
Adaptable Middleware for Heterogeneous Wireless 
Sensor Networks 
Edison Pignaton Freitas1,2, Per Söderstam1, Wagner Ourique de Morais1, Carlos 
Eduardo Pereira2,3, and Tony Larsson1 
1 School of Information Science, Computer and Electrical Engineering, Halmstad 
University, Halmstad, Sweden 
2 Instituto de Informática, Universidade Federal do Rio Grande do Sul, Brazil 
3Dep. Engenharia Elétrica, Universidade Federal do Rio Grande do Sul, Brazil 
{edison.pignaton, per.soderstam, wagner.demorais, tony.larsson}@hh.se, 
cpereira@ece.ufrgs.br 
Abstract. The use of sensor networks in different kinds of sophisticated 
applications is emerging due to several advances in sensor technologies and 
embedded systems. However, the integration and coordination of heterogeneous 
sensors is still a challenge, especially when the target application environment 
is susceptible to changes that the system must track and adapt itself to in order 
to fulfil the users’ requirements. These changing scenarios require services 
being provided in different places during the system runtime, and to fulfil this, a 
support for adaptability is needed. In this paper we present some initial ideas to 
use multi-agents in a middleware that aims to provide the necessary support to 
sophisticated sensor network applications. 
Keywords: Agent-based Adaptable Middleware, Wireless Sensor Networks, 
Heterogeneous Sensor Networks. 
1 Introduction 
Sensor network applications are becoming more useful with the possibility to use 
different kinds of mobile sensors to provide more sophisticated functionalities [1] and 
be deployed also in complex scenarios, like where context-awareness is needed [2]. 
However, to support those emerging applications, an underlying infrastructure is 
necessary, and the current proposal is the use of middleware, such as TinyDB [3] and 
COUGAR [4]. The main drawbacks of these state-of-the-art middleware’s that make 
them not very suitable for future envisaged applications, are the assumptions that the 
network is composed only by a homogeneous set of basic or meagre sensors, and thus 
a lack of the intelligence in the network to provide adaptability required to face 
changing operation conditions. Adaptability is a major concern that needs to be 
mainly supported for two reasons. The first is that long deployment time of wireless 
sensor networks may require flexibility in order to make changes according to the 
user requirements that may probably change within the usage life time of the network. 
The second is the fact that wireless sensor networks are being deployed in highly 
17 
dynamic environments, implying that applications have to be flexible enough in order 
to continue being useful in changing scenarios. 
This paper presents a work in progress related to the development of an adaptive 
middleware to support sophisticated sensor network applications that must change 
their behaviour according to influences from the environment and the application 
demands. The idea is to use a multi-agent approach to help in the following issues: 
adaptation by code migration and decision planning. 
The remaining of the text is organized as follows: Section 2 presents the overview 
of the proposed middleware. Section 3 describes how the use of agents will help in 
providing middleware adaptation. Section 4 presents some related works and finally, 
section 5 ends the paper with some concluding remarks and future works directions. 
2 Overview of the Proposed Approach 
The general idea is to develop a flexible middleware that can be used to support 
applications in heterogeneous sensor networks. By heterogeneity we mean that nodes 
in the network may have different sensing capabilities, computation power, and 
communication abilities and running on different hardware and operating system 
platforms. The goal is that this middleware fits both meagre and rich sensors. Meagre 
sensors are those with limited resources capabilities, such as piezoelectric resistive tilt 
sensors, with limited processing support and communication capability. Rich sensors 



comprehend powerful devices like radar, cameras or infrared sensors that are 
supported by moderate to high computing and communication resources. In order to 
achieve this goal, it must thus be lightweight, while being scalable in order to provide 
the demands of more sophisticated sensors. The proposed middleware might handle a 
node’s resource usage, in order to assist in distributing tasks among different nodes 
that are capable to accomplish them. Another feature that the middleware may 
provide is the quality of the data required to reply a certain user’s demand. Better 
results can be achieved by choosing the correct set of sensors to perform the 
measurements and collect data. These sensors can be static or moving, on the ground 
or flying over the target area in which the observed phenomenon is occurring. The 
mobility characteristic is also related to the heterogeneity that the middleware will 
address. 
The input to the sensor network system, coordinated by the proposed middleware, 
will be seen as a “mission” that the whole network has to accomplish. In order to 
allow that, a high-level Mission Description Language (MDL) is being formulated 
based on the C/ATLAS test language [5]. This language will allow the user to specify 
- at a high level of abstraction - the data in which he/she is interested, including 
constraints regarding timing and location limits, as well as the measurement rate or 
accuracy desired. The proposed language will also allow hierarchical description of 
the mission goals, with establishment of priorities and other refined details, for 
instance, an application of comparison metrics to evaluate the how well the mission is 
being accomplished. 
Given that the middleware must perform its actions also in very dynamic and 
changing scenarios, one has to take into account that a set of sensors chosen in the 
18 
beginning of a mission may not be the most adequate during for the whole mission. 
As an example, an area surveillance system receives the mission to survey an area that 
may not allow traffic of certain kinds of vehicles. Ground sensors are set to alarm in 
the presence of undesired vehicles, and unmanned aerial vehicles equipped with 
visible-light cameras are set to fly to the area where a ground sensor has issued an 
alarm to verify the occurrence. However, a sudden change in the weather, for instance 
becoming cloudy and foggy, turns the employment of a visible-light camera useless. 
The adaptation to this type of change in operational conditions will be supported by 
the middleware in order to choose a better alternative, among a set of options, for 
instance by choosing an infrared camera instead. 
The middleware is divided in three parts or layers indicating that they are partly 
using each other in a specific order. Figure 1 presents the overview of the layers of the 
proposed middleware, and a description of each layer is provided in the following. 



