

Dynamic Activity and Task Allocation
Supporting UAV Teams in Surveillance Systems

Edison Pignaton de Freitas*,** Alécio Pedro Delazari Binotto***,**
Carlos Eduardo Pereira** André Stork*** Tony Larsson*

*IDE – Halmstad University – Sweden
(e-mail: {edison.pignaton, tony.larsson}@hh.se).

**PPGC UFRGS – Brazil (e-mail:
cpereira@ece.ufrgs.br)

*** Fraunhofer IGD / TU Darmstadt – Germany,
(e-mail: {alecio.binotto, andre.stork}@igd.fraunhofer.de)

Abstract: The use of Unmanned Aerial Vehicles is increasing in the field of area patrolling and surveil-
lance. A great issue that emerge in designing such systems is the target workload distribution over a fleet
of UAVs, which generally have different capabilities of sensing and computing power. Targets should be
assigned to the most suitable UAVs in order to efficiently perform the end-user initiated missions. To
perform these missions, the UAVs require powerful high-performance platforms to deal with many dif-
ferent algorithms that make use of massive calculations. The use of COTS hardware (e.g., GPU) presents
an interesting low-cost alternative to compose the required platform. However, in order to efficiently use
these heterogeneous platforms in a dynamic scenario, such as in surveillance systems, runtime reconfigu-
ration strategies must be provided. This paper presents a dynamic approach to distribute the handling of
targets among the UAVs and a heuristic method to address the efficient use of the heterogeneous hard-
ware that equips these UAVs, with the goal to meet also mission timing requirements. Preliminary simu-
lation results of the proposed heuristics are also provided.

1. INTRODUCTION

Modern surveillance systems are employing Unmanned
Aerial Vehicles (UAVs) in conjunction with ground sensor
nodes in order to provide meaningful information to the end-
user [1]. A challenge that emerges from this trend is the dy-
namic allocation of targets detected by ground sensors to
UAVs, which will handle the targets by performing a given
activity such as tracking. In general, the UAVs used in this
kind of system have different capabilities in terms of comput-
ing platform resources and sensing devices, which make
them suitable to carry out missions, handling the targets pre-
sented in the surveillance area. This problem can be interpret-
ed as inter-node allocation, in which several activities, i.e.,
the activities that handle different targets, have to be allocat-
ed to certain UAVs that compose the system.

Moreover, another challenge is the so-called intra-node task
allocation in UAVs, since an activity is composed of several
tasks. This is an important issue as each UAV is supported by
heterogeneous computing units and different tasks can be al-
located and processed by different units. These characteristics
make impossible a pre-defined and static allocation, not only
because of the hardware heterogeneity, but also because of
the dynamics of the runtime scenario, where the UAVs have
to perform different activities, which require new tasks to be
processed. This problem becomes more challenging by the

fact that the mentioned tasks are constrained by timing re-
quirements, which crosscut different parts of the system, in-
creasing the allocation complexity at runtime.

In fact, the handling of real-time concerns requires several
mechanisms to control and monitor timing parameters and
properties spread over different parts of the system. Addition-
ally, the mechanisms related to runtime intra-node task allo-
cation, which implements a dynamic load balancing; also af-
fect several elements in a non-uniform way. Besides, all these
mechanisms and controls are not the main goal or functionali-
ty of any system, but must be present in order to achieve a
good scheduling and thus providing a better performance. As
these characteristics can be classified as non-functional cross-
cutting concerns, they are addressed by an aspect-oriented
approach presented by the authors in a previous work [2].

As a continuation of the work developed and reported by the
authors in [2], this paper presents a proposal to handle the
problems related to the inter- and intra-node allocation. A
strategy to distribute the handling of targets among UAVs
(inter-node) is described and, once the target is assigned to a
UAV, a heuristic needed to manage the dynamic task alloca-
tion among heterogeneous computing units (intra-node) is
proposed. The goal is to fulfill tasks’ timing requirements and
increase the system performance.

52 PREPRINTS OF WRTP/RTS. MRĄGOWO, 2009

The reminding of the text presents in Section II the scenario
description and the problem statement. In Section III, it is
described the strategy to distribute alarms among UAVs (in-
ter-node problem), followed by Section IV that presents the
approach to perform task allocation over the hardware plat-
form (intra-node problem). Simulation results are provided
in Section V and a discussion about related works in Sec-
tion VI. Finalizing, Section VII provides conclusions and di-
rections towards future works.

