
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
ESCOLA DE ENGENHARIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

MAURICIO DALL OGLIO FARINA

HARDWARE-INDEPENDENT
FIRMWARE DEVELOPMENT

METHODOLOGY

Porto Alegre
2024

MAURICIO DALL OGLIO FARINA

HARDWARE-INDEPENDENT
FIRMWARE DEVELOPMENT

METHODOLOGY

Thesis presented to Programa de Pós-Graduação
em Engenharia Elétrica of Universidade Federal do
Rio Grande do Sul in partial fulfillment of the re-
quirements for the degree of Master in Electrical
Engineering.
Area: Control and Automation

ADVISOR: Prof. Dr. Edison Pignaton de Freitas

Porto Alegre
2024

MAURICIO DALL OGLIO FARINA

HARDWARE-INDEPENDENT
FIRMWARE DEVELOPMENT

METHODOLOGY

This thesis was considered adequate for obtaining
the degree of Master in Electrical Engineering and
approved in its final form by the Advisor and the
Examination Committee.

Advisor:
Prof. Dr. Edison Pignaton de Freitas, UFRGS
Doctor by the University of Halmstad, Sweden and by the Uni-
versidade Federal do Rio Grande do Sul, Brazil

Examination Committee:

Prof. Dr. João Cesar Netto, UFRGS
Doctor by the Université Catholique de Louvain, Belgium

Prof. Dr. Leandro Buss Becker, UFSC
Doctor by the Universidade Federal do Rio Grande do Sul, Brazil

Prof. Dr. Carlos Eduardo Pereira, UFRGS
Doctor by the University of Stuttgart, Germany

Coordinator of PPGEE:
Prof. Dr. Jeferson Vieira Flores

Porto Alegre, July 2024.

ABSTRACT

Unlike other forms of development, the way firmware development is designed is
somewhat outdated. It is usual to come across whole systems implemented in a cross-
dependent monolithic way. In addition, the software of many implementations is hardware-
dependent. Hence, significant hardware changes may result in extensive firmware imple-
mentation reviews that can be time-consuming and lead to low-quality ports, which may
represent an important challenge for embedded system applications that undergo frequent
evolution. To address this problem, this work proposes a firmware development method-
ology that allows reuse and portability while improving the firmware development life
cycle. In addition, the typical mistakes of a novice software developer can be reduced
by employing this methodology. Moreover, these developers can get up-to-speed with
the project and improve their skills much faster by following the guidelines and archi-
tecture proposed in this work. The proposed methodology defines team member roles,
development workflows and a multi-layer modular architecture. Additionally, it provides
guidelines, rules, standards, conventions, and best practices for firmware development. To
evaluate the proposed methodology, two case studies were conducted. First, a simple IoT
system project was refactored for this methodology model and the results were compared
with the legacy project. Second, the comparison between legacy and new project met-
rics of a more complex real-world project were analyzed. In both cases, the comparison
demonstrated that the proposed methodology can substantially improve portability, reuse,
modularity, and other firmware factors.

Keywords: Embedded Systems, Embedded Development, Firmware Architecture,
Development Methodology.

