only K-Processes in clusters with 2 CPUs ended with an unusualbehavior. A possible ex-
planation is the overload of processes on those machines when compared to the machines
of thebordereaucluster, with 4 CPUs each, that did not show the odd behavior.

Figure 6.21: KAAPI Scenario B with an application composed of 400 processes.

Scenario C: 2900 processes, 310 processors, four sites

The third scenario is a KAAPI application with 2900 processes, executed in 310 ma-
chines that were allocated in clusters of four Grid’5000 sites. The machine allocation is
as follows: 60 machines fromlille site (41 -chinqchint, 10 -chti, 3 - chuque, 6 - chicon);
100 fromrennes(61 - paravent, 6 - paramount, 33 - paraquad); 50 frombordeaux(5 -
bordereau, 22 - bordeplage, 23 - bordermer); and 100 fromsophiasite (48 -azur, 42 -
sol, 10 - helios). The objective of this scenario is to show that the prototype is able to
deal with large trace files with events from an application executed in a real platform.
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As stated, there are two possible states for each of the 2900 processes. This results in a
treemap that must draw 5800 rectangles. Figure 6.22 illustrates, in treemapA, all these
rectangles that together represent the behavior of 2900 K-Processes. Bold lines indicate
Grid’5000 cluster division.

The treemapA of Figure 6.22 shows the Run and RSteal states for all the processes.
The time slice used to compute the treemap is the total execution time of the application.
We can notice in this scenario that the amount of time spent with work stealing requests is
very small. In the treemapA, it is difficult to perceive the rectangles that represent the state
RSteal. The treemapB, on the top-right, depicts only the Run state for all the processes.
Analyzing the screenshot, it is possible to conclude that almost all K-Processes spent the
same amount of time executing tasks. The only exception is the K-Processes located in
thechti cluster, in the bottom-middle region of treemapB. They have smaller rectangles
indicating less time in the Run state.

The treemapC of Figure 6.22 shows, on the other hand, only the RSteal state for all
K-Processes. Differently from the Run state, here we can notice different rectangle sizes
indicating that some processes spent more time stealing tasks than others. This might
indicate for example which processes are executed on fastermachines, finishing their
tasks more frequently; or can indicate processes that execute more unsuccessful steal
requests when idle. The treemapD of the same Figure shows the RSteal state, but now
aggregated by machine. Analyzing this treemap, we are able to detect instantaneously
which machines spent more stealing. The white rectangles ontreemap C and D indicate an
example of aggregation of the RSteal states of ten K-Processes to the machine where they
executed. A possible reason for such behavior is the work propagation at the beggining of
the execution.

Figure 6.22: KAAPI Scenario C with an application of 2900 processes.
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Scenario D: 188 processes, 188 machines, five sites

The fourth scenario is an application of 188 processes, executed in 188 machines, dis-
tributed in five sites of Grid’5000 including the cluster from Porto Alegre, Brazil. There
are 13 machines allocated from the clusterxiru, atportoalegresite; 2 frombordereau, 17
from bordemer, and 6 frombordeplage, atbordeauxsite; 45 frompastel, 5 fromviolette,
at toulouse; 14 fromparamount, 36 fromparaquad, at rennes; and finally 50 fromgrelon
cluster atnancysite. The Figure 6.23 shows two treemaps calculated with thetraces gen-
erated by the application of this scenario.

The treemapA shows the Run and RSteal states for all the 188 processes. Almost all
processes show the same behavior, with a bigger Run state (thelight gray areas) compared
to the RSteal state (the dark gray areas). The only exception appears in the K-processes
executed in theportoalegresite, highlighted manually with the dashed circle. Observing
this treemap, we notice that these processes spent more timestealing tasks than the pro-
cesses from other sites. The treemapB, on the right, shows the same time slice and the
same processes, but only the RSteal state. Here, the difference in the time spent stealing
tasks become even more evident. We believe that the main reason behind this behavior
comes from the interconnection of the sites. Theportoalegresite is located in Brazil, and
its connection with the Grid’5000 is made through a Virtual Private Network (VPN) that
is maintained through the internet. The latency of this interconnection compared to the
general latency among Grid’5000 sites located in France is significant. The traditional
work stealing algorithm inside KAAPI do not differentiate from which processes a given
process will try to steal. This, in a heterogeneous interconnection environment, may lead
to more time spent trying to steal, as indicated by the treemap computed with our Time-
Slice technique.

Figure 6.23: KAAPI Scenario D with an application composed of 188 processes.

Generally speaking, the Time-Slice algorithm combined with the aggregation model
of this thesis enables an easy identification of performanceissues when comparing the be-
havior of processes of a parallel application. The aggregation model brings these advan-
tages to large-scale situations, no matter how many processes are involved in the analysis.
The only step necessary to make both proposals work well in large-scale environments is
to set a proper hierarchy with at least some levels. The hierarchies used through out the
KAAPI scenarios have five levels, which already allows the analysis of several thousands
of processes.
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6.3.4 MPI Operations Analysis

The experiment described here uses traces generated duringthe execution of a MPI
application. The traces were described in the beginning of the Chapter, recording the
execution of MPI operations. The objective here is to show that the Triva prototype is also
capable of analyzing MPI applications, because of the use ofthe generic Pajé file format
as input.

The scenario for the MPI experiment is as follows. We executed the EP application,
part of the NAS benchmark, using 32 processes in a cluster where each node has 8 pro-
cessors. The tracing mechanisms registered the following MPI operations during the ex-
ecution of the MPI application:MPI_Init, MPI_Barrier andMPI_AllReduce. For each of
these operations, there is one state of the same name. We use the state Running to indicate
the time spent outside of MPI operations. The hierarchy defined in the traces is flat, only
with the MPI process level.

The analysis of the scenario is depicted on the treemaps of Figure 6.24. The treemap
A shows the amount of time spent in each of the states. We can notice that there are
some differences among the processes, as illustrated by thedashed rectangles of two MPI
processes. The square on the right of the treemap A shows a zoom to the MPI Process rank
21, where the correspondence of gray tonalities and the states are noted. On the Figure,
the treemapB shows the amount of time all the processes spent in theMPI_Init state.
The numbers in the rectangles indicate the amount of time forthe process, an information
that can be obtained by pointing the mouse to that region of the window in the Triva
prototype. We can notice significant differences of time spent on the init state. TreemapC
has the same single state rendering, but here using the time of theMPI_Barrier operation.
We can observe that the behavior of the init and barrier stateare very similar, possibly
indicating that the implementation of the MPI init operation is close to the implementation
of a barrier. On the bottom of the Figure, the treemap shows the maximum aggregation
considering all the 32 processes. Analyzing this aggregated view, it is possible to observe
that the time spent in MPI operations is greater than the Running state, where the code of
the application is probably placed.

Figure 6.24: Behavior of the EP application of the NAS Benchmark using treemaps and
the aggregation technique.
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7 CONCLUSION AND FUTURE WORK

Traditional visualization schemes for the analysis of parallel applications are designed
to handle monitoring data collected at small scale and in regular environments. The ne-
cessity of visualization techniques for the analysis of parallel applications on highly dis-
tributed systems, such as grids, motivated this work. Two particular problems of the tra-
ditional analysis of applications have been identified in this thesis.

The first one is the impact of the network interconnection on the execution of parallel
applications. This impact must be outlined in the analysis in order to better understand
and improve the application performance. Traditional visualization techniques, such as
the space-time representation, are widely used for the analysis of applications. These tech-
niques, however, cannot show in the same screen the network topology and the monitoring
data from the application. This might lead to wrong conclusions during the detection of
performance issues of applications. The second problem is the visualization scalability of
traditional techniques. Usually, the number of monitored entities that can be analyzed on
the same screen is often limited to the vertical size of computer screens. Space-time rep-
resentations are a clear example of this matter, being not well suited to grid applications
composed of thousands of processes.

The main idea behind this thesis is to explore information visualization techniques that
can be used to visualize parallel applications. Our first approach is the three dimensional
visualization, where the base of this visualization is usedto detail the resource/application
organization, and the third axis to show the evolution of theapplication through time. We
have implemented three different base configurations within the 3D approach: the repre-
sentation of the network interconnection with applicationbehavior; the representation of
the application communication pattern and another to observe processes balance on the
resources.

The second approach is the visual aggregation model, where the scalability problems
of traditional visualization tools are solved through a combination of the treemap tech-
nique and the Time-Slice algorithm. This algorithm takes into account intervals of time
to generate values and inject them in a hierarchical organization of the application being
analyzed. This structure is then passed out to the treemap technique that renders the visu-
alization. The visualization scalability is achieved through the aggregation model, where
the levels of the hierarchy are explored to create intermediary information that can be
used to help the analysis from the most detailed view to the most general one.

Both approaches are implemented in a prototype called Triva,developed using a 3D
rendering engine called Ogre, GraphViz, some of the Pajé components, and an implemen-
tation of the squarified treemaps from scratch. The prototype has a reading mechanism
that links it with the DIMVisual integration library, capable of integrating monitoring data
from different sensors and formats. Synthetic traces, but also real trace data from KAAPI
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and MPI applications are used to validate the approaches andthe implementation. KAAPI
traces used in this thesis were collected in the Grid’5000 platform. Although the proto-
type validation is attached to these traces, the use of the generic Pajé file format allows the
extension of the benefits brought by the implementation to other fields and applications,
from resource visualization to other types of communication libraries.

The obtained results are promising. The three-dimensionalvisualization, analyzed in
the results Chapter, allows a better understanding of applications communications in con-
trast with the network topology. We were able to show in different time slices that the work
stealing could benefit from more locality, since the currentimplementation of KAAPI
do not take into account network information to perform workstealing requests. On the
other hand, the results obtained with the visual aggregation model implementation al-
lowed the visualization of the states of 100 thousand processors, generated synthetically.
The treemaps defined by the Time-Slice algorithm were also generated using real trace
data from KAAPI and MPI applications. We were able to identify in KAAPI traces differ-
ent aspects, such as a different behavior in stealing mechanisms presented by some pro-
cesses, load-balancing efficiency considering all the execution time, and the analysis of a
large-scale KAAPI application, composed of almost 3 thousand processes in Grid’5000.

In summary, the main achievements of this thesis are the proposal of the 3D approach,
the visual aggregation model combined with the Time-Slice technique and the Triva pro-
totype implementation. Other achievements include the interaction between KAAPI and
the prototype, allowing the analysis of KAAPI work stealingactivities.

Next Section presents the publications that came from this thesis. Section 7.2 discusses
the perspectives and implications of this thesis.

7.1 Publications

Some results of the thesis were published in the following papers:
– Visual Mapping of Program Components to Resources Representation: a 3D

Analysis of Grid Parallel Applications. The 21st Symposium on Computer Ar-
chitecture and High Performance Computing, SBAC-PAD. 2009. IEEE Press. Sao
Paulo, Brazil.
– This paper presents the use of the three-dimensional approach to map paral-

lel applications components on top of a resource representation. The paper de-
scribes the abstract model that generate this 3D configuration, showing at the
end some examples of KAAPI parallel applications visualized together with the
Grid’5000 network topology.

– Visualization of Parallel Applications: Results of an International Collabora-
tion. Colloque d’Informatique: Brésil / INRIA, Coopérations, Avancées et Défis.
Colibri 2009. Bento Goncalves, Brazil.
– This 4-page paper presents the overall proposal of this thesis, including the two

visualization models. The paper is also focused on presenting the international
collaboration between UFRGS and INPG, through the co-advising agreement of
the student.

– Towards Visualization Scalability through Time Intervals and Hierarchical
Organization of Monitoring Data . The 9th IEEE/ACM International Symposium
on Cluster Computing and the Grid, CCGRID, 2009. Shanghai, China.
– This paper presents the Time-Slice algorithm when used to summarize states of

a parallel application. The paper also presents basic concepts of the treemap rep-



127

resentation and how they are used to provide a visualizationfor the hierarchies
generated with the Time-Slice algorithm. The hypothesis ofthe paper is validated
with the visualization of KAAPI traces composed of almost three thousands pro-
cesses.

– 3D Approach to the Visualization of Parallel Applications and Grid Monitor-
ing Information . The 9th IEEE/ACM International Conference on Grid Comput-
ing, GRID, 2008. Tsukuba, Japan.
– The paper presents the overall view and general structure of the 3D approach.