2. SCENARIO DESCRIPTION AND PROBLEM STATE-
MENT

Surveillance systems are useful for different purposes, de-
pending on the target applications. The current work focuses
on area surveillance applications, used for instance in border
line patrolling or for security assurance of critical areas.
Based on these applications, the formal definition of the sce-
nario and the problem specification are outlined in the fol-
lowing subsections.

2.1 Scenario Overview

The scenario assumed in the following is simply a large con-
tiguous area, which is modeled as a square having an area of
A km2 partitioned in a grid containing X columns by Y rows,
where X = Y (quadratic). Each cell is identified by its
Cartesian coordinates (x and y), covering a given part of the
surveillance area. All elements of the scenario (targets and
sensors) are supposed to occupy only one cell of the grid at a
time. One cell may be occupied by more than one element at
the same time.

In the surveillance area, targets are considered as non-autho-
rized vehicles or persons, or groups of them, which appear in
a non-deterministic way (modeled as a Poisson distribution
P(r), where r is the number of new targets that enter in the
surveillance area in a certain t time instant). A given target
τi

k is said to be of kind “k” and having an identifier “i”,
which represents its entrance order in the surveillance area.
Up to K possible kinds of targets may appear in the surveil-
lance area, from k = 1,…, K. Targets are supposed to be
non-static, but some may stop in a given part of the area and
stay there for a non-deterministic period of time (modeled as
a random time) before they continue to move. At each time
“t”, a target is located in a cell, is represented by (xτi(t),
yτi(t)). For each new target that enters in the area, its type is
randomly chosen. A snapshot of the area at a given time “t”
will provide a given number of targets, which is represented
by kt. The movement of the targets is considered to be with a
constant speed ||vτi||, however, different targets may have dif-
ferent speeds. In addition, targets may randomly change the
direction of their movement.

The entire surveillance system is composed by heteroge-
neous sensors, which have different sensing and movement
capabilities. There are “S” static sensors on the ground (sni,
i = 1,…, S) and “N” UAVs flying over the area (ui, i = 1,
…, N). It is assumed that a static sensor node on the ground
is capable to detect a target when it passes in its cell. When
it occurs, an alarm is issued, which is heard by all sensors

nodes (static or carried by UAVs) that are positioned a given
number of cells away from the alarm issuer node. This is a
tunable parameter according to the range of the communica-
tion technology used by the sensor nodes. The alarms con-
tain a timestamp with the time in which the target was de-
tected and the position of the node. The alarms are kept is-
sued until at least one UAV receives them.

The UAVs move autonomously over the surveillance area,
according to a given movement pattern described by the fi-
nal user when establishing the mission. The goal of this
work is not on the movement pattern itself and readers are
referred to [3] for more details about different approaches
that may be applicable. The idea is that the UAVs move ac-
cording to a predefined movement pattern and respond to the
events and handle detected targets - by them or by the sen-
sors on the ground - in an efficient way, combining their
abilities (e.g. capability to perform a given task over a target
depending of its type) and available resources.

When it comes to the available resources, UAVs that took
responsibility for handling of a given target may need addi-
tional computational resources during that work. This char-
acterizes unpredictable runtime timing conditions. This way,
they can communicate with other UAVs, requiring perform-
ing part of the work that is overloading its platform, for in-
stance, part of the image processing tasks.

In each time “t”, an ui is located in a cell, represented by
(xi(t), yi(t)). There is a set of actions (AC) that can be per-
formed by it in each cell (x, y) at a given time “t”, which is
represented by:

 { }trackanalyzesearchAC ,,=

The “search” action is associated with what the UAV has to
perform in order to detect a new target. The “analyze” action
is taken in order to gather detailed information about the de-
tected target, which is in fact the processing of the sensor
data, such as radar image processing. The “track” action
makes the UAV capable to keep track of the targets’ move-
ment, if that kind of target was chosen to be tracked by the
commands established in the mission directions.