RESUMO

Ao contrário de outras formas de desenvolvimento, a maneira como o desenvolvi-
mento de firmware é realizada é um tanto desatualizada. Não é incomum encontrar sis-
temas inteiros implementados de forma monolítica e com dependências cruzadas. Além
disso, o software de muitas implementações é dependente do hardware. Portanto, mudan-
ças significativas no hardware podem resultar em extensas revisões de implementação de
firmware que podem consumir tempo e levar a versões de baixa qualidade, o que pode re-
presentar um problema importante para aplicações de sistemas embarcados que evoluem
com muita frequência. Para lidar com esse problema, este trabalho propõe uma metodolo-
gia de desenvolvimento de firmware embarcado que permite reutilização e portabilidade,
ao mesmo tempo em que melhora o ciclo de vida do desenvolvimento de firmware. Além
disso, ao empregar essa metodologia, os erros típicos de um desenvolvedor de software
iniciante podem ser reduzidos. Além disso, esses desenvolvedores podem ter uma rápida
rampa de aprendizagem do projeto e melhorar suas habilidades de desenvolvimento se-
guindo as diretrizes e arquitetura propostas neste trabalho. A metodologia proposta define
funções dos membros da equipe, fluxos de trabalho de desenvolvimento e uma arquitetura
modular de várias camadas. Além disso, ele fornece diretrizes, regras, padrões, conven-
ções e melhores práticas para o desenvolvimento de firmware embarcado. Para avaliar a
metodologia proposta, foram conduzidos dois estudos de caso. Primeiro, um projeto sim-
ples de sistema IoT foi refatorado para este modelo de metodologia e os resultados foram
comparados com o projeto legado. Segundo, a comparação entre as métricas da versões
legado e novo de um projeto real e mais complexo foram analisadas. Para ambos os ca-
sos, a comparação demonstrou que a metodologia proposta pode apresentar melhorias
substanciais na portabilidade, reutilização, modularidade e outros aspectos do firmware.

Palavras-chave: Sistemas Embarcados, Desenvolvimento de Sistemas Embarcados,
Arquitetura de Firmware, Metodologia de Desenvolvimento.

LIST OF FIGURES

Figure 1 – OS Used in Current Embedded Project 24
Figure 2 – Projection of the future OS usage in Embedded Project 24
Figure 3 – Development Workflow Flowchart 42
Figure 4 – Maintenance Workflow Flowchart 43
Figure 5 – Firmware Architecture Levels UML Component Diagram 44
Figure 6 – UML Class Diagram for the Example of Robot Modules 51
Figure 7 – Display Interface Library UML Class Diagram 66
Figure 8 – UML Class Diagram for Case Study 1 System’s Design 73
Figure 9 – Effective File Lines of Code Distribution for Case Study 1 79
Figure 10 – Effective Function Lines of Code Distribution for Case Study 1 . . . 81
Figure 11 – Maximum Nesting Level Distribution for Case Study 1 82
Figure 12 – McCabe’s Cyclomatic Complexity Distribution for Case Study 1 . . . 83
Figure 13 – Maintainability Index Distribution for Case Study 1 84
Figure 14 – Effective File Lines of Code Distribution for Case Study 2 90
Figure 15 – Effective Function Lines of Code Distribution for Case Study 2 . . . 91
Figure 16 – Maximum Nesting Level Distribution for Case Study 2 92
Figure 17 – McCabe’s Cyclomatic Complexity Distribution for Case Study 2 . . . 93
Figure 18 – Maintainability Index Distribution for Case Study 2 95

LIST OF TABLES

Table 1 – McCabe Cyclomatic Complexity value vs. the risk of bugs 28
Table 2 – The risk of bug injection as the Cyclomatic Complexity rises 28
Table 3 – Simple Maintainability Index Range Values 29
Table 4 – Code Standard Works Comparison 32
Table 5 – Modularity Works Comparison . 33
Table 6 – Portability Works Comparison . 34
Table 7 – Methodology Standard Files . 49
Table 8 – Interface Domain . 53
Table 9 – Device Domain . 56
Table 10 – Class Domain . 59
Table 11 – Library Domain . 66
Table 12 – Application Domain . 69
Table 13 – Case Study 1 Region Overview . 78
Table 14 – File Lines of Code results for Case Study 1 80
Table 15 – Effective Function Lines of Code results for Case Study 1 80
Table 16 – Maximum Nesting Level results for Case Study 1 82
Table 17 – McCabe’s Cyclomatic Complexity results for Case Study 1 82
Table 18 – Risk of Bugs and Changes of Bug Injection results for Case Study 1 . 83
Table 19 – Code Paths for Case Study 1 . 83
Table 20 – Maintainability Index results for Case Study 1 84
Table 21 – Case Study 1 Dependency Map for Legacy Project 85
Table 22 – Case Study 1 Dependency Map for New Project 85
Table 23 – Frame Processing Time Performance Evaluation 87
Table 24 – Case Study 2 Region Overview . 88
Table 25 – File Lines of Code results for Case Study 2 89
Table 26 – Effective Function Lines of Code results for Case Study 2 91
Table 27 – Maximum Nesting Level results for Case Study 2 91
Table 28 – McCabe’s Cyclomatic Complexity results for Case Study 2 93
Table 29 – Code Paths for Case Study 2 . 94
Table 30 – Risk of Bugs and Changes of Bug Injection results for Case Study 2 . 94
Table 31 – Maintainability Index results for Case Study 2 95