Besides presenting the generic abstract model to create suchrepresentations, the
paper also detail the visualization of synthetic and well-known communication
patterns, but also the visualization of KAAPI traces.

– Triva: Interactive 3D Visualization for Performance Analy sis of Parallel Appli-
cations. Accepted in the Future Generation Computer Systems Journal, of Elsevier.
– This 24-page journal paper presents the 3D approach, the abstract component

model and results. It is strongly based on Chapter 3 of this thesis, with some
three-dimensional visualizations obtained with the prototype as presented in Chap-
ter 6.

7.2 Implications and Perspectives

There are several perspectives considering the two visualization models proposed in
this thesis. The three-dimensional model, today, shows every detail about all the monitor-
ing entities. A possible evolution of this behavior is the view of aggregated data. There-
fore, instead of showing all the links in a time interval, theprogram would show just
one link that represents the aggregated information. Visually, the link could be rendered
according to the information it represents: bigger when more information is contained
within, smaller otherwise. Such representation could alsobe extended to the states of a
monitored entity.

Many other types of information for the Time-Slice algorithm still need to be studied.
We basically analyzed only states in our results, because most of our traces are composed
by states for the processes. Other information, such as links, variables, events, must also
be studied and explored. Particular investigation should be conducted in the case of the
links, where we left open in our model to which node attributea summary value: the origin
or the destination. Depending on the type of information being evaluated, a situation may
be better than another.

The evolution of the aggregation model with other aggregation functions is also possi-
ble. Although we discussed briefly the use of other functions, we used in our results only
the addition aggregation. Functions such as max, min, mean must be studied, particularly
when other type of summary data is generated by the Time-Slice technique. User defined
aggregation functions, based on the available monitoring data must also be analyzed.

For the 3D approach, a possible perspective is to improve thevisual mapping between
the network topology and the communication pattern of the application, through the use
of curved lines to represent communications. Besides the matching that is already mod-
eled in the 3D approach, the abstract treatment of data should also consider other types
of information, such as the size of links and nodes. This should be reflected directly in
the visual representation. Generally speaking, this perspective means that a graph must
serve as a base to the rendering of another graph. The representation could also be guided
according to routing rules of the interconnection, when they are available from the exe-
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cution environment. The 3D approach might also be used to thevisualization of parallel
applications in many-core chips, where a network-on-chip is present inside the processor.

A third possible evolution is the merging of the hierarchical organization of moni-
toring data with a graph representation. This could be explored in the visual aggregation
model by defining in every level of the hierarchy, a graph to represent interactions. The
links of this graph could be annotated with aggregated data,as we already do in the Time-
Slice technique. An example of application for such evolution is the merging of processes
of a parallel application.

Perhaps the most significant implication of this work is the study of information visu-
alization techniques applied to the parallel application analysis. Since we used a study like
this as inspiration for the thesis, we think that it can be continuously faced as motivation
for new work.
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APPENDIX A EXTENDED ABSTRACT IN PORTUGUESE

The Portuguese title for this thesis is“Alguns Modelos de Visualização aplicados para
a Análise de Aplicações Paralelas”. The extended Portuguese abstract is presented here
to fulfill the requirements established in theco-tutelleagreement of the author.

The abstract of this appendix is basically a Portuguese translation of the more impor-
tant parts of the English version of this thesis, especiallythe introduction of the chapters
and main concepts of the proposed visualization models. Twoexperimental scenarios of
the main document were selected for the sake of demonstrating some results in this ex-
tended abstract.
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A.1 Introdução

Sistemas distribuídos consistem basicamente em hardware esoftware que contêm
mais de uma única unidade de processamento (COULOURIS; DOLLIMORE; KIND-
BERG, 2005). Nestes sistemas, os processadores são interconectados e comunicam através
de uma rede. Os programas de computador são quebrados em várias partes e devem lidar
com diferentes níveis de paralelismo e com algoritmos de comunicação, como passagens
de mensagem e memória compartilhada. Um exemplo de sistema distribuído é chamado
de Grid (FOSTER; KESSELMAN, 2003. ISBN 1-558-60933-4.). Estes tipo de sistema é
estruturado em organizações virtuais (FOSTER; KESSELMAN; TUECKE, 2001), pos-
sivelmente compostas por milhares de máquinas distribuídas geograficamente. Dois ex-
emplos de Grid são o Grid’5000 francês (BOLZE et al., 2006) e o TeraGrid americano
(CATLETT, 2002).

Características compartilhadas por quase todas as plataformas Grid são dinamismo,
heterogeneidade de recursos e software, e presença de múltiplos domínios administra-
tivos. Dinamismo significa que os recursos que participam deum Grid pode se tornar
indisponíveis a qualquer hora, sem nenhuma notificação de que isso pode acontecer em
um determinado momento. Aplicações paralelas devem lidar com isso no nível da apli-
cação ou através de uma biblioteca capaz de lidar com flutuações na quantidade de re-
cursos disponíveis. A heterogeneidade significa que diferentes configurações de recursos
pode estar presentes na mesma plataforma Grid. Isto também éválido para bibliotecas
de software. Um Grid pode estar espalhado por diferentes domínios administrativos, cada
parte mantida independentemente por seus administradores. Além destas características,
um Grid também pode ter uma rede de interconexão complexa e ser facilmente escalável
quanto aos seus recursos.

A interconexão entre os recursos de um Grid pode ser compostapor diferentes tipos de
rede. Ela pode ser composta por tecnologias Ethernet, Myrinet, Infiniband, ou fibra óptica.
Um exemplo de Grid com vários tipos de interconexão são os chamados Desktop Grids
(KONDO et al., 2004), como os projetos BOINC (ANDERSON, 2004) eSeti@Home
(ANDERSON et al., 2002), onde a interconexão é em geral feita através da internet. Outro
exemplo que evidencia a presença de múltiplos tipos de interconexão é um Grid composto
por clusters, onde uma hierarquia de interconexão forte é usada para conectar clusters
homogêneos (BOLZE et al., 2006). A presença de vários tipos deinterconexão é um
reflexo natural da heterogeneidade e da distribuição geográfica de Grids. Estes aspectos
impõe uma rede mais complexa, um número maior de saltos para comunicação entre
processos e latência e largura de banda variáveis e diferentes ao longo do tempo.

Plataformas Grid são também facilmente escaláveis, de uma forma que novos recursos
podem ser indefinidamente adicionados apenas conectando eles aos participantes exis-
tentes. Normalmente, estas adições de recursos trazem maisheterogeneidade e aumentam
a complexidade da rede. Atualmente, existem Grids globais que são compostos por mil-
hares de computadores, como o exemplo do projeto BOINC. Outro exemplo de quão fácil
é a adição de novos recursos a um Grid é o caso do Grid’5000, onde novos clusters são
adicionados ao backbone principal da plataforma. A escalabilidade destas plataformas é
uma boa característica do ponto de vista das aplicações paralelas, que necessitam cada
vez mais de mais recursos computacionais.

Todas essas características de plataformas Grid influenciam diretamente o compor-
tamento das aplicações paralelas durante o seu desenvolvimento e execução. Por causa
disto, é importante para o desenvolvedor entender o impactodo sistema distribuído so-
bre a aplicação. Um exemplo disso é a análise de aplicações considerando a topologia da
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rede. A aplicação pode ter um melhor ou pior desempenho dependendo de quais recur-
sos foram escolhidos e a interconexão entre eles. Esta influência é ainda mais evidente
quando os aspectos da rede são considerados, como a latênciae a largura de banda, em
aplicações que são limitadas pela rede. A escalabilidade deum Grid é outro aspecto que
também influencia diretamente o comportamento das aplicações paralelas, uma vez que
a disponibilidade de novos recursos para a aplicação não indica sempre que um melhor
desempenho será alcançado.

Considerando estas situações, podemos perceber que é importante analisar o com-
portamento das aplicações paralelas com informações do Grid. Esta análise pode ajudar
desenvolvedores a entender o impacto da topologia da rede naaplicação por exemplo.
Contrastando o padrão de comunicação da aplicação com a topologia da rede pode dar di-
cas ao desenvolvedor de como adaptar a aplicação para melhorexplorar tal interconexão.
Além disso, se a rede é hierarquicamente organizada, as aplicações podem seguir a hier-
arquia da rede para evitar gargalos e outros problemas de desempenho se a aplicação não
é estruturada hierarquicamente. Uma boa análise também deve levar a conclusões sobre
todos os processos da aplicação, incluindo padrões locais eglobais que podem aparecer
entre eles. Se existe uma grande quantidade de processos, a análise deve ser capaz de
gerar resultados sobre todos eles.

A visualização é uma forma de realizar a análise de aplicações paralelas. Ela tem
sido bastante utilizada nos últimos 30 anos para entender e observar aplicações que são
focadas em diferentes níveis de paralelismo. A forma mais tradicional de visualização
acontece através de uma adaptação de gráficos Gantt (WILSON, 2003), também con-
hecido como gráficos espaço-tempo. Estas visualizações listam os componentes da apli-
cação verticalmente e sua evolução no tempo é demonstrado noeixo horizontal. Exemplos
de ferramentas que oferecem este tipo de análise são o Pajé (KERGOMMEAUX; STEIN;
BERNARD, 2000), Vampir (NAGEL et al., 1996) entre outras (KAZI et al., 2000; PIL-
LET et al., 1995; ARNOLD et al., 2007a). Gráficos espaço-temposão bastante usados em
plataformas existentes, como clusters, onde os dados são simples e uniformes.

Muitas dessas ferramentas de visualização foram adaptadaspara observar o comporta-
mento de aplicações em sistemas distribuídos como Grid. Geralmente elas continuam us-
ando as mesmas técnicas de visualização. Considerando somente representações espaço-
tempo, o primeiro problema que surge é que elas não podem representar, juntamente com
os dados da aplicação, a complexa topologia de rede de plataformas Grid. Como discutido,
o impacto dessa topologia não pode ser excluído de uma análise de aplicação quando uma
interconexão complicada existe entre os recursos. O segundo problema é relacionado com
a escalabilidade de visualização de gráficos espaço-tempo.Usando tais representações, o
número de componentes da aplicação que podem ser visualizados uma tela de computador
é limitado à resolução vertical da tela.

Esta tese tenta resolver estes problemas encontrados em técnicas de visualização tradi-
cionais para aplicações paralelas. A idéia principal dos esforços consiste em explorar téc-
nicas da área de visualização da informação e tentar aplicá-las no contexto de análise
de programas paralelos. Levando em conta isto, esta tese propõe dois modelos de vi-
sualização: o de três dimensões e o modelo de agregação visual. O primeiro pode ser
utilizado para analisar aplicações levando-se em conta a topologia da rede dos recursos.
A visualização em si é composta por três dimensões, onde duassão usadas para mostrar a
topologia e a terceira é usada para representar o tempo. O segundo modelo pode ser usado
para analisar aplicações paralelas com uma grande quantidade de processos. Ela explora
uma organização hierárquica dos dados de monitoramento e uma técnica de visualização
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chamada Treemap para representar visualmente a hierarquia. Os dois modelos represen-
tam uma nova forma de analisar aplicação paralelas visualmente, uma vez que eles foram
concebidos para larga-escala e sistemas distribuídos complexos, como Grids.

Alguns dos conceitos desta tese foram publicados e um artigoestá em processo de
avaliação.

Este resumo estendido está organizado em cinco seções, descritos a seguir:

Seção A.2: O Modelo Tri-Dimensional
Esta seção apresenta o primeiro modelo desta tese, compostoda abordagem em três
dimensões. Nele, descrevemos a concepção do modelo visual euma visão geral dos
componentes abstratos capaz de gerar visualizações 3D.

Seção A.3: Modelo Visual de Agregação
A seção apresenta a concepção do algoritmo de fatia de tempo para a transformação
do comportamento de uma aplicação em uma hierarquia, além domodelo de agre-
gação usado para se atingir escalabilidade visual no uso de representações Treemap.

Seção A.4: O Protótipo Triva
Esta seção apresenta o protótipo desenvolvido ao longo desta tese. O foco da de-
scrição neste resumo fica na parte da visão geral dos componentes que fazem parte
da implementação.

Seção A.5: Resultados e Avaliação
A seção apresenta os resultados obtidos com o protótipo Triva na avaliação dos
modelos propostos. Dois cenários são apresentados: um relacionado ao tri-dimensional,
e outro ao modelo de agregação visual.

