
 
   

Dynamic Activity and Task Allocation
Supporting UAV Teams in Surveillance Systems

Edison Pignaton de Freitas*,** Alécio Pedro Delazari Binotto***,**
Carlos Eduardo Pereira** André Stork*** Tony Larsson*

*IDE – Halmstad University – Sweden
(e-mail: {edison.pignaton, tony.larsson}@hh.se).

**PPGC UFRGS – Brazil (e-mail:
cpereira@ece.ufrgs.br)

*** Fraunhofer IGD / TU Darmstadt – Germany,
(e-mail: {alecio.binotto, andre.stork}@igd.fraunhofer.de)

Abstract: The use of Unmanned Aerial Vehicles is increasing in the field of area patrolling and surveil-
lance. A great issue that emerge in designing such systems is the target workload distribution over a fleet 
of UAVs, which generally have different capabilities of sensing and computing power. Targets should be 
assigned to the most suitable UAVs in order to efficiently perform the end-user initiated missions. To 
perform these missions, the UAVs require powerful high-performance platforms to deal with many dif-
ferent algorithms that make use of massive calculations. The use of COTS hardware (e.g., GPU) presents 
an interesting low-cost alternative to compose the required platform. However, in order to efficiently use 
these heterogeneous platforms in a dynamic scenario, such as in surveillance systems, runtime reconfigu-
ration strategies must be provided. This paper presents a dynamic approach to distribute the handling of 
targets among the UAVs and a heuristic method to address the efficient use of the heterogeneous hard-
ware that equips these UAVs, with the goal to meet also mission timing requirements. Preliminary simu-
lation results of the proposed heuristics are also provided. 

1. INTRODUCTION

Modern  surveillance  systems  are  employing  Unmanned 
Aerial  Vehicles (UAVs) in conjunction with ground sensor 
nodes in order to provide meaningful information to the end-
user [1]. A challenge that emerges from this trend is the dy-
namic  allocation  of  targets  detected  by  ground  sensors  to 
UAVs, which will handle the targets by performing a given 
activity such as tracking. In general, the UAVs used in this 
kind of system have different capabilities in terms of comput-
ing  platform  resources  and  sensing  devices,  which  make 
them suitable to carry out missions, handling the targets pre-
sented in the surveillance area. This problem can be interpret-
ed as inter-node allocation, in which several  activities,  i.e., 
the activities that handle different targets, have to be allocat-
ed to certain UAVs that compose the system.

Moreover, another challenge is the so-called intra-node task 
allocation in UAVs, since an activity is composed of several 
tasks. This is an important issue as each UAV is supported by 
heterogeneous computing units and different tasks can be al-
located and processed by different units. These characteristics 
make impossible a pre-defined and static allocation, not only 
because of the hardware heterogeneity,  but also because of 
the dynamics of the runtime scenario, where the UAVs have 
to perform different activities, which require new tasks to be 
processed.  This problem becomes more challenging by the 

fact  that  the mentioned tasks are constrained by timing re-
quirements, which crosscut different parts of the system, in-
creasing the allocation complexity at runtime.

In  fact,  the handling of real-time concerns  requires  several 
mechanisms  to  control  and  monitor  timing parameters  and 
properties spread over different parts of the system. Addition-
ally, the mechanisms related to runtime intra-node task allo-
cation, which implements a dynamic load balancing; also af-
fect several elements in a non-uniform way. Besides, all these 
mechanisms and controls are not the main goal or functionali-
ty of any system, but must be present in order to achieve a 
good scheduling and thus providing a better performance. As 
these characteristics can be classified as non-functional cross-
cutting concerns,  they are  addressed  by  an aspect-oriented 
approach presented by the authors in a previous work [2]. 

