
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

SAMUEL NASCIMENTO PAGLIARINI

VEasy: a Tool Suite Towards the Functional
Verification Challenges

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Microelectronics

Prof. Dr. Fernanda Lima Kastensmidt
Advisor

Porto Alegre, april 2011

CIP – CATALOGING-IN-PUBLICATION

Pagliarini, Samuel Nascimento

VEasy: a Tool Suite Towards the Functional Verification
Challenges / Samuel Nascimento Pagliarini. – Porto Alegre: PG-
MICRO da UFRGS, 2011.

121 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Microeletrônica, Porto Alegre,
BR–RS, 2011. Advisor: Fernanda Lima Kastensmidt.

1. Functional verification. 2. Simulation. 3. Coverage metrics.
4. Automation. I. Kastensmidt, Fernanda Lima. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Pró-Reitor de Coordenação Acadêmica: Prof. Rui Vicente Oppermann
Pró-Reitora de Pós-Graduação: Prof. Aldo Bolten Lucion
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenador do PGMICRO: Prof. Ricardo Augusto da Luz Reis
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“In the days of my youth
I was told what it means to be a man

Now I’ve reached that age
I’ve tried to do all those things the best I can

No matter how I try
I find my way into the same old jam”

— L. Z.

AGRADECIMENTOS

Foram dias difíceis. Esta dissertação me tomou um tempo absurdo, mesmo tendo sido
planejada do primeiro ao último item. Inicialmente o texto que eu considerava acabado
tinha 90 páginas. Alguns dias depois 100. Após uma revisão foram mais 15 páginas.
Cada linha parece ter sido escrita pelo menos 2, 3, 4 vezes... nunca satisfeito com o teor
ou qualidade de uma frase. De certa forma, foi uma aventura. E que agora chega ao fim,
finalmente.

Mas este texto não serve para que eu relate o processo, e sim para que eu torne públicos
os meus agradecimentos. Inicialmente, acho que o agradecimento mais válido de todos
é para minha família: meu pai, Deraldo, minha mãe, Mariângela e minha irmã, Sâmara.
Talvez eles não entendam nada que aqui esteja escrito, mas pouco importa. Esta disser-
tação só existe através deles. Da mesma forma que a minha graduação só foi possível
através deles. Portanto, obrigado a vocês.

Durante o processo de escrita e desenvolvimento desta tese ninguém se fez mais
presente que minha namorada, Aline. Abusei de sua paciência. Ironizei a proximi-
dade através da distância, sempre trabalhando. Me dediquei de uma maneira que muitos
achariam desnecessária ao Mestrado. Espero que os frutos de tanto esforço um dia sejam
colhidos... contigo.

Nada mais justo que também agradecer a minha orientadora, Fernanda. Ela teve ou-
sadia em aceitar um aluno novo, em uma área diferente das suas tradicionais. Desconfio
que tenha sido uma parceria proveitosa para os dois lados.

Muitos amigos também me deram forças ao longo dos últimos anos. Uns mais dis-
tantes, espalhados pelo globo, outros aqui bem próximos. Foram dias muito insanos,
tudo após a graduação tem sido assim. Matando um leão por dia. Às vezes dois. Uma
incerteza que irrita, amenizada pela presença dos amigos. Por fim, re-edito uma frase
célebre, daquela que é uma paixão eterna: “academia do povo só tem uma”. Quem sabe,
sabe. E eu, caro leitor... eu sei. Em vermelho e branco.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 11

LIST OF FIGURES . 13

LIST OF TABLES . 17

ABSTRACT . 19

RESUMO . 21

1 INTRODUCTION . 23
1.1 IC Implementation Flow . 26
1.2 Verification . 27
1.3 Functional Verification . 29

2 STATE OF THE ART AND CHALLENGES 35
2.1 Coverage metrics . 35
2.1.1 Block coverage . 35
2.1.2 Expression coverage . 37
2.1.3 Toggle coverage . 39
2.1.4 Functional coverage . 40
2.1.5 Other types of coverage metrics . 41
2.2 Stimuli generation . 43
2.3 Checking . 43
2.4 Verification methodologies . 44
2.4.1 e Reuse Methodology (eRM) . 46
2.4.2 Reference Verification Methodology (RVM) 47
2.4.3 Verification Methodology Manual (VMM) 47
2.4.4 Advanced Verification Methodology (AVM) 47
2.4.5 Open Verification Methodology (OVM) 48
2.4.6 Universal Verification Methodology (UVM) 48
2.5 Verification plan . 49
2.5.1 Overview . 49
2.5.2 Feature list . 50
2.5.3 Test list . 50
2.5.4 Coverage goals . 51
2.5.5 Other sections . 51

3 EVALUATING THE CHALLENGES . 53
3.1 Measuring simulation overhead caused by coverage 53
3.2 Measuring simulation overhead caused by data generation 56

4 VEASY FLOW AND THE VERIFICATION PLAN 59

5 LINTING . 65
5.1 BASE . 65
5.2 BCSI . 66
5.3 DCSI . 66
5.4 DIRE . 67
5.5 HCSI . 67
5.6 IASS . 67
5.7 IDNF . 67
5.8 IDNP . 68
5.9 LPNA . 68
5.10 MBAS . 68
5.11 NBCO . 69
5.12 NOIO . 70
5.13 RCAS . 70
5.14 TIME . 71
5.15 TINR . 71
5.16 VWSN . 71
5.17 WPAS . 72
5.18 Linting Interface . 72

6 SIMULATION . 75
6.1 Combinational logic . 75
6.2 Regular sequential logic . 78
6.3 Reset sequential logic . 79
6.3.1 No reset . 80
6.3.2 Time zero . 80
6.3.3 Ranged . 80
6.3.4 Probabilistic . 81
6.4 Benchmarking . 81
6.5 Scaling properties . 83
6.6 Waveform output . 84
6.7 Validating the simulator . 86

7 COVERAGE . 87
7.1 Code coverage . 87
7.1.1 VEasy’s block coverage algorithm . 87
7.1.2 VEasy’s expression coverage algorithm 88
7.1.3 VEasy’s toggle coverage algorithm . 89
7.1.4 Experimental Results and Analysis . 89
7.1.5 Code coverage analysis using the GUI 91
7.2 Functional coverage . 92
7.2.1 VEasy’s functional coverage collection algorithm 92
7.2.2 Functional coverage analysis using the GUI 93

8 METHODOLOGY . 95
8.1 Some statistics of VEasy’s implementation 98

9 CASE STUDY: THE PASSWORD LOCK DEVICE 101
9.1 DUT description . 101
9.2 Verification Plan . 102
9.3 Building a testcase . 102
9.4 Comparing the methodology with traditional SystemVerilog 105

10 CONCLUSION . 109

REFERENCES . 113

ATTACHMENTS . 119
I Verilog testbench used to validate the simulator 119
II Web browser rendering of a verification plan file 120
III Verilator testbench format . 121

LIST OF ABBREVIATIONS AND ACRONYMS

AOP Aspect Oriented Programming

ASIC Application Specific Integrated Circuit

AVM Advanced Verification Methodology

BFM Bus Functional Model

CDG Coverage Directed (test) Generation

CTS Clock Tree Synthesis

DFT Design For Testability

DUT Design Under Test

DUV Design Under Verification

EDA Electronic Design Automation

eRM e Reuse Methodology

ESD Electro Static Discharge

eVC e Verification Component

FPGA Field-Programmable Gate Array

FSM Finite State Machine

FV Functional Verification

GUI Graphical User Interface

HDL Hardware Description Language

HVL Hardware Verification Language

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

IP Intellectual Property

MBIST Memory Built-in Self Test

MCDC Modified Condition Decision Coverage

OO Object Oriented

OVM Open Verification Methodology

PLI Programming Language Interface

PSL Property Specification Language

RTL Register Transfer Level

RVM Reference Verification Methodology

SOP Sum of Products

STA Static Timing Analysis

URM Universal Reuse Methodology

UVM Universal Verification Methodology

VCD Value Change Dump

VMM Verification Methodology Manual

LIST OF FIGURES

Figure 1.1: A decreasing trend in the first silicon success rate. 23
Figure 1.2: A decreasing trend in the first silicon success rate, including data from

2007. 24
Figure 1.3: Causes that led to silicon failure and the respective occurrence prob-

abilities. 24
Figure 1.4: Causes that led to silicon failure and the estimated cost of a respin in

different technology nodes. 25
Figure 1.5: Example of an ASIC implementation flow. 26
Figure 1.6: Relative cost of finding an error in the various stages of the design

cycle. 28
Figure 1.7: Several verification methods, classified by type. 29
Figure 1.8: The space of design behaviors. 30
Figure 1.9: The productivity and the verification gaps. 31
Figure 1.10: Breakdown of the effort during the development of three different

ASICs. 32

Figure 2.1: Example of Verilog code for block coverage. 36
Figure 2.2: Example of Verilog code for expression coverage. 37
Figure 2.3: Control flow graph of a Verilog module. 42
Figure 2.4: All possible paths of the control flow graph from Fig 2.3. 42
Figure 2.5: FSM coverage report for states and arcs. 42
Figure 2.6: A generic verification environment capable of performing checking. . 44
Figure 2.7: Current verification practices, divided by programming language. . . 45
Figure 2.8: Current verification practices, divided by vendor. 45
Figure 2.9: A timeline containing the introduction year of each of the current

verification methodologies. 46
Figure 2.10: eVC environment instance. 47
Figure 2.11: Example of a VMM verification environment architecture. 48
Figure 2.12: Simplified block diagram of the verification plan. 50

Figure 3.1: Simulation overhead due to toggle coverage in simulator A. 54
Figure 3.2: Simulation overhead due to toggle coverage in simulator B. 55
Figure 3.3: Simulation overhead due to data generation. 56

Figure 4.1: VEasy assisted flow. 59
Figure 4.2: VEasy simulation flow . 60

Figure 5.1: Example of a Verilog code that violates the BASE rule. 66

Figure 5.2: Example of a Verilog code that violates the BCSI rule. 66
Figure 5.3: Example of a Verilog code that violates the DCSI rule. 66
Figure 5.4: Example of a Verilog code that violates the DIRE rule. 67
Figure 5.5: Example of a Verilog code that violates the HCSI rule. 67
Figure 5.6: Example of a Verilog code that violates the IASS rule. 68
Figure 5.7: Example of a Verilog code that violates the IDNF rule. 68
Figure 5.8: Example of a Verilog code that violates the IDNP rule. 68
Figure 5.9: Example of a Verilog code that violates the LPNA rule. 69
Figure 5.10: Example of a Verilog code that violates the MBAS rule. 69
Figure 5.11: Example of a Verilog code that violates the NBCO rule. 70
Figure 5.12: Example of a Verilog code that violates the NOIO rule. 70
Figure 5.13: Example of a Verilog code that violates the RCAS rule. 70
Figure 5.14: Example of a Verilog code that violates the TIME rule. 71
Figure 5.15: Example of a Verilog code that violates the TINR rule. 71
Figure 5.16: Example of a Verilog code that violates the VWSN rule. 72
Figure 5.17: Example of a Verilog code that violates the WPAS rule. 72
Figure 5.18: Linting environment GUI reporting an error. 73

Figure 6.1: Pseudo-C code of the combinational logic evaluation. 76
Figure 6.2: Example of a Verilog code in which the combinational logic might

create a mismatch. 76
Figure 6.3: Pseudo-C code of the regular sequential logic evaluation. 78
Figure 6.4: Example of a Verilog code in which the sequential logic might be

misinterpreted. 78
Figure 6.5: Reset methods available in VEasy’s GUI. 80
Figure 6.6: VEasy simulation results. 81
Figure 6.7: VEasy simulation results compared with Verilator. 82
Figure 6.8: Scaling trends for sequential logic simulation. 83
Figure 6.9: Scaling trends for combinational logic simulation. 84
Figure 6.10: Initial portion of a VCD file. 85
Figure 6.11: Simulation waveform equivalent to VCD of Fig. 6.10. 85
Figure 6.12: VCD compare environment GUI reporting errors. 86

Figure 7.1: Block coverage collection algorithm. 88
Figure 7.2: Expression coverage collection algorithm. 88
Figure 7.3: Toggle coverage collection algorithm. 89
Figure 7.4: Coverage metric selection GUI. 91
Figure 7.5: Code coverage analysis GUI. 91
Figure 7.6: Toggle coverage analysis GUI. 92
Figure 7.7: Functional coverage collection algorithm. 93
Figure 7.8: Functional coverage analysis GUI. 93

Figure 8.1: Layering example. 96
Figure 8.2: Rule editor GUI. 97
Figure 8.3: Execution order of VEasy’s sequences. 98

Figure 9.1: DUT block diagram. 101
Figure 9.2: Transmission of PS/2 packet. 101
Figure 9.3: VEasy’s GUI being used to build a testcase. 103

Figure 9.4: start sequence described in VEasy’s format. 103
Figure 9.5: data0 sequence described in VEasy’s format. 104
Figure 9.6: pressV sequence described in VEasy’s format. 104
Figure 9.7: SystemVerilog code used to control the simulation time. 105
Figure 9.8: SystemVerilog task as a BFM. 106

Figure II.1: Portion of a verification plan file when rendered by a web browser. . . 120
Figure III.2: Verilator testbench format. 121

LIST OF TABLES

Table 2.1: SOP scoring table for the expression (c && (d || e)). 38
Table 2.2: Subexpressions hierarchy of (c && (d || e)). 38
Table 2.3: Subexpressions hierarchy of (c && (d || e)) and toggles of interest. . 39
Table 2.4: Example of an overview table of a verification plan. 49
Table 2.5: Example of a feature list from a verification plan. 50
Table 2.6: Example of a test list from a verification plan. 51
Table 2.7: Example of a list of coverage goals from a verification plan. 51

Table 3.1: Some properties of the circuits being analyzed. 53
Table 3.2: Simulation overhead measured using simulator A. 55
Table 3.3: Simulation overhead measured using simulator B. 55
Table 3.4: Evaluation of stimuli generation time using commercial simulator A. 57

Table 6.1: Erroneous combinational logic evaluation. 77
Table 6.2: Correct combinational logic evaluation. 77
Table 6.3: Erroneous sequential logic evaluation. 79
Table 6.4: Correct sequential logic evaluation. 79

Table 7.1: Simulation overhead measured using VEasy. 90
Table 7.2: Average simulation overhead measured using simulator A. 90
Table 7.3: Average simulation overhead measured using simulator B. 90
Table 7.4: Average simulation overhead measured using VEasy. 90

Table 8.1: Some statistics of VEasy’s development. 99

Table 9.1: Feature list of the password lock device. 102
Table 9.2: Statistics of SystemVerilog testbenches. 105
Table 9.3: Statistics of VEasy testcases. 106

ABSTRACT

This thesis describes a tool suite, VEasy, which was developed specifically for aiding
the process of Functional Verification. VEasy contains four main modules that perform
linting, simulation, coverage collection/analysis and testcase generation, which are con-
sidered key challenges of the process. Each of those modules is commented in details
throughout the chapters. All the modules are integrated and built on top of a Graphical
User Interface. This framework enables the testcase automation methodology which is
based on layers, where one is capable of creating complex test scenarios using drag-and-
drop operations. Whenever possible the usage of the modules is exemplified using simple
Verilog designs. The capabilities of this tool and its performance were compared with
some commercial and academic functional verification tools. Finally, some conclusions
are drawn, showing that the overall simulation time is considerably smaller with respect
to commercial and academic simulators. The results also show that the methodology is
capable of enabling a great deal of testcase automation by using the layering scheme.

Keywords: Functional verification, simulation, coverage metrics, automation.

RESUMO

VEasy: um Conjunto de Ferramentas Direcionado aos Desafios da Verificação
Funcional

Esta dissertação descreve um conjunto de ferramentas, VEasy, o qual foi desenvolvido
especificamente para auxiliar no processo de Verificação Funcional. VEasy contém qua-
tro módulos principais, os quais realizam tarefas-chave do processo de verificação como
linting, simulação, coleta/análise de cobertura e a geração de testcases. Cada módulo é co-
mentado em detalhe ao longo dos capítulos. Todos os módulos são integrados e construí-
dos utilizando uma Interface Gráfica. Esta interface possibilita o uso de uma metodologia
de criação de testcases estruturados em camadas, onde é possível criar casos de teste com-
plexos através do uso de operações do tipo drag-and-drop. A forma de uso dos módulos
é exemplificada utilizando projetos simples escritos em Verilog. As funcionalidades da
ferramenta, assim como o seu desempenho, são comparadas com algumas ferramentas
comerciais e acadêmicas. Assim, algumas conclusões são apresentadas, mostrando que o
tempo de simulação é consideravelmente menor quando efetuada a comparação com as
ferramentas comerciais e acadêmicas. Os resultados também mostram que a metodolo-
gia é capaz de permitir um alto nível de automação no processo de criação de testcases
através do modelo baseado em camadas.

Palavras-chave: Verificação funcional, simulação, métricas de cobertura, automação.

23

1 INTRODUCTION

The move to deep-submicron feature sizes in the latest Integrated Circuits (IC) designs
has caused a paradigm shift, moving the emphasis from design to verification (BERMAN,
2005). Designers must create ICs with an excess of 50 million equivalent gates and still
meet cost and time-to-market constraints. This paradigm shift has brought verification to
a top position at the Electronic Design Automation (EDA) industry topics of research and
development.

In a context where design complexity is continuously increasing (CHANG, 2007), the
probability that an Integrated Circuit (IC) is going to fail is also increasing. The failure
may be attributed to many sources from different types. Yet, the trend is clear: circuits
are failing more and more. A 2003 study by Collett International Research (Collett In-
ternational Research Inc., 2003) (FITZPATRICK; SCHUTTEN, 2003) revealed for the
first time that the first silicon success rate, i.e, the rate that a given IC will function in a
satisfactory manner in the first silicon spin, is dropping. Research has shown that the first
silicon success rate has fallen from about 50% to 35% in a four-year time frame. This
trend is illustrated in Fig. 1.1.

Figure 1.1: A decreasing trend in the first silicon success rate.

Later on a similar study was conducted by another company (Far West Research and
Mentor Graphics, 2007). The trend that emerged was still the same: the first silicon
success rate has fallen to 28%. The data from both studies are combined into Fig. 1.2.

24

Figure 1.2: A decreasing trend in the first silicon success rate, including data from 2007.

The same studies also identified the sources of errors in chip design. Chips fail for
many reasons ranging from physical effects like voltage drops (IR- drop), to mixed-signal
issues, power issues, and logic/functional flaws. However, logic/functional flaws are the
biggest cause of flawed silicon. Of all tapeouts that required a silicon respin, the Collett
International Research study shows more than 65% contained logic or functional flaws,
as shown in Fig. 1.3.

Figure 1.3: Causes that led to silicon failure and the respective occurrence probabilities.

The 2007 study from Farwest showed an even higher figure: about 80% of the respins
were caused by some type of logic or functional error. Since the logic/functional errors
were more common than the others, the same research tried to better identify those errors.
For that purpose, the errors were classified as follows:

Design errors About 82% of designs with respins resulting from logic/functional flaws
had design errors. This means that particular corner cases simply were not covered
during the verification process, and bugs remained hidden in the design flow all the
way through tapeout.

25

Specification errors About 47% of designs with respins resulting from logic/functional
flaws had incorrect/incomplete specifications. Moreover, 32% of designs with respins
resulting from logic/functional flaws had changes in specifications.

Reused modules and imported IP About 14% of all chips that failed had bugs in reused
components or imported IP (Intellectual Property).

All presented data shows that a silicon respin is very common. Nevertheless, the costs
involved in such respins might be extremely high, easily reaching six figure amounts for
the earliest technologies (TRONCI, 2006) and nine figure amounts for predicted tech-
nologies (ITRS, 2005). The additional development time and costs of a respin must be
considered as well. Thus, companies that are able to curb this trend have a huge advantage
over their competitors, both in terms of the ensuing reduction in engineering costs and the
business advantage of being to market sooner and with high-quality products. The key to
time-to-market success, for many projects, is verification.

The illustration in Fig. 1.4 was obtained from a talk given by Janick Bergeron in a very
recent conference (BERGERON, 2010). In such talk, the author highlights the fact that the
sources of silicon failure have kept almost the same behavior throughout the technology
shifts while the cost to keep such rates under control has risen exponentially. In other
words, it means that verification has being doing its job but the costs of a mistake are rising
with a fast-paced trend. Most of this apparent success achieved by verification comes
from reuse. Although it is now possible to design chips with ten times more transistors
than before, it is likely that such transistors execute the same functions that were already
verified before. So, the overall picture still does not look good. This is an indication that
our current verification practices are in need of changes.

Figure 1.4: Causes that led to silicon failure and the estimated cost of a respin in different
technology nodes.

Regarding such context, this master thesis aims at developing a new tool suite for
achieving several goals related to verification. These goals are both academia and industry
related. The former type of goal is deeply explored by the easiness to create simulation
scenarios using a Graphical User Interface (GUI). This interface is suitable for teaching
purposes, either at undergrad or graduation levels. A deep discussion regarding the use
of the developed tool for teaching purposes is given in (PAGLIARINI; KASTENSMIDT,
2011a).

26

The industry related type of goal is explored by introducing the simulation perfor-
mance that was achieved by the tool built-in simulator. But first, before introducing such
topics, and in order to better understand the need for verification and development of new
verification tools, let us start by revisiting the traditional IC implementation flow. The
subtleties of this flow will determine where the verification efforts should be focused.