Seção A.6: Conclusão
Os principais resultados são relembrados e as perspectivasdelineadas.
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A.2 O Modelo Tri-dimensional

O desempenho de aplicações Grid está relacionado às características da rede de in-
terconexão (LACOUR; PÉREZ; PRIOL, 2004). Quando os recursos temuma forte hier-
arquia entre eles, a escolha dos recursos dados a uma aplicação pode ser decisivo para o
desempenho e também para o entendimento da aplicação. Sem informações da topologia
da rede, o analista pode não ser capaz de perceber que eventuais problemas na aplicação
são devido a limitações do nível da rede. As decisões tomadaspor uma visualização tradi-
cional da aplicação, neste caso, podem levar a conclusões erradas sobre o mau desem-
penho. Sendo assim, se fossemos capazes de analisar a aplicação levando-se em conta
características da rede, nós veríamos mais claramente as razões do comportamento da
aplicação.

A maioria das ferramentas de visualização não são capazes deefetuar uma análise
levando-se em conta a topologia da rede. ParaGraph é a única ferramenta que apresenta
uma noção de interconexão em suas técnicas de visualização,embora provendo apenas vi-
sualização de hiper-cubo e padrões de comunicação, separadamente. Na realidade, Para-
Graph não foi concebido para a análise de aplicações de larga-escala. Outras técnicas,
como espaço-tempo ou baseadas em grafo, usadas em outras ferramentas de visualiza-
ção, também não são capazes de apresenta a topologia da rede com as comunicações
de aplicações paralelas. Neste caso, a limitação é relacionado a forma como os recur-
sos e componentes da aplicação são desenhados, feito em um espaço linear. Quando a
plataforma de execução se torna maior e mais complexa, mostrar a topologia da rede em
uma visualização espaço-tempo se torna impraticável.

Nossa proposta de fazer uma ligação entre a análise da aplicação e a topologia da rede
é baseada em um esquema composto de três dimensões. Uma das dimensões é o tempo, e
as outras duas dimensões são usadas para representa a topologia da rede. A próxima seção
apresenta a concepção visual do nosso modelo, e a seção seguinte apresenta o modelo de
componentes abstratos que pode ser usado para se gerar tal visualização.

A.2.1 Concepção Visual

A concepção visual do nosso modelo consiste na combinação detécnicas de visu-
alização que mostram o comportamento da aplicação com técnicas que mostram dados
estruturais ou estatísticos. Se dados estruturais são utilizados, a topologia da rede pode
ser usada juntamente com o comportamento da aplicação. Se dados estatísticos são apli-
cados, o usuário pode simplificar quantitativamente o comportamento da aplicação, em
diferentes escalas e fatias de tempo.

O resultado da concepção visual é o modelo tri-dimensional.O modelo tem duas
dimensões reservadas para as representações estruturais eestatísticas. Nós nomeamos
estas duas dimensões como a base da visualização 3D. A terceira dimensão é a linha
do tempo. A Figura A.1(a) mostra um exemplo da abordagem 3D para representação de
dados da aplicação. Os estados dos processos são representados como barras verticais que
são posicionadas em cima da base da visualização. Os diferentes estados ao longo do eixo
do tempo podem ser representados por diferentes cores. Cada representação de estado
é colocada verticalmente seguindo suas marcações de inícioe fim. Comunicações são
representadas como flechas ou linhas no ambiente 3D, conectando dois ou mais processos
que se comunicam. A Figura A.1(b) mostra a visualização de umdiferente ponto de vista,
localizado sobre os objetos representados. Esta visão permite a observação do padrão de
comunicação da aplicação, por exemplo.
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(a) Concepção visual da abordagem 3D. (b) Visualização a partir do topo.

Figura A.1: Concepção visual da abordagem 3D com rastros de aplicação representados
por barras verticais representando o comportamento de processos ao longo do tempo.

A.2.2 Modelo de Componentes

Para criar uma visualização 3D, os rastros coletados das aplicações devem passar
por uma série de transformações. Para tal, definimos aqui um modelo de componentes
abstratos. A Figura A.2 apresenta a organização geral destemodelo. Como entrada, o
modelo usa dois tipos de informação: rastros de aplicações paralelas e um arquivo de
configuração contendo a descrição dos recursos do ambiente de execução.

Figura A.2: Modelo de componentes abstratos da abordagem 3D, com as três configu-
rações possíveis para a base da visualização.

A base da visualização é configurada pelo componenteEntity Matcher(C). Desen-
volvemos três diferentes configurações para o mesmo: uma quemostra o padrão de co-
municação da aplicação; outro que mostra este padrão combinado com a topologia da
rede; e o último é a combinação dos dados da aplicação com uma representação lógica
dos recursos. O componente escolhe uma dessas visualizações de acordo com a escolha
do usuário.

Entre as três alternativas modeladas noEntity Matcher, a que considerada topologia da
rede (C.2) lida diretamente com o problema da influência da interconexão na aplicação.
As outras alternativas são apresentadas para mostrar outras informações estruturais (o
padrão de comunicação) e uma representação estatística comdetalhes de comportamento
ao longo do tempo.

Nós consideramos no modelo que existem arquivos de rastros disponíveis para a
leitura, os quais guardam eventos que geram um fluxo que atravessa os componentes
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da Figura A.2 da esquerda para a direita. Mesmo assumindo arquivos como entrada, os
componentes podem funcionar independentes da como os dadosde rastreamento são in-
jetados no modelo. Sendo assim, o modelo é capaz de lidar com uma geração online de
eventos quando a quantidade dos mesmos não é tão grande. Notificações podem também
ocorrer no modelo dos componentes de visualização em direção aos outros componentes,
para propagar configurações e mudanças no comportamento iniciadas por comandos de
usuário.



136

A.3 O Modelo Visual de Agregação

Outra questão relacionada a aplicações Grid é que elas podemser compostas de uma
grande quantidade de processos. Algumas análises já são possíveis com grandes apli-
cações (LEE et al., 2008), mas somente em clusters. Várias questões surgem em ambientes
Grid ao analisar aplicações de larga-escala. Uma primeira éa grande quantidade de dados
de monitoramento, que dependem de dois fatores: o número de entidades monitoradas, e
a quantidade de detalhe coletada de cada entidade. Outra questão é a escalabilidade visual
(EICK; KARR, 2002) das técnicas de visualização, que fala sobrea quantidade de dados
que podem ser mostrados na tela sem que o usuário perca a habilidade de entender o que
é representado.

É fato que as técnicas de visualização das ferramentas devemtambém ser escaláveis
para analisar aplicações paralelas grandes. Se consideramos apenas a quantidade de en-
tidades monitoradas, devemos ser capazes de representar pelo menos alguns milhares de
processos na mesma tela. Uma certa quantidade de detalhes também deve estar presente
na representação. Um exemplo de técnica de falta de escalabilidade é a representação
espaço-tempo, onde a quantidade de dados a ser representadaé limitada pelo espaço ver-
tical disponível em telas de computadores.

Entre as ferramentas de visualização existentes, Vampir tem em sua visualização
espaço-tempo uma técnica hierárquica que aumenta a quantidade de processos que po-
dem ser visualizados ao mesmo tempo. A técnica funciona através da agregação do com-
portamento de processos de acordo com a representação hierárquica. O problema da abor-
dagem é que a informação de cada nível é apresentada de forma diferente, tornando difícil
a análise de visões agregadas. Outras ferramentas, como Pajé e Jumpshot, usam mecanis-
mos de rolagem para lidar com um número grande de entidades monitoradas. Esta técnica
tem um impacto negativo uma vez que o comportamento de todas as entidades não é
mostrado ao mesmo tempo.

Nossa abordagem usa intervalos de tempo para criar uma estrutura hierárquica que
representa o comportamento da aplicação para o período selecionado. Nós então usamos
a técnica Treemap (JOHNSON; SHNEIDERMAN, 1991) para criar uma representação
visual da estrutura. A técnica proposta aumenta a quantidade de entidades que podem ser
representadas ao mesmo tempo, e permite uma direta comparação entre as mesmas. Além
disso, nós também apresentamos um mecanismo de agregação que pode ser aplicado para
mudar a visualização quando existem muitas entidades para ser analisadas na mesma
tela. A combinação destas dessas duas técnicas permite se atingir escalabilidade visual na
análise de aplicações paralelas.

A.3.1 Algoritmo de Fatia de Tempo

O objetivo do algoritmo de fatia de tempo consiste em criar uma estrutura hierárquica
que reflete o comportamento do programa para um dado intervalo de tempo. Para isso, os
nós da hierarquia devem receber valores que são calculados baseados em dois fatores: a
definição do intervalo de tempo e um sumário de eventos para cada entidade monitorada
naquele intervalo. Diferente configurações para definir o intervalo de tempo são possíveis,
desde intervalos pequenos até grandes, entre outros.

O sumário de eventos é feito levando-se em conta o intervalo de tempo especificado
e informações adicionais sobre uma entidade, presente nos dados de monitoramento. O
objetivo é encontrar um valor numérico que represente o comportamento de cada enti-
dade. Existem diferentes jeitos de definir esses valores numéricos. Podemos considerar



137

que esse número é a quantidade de tempo, ou a quantidade de vezes que algo acontece,
ou qualquer outra informação que pode ser contada de algum jeito. O princípio geral do
algoritmo é somar separadamente os valores para cada um dos tipos de dados que podem
ser encontrados para uma entidade, como estado, variável, links e eventos, e então realizar
uma intersecção dessa soma com a fatia de tempo usada.

A.3.2 Agregação Visual

O uso de uma representação Treemap habilita a escalabilidade da análise. Isto sig-
nifica que se aumentamos o tamanho da hierarquia sendo visualizada, a representação
permanece compreensível do ponto de vista do usuário. Embora isto acontece na maio-
ria das situações, a técnica se mantém limitada pelo tamanhodo espaço dedicado a sua
representação na tela do computador.

O modelo de agregação tenta superar esta limitação através da reorganização da hier-
arquia a ser visualizada. Ele age basicamente através da agregação de valores das folhas da
árvore para nós intermediários da mesma. Com esta abordagem,a renderização Treemap
pode ser parada em qualquer nível sem perder a informação importante que foi registrada
nos nós folhas da árvore.

Figura A.3 mostra três modificações na hierarquia causadas pelo modelo de agre-
gação. A hierarquia original é mostrada na esquerda. Cada informação nos nós folhas
pode representar uma métrica diferente, como a quantidade de vezes que algo acontece.
No nosso exemplo, existem três níveis intermediários: Processo (P), Máquina (M) e Clus-
ter (C). O objetivo principal da agregação é agrupar os valores de P e fazê-los subir um
nível da árvore. Sendo assim, após a primeira agregação, os valores nos vetores são so-
mados e atribuídos aos nós M. O algoritmo pode ser aplicado novamente para continuar
a agregação até o nó raiz.

Figura A.3: Três agregações realizadas pelo modelo de agregação.

Além da tradicional operação de soma (mostrada na Figura A.3, o modelo de agre-
gação pode ser aplicado usando outras funções, como máximos, mínimos, média e medi-
ana. A aplicação dessas funções depende diretamente em qualo tipo de informação sendo
agregada e pode ser usado para evidenciar alguma característica particular.

O benefício trazido pelo modelo de agregação é evidente quando o mesmo é com-
binado com o algoritmo de fatia de tempo. Quando uma aplicação paralela é composta
por muitos processos, a técnica de agregação pode ser usada para melhorar a análise da
visualização baseada em treemaps.
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A.4 O Protótipo Triva

Esta seção descreve resumidamente o protótipo desenvolvido para implementar os
modelos apresentados nas seções anteriores. Esta descrição mostra as decisões de imple-
mentação tomadas. O protótipo é chamado de Triva.

Um dos principais guias durante a implementação do protótipo é que ele deveria ser
construído sobre ferramentas e bibliotecas existentes, principalmente para evitar a desen-
volvimento de implementações já validadas. A primeira decisão tomada é a adoção de
algumas partes da ferramenta Pajé. As principais razões quemotivaram esta adoção é a
reutilização de software e o bom desempenho dos componentesde simulação do Pajé.
Outras decisões tomadas incluem o uso de formatos de descrição de recursos facilmente
reconhecidos textualmente, a adoção da biblioteca GraphViz, entre outros.