As a continuation of the work developed and reported by the 
authors in [2], this paper presents a proposal  to handle the 
problems related  to  the inter-  and intra-node  allocation.  A 
strategy  to  distribute the handling of  targets  among UAVs 
(inter-node) is described and, once the target is assigned to a 
UAV, a heuristic needed to manage the dynamic task alloca-
tion  among  heterogeneous  computing  units  (intra-node)  is 
proposed. The goal is to fulfill tasks’ timing requirements and 
increase the system performance. 
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The reminding of the text presents in Section II the scenario 
description and the problem statement. In Section III,  it is 
described the strategy to distribute alarms among UAVs (in-
ter-node problem), followed by Section IV that presents the 
approach to perform task allocation over the hardware plat-
form (intra-node problem). Simulation results are provided 
in Section V and a discussion about related works in Sec-
tion VI. Finalizing, Section VII provides conclusions and di-
rections towards future works.

2. SCENARIO DESCRIPTION AND PROBLEM STATE-
MENT

Surveillance systems are useful  for different  purposes,  de-
pending on the target applications. The current work focuses 
on area surveillance applications, used for instance in border 
line  patrolling  or  for  security  assurance  of  critical  areas. 
Based on these applications, the formal definition of the sce-
nario and the problem specification are outlined in the fol-
lowing subsections.

2.1  Scenario Overview

The scenario assumed in the following is simply a large con-
tiguous area, which is modeled as a square having an area of 
A km2 partitioned in a grid containing X columns by Y rows, 
where  X  =  Y  (quadratic).   Each  cell  is  identified  by  its 
Cartesian coordinates (x and y), covering a given part of the 
surveillance area. All elements of the scenario (targets and 
sensors) are supposed to occupy only one cell of the grid at a 
time. One cell may be occupied by more than one element at 
the same time. 

In the surveillance area, targets are considered as non-autho-
rized vehicles or persons, or groups of them, which appear in 
a non-deterministic way (modeled as a Poisson distribution 
P(r), where r is the number of new targets that enter in the 
surveillance area in a certain t time instant). A given target 
τi

k is  said  to  be  of  kind “k”  and having an  identifier  “i”, 
which represents its entrance order in the surveillance area. 
Up to K possible kinds of targets may appear in the surveil-
lance area,  from k = 1,…, K. Targets  are  supposed to be 
non-static, but some may stop in a given part of the area and 
stay there for a non-deterministic period of time (modeled as 
a random time) before they continue to move. At each time 
“t”,  a  target  is  located  in  a  cell,  is  represented  by (xτi(t), 
yτi(t)). For each new target that enters in the area, its type is 
randomly chosen. A snapshot of the area at a given time “t” 
will provide a given number of targets, which is represented 
by kt. The movement of the targets is considered to be with a 
constant speed ||vτi||, however, different targets may have dif-
ferent speeds. In addition, targets may randomly change the 
direction of their movement.  

The  entire  surveillance  system  is  composed  by  heteroge-
neous sensors, which have different sensing and movement 
capabilities. There are “S” static sensors on the ground (sni, 
i = 1,…, S) and “N” UAVs flying over the area (ui, i = 1,
…, N). It is assumed that a static sensor node on the ground 
is capable to detect a target when it passes in its cell. When 
it occurs, an alarm is issued, which is heard by all sensors 

nodes (static or carried by UAVs) that are positioned a given 
number of cells away from the alarm issuer node. This is a 
tunable parameter according to the range of the communica-
tion technology used by the sensor nodes. The alarms con-
tain a timestamp with the time in which the target was de-
tected and the position of the node. The alarms are kept is-
sued until at least one UAV receives them.

The UAVs move autonomously over the surveillance area, 
according to a given movement pattern described by the fi-
nal  user  when  establishing  the  mission.  The  goal  of  this 
work is not on the movement pattern itself and readers are 
referred to  [3] for more details about different approaches 
that may be applicable. The idea is that the UAVs move ac-
cording to a predefined movement pattern and respond to the 
events and handle detected targets - by them or by the sen-
sors  on the ground -  in  an efficient  way,  combining their 
abilities (e.g. capability to perform a given task over a target 
depending of its type) and available resources. 