1.1 IC Implementation Flow

The process of developing an IC involves several steps that must be executed towards
reaching the final circuit. Depending on the technology being used and also depending on
the type of circuit (digital, analog or mixed-signal), this flow may have completely differ-
ent steps. Also, if considering a re-programmable device such as a Field-Programmable
Gate Array (FPGA), slight changes occur on the design flow. In the context of this thesis,
the flow of Fig. 1.5 will be considered, which is a generic flow for an digital Application
Specific Integrated Circuit (ASIC). Such flow is based on standard cell libraries, which
is a widely used methodology for developing digital circuits (WESTE; HARRIS, 2010).
This type of circuit is more prone to benefit from Functional Verification (FV) since it
usually has a great complexity and a high design and production cost. In other words, the
cost of fixing a logical error on this type of circuit is typically higher.

Figure 1.5: Example of an ASIC implementation flow.

Each of the tasks showed in Fig. 1.5 is some form of transformation that the current
design representation goes through. For instance, the project specification, typically writ-
ten in some natural language, is transformed into Register Transfer Level (RTL) code.
This code is usually some form of synthesizable Hardware Description Language (HDL),
like Verilog (IEEE, 1995) or VHDL (IEEE, 1987). Similarly, the other tasks perform the
following transformations:

Logic Synthesis The RTL description is transformed into a gate-level netlist. This task
is performed by tools referred as synthesizers, like RTL Compiler (Cadence Design
Systems, Inc., 2010) and Design Compiler (Synopsys, Inc., 2010). Typically some
form of Static Timing Analysis (STA) is used for calculating the expected timing
of the circuit. Such data are then used to perform optimizations on the circuit. The
final result of the process is, if possible at all, a circuit that respects the specified
timing constraints.

Test insertion The design is instrumented with Design For Testability (DFT) structures,
like scan-chains and Memory Built-in Self Test (MBIST). These are very important
for determining if the chip works properly after it has been manufactured.

27

Floorplan In this step the circuit is organized and structured in a layout form for the first
time. The power grid that will feed the circuit must be created and some routing or
placement restrictions may be applied. The overall dimensions and aspect ratio of
the chip must be defined as well.

Pad insertion The pads of the chip must be chosen and inserted in the layout. The pads
are the communication channel the circuit has with the external environment. Con-
siderations regarding Electro Static Discharge (ESD) must be done at this step.

CTS The Clock Tree Synthesis (CTS) is performed in this step. It is important for the
clock signal of a chip to reach all the sequential elements at about the same time,
therefore special optimizations are performed for the clock buffering and routing.

Placement The standard cells are placed in this step. The overall idea is that cells that
must be connected must be kept close to each other. Elements other than the prox-
imity must be considered, such as routing congestion. After the placement is done
no cell overlap should occur.

Routing This step is responsible for creating the physical connections between all cells.
The pads and the power rings must be connected as well.

Extraction This step is responsible for extracting the resistivity and capacitance of the
final layout. The extracted data is used to perform proper tuning of the previous
steps as well as to perform electric simulation for sign-off purposes.

After all these transformations are done the chip is considered ready. However, such
transformations are prone to errors and/or misinterpretations. Thus, some form of check-
ing the results from these transformations must be considered. That is the role of verifi-
cation: avoiding errors in the design flow. Some verification tasks are very intensive and
require several resources, mostly due to the simulation nature of the verification method.
This intensive behavior translates directly into cost, either due to human resources or
delays in deploying a design with a tight time-to-market. However, these costs are coun-
terbalanced because the number of errors caught late in the design cycle is diminished.
Such idea is illustrated by the chart in Fig. 1.6, which contains the relative cost of finding
an error in the various stages of the design cycle (GIZOPOULOS, 2006).

Obviously, different types and flavors of verification are applied in different steps of
the process. Some of these types are explored in the next section.

1.2 Verification

The previous section focused on what is referred as the IC implementation flow. Typ-
ically, this flow is executed in parallel with another flow, the verification one. In some
cases, when a company has the resources to afford it, two completely separated teams are
assigned to work on each flow (BERMAN, 2005). This introduces some redundancy in
the process since different views of the same project will be constructed, which actually
might lead to a more efficient error detection. Ideally, the only communication channel
available between these teams is the actual specification of the project.

The transformations mentioned in the previous section are not error free. Thus, ev-
ery step must be properly executed and the results must be checked as well. The first
transformation that the design goes through is also the most critical one, at least from a

28

Figure 1.6: Relative cost of finding an error in the various stages of the design cycle.

verification point of view. The process of translating a written document to a hardware
description is specially susceptible to misinterpretations. This transformation in particu-
lar is explored throughout the next section. The other transformations are more mechanic
and automated, which makes them less sensitive to misinterpretation errors. Obviously,
regular errors due to erroneous execution of the task are still possible. To exemplify some
of the possible verification tasks that are performed in a modern design flow, the image in
Fig. 1.7 shows several verification methods (MOLINA; CADENAS, 2007).

The image classifies verification methods into three major types: FV, equivalence
checking and code coverage. A brief explanation on each type of method is given below.
The FV type, specially the dynamic flavor, is explained in details in the next section.

Functional Verification The most widespread method of FV is dynamic in nature. The
reason it is called dynamic is because input patterns/stimuli are generated and ap-
plied over a number of clock cycles to the design, and the corresponding result is
collected and compared against a reference/golden model for conformance with the
specification. The static functional verification, also referred as formal verification,
performs the same comparison but using some sort of mathematical proof instead
of simulation.

Equivalence checking Given two representations of the same design, equivalence check-
ing is capable of reasoning if they are equivalent or not. This type of comparison is
widely used after logic synthesis, i.e., to compare the gate-level netlist against the
RTL representation.

Code Coverage Code coverage indicates lines of code that were visited in a simulation.
Although code coverage is reasonably easy to collect, it is an indirect metric of the
overall verification progress since there is no direct mapping between lines of code
and a given design functionality. Code coverage and other types of coverage are
explored in details in Section 2.1.

The terms used in the literature might mislead the readers since some methods are

29

Figure 1.7: Several verification methods, classified by type.

shared by different techniques (e.g. assertions). This text uses the following convention:
a technique is a collection of methods used in conjunction. A method is just an approach to
prove a certain statement or property regarding a design. Thus, the illustration in Fig. 1.7
shows only methods, classified by type. Therefore a few words must also be said about
techniques.

In general, the verification of a design has been accomplished following two principal
techniques, simply referred as formal and functional verification (BERGERON, 2003).
Regarding FV, one usually is referring to a set of methods that includes all of the follow-
ing: random or directed stimulus, assertions, dynamic simulation and coverage. Regard-
ing formal verification, one usually is referring to a set of methods that includes one of
the following: theorem proving, property checking, formal assertion checking, etc.

To be perfectly clear, FV is mainly simulation based and it is the most common tech-
nique being used by the industry. The reason for the large adoption of FV is that, al-
though new methodologies that benefit from formal and semi-formal methods have been
proposed (COHEN et al., 2010) and sometimes adopted by the industry (ABADIR et al.,
2003), these formal methods are still limited. Being so, the developed tool reported later
in this text is aimed at FV.

Also, on the text that follows, the words Functional Verification (or the acronym FV)
will be used referring exclusively to the Functional Verification technique, which is dy-
namic, i.e., the one that uses simulation. Formal methods will not be covered by this
thesis. Equivalence checking will not be covered either.

1.3 Functional Verification

The primary goal of FV is to establish confidence that the design intent was cap-
tured correctly and preserved by the implementation (VSI Alliance, 2004) (BERGERON,
2003). The illustration of Fig. 1.8 shows how the design intent, the design specification

30

and the design’s RTL code are related with each other to compose the space of design
behaviors (PIZIALI, 2004).

Figure 1.8: The space of design behaviors.

Each circle of Fig. 1.8 represents a set of behaviors. The design intent is a set of design
requirements defined by the system architect, sometimes in conjunction with a customer.
It is an abstraction of what the architect expects of a certain design overall functionality.
The specification is a written document that tries to exhaustively enumerate those func-
tionalities. The specification is the guide the engineers will follow to perform the coding.
The implementation is the actual intent that was coded in the RTL code. The space out-
side all circles represents the unintended, unspecified and unimplemented behavior. The
goal of verification is to match the three circles, bringing them into coincidence.

When performing verification, i.e., matching the circles from Fig. 1.8, some very
distinct results appear since very often the circles do not match. Some regions from
the image are of particular interest. Region G, for instance, actually represents the best
possible scenario: a certain intent was defined, specified and implemented. FV’s goal is to
maximize this region. Another interesting region is D, which contains a desired intent that
was specified but, for some reason, it was not implemented. On the other hand, a certain
functionality might be specified and implemented although it was not intended. This is
what the F region represents. Clearly this type of scenario led to a waste of resources and
time.

It should be clear that verification is a necessary step in the development of today’s
complex digital designs, either functional or not. Hardware complexity continues to grow
and that obviously impacts the verification complexity. The complexity growth is leading
to a even more challenging verification. In fact, it has been shown that the verification
complexity theoretically rises exponentially with hardware complexity (DEMPSTER;
STUART; MOSES, 2001). Both increases in complexity have created gaps (BAILEY,
2004) (DENG, 2010). Those gaps come from comparing our capabilities at designing
and verifying against the actual chip capacity, as shown by the illustration of Fig. 1.9.

The verification gap is a measurement of the difference between the ability to design
(dashed line) and the ability to verify (thin dashed line), which is considerably lower than
the overall productivity gap. Such gap comes from the difference between the verification
ability and the actual chip capacity (black line). In other words, the industry current
processes are capable of filling a chip with all kinds of complex logic. Yet, it is not
capable of guaranteeing that the logic works properly.

31

Figure 1.9: The productivity and the verification gaps.

Clearly the increase in verification complexity must be dealt properly and for that
reason some new Hardware Verification Languages (HVLs) have been proposed in the last
years, such as the e language (IEEE, 2006), the Property Specification Language (PSL)
(IEEE, 2005) and the SystemVerilog language (IEEE, 2009). All those new languages
were developed by the industry and later became standards of the Institute of Electrical
and Electronics Engineers (IEEE). This confirms the fact that the ASIC industry already
acknowledges that the verification process is extremely necessary and hard to accomplish.

It is also known that the verification itself occupies a fair share of the design cycle
time. Although there is not a clear metric to evaluate such statement, i.e., to say that
verification occupies a certain definitive percentage of the design cycle, some numbers
have been estimated throughout the years. In 1998 there was a reference from the industry
(STEFFORA, 1998) quoting that only a few years ago verification was responsible for 20-
30% of the overall design effort. Yet, by that year, verification was already acknowledged
to be responsible for even 70% of the design effort for certain designs. Another study
(EVANS et al., 1998) from the same year tried to breakdown and measure all the tasks
executed during the design process of three different ASICs. Such breakdown is shown
in Fig. 1.10. By adding up all the tasks that are related to simulation and emulation one
would come up with a 60-65% figure.

Almost identical numbers have been stated by other companies throughout the years.
Some examples of such statements are found in reports from Mentor (2002), Virginia
Tech (2004), Denali (2005), nVidia (2006), and Jasper (2008). All the sources pointing
to these reports and a in-depth discussion on the matter was done by (MARTIN, 2008).
These same reports also mentioned that, although the verification occupied a large share
of the design cycle, there still was a large number of silicon chips that were flawed.

One of the possible explanations for the high number of flawed silicon spins is the lack
of a concise metric for the verification progress. The completeness of a design verification
is defined as follows: verification is complete when every possible input scenario has been
applied to the Design Under Verification (DUV)1, and every possible output signal has

1In this thesis the terms DUV and Design Under Test (DUT) are used interchangeably to define the
design that is currently being verified.

32

Figure 1.10: Breakdown of the effort during the development of three different ASICs.

been shown to have its intended value at every point in time (BORMANN et al., 2007).
Measuring completeness is the actual problem that has driven verification engineers to
adopt indirect metrics for measuring progress.

Those indirect metrics are referred as coverage metrics. The overall quality of the
verification is obtained from coverage, either structural or functional coverage. Structural
coverage is linked directly to the RTL code and therefore is also referred as code coverage.
On the other hand, functional coverage is linked with the design functionalities. This is
why functional coverage has become a key element in the verification process. However,
the continuous increase in terms of the number of transistors per chip is resulting in a
diminished validation effectiveness. Testcases being used in the simulations are more and
more complex, causing simulation to get more expensive and to provide less coverage
(YAN; JONES, 2010).

FV strives to cope with the complexity increase trend but some of the related chal-
lenges are overwhelming. One example of such challenge is the coverage collection and
analysis. So far those challenges have been addressed with verification methodologies
and EDA tools but there is a claim for more innovation and automation improvement.
This is one of the goals that has driven the efforts of this thesis.

On the pages that follow, an EDA tool suite developed by the author will be described
and compared. The name that such suite received is VEasy, which comes from the idea
that verification should be easy. That is why VEasy’s aim is to be a FV solution, including

33

a simulator and a Testcase2Automation interface. Therefore VEasy acts in both domains
of improvement: the simulator as a simple EDA tool and the Testcase Automation solution
as a verification methodology.

In the context of this thesis, verification is performed on the RTL representation of the
design. In order to do that, FV often uses a combination of simple logic simulation and
test cases (i.e. sequences of inputs) generated for asserting specific features of the design.
Recently this approach has been enhanced by the use of constrained randomness. This
element alone has aided the verification effort because it has broaden the search space of
a test case while still keeping it controlled under a set of rules. This and other elements
that are essential to FV will be discussed in the next chapters and sections.

The chapters that follow contain a description of the features found within the VEasy
tool suite. Chapter 2, for example, describes some challenging tasks or concepts that are
related to FV. Chapter 3 contains an evaluation of some of these tasks that are executed
during the FV of a design, with emphasis on simulation and generation. The actual tool
suite, VEasy, is presented in Chapter 4 together with the work flows and some general
functionalities and features.

Later, on Chapter 5, the linting capabilities of the tool are demonstrated as well as
a comprehensive list of all the available linting checks. Following this discussion, the
simulation capabilities and algorithms of VEasy are described in details in Chapter 6.
Chapter 7 deals with the coverage collection and analysis that is enabled by the tool, while
Chapter 8 describes the methodologies that are used to create stimuli to the simulations,
along with the GUI that enables some testcase automation capabilities. A case study is
provided in Chapter 9 while the final chapter provides closure to the work with the final
remarks and conclusions of this thesis.

2In this thesis the word testcase is used when referring to a simulation scenario created within our
developed tool, while the word testbench is used when referring to a traditional simulation scenario written
in some form of HDL/HVL.

34

35

2 STATE OF THE ART AND CHALLENGES

Before introducing the developed tool, VEasy, this chapter will discuss some of the
challenges related to FV. Also, the current state of the art on each of the topics will be
discussed.

2.1 Coverage metrics

As mentioned in the previous chapter, the measurement of verification progress is
given by coverage metrics (GRINWALD et al., 1998). Although most of the metrics are
simple and easy to understand, the way they relate to the actual hardware functionalities
is not simple nor direct. Block, expression and toggle coverage are examples of coverage
metrics with such behavior. Case studies of code coverage being used to measure the
verification progress are very common in the literature and date back from more than 30
years ago. One example of such studies is presented by (REDWINE S.T., 1983), where
code execution coverage was applied in the software test domain in the same way that
block coverage is used in hardware verification. The same particular study also conducted
function, input, output and function interaction coverage.

In this thesis coverage metrics are organized in two distinct groups: structural and
functional. Structural coverage is linked directly to the RTL code and therefore is also
referred as code coverage. This type of coverage is the most common metric being used
by the industry today and collecting it is typically a completely automated process. This is
not the case for functional coverage, which requires manual intervention to be collected.
Therefore it has been a hard process for some companies to shift to a coverage model
based on functional metrics.

On the other hand, functional coverage is linked with the design functionalities. Being
so, the verification engineer or the architect responsible for defining the coverage model
must be familiarized with the design. One of VEasy’s goals is to bring this type of manual
intervention to a minimum. The possibilities of defining functional coverage goals in
VEasy are described in Subsection 7.2.2.

The subsections that follow contain a discussion regarding some of those coverage
metrics.

2.1.1 Block coverage

Block coverage is the most simple of the structural metrics. A block of code is defined
by one or more statements that always execute together. The principle of this metric is
to measure if each block of the RTL code was simulated at least once and, because of
that, it has replaced line coverage metric (in which the execution of each line of code

36

is evaluated). Guaranteeing that each block was simulated eliminates the presence of
simple errors due to unstimulated logic. Also, this type of metric is useful for detecting
dead code1 in the design, which might be contributing to extra logic in the final layout of
the chip.

The block coverage metric is also used in the software test domain, as shown by
(WONG et al., 1994), where the authors use the concept of block coverage for fault de-
tection purposes. Even in such early studies it was already mentioned that block cover-
age, although an important metric, does not relate well with the actual functionality. One
example is provided where two tests are examined: one that contains a decent block cov-
erage (around 80%) and one that contains a high coverage (around 95%). Yet, the one
with the high coverage is less efficient than the other when it comes to detecting faults.
The authors of (BRIAND; PFAHL, 2000) also use block coverage as a metric in order to
try to associate defect coverage with test coverage.

Typically, structures like if/else and case statements are considered as block starters
for RTL code. For behavioral (algorithmic) codes, statements like wait and sync might be
considered as well. The following code illustrated in Fig. 2.1 shows where blocks of code
are defined, considering a module written in RTL Verilog.

1 module example (c lk , a , b , c , d) ;
2

3 input c l k ;
4 input a , b ;
5 output reg c , d ;
6

7 always @(posedge c l k) begin
8 i f (a == 1 ' b0) begin
9 c <= 1 ' b0 ;

10 d <= 1 ' b0 ;
11 end
12 e l s e begin
13 case (b)
14 0 : begin
15 c <= 1 ' b0 ;
16 d <= 1 ' b0 ;
17 end
18 1 : c <= 1 ' b1 ;
19 endcase
20 end
21 end
22

23 endmodule

Figure 2.1: Example of Verilog code for block coverage.

The code listing shown in Fig. 2.1 has five blocks of code. These blocks start on the
following lines:

Line 8 Due to the always statement.
1Dead code is a portion of the code that, no matter which input or combination of inputs is considered,

it will never be executed.

37

Line 9 Due to the if statement.

Line 13 Due to the else statement.

Line 15 Due to the first clause of the case statement.

Line 18 Due to the other clause of the case statement.

Notice that the begin/end pair is not necessary to start a new block of code (line 18
is an example of such situation). Also notice that the always statement (as in line 7) will
always create a block, although this particular example has not a single assignment in
such block.

2.1.2 Expression coverage

Expression coverage is a mechanism that factorizes logical expressions. Each factor-
ized expression is then monitored during simulation runs. Thus, expressions are evaluated
in greater detail (MICZO, 1986). Expression coverage complements block coverage be-
cause it tries to identify why a given block of code has been stimulated. The code listing
from Fig. 2.2 illustrates such situation in lines 9 and 12. For instance, on line 9, a new
block of code is started. The execution of this block of code may be triggered due to
either of the inputs (a or b).

Expression coverage also subsumes block coverage, i.e., 100% expression coverage
implies 100% block coverage. The opposite is not true. The principle of this metric is:
given that the designer coded more than one situation in which a block might be executed,
there was probably a different reason for each situation. One could think of the inputs a
and b as two different configuration scenarios that were coded. So, it is necessary to
confirm that both scenarios were simulated.

1 module example (a , b , c , d , e , f) ;
2

3 input a , b , c , d , e ;
4 output reg f ;
5

6 always @(*) begin
7 f = 1 ' b0 ;
8

9 i f (a | | b) begin
10 f = 1 ' b1 ;
11 end
12 i f (c && (d | | e)) begin
13 f = 1 ' b1 ;
14 end
15 end
16

17 endmodule

Figure 2.2: Example of Verilog code for expression coverage.

For expressions that are more complex, such as the one in line 12, more than one scor-
ing method might be applied. Expressions can be scored by different methods, where

38

one trades the amount of data to analyze against the accuracy of the results. Exam-
ples of such scoring methods are SOP (Sum of Products), control and vector scoring,
which are analyzed in the following subsections. A deeper discussion on different scor-
ing methods for logical expressions is performed in an article by (AMMANN; OFFUTT;
HUANG, 2003), where several techniques based in Modified Condition Decision Cover-
age (MCDC) (CHILENSKI; MILLER, 1994) are compared.

2.1.2.1 SOP scoring

The SOP scoring mode reduces expressions to a minimum set of expression inputs
that make the expression both true and false. SOP scoring checks that each input has
attained both 1 and 0 state at some time during the simulation. Therefore, the expression
(c && (d || e)) would be scored as shown in Tab. 2.1. The dash symbol used in the table
represents a do not care situation.

Table 2.1: SOP scoring table for the expression (c && (d || e)).
c d e result
1 - 1 1

1 1 - 1

- 0 0 0

0 - - 0

2.1.2.2 Control scoring

Control scoring mode checks if each input has controlled the output value of the ex-
pression at some time during the simulation. If the input changes value, then the out-
put also changes. In a way, control scoring improves verification accuracy by applying
stronger requirements in order to call an expression input covered. Control scoring is
sometimes referred to as sensitized condition coverage or focused condition coverage.

Also, control scoring breaks an expression into a hierarchy of subexpressions. For
example, the expression (c && (d || e)) would be represented as follows:

Table 2.2: Subexpressions hierarchy of (c && (d || e)).
Original expression c && (d || e)

First level hierarchy <1> < - - - - - 2 - - - - - >

Second level hierarchy <3> <4>

The resulting subexpression analysis produced two levels of hierarchy and four differ-
ent expressions, numbered from 1 to 4. The resulting coverage table for the expression (c
&& (d || e)) using the control scoring method is illustrated in Tab. 2.3.