A Figura A.4 mostra a organização geral do protótipo, composta de módulos que
transformam os dados de rastreamento em objetos Pajé, e então nos dois tipos de visu-
alização: o 3D e a treemap. Pelo fato da adoção de objetos genéricos, a única parte do
protótipo que é dependente do formato do rastro é aquela representada na esquerda da
Figura, indicada pelo integrador DIMVisual e seus sub-componentes. Os retângulos bran-
cos são bibliotecas e ferramentas existentes que foram reutilizadas com poucas alterações;
retângulos cinzas foram desenvolvidos para fazerem parte do protótipo.

Figura A.4: Arquitetura Triva.

O componente TrivaController, escrito na linguagem C++, fica acargo da inicializa-
ção de todos os componentes, conectando-os seguindo a arquitetura da Figura A.4. Ele
também apresenta ao usuário a interface gráfica, criada usando a biblioteca wxWidgets,
através de uma janela, com opções de configuração e mecanismos de interação. A cena
tri-dimensional e a renderização treemap é também inicialmente configurada por esse
componente.

Os filtros Pajé, representados pelos retângulos pontilhados da Figura A.4, são os mes-
mos utilizados na ferramenta de visualização Pajé. Suas implementações levam em conta
várias questões ligadas a escalabilidade e baixo tempo de resposta aos comandos da inter-
face com o usuário. O primeiro dos filtros, PajeEventDecoder, lida com a entrada gerada
pelo DIMVisualReader e prepara para o próximo módulo. O PajeSimulator transforma
os eventos em objetos visuais. Esta transformação consisteem criar uma estrutura hi-
erárquica dos rastros, usando os tipos básicos Pajé. Esta estrutura, que representa a mesma
informação encontrada nos rastros, é otimizada para a visualização, e registrada no Stor-
ageController.

Na parte mais da direita da Figura A.4, as interações entre osmódulos funcionam
nos dois sentidos. Interações da direita para a esquerda sãopedidos de novos dados. Eles
são lançados por comandos de usuário ou mudanças nas configurações. As interações da
esquerda para a direita são respostas aos pedidos.
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A.4.1 TrivaView

O modelo de visualização, apresentado na seção A.2, é implementado no protótipo
Triva através do componente TrivaView. A Figura A.5 apresenta sua organização geral
incluindo os componentes relacionados. O módulo TrivaViewimplementa a parte do Ex-
tractor do modelo 3D, obtendo do fluxo de objetos Pajé os containers e links, e redirecio-
nando o fluxo para o componente DrawManager. A parte do modelo3D que se chama En-
tity Matcher é implementada em três components do protótipo: TrivaApplicationGraph,
TrivaResourcesGraph and TrivaTreemapSquarified. Eles recebem como entrada os con-
tainers e links do TrivaView, e a descrição dos recursos de arquivo. A parte Visualization
do modelo 3D mostrada através do cículo pontilhado na direita da Figura A.5, é imple-
mentada com 4 componentes: o Triva3DFrame, que mantém a cena3D, e seus três geren-
ciadores que podem mudar os aspectos visuais, o DrawManager, o AmbientManager e o
CameraManager.

Figura A.5: Layout de implementação do TrivaView.

A.4.2 TimeSliceView

O modelo de agregação e o algoritmo de fatia de tempo foram implementados no com-
ponente TimeSliceView, como mostrado na Figura A.6. Outro componente importante
desta Figura é o Triva2DFrame, cuja responsabilidade é desenhar a treemap na janela de
visualização do protótipo.

Figura A.6: Layout de implementação do TimeSliceView.

A Figura A.6 também detalha as interações e notificações que acontecem durante a
execução do componente. A chegada de objetos do simulador Pajé (veja Figura A.4 para
detalhes) é representada na esquerda da Figura. As interações com o usuário podem causar
três diferentes tipos de notificações que vão do componente Triva2DFrame para o TimeS-
lice: a mudança do tamanho da janela, um novo nível de agregação e a mudança da fatia
de tempo. Todas estas notificações disparam a mesma cadeia deacontecimentos no com-
ponente: criação de uma hierarquia de comportamento, possível aplicação de operadores
de agregação e cálculo da nova treemap. A treemap resultanteé enviada como resposta e
então desenha na janela pelo componente Triva2DFrame.
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A.5 Resultados e Avaliação

O principal objetivo desta parte do resumo é mostrar os dois tipos de visualizações
gerados pelo protótipo Triva, um deles tri-dimensional e outro com treemap. Em paralelo
a essas visualizações, é feita uma análise considerando os rastros de execução utilizados
como entrada para o protótipo.

A.5.1 Tri-Dimensional

O principal objetivo do modelo tri-dimensional é realizar omapeamento dos compo-
nentes da aplicação com a topologia de interconexão dos recursos. Para apresentar um dos
resultados obtidos com este tipo de visualização, selecionamos um cenário onde existem
60 processos, alocados em 2 sites diferentes do Grid’5000. Ositenancycontribui para a
execução com 30 máquinas do clustergrelon, ao mesmo tempo que o siterennestem uma
alocação de 25 máquinas do clusterparamounte 5 máquinas do clusterparaquad. Con-
sideramos neste caso que uma topologia de rede no qual cada site contém um roteador
próprio e todos os clusters de um site são conectados no seu respectivo roteador. Os
roteadores de sites diferentes estão interconectados. Sendo assim, quando uma mensagem
é enviado de um cluster de um site a um cluster de outro site, ela deve passar através dos
dois roteadores.

A Figura A.7 mostra duas capturas de tela do protótipo Triva geradas durante a visu-
alização do arquivo de rastro deste cenário. O texto e as linhas pontilhadas foram man-
ualmente inseridas para aumentar o entendimento do exemplo. A imagemA desta Figura
mostra o tempo total de execução com uma escala de tempo pequena, fazendo com que
todos os objetos fiquem perto da base da visualização. A linhapontilhada desta imagem
mostra a separação entre os sitesrennes, com dois clusters, enancy, com apenas um
cluster. Nós podemos observar nesta escala de tempo que um grande número de roubo
de tarefas acontece entre os clustersgrelone paraquad, provavelmente devido ao maior
número de processos alocados neles. Analisando essas interações com a topologia da rede,
o protótipo Triva permite que o usuário visualize que todos os pedidos de tarefas destes
clusters devem ser comunicados através dos dois roteadoresda interconexão.

Figura A.7: Duas capturas de tela do protótipo Triva durantea visualização de uma apli-
cação composta de 60 processes, em diferentes escalas de tempo.

O protótipo também permite a mudança dinâmica da escala do tempo, usando o
mouse. A imagemB da Figura A.7 mostra o tempo total de execução para os rastros
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deste cenário, com uma maior escala de tempo. Através desta imagem, é possível obser-
var as diferenças do comportamento do roubo de tarefas em diferentes intervalos de tempo
da execução. Pode-se perceber que no início há um número significativamente menor de
roubos comparado com o fim. Isto ocorre porque no fim de uma aplicação KAAPI as
tarefas disponíveis para execução se tornam mais raras. Este comportamento é esperado
na atual implementação do KAAPI, onde um roubo de tarefas aleatório é implementado.

Um segundo cenário é uma aplicação KAAPI composta por 200 processos, em 200
máquinas. A alocação de máquinas está dividida em dois sites: rennesenancy. O número
de máquinas alocadas em cada um é igual, embora a alocação interna de cada um difere
em quantidade de máquinas por cluster. A imagemA da Figura A.8 mostra o número de
máquinas para cada cluster alocado e também a topologia da rede que interconecta os
dois sites. A linha pontilhada é utilizada para separar os sites. Nós consideramos para este
cenário informações adicionais relacionadas a interconexão entre os roteadores e os três
clusters. A largura de banda disponível entre os clustersparavente grillon, através dos
dois roteadores, é de 100 megabits. O link entre o clustergrelon e seu roteador é de 1
megabit, como mostrado na imagemA da Figura.

Figura A.8: Duas visões de um exemplo com mais informações datopologia da rede,
como as limitações impostas pela largura de banda.

Neste cenário, existem 87 processos executando no clustergrelon, e 61 noparavent.
Considerando apenas os roubos de tarefas entre estes dois clusters, como mostrado no cír-
culo pontilhado da imagem à direita da Figura A.8. A flecha pontilhada da mesma imagem
indica que estes pedidos devem passar através do link de 1 megabit. A visualização sugere
que um número menor de processos deveria ser colocado em um cluster com largura de
banda limitada. Se, por exemplo, os processos do clustergrelon fossem executados no
clustergrillon, a execução poderia obter um melhor desempenho.

Através do exemplo deste segundo cenário, nós podemos notara importância da
análise do desempenho de uma aplicação juntamente com uma representação topológ-
ica da rede. Se este tipo de visualização, como mostrado na imagemB da Figura A.8,
não estiver presente, o analista pode obter conclusões erradas sobre o desempenho da
aplicação.
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A.5.2 Agregação

Um dos principais benefícios do modelo de agregação de dadosdesta tese é a facil-
idade de análise uma grande quantidade de entidades monitoradas na mesma tela. Para
avaliar quão escalável é a visualização, nós geramos um rastro sintético composto de 100
mil processadores, cada um com dois estados diferentes. Segue a seguir a análise desse
rastro com a técnica de fatia de tempo e o algoritmo de agregação.

A Figura A.9 mostra a análise do rastro, cuja hierarquia tem quatro níveis: Site, Clus-
ter, Machine e Processor. A hierarquia tem 10 Sites, cada qual com 10 Clusters, cada
cluster com 100 Machines e cada machine com 100 processors. Cada processador pode
estar em um de dois estados possíveis, representados na Figura pelas tonalidades fraca e
forte de cinza.

A análise em larga-escala usando o protótipo começa com a treemapA, localizada
no topo à esquerda da Figura A.9, no nível processor. Nesta treemap, existem 200 mil
retângulos: 100 mil processadores vezes a quantidade de estados possíveis, que são 2.
Nós podemos observar que algumas regiões desta treemap são mais escuras que outras,
permitindo algum tipo de conclusão. Entretanto, qualquer conclusão precisa é difícil de
obter com esta treemap. A principal razão disso é que a treemap A tem retângulos que
são muito pequenos, tornando difícil a observação de diferenças de tamanho entre dois
estados de um único processador. O exemplo é mostrado para indicar a limitação de uma
visualização treemap tradicional.

Figura A.9: Treemap Normal (A) e quatro treemaps com dados agregados (B – E) de dois
estados para 100 mil processadores (gerados sinteticamente).

O retângulo branco da treemapA na Figura A.9 representa o espaço dedicado para
uma máquina. Embora seja difícil de notar, existem 200 retângulos nesta pequena área
que representam o estado dos 100 processadores desta máquina. Pelo fato de ser difícil
de entender o padrão de todos esses 100 processadores, o usuário pode interagir com o
protótipo e mostrar valores agregados para o nível máquina,como mostrado na treemap
B da Figura. Ela mostra para cada máquina os dois possíveis estados. Nesta visão, já é
possível analisar diferenças entre as máquinas: algumas estão significativamente mais em
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um estado do que em outro. A área em evidência no lado esquerdoda treemapB, mostrada
através de um zoom, corresponde a área do retângulo branco datreemapA.

As agregações seguintes permitem o usuário de visualizar osrastros no nível de clus-
ter, como mostrado na treemapC da mesma Figura, e no nível de site na treemapD.
A treemap C mostra 100 clusters (10 por site). Em seu lado esquerdo, a treemap apre-
senta um retângulo preto que mostra 10 clusters na área dedicada para um site. A flecha
começando neste retângulo aponta para os valores agregadospara este site, na treemap D.
A máxima agregação possível, mostrada na treemapE, permite uma visão por estado das
informações disponíveis, indicando que o estado representado pela tonalidade mais clara
aparece mais vezes que o outro na fatia de tempo selecionado para este exemplo.

Um segundo cenário para a visualização treemap é uma aplicação de 188 processos,
executada em 188 máquinas, distribuídas em cinco sites do Grid’5000 incluindo o cluster
de Porto Alegre. Existem 13 máquinas alocadas do clusterxiru, em portoalegre; 2 de
bordereau, 17 debordemer, e 6 debordeplage, embordeaux; 45 depastel, 5 deviolette,
emtoulouse; 14 deparamount, 36 deparaquad, emrennes; e finalmente 50 degrelonno
sitenancy. A Figura A.10 mostra duas treemaps calculadas com os rastros gerados neste
cenário.