When it comes to the available resources,  UAVs that took 
responsibility for handling of a given target may need addi-
tional computational resources during that work. This char-
acterizes unpredictable runtime timing conditions. This way, 
they can communicate with other UAVs, requiring perform-
ing part of the work that is overloading its platform, for in-
stance, part of the image processing tasks. 

In each time “t”, an ui is located in a cell,  represented by 
(xi(t), yi(t)). There is a set of actions (AC) that can be per-
formed by it in each cell (x, y) at a given time “t”, which is 
represented by:

 { }trackanalyzesearchAC ,,=  

The “search” action is associated with what the UAV has to 
perform in order to detect a new target. The “analyze” action 
is taken in order to gather detailed information about the de-
tected target,  which is in fact the processing of the sensor 
data,  such  as  radar  image  processing.  The  “track”  action 
makes the UAV capable to keep track of the targets’ move-
ment, if that kind of target was chosen to be tracked by the 
commands established in the mission directions.

During its movement, an UAV is continuously making deci-
sions, communicating or performing one of the defined ac-
tions. If an UAV is neither analyzing nor tracking a detected 
target, it is by default searching for new targets. The UAVs 
can communicate with nodes up to a number of cells distant 
from itself. It is also a tunable parameter that may vary de-
pending  on  the  communication  technology  used  in  the 
UAVs. When an UAV detects a new target or receives an 
alert, it communicates with the other UAVs that are in near-
by range in order to decide which one is the most likely to 
respond that event.

2.2 Problem Statement

Based on the described scenario,  the goal  is to tackle two 
problems that emerge from the scenario dynamicity: the de-
cision of which UAV will respond a given issued alarm (ac-
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tion/activity); and the resource allocation on each UAV plat-
form in order to process the tasks related to the UAV action. 
This way, the first problem is the target handling distribution 
over UAVs and the second is the load-balancing of tasks in-
tra-UAV.

As the UAVs carry different sensors that are more or less 
suitable for different kinds of targets and different weather 
conditions, the sum of these factors have to be considered to 
allocate a given target to the more appropriate UAV. In addi-
tion, taking into account that the UAV platform is generally 
composed by heterogeneous hardware, the best allocation of 
tasks to the available computing units need to be decided in 
runtime since conditions vary according to the UAV activi-
ties performed in a given time. 

In order to support the solution for the considered problems, 
a formal definition of the sensor applicability is required for 
the first problem and a generic model of the hardware plat-
form have to be provided for the second; both are formulated 
in the following.

1. Sensor Applicability
Based on the type of target, the sensor device type and sta-
tus, and the weather conditions, it is possible for a UAV to 
determine its applicability to perform a given activity to han-
dle  a  given  target.  This  is  expressed  by  an  “applicability 
function”,  which translates  the capability of a  UAV (i) to 
employ its sensor (type j) to perform a given activity over a 
certain type of target (k), in a specific time instant (t).


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where ςji(t) represents the sensor devices type and its status 
over time, which is described by a linear function with pa-
rameters dictated by the type of the sensor; and is a function 
that  estimates  the  degree  of  degradation  in  the  measure-
ments, offered by a sensor of type  “j”,  due to the current 
weather conditions (temperature and humidity)  at time “t”. 
This function maps the weather conditions parameters into a 
value representing the measurement degradation factor.

2. UAVs’ Hardware Platform 
UAV systems often require high performance platforms to 
deal with massive calculations. Due to the enhancement of 
low-cost powerful hardware, such as GPUs, and the increas-
ing  power  offered  by  multi-core  CPUs,  an  approach  that 
combines these processors aiming to build a UAV comput-
ing platform can offer a good solution in terms of cost and 
performance. However, in order to take advantage of a hy-
brid solution, task allocation is a challenging problem. 