LIST OF LISTINGS

Listing 1 – Example CORE Interface Module for a UART 52
Listing 2 – Example of TARGET implementation for MCU A 52
Listing 3 – Example of TARGET implementation for MCU B 52
Listing 4 – Robot Example: I2C Interface Module Implementation Fragments . . 53
Listing 5 – Example of Instance-Specific versus Instance Handler Implementation 55
Listing 6 – Robot Example: Servo Motor Device Module Implementation Frag-

ments . 56
Listing 7 – Robot Example: Joint Class Module Implementation Fragments . . . 59
Listing 8 – Robot Example: Claw Class Module Implementation Fragments . . . 60
Listing 9 – Robot Example: Interface Arm Robot Class Module Implementation

Fragments . 61
Listing 10 – Robot Example: Three Joint Arm Robot Class Module Implementa-

tion Fragments . 63
Listing 11 – Robot Example: Robot Library Module Implementation Fragments . 67
Listing 12 – Legacy Project Calibration Process Fragments 74
Listing 13 – New Project Calibration Application Module Fragments 76
Listing 14 – New Project MQTT Client Interface Library Module Fragments . . . 77

LIST OF ABBREVIATIONS

3JAR 3 Joint Arm Robot

API Application Programming Interface

ARCH Architect

ARIC Arm Robot Interface Class

ASMI Average Simple Maintainability Index

CORE Core Project

COUP Module Coupling

CPU Central Processing Unit

CS1 Case Study 1

CS2 Case Study 2

DEV Developer

DMA Direct Memory Access

ELOC Effective Lines of Code

ELOCFI Effective Lines of Code per File

ELOCFU Effective Lines of Code per Function

ESP-DIF Espressif IoT Development Framework

FIFO First-In First-Out

GPU Graphics Processing Unit

HAL Hardware Abstraction Layer

I/O Input/Output

I2C Inter-Integrated Circuit

IC Integrated Circuit

IDE Integrated development environment

IoT Internet of Things

IRQ Interrupt Request

ISR Interrupt Service Routine

LCD Liquid Crystal Display

LEGP Legacy Project

LOC Lines of Code

LOCFI Lines of Code per File

LOCFU Lines of Code per Function

LTG Luminator Technology Group

MAIN Maintainer

MCU Microcontroller Unit

MMU Memory Management Unit

MNL Maximum Nested Level

MPU Microprocessor Unit

MVG McCabe’s Cyclomatic Complexity

NEWP New Project

NFC Novice Firmware Choice

NUMA Non-Uniform Memory Access

OOC Object Oriented C

OOP Object Oriented Programming

OPS DevOps

OS Operating System

RAM Random Access Memory

RT Real-Time

RTOS Real-Time Operating System

SMI Simple Maintainability Index

SPECS Target Project Domain Specifications

TARGET Target Project

TEST Tester

TELOC Total Effective Lines of Code

TLOC Total Lines of Code

UART Universal Asynchronous Receiver / Transmitter

CONTENTS

1 – INTRODUCTION . 13
1.1 – Objectives and Contribution . 15
1.2 – Work Organization . 16