 
 
 
Fig. 1. Overview of the Middleware Layers. 
 
The bottom is called Infrastructure Layer. This layer is responsible for the 
interaction with the underlying operating system and for the management of the 
sensor node resources, like available communication capacities, remaining energy, 
and sensing capabilities. This layer also coordinates the resource sharing based on 
application needs passed through the upper layers. 
The intermediate layer is called Common Services Layer. This layer provides 
services that are common to different kinds of applications, such as QoS negotiation 
and control, and quality of data assurance. 
The top layer is called Domain-Services Layer and has the goal to support 
problem-domain specific needs, such as data fusion support and specific data 
semantic support. 
Multiple applications can run concurrently in the network. The middleware handles 
resource sharing and provides data sharing among applications that need the same 
type of data, allowing a better energy use in resource constrained nodes. In powerful 
19 
nodes, the middleware can provide more complex services aimed to handle rich data, 
like those related to image processing, and pattern matching. This also means that 
such nodes can take some of the burden from more resource constrained nodes. 
3 Agent-Based Adaption 
As stated before, the use of agents in the proposed middleware should help in the task 
of providing adaptive behaviour. To achieve this goal these agents are divided in two 
classes. The first is responsible for adaptation features in the services provided by the 
middleware, using code migration and updating. The second handles reasoning 
involved in the decision planning concerning the entire network. In the following 
these two ideas are explained, as well as an example of adaptation is provided. 
3.1 Adaptation by Code Migration 
As the network are composed by heterogeneous sensor nodes, those nodes that have 
constraints about their energy consumption, memory space or processing power, 



should run a minimum number of tasks as possible. However, as they are supposed to 
be used in dynamic environments, with changing conditions, requiring different kinds 
of handling, different task set allocations must be used in order to fulfil the actual 
needs in a certain time interval. We propose to use the idea of multiple mobile agents 
to provide services that can be used by the node if the agent is allocated in that node. 
We call them service-agents. This technique is not new; there are related works like 
Agilla [6] that use the same approach. However, our approach uses also multi-agents 
to decide which service-agent is needed in each node of the network at a certain time. 
We also consider other technologies to help in the middleware adaptation, like aspectorientation 
and component-based design, although not discussed further in this paper. 
We refer to [7] for more details about these two technologies. 
The service-agents can be allocated in the Common Services Layer or in the 
Domain Services layer, according to the type of the services they provide. Several 
service-agents can run in a single node, depending on the computation and memory 
limitations of the hardware platform. Meagre platform nodes usually need to allocate 
simpler service-agents, but more powerful nodes can host more sophisticated serviceagents 
providing more complex services. 
Service-agents can migrate from one node to another, clone and move to another 
node, or simply be unallocated, leaving space for another service-agent. The simple 
migration is used when its services are needed in other locations, and thus no more in 
the present one. The clone of a service-agent occurs when its services also are needed 
in another node, and it is unallocated when there is no node that needs its services. 
This flexibility of service-agents allows the desired adaptation of the network face 
changes in the environment that require different runtime services availability. 
20 
3.2 Adaptation Planning 
We propose the use of a multi-agent approach to distribute intelligence over the 
network in order to provide a distributed way to decide several key issues about the 
network setup and configuration during its runtime. As our target applications are 
heterogeneous wireless sensor networks deployed in changing environments, and so, 
demanding system adaptations, we need a way to reason about the necessary changes 
and how to implement them. 
The basic idea is that each node attached to the network receives a set of tasks 
(Node-Missions) to perform, and a type of agent, called planning-agent that is in 
charge of help the node in the accomplishment of its node-missions. A node-mission 
characterizes the node contribution to the whole system mission achievement, which 
is called Global-Mission. The node’s internal tasks are called Node-Tasks, and they 
represent the finer-grained tasks that must be performed by a node to accomplish its 
node-missions. Node-tasks are related to the individual nodes concerns, for example 
power consumption handling and sensor capabilities, as well as the management of 
the services provided by the node. 
The planning-agent is responsible for monitoring information about the current 
node’s and assigned node-tasks state during the system runtime, including available 
resources, e.g. communication bandwidth and energy. As some condition changes in 
the environment, like when the weather changes or if one kind of measurement is no 
more possible. For instance, the planning agent has to reason about the node-mission 
assigned to its node’s, and the service-agent(s) that perform the necessary services 
that the node has to provide. They also have to take in account the available resources 
to accomplish the node-mission. The planning-agents in all nodes perform this 
reasoning and, by a consensus, agree in a new distribution of the service-agents in 
order to accomplish the global-mission assigned to the network or in the employment 
of a different set of sensors due to a certain change in the network or environment 
conditions. 
3.2 Example of Adaptation 
As we stated before, the intention in using both planning-agents and service-agents 
is to help in the adaption of the system, face changes in the operational conditions due 