During its movement, an UAV is continuously making deci-
sions, communicating or performing one of the defined ac-
tions. If an UAV is neither analyzing nor tracking a detected
target, it is by default searching for new targets. The UAVs
can communicate with nodes up to a number of cells distant
from itself. It is also a tunable parameter that may vary de-
pending on the communication technology used in the
UAVs. When an UAV detects a new target or receives an
alert, it communicates with the other UAVs that are in near-
by range in order to decide which one is the most likely to
respond that event.

2.2 Problem Statement

Based on the described scenario, the goal is to tackle two
problems that emerge from the scenario dynamicity: the de-
cision of which UAV will respond a given issued alarm (ac-

EDISON PIGNATON DE FREITAS ET. AL.: DYNAMIC ACTIVITY AND TASK ALLOCATION SUPPORTING UAV TEAMS

tion/activity); and the resource allocation on each UAV plat-
form in order to process the tasks related to the UAV action.
This way, the first problem is the target handling distribution
over UAVs and the second is the load-balancing of tasks in-
tra-UAV.

As the UAVs carry different sensors that are more or less
suitable for different kinds of targets and different weather
conditions, the sum of these factors have to be considered to
allocate a given target to the more appropriate UAV. In addi-
tion, taking into account that the UAV platform is generally
composed by heterogeneous hardware, the best allocation of
tasks to the available computing units need to be decided in
runtime since conditions vary according to the UAV activi-
ties performed in a given time.

In order to support the solution for the considered problems,
a formal definition of the sensor applicability is required for
the first problem and a generic model of the hardware plat-
form have to be provided for the second; both are formulated
in the following.

1. Sensor Applicability
Based on the type of target, the sensor device type and sta-
tus, and the weather conditions, it is possible for a UAV to
determine its applicability to perform a given activity to han-
dle a given target. This is expressed by an “applicability
function”, which translates the capability of a UAV (i) to
employ its sensor (type j) to perform a given activity over a
certain type of target (k), in a specific time instant (t).



 =−

=
otherwise

kjiftWet
t ji

j
i

kji
,0

),()(
)(,

,,

ςθ . (1)

where ςji(t) represents the sensor devices type and its status
over time, which is described by a linear function with pa-
rameters dictated by the type of the sensor; and is a function
that estimates the degree of degradation in the measure-
ments, offered by a sensor of type “j”, due to the current
weather conditions (temperature and humidity) at time “t”.
This function maps the weather conditions parameters into a
value representing the measurement degradation factor.

2. UAVs’ Hardware Platform
UAV systems often require high performance platforms to
deal with massive calculations. Due to the enhancement of
low-cost powerful hardware, such as GPUs, and the increas-
ing power offered by multi-core CPUs, an approach that
combines these processors aiming to build a UAV comput-
ing platform can offer a good solution in terms of cost and
performance. However, in order to take advantage of a hy-
brid solution, task allocation is a challenging problem.

A good strategy to obtain a performance gain in such hetero-
geneous platforms is to distribute the tasks of a UAV ac-
cording to its timing requirements, allocating in specific pro-
cessing units, exploring parallelism. Dynamic reconfigurable
load-balancing computing seems to be a potential paradigm
for these scenarios since it can deal with varying runtime
conditions as to (re)adapt the work balance according to dy-

namic changes and timing requirements. It will provide flex-
ibility and explore the high computational performance of
hybrid and multi-core architectures. Figure 1 depicts a
generic overview of a hybrid computing platform, presenting
the load-balancer module responsible for task allocation.

R e c o n f ig u r a b le P r o c e s s in g P la t f o r m

A c t io n1, T a s k N

A c t io n1, T a s k2

A c t io n1, T a s k1

A c t io n N, T a s k N

A c t io n N, T a s k2

A c t io n N, T a s k1

R u n-T im e R e c o n f ig u r a b le L o a d-B a la n c in g

C P U H w 1

R e q u ir e m e n ts

A lo c a t io n

H w 2

. . .

H w N. . .

P r o f ilin g R e c o n f ig u r a t io n

Fig. 1 – Intra-node task allocation overview.