2 – BACKGROUND CONCEPTS REVIEW 18
2.1 – Firmware . 18
2.2 – Object-Oriented Programming . 18
2.2.1 – Object-Oriented C . 19
2.3 – Hardware Abstraction Layer . 19
2.4 – Real-Time Systems . 20
2.4.1 – Soft and Hard Real-Time Constraints . 21
2.4.2 – Bare-Metal . 22
2.4.3 – Real-Time Operating Systems . 22
2.5 – Quality Attributes . 25
2.5.1 – Modularity . 25
2.5.2 – Portability . 25
2.5.3 – Maintainability . 25
2.6 – Code Evaluation Metrics . 26
2.6.1 – Lines of Code . 26
2.6.2 – McCabe’s Cyclomatic Complexity . 27
2.6.3 – Maximum Nesting Level . 28
2.6.4 – Simple Maintainability Index . 28
2.6.5 – Module Coupling . 29

3 – RELATED WORKS . 30
3.1 – C Code Standard . 30
3.2 – Modularity . 32
3.3 – Portability . 33
3.4 – Maintainability . 35
3.5 – Similar Works . 35

4 – THE PROPOSED METHODOLOGY 37
4.1 – Team Roles . 37
4.2 – Workflows . 41
4.3 – Firmware Architecture . 44
4.3.1 – Target Project . 45
4.3.2 – Third-Party . 46
4.3.3 – Core Project . 47

4.4 – Conventions . 47
4.4.1 – Coding Standard . 48
4.4.2 – Prefixes . 48
4.4.3 – Standard Files . 49
4.4.4 – Documentation . 49
4.4.5 – Domains . 49
4.5 – Robot Example . 50
4.6 – Layer 1 Interfaces . 50
4.7 – Layer 2 Domains . 54
4.7.1 – Project Domain . 54
4.7.2 – External Domain . 54
4.8 – Layer 2 Module Types . 55
4.8.1 – Devices . 55
4.8.2 – Classes . 57
4.8.3 – Libraries . 65
4.9 – Layer 3 Applications . 68

5 – CASE STUDIES . 71
5.1 – Case Study 1 . 72
5.1.1 – Code Comparison . 73
5.1.2 – Region Analysis . 78
5.1.3 – Lines of Code . 79
5.1.4 – Maximum Nesting Level . 81
5.1.5 – McCabe’s Cyclomatic Complexity . 81
5.1.6 – Simple Manintaibility Index . 83
5.1.7 – Module Coupling . 84
5.2 – Case Study 2 . 85
5.2.1 – Performance Analysis . 86
5.2.2 – Region Analysis . 87
5.2.3 – Lines of Code . 88
5.2.4 – Maximum Nesting Level . 91
5.2.5 – McCabe’s Cyclomatic Complexity . 92
5.2.6 – Simple Manintaibility Index . 94
5.2.7 – Module Coupling . 94

6 – CONCLUSIONS . 96

REFERENCES . 99

APPENDIX A – DEVELOPMENT STANDARD 108
A.1 – Standard Rules . 108
A.2 – Formatting and Indentation Rules . 108
A.2.1 – White Space Rules . 109
A.3 – Comments and Code Documentation Rules 110
A.4 – General Rules . 113
A.5 – Naming Rules . 114
A.5.1 – Files . 114
A.5.2 – Data Types . 114
A.5.3 – Variables . 115
A.5.4 – Functions, Macros and ISR . 116

A.6 – Module Rules . 117
A.7 – Preprocessors Rules . 118
A.8 – Variable Rules . 118
A.8.1 – Structures, Unions, Enumerates . 119
A.8.2 – Fixed-Width Integers . 120
A.8.3 – Booleans . 121
A.8.4 – Floating Point . 121
A.9 – Operations Rules . 121
A.10 –Statement Rules . 122
A.11 –Function Rules . 123

13

1 INTRODUCTION

Application software developers have many frameworks and methodologies with ready-
made solutions and tons of information on how to architect, structure, develop, and main-
tain their systems. In contrast, embedded software developers have to deal with different
hardware platforms and vendor-directed frameworks that commonly result in projects
with customized and specialized architectures that usually do not apply to other projects.
In light of that, embedded software still requires improvements in the development pro-
cess and methodology to provide a more flexible and robust firmware development pro-
cess like other more mature software areas (FAHMIDEH et al., 2022)(SOLOVEV; YUL-
DASHEV, 2023).