to environments or user requirements changes. In Figure 2, an example of a change in 
operation conditions followed by an adaptation is provided. 
In the scenario presented in Figure 2, the network receives a mission, which is 
partitioned in four sub-missions, one for each sensor node. Service-agents are 
distributed around the sensor nodes according to the initial conditions to accomplish 
their sub-missions. In the left part of the Figure 2, t1 represents the initial 
configuration established for sensor node 1 and 2 to accomplish their respective submissions. 
However, a change in operating conditions occurs, due to environment or 
user requirements change. The initial configuration does not meet anymore the system 
needs to accomplish the mission. So, planning-agents allocated in the nodes exchange 
information and agree in a new configuration, what occurs in time t2, in the middle of 
21 
the Figure 2. After the agreement, a service-agent from node 1 is migrated to node 2 
and one service-agent from node 2 is unallocated, as shown in t3. 
 

 
 
Fig. 2. Changing Scenario and Adaptation Example 
 
4 Related Work 
Code replication and migration are ideas that have inspired parts of the present 
proposal. Some state-of-the-art middleware for sensor networks uses this kind of 
ideas, as discussed in the following. 
Impala [8] is a middleware used in applications dedicated to the study of wildlife. 
It has some strength in relation to adaptabilities, update and fault-tolerance mostly due 
to its event-based programming with highly modularized code. The drawbacks of this 
approach are that it has no support for data fusion and that the domain application is 
rather simplistic. Comparing with our proposal, we use multi-agents not only to move 
functionalities within the system, but also to provide intelligent behaviour and 
reasoning to support mission and environment adaptations. 
Agilla [6] is the first mobile agent middleware of WSN implemented in TinyOS 
[9]. This approach uses agents that can move from one node to another, and it also 
allows multiple agents to run in the same node. These characteristics provide the 
desired features of energy saving, as the agents can run near to the data avoiding 
unnecessary communication, and it allows multiple applications to run concurrently in 
the network. The major drawbacks are related to the lack of an authentication policy 