3. INTER-NODE ALARM HANDLING DISTRIBUTION

In order to tackle the first problem, a heuristic based on the
evaluation of the utility in employing a given UAV to per-
form a given activity for a target is used. This problem is
mapped to a decision making problem, which is solved by
maximizing a multi-attribute utility function. This modeling
of the problem presents the three elements of a decision
making theory presented in [4] and [5]. It is considered as a
game in which the decision maker gathers information about
the environment state and, by taking advantage of the
knowledge about the conditions offered by the environment,
proposes an action to be performed, which is assessed in
terms of its utility, i.e., the gains that are originated from the
consequences of the decision maker choice of action.

The utility function is used to evaluate the task to be per-
formed over a target, which is defined by the commands es-
tablished in the mission directions. Then, a comparison of
the results provided by the utility function is assessed for
each alternative. Taking the one that has the maximum value
of these results, it is decided which UAV that will engage in
performing the task. In the long run, this approach will max-
imize the use of the entire system. This reduces the problem
to a maximization problem:

U
max

AC j t =max U i

AC
j θi , j ,k  t  ,C ei t  , pi  t  , p j  , Li  t  

(2)

w here θ is the sensor applicability function explained
above, C is the cost evaluation of remaining energy (e i (t)),
p i (t) is the current UAV position and p j is the position of
the target provided by the alarm. The last term, L i (t) , is the
current load of the hardware platform that supports the
UAV, in terms of the used percentage of the total capacity.

54

As the computation of (1) carries a certain degree of uncer-
tainty, due to the imprecision or incomplete information
about the weather conditions, as well as the precise location
of the target used in the computation of C , due to its
unpredictable (unknown) movement pattern, the utility
computation is done using a risk profile model, based on [6].

According to the referred work in [6], which models the
behaviour of investors in the stock market using utility
functions, the investors can be classified in different profiles.
These profiles represent investors more or less prone to the
risk when performing their trades, and they are represented
by different types of functions. The complete theory includes
additional details, such as coefficients to tune the degree of
the risk aversion and concerns about the most suitable types
of functions depending on other factors. However, in the
present approach a simplified model is adopted without all
the elements presented in the original theory.

The metaphor used the current proposal is to associate the
idea of risk profiles of the investors to profiles that can be
assigned to the UAVs in the sense that they can be more or
less prone to take risks when estimating their utility to
handle a given target. The UAVs that have better resource
conditions and powerful capabilities are more likely to risk
in computing their utility face the uncertainty of the input
data, as they can expect good results (due to the good
conditions), i.e. really be useful to handle a given target. On
the other hand, UAVs that are “weaker” in the sense of
having less capabilities and lower resources are more likely
to use a more conservative utility function.

This study considers the use of two functions to express the
profiles for the UAVs, a logarithmic one for the risk tolerant
UAVs and a quadratic one for the conservative ones.
Equation (3) shows the version for the more risk tolerant
UAVs, while (4) presents the one for those less risk tolerant.

(3)

 (4)

w here the valid interval for θ i,j,k , C and L is [0, 1].

4. INTRA-NODE DYNAMIC RECONFIGURATION
STRATEGY

The strategy to balance tasks over the aforementioned pro-
cessing units does not only consider a first balance – when
the application starts – but mainly evaluates the tasks during
the execution phase, i.e. at the system runtime. Executing in
the background, it should profile timing performance param-
eters of tasks in the computing units, in order to find possi-
ble optimal allocations. This leads to a dynamic scheduling

and reconfiguration due to changes in run-time conditions.
The strategy is divided in two main modules: profiling and
reconfigurable balancing.

4.1 Profiling

In order to achieve dynamic reconfigurable load-balancing,
some specific non-functional requirements play an important
role in tasks’ profiling. This work proposes an aspect-orient-
ed [7] approach to handle such requirements, as described in
[2] and summarized in the following.

The profiling to support load-balancing addresses specific
application requirements, which are related to the monitor-
ing and verifying of timing parameters focused on pre-de-
fined tasks. The handling of these requirements is spread
over the system, intertwined with several other features,
characterized as non-functional requirements. However, the
handling of non-functional requirements will make the sys-
tem maintainability, reuse, and evolution in current ap-
proaches such as pure object-oriented more difficult. It oc-
curs since the handling elements (such as timing parameters
probes, serialization mechanisms, task migration mecha-
nisms, among others) are not modularized in a single or few
system elements, but spread over the system. Any change in
one of the elements requires changes in different parts of the
system, what besides to be a tedious and error-prone task, do
not scale in the development of large applications. The ob-
servation of these drawbacks motivates the use of an aspect-
oriented approach that makes possible to address such con-
cerns in a modularized way, which separates the handling of
the non-functional concerns in specific elements, increasing
the system modularity, diminishing the coupling among ele-
ments, and though affecting positively the system maintain-
ability, reuse and evolution.