The firmware that is currently being developed is written in a somewhat outdated
manner. Each product development cycle is limited to no code platforms or reuse, with
reinvention being a significant concern among development teams. A common example is
when development teams opt to develop their own in-house scheduler instead of using an
available RTOS (BENINGO, 2017). Similarly, teams may also develop custom protocols
for their IoT devices rather than making use of available ones such as Matter (CONNEC-
TIVITY STANDARDS ALLIANCE, 2024). Another problem is that most firmware is set
in a cross-dependent monolithic way. As a result, it becomes tricky to debug, maintain,
and introduce new features into the software while it becomes less reusable and portable.
This type of undocumented change is common on open-source platforms, where each
programmer changes features according to their preferences.

Novice developers often lack guidance when developing firmware, which, coupled
with their inexperience, may compromise their understanding of the firmware architec-
ture. Also, there exists a noticeable gap between the skill set expected by industries from
embedded system professionals and the curriculum offered by the universities (DEEPA
et al., 2024). As a consequence, when attempting to add a new feature or fix a bug, these
developers may introduce their changes in the wrong places or in a non-standard manner.
As a result, bugs may be introduced in areas outside the expected code context, reducing
the quality and maintainability of the firmware.

To mitigate this problem, it is necessary to establish a clear and standardized path for

14

firmware development, which can be followed by both novice and experienced develop-
ers. To address that, methodologies and frameworks have been objects of research over
the years. They make it possible to abstract low-level details, allowing developers to fo-
cus on a specific functionality without dealing directly with matters of complexity, which
enables the development of new applications. These advantages are possible because
their development involves the employment of best practices in software engineering,
such as the use of design principles for writing clean and high-quality code (MARTIN,
2017), applying design patterns, and defining a robust, scalable, and reusable architec-
ture (FOWLER, 2012) that dispense with the most tedious tasks associated with MCU
development (TREMAROLI, 2023).

Most proposals in the literature provide methods that depend on conventional tech-
niques adapted from software engineering. However, since embedded software has no-
table differences from traditional software, researchers have been tasked with proposing
methodologies that can specifically cover the firmware lifecycle aspects (GUERRERO-
ULLOA; RODRÍGUEZ-DOMÍNGUEZ; HORNOS, 2023).

For example, even though many embedded devices are designed to last for a short
time, they constantly face unexpected situations that may reduce their lifespan. One
scenario is unforeseen circumstances that may require devices to adopt extra routines,
shortening their battery lives. For example, in a Wireless Sensor Network, an IoT node
close to the sinks may be overwhelmed by high traffic, resulting in energy overheads
(HORSTMANNM et al., 2023). Moreover, power failures are the norm rather than acci-
dental (JIA et al., 2022), and, thus, inevitably, all these devices will soon reach the end of
their life cycle, some, early.

Firmware maintenance usually takes up a large portion of a product’s life cycle and it
is needed to correct design errors and to adapt the software to the never-ending needs of
an evolving application scenario (KOPETZ; STEINER, 2022). Implementing automated
testing may substantially reduce costs, but conducting automated tests for embedded sys-
tems is a considerable challenge, and in the case of disorganized firmware, it can become
an unsustainable task.