to monitor agents’ activities, and the difficult maintainability due to its programming 
model. We have some ideas in our work that go close to the ones presented in Agilla. 
However, the same comments made regarding Impala fits also in a comparison with 
Agilla. Another drawback is that Agilla runs only over TinyOS, and we propose not 
to be restricted to one operating system. Agilla use the mobile agents only to run 
application-specific tasks, while in our approach, a broader idea is proposed, using the 
agents to provide services that can be more specific to a certain domain application 
22 
(being hosted in the Domain Services Layer), or more general, supporting different 
kind of applications (agents hosted in the Common Services Layer). 
Maté [10] consists of a virtual machine which runs atop of TinyOS hiding 
asynchrony and race conditions. Its strength is represented by the division of the 
program into small self-replicating capsules that are self-forwarding and selfpropagating. 
The major drawbacks are that it has high energy consumption and that 
its programming model is not flexible enough to support a wide range of applications; 
an update of a capsule can not be done only in a single node, it is spread over the 
whole network. On the other hand, we propose to support the flexibility to run a 
broader range of applications, adapting, updating or modifying only specific nodes in 
the network, and like this also save energy, as only the nodes that need a certain 
adaptation are reached. This feature also focuses the support for heterogeneity. 
5 Concluding Remarks and Future Work 
This paper reports about an ongoing project that is in its initial stage. The study of 
literature in the area of wireless sensor networks indicated that there is a need for 
research in the area of adaptable middleware for heterogeneous sensor networks [1] 
[11]. Wireless Sensor Networks - composed both by small and simple resource 
constrained sensors as well as more sophisticated sensor nodes - need an approach 
that find the best trade-off to handle the different capabilities in order to provide 
meaningful information based on the gathered data. 
An ongoing study is being performed in order to find the best suited partitioning of 
services to be hosted in each of the layers of the proposed middleware. In relation to 
that, the group is also discussing the best possible distribution of functionalities 
among components and services provided by agents. It is an important issue as we 
intend to address heterogeneous nodes with different capabilities that can 
accommodate different sets of services. Another important topic under discussion is 
the formal definition of the MDL (Mission Description Language). Some directions 
are under analysis in which a promise one is the use of scripts, such as those used in 
SensorWare [12], but with a higher abstraction level approach. 
However, as this work is in its initial phase, we did not discuss about underlying 
details like how to achieve consensus among the planning-agents yet. It is certainly a 
major concern that we have to address during the development of the planning 
strategy and the methods for system coordination. Related works in this area, such as 
[13], are being analysed. Besides that, we are aware about the energy issues related to 
this concern. The message exchange in order to achieve the consensus among 
planning-agents must be minimal. Another important topic that we are analysing is 
how to implement the agents running space and the coordination among these spaces. 
Two ideas considered are the use of tuple space, as used by Agilla and a virtual 
machine like proposed in Maté [10]. The advantages and drawbacks of each are being 
studied as well as the search for other alternatives. 
23 
References 
1. D. Culler, D. Estrin, and M. Srivastava, “Overview of sensor networks,” IEEE Computer, 
vol. 37, no. 8, pp. 41–49, 2004. 
2. K. Henricksen and J. Indulska. A software engineering framework for context-aware 
pervasive computing. In 2nd IEEE International Conference on Pervasive Computing and 
Communications (PerCom), pages 77–86. IEEE Computer Society, March 2004. 
3. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB: An acquisitional query 
processing system for sensor networks. ACM Transactions on Database Systems, 



30(1):122–173, 2005. 
4. P. Bonnet, J. E. Gehrke, and P. Seshadri. Towards sensor database systems. In 2nd 
International Conference on Mobile Data Management (MDM), volume 1987 of Lecture 
Notes, 2001. 
5. IEEE Std 716-1995, 1995. IEEE standard test language for all systems- 
Common/Abbreviated Test Language for All Systems (C/ATLAS), IEEE, Inc. 
6. C.-L. Fok, G.-C. Roman, and C. Lu, “Rapid development and flexible deployment of 
adaptive wireless sensor network applications,” in Proceedings of the 24th International 
Conference on Distributed Computing Systems (ICDCS’05), 2005. 
7. A. Tesanovic, et al. “Aspects and Components in Real-Time System Development: Towards 
Reconfigurable and Reusable Sofftware”, Journal of Embedded Computing, IOS Press, v.1, 
n.1, 2005. 
8. T. Liu and M. Martonosi, “Impala: A middleware system for managing autonomic, parallel 
sensor systems,” in ACM SIGPLAN Symposium on Principles and Practice of Parallel 
Programming, 2003. 
9. TinyOS website. [Online]. Available: http://webs.cs.berkeley.edu/tos/ 
10. P. Levis and D. Culler, “Maté: A tiny virtual machine for sensor networks,” in International 
Conference on Architectural Support for Programming Languages and Operating Systems, 
San Jose, CA, USA, Oct. 2002. [Online]. Available: citeseer.ist.psu.edu/levis02mate.html 
11.K. Romer, O. Kasten, and F. Mattern, “Middleware challenges for wireless sensor 
networks,” ACM SIGMOBILE Mobile Communication and Communications Review, vol. 
6, no. 2, 2002. 
12. A. Boulis, C.-C. Han, and M. B. Srivastava. Design and implementation of a framework for 
efficient and programmable sensor networks. In MobiSys ’03: Proceedings of the 1st 
international conference on Mobile systems, applications and services, pages 187–200, New 
York, NY, USA, 2003. ACM Press. 
13. Y. Elmaliach, N. Agmon and G. Kaminka, “Multi-Robot Area Patrol under Frequency 
Constraints”, in Proc. of 2007 IEEE International Conference on Robotics and Automation, 
IEEE Computer Society, 2007, pp. 385-390. 
 
 
Acknowledgments 
We would like to acknowledge Kristoffer Lidström and Andreas Persson for the 
value contributions in discussions about this paper. 
 
 