A treemapA mostra os estados Run e RSteal para todos os 188 processos. Quase
todos os processos mostram o mesmo comportamento, com o estado Run maior (áreas
com ton cinza claro) comparado com o estado RSteal (cinza escuro). A única exceção
aparece nos K-processos executados no site deportoalegre, colocados em evidência man-
ualmente com o círculo pontilhado. Observando esta treemap, nós notamos que estes pro-
cessos passam mais tempo roubando tarefas que os processos de outros sites. A treemap
B, na direita, mostra a mesma fatia de tempo e os mesmos processos, mas somente o
estado RSteal. Aqui, a diferença de tempo despendida roubando tarefas se torna ainda
mais evidente. Nós acreditamos que a principal razão atrás deste comportamento vem da
interconexão entre os sites. O site deportoalegreé localizado no Brasil, e a sua conexão
com o Grid’5000 é feita través de uma Rede Privada Virtual (VPN) que é mantida através
da internet. A latência desta interconexão, comparada com alatência geral entre os sites
do Grid’5000 localizados na França, é significativa. O roubode tarefas tradicional im-
plementado no KAAPI não diferencia quem será o alvo do roubo.Isto, em um ambiente
de interconexão heterogêneo, pode levar a mais tempo gasto para roubar, como indicado
através da treemap calculada através do nosso algoritmo de fatia de tempo.

Figura A.10: Cenário KAAPI com uma aplicação composta de 188 processos.

No geral, o algoritmo de fatia de tempo combinado com o modelode agregação desta
tese possibilita uma fácil identificação de questões de desempenho ao comparar o com-
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portamento de processos de uma aplicação paralela. O modelode agregação aporta vanta-
gens para situações de larga-escala, não importanto quantos processos estão envolvidos na
análise. O único passo necessário para as duas propostas funcionarem bem nestes ambi-
entes é a definição de uma hierarquia com ao menos alguns níveis. As hierarquias usadas
neste cenário KAAPI tem 5 níveis, tornando possível a obtenção de bons resultados na
visualização.



145

A.6 Conclusão e Trabalhos Futuros

Esquemas de visualização tradicionais para análise de aplicações paralelas foram con-
cebidos para lidar com dados de monitoramento de pequena escala e de ambientes equi-
librados. A necessidade de técnicas de visualização para a análise de aplicações para am-
bientes de larga-escala, tais como Grids, motiva este trabalho. Dois problemas na análise
de aplicações paralelas através da visualização são identificados nesta tese.

O primeiro é o impacto da rede de interconexão na execução de aplicações parale-
las. Este impacto deve estar presente na análise para se melhor entender e melhorar o
desempenho da aplicação. Técnicas de visualização tradicionais, como a representação
espaço-tempo por exemplo, são largamento usadas para análise de aplicações. No en-
tanto, estas técnicas não conseguem mostrar na mesma tela a topologia da rede e os dados
de monitoramento da aplicação. Isto pode levar a conclusõeserradas durante a detecção
de problemas de desempenho das aplicações. O segundo problema é a escalabilidade vi-
sual das técnicas de visualização. Normalmente, o número deentidades monitoradas que
pode ser analisado na mesma tela é limitado à resolução vertical da tela de um com-
putador. Representações espaço-tempo são um claro exemplo deste problema, não sendo
bem apropriadas para a análise de aplicações Grid compostaspor um número grande de
processos.

A idéia principal desta tese é a exploração de técnicas de visualização da informação
que podem ser utilizadas para analisar o comportamento de aplicações paralelas. No nosso
caso, esta exploração também considera os dois problemas que tentamos resolver. Nossa
primeira abordagem mostra a rede de interconexão juntamente com os dados da aplicação
usando uma visualização tri-dimensional, onde a base destavisualização é usada para
detalhar a interconexão entre os recursos, e o terceiro eixopara mostrar a evolução da
aplicação ao longo do tempo. Nós melhorarmos nossa solução através da representação
de padrões de comunicação, oferecendo ao desenvolvedor a possibilidade de casar este
padrão com o da topologia da rede.

A segunda abordagem é o modelo de agregação visual, onde os problemas de escala-
bilidade são superados através da combinação da técnica Treemap e o algoritmo de fatia
de tempo. Este algoritmo leva em conta intervalos de tempo para gerar valores e injetá-los
em uma organização hierárquica da aplicação. Esta estrutura é então representada através
da técnica Treemap. A escalabilidade da visualização é atingida através do modelo de
agregação, onde os níveis da hierarquia são explorados paracriar dados intermediários
que pode ser usados para criar visualizações treemap por níveis com mais informações.

Ambas as abordagens foram implementadas em um protótipo chamado Triva, desen-
volvido usando um gerenciador de cena 3D chamado Ogre e uma implementação de
Treemap própria. O protótipo tem mecanismos de leitura que oligam com a biblioteca
de integração DIMVisual, capaz de integrar dados de monitoramento de diferentes fontes
e formatos. Rastros sintéticos e reais do KAAPI e MPI foram usados para validar as abor-
dagens e a implementação. Os rastros KAAPI foram coletados na plataforma Grid’5000.
Embora a avaliação do protótipo é ligada aos rastros usados,o uso do formato Pajé como
entrada permite a extensão dos benefícios da ferramenta para outros campos de pesquisa
e aplicação, de visualização de recursos a outros tipos de bibliotecas de comunicação.

Os resultados obtidos são promissores. A visualização tri-dimensional permite um
melhor entendimento de padrões de comunicação com a topologia da rede. Nós usamos
uma simplificação da topologia do Grid’5000 e o roubo de tarefas de aplicações KAAPI.
Fomos capazes de mostrar que em diferentes fatias de tempo, oroubo de tarefas pode-
ria se beneficiar mais da localidade, uma vez que a implementação atual de KAAPI não
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leva em conta dados da rede para realizar pedidos de roubo de tarefas. Por outro lado, os
resultados obtidos com o modelo de agregação permitiram a visualização dos estados de
100 mil processadores, gerados sinteticamente. As treemaps definidas pelo algoritmo de
fatia de tempo foram também definidas usando rastros reais KAAPI e MPI. Fomos ca-
pazes de identificar nos rastros KAAPI diferentes características, como o comportamento
diferente nos mecanismos de roubo apresentados por diferentes processos, a eficiência
do balanceamento de carga considerando todo o tempo de execução das aplicações, e a
análise em larga-escala de uma aplicação KAAPI composta porquase 3 mil processos.

Em resumo, os principais objetivos alcançados nesta tese são a proposta da abordagem
3D, o modelo de agregação visual combinado com o técnica de fatia de tempo e protótipo
Triva. Além disso, se incluem a interação entre o protótipo Triva e a biblioteca KAAPI,
permitindo uma análise das atividades de roubo de tarefas desta biblioteca.

Como perspectivas de trabalhos futuros, prevê-se a evoluçãoda visualização 3D para
a representação de informações geradas pelo modelo de agregação; criação de represen-
tações de grafo com a técnica de fatia de tempo e agregação; o estudo de outras funções
de agregação e outros tipos de dados para o algoritmo de fatiade tempo. Acreditamos que
a implicação mais significativa deste trabalho seja o estudode técnicas de visualização
aplicadas para a análise de aplicações paralelas.
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APPENDIX B EXTENDED ABSTRACT IN FRENCH

The French title for this thesis is“Quelques Modéles de Visualisation pour l’Analyse
des Applications Paralléles”. The extended french abstract is also presented here to fulfill
the requirements established in theco-tutelleagreement of the author. This abstract is a
french translation of previous Portuguese extended abstract.
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B.1 Introduction

Les systèmes distribués sont fondés sur du matériel et des logiciels contenant et gérant
plus d’une unité d’exécution (COULOURIS ; DOLLIMORE ; KINDBERG, 2005). Dans
ces systèmes, les processeurs sont interconnectés et communiquent via un réseau. Les
programmes pour ces machines sont divisées en plusieurs catégories et doivent intera-
gir à différents niveaux de parallélisme, tels que le passage de messages ou la mémoire
partagée. Un exemple de système distribué est représenté par les grilles de calcul (FOS-
TER ; KESSELMAN, 2003. ISBN 1-558-60933-4.). Ce type de système est structuré en
organisations virtuelles (FOSTER ; KESSELMAN ; TUECKE, 2001), et peut-être com-
posé de milliers de machines distribuées géographiquement. Deux exemples de grilles
sont le projet français Grid’5000 (BOLZE et al., 2006) et le projet américain TeraGrid
(CATLETT, 2002).

Les caractéristiques partagées par presque toutes les plates-formes de type grille sont
le dynamisme, l’hétérogénéité des ressources et des logiciels et la présence de multi-
ples domaines administratifs. Le dynamisme signifie que lesressources d’une grille peu-
vent devenir indisponibles à tout moment, sans aucune notification préalable. Les appli-
cations parallèles doivent considérer ces conditions dynamiques typiquement pour faire
face aux fluctuations de la quantité de ressources disponible. L’hétérogénéité signifie que
différentes configurations de ressources sont présentes sur la même plate-forme de grille.
Ceci est également valable pour les logiciels de bibliothèques. Une grille peut être com-
posée par les différents domaines administratifs, où chaque partie est maintenue indépen-
damment par leur administrateurs. Au-delà de ces caractéristiques, une grille peut égale-
ment être connectée par un réseau complexe et être facilement étendue par l’ajout de
nouvelles ressources.

L’interconnexion entre les ressources d’un réseau peut être composée de différents
types de réseau : Ethernet, Myrinet, InfiniBand, ou fibre optique. Un exemple de grille
contenant plusieurs types d’interconnexion est appeléDesktop Grids(KONDO et al.,
2004), comme les projets BOINC (ANDERSON, 2004) et Seti@Home (ANDERSON
et al., 2002), où l’interconnexion se fait généralement parle biais d’Internet. Autre exem-
ple qui montre la présence de plusieurs types d’interconnexions est une grille composée
declusters, où une forte hiérarchie d’interconnexion est utilisée pour connecter desclus-
ters homogènes (BOLZE et al., 2006). La présence de plusieurs types d’interconnexion
est un reflet de l’hétérogénéité et la répartition géographique de grilles. Ces aspects im-
posent un réseau plus complexe, un nombre plus grand de directives de routage pour la
communication entre les processus et une latence variable dans le temps.

Les plate-formes de type grille passent facilement à l’échelle car de nouvelles ressources
peuvent y être ajoutées indéfiniment en les reliant aux participants existants. En règle
générale, ces compléments apportent plus d’hétérogénéitéet de complexité au niveau de
réseau. Actuellement, il existe des grilles globales composées de milliers d’ordinateurs,
comme le montre l’exemple du projet BOINC. Un autre exemple quimontre comme il
est facile d’ajouter de nouvelles ressources à une grille est Grid’5000, où de nouveaux
clusterssont ajoutés aubackboneprincipal de la plate-forme. Le passage à l’échelle de
ces plate-formes est une bonne chose pour les applications parallèles, qui exigent de plus
en plus de ressources informatiques.

Toutes ces caractéristiques de la grille influencent directement le comportement des
applications parallèles au cours de leur développement et leur mise en exécution. De ce
fait, il est important que le développeur comprenne les impacts des systèmes distribués
sur l’application. L’analyse d’une application parallèlequi depend de la topologie du
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réseau est un exemple. L’application peut avoir un performance qui varie en fonction
des ressources qui ont été sélectionnées et l’interconnexion entre elles. Cette influence est
encore plus évidente lorsque les caractéristiques de réseau sont considérées, comme la
latence et la bande passante, pour les applications qui sontlimitées par celui-ci. Le pas-
sage à l’échelle d’une grille est un autre aspect qui influence directement le comportement
des applications parallèles, la disponibilité de nouvelles ressources pour l’application ne
signifie pas que l’exécution aura une meilleure performance.

Compte tenu de ces éléments, nous pouvons voir qu’il est important d’analyser le com-
portement des applications parallèles en conjonction avecles informations de la grille.
Cette analyse peut aider les développeurs à comprendre l’impact de la topologie du réseau
sur l’application, par exemple. En visualisant la façon dont l’application communique et
la topologie du réseau, il est possible de determiner comment l’adapter afin de mieux ex-
ploiter cette interconnexion. En outre, si le réseau est hiérarchiquement organisé, les ap-
plications peuvent suivre sa hiérarchie pour éviter les goulets d’étranglement. Une bonne
analyse doit aussi conduire à des conclusions sur tous les processus qui sont mis en exécu-
tion, y compris sur les comportements locaux et globaux qui peuvent apparaître entre eux.
Quand il y a une grande quantité de processus, l’analyse doitêtre en mesure de générer
des résultats statistiques sur l’ensemble de ces processus.