For instance, the and operation between <1> and <2> will be analyzed looking for
three different combination of inputs. However, the combination of two zeros in both
inputs is not considered due to the fact that, if you have two zero inputs and one of your
inputs toggles, it would not cause a toggle in the result. Therefore, this toggle is not
capable of controlling the expression. A similar analysis may be done for the or operation

39

Table 2.3: Subexpressions hierarchy of (c && (d || e)) and toggles of interest.
<1> && <2> result

0 1 0

1 0 0

1 1 1

<3> || <4> result

1 0 1

0 1 1

0 0 0

between <3> and <4>. Instead of two zeros, the combination of inputs that is not capable
of toggling the result is two ones.

2.1.2.3 Vector scoring

Vector scoring mode is an extension of control scoring mode. With vector scoring,
each bit of a multi-bit signal is scored and reported separately. Therefore, there is a
great amount of data to analyze. Since each operand is multi-bit, each operand is initially
scored using a reduction table (the logical or is used for reduction). The overall expression
is scored using the same scheme from control scoring, i.e, using || and && operators.
Considering the same expression scored in Tab. 2.3, but assuming that c is now 3 bits wide,
an additional table would be used. In this table, each bit of c must have the opportunity to
control the overall expression.

2.1.3 Toggle coverage

Toggle coverage measures if every bit of every signal has been properly stimulated.
This measurement is done by observing if a given bit has toggled from zero to one and
vice-versa. In the code of Fig. 2.2 all the inputs and outputs of the module are susceptible
to toggle coverage. If the module had internal signals it would be necessary to cover them
as well. Even for the example of Fig. 2.2, which is quite simple, there are 6 bits that
must be observed at every clock cycle. For each bit both transitions must be considered,
therefore there are 12 distinct situations that must be covered and, because of that nature,
it is predictable that toggle coverage is very intensive to collect. In some cases it might be
interesting to collect transitions that also include X and Z values. Naturally, this type of
collection makes it even more challenging to perform toggle coverage.

Although VEasy does not handle circuits at the gate level there is an important feature
of the toggle coverage metric that is related to those. At gate level the design is purely
structural so the use of coverage analysis is limited since expressions and blocks no longer
exist. Yet, the toggle coverage metric is still able to benefit the analysis at this level.

None of the coverage metrics present so far is considered ‘enough’, or some sort of
full solution. It is very common to see verification efforts where all of these metrics
were considered. This is mostly due to the fact that the metrics are capable of examing
different behaviors or facts from a circuit description. For example, achieving 100%
toggle coverage, in many cases, may not lead to 100% of the other metrics, as mentioned
by (WANG; TAN, 1995).

40

Later, on Chapter 7, some considerations about coverage collection performance will
be made, specially focusing on the performance of collecting toggle and block coverage
metrics.

2.1.4 Functional coverage

Before explaining what functional coverage is, it is important to understand why code
coverage is not enough. As mentioned above, code coverage reflects how thorough the
HDL code was exercised. A code coverage tool traces the code execution, usually by
instrumenting or even modifying the HDL code. The set of features provided by code
coverage tools usually includes line/block coverage, expression coverage, toggle cover-
age, etc. Some recent code coverage tools also include capabilities that automatically
extract Finite State Machines (FSMs) from the design and ensure complete states and
arc coverage. Nevertheless, code coverage is not enough. The reason is simple: most
functional coverage requirements cannot be mapped into code structures.

For example, code coverage cannot indicate whether a particular simulation has vis-
ited all the legal combination of states in two orthogonal FSMs. Another example might
be whether all the possible inputs have been tried while the DUT was in all the different
internal states. Also, code coverage does not look at sequences of events, such as what
else happened before, during, or after a given line of code was executed. In summary,
whenever is necessary to correlate events or scenarios, code coverage fails. Yet, code
coverage is a necessity since it is quite unacceptable to synthesize code that is either dead
or unverified.

On the other hand, FV perceives the design from a user’s (or system) point of view.
Examples of questions that FV strives to answer are:

• Have you covered all of your typical scenarios?

• How about error cases? (sometimes these are as important as the correct scenarios)

• Which are the relevant corner cases?

• How to account for protocol scenarios and sequences?

The answers to all these questions comes from functional coverage, which also al-
lows the measurement of relationships between scenarios (LACHISH et al., 2002). For
instance, it might be interesting to cover that a situation was triggered from every state
of a state machine. Another example: cover that a package was received when the buffer
was empty and later when the buffer was full. Or even cover that a package of type A was
followed by a package of type B. This characteristic elevates the discussion to specific
transactions or bursts without overwhelming the verification engineer with bit vectors
and/or signal names.

In a way, functional coverage might be seen as a black box testing enabler since it
allows the verification to focus on the simulation scenarios from a higher level of abstrac-
tion. This level of abstraction enables natural translation from coverage results to test plan
items, which will be later commented through Section 2.5. Also, functional coverage is
usually divided into data-oriented and control-oriented. When performing data-oriented
collection, mechanisms like covergroups of SystemVerilog are being used to sample and
store values of registers or variables. On the other hand, when performing control-oriented

41

collection, mechanisms like assertions2 are being analyzed to detect specific sequences of
events that are of interest.

Also, it is important to realize that achieving a complete functional coverage is usually
the primary goal of the FV. As a secondary goal then code coverage takes place. The
reason is simple: there is no use to finding out if all blocks and expressions of a code
have been exercised if that code does not implement all the requested functionalities.
Another approach is to realize that most common, trivial or even general errors can be
found when trying to reach full functional coverage. Complex errors that seem to have
more of a random reason to appear, i.e., which the source is hard to identify, then might
be investigated using code coverage metrics.

As functional and code coverage are complementary in nature, a tool or methodology
that combines both approaches is extremely beneficial. This combined methodology will
then provide a complete overview of the verification progress and a clearer correlation
between the functional coverage definitions and the actual design implementation. VEasy,
therefore, supports both types of coverage.

2.1.5 Other types of coverage metrics

This section enumerates some other types of coverage metrics that might be found in
methodologies or simulators. Yet, the metrics presented so far in the latest section are
more common than these.

2.1.5.1 Line coverage

Line or statement coverage collects information to evaluate if each line (statement)
of a given code was executed. Block coverage has replaced this type of metric in some
simulators and methodologies in use nowadays.

2.1.5.2 Path coverage

Path coverage analyzes the execution path that was stimulated in a given piece of
code and it is achieved by handling the code as a decision diagram (or a control flow
graph). Every possible decision must be taken at some point for the path coverage to be
considered hole-free3. For example, the code of Fig. 2.2 contains four possible paths due
to the two if statements.

One can see the four possible paths on Fig. 2.3. Each if statement is represented by a
diamond shape and each assignment is represented by a rectangle. These possible paths
are p1-p3, p1-p4, p2-p3 and p2-p4, as shown in Fig. 2.4.

2.1.5.3 FSM related coverage

Somewhere between code coverage and functional coverage there are coverage met-
rics related to FSMs. Typical metrics are based on the analysis of arcs, states and transi-
tions. State coverage reports which states were visited, transition coverage reports what
transitions occurred and arc coverage reports why each transition occurred. The illustra-
tion that follows in Fig. 2.5 contains a FSM coverage report from a commercial tool.

2Assertions are checks usually embedded into the design. They are used to verify a designer’s assump-
tions about how a design should operate. Assertions are very appropriate for verifying protocol scenarios at
a design’s interface. They are also used to express definitive properties about a system or circuit.

3A hole is a situation of interest that was not covered, e.g., a path or a block of code. Therefore a
hole-free coverage metric is one that was fully covered.

42

Figure 2.3: Control flow graph of a Verilog module.

Figure 2.4: All possible paths of the control flow graph from Fig 2.3.

Figure 2.5: FSM coverage report for states and arcs.

The illustration does not consider transition coverage, instead it only shows arc and
state coverage. Each state is represented by a circle and each arc is represented by an
arrow. If an arc (or a state) has not been excited (visited) then it is displayed in red.

43

2.2 Stimuli generation

The current practice for verification of complex designs starts with a definition of a
test list, comprised by a large set of events that the verification team would like to observe
during the verification process (Section 2.5 contains a discussion on those). The list of
tests might be implemented using random test generators that produce a large number of
tests. Producing such tests in a suitable manner is an issue. Regarding design complex-
ity, generating a set of testbenches that will properly stimulate the circuit and provide a
meaningful answer (usually through a coverage report) is not simple. It requires deep
design knowledge. Also, it requires experience obtained from the verification of previous
projects. Otherwise engineers could be wasting time by writing two tests that achieve the
same (or near the same) coverage goals.

Recently the approach for generating stimuli data has shifted to a constraint based ap-
proach such as the ones reported by (YUAN et al., 1999) and (KITCHEN; KUEHLMANN,
2007). This allows the simulation to reach more states with a test case that once was di-
rected towards only a single feature of the design. This element alone has aided the
verification effort because it has broaden the search space of a testcase while still keeping
it controlled under a set of rules.

When a constraint based approach is used, usually it requires the use of a constraint
solving engine. This adds another level of complexity to FV since two constraints, per-
haps written by different engineers, could create a scenario that is not of desire. In other
words, it may cause the simulation of a scenario that is not of interest for the design.
There is also the issue of constraint contradiction, i.e., one constraint inhibits the other.
Either way, simulation cycles are wasted if the applied constraints are not correct.

Another approach for generating stimuli data is referred as Coverage Directed (test)
Generation (CDG). One example of such approach in the literature is presented by (FINE;
ZIV, 2003), which is based on modeling the relationship between the coverage informa-
tion and the directives to the test generator using Bayesian networks (a special type of
directed graph).

2.3 Checking

When a designer completes the coding of a design unit, a single or a few modules
implementing some elementary function, he or she verifies that it works as intended. This
verification is casual and usually the waveform viewer is used to visually inspect the
correctness of the response (BERGERON, 2006). Regarding the efforts of a verification
engineer, instead of performing a casual waveform inspection, it is advisable to create
some form of self-checking environment, like the one showed in Fig. 2.6.

The output of a module might be self-checked in several different ways. Usually the
checking method is chosen based tightly on the stimuli generation method. For instance,
if the input is created in a transaction fashion the output might be checked in the same
manner. Another simpler example might use vectors to store simulation scenarios. Let us
say that, for each set of inputs sent to the design, the correct response will also be known
since the same set is submitted to the checker. So, a large vector is used to store both the
inputs and the expected responses of the simulation.

In general, one is interested in checking both data and timing correctness from a de-
sign. One very common practice to check the flow of data in a design is to use a score-
board technique with a reference model. A scoreboard is a temporary location for holding

44

Figure 2.6: A generic verification environment capable of performing checking.

information that a checker will require (WILE; GOSS; ROESNER, 2005). The reference
model dynamically produces the expected responses which are compared against the data
already stored in the scoreboard. Once the simulation finished, if the scoreboard is not
empty then something went wrong. For checking timing properties, it is more common
to rely on some sort of assertion language, like the ones defined in the e language, Sys-
temVerilog or PSL.

Checking is a complex subject since it is very design specific. There is no technique
that is suitable for all types of designs. The verification engineer (or the verification
environment architect) is responsible for choosing a method that fits well for some actual
given design.

2.4 Verification methodologies

As explained by (IMAN; JOSHI, 2004), the focus on FV has consisted of a multi
faceted approach where improvements in verification productivity were made possible
through either:

• New verification methodologies, better suited for the verification of complex sys-
tems.

• Reusable verification components.

• HVLs to facilitate the new verification paradigms.

This section will discuss some of the verification methodologies that are in use as
of today, as well as some of the associated HVLs of such methodologies. In the last few
years different verification methodologies have been used by verification teams. The need
for a verification methodology is clear nowadays: conforming to a set of standards allows
the reuse of certain aspects of verification, thus diminishing the overall effort. The next
subsections will detail some of the recent verification methodologies.

Before introducing each methodology and discussing its features, it is also important
to assess which methodologies are currently most used. A few market researches have
addressed this subject, such as (GRIES, 2009) and (Gary Smith EDA - GSEDA, 2009).
The results of such researches is summarizes in Fig. 2.7 and Fig. 2.8, respectively.

The first research that was conducted was organized by a verification expert. He tried
to answer the question of which verification solution is more widely used. Results show
that a fair amount of the respondents (the horizontal axis of the image) still do not use

45

Figure 2.7: Current verification practices, divided by programming language.

any type of methodology, therefore performing verification using the native forms of the
HVLs or homegrown solutions. These respondents were placed in the upper portion of
the image. The use of languages that are not truly HVLs, like Verilog and VHDL, can
also be seen in Fig. 2.7.

Regarding the ones that were placed in the botton of the image, these are the respon-
dents that actually rely on some form of methodology. A remarkable position is occupied
by the Open Verification Methodology (OVM).

Figure 2.8: Current verification practices, divided by vendor.

The second research, organized by a provider of market intelligence and advisory ser-
vices, has a different profile since it tried to identify which share of the market is occupied
by which vendor. The image clearly states that Cadence and Mentor, together, have se-
cured 64% of the market share. The reason for such is that both companies have joined
strengths in developing and improving OVM. In other words, there is a great correlation
between both researches. Also, the current trend seems to have SystemVerilog as the lead-
ing HVL since it is widely used in its native form and also through OVM and Verification
Methodology Manual (VMM).

46

It is important to realize that, sometimes, a verification methodology is (almost) ven-
dor specific. This means that only a few simulators are capable of handling such method-
ology or certain aspects of a methodology. For instance, each major vendor today has
a simulator in its solutions portfolio. Attached to these simulators usually there is also
at least one recommended methodology. This is the case of the OVM and the e Reuse
Methodology (eRM), recommended and supported by Cadence. This is also the case of
VMM, which is recommended and supported by Synopsys. A paradigm break is cur-
rently being adopted by the industry with the introduction of the Universal Verification
Methodology (UVM). The evolution of all these methodologies is illustrated in Fig. 2.9.

Figure 2.9: A timeline containing the introduction year of each of the current verification
methodologies.

Regarding Fig. 2.9, one can understand the evolution of the methodologies and the
consortiums established between vendors. A few words regarding the methodologies il-
lustrated in the image will be given in the next subsections. The exception is the vAdvisor,
which was a collection of best practices for the e verification language developed in 2000
by Verisity Design (now part of Cadence) and Universal Reuse Methodology (URM),
which was a natural evolution of eRM. The methodologies will be addressed using a
chronological order.

2.4.1 e Reuse Methodology (eRM)

The basis of the eRM methodology is the reuse. Being so, the concept of an e Ver-
ification Component (eVC) was created, which is an abstraction that encapsulates the
elements of a verification environment. This methodology comes with a comprehensive
list of new concepts introduced by the e language, its syntax and semantics. The most
remarkable feature of e is its Aspect Oriented Programming (AOP) semantic, which in-
cludes the regular Object Oriented (OO) semantic plus a greater level of customization.
At the same time that AOP makes the e language unique, it also makes it more complex
than a regular OO language.

In addition, the methodology allows the construction of architectural views and re-
quirements of verification environments (i.e. randomly generated environments, coverage
driven verification environments, etc.). The methodology also address standard ways to
create the verification blocks in the architectural views (i.e. generators, checkers, mon-
itors, coverage definitions, etc.). In other words, eRM defines a guideline and/or step-
by-step instructions for building compliant eVCs, such as the one illustrated in Fig. 2.10
(IMAN; JOSHI, 2004).

47

Figure 2.10: eVC environment instance.

2.4.2 Reference Verification Methodology (RVM)

The Reference Verification Methodology (RVM) is a complete set of metrics and
methods for performing FV. It was published by Synopsys in 2003 and it uses the Vera
(HAQUE; MICHELSON; KHAN, 2001) language to create testbenches. This language
was later used as the basis for creating SystemVerilog since it already had many of the
desired features of SystemVerilog, like assertions and constrained randomness. The orga-
nization of a verification environment in RVM is similar to the one in VMM, as illustrated
by Fig. 2.11.

2.4.3 Verification Methodology Manual (VMM)

VMM was jointly authored by ARM and Synopsys back in 2005. It already uses Sys-
temVerilog as the base programming language. The premise of the methodology is that
it would finally enable users to take full advantage of all possible features of SystemVer-
ilog in a concise way. So, engineers could benefit from assertions, reusability, testbench
automation, coverage, formal analysis, and other advanced verification technologies, all
within SystemVerilog.

Reuse is also a great concern of VMM. In order to have a common verification en-
vironment that facilitates reuse and extension to take full advantage of automation, a
layered testbench architecture is used. This approach makes it easier to share common
components between projects (ANDERSON et al., 2006). The VMM for SystemVerilog
testbench architecture comprises five layers around the DUT, as shown in Fig. 2.11.

2.4.4 Advanced Verification Methodology (AVM)

This was the first effort of Mentor to enter the FV methodology market. The Ad-
vanced Verification Methodology (AVM) was claimed by Mentor as the first open, non-
proprietary methodology that supports system-through-RT level verification. The open
claim comes from the way that it was provided, through the AVM Cookbook (GLASSER
et al., 2008). Such book was released free of charges and it includes examples of code that
could be cut and pasted into customer environments to build testbenches. Source code for
base class libraries, utilities and implementation examples were also available for free.

The greatest distinction of this methodology is that it was aimed at two different lan-
guages: SystemC and SystemVerilog. The AVM also features an OO coding style to
reduce the amount of testbench code and a modular architecture to enable reuse.

48

Figure 2.11: Example of a VMM verification environment architecture.

2.4.5 Open Verification Methodology (OVM)

Cadence and Mentor developed the OVM (CADENCE; MENTOR, 2007), an open-
source SystemVerilog based class library and methodology. As expected, it defines a
framework for reusable verification IP and testbenches. In a certain way, it combines the
best practices of Cadence’s eRM (and later URM) with the best practices of Mentor’s
AVM. It also has a Cookbook (GLASSER, 2009), in the same fashion that the AVM did.

Although the methodologies of each of the three major vendors had success within
their own customer base, each ran only on its own simulator. There was no attempt
at cross-vendor support or any form of standardization. OVM was the first key step in
this direction in early 2008, when Cadence and Mentor delivered the first SystemVerilog
version of OVM. Like its AVM and URM predecessors, the OVM was provided as open
source. The actual improvement is that it was the first methodology to be tested and
guaranteed to work on multiple simulators.

2.4.6 Universal Verification Methodology (UVM)

Although the OVM enjoyed wide adoption, it was not directly endorsed by any orga-
nization. This would only change in 2010 with the introduction of the UVM. The first
serious industry attempt to standardize a verification methodology began in 2008, when
the Verification IP Technical Sub-Committee was formed within Accellera. It was already
clear that the recently launched OVM would be very successful. But, given its longer his-
tory, there were many VMM users as well. Thus, the initial focus for the standardization
was to figure out how VMM-based environments could function in an OVM verification
environment (and vice versa). Cadence, Mentor and Synopsys worked with representa-
tives from numerous companies to define and validate a standard interoperability solution
that could link the two methodologies.

The results of such standardization are still not clear, since the UVM 1.0 standard by
Accellera was only released a few days before this thesis was finished.

49

2.5 Verification plan

Most verification efforts are initially described through a verification plan, where each
test that will be implemented is described in details. The verification plan is to the FV
what the specification is to the coding process. Also, most tasks related to verification
are required to be properly checked, in a sense that management and planning play an
important role in the verification process. So, a document like a verification plan is very
important to manage the process.

Verification plan’s development is often a laborious process held at the start of a
project. Developing a comprehensive verification plan is difficult and is one thing, while
keeping it in sync with the requirements as they evolve is quite another. The first task re-
quires a lot of creative thinking while the latter requires a precise management. Attempts
to manually keep the requirements, the plan, and the execution environment in sync are
time consuming and, most of the time unreliable, to say the least. Analysis of execution
results is also a intensive task due to the volume of data generated in the process. Globally
distributed teams executing the same plan also add a new dimension of complexity.

Historically, teams have used standard Office tools (word processor, spreadsheet ed-
itor, etc.) for managing verification projects. However, this is useful for small projects
with a single and centralized team with only a few members. It is laborious and time
consuming to keep such spreadsheets up-to-date while changes occur in requirements,
plans and execution. Some more elaborated solutions rely on Wiki pages (EBERSBACH;
GLASER; HEIGL, 2005) (or a library of pages), since the Wiki solution is already aimed
at collaborative work. Finally, there are also solutions based on executable verification
plans (Cadence Design Systems, Inc., 2005) (International Business Machines Corpo-
ration - IBM, 2009), which are responsible for centralizing the verification efforts of a
project. To achieve this kind of solution an automated tool is required.

One possible generic format for a verification plan is given on the next subsections,
where a verification plan is assumed to be divided into four parts: an overview of the
plan, a feature list, a test list and the coverage goals. Later, on Chapter 4, the format of
the verification plan used by VEasy is described.

2.5.1 Overview

This portion of the plan contains an overview of the whole process. Usually it contains
a table with the general configurations and/or characteristics of that plan. One example of
such table is given in Tab. 2.4.

Table 2.4: Example of an overview table of a verification plan.
DUT project21

Verification method Functional (by simulation)

Design files file1.v file2.v top.v

Verification methodology OVM

HVL SystemVerilog

Simulator SimX

Extras Assertions coded in PSL

Also, this section usually includes block diagrams from both the design and the ver-

50

ification environment. Such block diagrams are used to explicitly define the hierarchy
and relations between the modules (from the design) and units (from the verification en-
vironment). One example of a possible and simplified hierarchy is shown in Fig. 2.12
(BERGERON et al., 2005). In the image it is possible to see a list of testcases inter-
acting with the environment while the environment interacts with the DUT. The actual
units here are not shown since this type of hierarchy decision is typically dependent of the
verification methodology being used, as it was highlighted in Section 2.4.