A good strategy to obtain a performance gain in such hetero-
geneous platforms is  to distribute the tasks of a UAV ac-
cording to its timing requirements, allocating in specific pro-
cessing units, exploring parallelism. Dynamic reconfigurable 
load-balancing computing seems to be a potential paradigm 
for these scenarios  since it  can deal  with varying runtime 
conditions as to (re)adapt the work balance according to dy-

namic changes and timing requirements. It will provide flex-
ibility and explore the high computational  performance  of 
hybrid  and  multi-core  architectures.  Figure  1  depicts  a 
generic overview of a hybrid computing platform, presenting 
the load-balancer module responsible for task allocation. 
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Fig. 1 – Intra-node task allocation overview. 

3. INTER-NODE ALARM HANDLING DISTRIBUTION

In order to tackle the first problem, a heuristic based on the 
evaluation of the utility in employing a given UAV to per-
form a given activity for a target  is used. This problem is 
mapped to a decision making problem, which is solved by 
maximizing a multi-attribute utility function. This modeling 
of  the  problem presents  the  three  elements  of  a  decision 
making theory presented in [4] and [5]. It is considered as a 
game in which the decision maker gathers information about 
the  environment  state  and,  by  taking  advantage  of  the 
knowledge about the conditions offered by the environment, 
proposes  an  action  to  be  performed,  which  is  assessed  in 
terms of its utility, i.e., the gains that are originated from the 
consequences of the decision maker choice of action.

The utility function is used to evaluate the task to be per-
formed over a target, which is defined by the commands es-
tablished in the mission directions.  Then, a comparison of 
the results  provided by the utility function is  assessed for 
each alternative. Taking the one that has the maximum value 
of these results, it is decided which UAV that will engage in 
performing the task. In the long run, this approach will max-
imize the use of the entire system. This reduces the problem 
to a maximization problem:

U
max

AC j t =max U i

AC
j θi , j ,k  t  ,C ei t  , pi  t  , p j  , Li  t    

(2) 

w here θ is  the  sensor  applicability  function  explained 
above, C is the cost evaluation of remaining energy (e i (t) ), 
p i (t) is the current UAV position and p j is the position of 
the target provided by the alarm. The last term, L i (t) , is the 
current  load  of  the  hardware  platform  that  supports  the 
UAV, in terms of the used percentage of the total capacity. 
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As the computation of (1) carries a certain degree of uncer-
tainty,  due  to  the  imprecision  or  incomplete  information 
about the weather conditions, as well as the precise location 
of  the  target  used  in  the  computation  of  C ,  due  to  its 
unpredictable  (unknown)  movement  pattern,  the  utility 
computation is done using a risk profile model, based on [6]. 

According  to  the  referred  work  in  [6],  which  models  the 
behaviour  of  investors  in  the  stock  market  using  utility 
functions, the investors can be classified in different profiles. 
These profiles represent investors more or less prone to the 
risk when performing their trades, and they are represented 
by different types of functions. The complete theory includes 
additional details, such as coefficients to tune the degree of 
the risk aversion and concerns about the most suitable types 
of  functions  depending  on  other  factors.  However,  in  the 
present approach a simplified model is adopted without all 
the elements presented in the original theory. 

The metaphor used the current  proposal is to associate the 
idea of risk profiles of the investors to profiles that can be 
assigned to the UAVs in the sense that they can be more or 
less  prone  to  take  risks  when  estimating  their  utility  to 
handle a given target. The UAVs that have better resource 
conditions and powerful capabilities are more likely to risk 
in computing their utility face the uncertainty of the input 
data,  as  they  can  expect  good  results  (due  to  the  good 
conditions), i.e. really be useful to handle a given target. On 
the  other  hand,  UAVs  that  are  “weaker”  in  the  sense  of 
having less capabilities and lower resources are more likely 
to use a more conservative utility function. 

This study considers the use of two functions to express the 
profiles for the UAVs, a logarithmic one for the risk tolerant 
UAVs  and  a  quadratic  one  for  the  conservative  ones. 
Equation (3)  shows the version for  the more risk tolerant 
UAVs, while (4) presents the one for those less risk tolerant. 

 

 
(3) 

  (4) 

w here the valid interval for θ i,j,k , C and L is [0, 1]. 