La visualisation est une forme d’aide à l’analyse des applications parallèles. Elle a été
largement utilisé au cours des 30 dernières années, pour comprendre et visualiser les ap-
plications qui sont axées sur différents niveaux de parallélisme. La façon la plus classique
de construire une visualisation consiste à utiliser une adaptation des diagrammes de Gantt
(WILSON, 2003), également connue sous le nom de graphiques d’espace-temps. Ces vi-
sualisations disposent la liste des composants de l’application verticalement et metent la
ligne du temps sur l’axe horizontal. Des exemples d’outils qui offrent ce type d’analyse
sont l’outil de visualisation générique Pajé (KERGOMMEAUX ;STEIN ; BERNARD,
2000), Vampir (NAGEL et al., 1996) et d’autres (ARNOLD et al.,2007a; KAZI et al.,
2000; PILLET et al., 1995). Ces graphiques espace-temps sontdéjà largement utilisés
dans les plates-formes existantes, tels que lesclusters, où les données sont simples et
uniformes.

Beaucoup de ces outils de visualisation ont été adaptés afin d’observer le comporte-
ment des applications dans les systèmes distribués, comme les grilles. Habituellement, ils
continuent à utiliser les même techniques de visualisation. Considérant les représentations
espace-temps, le premier problème qui se pose est qu’elles ne peuvent pas représenter,
avec les données de l’application, la complexité de la topologie du réseau d’une grille.
Comme nous l’avons dit, l’impact de la la topologie ne peut pasêtre exclu de l’analyse
quand l’interconnexion entre les ressources est complexe.Le deuxième problème est lié
au passage à l’échelle de l’affichage graphique espace-temps. Avec l’utilisation de ces
représentations, le nombre de composantes de l’application qui peuvent être visualisés
dans un écran d’ordinateur est limité à la résolution verticale de l’écran.

Cette thèse tente de résoudre les problèmes des techniques traditionnelles dans la vi-
sualisation des applications parallèles. L’idée principale est d’exploiter le domaine de la
visualisation de l’information et essayer d’appliquer sesconcepts dans le cadre de l’anal-
yse des programmes parallèles. Portant de cette idée, la thèse propose deux modèles de
visualisation : les trois dimensions et le modèle d’agrégation visuelle. Le premier peut
être utilisé pour analyser les programmes parallèles en tenant compte de la topologie
du réseau. L’affichage lui-même se compose de trois dimensions, où deux sont utilisés
pour indiquer la topologie et la troisième est utilisée pourreprésenter le temps. Le sec-
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ond modèle peut être utilisé pour analyser des applicationsparallèles comportant un très
grand nombre de processsus. Ce deuxième modèle exploite une organisation hiérarchique
des données utilisée par une technique appelée Treemap pourreprésenter visuellement
la hiérarchie. Les deux modèles constituent une nouvelle façon d’analyser visuellement
les applications parallèles , car ils ont été conçus pour lessystèmes distribués grands et
complexes, tels que les grilles.

Quelques concepts proposés dans cette thèse ont été publiéset un article est en cours
d’évaluation.

Ce résumé étendu est organisé en cinq sections, de la façon suivante :

Section B.2 : Le Modèle Tridimensionnel
Cette section présente le premier modèle de cette thèse, constitué par l’approche
en trois dimensions. Nous décrivons la conception visuelleet une organisation
générale de composants pour la génération de visualisations 3D.

Section B.3 : Le Modèle d’agrégation des Données
La section présente l’algorithme de tranche de temps pour ladescription du com-
portement d’une application sous forme d’une hiérarchie, et le modèle d’agrégation
utilisé pour atteindre le passage à l’échelle dans la représentationsTreemap.

Section B.4 : L’implementation du Prototype Triva
Cette section présente le prototype développé pour cette thèse. Sa description dans
cette partie comprend l’organisation générale de ses composants.

Section B.5 : Résultats obtenus et Évaluation
Les résultats obtenus avec le prototype Triva sont présentés dans cette section. Deux
études de cas y sont presentes : une par rapport au modèle tridimensionnel, l’autre
liée au modèle d’agrégation visuelle.

Section B.6 : Conclusion
Les résultats et implications de la thèse sont présentés, ainsi que les perspectives
pour les travaux futurs.
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B.2 Le Modèle Tridimensionnel

La performance des applications parallèles exécutées sur une grille est liée aux carac-
téristiques de l’interconnexion du réseau (LACOUR ; PÉREZ ; PRIOL, 2004). Quand les
ressources ont une forte hiérarchie entre elles, le choix decelles assignées à une applica-
tion sera décisif pour sa performance mais aussi pour sa compréhension. Sans information
sur la topologie du réseau, l’analyste n’est pas en mesure devoir que les problèmes sont
dus à la mise en oeuvre des communications. Les décisions prises à partir d’une vision
traditionnelle dans ce cas peuvent conduire à des conclusions erronées sur la performance.
Ainsi, si nous avons été en mesure d’examiner l’exécution entenant compte des carac-
téristiques du réseau, nous pouvons voir plus clairement les raisons du comportement de
l’application.

La plupart des outils de visualisation ne sont pas en mesure d’effectuer une analyse en
tenant compte de la topologie du réseau. ParaGraph est le seul outil qui offre un concept
de l’interconnexion dans ses techniques de visualisation,mais seulement par l’affichage
séparés de l’hyper-cube et des modes de communication. En effet, ParaGraph n’a pas été
conçu pour l’analyse des applications à grande échelle. D’autres techniques telles que le
graphique espace-temps, utilisé dans d’autres outils de visualisation, ne sont pas capables
de présenter la topologie du réseau de communication des applications parallèles. Dans ce
cas, la limitation est liée à la façon dont les ressources et les composants de l’application
sont représentés dans un espace linéaire. Lorsque la plate-forme d’exécution devient de
plus en plus complexe, montrer la topologie du réseau dans unaffichage espace-temps
devient impraticable.

Notre proposition d’établir une connexion entre l’analysede l’application et la topolo-
gie du réseau est fondée sur un système composé de trois dimensions. Une des dimensions
est la ligne du temps, et les deux autres dimensions sont utilisés pour représenter la topolo-
gie du réseau. La prochaine section présente la conception visuelle de notre modèle, et la
section suivante présente le modèle abstrait de composantsqui peut être utilisé pour pro-
duire ce resultat.

B.2.1 Conception Visuelle

La conception visuelle de notre modèle est composée par la combinaison de tech-
niques de visualisation qui montrent le comportement de l’application avec les don-
nées structurelles ou statistiques de celle-ci. Si les données structurelles sont choisies,
la topologie du réseau peut être utilisée avec le comportement de l’application. Si les don-
nées statistiques sont requises, l’utilisateur peut simplifier quantitativement les données à
tracer, à des échelles et des tranches de temps différentes.

Le résultat de la conception visuelle est le modèle tridimensionnel. Le modèle a deux
dimensions réservés pour la représentation des données statistiques ou structurelles. Nous
avons nommé ces deux dimensions la “base de la visualisation3D”. La troisième dimen-
sion est la ligne de temps. La Figure B.1(a) montre un exemple de l’approche par représen-
tation en 3D avec les données d’une application. Les états des processus sont représentés
par des barres verticales qui sont placées au-dessus de la base. Les différents états le long
de l’axe du temps peut être représenté par des couleurs différentes. La représentation de
chaque état est placée verticalement selon ses marques de début et de fin. Les commu-
nications sont représentées par des flèches ou des lignes dans un environnement 3D en
reliant deux ou plusieurs processus qui communiquent. Figure B.1(b) montre un point de
vue différent, situé au dessus des objets représentés. Ce point de vue permet l’observation
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de la structure de la communication de l’application, par exemple.

(a) Conception visuelle de l’approche 3D. (b) Diffèrent point de vue.

FIGURE B.1 – La conception visuelle de l’approche 3D avec les traces d’une application
représentées par des barres verticales montrant l’évolution des processus dans le temps.

B.2.2 Modèle de Composants

Pour créer un affichage 3D, les traces collectées lors de l’execution des applications
passent à travers une série de transformations. À cette fin, nous proposons ici un mod-
èle abstrait de composants. Figure B.2 montre l’organisation globale de ce modèle. En
entrée, le modèle utilise deux types d’informations : des traces d’applications parallèles
et un fichier de configuration contenant la description des ressources de l’environnement
d’exécution.

FIGURE B.2 – Modèle abstrait de composants pour l’approche 3D, avec trois configura-
tions possibles pour la base de la visualisation.

La base de la visualisation est configuré par leEntity Matcher(C). Nous avons développé
trois configurations différentes pour celui-ci : celle qui montre le schéma de communica-
tion de l’application, celle qui montre ce modèle combiné avec la topologie du réseau,
et la denière qui combine les données provenant de l’application avec une représentation
logique des ressources. Le composant selectionne une de cesconfigurations selon le choix
de l’utilisateur.

Parmi les trois alternatives duEntity Matcher, celle qui considère la topologie du
réseau (C.2) traite directement le problème de l’influence del’interconnexion sur l’appli-
cation. Les autres variantes sont présentées pour montrer d’autres informations, comme
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les donnés structurelles (le modèle decommunication de l’application) et une représenta-
tion statistique des détails de son comportement au fil du temps.

Nous considérons dans le modèle l’existence des traces qui sont donc disponibles pour
la lecture et qui sont transformées en un flot qui traverse leséléments de la Figure B.2 de
gauche à droite. Même en supposant l’existence de ces fichiers d’entrée, les composants
peuvent fonctionner indépendamment de la façon dont les données sont injectées dans
le modèle. Ainsi, le modèle est capable de faire face à une génération d’événements “en
ligne” lorsque leur volume n’est pas trop gros. Des notifications peuvent également se
produire dans le modèle, en direction des autres composants, et de propager les modifica-
tions de configuration correspondant aux commandes initiées par l’utilisateur.
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B.3 Le Modèle Visuelle d’agrégation

Une autre préoccupation relative aux applications de la grille est qu’elles peuvent
être composées d’un grand nombre de processus. Quelques analyses sont déjà possibles
avec des applications à grand échelle (LEE et al., 2008), mais seulement au niveau d’un
cluster. Plusieurs questions se posent dans des environnements de grille lors de l’analyse
de ces applications. L’une est la grande quantité de donnéesde trace, qui dépend de deux
facteurs : le nombre d’entités de l’application, et la quantité de détails recueillis pour
chaque entité. Une autre question est le passage à l’échelledes techniques de visualisation
(EICK ; KARR, 2002), qui doivent s’adapter à la quantité de données qui peuvent être
affichées sur l’écran sans que l’utilisateur ne perde la capacité de comprendre ce qui est
représenté.

Les techniques de visualisation des outils doivent également passer à l’échelle pour
l’analyse des applications parallèles. Si on considère seulement la quantité des entités
observées, les outils devraient être en mesure de représenter au moins quelques milliers
de processus sur le même écran. Un certain nombre de détails doivent également être
présents dans la représentation. Un exemple d’un manque de passage à l’échelle est la
représentation espace-temps où la quantité de données à représenter est limitée par la
résolution verticale des écrans d’ordinateurs.

Parmi les outils existants pour la visualisation, Vampir a une technique hiérarchique
pour sa visualisation espace-temps qui augmente la quantité de processus qui peuvent être
consultés en même temps. La technique fonctionne en agrégeant les comportements des
processus en fonction de la représentation hiérarchique. Le problème de cette approche est
que chaque niveau d’information est présenté différemment, ce qui rend difficile l’analyse
de l’ensemble des points de vue. D’autres outils tels que Jumpshot et Pajé, grâce à une
fenêtre de défilement, peuvent faire face à un grand nombre d’entités analysées. Cette
technique a un impact négatif car le comportement de toutes les entités ne figure plus
dans la même visualisation.

Notre approche utilise un intervalle de temps pour créer unestructure hiérarchique
qui représente le comportement de l’application pour la période sélectionnée. Nous util-
isons ensuite la technique Treemap (JOHNSON ; SHNEIDERMAN, 1991) pour créer une
représentation visuelle de la structure. La technique proposée augmente le nombre d’en-
tités qui peuvent être représentées en même temps, et permetune comparaison directe
entre elles. En outre, nous présentons aussi un mécanisme d’agrégation qui peut être ap-
pliqué pour changer la visualisation quand il y a de nombreuses entités qui doivent être
analysés dans le même écran. La combinaison de ces deux techniques permet d’atteindre
une passage à l’échelle de l’analyse visuelle des applications parallèles.