At all events, device replacement is a “bound-to-happen” issue that must be addressed.
However, at the time of replacement, the components used in the original devices may
no longer be available. Several factors may drive companies to change their products
to ensure their availability (FARINA; DOS ANJOS; DE FREITAS, 2023). For exam-
ple, DUNN (2021) discusses the impacts of the COVID-19 pandemic on global supply
chains, highlighting how the microchip shortage has forced companies to revise consoli-
dated projects to make use of alternative components available on the market. However,
in many situations, unless mechanisms that abstract and encapsulate platform-specific el-
ements are supported, the software developed for a given platform will seldom be portable
to a different one (FRÖHLICH; WANNER, 2008). In that direction, a methodology

15

that considers the specificity of embedded systems, such as hardware and communica-
tion mechanisms, would be a significant contribution to the industry (FERREIRA et al.,
2022).

Seeking solutions, the Hardware Abstraction Layer (HAL) is a well-established con-
cept that has been widely used in embedded systems development and can help address
those challenges. HALs simplify the underlying hardware usage by abstracting its inher-
ent complexity in a more ergonomic API. As a result, they can enhance firmware porta-
bility, facilitate software reusability, and reduce overall development costs (SIMMANN;
VEERANNA; KRIESTEN, 2024)(KRÖNING, 2023). However, even well-architected
firmware may lose its reusability and portability if developers violate or bypass conven-
tions or if inexperienced developers make unsupervised changes to the production code.

1.1 Objectives and Contribution

This work attempts to bridge those gaps by introducing a firmware development
methodology to support teams in designing, developing, and maintaining firmware. By
providing standardized modules based on different concepts and structuring them into a
multi-layer hierarchical structure, the methodology defines a generic modular architecture
that can decouple several parts of systems. As a result of that, problems become simpler
to isolate, and new features can be easily introduced. Besides improving maintainability,
the methodology also enables projects to be portable and share reusable modules.

However, achieving and maintaining high-quality firmware requires further care be-
sides describing an architecture. Therefore, the proposed methodology also defines roles,
workflows, guidelines, and standards that were designed to simplify and organize oper-
ational aspects, capacitate inexperienced developers, and promote collaboration. With a
clear understanding of the development process and a facilitated comprehension of the
system architecture, developers can become less prone to diverge from the architecture
definitions, structures, and rules, which results in fewer mistakes and more consistent
outcomes.

In the 1980s, Brooks and Bullet declared that there is no silver bullet for software de-

velopment (BROOKS, 1987), which is still applicable today. The embedded world cov-
ers an extensive universe that requires different development approaches. The proposed
methodology aims at a fraction of MCU-based systems where the firmware resources
are less constrained and can be developed in a more generic format. For example, mod-
ern MCUs are designed to address the most common requirements for a given group of
applications. Consequently, systems may require a given MCU based on the provided
peripherals rather than a minimal processor power or memory size.

From managing limited resources to timing constraints of real-time systems, em-
bedded software often presents particular requirements (PASSIG HORSTMANN; CON-

16

RADI HOFFMANN; FRÖHLICH, 2023). Projects that apply the proposed methodology
are expected to present extra overhead compared with hardware-specific designs. How-
ever, this is acceptable since these systems are not expected to exist at the edge of the
available MCU resources. By sacrificing some extra resources available, projects can
then benefit from a more modular and abstract architecture.

The structure provided by the proposed methodology allows projects to be designed
for mono-thread (Bare-Metal) or to make use of RTOS for multi-thread capabilities. Al-
though RTOS can be applied, this methodology was not designed to address the imple-
mentation of safety-critical systems or hard real-time approaches. Finally, systems based
on application processors or sophisticated SoM equipped with advanced features, includ-
ing GPU, NUMA, or multiple heterogeneous core architectures, are beyond the scope of
this approach.

The main research contributions of this study are as follows:

• Provide a firmware development methodology that improves processes and life cy-
cle phases of embedded projects;

• Define a standardized and generic modular architecture for firmware that improves
portability, reuse, and maintainability; and

• Establish development standards and lay down guidelines for firmware develop-
ment to reduce the risk of mistakes being made by novice developers while not
limiting or restricting the scope of advanced developers;

To evaluate the quality of the resulting code developed and the benefits introduced by
this methodology, code metrics were used to compare two projects with their respective
legacy versions. For the first project, an author’s previous work was used to demonstrate
the use of the methodology and evaluate results for a small-scope project. The second
project is based on a real product, and its evaluation indicates the improvements of using
the methodology in a large-scope project.