4. INTRA-NODE DYNAMIC RECONFIGURATION 
STRATEGY

The strategy to balance tasks over the aforementioned pro-
cessing units does not only consider a first balance – when 
the application starts – but mainly evaluates the tasks during 
the execution phase, i.e. at the system runtime. Executing in 
the background, it should profile timing performance param-
eters of tasks in the computing units, in order to find possi-
ble optimal allocations. This leads to a dynamic scheduling 

and reconfiguration due to changes in run-time conditions. 
The strategy is divided in two main modules: profiling and 
reconfigurable balancing.

4.1 Profiling 

In order to achieve dynamic reconfigurable load-balancing, 
some specific non-functional requirements play an important 
role in tasks’ profiling. This work proposes an aspect-orient-
ed [7] approach to handle such requirements, as described in 
[2] and summarized in the following. 

The  profiling to  support  load-balancing  addresses  specific 
application requirements, which are related to the monitor-
ing and verifying of timing parameters focused on pre-de-
fined  tasks.  The  handling of  these  requirements  is  spread 
over  the  system,  intertwined  with  several  other  features, 
characterized as non-functional requirements. However, the 
handling of non-functional requirements will make the sys-
tem  maintainability,  reuse,  and  evolution  in  current  ap-
proaches such as pure object-oriented more difficult. It  oc-
curs since the handling elements (such as timing parameters 
probes,  serialization  mechanisms,  task  migration  mecha-
nisms, among others) are not modularized in a single or few 
system elements, but spread over the system. Any change in 
one of the elements requires changes in different parts of the 
system, what besides to be a tedious and error-prone task, do 
not scale in the development of large applications. The ob-
servation of these drawbacks motivates the use of an aspect-
oriented approach that makes possible to address such con-
cerns in a modularized way, which separates the handling of 
the non-functional concerns in specific elements, increasing 
the system modularity, diminishing the coupling among ele-
ments, and though affecting positively the system maintain-
ability, reuse and evolution. 

The work presented in [2] proposes the following aspects to 
deal with concerns related to profiling: TimingVerifier 
,  NodeStatusRetrieval .  The  TimingVerifier 
aspect is responsible to measure the time performance of a 
task in terms of processor clocks (using the variables such as 
delay and  jitter ).  NodeStatusRetrieval estimates 
information about the processing load of the each computing 
unit. It  is implemented using a metric that gives  a weight 
(meaning percentage of use) for each task. 

4.2 Reconfigurable Balancing 

The reconfiguration to balance to l oad of processing units 
uses  the  information  provided  by  the  profiling,  presented 
above, and based on it, implements a scheduling strategy to 
reallocate  tasks  according  to  the  new  scenario  characte-
ristics. 

As the reconfiguration mechanism also involves non-func-
tional requirements,  they are also handled by aspects.  The 
first  is  the  TaskAllocationSolver ,  which  is 
responsible for the scheduling strategy and also decides if a 
task  needs  to  be  rescheduled  to  another  available  co-
processor,  using  the  measurements  taken  by 
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TimingVerifier and  NodeStatusRetrieval . For 
its accomplishment, the heuristic approach (described in the 
following) analyses a first assignment when the application 
starts,  and  periodically  performs  the  profiling  and  the 
reconfiguration analysis. A stability analysis is also made in 
order to avoid endless or costly reconfigurations. The second 
aspect used is the TaskMigration , which is responsible 
for the mechanisms that will actually perform the migration 
of the tasks from one processing unit to another.  Figure 2 
shows the relationship between the mentioned aspects; for 
more details, interested readers are referred to [2]. 

 

Fig. 2 – Aspects to support task allocation. 
For the first assignment of tasks, the strategy is to pre-calcu-
late the performance of each task in each processing unit in a 
standalone way, i.e., just one task is processed at a time in 
one processing unit in a pre-processing phase. In this case, 
estimated costs of a task in every execution unit will be gath-
ered – but, without considering the runtime environment – 
and will be stored in a  Performance Database .  Then, the 
first  schedule  can be performed as  a  common assignment 
problem using Integer Linear Programming (ILP), similar to 
the approach used in [8]. 