B.3.1 L’algorithme de Tranche de Temps

L’objectif de l’algorithme de tranche de temps est de créer une structure hiérarchique
qui reflète le comportement du programme pendant un temps donné. Pour ce faire, les
sommets de la hiérarchie doivent être des valeurs qui sont calculées à partir de deux
facteurs : la définition d’une tranche de temps et un résumé des événements pour chaque
entité présente dans cette période. Différents réglages pour définir l’intervalle de temps
sont possibles, allant des petites aux grandes plages.

Le résumé des événements se fait en tenant compte du temps spécifié et de l’informa-
tion sur une entité, présente dans les données de trace. Le but est de trouver une valeur
numérique qui représente le comportement de chaque entité.Il existe différentes façons
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de définir cette valeur, comme la quantité de temps ou le nombre de changements d’état,
ou de toute autre information qui peut être prise dans les traces. Le principe général de
l’algorithme est d’ajouter séparément les valeurs de chaque type de données qui peuvent
être trouvées pour une entité, et ensuite de réaliser une union de cette somme avec la
tranche de temps utilisé.

B.3.2 Agrégation Visuelle

L’utilisation d’une représentation Treemap permet la passage à l’échelle de l’analyse.
Cela signifie que si la taille de la plateforme affichée est augmentée, la représentation reste
compréhensible du point de vue de l’utilisateur. Si ce passage à l’échelle se produit cor-
rectement dans la plupart des situations, la technique reste limitée par la taille de l’espace
dédié à la représentation sur l’écran de l’ordinateur.

Le modèle d’agrégation essaie de surmonter cette limitation par le biais de la réorgan-
isation de la hiérarchie à afficher. Il agit principalement par l’agrégation des valeurs des
feuilles de l’arbre dans les noeuds intermédiaires. Avec cette approche, le rendu Treemap
peut être interrompu à tout niveau, sans perdre l’information importante qui a été enreg-
istrée dans les feuilles.

FIGURE B.3 – Trois agrégations réalisées par le modèle.

La Figure B.3 montre trois changements dans la hiérarchie d’agrégation causés par
le modèle. La hiérarchie originale est indiqué sur l’extrême gauche. Chaque informa-
tion dans les feuilles peut représenter différentes métriques, telles que le nombre de fois
où quelque chose se passe. Dans notre exemple, il existe trois niveaux intermédiaires :
Processus (P), Machine (M) et Cluster (C). Le principal objectif de l’agrégation est de
regrouper les valeurs de chaque processus et de les déplacerd’un niveau plus haut dans
l’arbre. Par conséquent, après la première agrégation, lesvaleurs dans les vecteurs sont
additionnées et stockées sur les noeuds machine. L’algorithme peut être appliqué de nou-
veau jusqu’à l’agrégation dans le noeud principal.

Outre l’opération d’addition (Figure B.3), le modèle d’agrégation peut être appliqué
en utilisant d’autres fonctions telles que la teneur maximale, minimale, moyenne et mé-
diane. L’application de ces fonctions dépend directement de la nature des informations
agrégées et peut être utilisée pour mettre en évidence une caractéristique particulière.

Le bénéfice apporté par le modèle d’agrégation est évident quand il est combiné avec
l’algorithme de la tranche de temps. Quand une application parallèle est composée de
nombreux processus, la technique de regroupement peut êtreutilisée pour améliorer l’-
analyse de l’affichage basé sur les treemaps.



156

B.4 L’implementation du Prototype Triva

Cette section décrit brièvement le prototype mis au point pour mettre en œuvre les
modèles présentés dans les sections précédents. Cette description décrit les decisions
d’implementation prises. Le prototype est appelé Triva.

L’un des principaux guides pour la réalisation de ce prototype est qu’il doit être con-
struit à partir d’outils et de bibliothèques existants, en particulier afin de prévenir la ré-
implementation d’outils déjà validés. La première décision est l’adoption de certaines
parties de l’outil Pajé. Les principales raisons qui ont motivé cette adoption est la réutili-
sation de code et la performance de l’ensemble des composants Pajé. Les autres décisions
prises sont notamment l’utilisation de formats de description des ressources faciles à re-
connaître et l’adoption de la bibliothèque GraphViz.

La Figure B.4 montre l’organisation générale du prototype, composé de modules qui
convertissent les données de trace pour des objets Pajé, puis élaborent les deux types de
visualisation : la 3D et treemap. L’adoption des traces génériques a fait que la seule partie
du prototype dépendante du format de la trace soit DIMVisual, représenté sur la gauche de
la Figure. Les rectangles blancs sont des bibliothèques et des outils qui ont été réutilisés
avec peu de changement ; rectangles gris ont été développés pour composer le prototype.

FIGURE B.4 – L’architecture du prototype Triva.

Le composant TrivaController, écrit en langage C++, est en charge de la mise en route
de tous les composants en les reliant selon l’architecture de la Figure B.4. Elle four-
nit également à l’utilisateur une interface graphique, créée en utilisant la bibliothèque
wxWidgets, sous la forme d’une fenêtre, avec des options de configuration et des mécan-
ismes d’interaction. Les visualisations 3D et treemap sontaussi mises en route par cette
composante.

Les filtres, représentés par des rectangles en pointillés dans la Figure B.4, sont les
mêmes filtres que ceux utilisés dans Pajé. Leur implementation prend en compte plusieurs
questions liées au passage à l’échelle et au temps de réponsedes commandes de l’inter-
face utilisateur. Le premier de ces filtres, PajeEventDecoder, traite l’entrée générée par
DIMVisualReader et la prépare pour le prochain module. Le PajeSimulator transforme
les événements en objets visuels. Cette transformation a comme but la creation d’une
structure hiérarchique de trace, en utilisant les types de base Pajé. Cette structure, qui
représente la même information que celle qui se trouve dans les fichiers d’entrée, est op-
timisée pour la visualisation, et enregistrée dans le StorageController.

Dans la partie droite de la Figure B.4, les interactions entreles modules opèrent dans
les deux directions. Les interactions de la droite vers la gauche sont les demandes de nou-
velles données. Elles sont initiées par l’utilisateur par des commandes ou par la modifica-
tion de paramètres. Les interactions de gauche à droite sontdes réponses à des demandes.
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B.4.1 TrivaView

Le modèle de visualisation 3D, présenté dans la section B.2, est mis en oeuvre dans le
prototype Triva par la composante TrivaView. La Figure B.5 montre l’organisation globale
de cette composante. Le module implémente la partie Extractor du modèle. Il obtient du
flot des objets Pajé les conteneurs et les liens à envoyer au EntityMatcher, et envoie aussi
le flot au composant DrawManager. La partie du modèle 3D appelé EntityMatcher est
mise en œuvre dans les trois composantes du prototype : TrivaApplicationGraph, TrivaRe-
sourcesGraph et TrivaTreemapSquarified. Ils reçoivent en plus du flot d’objects Pajé, le
fichier de description des ressources. La visualisation du modèle 3D, representée dans la
droite de la Figure B.5, est mise en œuvre avec 4 composantes : le Triva3DFrame, pour le
maintien de la scène 3D, et de trois mainteneurs qui peuvent changer les aspects visuels
de la scéne, le DrawManager, le AmbientManager et le CameraManager.

FIGURE B.5 – Structure d’implementation du TrivaView.

B.4.2 TimeSliceView

Le modèle d’agrégation et l’algorithme de tranche de temps ont été mis en œuvre dans
le composant TimeSliceView, comme le montre la Figure B.6. Une autre composante
importante de cette partie est le Triva2DFrame, dont la responsabilité est de dessiner le
treemap dans la fenêtre de visualisation du prototype.

FIGURE B.6 – Structure d’implementation du TimeSliceView.

La Figure B.6 détaille également les interactions et les notifications qui se produisent
pendant l’exécution de la composante. L’arrivée d’objets du simulateur Pajé (voir Fig-
ure B.4 pour plus de détails) est représentée sur la gauche de la Figure. Les interactions
avec l’utilisateur peuvent provoquer des trois différentstypes de notifications qui partent
de la composante Triva2DFrame vers la composante TimeSlice: changer la taille de la
fenêtre, changer de niveau d’agrégation ou modifier la tranche de temps. Toutes ces noti-
fications déclenchent la même chaîne d’événements dans le composant : la création d’une
hiérarchie de comportement, l’application possible des opérateurs d’agrégation et le cal-
cul des nouveaux treemap. Le treemap résultant est envoyé comme une réponse et est
dessiné dans la fenêtre par le composant Triva2DFrame.
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B.5 Résultats Obtenus et Évaluation

L’objectif principal de cette partie du résumé est de présenter les deux types de vi-
sualisations générées par le prototype, une en trois dimensions et l’autre sous forme de
treemap. Dans le même temps, une analyse de ces resultats estfaite compte tenu des traces
d’exécution utilisées comme entrée pour le prototype.

B.5.1 Trois Dimensions

Le principal objectif du modèle 3D est de réaliser la combinaison en trois dimensions
des composants de l’application avec la topologie d’interconnexion des ressources. Dans
un premier temps, nous avons retenu un scénario comprenant 60 processus, divisés en 2
sites différents de Grid’5000. Le sitenancycontribue à la l’exécution avec 30 machines
du clustergrelon, tandis que le siterennesa une allocation de 25 machines du cluster
paramountet 5 machines du clusterparaquad. Nous considérons ici une topologie du
réseau dans laquelle chaque site contient un routeur lui-même et tous lesclusterssont
connectés au routeur de leur site. Les routeurs de différents sites sont interconnectés via
un backbone. Ainsi, quand un message est envoyé à uncluster d’un site à partir d’un
clusterd’un autre site, il doit passer par l’intermédiaire de deux routeurs.

La Figure B.7 montre deux captures d’écran du prototype Trivagénérées lors de l’af-
fichage du fichier de trace de ce scénario. Le texte et les lignes en pointillés ont été ajoutés
manuellement pour accroître la compréhension de l’exemple. L’imageA montre le temps
total d’exécution avec une petite échelle de temps, de sorteque tous les objets soient dans
la base de la visualisation. La ligne pointillée montre la séparation entre les sitesrennes,
avec deuxclusters, et nancy, avec un seulcluster. Nous pouvons voir à cette échelle de
temps, un grand nombre de vols de travail entre les groupesgrelonet paraquad, proba-
blement dû au nombre de processus qui leur sont attribués. L’analyse de ces interactions
en conjonction avec la topologie du réseau permet à l’utilisateur de voir que toutes les
demandes de travail de cesclustersdoivent passer à travers les deux routeurs de l’inter-
connexion.

FIGURE B.7 – Deux captures d’écran du prototype Triva pendant la visualisation d’une
application composé de 60 processus, à différentes échelles de temps.

Le prototype permet également de changer de façon dynamiquel’échelle de temps,
en utilisant la souris. L’imageB dans la Figure B.7 indique le temps d’exécution total
pour les traces de ce scénario, mais avec une plus grande échelle de temps. Grâce à cette



159

image, il est possible d’observer des différences dans le comportement de vol de travail
à différentes périodes de temps de l’exécution. Il est ainsipossible d’apercevoir qu’au
début, il y a beaucoup moins de vols qu’à la fin. La raison de cela est qu’à la fin d’une
application KAAPI, les tâches deviennent plus rares. Ce comportement est normal, vu que
le vol de travail des tâches implémenté dans la version actuelle de la bibliothèque KAAPI
est aléatoire.

Un deuxième scénario est une application KAAPI composée de 200 processus sur 200
machines. La répartition des machines est divisée en deux sites :rennesetnancy. Le nom-
bre de machines affectées à chacun d’eux est le même, bien quela répartition interne de
chacun diffère au niveau du nombre de machines par cluster. L’imageA de la Figure B.8
indique le nombre de machines affectées à chaqueclusterainsi que la topologie du réseau
qui relie les deux sites. La ligne pointillée est utilisé pour separer les sites distincts. Nous
considérons pour ce scénario l’existence d’informations complémentaires concernant l’in-
terconnexion entre les routeurs et les troisclusters. La bande passante disponible entre les
clusters paraventetgrillon, à travers les deux routeurs, est de 100 mégabits. Le lien entre
le cluster grelonet son routeur est de 1 mégabit, comme indiqué dans l’imageA de la
Figure.