Figure 2.12: Simplified block diagram of the verification plan.

2.5.2 Feature list

This is actually the first step in the verification of a design. This section of a verifica-
tion plan contains an exhaustive list of all the expected functionalities of a design, which
were extracted from the design specification. In case of a multi-module design one table
for each module might be created (in a bottom-up type of verification, for example). In
(HAQUE; MICHELSON; KHAN, 2001), the authors propose a methodical approach for
extracting significant and relevant features of a design by first analyzing the interfaces of
the design, then the functions and finally the corner cases.

One example of such feature list is shown in Tab. 2.5.

Table 2.5: Example of a feature list from a verification plan.
Feature ID Description

F1 The DUT must perform operation A.

F2 The DUT must accept on-the-fly configuration changes from op-
eration mode M1 to M2 and vice-versa.

F3 The DUT must accept packets from protocol versions 1 and 2.

It is possible to notice that the features in this type of list are strictly functionally
related. In other words, this list of features must not contain features that express power
or timing constraints, e.g. “the design must work at 100Mhz”. This type of constraint
must be addressed in the actual design specification.

2.5.3 Test list

This section of a verification plan contains an exhaustive list of all the tests that will
be written in order to check the list of features. Each test is then later transformed into
a testbench typically using some HVL. Therefore a test is associated with at least one

51

feature. One example of such list is given below in Tab. 2.6, which contains tests that
match the features of Tab. 2.5.

Table 2.6: Example of a test list from a verification plan.
Test ID Related feat. Description

T1 F1, F2 The DUT configuration is set to mode M1 and the operation
A is performed.

T2 F2 A packet that changes the operating mode must be send ev-
ery [1000:10000] cycles.

T3 F3 Random data must be sent using only packets of version 1.

T4 F3 Random data must be sent using only packets of version 2.

T5 F3 Random data must be sent using packets of versions 1 and
2.

2.5.4 Coverage goals

This section of a verification plan contains all the coverage metrics and their goals. A
simple table like the one in Tab. 2.7 is used to define the coverage goals and the current
values. The first two columns define the type of coverage while the others define the goal
for each metric and the current value measured in the simulation runs of a certain day,
respectively. Finally, such tables might also contain the next hypothetical actions defined
in order to increase the coverage.

Table 2.7: Example of a list of coverage goals from a verification plan.
Coverage
type

Coverage
metric

Goal Current
value

Action

Structural Block 100% 99% as
Jan. 1.

Evaluate possible dead code on module
A.

Structural Expression - 95% as
Jan. 5.

Use more seeds in nightly runs. Schedule
simulation grid for next week.

Structural Toggle 100% 95% as
Jan. 9.

Randomize data on memory bus.

Functional Data 100% 98% as
Jan. 2.

Create specific test to augment cross cov-
erage of configuration modes and packet
types.

Functional Control 100% 50% as
Jan. 1.

Debug failing assertions on all modules.
Evaluate assertions reports, find holes.

2.5.5 Other sections

Other sections are also seen in verification plans and are generally used to store man-
agement information. One data commonly managed is the number of simulator licenses
being used and a schedule to avoid lack of licenses. Also, it is common to manage the

52

human resources required to perform the DUT verification in the verification plan. This
task is achieved with a list of names and responsibilities.

53

3 EVALUATING THE CHALLENGES

Two of the goals of VEasy is to allow simpler and faster ways to perform FV. Be-
fore implementing the tool some preliminary experiments were conducted in order to put
figures in the actual challenges that verifying a design imposes. Initially, the coverage
collection time and the data stimuli generation time were measured extensively using
different simulators and designs. The next section deals with the coverage collection
measurements while Section 3.2 will deal with the generation evaluation.

3.1 Measuring simulation overhead caused by coverage

Before explaining how the developed tool suite collects and analyzes coverage, it is
important to understand and measure the impact that coverage has on simulation. For this
task a set of circuits was chosen along with a set of commercial simulators. The circuits
were chosen based on the different logic constructions they contain. Four circuits were
chosen: dffnrst is a D type flip-flop with reset, fsm is a Finite State Machine (FSM) with
8 states and each state performs an 8-bit wide operation, adder is a 16 bit adder with a
enable signal while t6507lp (PAGLIARINI; ZARDO, 2009) is an 8-bit microprocessor
with 100 opcodes and 10 addressing modes.

A deeper analysis of the properties found on those circuits is performed in Tab. 3.1,
where the number of blocks, expressions and toggle bins is shown for each circuit. Toggle
bins are defined as the total number of transitions of interest. Since we are only interested
in one-to-zero and zero-to-one transitions, dividing the number of toggle bins by two
gives the total number of signals of a given circuit. For example, the dffnrst circuit has 8
toggle bins to cover 4 signals, the d input, the q output, plus clock and reset signals.

Table 3.1: Some properties of the circuits being analyzed.
dffnrst fsm adder t6507lp

of blocks 3 6 15 294

of expressions 1 2 10 96

of toggle bins 8 70 74 604

Two commercial simulators from major vendors were evaluated using those circuits.
One of the simulators is widely used in the Field Programmable Gate Array (FPGA)
domain while the other is widely used in the ASIC domain. Neither of the simulators
allow the execution and/or publishing of benchmark simulations so these simulators will
be referred hereinafter to as simulator A and simulator B, respectively.

54

For each circuit a Verilog testbench was developed using some simple constraints: all
the data signals are kept completely random except for reset, which is triggered only once
and during the first simulation cycle. All testbenches were configured to run up to 10
million clock cycles.

In order to perform a fair comparison, all simulations were performed using the same
computer configuration (64bit OS, 6GB of memory and a quad-core processor operating
at 2.66Ghz). Also, no waveform output was requested from the simulators. No $display()
or printf() operations were performed in the testbenches. File writing operations were
kept at a minimum, just the necessary to analyze the coverage data post simulation. Also,
coverage was configured to be only collected for the DUT’s code since both simulators
try by default to cover the testbenches as well.

The simulation overhead for enabling toggle coverage in simulator A is shown in
Fig. 3.1. The simulation overhead for enabling toggle coverage in simulator B is shown
in Fig. 3.2.

Figure 3.1: Simulation overhead due to toggle coverage in simulator A.

The overheads measured in both simulators may be considered high. Regarding sim-
ulator A, one may notice that the fsm circuit has the highest proportional overhead, while
regarding simulator B, one may notice that simulating the t6507lp circuit with toggle
coverage more than doubles the simulation time. That is why some companies choose
to perform most of the coverage tasks only near the project’s end. Although this choice
may increase the number of simulation cycles performed during the development of the
project, verification engineers will receive feedback of the quality of the testbenches late.
Clearly this scenario might lead to inefficient use of engineering resources. It also worth
mentioning that the same testbench is simulated more than once when considering regres-
sion testing, which increases the relevance of coverage overheads.

Figures 3.1 and 3.2 show only the overhead created by toggle coverage. Although the
other coverage metrics also represent significant overheads, toggle coverage is the most
severe one, as shown by Tab. 3.2, which summarizes the overheads created by all the three
metrics plus the overhead of applying the three metrics combined, i.e., at the same time,

55

Figure 3.2: Simulation overhead due to toggle coverage in simulator B.

when considering only simulator A. Table 3.3 contains the same data regarding simulator
B.

Table 3.2: Simulation overhead measured using simulator A.
Circuit Block Expression Toggle All combined
dffnrst 163.11% 160.67% 175.91% 175.91%

fsm 532.24% 539.55% 598.99% 600.25%

adder 370.54% 371.21% 407.14% 407.37%

t6507lp 12.43% 0.28% 29.04% 29.35%

Table 3.3: Simulation overhead measured using simulator B.
Circuit Block Expression Toggle All combined
dffnrst 2.56% 1.28% 15.51% 38.46%

fsm 1.41% 1.41% 36.48% 60.56%

adder 1.16% 1.16% 18.60% 39.53%

t6507lp 5.88% 7.06% 151.00% 208.24%

As seen on both tables, the time it takes to simulate a circuit with all coverage met-
rics combined is directly related to the toggle coverage simulation time. This is specially
true for simulator A. It is also possible to notice that simulating the largest of the circuits
(t6507lp) has created the smallest of the overheads in simulator A. Actually, the simula-
tion time of this circuit is already considerable without coverage, as shown in Fig. 3.1.
Therefore the measured overhead is not so severe. Yet, this is a particularity of simu-
lator A since the results shown for simulator B and later from our own simulator reveal

56

otherwise. This type of scenario has influenced our circuit selection, in which we have
purposely chosen circuits that are purely sequential (a flip-flop), purely combinational (an
adder) and also mixed circuits of different sizes (a simple fsm and a processor).

It is also important to mention that both commercial simulators are event-driven.
VEasy, which is a cycle-accurate simulator, will be compared against these simulators
later. Since the simulators have different internal mechanisms, we chose not to compare
the actual simulation time but instead we are comparing only the overheads. That is the
reason why the values reported so far are percent wise. Otherwise, the values measured
using VEasy would be smaller by at least one order of magnitude.

3.2 Measuring simulation overhead caused by data generation

From a user point of view it is clear that creating the data sequences that will excite
(all) the functionalities of a design is a complex task. Now, assuming those sequences
are already done, it is interesting to measure the overhead that they create in the overall
simulation. For this purpose the same testbenches of the last section were evaluated plus
a new circuit was considered, which is referred as seq. This circuit is sort of a sequence
detector circuit.

In order to perform the experiment one huge difference was introduced: the actual
DUT was disconnected from each of the testbenches, i.e., the signals are still being gen-
erated but they are not connected to any module. Then the time it takes to simulate the
testbenches alone was measured. The comparison against the original simulation time of
the testbenches is presented in Fig. 3.3.

Figure 3.3: Simulation overhead due to data generation.

The results from Fig. 3.3 were gathered using commercial simulator A. One might
notice that the data generation is responsible for a large portion of the actual simulation
time of a verification environment. For circuits like dffnrst and adder one might notice
that the generation of stimuli data (testbench only) corresponds to a great portion of the

57

simulation time (testbench and DUT). The actual percentage values were calculated by
diving the testbench only time by the regular simulation time. These values are showed
in Tab. 3.4.

Table 3.4: Evaluation of stimuli generation time using commercial simulator A.
Circuit seq t6507lp dffnrst fsm adder
Simulation of TB only (s) 1.7 2.8 3 4.9 6.9

Simulation of TB and DUT (s) 3.7 8.5 3.9 7.1 8.6

Generation time with respect
to simulation of TB and DUT

45.95% 32.94% 76.92% 69.01% 80.23%

One might see that the data generation might be responsible for more than 80% of
the simulation time. This is clearly a substantial value which makes generation one of
the main sources of simulation overhead. Some of the results presented in this chapter
plus a detailed discussion of the sources of simulation overhead are given in (HAACKE;
PAGLIARINI; KASTENSMIDT, 2011).

At this point two of the main sources of simulation overhead have been defined: gen-
eration and coverage collection. There are other sources, remarkably the evaluation of
assertions and the rule solving procedures when constrained randomness is applied. Yet
these two are deeply related with the design while the ones showed in this chapter have
more general applicability. Thus, the results that will be later showed will address the
coverage and generation overheads. But, before starting the discussion of such results,
VEasy will be presented in the next chapter.

58

59

4 VEASY FLOW AND THE VERIFICATION PLAN

As a starting point to describe VEasy it is important to mention the two work-flows
of the tool and the way they interact with each other. The tool suite has two very distinct
work-flows:

• Assisted flow.

• Simulation flow.

The assisted flow is supposed to be used at the beginning of a project since it will
analyze the project prior to simulation. Only the assisted flow of the tool performs linting
(BENING; FOSTER, 2001), which starts when the Verilog (IEEE, 1995) description of
the DUT is parsed and analyzed. Chapter 5 deals with the linting capabilities of VEasy
and describes several possible violations in details. The assisted flow receives this name
because the linting debug interface assists the user in removing violations from the source
code.

Once the description complies with the linting rules the simulation flow is enabled.
This way linting guarantees that the input is written using strictly RTL constructions (i.e.
it is synthesizable), therefore no behavioral-only constructions were used. Being so, the
internal VEasy simulator is capable of simulating the design. These checks are important
because they provide an easy way to analyze and debug the code being developed by the
user even before synthesis is performed.

From that same input that contains the design description, the interfaces (i.e., input
and output signals) and the special signals (i.e., clock and reset) are automatically ex-
tracted. This information is then used to build a template of a verification plan, as shown
in Fig. 4.1.

Figure 4.1: VEasy assisted flow.

The template generated in the assisted flow later becomes the input of the simulation
flow, which is illustrated in Fig. 4.2. Initially, a verification plan file is loaded. This file
contains all the information that is required to generate and simulate the test scenarios
that the user creates through the GUI. VEasy then is ready to create a simulation snap-
shot, i.e. an executable file, that combines the circuit description and the test generation
functionality. At this point the use of a golden model is optional.

60

Figure 4.2: VEasy simulation flow

All the code generated by VEasy is ANSI-C (ANSI, 1989) compliant, which allows
it to be used in a several combinations of platforms and compilers. For the experiments
performed later in this thesis the GCC compiler (STALLMAN, 2001) was used, along
with some optimization options (JONES, 2005).

After the simulation is complete the tool automatically stores the coverage results,
saves them into the same verification plan and provides this info for the user analysis. If
suitable a new simulation round may be started in a attempt to reach coverage holes.

The verification plan file used by VEasy is actually a complete view of the verification
effort. It includes the traditional lists of features and associated test cases but it also
contains simulation and coverage data. This approach makes it a unified database of the
current verification progress. The following is an example of a full verification plan for a
simple design, a D type flip flop (coverage data has been omitted).

= RTL =
== General ==

* rtl_path /home/samuel/VEasy/work

* rtl_file dffnrst.v

* rtl_md5sum 0xa36e351cc8e4fdea83d9824fc99b1bf5
== Special signals ==

* rtl_clock clk

* rtl_reset rst
= FUV =
== Input Interface ==

* d 1
== Output Interface ==

* q 1
== Sequence ==

* seq_name one

* seq_level 0

* seq_list

* seq_members

* d 1 PHY

* keep == 1
== Sequence ==

* seq_name random

* seq_level 0

* seq_list

* seq_members

* d 1 PHY
== Sequence ==

* seq_name zero

* seq_level 0

* seq_list

61

* seq_members

* d 1 PHY

* keep == 0
== Sequence ==

* seq_name one_zero

* seq_level 1

* seq_list one zero one zero one zero

* seq_members
== Sequence ==

* seq_name one_zero_then_random

* seq_level 2

* seq_list one_zero random random random random random random
random random random random random random random random random
random

* seq_members
= COV =

* cov_branch true

* cov_exp true

* cov_toggle true

* cov_input false

* cov_output false
= RST =

* rst_type 1
= SIM =

* sim_cycles 10000000

* sim_start start

* sim_vcd false
= VPLAN =
== Feature ==

* feat_id F1

* feat_text The design must put D into Q at every
clock cycle.
== Test ==

* test_id T1

* test_text Sends a string of alternating ones and zeros.

* test_for F1

Notice that the verification plan file is written using a Wiki-like syntax. This makes it
easier to be parsed since there are several distinguishable marks (tokens) in the text. And,
at the same time, the Wiki-like format aids the visualization of the file since it might be
rendered by a web browser. In the attachments there is an example of how a portion of
the above described file would look like when rendered.

A simple analysis of the verification plan file format reveals that it is organized in
sections. These sections are marked by the pairs of equal signs, one at the beginning and
one at the end of a line (e.g. = RTL =). The following is an explanation on the contents
of each section of the file also followed by an explanation about each of the possible
configuration variables that are embedded into the file.

RTL This section deals with the RTL related configurations of the verification plan, such
as the special signals and the path to the actual design files. The meaning of each
configuration variables of this section is:

rtl_path Sets the path of the folder where the design files are to be found.

rtl_file Sets the name of the design files, including extension.

62

rtl_md5sum Stores a md5sum, which is a 128-bit MD5 hash (RIVEST, 1992). It
is used by VEasy to identify changes in a source file. If any of such changes
is detected then the current coverage percentages might be invalid.

rtl_clock Sets the name of the master clock signal in the design.

rtl_reset Sets the name of the reset signal in the design. It might be left empty for
designs without reset.

FUV This section deals with the Functional Verification related configurations, such as
the design interfaces and the list of sequences. The input interface of the design is
described using the token == Input Interface ==while the output interface
uses the token == Output Interface ==. Each sequence definition starts
with a == Sequence == token. The configuration variables of this section are
detailed in the following text. The actual layered methodology is later addressed in
Chapter 8. At this point it is important to realize that each sequence has a name, a
level and some yet to be explained content.

seq_name Sets the name of the current sequence being defined.

seq_level Sets the level in which the current sequence is placed in the hierarchy.

seq_list List of sequences that are used to compose the current sequence. It may
contain any number of sequences in it as well as zero sequences.

seq_members List of members that are part of the current sequence. It may contain
any number of members in it. Sequences from layer0, i.e., sequences which
level is 0, always have all the physical inputs of the design as members.

COV This section deals with the coverage related configurations, such as turning on
or off certain metrics. The configuration variables of this section are detailed as
follows:

cov_block Enables block coverage in the simulation.

cov_exp Enables expression coverage in the simulation.

cov_toggle Enables toggle coverage in the simulation.

cov_input Enables input functional coverage in the simulation.

cov_output Enables output functional coverage in the simulation.

RST This section deals with the reset methodology related configurations, such as when
and how often reset must be performed. The configuration variables of this section
are detailed as follows. The different methodologies available for performing reset
are explained in Section 6.3.

rst_type Enables one of the reset methodologies available. It may contain extra
operands to define the reset probability or timing. Check section 6.3 for more
details.

SIM This section deals with the simulation related configurations, such as the number of
cycles and the output format. The configuration variables of this section are detailed
as follows:

63

sim_cycles Defines the total number of clock cycles that will be performed in the
next simulation run.

sim_start Defines which sequence will be used as a starting point for the next
simulation run.

sim_vcd Enables the simulation to be exported to Value Change Dump (VCD)
format. Check section 6.6 for more details.

VPLAN This section deals with the lists of features and tests of the verification plan,
as mentioned in Subsections 2.5.2 and 2.5.3. The configuration variables of this
section are detailed as follows:

feat_id Sets the id of the current design’s feature being described.

feat_text Detailed textual description of the feature.

test_id Sets the id of the current test being described.

test_text Detailed textual description of the test.

test_for List of the features that are possible to excite using this test. Must contain
at least one feature otherwise the test is meaningless.

The next sections will detail different features of the tool. The order in which the
features are presented is the same as they are arranged in VEasy’s flow. Some additional
and general information regarding the tool might be found in (PAGLIARINI; KASTENS-
MIDT, 2011b). Let us start by describing the linting feature.

64

65

5 LINTING

In computer programming lint was the name originally given to a particular program
that flagged some suspicious and/or non-portable constructs (likely to carry bugs in it).
Originally it was made for linting source code written in the C language. The term has
evolved and now is generically applied to any tool that flags suspicious or erroneous usage
in any computer language. In other words, what lint-like tools perform is a static analysis
of source code.

Linting is a must have step in a flow, as recognized by experts (BAILEY, 2005). From
a verification point of view, linting might be interpreted as an additional verification effort
to find potential design problems such as mismatches in vector sizes, for example. It might
also be seen as a more generic approach to formal verification checks in the entire design
flow (YAROM; PATIL, 2007).

As previously mentioned, linting guarantees that the input is written using strictly
RTL constructions, i.e., it is synthesizable. Therefore no behavioral-only constructions
were used. These checks are important because they provide an easy way to analyze
and debug the code being developed even before synthesis is performed. It is also worth
mentioning that some companies have tight standards for code writing and linting might
also applies in that situation, i.e., it might be used to check if a piece of code complies
with the company code writing rules and/or best practices.

Most of the linting rules that VEasy checks for are listed in the next sections, which
are named after the actual rule identification in the tool. Each section also contains a brief
description of the violation and an example of a violating code. The examples are written
in Verilog.

5.1 BASE

The BASE linting rule detects any illegal blocking assignment at a sequential always
block. Regarding Verilog, that are two assign operators: <= and =. These are referred
as the non-blocking and blocking assignment operators. They are used to infer sequen-
tial and combinational logic, respectively. So, using the blocking assignment within a
block that is supposed to be sequential is considered an error. The following piece of
code contains one example of such violation in line 6, where the reg a is being assigned
erroneously.

66

1 module example (c lk , i n) ;
2 input c lk , i n ;
3 reg a ;
4

5 always @(posedge c l k) begin
6 a = i n ;
7 end
8 endmodule

Figure 5.1: Example of a Verilog code that violates the BASE rule.

5.2 BCSI

The BCSI linting rule detects any binary constant sized incorrectly. The following
piece of code contains one example of such violation in line 5. One can see that the a
signal is only one bit wide but the assignment in line 5 is trying to store two bytes in
it. Although the value could be truncated and stored it is considered a bad practice to
perform assignments using containers or constants of different sizes.

1 module example (c lk , i n) ;
2 input c lk , i n ;
3 wire a ;
4

5 a s s i g n a = 2 ' b00 ;
6 endmodule

Figure 5.2: Example of a Verilog code that violates the BCSI rule.