However,  the ILP  problem is  of  NP-hard  complexity and 
thus costly to be calculated every time in order to estimate 
the optimal assignment. Aiming to optimize the calculation 
of the assignment, some approaches concentrate on heuris-
tics, as presented in [9] and [8]. 

After  the  first  assignment,  information  provided  by the 
profiler  (designed  using the mentioned aspects)  is  consid-
ered. Based on estimated costs (previously calculated using 
the pre-processing approach),  possible changes in the run-
time  conditions,  and  new  loaded  tasks,  one  task  can  be 
rescheduled to run in another processing unit, if the estimat-
ed time to be executed in the new hardware is less than the 
time to be processed in the current unit. 
The information used to calculate the rescheduling will then 
be  provided  by the  TimingVerifier aspect.  All  these 
runtime parameters that could not be known beforehand may 
influence the execution of the system and must be evaluated 
periodically,  leading to  a  large  number  of  reconfiguration 
analysis  and decision tasks.  Then,  supposing that  a  deter-

mined task is going to be executed  n times in a given time 
window, the strategy bellow reschedules the formed queue 
of task instantiations, giving a relation of gain, if the follow-
ing assumption occurs: 

TreconfigPUnew∑
i=1

n

TtaskPUold iTtransferPUold i−

TtaskPUnewiTtransferPUnewi   

(5) 

where TreconfigPUnew is the time to perform the reconfigu-
ration (composed mainly by data transfer from the cur-
rent processing unit to the new one if the task needs the 
data  processed  until  the  time  of  the  rescheduling); 
TtaskPUold is the time performance of the task in the 
current unit; TtransferPUold is the time for transferring 
data from CPU to the current computing unit (via bus); 
TtaskPUnew is  the  assumed  time  performance  of  the 
task  in  the  candidate  processing  unit;  and,  Ttransfer-
PUnew is the time for transferring data from CPU to the 
candidate unit (via bus) 

5. SIMULATION RESULTS 

Simulations for the proposed surveillance system were de-
veloped using Shox [10], which is a Java-based wireless net-
work simulator, and GPLK [11], which is a tool intended to 
solve  large  scale  linear  programming  problems.  The  first 
tool was used to perform the simulations of the alarm assign-
ment to the UAVs, while the second was used to simulate 
the intra-UAV task allocation. The second tool used the out-
put of the first in order to take the information about when a 
UAV was assigned with a new alarm, which triggered the 
execution of new tasks over the supporting platform. 

5.1 Simulation Setup 

In the conducted simulation, the considered surveillance area 
has dimensions 15 Km x 15 Km, in which 20000 ground 
sensor nodes are randomly deployed with independent uni-
form probability (homogeneous Poisson point process in two 
dimensions, which generates a geometrical random graph). 
This distribution gives around 70% probability of the nodes 
in the network to form a connected graph [12], for a commu-
nication range of 500 meters. Nine UAVs of three different 
types, equally distributed, patrol the area, having a commu-
nication range of 2 Km, and flying at speeds from 100Km/h 
up to 150Km/h. Two sets of simulations were performed: 
one with ten targets entering in the surveillance area; and an-
other with twenty targets. A total of twenty executions were 
performed for each of these sets. The target entrance in the 
area is done according to the scenario specification provided 
in Section II, and it can be of five different types, randomly 
chosen. 

The energy resources are randomly initiated with values bet-
ween 90% and 100% for all UAVs. These resources are con-
sumed according to a decreasing linear function per parts, 
having the time as parameter, and weighted by the current 
speed of the UAV in each of its parts. Sensor status is ran-
domly started for each UAV, starting from values between 
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70% and 90%, and may decrement after the employment of 
the UAV on handling a target. It was considered that UAVs 
with less than 30% of remaining energy resources  or less 
then 30% of sensor capability use the utility function pre-
sented in (4), while the others use the one presented in (3). 