The work presented in [2] proposes the following aspects to
deal with concerns related to profiling: TimingVerifier
, NodeStatusRetrieval . The TimingVerifier
aspect is responsible to measure the time performance of a
task in terms of processor clocks (using the variables such as
delay and jitter). NodeStatusRetrieval estimates
information about the processing load of the each computing
unit. It is implemented using a metric that gives a weight
(meaning percentage of use) for each task.

4.2 Reconfigurable Balancing

The reconfiguration to balance to l oad of processing units
uses the information provided by the profiling, presented
above, and based on it, implements a scheduling strategy to
reallocate tasks according to the new scenario characte-
ristics.

As the reconfiguration mechanism also involves non-func-
tional requirements, they are also handled by aspects. The
first is the TaskAllocationSolver , which is
responsible for the scheduling strategy and also decides if a
task needs to be rescheduled to another available co-
processor, using the measurements taken by

EDISON PIGNATON DE FREITAS ET. AL.: DYNAMIC ACTIVITY AND TASK ALLOCATION SUPPORTING UAV TEAMS

TimingVerifier and NodeStatusRetrieval . For
its accomplishment, the heuristic approach (described in the
following) analyses a first assignment when the application
starts, and periodically performs the profiling and the
reconfiguration analysis. A stability analysis is also made in
order to avoid endless or costly reconfigurations. The second
aspect used is the TaskMigration , which is responsible
for the mechanisms that will actually perform the migration
of the tasks from one processing unit to another. Figure 2
shows the relationship between the mentioned aspects; for
more details, interested readers are referred to [2].

Fig. 2 – Aspects to support task allocation.
For the first assignment of tasks, the strategy is to pre-calcu-
late the performance of each task in each processing unit in a
standalone way, i.e., just one task is processed at a time in
one processing unit in a pre-processing phase. In this case,
estimated costs of a task in every execution unit will be gath-
ered – but, without considering the runtime environment –
and will be stored in a Performance Database . Then, the
first schedule can be performed as a common assignment
problem using Integer Linear Programming (ILP), similar to
the approach used in [8].

However, the ILP problem is of NP-hard complexity and
thus costly to be calculated every time in order to estimate
the optimal assignment. Aiming to optimize the calculation
of the assignment, some approaches concentrate on heuris-
tics, as presented in [9] and [8].

After the first assignment, information provided by the
profiler (designed using the mentioned aspects) is consid-
ered. Based on estimated costs (previously calculated using
the pre-processing approach), possible changes in the run-
time conditions, and new loaded tasks, one task can be
rescheduled to run in another processing unit, if the estimat-
ed time to be executed in the new hardware is less than the
time to be processed in the current unit.
The information used to calculate the rescheduling will then
be provided by the TimingVerifier aspect. All these
runtime parameters that could not be known beforehand may
influence the execution of the system and must be evaluated
periodically, leading to a large number of reconfiguration
analysis and decision tasks. Then, supposing that a deter-

mined task is going to be executed n times in a given time
window, the strategy bellow reschedules the formed queue
of task instantiations, giving a relation of gain, if the follow-
ing assumption occurs:

TreconfigPUnew∑
i=1

n

TtaskPUold iTtransferPUold i−

TtaskPUnewiTtransferPUnewi 

(5)

where TreconfigPUnew is the time to perform the reconfigu-
ration (composed mainly by data transfer from the cur-
rent processing unit to the new one if the task needs the
data processed until the time of the rescheduling);
TtaskPUold is the time performance of the task in the
current unit; TtransferPUold is the time for transferring
data from CPU to the current computing unit (via bus);
TtaskPUnew is the assumed time performance of the
task in the candidate processing unit; and, Ttransfer-
PUnew is the time for transferring data from CPU to the
candidate unit (via bus)

5. SIMULATION RESULTS

Simulations for the proposed surveillance system were de-
veloped using Shox [10], which is a Java-based wireless net-
work simulator, and GPLK [11], which is a tool intended to
solve large scale linear programming problems. The first
tool was used to perform the simulations of the alarm assign-
ment to the UAVs, while the second was used to simulate
the intra-UAV task allocation. The second tool used the out-
put of the first in order to take the information about when a
UAV was assigned with a new alarm, which triggered the
execution of new tasks over the supporting platform.