5.3 DCSI

The DCSI linting rule detects any decimal constant sized incorrectly. The following
piece of code contains one example of such violation in line 5. One can see that now the
a signal is two bits wide but the assignment in line 5 is trying to store the decimal value
10 in it, which would require 4 bits.

1 module example (c lk , i n) ;
2 input c lk , i n ;
3 wire [1 : 0] a ;
4

5 a s s i g n a = 2 ' d10 ;
6 endmodule

Figure 5.3: Example of a Verilog code that violates the DCSI rule.

67

5.4 DIRE

The DIRE linting rule detects any directives and alerts the user that it will be ig-
nored. Directives are used for different purposes in Verilog, from controlling the sim-
ulation scale/step pair to defining the generation of blocks conditionally (e.g. ‘ifdef
directive). Verilog directives are recognizable by the ‘ character. The following piece of
code contains examples of such violations in lines 1 and 21.

1 ` t i m e s c a l e 1 ns / 10 ps
2 ` i n c l u d e moduleb . v
3

4 module example (c lk , i n) ;
5 . . .
6 endmodule

Figure 5.4: Example of a Verilog code that violates the DIRE rule.

5.5 HCSI

The HCSI linting rule detects any hexadecimal constant sized incorrectly in the same
manner that BCSI and DCSI do. The following piece of code contains one example of
such violation in line 5, where the register a is being assigned the value b (11 in decimal).
Such value clearly does not fit into a 2 bit wide register.

1 module example (c lk , i n) ;
2 input c lk , i n ;
3 wire [1 : 0] a ;
4

5 a s s i g n a = 2 ' hb ;
6 endmodule

Figure 5.5: Example of a Verilog code that violates the HCSI rule.

5.6 IASS

The IASS linting rule detects any assignments to inputs, which by default are not con-
trollable by the inner module. The following piece of code described in Fig. 5.6 contains
one example of such violation in line 5.

5.7 IDNF

The IDNF linting rule detects any references made to identifiers (any reg, wire, local-
param or param) that are not found within the current module. The following piece of
code described in Fig. 5.7 contains one example of such violation where a typo has been
made and instead of using the identifier a the user has used the identifier aa.

1It is considered a bad practice to define the design’s hierarchy by including files. There are exceptions
when including a file is acceptable, e.g. a global constant definition file.

68

1 module example (c lk , i n) ;
2 input c lk , i n ;
3 wire [1 : 0] a ;
4

5 a s s i g n i n = 1 ' b0 ;
6 endmodule

Figure 5.6: Example of a Verilog code that violates the IASS rule.

1 module example (c lk , i n) ;
2 input c lk , i n ;
3 wire [1 : 0] a ;
4

5 a s s i g n aa = 1 ' b0 ;
6 endmodule

Figure 5.7: Example of a Verilog code that violates the IDNF rule.

5.8 IDNP

The IDNP linting rule detects any references made to identifiers that are not found
within the current module port list. The following piece of code contains one example of
such violation where a input named in has been declared (line 2) but it is not found in the
module’s list of ports, which only contains the clk signal.

1 module example (c l k) ;
2 input c lk , i n ;
3

4 endmodule

Figure 5.8: Example of a Verilog code that violates the IDNP rule.

5.9 LPNA

The LPNA linting rule detects any parameter (or localparameter) that has been named
in any style other than using all letters in uppercase. Although this is not exactly an error
it is considered a bad practice to create code that way, i.e., regs and wires should be named
using lowercase letters while parameters should be named using uppercase letters. VEasy
is able to detect and warn the user if such behavior is found. The following piece of code
described in Fig. 5.9 contains one example of such violation in line 4, where one can see
that a localparameter was declared with the name start. Another violation is present in
line 6, where a register was declared with the name TEMP.

5.10 MBAS

The MBAS linting rule detects if any variable (register or wire) has been assigned
in multiple blocks. Since this type of behavior might lead to simulation mismatches be-

69

1 module example (c lk , i n) ;
2 input c lk , i n ;
3

4 l o c a l p a r a m e t e r s t a r t = 0 ;
5

6 reg TEMP;
7

8 endmodule

Figure 5.9: Example of a Verilog code that violates the LPNA rule.

tween the Verilog description and the actual synthesized hardware, it is not allowed. For
example, in the following piece of code of Fig. 5.10, it is not possible to determine if the
register ff is used to build combinational (as suggested by line 6) or sequential logic (as
suggested by line 10).

The example contains one particular situation where the actual logic behavior cannot
be defined. Yet, if the two always blocks of the code were of the same type the error still
would be reported. In this case the error would be reported because race conditions might
occur, although the logic behavior is known.

1 module example (c lk , i n) ;
2 input c lk , i n ;
3 reg f f ;
4

5 always @(*) begin
6 f f = 0 ;
7 end
8

9 always @(posedge c l k) begin
10 f f <= 1 ;
11 end
12

13 endmodule

Figure 5.10: Example of a Verilog code that violates the MBAS rule.

5.11 NBCO

The NBCO linting rule detects any illegal non-blocking assignment at a combinational
always block. Using the non-blocking assignment within a block that is supposed to be
combinational is considered an error since the non-blocking operator might be interpreted
as a scheduler for later assignment. Yet, combinational logic is not allowed to schedule
assignments. For example, the following piece of code of Fig. 5.11 contains a violation
of such rule in line 6.

70

1 module example (i n) ;
2 input i n ;
3 reg a ;
4

5 always @(*) begin
6 a <= i n ;
7 end
8 endmodule

Figure 5.11: Example of a Verilog code that violates the NBCO rule.

5.12 NOIO

The NOIO linting rule detects any module that has no inputs/outputs. A violation of
such rule is exemplified by the piece of code illustrated in Fig. 5.12. It is worth mention-
ing that traditional Verilog testbenches usually have no IOs, i.e. they are self-contained.
Yet, VEasy is not able to accept such testbenches since they are usually described in a
behavioral way. Therefore what this linting rule actually reports is DUT’s modules that
contain no I/O.

1 module example () ;
2 reg a ;
3

4 always @(*) begin
5 a <= 0 ;
6 end
7 endmodule

Figure 5.12: Example of a Verilog code that violates the NOIO rule.

5.13 RCAS

The RCAS linting rule detects any illegal continuous assignment to a reg variable. In
Verilog continuous assignments are only allowed for the wire data type. A violation of
such rule is exemplified by the piece of code illustrated in Fig. 5.13 (line 6).

1 module example (i n) ;
2 input i n ;
3 reg a ;
4 wire b ;
5

6 a s s i g n a = i n ; / / i n v a l i d
7 a s s i g n b = i n ; / / v a l i d
8 endmodule

Figure 5.13: Example of a Verilog code that violates the RCAS rule.

71

5.14 TIME

The TIME linting rule detects any code construction that deals with timing, e.g. wait
statements. This type of statement is not allowed since VEasy cannot honor such state-
ments (due to its cycle-accurate behavior). A violation of such rule is exemplified by the
piece of code illustrated in Fig. 5.14 (lines 7 and 11).

1 module example (c lk , i n) ;
2 input c lk , i n ;
3

4 reg a ;
5 wire b ;
6

7 a s s i g n b = #10 a ;
8

9 always @(posedge c l k) begin
10 a <= i n ;
11 wait (b == a) ;
12 end
13 endmodule

Figure 5.14: Example of a Verilog code that violates the TIME rule.

5.15 TINR

The TINR linting rule detects any template that is not recognizable, i.e., a piece of
code from which neither sequential nor combinational behavior might be inferred. A
violation of such rule is exemplified by the piece of code illustrated in Fig. 5.15 (line
6). Later when the simulation engine of VEasy is presented it will be shown how VEasy
detects sequential and combinational logic by actually detecting templates. Describing
logic in any other way will most certainly result in errors.

1 module example (c lk , i n) ;
2 input c lk , i n ;
3

4 reg a ;
5

6 always @(posedge c lk , i n) begin
7 a <= i n ;
8 end
9 endmodule

Figure 5.15: Example of a Verilog code that violates the TINR rule.

5.16 VWSN

The VWSN linting rule detects any variable declared with the same name as other
variable, regardless of the data types. A violation of such rule is exemplified by the piece

72

of code illustrated in Fig. 5.16 (lines 4 and 5). This type of violation is usually detected
by compilers but since VEasy’s compiling step is actually performed together with linting
this rule had to be created.

1 module example (c lk , i n) ;
2 input c lk , i n ;
3

4 reg a ;
5 wire a ;
6

7 endmodule

Figure 5.16: Example of a Verilog code that violates the VWSN rule.

5.17 WPAS

The WPAS linting rule detects any illegal procedural assignment to a wire. A violation
of such rule is exemplified by the piece of code illustrated in Fig. 5.16 (line 7).

1 module example (c lk , i n) ;
2 input c lk , i n ;
3

4 wire a ;
5

6 always @(posedge c l k) begin
7 a <= i n ;
8 end
9

10 endmodule

Figure 5.17: Example of a Verilog code that violates the WPAS rule.

5.18 Linting Interface

As seen in Section 5.10, one example of a linting rule is the multiple block assignment
violation, which ensures that a reg or wire is only assigned in a single fashion through out
the code (typically an always block). The illustration of Fig 5.18 contains one example
of such rule being analyzed in the linting environment GUI, which also serves as a code
editor with syntax highlighting capabilities. Using the environment enables the user to
perform changes in the source code, save it and lint again until it is free of errors.

On the remainder of this thesis other screenshots will be presented. What they have
in common is that the entire GUI of VEasy was built using Nokia’s Qt framework (Nokia
Corporation, 2008). This particular framework is considered cross-platform since the
same source code is properly compiled in either Windows, Linux, Mac and others. This
feature is achieved mostly because the user interfaces are stored in an intermediate for-
mat that is platform independent. Moreover, the sections of VEasy that deal directly

73

Figure 5.18: Linting environment GUI reporting an error.

with source code editing or highlighting have these capabilities enabled by the QScintilla
library (Riverbank Computing Limited, 2010).

74

75

6 SIMULATION

Since the nature of FV is to rely on simulation, somehow VEasy had to able to simu-
late designs. Instead of relying in a third-party simulator it was decided that VEasy would
have its own simulation engine. In order to improve the number of cycles simulated per
second, VEasy integrates the test case generation (i.e. the generation of inputs that build a
certain test case) with the circuit description. Also, VEasy integrates the coverage collec-
tion within the same simulation snapshot. The ability to integrate this three components
into one engine has enabled a fast circuit simulation, even when coverage is considered,
as it will be showed by the following sections.

But first, let us understand how the simulation engine works. At first, the portion of
the simulation snapshot that contains the circuit description is obtained from extracting
three profiles from the DUT’s code:

• The combinational logic

• The regular sequential logic

• The reset sequential logic

In summary, what VEasy does is profile matching and translation to C code. The pro-
file matching is performed together with the linting procedure. Since most constructions
of the Verilog language are similar to the ones in C language translating is quite easy, so
the actual update logic (i.e., the assignments) is very similar. One exception is the bit han-
dling and manipulation that Verilog has and C does not. This issue is resolved by using
masks and logical operators (& and |) to set or clear specific bits.

Now, each profile is handled in a different manner by VEasy. The following sections
will detail each of these profiles.

6.1 Combinational logic

The combinational logic simulation is performed using a signature based method.
A pseudo-C code of the method is given below in Fig. 6.1 and an explanation of the
algorithm follows.

First, a signature is declared in line 1, which is an array sized according to the number
of signals being updated by the combinational logic. The combinational signals may be
either primary outputs, internal wires or regs. Since a signal is not allowed to be updated
in two separate always blocks, it is always known if a given signal has a sequential or a
combinational profile. Later another signature array is declared but this time it is a local
signature (line 4). What follows is the execution of the update logic in line 7, i.e., the

76

1 i n t s i g n a t u r e [s i g n a l s] ;
2

3 void comb () {
4 i n t l o c a l _ s i g n a t u r e [s i g n a l s] ;
5

6 d o _ i t _ a g a i n :
7 e x e c u t e _ u p d a t e _ l o g i c () ;
8

9 f o r e a c h (s i g n a l v)
10 l o c a l _ s i g n a t u r e [v] = v ;
11

12 i f (s i g n a t u r e == l o c a l _ s i g n a t u r e)
13 re turn ;
14 e l s e {
15 s i g n a t u r e = l o c a l _ s i g n a t u r e ;
16 goto d o _ i t _ a g a i n ;
17 }
18 }

Figure 6.1: Pseudo-C code of the combinational logic evaluation.

circuit is evaluated once. After the evaluation is done each signal is copied into the local
signature array as shown in lines 9 and 101.

At this time both signatures are compared. If they match then the evaluation is done
and the combinational logic is considered to be frozen since not a single signal changed
from one evaluation to another. If the signatures do not match then the signature array is
updated with the current local signature and the evaluation starts again.

One might wonder why such signature based method is being used. The reason for
that lies in the actual combinational logic behavior, where once a input has changed the
output must automatically follow that change. Yet, when writing a hardware description
such behavior can not be described directly. Instead we write one line of code after the
other and perform the evaluation in a certain order. That order might lead to a mismatch
in the actual result of a computation unless a method like the one described above is used.
In order to exemplify such situation a Verilog code is shown in Fig. 6.2.

1 module example (i n) ;
2 input i n ;
3 reg a , b ;
4

5 always @(*) begin
6 b = a ;
7 a = i n ;
8 end
9 endmodule

Figure 6.2: Example of a Verilog code in which the combinational logic might create a
mismatch.

1The actual indexing has been simplified by the foreach statement.

77

It is fairly easy to comprehend that at the end of the evaluation both signals a and b
should contain the value of the input in. Yet, analyzing the code from Fig. 6.2, one could
reach two different results. First let us perform a simple evaluation of the assignments in
the order they are written, as shown in Tab. 6.12.

Table 6.1: Erroneous combinational logic evaluation.
Time Signal Code being evaluated
t = 0 a = U b = U -

t = 1 a = U b = U b = a;

t = 2 a = 1 b = U a = in;

As shown by Tab. 6.1, a simple evaluation of the statements using the order in which
they were written is not satisfactory. The resulting value of b is erroneous. In order to
perform a correct evaluation, the assignments could be evaluated once again until the logic
is halted. This is the idea of the algorithm presented in Fig. 6.1. Table 6.23 contains the
same analysis but this time performing a signature-based evaluation.

Table 6.2: Correct combinational logic evaluation.
Time Signal Code being evaluated local_sig sig Match?
t = 0 a = U b = U - - -

t = 1 a = U b = U b = a; - -

t = 2 a = 1 b = U a = in; - -

t = 3 a = 1 b = U compare(local_sig, sig) 1U - No

t = 4 a = 1 b = 1 b = a; 1U 1U

t = 5 a = 1 b = 1 a = in; 1U 1U

t = 6 a = 1 b = 1 compare(local_sig, sig) 11 1U No

t = 7 a = 1 b = 1 b = a; 11 11

t = 8 a = 1 b = 1 a = in; 11 11

t = 9 a = 1 b = 1 compare(local_sig, sig) 11 11 Yes

One might see that only at the 10th evaluation cycle the result is finally correct. In
order to diminish the number of evaluation cycles, the assignments could be organized
in another order. For the example illustrated in Fig. 6.1, it would be easy to create an-
other evaluation order: evaluating a = in first would reduce the number of evaluation
cycles. There are algorithms for determining such ordering, such as the ones described by
(WANG; MAURER, 1990). This ordering is also referred as levelization in the literature.
Yet it was not addressed in this thesis.

2The data in the following tables considers that initially both signals a and b have a undefined value U.
It is also considered that the input in is 1. The first column contains a timing analogy but it does not actually
represent time. Those timings could be interpreted as delta cycles, internal to the simulation engine.

3Both signatures are 2 bits wide because the circuit contains two combinational signals being updated.

78

6.2 Regular sequential logic

Simulating the regular sequential logic also requires some code manipulation. The
behavior that the regular sequential logic simulation must provide is the concurrency of
assignments, as if a clocking signal were reaching all the signals at the same time. For
that purpose a method that uses local copies of the signals was developed. A pseudo-C
code of the method is given below in Fig. 6.3

1 void seq () {
2 f o r e a c h (s i g n a l v)
3 l o c a l _ s i g n a l v = v ;
4

5 e x e c u t e _ u p d a t e _ l o g i c () ;
6

7 f o r e a c h (s i g n a l v)
8 v = l o c a l _ s i g n a l v ;
9

10 re turn ;
11 }

Figure 6.3: Pseudo-C code of the regular sequential logic evaluation.

First, all the values of the signals are copied into the local_signal copy (lines 2 and
3). Later the update logic is executed (line 5). The method only works because the
execution of the update logic is done using only the local signal copies instead of using
the actual signal values. Finally, after the update logic is executed the actual signals are
updated (lines 7 and 8). Therefore the order in which the signals are assigned is no longer
important.

In order to justify the need for the simulation method, a Verilog code is given in
Fig. 6.4. The following code contains the description of two flip-flops, ffa and ffb. Since
no reset logic is described, the initial values of both flip-flops is unknown.

1 module example (c l k) ;
2 input c l k ;
3

4 reg f f a , f f b ;
5

6 always @(posedge c l k) begin
7 f f a <= 1 ;
8 f f b <= f f a ;
9 end

10

11 endmodule

Figure 6.4: Example of a Verilog code in which the sequential logic might be misinter-
preted.

The analysis of the code in Fig. 6.4 could lead to two different results. Let us consider
that the circuit simulation has been started and that the clock signal is toggling. At the

79

first clock edge the flip-flop ffa will be assigned with the value 1. This assignment is
trivial. The actual problem lies within the second assignment. One could perform a direct
evaluation of line 8 and copy the value of ffa into ffb, as shown in Tab. 6.34.

Table 6.3: Erroneous sequential logic evaluation.
Time Signal Code being evaluated
t = 0 ffa = U ffb = U -

t = 1 ffa = 1 ffb = U ffa <= 1;

t = 2 ffa = 1 ffb = 1 ffb <= ffa;

Yet, the evaluation performed in Tab. 6.3 is erroneous. Since the logic is sequential
there must be observed a scheduling effect on all assignments. Therefore, it takes two
clock cycles for the ffb to copy the value of the input. On the other hand, the evaluation
performed in Tab. 6.4 uses the proposed method that creates local copies of the sequential
signals. One can see that at the end of the evaluation the flip-flop ffb still contains a
undefined value. Once again, the evaluation only contains one clock edge. If another
cycle were simulated the value of the flip-flop ffb would then be the same as the input.

Table 6.4: Correct sequential logic evaluation.
Time Signal Local copies Code being evaluated
t = 0 ffa = U ffb = U local_ffa = U local_ffb = U -

t = 1 ffa = U ffb = U local_ffa = 1 local_ffb = U ffa <= 1;

t = 2 ffa = U ffb = U local_ffa = 1 local_ffb = U ffb <= ffa;

t = 3 ffa = 1 ffb = U local_ffa = 1 local_ffb = U updating

6.3 Reset sequential logic

Handling the reset sequential logic simulation is trivial since it is similar to the to the
other profiles described so far. Yet, mostly for practical purposes, VEasy separates the
reset logic from the regular sequential logic. This allows VEasy to handle the reset more
clearly, without worrying about simulating the rest of the logic at the same time.

It is usual to describe hardware using either asynchronous or synchronous reset. VEasy
is able to detect and simulate both reset types. If the circuit contains an asynchronous re-
set then it is treated very similarly to the combinational logic. On the other hand, if the
circuit has a synchronous reset then it is treated very similarly to the regular sequential
logic.

Also, each of the profiles described so far is built into a different C function. The sim-
ulation process will repeatedly call these functions until the desired number of simulation
cycles is reached. Separating the reset behavior from the regular sequential logic behavior
might save some simulation time since there is no need to always evaluate a reset condi-
tion at every cycle, e.g, checking if the reset signal of a circuit rose. The reset evaluation

4The table contains the evaluation of only one clock edge.

80

can be detached from the rest of the circuit depending on the reset method chosen by the
user.

As mentioned, the definition of when to reset comes from outside the actual simu-
lation, from a reset method chosen by the user. The next sections will detail the four
possible reset profiles available within VEasy. The illustration of Fig. 6.5 shows the reset
method being chosen using VEasy’s GUI.

Figure 6.5: Reset methods available in VEasy’s GUI.

6.3.1 No reset

In this reset method no reset is created by the simulation environment. This method is
suitable for circuits that do not require a reset. If the circuit indeed has a reset than such
logic is completely ignored and will never be evaluated. It is only kept in the simulation
snapshot for coverage reasons.

6.3.2 Time zero

In this reset method only one reset cycle is created by the simulation environment. The
chosen cycle is the first, therefore the name time zero. The reset signal is never actually
evaluated since the simulation snapshot is slightly modified. The main simulation loop is
modified by removing one cycle from it, the first one. The reset handling function is then
explicitly called. All the other cycles in the main loop are simplified, which saves some
simulation time.

6.3.3 Ranged

In this reset method several reset cycles may be created by the simulation environment.
The user is responsible for defining the probability of reset occurrences by using two
parameters: a maximum and a minimum number of regular cycles that will be simulated
between each reset cycle. For example, let us assume that the minimum value is 100 and
the maximum value is 200 and also that a reset cycle occurred at time t = 0. It is then
expected that a new reset cycle will happen somewhere in between 100 and 200 cycles
after that. Exactly when the reset will happen is not known, since it is randomly chosen
by VEasy. It is only guaranteed that the minimum and maximum range will be honored.

This method also allows some simulation time savings. The main simulation loop
is once again modified. Actually it is split in two portions: one that lasts the minimum
value and never evaluates the reset signal. The other portion lasts the difference from the
maximum value to the minimum value and always evaluates the reset signal.