In the presented experiment, the computing architecture that 
equips the UAVs is composed of one CPU and two types of 
co-processors,  two GPUs running CUDA. Figure 3 shows 
the execution platform, where the Profiling gathers informa-
tion from the computing units and the Reconfiguration dis-
tributes the tasks. 

Intra-U AV Run-T ime R econfigurable Load-Balancing

U AV H eterogeneous Platform

M ulti-core 
C PU

GPU  1 GPU  2

Profiling 
(T im ingVerifier)

R econfiguration
(T askAllocationSolver)

 

Fig. 3– UAVs Execution Platform with support for load-bal-
ancing. 

5.2. Inter-node Alarm Distribution 

In order to evaluate the efficiency of the alarm handling dis-
tribution among the UAVs, the mean utility achieved by the 
use of the proposed approach described in Section III  was 
compared with the optimum value, which represents the best 
utility fit UAV-target, i.e. use the most suitable UAV to han-
dle a given  target.  This is  achieved by means of a global 
knowledge of the system (an oracle view). 
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Fig. 4– Normalized utility. 

Figure 4 presents a plot of achieved values for each execu-
tion, normalized in relation to the optimum value. It is possi-
ble to observe that the presented heuristic achieved good re-
sults in both sets of runs. In average, the set of ten targets 
achieved 80% of the optimum allocation, while the set of 
twenty achieved 70%. This difference can be explained by 
the fact  that  with more  targets  coming into the area,  it  is 
probable that more UAVs are busy by the time of a new tar-
get appearance. However, this behavior was expected and it 

does not represent a problem, as it is a matter of making the 
right tuning of the system in terms of number of UAVs and 
expected target entrance ratio. 

5.3 A.Intra-node Resource Allocation 

At the current stage of the project (reconfiguration and appli-
cation architecture design), the actual UAV sub-systems al-
gorithms, like Image Processing and Communication, were 
not implemented. The described scenario was simulated by 
creating new tasks at run-time, where each task has an esti-
mated cost to execute in each processing unit and a priority, 
which changes “on the fly”.  Table I exhibits the estimated 
costs and first priorities for the groups of tasks. 

Table 1 . Estimation Costs for Tasks Groups 

Tasks Group
Estimated Costs 

(scale: 1 to 6)
Priority 

(scale: 1-
6)GPU 1 GPU2 CPU

Image Processing 1 4 6 1
Collision Avoid-

ance
3 2 5 2

Movement Control 2 2 3 1
Navigation 1 1 2 3

Communication 4 4 1 4
Mission Manage-

ment
5 5 1 6

As the TimingVerifier aspect gathers online data about 
the  execution  of  the  tasks  and  the  NodeStatusRe-
trieval gathers the computing units’ load parameters, the 
TaskAllocationSolver decides that the current  allo-
cation is possibly not the best one for the tasks that are wait-
ing to be processed. If confirmed, the reconfiguration takes 
place by using the TaskMigration aspect, which moves 
the tasks according to the new configuration decided by the 
TaskAllocationSolver.  In  the  provided  simulation, 
evidences were gotten that when many new refined images 
are needed, the load-balancer tends to reallocate the Colli-
sion Avoidance tasks from the GPU1 to GPU2 (and then to 
CPU) and new instances of the Image Processing group (re-
fined images) are assigned to be processed by GPU1 due to 
the analysis “Priority versus Estimated Cost”. In this situa-
tion, migration costs were estimated based on the throughput 
velocity of each computing unit bus (e.g., PCI, PCIExpress) 
and the parameters considered on the equations (3) and (4). 
For that estimation, Table II denotes the behavior of the dy-
namic reconfigurable load-balancer simulator in one of the 
UAVs that compose the fleet.