5.1 Simulation Setup

In the conducted simulation, the considered surveillance area
has dimensions 15 Km x 15 Km, in which 20000 ground
sensor nodes are randomly deployed with independent uni-
form probability (homogeneous Poisson point process in two
dimensions, which generates a geometrical random graph).
This distribution gives around 70% probability of the nodes
in the network to form a connected graph [12], for a commu-
nication range of 500 meters. Nine UAVs of three different
types, equally distributed, patrol the area, having a commu-
nication range of 2 Km, and flying at speeds from 100Km/h
up to 150Km/h. Two sets of simulations were performed:
one with ten targets entering in the surveillance area; and an-
other with twenty targets. A total of twenty executions were
performed for each of these sets. The target entrance in the
area is done according to the scenario specification provided
in Section II, and it can be of five different types, randomly
chosen.

The energy resources are randomly initiated with values bet-
ween 90% and 100% for all UAVs. These resources are con-
sumed according to a decreasing linear function per parts,
having the time as parameter, and weighted by the current
speed of the UAV in each of its parts. Sensor status is ran-
domly started for each UAV, starting from values between

56

70% and 90%, and may decrement after the employment of
the UAV on handling a target. It was considered that UAVs
with less than 30% of remaining energy resources or less
then 30% of sensor capability use the utility function pre-
sented in (4), while the others use the one presented in (3).

In the presented experiment, the computing architecture that
equips the UAVs is composed of one CPU and two types of
co-processors, two GPUs running CUDA. Figure 3 shows
the execution platform, where the Profiling gathers informa-
tion from the computing units and the Reconfiguration dis-
tributes the tasks.

Intra-U AV Run-T ime R econfigurable Load-Balancing

U AV H eterogeneous Platform

M ulti-core
C PU

GPU 1 GPU 2

Profiling
(T im ingVerifier)

R econfiguration
(T askAllocationSolver)

Fig. 3– UAVs Execution Platform with support for load-bal-
ancing.

5.2. Inter-node Alarm Distribution

In order to evaluate the efficiency of the alarm handling dis-
tribution among the UAVs, the mean utility achieved by the
use of the proposed approach described in Section III was
compared with the optimum value, which represents the best
utility fit UAV-target, i.e. use the most suitable UAV to han-
dle a given target. This is achieved by means of a global
knowledge of the system (an oracle view).

0,40

0,60

0,80

1,00

1,20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Experiment Run

N
o

m
a

liz
ed

 U
til

it
y

20 Targets

10 Targets

Optimum

Fig. 4– Normalized utility.

Figure 4 presents a plot of achieved values for each execu-
tion, normalized in relation to the optimum value. It is possi-
ble to observe that the presented heuristic achieved good re-
sults in both sets of runs. In average, the set of ten targets
achieved 80% of the optimum allocation, while the set of
twenty achieved 70%. This difference can be explained by
the fact that with more targets coming into the area, it is
probable that more UAVs are busy by the time of a new tar-
get appearance. However, this behavior was expected and it

does not represent a problem, as it is a matter of making the
right tuning of the system in terms of number of UAVs and
expected target entrance ratio.

5.3 A.Intra-node Resource Allocation

At the current stage of the project (reconfiguration and appli-
cation architecture design), the actual UAV sub-systems al-
gorithms, like Image Processing and Communication, were
not implemented. The described scenario was simulated by
creating new tasks at run-time, where each task has an esti-
mated cost to execute in each processing unit and a priority,
which changes “on the fly”. Table I exhibits the estimated
costs and first priorities for the groups of tasks.