81

6.3.4 Probabilistic

In this reset method several reset cycles may be created by the simulation environment.
The user is responsible for defining the probability of reset occurrences by using a single
parameter. This parameter defines the reset probability directly. For example, let us
assume that the probability was set with the value 0.01. This means that there is a 1%
chance that each cycle will be a reset cycle. There is no guarantee about the distribution
of these cycles in time. So, although it is not likely to happen, it is possible that two reset
cycles will happen one after the other.

This method allows no simulation time savings since the reset signal must be evaluated
every cycle.

6.4 Benchmarking

The same set of simple circuits described in Section 3.1 was used for the purpose of
comparing the performance of the developed simulator. Fig. 6.6 shows those results. All
simulations of Fig. 6.6 were done using 10 millions of clock cycles. The reset signal
was asserted only during the first simulation cycle. The other signals were generated
every cycle with a random value. The commercial simulators A and B are the same ones
used in the previous chapters. Icarus Verilog (WILLIAMS, 1999) is a Verilog simulator
distributed as free software. The scale on the Y axis of Fig. 6.6 is logarithmic.

Figure 6.6: VEasy simulation results.

One might notice that, when compared against the simulation times of simulator A,
VEasy performs, on average, the same simulation but within less than 5% of the time
simulator A requires. This speed-up allows for a faster verification. This is one of the
cornerstones of VEasy: by using a cycle-accurate simulator the simulation performance
is increased by one order of magnitude. Yet, this approach is not used by most commercial
simulators.

82

One explanation lies in the fact that companies try to create a single simulation engine
that is capable of handling their entire flow, i.e., these simulators are used as sign-off
simulators. The simulators must handle mixed signal simulations as well as gate-level
simulations. This is clearly not the goal of VEasy. VEasy’s goal is to handle RTL code
only, which is the actual format used for verification purposes.

The cycle accurate behavior of VEasy is determinative for the measured speed-ups.
But it is also worth mentioning that VEasy benefits directly by the compiler optimizations
of GCC. Without the optimizations there still is a significant speed-up, but the figure is
not as good as 5%. Also, the reset methods of the previous sections also contribute to
the speed-up. VEasy also benefits from using a third-party random number generator, re-
ferred as SFMT (SAITO; MATSUMOTO, 2008), which implements a modified Mersenne
Twister algorithm.

On a secondary batch of benchmarking runs, VEasy was compared with another cycle
accurate simulator, referred as Verilator (SNYDER; GALBI; WASSON, 1994). This sim-
ulator has been already been compared with several others and, for most designs, it has
shown simulation times that beat the other simulators by orders of magnitude. The same
set of circuits was submitted to both simulators plus two new circuits were considered:
synth_comb_1k and synth_seq_1k. These circuits are synthetic and they evaluate exactly
1000 combinational or sequential assignments per cycle, respectively. The simulation
results are summarized in Fig. 6.7.

Figure 6.7: VEasy simulation results compared with Verilator.

In Fig. 6.7, one might notice that, since the two simulators have simulation times of
the same magnitude, it is possible to compare them using more simulation cycles. The
chosen number of cycles was 100 million cycles, ten times more than before. Even in
such scenarios VEasy still simulates all of the evaluated circuits faster than Verilator.

One detail about the benchmarking must be taken into account: both simulators re-
quire the use of an external C/C++ compiler. Being so, in order to conduct a fair com-
parison both simulators were configured to use the same compiler (GCC) and the same

83

optimization directives (the most important one being the -O35 one).
The second benchmark batch required the writing of testbenches, the same way that

the first benchmark did. Yet, instead of writing testbenches in some form of HDL/HVL
language, it was necessary to write testbenches in C/C++ for Verilator. One example of
such testbench format is given in the attachments.

One might also notice that the results presented in Fig. 6.7 point out that VEasy sim-
ulates all of the circuits faster than Verilator. But, when considering the two synthetic
circuits, VEasy and Verilator seen to have a very similar simulation time. This is due to
the scale in the vertical axis of Fig. 6.7. In order to further examine such behavior the
next section contains an analysis of the scaling trends of both simulators.

6.5 Scaling properties

In order to evaluate the scaling properties of both cycle-based simulators, a set of
synthetic circuits was developed. The use of synthetic circuits was necessary because they
contain no branch decisions, so the number of actual concurrent assignments in a given
cycle is always known. A total of 16 synthetic circuits were evaluated. These circuits
contain 1, 2, 5, 10, 50, 100, 500 or 1000 concurrent assignments, either combinational
or sequential ones. The simulation time of both simulators was measured for each circuit
and the results are presented in Fig. 6.8 and Fig. 6.9. The horizontal axis of both images
is represented in a logarithmic scale. Each circuit was simulated 10 million cycles.

Figure 6.8: Scaling trends for sequential logic simulation.

Regarding Fig. 6.8 and Fig. 6.9, the gray line represents the behavior of Verilator
while the black line represents the behavior of VEasy. One might notice that the gray line

5This switches the optimization level 3 on. More information on such optimizations is given in (JONES,
2005).

84

Figure 6.9: Scaling trends for combinational logic simulation.

is growing more rapidly than the black one in both images. This indicates that VEasy is
able to handle combinational and sequential assignments more efficiently than Verilator.
The discussion regarding VEasy’s scaling trends is explored in detail in (PAGLIARINI;
HAACKE; KASTENSMIDT, 2011a).

6.6 Waveform output

Although simulation using waveforms is not an effective way of verifying a design, it
is important to have such possibility when an error has been identified. Thus, the wave-
form output is allowed in VEasy mostly for debugging purposes. The format chosen to
be used within VEasy is the VCD format (IEEE, 1995). The VCD file is an ASCII-based
format for dumpfiles generated by several EDA logic simulation tools.

The illustration of Fig. 6.10 contains one example of a VCD file generated by VEasy.
Initially all VCD files have a header with some general information. This header was
suppressed from the image since it only contained the date and time in which the file was
created. The actual data begins with the $scope token found on line 1. After the scope is
defined what follows is a declaration of all wires and regs of the Verilog file (lines 2-5).
The variable q is the only one of the reg type since this is a flip-flop. All other variables
are wires since they are either inputs or outputs.

Each of the variables declared within the scope gets an alias. This alias is unique
and will be used to reference a given variable later in the file. For example, the clk wire
received the double quote (") alias. Once all variables are declared the current scope is fin-
ished with the $upscope token. The actual simulation data begins after the $enddefinitions
token.

Now, there are two types of statements allowed in the simulation data portion of the
file. Either a variable is being assigned a value or the simulation time is changing. The

85

1 $scope module main $end
2 $va r wi r e 1 " c l k $end
3 $va r wi r e 1 $ d $end
4 $va r r e g 1 % q $end
5 $va r wi r e 1 # r s t $end
6 $upscope $end
7 $ e n d d e f i n i t i o n s $end
8

9 0%
10 1#
11 1"
12 #1
13 0"
14 #2
15 0#
16 0$
17 0%
18 1"
19 #3
20 0"
21 #4

Figure 6.10: Initial portion of a VCD file.

first type of statement is seen in lines 9, 10 and 11, for example. These lines are assigning
values to the signals q (alias %), rst (alias #) and clk (alias "). The second type of statement
always contains a hash symbol in the first character of a line6, as seen in lines 12, 14, 19
and 21. At this point one is capable of identifying the clock signal toggling. A negative
clock edge happens whenever the simulation time is an odd integer.

The same VCD file described in Fig. 6.10 is showed in the waveform of Fig. 6.11.
This waveform was visualized using the GTKWave free software (BYBELL, 1998).

Figure 6.11: Simulation waveform equivalent to VCD of Fig. 6.10.

The next section deals with the simulator validation process, which had the VCD files
as the main input.

6These hashes do not have the same meaning as in the Verilog language in which #4 is read as “wait 4
time units”. Instead it is read as “advance to time t= 4”.

86

6.7 Validating the simulator

When the simulator was capable of simulating a circuit for the first time it became
necessary to check if the simulation results were correct. Initially this comparison was
made manually either by comparing the waveforms of VEasy against the ones of another
simulator, or by checking a given result in the simulation console. Either way, these ap-
proaches were not feasible for analyzing data from large simulations. Thus, it was decided
that it was necessary to create a secondary tool, capable of comparing the simulation out-
put of VEasy. This is also a reason why the VCD format was chosen: all simulators that
were evaluated in the experiments reported so far are capable of generating VCD files.

The actual work then was to create a tool that is able to parse VCD files, compare then
and output warnings whenever differences were found. Later this tool was also included
in the VEasy GUI. The illustration of Fig. 6.12 contains a screenshot of the interface that
is available to the user. In the image it is possible to see that the user initially provides
the location of two VCD files. Once the compare button is hit the tool starts the actual
comparison.

Figure 6.12: VCD compare environment GUI reporting errors.

The VCD files being compared in Fig. 6.12 were purposely modified so several errors
are being reported. In the first VCD the clock started the simulation with a zero value and
then started to toggle. In the second VCD it started with a one value. Therefore there is a
mismatch in all simulation cycles, as reported in the image.

The process of debugging the simulator demanded a large amount of time. First, it
was necessary to create testbenches in Verilog to be used with the commercial simula-
tors. Then it was necessary to mimic the behavior of those testbenches using VEasy’s
sequences. Finally, when an error was found it was necessary to debug it and fix it. Some
errors detected were not actual errors, since the testbenches were different. Yet, several
bugs were found in the development process of the software. Some statistics of these
are given in Chapter 10. At the time this thesis was wrote, none of the aforementioned
circuits had a simulation mismatch when compared against both commercial simulators
A and B. An example of one Verilog testbench that was used to validate the simulator is
given in the attachments of this thesis.

87

7 COVERAGE

Coverage is a main concept within VEasy. Specific algorithms were created for
collecting and analyzing coverage data. In all the metrics that will be presented, the
respective code that is responsible for collection will be inserted in the same simula-
tion snapshot of the actual circuit description. This alternative is faster than performing
inter-process communication or some form of Programming Language Interface (PLI)
(SUTHERLAND, 1998) operation supported by Verilog.

First, let us start by explaining the code coverage related features of VEasy and then
let us proceed with the functional coverage ones.

7.1 Code coverage

Code coverage in VEasy is possible through three different metrics: block, expression
and toggle. Each of these metrics will be addressed in the next subsections.

7.1.1 VEasy’s block coverage algorithm

The C code from Fig. 7.1 shows how VEasy collects block coverage information. The
idea of this algorithm is to perform the coverage necessary operations only once and then
disable that operation by replacing it with another. This goal is achieved by using two
different functions. Such technique is known as a jump or branch table.

First, a new Handler type is defined as a function pointer in line 1 of Fig. 7.1. Fol-
lowing, lines 2 and 3 create two function prototypes: cover() and do_nothing(). Next, an
array of the Handler type is declared and sized according to the number of blocks of the
circuit (the code being considered in this example has 4 blocks). The contents of the array
are initially set to point only to the cover() function. On line 8 the cover() function is
defined with a single parameter, the identification of the block being covered (block_id).
The coverage storage is performed and then the jump_table is updated to reference the
do_nothing() function. In other words, the coverage storage for that given block id will
not be executed again. Finally, on line 15, the do_nothing() function is defined as being
empty.

It is necessary to call the cover() function at some point in the simulation snapshot.
For that purpose the simulation snapshot generated by VEasy is instrumented with calls
to the jump_table. The actual code that performs the storage is not relevant, although
it is sufficient to say that it contains more than one memory access or even an file I/O
operation. Disabling the execution of this operation creates an initial small overhead that
is justified by the savings it enables later when a large simulation is performed.

88

1 t y p e d e f void (* Hand le r) (i n t) ;
2 void c o v e r (i n t b l o c k _ i d) ;
3 void d o _ n o t h i n g (i n t b l o c k _ i d) ;
4

5 Hand le r j u m p _ t a b l e [4] = { cover ,
6 cover , cover , c o v e r } ;
7

8 void c o v e r (i n t b l o c k _ i d)
9 {

10 / * e x p e n s i v e c o v e r a g e s t o r a g e * /
11 { . . . }
12 j u m p _ t a b l e [b l o c k _ i d] = d o _ n o t h i n g ;
13 }
14

15 void d o _ n o t h i n g (i n t b l o c k _ i d)
16 {
17 / * empty * /
18 }

Figure 7.1: Block coverage collection algorithm.

7.1.2 VEasy’s expression coverage algorithm

The expression coverage collection in VEasy is handled by multi dimensional arrays.
No efforts have been made to optimize this type of collection mechanism since it is already
simplified. Considering the expression (c && (d || e)), first presented in Fig. 2.2, it would
be stored in an array of 3 dimensions (since the expression has 3 distinct inputs). In order
to collect it, it would be evaluated as follows in Fig 7.2, at every clock cycle.

1 i n t exp_cov_0 [2] [2] [2] = { 0 } ;
2

3 / * main s i m u l a t i o n loop * /
4 whi le (VEasy_i < MAX_TICKS) {
5 VEasy_exec_nex t_sequence () ;
6 dut_comb () ;
7 d u t _ s e q () ;
8

9 exp_cov_0 [c] [d] [e] = 1 ;
10 }

Figure 7.2: Expression coverage collection algorithm.

In the first line of code in Fig. 7.2, the array that stores the collection is declared. Each
expression has a unique array, identified by a number appended to the string exp_cov_.
Lines 5, 6 and 7 perform the circuit simulation using the sequence methodology and
the simulation methods explained in Chapter 6. After that, the expression is evaluated
member by member. The members of the expression are used as the array indexes in line
9.

Although a very simple example is given, this type of collection algorithm is capable

89

of handling larger expressions as well. If a given member of a given expression is more
than one bit wide then the array size has to be properly modified. Let us say that the input
c is 3 bits wide. Then the array would be sized as exp_cov_0[8][2][2];. The maximum
size and or addressing of an array is typically limited by compilers. If such limitation is
detected then VEasy is able to split large expressions into smaller ones.

7.1.3 VEasy’s toggle coverage algorithm

The C code from Fig. 7.3 shows how VEasy collects toggle information at each cycle.
The collection is executed by the doToggleCoverage() function, which is called with three
parameters: the old value of a given signal from the last simulation cycle (oldvalue), the
new value of the same signal from the current simulation cycle (newvalue) and finally a
pointer to the array that holds the toggle status of the signal (tog[]).

1 void doToggleCoverage (i n t o l d v a l u e , i n t newvalue ,
2 i n t t o g [2])
3 {
4 i n t mask ;
5

6 mask = o l d v a l u e ^ newvalue ;
7

8 t o g [0] | = ((~ o l d v a l u e) & mask) ;
9 t o g [1] | = (o l d v a l u e & mask) ;

10 }

Figure 7.3: Toggle coverage collection algorithm.

The first operation that the algorithm performs is to find out if any bit of the signal
being evaluated has toggled. Therefore, an integer variable is declared on line 4 and
updated on line 6. The exclusive or of line 6 creates sort of a mask pattern: if any bit is
set on the mask it means that the given bit has toggled. However, it does not tell if the bit
has toggle from one-to-zero or vice-versa.

Lines 8 and 9 perform a logical and between the mask and the oldvalue. For the
purpose of detecting a zero-to-one toggle, the oldvalue is inverted on line 8. For the
purpose of detecting an one-to-zero toggle, the oldvalue is kept the same on line 9. Now,
after performing the logical and, the result is stored at the tog pointer after performing an
logical or. The first position of the array pointed by the tog pointer stores the zero-to-one
toggles while the second one stores the one-to-zero toggles. The or operation guarantees
that results from past simulation cycles are not overwritten.

Analyzing the algorithm from Fig. 7.3, one notices that there is no bit shifting. In other
words, the algorithm works at the word level. Each Verilog signal is directly mapped to
an integer, which is analyzed in its entirety. Also, there are no branch conditions on the
algorithm. These two properties are very positive for the algorithm execution time.

The collection algorithms described so far are compared in the next section.

7.1.4 Experimental Results and Analysis

The same circuits that were evaluated in Section 3.1 were also evaluated using VEasy,
considering the three coverage metrics in separate and also the three combined. Results
are shown in Tab. 7.1. Again, the toggle coverage creates the most severe simulation

90

overhead. The overhead seen on the dffnrst circuit is the highest one since the simulation
time was increased by 35%. Yet, this value is still lower than the 598% overhead seen in
simulator A and the 36% seen in simulator B.

Table 7.1: Simulation overhead measured using VEasy.

dffnrst adder fsm t6507lp
Block 3.31% 1.43% 0.07% 2.48%

Expression 4.96% 0.71% 9.16% 13.86%

Toggle 35.54% 25.00% 23.86% 17.82%

All 42.98% 31.67% 44.82% 39.60%

The average overheads of each of the three simulators is shown in the following tables.
Simulator A average values are showed in Tab. 7.2, simulator B in Tab. 7.3 and finally
VEasy in Tab. 7.4.

Table 7.2: Average simulation overhead measured using simulator A.

Block Expression Toggle All
269.58% 267.93% 302.77% 303.22%

Table 7.3: Average simulation overhead measured using simulator B.

Block Expression Toggle All
2.75% 2.73% 55.40% 86.70%

Table 7.4: Average simulation overhead measured using VEasy.

Block Expression Toggle All
1.82% 7.17% 25.55% 39.77%

It was surprising to see the overheads measured in simulator A, which are extremely
high, with an average overhead of 303%. Simulator B also has a considerable average
overhead of 86%. VEasy, on the other hand, has an average overhead of 39%, which is
less than half of the overhead introduced by simulator B.

Most of the results presented in this chapter are also given in (PAGLIARINI; HAACKE;
KASTENSMIDT, 2011b), which has a special focus on the toogle and block algorithms.

91

7.1.5 Code coverage analysis using the GUI

When using VEasy the coverage collection is fully automated. The user is only re-
quired to choose which metrics of interested should be collected. The possible choices
are exemplified in Fig. 7.4. After choosing the metrics and performing the simulation, the
tool allows for coverage analysis, as shown in Fig. 7.5. The user then might check for
coverage holes and create new scenarios that will most likely hit that feature or code area.

Figure 7.4: Coverage metric selection GUI.

Figure 7.5: Code coverage analysis GUI.

The illustration of Fig. 7.5 shows the hole analysis environment of block coverage.
Each block that has not been simulated is highlighted. In the example of Fig. 7.5, the code
being analyzed is a single D type flip-flop. The simulation of such flip-flop was performed
without asserting the reset signal, therefore a portion of the code was left unexcited (line
7).

The illustration of Fig. 7.6 shows the hole analysis environment of toggle coverage.
Each signal that has not been fully simulated is marked with a red N letter. In the example
of Fig. 7.6, the code being analyzed is an adder but since it was simulated only a few
cycles not all of the signals had a chance to toggle.

92

Figure 7.6: Toggle coverage analysis GUI.

7.2 Functional coverage

Functional coverage in VEasy is possible through covering the actual inputs and out-
puts of the DUT or by covering specific members of the layered methodology. The
methodology itself is only explained in Chapter 8 yet it is sufficient to know that there
are several data members and that using the GUI they might be covered.

7.2.1 VEasy’s functional coverage collection algorithm

The functional coverage collection in VEasy is quite simple. For each given member
there is an associated size. The size is used to determine the total number of buckets1

for that member, e.g., a member that is 8 bits wide will have 256 buckets. Yet, for most
designs there is no interest in covering all possible values of a member. It is more usual to
cover a certain range or some pre-defined values of interest. VEasy also allows such re-
strictions using either the GUI or the verification plan format. The illustration of Fig. 7.7
contains one example of how functional coverage is collected. The design being consid-
ered is the same flip-flop from Fig. 7.5.

First, on line 1, an array of integers is declared. The size of the array is defined by
the size S of the member (2S). This particular example is only one bit wide, therefore the
number 2 was used. Later, on line 3, the simulation main loop starts. At every clock cycle
the simulation delegates the control to the methodology, which decides the next sequence
and generates all the stimuli data. The simulation proceeds by executing the evaluation
of the combinational and sequential logic (lines 6 and 7). Finally, on line 9, the bucket
associated with the q output is incremented by one. The actual value of q is used as the
array index.

The example described above is quite simple since no restrictions have been created
for the buckets. If some restriction is applied (as in Fig. 7.8) then a few changes take

1A bucket is any possible scenario that is a candidate for functional coverage. In code coverage we
are usually interested in covering if a given block or expression was covered. Yet, for functional coverage
sometimes it is interesting to see how many times a scenario actually occurred. Every time that scenario
happens it is said that the bucket got a hit.

93

1 i n t q _ o u t p u t _ c o v [2] ;
2

3 / * main s i m u l a t i o n loop * /
4 whi le (VEasy_i < MAX_TICKS) {
5 VEasy_exec_nex t_sequence () ;
6 dff_comb () ;
7 d f f _ s e q () ;
8 / * o u t p u t c o v e r a g e s e c t i o n * /
9 q _ o u t p u t _ c o v [q] + + ;

10 }

Figure 7.7: Functional coverage collection algorithm.

place: the size of the array is modified according to a range or to a list of possible values.
Also, the array is no longer indexed in the same way. Instead a secondary function is used
to convert the values into indexes. Thus, the skeleton of the simulation remains almost
the same showed in Fig. 7.7.

The next section shows how it is possible to create such restrictions using the GUI.

Figure 7.8: Functional coverage analysis GUI.

7.2.2 Functional coverage analysis using the GUI

Figure 7.8 shows the GUI available for creating restrictions in the buckets. First, the
user is required to choose the type of bucket that will be used. The default behavior is to
use no buckets at all, which will cause the collection to be turned off. It is also possible
to choose between a full range, a restricted range or a list. If a restricted range is chosen
then two values must be provided, one for the lower range boundary and another for the
upper boundary. This image in particular is showing a user creating a bucket restriction
by means of a list. Such list already has a few different values and upon a user click it
will have the value 10 as well.