The “first guess” represents one instantiation of each group 
of tasks that is assigned to a PU; and with the dynamic cre-
ation of new groups (4, 8, and 12 groups) of the Image Pro-
cessing tasks, the assignment is changed and optimized, try-
ing to minimize the total execution time. Note that these val-
ues cannot represent the best assignment since the simulator 
did not consider all parameters that influence the whole sys-
tem. As it is an ongoing work, more accurate data about the 
reconfiguration will be provided along the refinement of the 
simulator  in  order  to  represent  the  scenario  as  reliable  as 
possible
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Table 2 . Estimation Costs for Tasks Groups 

Tasks Group

1 st 

G
u
e
s
s 

Dynamic Image Processing Created 
Tasks

4 8 12

Image Processing GPU1
GPU1

GP
U1

GPU1
GPU1

GPU1
GPU1
GPU2

Collision Avoid-
ance

GPU1 GPU2 GPU2 CPU

Movement Con-
trol

GPU2 GPU2 CPU CPU

Navigation GPU2 GPU2 GPU2 CPU
Communication CPU CPU CPU CPU
Mission Manage-

ment
CPU CPU CPU CPU

6. RELATED WORKS

In [13], a proposal to handle the problem of balance between 
target search and response by a team of UAVs is provided. 
The  work  evaluates  the  tradeoff  between  search  and  re-
sponse  within  a  framework,  presenting  a  predictive  algo-
rithm that provides a great balance between these tasks. The 
first difference between our approach and this related work 
is that we handle only the response to and motion following 
alarms,  abstracting  the  UAVs  movement  planning  to  per-
form the search for new targets. This means that our focus is 
in the work load distribution among the UAVs, which is rep-
resented by the distribution of the alarms among them. Be-
sides, this difference is also motivated by the peculiarity of 
the two different missions in the context of the two works. 
We focus in area surveillance, while they focus on target ac-
quisition. In the first, all the area most be covered, without 
the assumptions of preferred locations to move, which is true 
in the target acquisition they address

Although  there  are  works  on  dynamic  reconfiguration  in 
cluster computing, like [14], our approach concentrates on 
task rescheduling in single  desktop PUs.  In  this  field,  the 
work of [8] implements dynamic reconfiguration of operat-
ing system services  for a  platform composed of CPU and 
FPGA. The methods, based on heuristics, take into account 
the idleness of the PUs and unused FPGA area to perform 
the load-balance. 

In addition, the programming models described on [9] give 
an overview of current approaches targeting multi-core pro-
cessors, including the commercial RapidMind API. It is a C-
like model that  abstracts  the specific  co-processors’  APIs, 
generating  target  code dynamically  for  the  supported PUs 
(CPU, GPU, and the Cell) just before the first execution of 
the application starts. At this time, it also automatically bal-
ances the workload (RapidMind parts of code) through the 
available PUs using heuristics that assume certain PU idle-
ness, increasing the application performance. Our approach 
is complementary; introducing dynamic rescheduling strate-
gies  designed  using aspects  orientation and based  on PUs 
profiling  and  task  performance  over  the  application  life-
time.

8.  CONCLUSION AND FUTURE WORKS

This paper presented heuristics to solve two problems pre-
sented  in  surveillance  systems:  the  distribution  of  targets 
among  the  UAVs;  and  the  intra-UAV  load-balancing  of 
tasks that are required to perform the activities related to the 
target handling. Simulation results show the suitability of the 
proposed approach to address the related problems as it can 
promote a better task scheduling over the processing unit at 
runtime and assign dynamically the alarms to UAVs that are 
able to efficiently handle it. 

Currently,  we are working in unifying the two modules of 
the simulation in a unique tool and trying to define other re-
configuration strategies that can be even more suitable to ad-
dress the described problems. Moreover, the distribution of 
tasks related to the handling of a given target across UAVs is 
being analyzed.  This feature would make it  possible for a 
UAV to send a task to be performed by another idle UAV in 
its communication range. Preliminary simulation results of 
this task distribution are reported in [15], but this is a feature 
simulated separately, and thus it is not included in the frame-
work described in the current paper.
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