Table 1 . Estimation Costs for Tasks Groups

Tasks Group
Estimated Costs

(scale: 1 to 6)
Priority

(scale: 1-
6)GPU 1 GPU2 CPU

Image Processing 1 4 6 1
Collision Avoid-

ance
3 2 5 2

Movement Control 2 2 3 1
Navigation 1 1 2 3

Communication 4 4 1 4
Mission Manage-

ment
5 5 1 6

As the TimingVerifier aspect gathers online data about
the execution of the tasks and the NodeStatusRe-
trieval gathers the computing units’ load parameters, the
TaskAllocationSolver decides that the current allo-
cation is possibly not the best one for the tasks that are wait-
ing to be processed. If confirmed, the reconfiguration takes
place by using the TaskMigration aspect, which moves
the tasks according to the new configuration decided by the
TaskAllocationSolver. In the provided simulation,
evidences were gotten that when many new refined images
are needed, the load-balancer tends to reallocate the Colli-
sion Avoidance tasks from the GPU1 to GPU2 (and then to
CPU) and new instances of the Image Processing group (re-
fined images) are assigned to be processed by GPU1 due to
the analysis “Priority versus Estimated Cost”. In this situa-
tion, migration costs were estimated based on the throughput
velocity of each computing unit bus (e.g., PCI, PCIExpress)
and the parameters considered on the equations (3) and (4).
For that estimation, Table II denotes the behavior of the dy-
namic reconfigurable load-balancer simulator in one of the
UAVs that compose the fleet.

The “first guess” represents one instantiation of each group
of tasks that is assigned to a PU; and with the dynamic cre-
ation of new groups (4, 8, and 12 groups) of the Image Pro-
cessing tasks, the assignment is changed and optimized, try-
ing to minimize the total execution time. Note that these val-
ues cannot represent the best assignment since the simulator
did not consider all parameters that influence the whole sys-
tem. As it is an ongoing work, more accurate data about the
reconfiguration will be provided along the refinement of the
simulator in order to represent the scenario as reliable as
possible

EDISON PIGNATON DE FREITAS ET. AL.: DYNAMIC ACTIVITY AND TASK ALLOCATION SUPPORTING UAV TEAMS

Table 2 . Estimation Costs for Tasks Groups

Tasks Group

1 st

G
u
e
s
s

Dynamic Image Processing Created
Tasks

4 8 12

Image Processing GPU1
GPU1

GP
U1

GPU1
GPU1

GPU1
GPU1
GPU2

Collision Avoid-
ance

GPU1 GPU2 GPU2 CPU

Movement Con-
trol

GPU2 GPU2 CPU CPU

Navigation GPU2 GPU2 GPU2 CPU
Communication CPU CPU CPU CPU
Mission Manage-

ment
CPU CPU CPU CPU

6. RELATED WORKS

In [13], a proposal to handle the problem of balance between
target search and response by a team of UAVs is provided.
The work evaluates the tradeoff between search and re-
sponse within a framework, presenting a predictive algo-
rithm that provides a great balance between these tasks. The
first difference between our approach and this related work
is that we handle only the response to and motion following
alarms, abstracting the UAVs movement planning to per-
form the search for new targets. This means that our focus is
in the work load distribution among the UAVs, which is rep-
resented by the distribution of the alarms among them. Be-
sides, this difference is also motivated by the peculiarity of
the two different missions in the context of the two works.
We focus in area surveillance, while they focus on target ac-
quisition. In the first, all the area most be covered, without
the assumptions of preferred locations to move, which is true
in the target acquisition they address

Although there are works on dynamic reconfiguration in
cluster computing, like [14], our approach concentrates on
task rescheduling in single desktop PUs. In this field, the
work of [8] implements dynamic reconfiguration of operat-
ing system services for a platform composed of CPU and
FPGA. The methods, based on heuristics, take into account
the idleness of the PUs and unused FPGA area to perform
the load-balance.

In addition, the programming models described on [9] give
an overview of current approaches targeting multi-core pro-
cessors, including the commercial RapidMind API. It is a C-
like model that abstracts the specific co-processors’ APIs,
generating target code dynamically for the supported PUs
(CPU, GPU, and the Cell) just before the first execution of
the application starts. At this time, it also automatically bal-
ances the workload (RapidMind parts of code) through the
available PUs using heuristics that assume certain PU idle-
ness, increasing the application performance. Our approach
is complementary; introducing dynamic rescheduling strate-
gies designed using aspects orientation and based on PUs
profiling and task performance over the application life-
time.