94

95

8 METHODOLOGY

The main feature of the tool is the testcase automation capability. Using a GUI the user
is able to drag-and-drop sequence items to build larger sequences. One example of such
operation is shown in Section 9.3. The methodology that allows the automation is entirely
based on layers. A layer is just a container used to build sequences progressively. For
instance, a layer1 sequence contains items from layer0 while a layerN sequence contains
items from layerN-1 and below.

Each sequence has three mandatory fields: the sequence’s name, the sequence’s level
in the hierarchy and the member list. The verification plan file described in Chapter 4 con-
tained all of these fields, which were referred as seq_name, seq_level and seq_members.
Each member of the member list is entitled to a list of rules (i.e. constraints). These
constraints are identified by the token keep in the verification plan file.

Sequences from any layer other than layer0 also have a list of sequences (referred as
seq_list). This creates the possibility of combining more and more sequences from differ-
ent layers to allow the construction of a sequence library. This library holds sophisticated
testcases that are of particular interest for the verification of a design. There are only a
few rules and/or guidelines that must be observed:

1. Sequences from layer0 are the only ones capable of interfacing with the design (i.e.
they are the only ones that may contain physical members).

2. Sequences from layer0 will always generate values for all the inputs of the design,
whether they are constrained or not.

3. If a member is not under any constraint then it is assigned a random value within
the member’s range of possible values.

4. Sequences from layer0 are the only ones that can make the simulation time advance.

5. The only communication channel between two layers is through logical members
(i.e., members that are not physical). All data exchange relies on this approach.

6. All members should be uniquely identified to allow any sequence to use them un-
ambiguously. The exception is when two sequences actually are trying to use the
same member to perform communication. In general, the use of prefixes is recom-
mended.

7. Each sequence must have at least one sequence item in its list in order to be exe-
cutable, except for layer0 sequences which should not have a list at all.

96

As mentioned it is also possible to add logical members into sequences of all layers,
even if a given sequence is of layer0. Fig. 8.1 contains an example of a possible layering
which contains physical and logical members.

Figure 8.1: Layering example.

The example shows a sequence called top of a layerN. This sequence has two logical
members (memberA and memberB) and each member is constrained with its own set of
rules. This same sequence has four items in its list of sequence items (seq_list). One
of these items is referred as do_error, which is a sequence from layer0. This sequence
in particular has no list of items since it is in the bottom of the hierarchy. Fig. 8.1 also
shows a sequence that has no members at all, referred as item8. The arrows in the image
represent the simulation flow. The striped gray arrows are used to point out that there is a
hierarchy below each of those sequences. These hierarchies will be fully simulated before
the flow continues through the regular black arrows.

As mentioned, each member of a layer, either physical or logical, might be constrained
using rules. Currently the tool supports seven rule types:

• Keep value less than (<)

• Keep value less or equal than (<=)

• Keep value greater than (>)

• Keep value greater or equal than (>=)

• Keep value equal to (==)

• Keep value ranged between ([a:b])

• Keep value in a list of possible values ([a,b,c])

All these rules might be created using the GUI. By double clicking in a certain member
a modal dialog windows pops up. This is the rule editor, in which the user is able to

97

Figure 8.2: Rule editor GUI.

create, edit and remove rules of a certain member. The illustration of Fig. 8.2 shows the
rule editor interface available to the user.

The image shows a scenario where there is already a constraint applied to a given
member. Such constraint limits the possible values that the member migh assume to only
four: 20, 30, 40 and 50. Now, if the user clicks the ‘Add rule’ button, a new constraint
will be created. Combining the two constraints one will realize that now the member is
only allowed to assume two values: 40 and 50. Using this type of rule system, the user is
able to create a testcase which is more (or less) focused. For example, in the initial stages
of the verification one could create only a single set of rules that allow the simulation of
the design respecting its interface protocols. Later one might increase the number of rules
in order to simulate a certain situation more often. If no constraints were used it would be
necessary to (completely) rewrite testbenches in order to excite specific features.

Another feature added to the methodology is the possibility to create expressions.
This is the approach to be used when the user needs the value of a member with some
modification applied. For instance, it is very common for a certain sequence to use a
combination or only a portion of the data from another sequence that is higher placed in
the hierarchy. For example, in a layerN the user might create a complete stream of data,
while in layer0 it would send chunks of that stream.

In VEasy this is achieved by using expressions. Such expressions are constantly read-
ing the value of the members they are related. If a change occurs in those members than
the expression will perform some operation. Expressions may be interpreted as a virtual
member of a sequence.

A pseudo-C code describing the sequence execution order performed by the method-
ology is shown below in Fig. 8.3. The hierarchy used in the code matches the one in Fig.
8.1 and it also contains one example of expression usage.

In the code from Fig. 8.3 there are two sequences, one from layerN and one from
layer0. For each sequence there is a function associated, as shown in lines 1 and 18.
On the first sequence there are logical members, which are generated on lines 4 and 5,
before the expression is updated on line 8. These members are generated obeying the
rules associated with each of them. Later, each item in the seq_list of that sequence is
simulated, as shown in lines 11, 12 and 13. The sequence from layer0, do_error, has a

98

1 void s e q _ t o p ()
2 {
3 / / f i r s t members are g e n e r a t e d u s i n g t h e r u l e s
4 memberA = gen_memberA (r u l e 1 , r u l e 2 , . . .) ;
5 memberB = gen_memberB (r u l e 3) ;
6

7 / / t h e n t h e e x p r e s s i o n s up da t e
8 exp1 = memberA + memberB ;
9

10 / / and t h e s e q _ l i s t i s p r o c e s s e d
11 s e q _ s o m e t h i n g () ;
12 s e q _ d o _ e r r o r () ;
13 . . .
14 / / u n t i l t h e r e are no more s e q u e n c e s
15 re turn ;
16 }
17

18 void s e q _ d o _ e r r o r ()
19 {
20 phy_member = gen_phy_member (r u l e 6 , r u l e 7) ;
21

22 / / s i m u l a t e t h e DUT
23 dut_comb () ;
24 d u t _ s e q () ;
25

26 / / i n c r e a s e t h e s i m u l a t i o n t i m e and r e t u r n
27 t ime ++;
28 re turn ;
29 }

Figure 8.3: Execution order of VEasy’s sequences.

single physical member (phy_member) which is also generated on line 20.

The two functions called on lines 23 and 24 are the ones related to the design’s logic.
The first function executes all the combinational statements of the design while the second
one executes all the sequential ones, using the algorithms previously discussed. Finally,
the simulation time is advanced in line 27.

8.1 Some statistics of VEasy’s implementation

Developing the interface that allows the methodology of this chapter plus the sim-
ulation and linting engines required a lot of work. The methodology actually required
planning as well as coding since it should interface properly with the simulator. Fortu-
nately the actual work was recorded and assessed throughout the months. In order to
provide a better insight of the amount of time spent developing VEasy, Tab. 8.1 contains
some statistics of the effort.

During the entire development of the project a bug tracking system was used. As of

99

Table 8.1: Some statistics of VEasy’s development.
Bugs tracked 120

C++ files and headers 80

Lines of C++ code 18000+

Qt interfaces (UIs) 15+

Builds 4300+

Lines of Verilog 24000+

March 2011 around 120 different bugs were registered and later fixed1. The number of
C++ files and headers also was measured, reaching around 80 files. These files contain
more than 18 thousand significant lines of code2. These do not include any automatically
generated code, either by VEasy or by Qt.

Regarding Qt, more than 15 user interfaces (UIs) were developed. In other words,
there at least 15 different screens in the application. The actual number is higher since
some of the interfaces are dynamically generated on-the-fly which difficult the assess-
ment. Another interesting figure comes from the number of builds the tool had. A build is
a successful compilation of the entire source code, performed only when a change in the
source files was detected. In other words, this accounts for the total number of times the
project makefiles were built.

Finally, it is important to say that a large number of circuits were written for evaluating
the simulation and linting engines. The total number of lines of Verilog code written for
this project was also accounted, reaching a total value of more than 24 thousand lines.
This is another indication that the simulation engine is well defined and provides accurate
simulation data. Regarding all these statistics it is clear that the amount of work required
to get here was definitely not a small one.

Bearing in mind the actual amount of work required to develop VEasy, let us proceed
with a study case design in the next chapter. Such chapter presents a case study verifica-
tion of a password lock device. There, several sequences will be created and discussed in
details.

1The bug tracking system is publicly available at http://trac6.assembla.com/veasy.
2The metric used for counting the number of significant lines of code was the same one used to measure

the size of a Linux distribution in (WHEELER, 2002), available at http://cloc.sourceforge.net.

100

101

9 CASE STUDY: THE PASSWORD LOCK DEVICE

The methodology described in the previous chapter is used here to build a testcase for
a real design in the sections that follows.

9.1 DUT description

Our case study DUT is a module that acts as a password lock device. The password is
encoded within the module and for the purpose of this thesis was defined as “veasy". Fig.
9.1 contains the simplified block diagram of the DUT.

Figure 9.1: DUT block diagram.

The module has two submodules. First, there is the PS/2 controller, which is respon-
sible for detecting the keys that the user is pressing. The password sequence submodule
is responsible for recognizing the sequence of keys and check if it matches the encoded
password. Since a PS/2 interface is used, all the data entry is serial. The PS/2 protocol is
based on the RS 232-C serial protocol (Electronic Industries Association, 1969), which
specifies that each key should be transmitted using 11 bits. The first bit is the start bit
and it is always zero. The next eight bits are the encoded data that represents a key being
pressed or released on the keyboard. The next bit is a parity bit while the last bit is always
one. The last bit is referred as the stop bit. Fig. 9.2 shows an example of a transmission
of a PS/2 packet.

Figure 9.2: Transmission of PS/2 packet.

102

9.2 Verification Plan

In order to verify the DUT a plan was written. The plan contains three features. Table
9.1 shows the features that were considered during the verification of the module. For
each feature a different testcase was later associated.

Table 9.1: Feature list of the password lock device.

Feature ID Description
F1 The module must accept all valid inputs, which are the keys from

A-Z and 0-9.

F2 The module must assert the unlock output when the input matches
the password.

F3 The module must not assert the unlock output if the password is
invalid.

9.3 Building a testcase

In order to perform the verification the user is required to send stimulus to the DUT. In
other words, it means the input protocol of the DUT must be used. The use of sequences
eases this matter since sequences have an ordering mechanism implied. It also lowers the
amount of code that must be written since the sequences are reused whenever possible.
The sequence creation can be performed using the drag-and-drop features of the GUI or
by actual coding using VEasy’s verification plan format, which was described in Chapter
4.

For each entry in the feature list of Tab. 9.1, there must be at least one testcase as-
sociated. The following testcase was built for the feature F2 and it was built using four
different layers: the mandatory layer0 and three more. The process of creating a testcase
always starts by defining at least one layer0 sequence that contains all of the physical in-
puts of the DUT. The process continues by building sequences from higher layers. For the
creation of a layerN sequence it is only required that the user adds at least one layerN-1
sequence item.

This particular testcase has 11 sequences from layer0 as shown by Fig. 9.3. These
sequences are referred as start, data0 through data7, parity and stop. One can see an
obvious match between the sequence’s name and the desired behavior of that sequence.
Fig. 9.3 also shows a sequence creation scenario where the user is dragging a sequence
(press_and_releaseY) from the left panel list and dropping it into the list of sequence
items from a layer3 sequence (correct_password). In order to actually send a correct
password to the DUT several sequences had to be created. Let us go through that process.

First, each of the sequences from layer0 were created. Since these are from layer0
they must contain all the inputs of the module. Those inputs are refered as the physical
members. In the proposed case study circuit there is only one functional input1 (data).

The following piece of code in Fig. 9.4 shows how VEasy stores the sequences into
the verification plan file. This code is automatically generated by VEasy based on the

1A functional input is any input other than clock and reset.

103

Figure 9.3: VEasy’s GUI being used to build a testcase.

data that the user placed in the GUI. This code in particular was generated for the start
sequence.

1 == Sequence ==
2 * seq_name s t a r t
3 * s e q _ l e v e l 0
4 * s e q _ l i s t
5 * seq_members
6 * d a t a 1 PHY
7 * keep == 0

Figure 9.4: start sequence described in VEasy’s format.

The first line of Fig. 9.4 creates a new sequence (start). Lines 2 and 3 are used
to identify the sequence with a name and a level in the hierarchy, respectively. Line 4
defines the list of sequence items but, since this is a sequence from layer0, this field must
be left empty. Finally, line 6 defines the actual member, data, which is physical and is one
bit wide, while line 7 defines a single rule for that member (making it always generate
with a zero value).

The code for the stop sequence is obviously similar to the one presented so far, only
the sequence name and the constraint are modified. However, the parity and data0
through data7 sequences require the use of an expression. Thus, the data0 sequence
is described in Fig. 9.5.

Again, the first line creates a sequence while lines 2 and 3 are used to identify it. The
difference is that this sequence uses an expression. On line 6 the expression is declared
with the name aux and a size of only 1 bit. Following, in line 7 the expression is defined
with the BIT macro. This macro takes a desired bit from a source byte (in this case it

104

1 == Sequence ==
2 * seq_name d a t a 0
3 * s e q _ l e v e l 0
4 * s e q _ l i s t
5 * seq_members
6 * aux 1 EXP
7 * aux = BIT (0 , key) ;
8 * d a t a 1 PHY
9 * keep == aux

Figure 9.5: data0 sequence described in VEasy’s format.

is taking only the first bit of a member referred as key). Finally, on line 8 the physical
member data is declared while in line 9 it is constrained. In other words, data is tied
to the first bit of a member referred as key. Yet, the key member has not been declared
so far. Such member belongs to another sequence from a higher layer. One example of
such sequence is the pressV sequence, which is a sequence from layer1. This sequence
is described in the illustration of Fig. 9.6.

1 == Sequence ==
2 * seq_name pressV
3 * s e q _ l e v e l 1
4 * s e q _ l i s t { s t a r t , da t a0 , da ta1 , da ta2 , da ta3 , da ta4 ,
5 da ta5 , da ta6 , da ta7 , p a r i t y , s t o p }
6 * seq_members
7 * key 8 LOG
8 * keep key == 42

Figure 9.6: pressV sequence described in VEasy’s format.

Since this sequence is no longer a layer0 one, it has a non-empty seq_list. This se-
quence also has a logical member, key, which is 8 bits wide and has a single constraint.
This constraint keeps it equal to 42, which is the code for the letter V. All other sequences
from layer1 are built similarly, given that the value of the key is properly set in each se-
quence. In other words, the simulation environment is now capable of creating sequences
that correspond to each key of the password.

Yet, the protocol also requires that a different code is sent every time a key is released.
In order to do that, for each key, there must be a sequence that presses it and another
one that releases it, e.g. pressV and releaseV. This behavior makes it necessary to create
sequences on layer2. These sequences are built linking the press and release of the same
given key. Finally, on layer3, all sequences are organized in an order that sends the correct
password to the device, which can be seen in Fig. 9.3. So, to be perfectly clear, upon the
execution of the correct_password sequence, the correct password will be sent to the
DUT by pressing and releasing the keys V-E-A-S-Y in the proper order.

The other test cases for the other features use similar constructions for the sequences.
The difference is mostly in the constraining applied to the keys, which is no longer a
constant value. On the first test case, the one from feature F1, the key is constrained using
a list of possible values. The third test case, the one from feature F3, does the same but

105

guarantees that the correct password is never sent.

9.4 Comparing the methodology with traditional SystemVerilog

The same testcases that are related to the three features of Tab. 9.1 were coded into
three SystemVerilog (IEEE, 2009) testbenches. These were built in the most traditional
manner, i.e., without using sequences. However, comparing both approaches is not sim-
ple. Instead, some statistics and facts from both implementations are presented in this
section.

Initially there must be said that in both solutions there is a need to be time accurate,
i.e., to comply with the protocol. The main difference is that the SystemVerilog code
needs to advance the simulation time manually. That behavior is seen throughout all the
testbenches, in which there are several constructions like the following:

1 d a t a = key [0] ;
2 @negedge (c l k) ;
3 d a t a = key [1] ;
4 @negedge (c l k) ;
5 . . .

Figure 9.7: SystemVerilog code used to control the simulation time.

This type of construction that sets a value and then waits for the DUT to execute is
not necessary when the layered methodology of this thesis is used. Whenever a sequence
from layer0 is used, the simulation knows that it must execute the DUT code and advance
the simulation time. This allows the user to focus on the behavior when constructing a
testcase, leaving the timing control to the tool.

The number of significant lines of code was used to evaluate the SystemVerilog coding
of the testbenches. This information is shown in Tab. 9.2. All three testcases built using
the proposed methodology have not used a single line of code made by the user. Instead
the user had to build sequences, choose a layer for each sequence and build the expressions
to use data shared between layers. This information is summarized in Tab. 9.3.

Table 9.2: Statistics of SystemVerilog testbenches.

Feature ID Lines of code
F1 118

F2 111

F3 139

As one can see in Tab. 9.3, the number of expressions used is the same for all testcases.
This is due to the fact that all expressions are from layer0 sequences, which are reused in
all the testcases. Eight of these expressions are used in the data0 through data7 sequences
(as showed in Fig. 9.5) while the last one is used in the parity sequence. As a matter of
fact, several sequences were reused between the testcases, remarkably the ones used to
press and release a given key.

106

Table 9.3: Statistics of VEasy testcases.

Feature ID Number of
layers

Number of
sequences

Number of
expressions

F1 3 14 9

F2 4 27 9

F3 4 15 9

The SystemVerilog testbenches also did the same, being able to benefit from reuse.
The SystemVerilog solution made use of a Bus Functional Model (BFM), which usually
is a task with parameters. In this case study it could be a task with a single parameter, the
key to be sent. The illustration of Fig. 9.8 contains the task used in the analysis performed.

1 ta sk p r e s s _ k e y ;
2 input [7 : 0] key ;
3

4 begin
5 d a t a = 0 ; / / s t a r t b i t
6 @(negedge c l k) ;
7 d a t a = key [0] ;
8 @(negedge c l k) ;
9 d a t a = key [1] ;

10 @(negedge c l k) ;
11 d a t a = key [2] ;
12 @(negedge c l k) ;
13 d a t a = key [3] ;
14 @(negedge c l k) ;
15 d a t a = key [4] ;
16 @(negedge c l k) ;
17 d a t a = key [5] ;
18 @(negedge c l k) ;
19 d a t a = key [6] ;
20 @(negedge c l k) ;
21 d a t a = key [7] ;
22 @(negedge c l k) ;
23 d a t a = ^ key ;
24 @(negedge c l k) ;
25 d a t a = 1 ; / / s t o p b i t
26 endtask

Figure 9.8: SystemVerilog task as a BFM.

Other constructions were used as well, like constraints to define the current key being
pressed and a class to encapsulate such constraints. To send the keys in the proper order
a randsequence construction was used.

Although the entire tool suite provides a GUI to the user, it must be said, once again,
that every operation available through the GUI is also available through the verification

107

plan format. The GUI might be the method of choice of a inexperienced user or student
while the verification plan format might be more suitable for advanced users.

108

109

10 CONCLUSION

This thesis tried to explore different issues within the context of FV. Yet, one could
argue that a given concept might have been left behind. So, initially, before actually
concluding, an overview of the different possibilities of future works will be given. First,
it is important to state how important assertions are in a modern verification flow. This
technique alone has brought a great improvement in the quality of the verification efforts,
since it allows a great improvement in block-level verification quality (CHEN, 2003).
At the moment no support for assertions of any type has been planned for VEasy. The
amount of work required to support any assertion language would be tremendous and
certainly would not allow this thesis to end in a manageable timing.

One feature that would be an excellent addition is the possibility to perform some
type of CDG. The results in Chapter 7 might be used to choose a structural metric that
is more suitable for such coverage-aware generation. The are some strong references to
this approach in the literature, which would certainly be useful for comparing/assessing
against.

There is a great number of possible small changes to the simulation engine, i.e., fine
tuning. During the evolution of this thesis different approaches to simulation have been
tried, although only one made to the final text. Some of the approaches that were not
detailed had benefits for certain types of circuits or certain styles of logic description.
Perhaps the simulation engine could be improved even more by applying some type of
mixed algorithm, capable of deciding which simulation engine is better for each circuit or
portion of a circuit. Also, as previously mentioned, simulation could benefit from some
type of ordering mechanism for the evaluation of assignments. All these would be great
contributions to the tool suite.

One feature (and actually a goal) that later was dropped due to time issues is the
possibility to export the verification environment built in VEasy to an already established
verification methodology, like the ones mentioned in Section 2.4. This is actually a work
in progress that unfortunately was not finished until the final version of this text.

The constraint solver used in VEasy was not detailed in the text, only the actual type
of rules were detailed. The reason is because the constraint solver is very simple. When
there is a single rule or multiple rules of the same type applied to a member, that member
will be assigned a random value using a single draw of a random number. When there is
more than one type of rule applied to the same member, either physical or logical, it may
require more than one draw. This issue is easily avoided if a true constraint solver is used,
like the ones built with binary decision diagrams.

Unfortunately it is not possible to give a complete view of the user interface available
in the tool. Only some screenshots of the most relevant operations are given in this thesis.
The problem is that these images cannot provide the actual way the tool is used. Almost

110

every action allowed in the tool is automated, most of the times by drag-and-drop oper-
ations. For instance, to build a large sequence the user only is required to populate that
sequence by dropping other sequences in it. There is also the possibility to select multi-
ple sequences using the shift key, very similar to the applications used for file exploring
available in window managers. All these features are very useful for easing the intrinsic
learning curve of FV.