FIGURE B.8 – Deux vues d’un exemple avec plus d’informations sur la topologie du
réseau, telles que les limitations imposées par la bande passante.

Dans ce scénario, il y a 87 processus en cours dans le clustergrelon, et 61 danspar-
avent. Considérons seulement les vols du travail entre ces deuxclusters, indiqués dans le
cercle en pointillés de l’image sur la droite de la Figure B.8 :la flèche en pointillés dans la
même image indique que ces demandes doivent passer par le lien de 1 mégabit. La visual-
isation permet de déduire qu’un nombre plus restreint de processus devraient être placés
dans unclusteravec une bande passante limitée. Si, par exemple, les processus du cluster
grelonpouvaient être exécutés dans le clustergrillon, l’application pourrait atteindre une
meilleure performance.

À travers l’exemple de ce deuxième scénario, nous pouvons noter l’importance d’anal-
yser la performance d’une application accompagnée d’une représentation topologique du
réseau. Si ce type de visualisation, illustré dans l’imageB dans la Figure B.8, n’est pas
présent, l’analyste peut obtenir des conclusions incomplétes sur les performances de l’ap-
plication.
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B.5.2 Agrégation

Un des principaux avantages du modèle d’agrégation de données de cette thèse est la
facilité qu’il apporte pour l’analyse d’un grand nombre d’entités dans le même écran. Pour
évaluer la façon dont la visualisation passe à l’échelle, une trace de synthèse composée de
100 milliers de processus a été utilisé, chacun avec deux états différents. L’analyse qui suit
montre l’emploi de la technique de la tranche de temps et de l’algorithme d’agrégation.

La Figure B.9 montre l’analyse de cette trace, qui comprend une hiérarchie à quatre
niveaux : Site, Cluster, Machine et Processor. La hiérarchiecontient 10 sites, chacun avec
10 clusters, chaque cluster avec 100 machines et chaque machine avec 100 processus.
Chaque processeur peut être dans l’un des deux états possibles, représentée dans la Figure
par les différentes tonalités de gris.

L’analyse à grande échelle en utilisant le prototype commence avec le treemapA,
situé en haut à gauche de la Figure B.9, avec le niveau Processor. Dans ce treemap, il
y a 200 mille rectangles : 100 mille fois le nombre des états possibles. Nous pouvons
observer que certaines régions du treemap sont plus sombresque d’autres, permettant une
sorte de conclusion concernant la repartition des états. Toutefois, une conclusion précise
est difficile à atteindre avec cette representation. La raison principale est que le treemap
A comporte des rectangles qui sont très petits, de sorte qu’ilest difficile de noter des
différences de taille entre deux états d’un seul processeur. L’exemple est montré pour
illustrer la limitation de la visualisation treemap traditionnelle.

FIGURE B.9 – Visualisation treemap normale (A) and quatre agrégés (B– E) de deux
états pour 100 mille processeurs (trace synthétique).

Le rectangle blanc de la treemapA dans la Figure B.9 représente l’espace dédié à
une machine. Bien qu’il soit difficile de le constater, il y a 200 rectangles dans cette
petite région qui représente l’état des 100 processeurs de cette machine. Comme il est
difficile de comprendre la structure de l’ensemble de ces 100processus, l’utilisateur peut
interagir avec le prototype et visualiser la valeur agrégéeau niveau de la machine, comme
montré dans le treemapB de la Figure. Elle indique, pour chaque machine, les deux états
possibles. Dans cette representation, il est possible d’examiner les différences entre les
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machines : certaines passent beaucoup plus de temps dans un état que dans un autre. La
zone en évidence sur le côté gauche du treemapB, présentée par l’intermédiaire d’un
zoom, est la zone du rectangle blanc du treemapA.

Les agrégations suivantes permettent à l’utilisateur de visualiser les traces au niveau
Cluster, comme indiqué dans le treemapC de la même Figure, et au niveau Site dans
le treemapD. Le treemap C montre 100 clusters (10 par site). Dans sa partie gauche,
le treemap contient un rectangle noir qui montre les 10 clusters dans la région dédiée
à un site. La flèche dans ce rectangle désigne les valeurs agrégés pour ce site, dans le
treemap D. L’agrégation maximale possible, le treemapE, permet d’avoir une vue des
informations d’état disponibles globalement, en indiquant que l’état représenté par le ton
plus claire apparaît plus souvent que l’autre dans la tranche de temps choisie pour cet
exemple.

Un second scénario pour la visualisation treemap est une application de 188 processus,
réalisée sur 188 machines, réparties dans cinq sites du Grid’5000, dont le site de Porto
Alegre. Il y a 13 machines affectées dans le clusterxiru, à portoalegre; 2 debordereau,
17 debordemer, et 6 debordeplage, à bordeaux; 45 depastel, 5 deviolette, à toulouse;
14 deparamount, 36 deparaquad, à rennes; et finalement 50 degrelon à nancy. La
Figure B.10 montre deux treemaps calculés avec les traces générées dans ce scénario.

Le treemapA montre les états Run et RSteal pour les 188 processus. Presque tous
les processus exhibent le même comportement, avec plus de temps passé dans l’état Run
(zones avec un ton de gris clair) par rapport à l’état RSteal (gris foncé). La seule excep-
tion apparaît dans le K-processus au sein du site deportoalegre, manuellement mis en
evidence avec le cercle en pointillés. Nous notons que ces processus sont restés plus de
temps à voler les tâches que les processus d’autres sites. LetreemapB, à droite, montre
la même tranche de temps et les mêmes processus, mais seulement pour l’état RSteal. Ici,
la différence de temps passé à voler les tâche devient encoreplus évidente. Nous pensons
que la principale raison de ce comportement vient de l’interconnexion entre les sites. Le
site deportoalegrese trouve au Brésil, et son lien avec Grid’5000 n’est fait qu’àtravers
d’un réseau privé virtuel (VPN) qui est maintenue grâce à Internet. La latence de cette
connexion, par rapport à la latence globale entre les sites Grid’5000 situés en France, est
significative. Le vol des tâches traditionnellement mis en œuvre dans KAAPI differencie
pas les cibles d’un vol. Ce choix, dans un environnement d’interconnexion hétérogène,
peut conduire à passer plus de temps à voler, comme indiqué par le treemap calculé par
notre algorithme de tranche de temps.

FIGURE B.10 – Scénario KAAPI avec une application composée de 188 processus.

Globalement, l’algorithme de tranche de temps combiné avecle modèle d’agrégation
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de cette thèse permetent d’identifier facilement les problèmes de performance lorsqu’on
compare le comportement relatif des processus dans une application parallèle. Le mod-
èle d’agrégation présente des avantages pour les situations à grande échelle, peu importe
le nombre de processus impliqués dans l’analyse. La seule mesure nécessaire pour per-
mettre l’application de nos propositions est la définition d’une hiérarchie avec au moins
quelques niveaux. Le hiérarchie utilisée dans le scénario KAAPI dispose de 5 niveaux, ce
qui permet d’obtenir de bons résultats dans la visualisation.
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B.6 Conclusion

Les visualisations classiques pour l’analyse des applications parallèles sont conçues
pour traiter des données à petite échelle et équilibrées. Lebesoin de techniques de visu-
alisation pour l’analyse à grande échelle, telles que au sein de grilles de calcul, motive
ce travail. Deux problèmes dans l’analyse des applicationsparallèles par le biais de la
visualisation sont soulevés dans cette thèse.

Le premier est l’impact de l’interconnexion des réseaux dans l’exécution des applica-
tions parallèles. Cet impact devrait être pris en compte dansl’analyse pour mieux com-
prendre et améliorer les performances de l’application. Les techniques traditionnelles de
visualisation, tels que les graphiques espace-temps par exemple, sont largement utilisés
pour l’analyse des applications. Toutefois, ces techniques ne peuvent pas montrer, dans
le même affichage, la topologie du réseau et le suivi des données d’exécution de l’appli-
cation. Cela peut conduire à des conclusions erronées dans ladétection des problèmes de
performance des applications. Le deuxième problème est la passage à l’échelle des tech-
niques de visualisation. Généralement, le nombre d’entités de suivi que l’on peut voir sur
le même écran est limité à la résolution verticale de l’écrand’un ordinateur. Les représen-
tations espace-temps en 2D sont un exemple clair de ce problème, elles sont mal adaptées
à l’analyse des applications de grille composées d’un grandnombre de processus.

L’idée principale de cette thèse est l’exploitation des techniques de visualisation d’in-
formation qui peuvent être utilisées pour analyser le comportement des applications paral-
lèles. Notre première approche montre le réseau d’interconnexion, ainsi que des données
de l’application en utilisant une vue en trois dimensions. La base de ce point de vue est
utilisée pour detailler l’interconnexion entre les ressources, et le troisième axe pour mon-
trer l’évolution de l’application dans le temps. Cette visualisation est complétée par la
représentation des communication, qui donne la possibilité au développeur de les com-
parer avec la topologie du réseau.

La deuxième approche est le modèle visuel d’agrégation, où les problèmes de passage
à l’échelle sont surmontés par la combinaison de la technique du treemap et de l’algo-
rithme de tranche de temps. Cet algorithme prend en compte destranches de temps pour
générer des valeurs et de les injecter dans une organisationhiérarchique de l’application.
Cette structure est alors représentée par la technique du treemap. Le passage à l’échelle
est réalisé par le modèle d’agrégation, où les niveaux de la hiérarchie sont utilisées pour
créer des données intermédiaires qui peuvent être utiliséspour une représentation treemap
avec plus d’informations.

Les deux approches ont été implémentées dans un prototype appelé Triva, développé
en utilisant un gestionnaire de scènes 3D appelé Ogre et une implementation de l’algo-
rithme Treemap. Le prototype dispose de mécanismes pour la lecture des traces fournis
par la bibliothèque DIMVisual, capable d’intégrer les données provenant de différentes
sources et formats. Des traces synthétiques et réelles d’applications KAAPI et MPI ont
été utilisées pour valider l’approche et l’implementation. Le traces KAAPI ont été recueil-
lies sur la plate-forme Grid’5000. Bien que l’évaluation du prototype est liée à l’analyse
d’applications KAAPI et MPI, le format d’entrée Pajé permetd’étendre les avantages de
l’outil à d’autres domaines de recherche, pour visualiser d’autres types de ressources dans
les bibliothèques de communication.

Les résultats sont prometteurs. La visualisation en trois dimensions permet de mieux
comprendre les communications en conjonction avec la topologie du réseau. En ayant re-
cours à une simplification de la topologie de Grid’5000, nousavons pu montrer que dans
les différentes tranches de temps, le vol de travail dans KAAPI pourrait bénéficier davan-
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tage de la localité. En effet, l’implementation actuelle deKAAPI ne prend pas en compte
le réseau pour faire les requêtes de vol de travail. En outre,les résultats obtenus avec le
modèle d’agrégation ont permis la visualisation des états de 100 milliers de processeurs,
générés de manière synthétique. Les treemaps définis par l’algorithme de la tranche de
temps ont également été déterminés en utilisant des traces KAAPI et MPI. Nous avons
été en mesure d’identifier dans les traces KAAPI des caractéristiques variées, telles que
le comportement de différents mécanismes de vol effectuéespar des processus distincts,
l’efficacité de l’équilibrage de la charge pour l’ensemble du temps d’exécution de appli-
cations, et l’analyse d’une application KAAPI à grande échelle composée de près de 3
mille processus.

En résumé, les principaux objectifs atteints dans cette thèse sont la proposition d’une
approche tridimensionnelle, le modèle visuel d’agrégation combiné avec la tranche de
temps et le prototype Triva. En outre, il comprend l’interaction entre Triva et la biblio-
thèque KAAPI, permettant une analyse des activités de vol detravail de cette bibliothèque.

Comme perspectives, il est prévu l’extension de la visualisation 3D pour la représen-
tation de l’information produite par le modèle d’agrégation, la création des graphes d’ap-
plication réduits avec la technique de la tranche de temps etd’agrégation, l’étude d’autres
fonctions d’agrégation et l’utilisation d’autres donnéespour l’algorithme de la tranche de
temps. Nous pensons que la plus importante contribution de ce travail est l’étude des tech-
niques du domaine de la visualisation appliquées à l’analyse des applications parallèles.
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