8. CONCLUSION AND FUTURE WORKS

This paper presented heuristics to solve two problems pre-
sented in surveillance systems: the distribution of targets
among the UAVs; and the intra-UAV load-balancing of
tasks that are required to perform the activities related to the
target handling. Simulation results show the suitability of the
proposed approach to address the related problems as it can
promote a better task scheduling over the processing unit at
runtime and assign dynamically the alarms to UAVs that are
able to efficiently handle it.

Currently, we are working in unifying the two modules of
the simulation in a unique tool and trying to define other re-
configuration strategies that can be even more suitable to ad-
dress the described problems. Moreover, the distribution of
tasks related to the handling of a given target across UAVs is
being analyzed. This feature would make it possible for a
UAV to send a task to be performed by another idle UAV in
its communication range. Preliminary simulation results of
this task distribution are reported in [15], but this is a feature
simulated separately, and thus it is not included in the frame-
work described in the current paper.

ACKNOWLEDGMENT

E. P. Freitas thanks the Brazilian Army for the grant to fol-
low the PhD program in Embedded Real-time Systems at
Halmstad University in cooperation with UFRGS.

A. P. D. Binotto thanks the support given by DAAD fellow-
ship and the Programme Alßan scholarship no.
E07D402961BR.

REFERENCES

[1] Erman, A.T., Hoesel, L., Havinga, P.: Enabling Mobility
in Heterogeneous Wireless Sensor Networks Cooperat-
ing with UAVs for Mission-Critical Management. IEEE
Wireless Communications. Vol. 15, Issue 6, 2008, pp.
38-46.

[2] Freitas, E. P., Binotto, A. P. D., Pereira, C. E., Stork, A.
and Larsson, T.: Dynamic reconfiguration of tasks ap-
plied to an UAV system using aspect orientation, Proc.
of The 2008 IEEE International Symposium on Parallel
and Distributed Processing with Applications (ISPA-
08), Sydney, Australia, Dec. 10-12, 2008.

[3] Gaudino, P., Schargel, B., Bonabeu, E., Clough, B. T.:
Swarm Intelligence: a New C2 paradigm with an Appli-
cation to Control of Swarms of UAVs. Proceedings of
8th ICCRTS Command and Control Research and Tech-
nology Symposium, 2003.

[4] Keeney, R. L., Raiffa, H.: Decision with Multiple Objec-
tives: Preferences and Value Trade-offs. John Wiley &
Sons, 1976.

[5] Raiffa, H.: Decision Analysis. Addison-Wesley, 1970.
[6] Luemberger, D.: Investiment Science, Oxford, 1998.
[7] Kiczales, G. et al. “Aspect-Oriented Programming”,

Proceedigns of European Conference for Object-Orient-
ed Programming, Springer-Verlag, 1997, pp. 220-240.

[8] Götz, M., Dittmann, F., Xie, T.: Dynamic Relocation of
Hybrid Tasks: A Complete Design Flow. In: Proceed-

58

ings of Reconfigurable Communication-centric SoCs
(ReCoSoc'07), Montpellier, 2007, pp. 31-38.

[9] McCool, M.: Scalable Programming Models for Mas-
sively Multicore Processors. Proceedings of the IEEE,
2008, vol. 96, no. 5, pp. 816-831.

[10] Lessmann, J., Heimfarth T., Janacik, P.: ShoX: An Easy
to Use Simulation Platform for Wireless Networks. In
Proceedings of Tenth International Conference on Com-
puter Modeling and Simulation, 2008, pp. 410-415.

[11] The GNU Project, “GLPK – GNU Linear Programming
Kit”, http://www.gnu.org/software/glpk/, Jun. 2008.

[12] Bettstetter, C.: On the minimum node degree and con-
nectivity of a wireless multihop network. in MobiHoc
’02: Proceedings of the 3rd ACM international sympo-
sium on Mobile ad hoc networking & computing, ACM,
New York, NY, USA, 2002, pp. 80–91.

[13] Jin, Y. Liao, Y., Minai, A. A., Polycarpou, M. M.: Bal-
ancing Search and Target Response in Cooperative Un-
manned Aerial Vehicle (UAV) Teams, IEEE Transac-
tions on System, Man, Cybernetics-Part B: Cybernetics,
vol. 36, nr. 3, p. 571-587, 2006.