Now that the possible future works and some statistics of the development process
have been discussed, let us proceed with the actual concluding remarks. First and most
important, the subject of this thesis is a very neglected one. It is very hard to see a un-
dergrad (or even graduation) course that contains classes on this subject. Yet, the issues
related to verification (and FV) are gigantic, as discussed in Chapter 1. Also, as clearly
stated by (BERMAN, 2005), the focus has shifted a lot from design to verification. Ac-
tually there are more job positions in the industry that are related to verification than to
design. The courseworks of our universities must also shift to reflect such scenario. In
this context, this thesis presented a collection of tools that is prone to help.

Regarding Chapter 2, a revision of the state of the art was given. Several verification
methodologies were discussed. Yet, they were not compared against VEasy. Such com-
parison, if made, would be extremely questionable and perhaps even inappropriate. First,
because VEasy is not a true commercial methodology. Such methodologies, event the
first ones, already have a great amount of complexity included. VEasy’s goal was, and
still is, to avoid such complexities.

In other words, in VEasy one cannot distinguish what is a BFM or what is a sequencer,
a synchronizer or a driver. In VEasy there is no strict layer separation. One then is able
to focus in producing stimuli in a layered, reusable way. Although for a large project
the need for a clear layer distinction is justifiable, sometimes for small projects it is not.
Once again, if one already has a steep learning curve (regarding FV as a whole), one does
not need to worry about a perfect tailored layer distinction. Yet, one has evolved from
producing direct stimuli to layered stimuli. This is already a great achievement allowed
by VEasy.

In the same chapter different concepts within FV have been discussed, like generation
and coverage. The latter was deeply discussed since it reflects the quality of the verifi-
cation (GRINWALD et al., 1998). VEasy included a few of the discussed metrics in its
simulation engine. But, most important, it allows the automatic collection and the assisted
analysis of those. These are great features that help the engineer/student to evaluate its
efforts so far and where to focus next.

Some of the challenges reported in Chapter 2 were also explored in Chapter 3, in
which the relevance of those challenges was detailed with some numeric figures. Those
figures were given to the overheads of generating data and collecting coverage. First,
using two commercial simulators, the coverage collection overhead was measured. Such
overhead ranges from 1% to 600%. Although the former number seems acceptable, the
latter one clearly is not. Later, in Chapter 7, the same numbers were gathered for VEasy,
which has an average overhead 39.7%. This overhead is smaller than the overheads seem
in both commercial simulators. This improvement may be used to enable the evaluation
of coverage more often in the simulations performed. Thus, engineers would benefit since
they could have an early access to coverage results.

A description of the developed tool only begins in Chapter 4. In this chapter the two
flows of VEasy are explained as well as the verification plan format. The assisted flow or
a similar feature is not commonly present in commercial solutions. There are some ex-

111

ceptions, but usually these are third-party provided solutions like integrated development
environments that help to automate the testbench creation process.

Another feature of the tool, that is detailed in Chapter 4, is the verification plan format.
The fact that the file is stored in a wiki-like syntax makes it already prone for collaborative
environments. Plus, it is easily rendered by web browsers. This feature plus the fact that
the format might be considered an executable verification plan, to the best of the author’s
knowledge, is unique to VEasy. These two features together certainly might be used to
improve verification management.

In Chapter 5 several linting rules available in VEasy were detailed. This type of rule
is common regarding the Verilog language, sometimes because of the natural behavior
of it, which is loosely typed. Also, linting is very useful for students still learning the
language, since it detects most of the common sources of error. For example, describing
mixed synchronous and asynchronous logic.

The simulation in VEasy was addressed by developing a simulator from the ground
up. This task required a great amount of work but the results reported in Chapter 6 made
it worth. One can see that VEasy’s simulation was compared against academic and com-
mercial simulations, achieving a better performance than the other simulators. It is also
worth mentioning that the algorithms developed are able to handle a great number of con-
current assignments per cycle. In other words, the simulation engine of VEasy is able to
better handle the scaling effect of increasing the circuit complexity.

The most complex aspect of VEasy is the methodology. Thus, this particular feature
of the tool was deeply refined until a suitable user interface was reached. Such interface
is illustrated in Fig. 9.3. The possibility of building large sequences by creating some
simple ones and later extending them using drag-and-drop operations is the key element
of this feature. As the methodology is naturally layered, reuse is easily achieved. For
example, the case study circuit described in Chapter 9 benefits from reuse, at least in a
test-level.

As of today, FV by means of simulation is the de-facto choice of the industry when
regarding verification. In that context, this thesis described a tool that enhances the tra-
ditional verification flow with efficient coverage collection, generation and simulation.
Also, the tool could be used for training purposes in graduate or undergraduate course-
works, helping students to fight the learning curve of FV.

112

113

REFERENCES

ABADIR et al. Formal Verification Successes at Motorola. Formal Methods in System
Design, [S.l.], n.22, p.117–123, 2003.

AMMANN, P.; OFFUTT, J.; HUANG, H. Coverage criteria for logical expressions. In:
SOFTWARE RELIABILITY ENGINEERING, 2003. ISSRE 2003. 14TH INTERNA-
TIONAL SYMPOSIUM ON. Proceedings. . . [S.l.: s.n.], 2003. p.99 – 107.

ANDERSON, T. et al. SystemVerilog reference verification methodology: rtl. EE Times,
[S.l.], May. 2006.

ANSI. The C Programming Language Standard. 1989. n.X3.159.

BAILEY, B. A new vision for scalable verification. EE Times, [S.l.], n.18, Feb. 2004.

BAILEY, B. The Functional Verification of Digital Systems. [S.l.]: IEC Publications,
2005.

BENING, L.; FOSTER, H. Principles of verifiable RTL design: a functional coding
style supporting verification processes in verilog. [S.l.]: Springer, 2001.

BERGERON, J. Writing Testbenches: functional verification of hdl models. 2.ed.
Boston: Kluwer Academic, 2003.

BERGERON, J. Writing Testbenches using SystemVerilog. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2006.

BERGERON, J. The Future of Functional Verification. In: SNUG ISRAEL, 2010. PRO-
CEEDINGS, Herzliya, Israel. Proceedings. . . [S.l.: s.n.], 2010.

BERGERON, J. et al. Verification Methodology Manual for SystemVerilog. Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 2005.

BERMAN, V. IEEE P1647 and P1800: two approaches to standardization and language
design. Design & Test of Computers, IEEE, [S.l.], v.22, n.3, p.283 – 285, May 2005.

BORMANN, J. et al. Complete Formal Verification of TriCore2 and Other Processors. In:
DESIGN AND VERIFICATION CONFERENCE. Proceedings. . . [S.l.: s.n.], 2007.

BRIAND, L.; PFAHL, D. Using simulation for assessing the real impact of test-coverage
on defect-coverage. Reliability, IEEE Transactions on, [S.l.], v.49, n.1, p.60 –70,
Mar. 2000.

114

BYBELL, T. GTKWave. 1998. Available at <http://gtkwave.sourceforge.net/>. Ac-
cessed February 10, 2011.

Cadence Design Systems, Inc. Incisive Management Datasheet. 2005. Avail-
able at <http://www.cadence.com/rl/Resources/datasheets/incis_verif_mgr_ds.pdf>. Ac-
cessed December 10, 2010.

Cadence Design Systems, Inc. Encounter RTL Compiler Datasheet. 2010. Avail-
able at <http://www.cadence.com/rl/resources/datasheets/encounter_rtlcompiler.pdf>.
Accessed October 21, 2010.

CADENCE; MENTOR. Open Verification Methodology White Paper. 2007.

CHANG, M. Foundry Future: challenges in the 21st century. In: SOLID-STATE CIR-
CUITS CONFERENCE, 2007. ISSCC 2007. DIGEST OF TECHNICAL PAPERS. IEEE
INTERNATIONAL. Proceedings. . . [S.l.: s.n.], 2007. p.18 –23.

CHEN, K.-C. Assertion-based verification for SoC designs. In: ASIC, 2003. PROCEED-
INGS. 5TH INTERNATIONAL CONFERENCE ON. Proceedings. . . [S.l.: s.n.], 2003.
v.1, p.12 – 15 Vol.1.

CHILENSKI, J.; MILLER, S. Applicability of modified condition/decision coverage to
software testing. Software Engineering Journal, [S.l.], v.9, n.5, p.193 –200, Sept. 1994.

COHEN, O. et al. Designers Work Less with Quality Formal Equivalence Checking. In:
DESIGN AND VERIFICATION CONFERENCE. Proceedings. . . [S.l.: s.n.], 2010.

Collett International Research Inc. IC/ASIC functional verification study. [S.l.]: Collett
International Research Inc., 2003.

DEMPSTER, D.; STUART, M.; MOSES, C. Verification Methodology Manual: tech-
niques for verifying hdl designs. 2.ed. [S.l.]: Teamwork International, 2001.

DENG, Y. GPU Accelerated VLSI Design Verification. In: COMPUTER AND INFOR-
MATION TECHNOLOGY (CIT), 2010 IEEE 10TH INTERNATIONAL CONFERENCE
ON. Proceedings. . . [S.l.: s.n.], 2010. p.1213 –1218.

EBERSBACH, A.; GLASER, M.; HEIGL, R. Wiki: web collaboration. [S.l.]: Springer,
2005.

Electronic Industries Association. EIA Standard RS-232-C Interface Between Data
Terminal Equipment and Data Communication Equipment Employing Serial Data
Interchange. 1969. n.RS 232-C.

EVANS, A. et al. Functional verification of large ASICs. In: DESIGN AUTOMATION
CONFERENCE, 35., New York, NY, USA. Proceedings. . . ACM, 1998. p.650–655.
(DAC ’98).

Far West Research and Mentor Graphics. EDA Market Statistics Service Report. [S.l.]:
Far West Research, 2007.

FINE, S.; ZIV, A. Coverage directed test generation for functional verification using
Bayesian networks. In: DESIGN AUTOMATION CONFERENCE, 2003. PROCEED-
INGS. Proceedings. . . [S.l.: s.n.], 2003. p.286 – 291.

115

FITZPATRICK, T.; SCHUTTEN, R. Design for verification: blueprint for productivity
and product quality. [S.l.]: Synopsys Inc., 2003.

Gary Smith EDA - GSEDA. 2009 Market Share Research. 2009. Available at
<http://www.garysmitheda.com>. Accessed January 16, 2011.

GIZOPOULOS, D. Advances in Electronic Testing: challenges and methodologies
(frontiers in electronic testing). Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
2006.

GLASSER, M. Open Verification Methodology Cookbook. [S.l.]: Springer, 2009.
(SpringerLink Engineering).

GLASSER, M. et al. Advanced Verification Methodology Cookbook. [S.l.]: Mentor
Graphics, 2008.

GRIES, H. Verification Methodology Poll Results. 2009. Available at
<http://theasicguy.com/2009/02/11/verification-methodology-poll-results/>. Accessed
January 16, 2011.

GRINWALD, R. et al. User Defined Coverage - A Tool Supported Methodology for
Design Verication. In: DESIGN AUTOMATION CONFERENCE, 35., San Francisco,
United States. Proceedings. . . [S.l.: s.n.], 1998. p.158–163.

HAACKE, P. A.; PAGLIARINI, S. N.; KASTENSMIDT, F. L. Evaluating Stimuli Gen-
eration Using the VEasy Functional Verification Tool Suite. SIM - South Symposium
on Microelectronics, 2011. Submitted.

HAQUE, F.; MICHELSON, J.; KHAN, K. The Art Of Verification with VERA. [S.l.]:
Verification Central, 2001.

IEEE. Standard VHDL Language Reference Manual. 1987. n.1076.

IEEE. Standard for the Verilog Hardware Description Language. 1995. n.1364.

IEEE. Standard for the Property Specification Language (PSL). 2005. n.1850.

IEEE. Standard for the Functional Verification Language e. 2006. n.1647.

IEEE. Standard for SystemVerilog - Unified Hardware Design, Specification, and
Verification Language. 2009. n.1800.

IMAN, S.; JOSHI, S. The E hardware verification language. [S.l.]: Kluwer Academic
Publishers, 2004.

International Business Machines Corporation - IBM. Enterprise ver-
ification management solution. 2009. Available at <http://www-
01.ibm.com/software/rational/offerings/cadence/>. Accessed December 10, 2010.

ITRS. INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUC-
TORS. Available at <http://www.itrs.net/links/2005itrs/design2005.pdf>. Accessed Oc-
tober 21, 2010.

116

JONES, M. T. Optimization in GCC. Linux J., Seattle, WA, USA, v.2005, p.11–,
March 2005.

KITCHEN, N.; KUEHLMANN, A. Stimulus generation for constrained random simula-
tion. In: ICCAD ’07: PROCEEDINGS OF THE 2007 IEEE/ACM INTERNATIONAL
CONFERENCE ON COMPUTER-AIDED DESIGN. Proceedings. . . [S.l.: s.n.], 2007.
p.258 –265.

LACHISH, O. et al. Hole analysis for functional coverage data. In: DESIGN AUTOMA-
TION CONFERENCE, 39., New York, NY, USA. Proceedings. . . ACM, 2002. p.807–
812. (DAC ’02).

MARTIN, G. The Myths of EDA: the 70% rule. 2008. Available at
<http://www.chipdesignmag.com/martins/>. Accessed February 11, 2011.

MICZO, A. Digital logic testing and simulation. New York, NY, USA: Harper & Row
Publishers, Inc., 1986.

MOLINA, A.; CADENAS, O. FUNCTIONAL VERIFICATION: approaches and chal-
lenges. Latin American Applied Research, [S.l.], n.37, p.65–69, 2007.

Nokia Corporation. Qt Framework. 2008. Available at <http://qt.nokia.com/products/>.
Accessed January 10, 2011.

PAGLIARINI, S. N.; HAACKE, P. A.; KASTENSMIDT, F. L. RTL Simulation Using
the VEasy Functional Verification Tool Suite. NEWCAS, 2011. Submitted.

PAGLIARINI, S. N.; HAACKE, P. A.; KASTENSMIDT, F. L. Evaluating Coverage
Collection Using the VEasy Functional Verification Tool Suite. LATW, 2011. Ac-
cepted for publication.

PAGLIARINI, S. N.; KASTENSMIDT, F. L. VEasy: a tool suite for teaching vlsi func-
tional verification. MSE - Microelectronic Systems Education, 2011. Submitted.

PAGLIARINI, S. N.; KASTENSMIDT, F. L. VEasy: a functional verification tool suite.
SIM - South Symposium on Microelectronics, 2011. Submitted.

PAGLIARINI, S. N.; ZARDO, G. O. t6507lp IP core. 2009. Available at
<http://opencores.org/project,t6507lp>. Accessed December 1, 2011.

PIZIALI, A. Functional Verification Coverage Measurement and Analysis. [S.l.]:
Kluwer Academic, 2004.

REDWINE S.T., J. An Engineering Approach to Software Test Data Design. Software
Engineering, IEEE Transactions on, [S.l.], v.SE-9, n.2, p.191 – 200, Mar. 1983.

Riverbank Computing Limited. QScintilla - a Port to Qt of Scintilla. 2010. Available
at <http://www.riverbankcomputing.co.uk/software/qscintilla/intro>. Accessed January
10, 2011.

RIVEST, R. The MD5 Message-Digest Algorithm. United States: RFC Editor, 1992.

117

SAITO, M.; MATSUMOTO, M. SIMD-Oriented Fast Mersenne Twister: a 128-bit pseu-
dorandom number generator. In: Monte Carlo and Quasi-Monte Carlo Methods 2006.
[S.l.]: Springer, 2008. p.607–622.

SNYDER, W.; GALBI, D.; WASSON, P. Verilator. 1994. Available at
<http://www.veripool.org/wiki/verilator/>. Accessed November 16, 2010.

STALLMAN, R. Using and Porting the GNU Compiler Collection. M.I.T. Artificial In-
telligence Laboratory, [S.l.], 2001.

STEFFORA, A. DAI Enters Transaction-Based Verification Market. In: Electronic
News. [S.l.: s.n.], 1998.

SUTHERLAND, S. Transitioning to the new PLI standard. In: VERILOG HDL CON-
FERENCE AND VHDL INTERNATIONAL USERS FORUM, 1998. IVC/VIUF. PRO-
CEEDINGS., 1998 INTERNATIONAL. Proceedings. . . [S.l.: s.n.], 1998. p.20 –21.

Synopsys, Inc. Design Compiler 2010 Datasheet. Available at
<http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Documents/
DesignCompiler2010-ds.pdf>. Accessed October 21, 2010.

TRONCI, E. Special section on Recent Advances in Hardware Verification: introduc-
tory paper. International Journal on Software Tools for Technology Transfer (STTT),
[S.l.], v.8, p.355–358, 2006.

VSI Alliance. Specification for VC/SoC Functional Verification. [S.l.]: VSI Alliance,
2004.

WANG, T.-H.; TAN, C. G. Practical code coverage for Verilog. In: IEEE INTERNA-
TIONAL VERILOG HDL CONFERENCE, 4., Washington, DC, USA. Proceedings. . .
IEEE Computer Society, 1995. p.99–. (IVC ’95).

WANG, Z.; MAURER, P. M. LECSIM: a levelized event driven compiled logic simu-
lation. In: ACM/IEEE DESIGN AUTOMATION CONFERENCE, 27., New York, NY,
USA. Proceedings. . . ACM, 1990. p.491–496. (DAC ’90).

WESTE, N.; HARRIS, D. CMOS VLSI Design: a circuits and systems perspective.
USA: Addison-Wesley Publishing Company, 2010.

WHEELER, D. A. More Than a Gigabuck: estimating gnu/linux’s size. 2002. Available
at <http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html>. Accessed February
22, 2011.

WILE, B.; GOSS, J.; ROESNER, W. Comprehensive Functional Verification: the com-
plete industry cycle (systems on silicon). San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2005.

WILLIAMS, S. Icarus Verilog. 1999. Available at
<http://www.icarus.com/eda/verilog/>. Accessed November 16, 2010.

WONG, W. et al. Effect of test set size and block coverage on the fault detection effective-
ness. In: SOFTWARE RELIABILITY ENGINEERING, 1994. PROCEEDINGS., 5TH
INTERNATIONAL SYMPOSIUM ON. Proceedings. . . [S.l.: s.n.], 1994. p.230 –238.

118

YAN, C.; JONES, K. Efficient Simulation Based Verification by Reordering. In: DESIGN
AND VERIFICATION CONFERENCE. Proceedings. . . [S.l.: s.n.], 2010.

YAROM, I.; PATIL, V. Smart-lint: improving the verification flow. In: HAIFA VER-
IFICATION CONFERENCE ON HARDWARE AND SOFTWARE, VERIFICATION
AND TESTING, 2., Berlin, Heidelberg. Proceedings. . . Springer-Verlag, 2007. p.81–91.
(HVC’06).

YUAN, J. et al. Modeling design constraints and biasing in simulation using BDDs. In:
ICCAD ’99: PROCEEDINGS OF THE 1999 IEEE/ACM INTERNATIONAL CONFER-
ENCE ON COMPUTER-AIDED DESIGN, Piscataway, NJ, USA. Proceedings. . . IEEE
Press, 1999. p.584–590.

119

ATTACHMENTS

I Verilog testbench used to validate the simulator

module t_fsm();

reg [7:0] a;
reg [7:0] b;
reg grava;
reg clk;
reg rst;
wire [7:0] saida;

fsm fsm(
.a(a),
.b(b),
.clk(clk),
.rst(rst),
.saida(saida)
);

always begin
#1 clk = !clk;
a = $random;
b = $random;
end

initial begin
clk = 0;
rst = 0;
#1;
rst = 1;
#20000000 $finish();
end

endmodule

120

II Web browser rendering of a verification plan file

Figure II.1: Portion of a verification plan file when rendered by a web browser.

121

III Verilator testbench format

1 # i n c l u d e < v e r i l a t e d . h> / / D e f i n e s common r o u t i n e s
2 # i n c l u d e " Vfsm . h " / / From V e r i l a t i n g " fsm . v "
3 Vfsm *fsm ; / / I n s t a n t i a t i o n o f module
4 unsigned i n t main_t ime = 0 ; / / C u r r e n t s i m u l a t i o n t i m e
5 double s c _ t i m e _ s t a m p () { / / C a l l e d by $ t i m e i n V e r i l o g
6 re turn main_t ime ;
7 }
8

9 i n t main (i n t argc , char ** a rgv) {
10 V e r i l a t e d : : commandArgs (a rgc , a rgv) ;
11 / / Remember args
12 fsm = new Vfsm ; / / Cr ea t e i n s t a n c e
13 fsm−> r s t = 0 ; / / a s s e r t r e s e t
14

15 whi le (! V e r i l a t e d : : g o t F i n i s h ()) {
16 i f (main_t ime > 2) {
17 fsm−> r s t = 1 ; / / D e a s s e r t r e s e t
18 }
19

20 i f (main_t ime == 20000000) {
21 fsm−> f i n a l () ;
22 break ;
23 }
24

25 i f ((main_t ime % 2) == 0) {
26 fsm−>c l k = 0 ;
27 }
28 e l s e {
29 fsm−>c l k = 1 ;
30 fsm−>a = random () ;
31 fsm−>b = random () ;
32 }
33

34 main_t ime ++;
35 fsm−>e v a l () ;
36 }
37 }

Figure III.2: Verilator testbench format.