1.2 Work Organization

This work has 6 chapters:
Chapter 1 presents the contextualization of the theme and the objectives of the work.
Chapter 2 presents essential embedded development concepts that support the devel-

opment of the proposed methodology.
Chapter 3 presents a directed study on related works, along with a comparison with

the present work.
Chapter 4 presents the complete methodology structure, team roles, workflows and

architecture.

17

Chapter 5 presents two case studies to apply and evaluate the methodology. The first
case demonstrates the methodology and evaluates the results. The second case evaluates
the results of a real-world system.

Chapter 6 presents the conclusions obtained with the development of the methodology
and the implementations of the proposed case studies. Finally, directions for future work
are discussed.

18

2 BACKGROUND CONCEPTS REVIEW

2.1 Firmware

Firmware can be defined as software that can instruct the hardware to perform func-
tions (CROSSLEY, 2024). Once a device is turned on, it is the first piece of code that runs
on the target hardware. In this process, the operations performed may differ according to
each target. Still, the fundamental function of the firmware is to perform the bare minimal
hardware initialization and either wait for a host-centric communication to initiate or hand
off control to the high-level system software (BANIK; ZIMMER, 2022).

In the embedded system world, the growth of intelligent physical products such as
Internet of Things (IoT), Industrial IoT (IIoT), and operational technology enabled the
expansion of the definition of firmware. Although historically it was used for lower-level
functionalities, in embedded systems, firmware may be a standalone software that bundles
all the system’s lower-level and higher-level functionalities. In that sense, firmware is also
known as embedded software (CROSSLEY, 2024).

Firmware is not intended to be modified by the user. However, even though it is
usually programmed into the device during the manufacturing process, firmware can be
designed to be upgradable. Firmware updates can fix bugs, improve performance, and add
new features to the device, all without the need to replace any hardware (THIRUMALAI,
2023).

2.2 Object-Oriented Programming

Object-Oriented Programming (OOP) is a programming paradigm that organizes soft-
ware design around objects, which are instances of classes. A class defines a blueprint for
an object, encapsulating data (attributes) and behavior (methods) within a single, cohesive
unit (GRADY BOOCH ROBERT A. MAKSIMCHUK, 2007). This approach emphasizes
the concepts of:

• Encapsulation refers to the bundling of data and methods within a single instance,
and restricting access to some of its components.

19

• Inheritance allows classes to derive from other classes, promoting code reuse and
creating a natural hierarchy between base and derived classes.

• Polymorphism enables objects of different classes to be treated as objects of a
common super class. It allows one interface to be used for a general class of actions,
making it easier to extend and maintain applications.

• Abstraction is the process of hiding the complex implementation details of an ob-
ject and exposing only the necessary aspects, simplifying interaction with the ob-
ject.

2.2.1 Object-Oriented C

Modern programming languages use OOP to allow modularity and decoupling. How-
ever, the C language is a procedural language that does not natively support it. To address
that, Object-Oriented C (OOC) is an approach that provides a way to organize C programs
using OOP principles (NESER; VAN SCHOOR, 2009).

While C does not have native support for classes and objects like C++, developers can
implement OOP concepts by using structures (structs) to represent objects and function
pointers to simulate methods (QUANTUM LEAPS LLC, 2020). In Object-Oriented C,
a struct typically contains the object’s attributes, and function pointers are used to point
to functions that operate on those attributes, mimicking methods in traditional OOP lan-
guages.

Encapsulation can be achieved by defining structs and associated functions in a way
that restricts direct access to data, allowing only designated functions to modify the state.
Inheritance can be simulated by including a base struct within a derived struct, allowing
the derived struct to access the base struct’s members. Polymorphism can be achieved by
using function pointers in the base struct that can be overridden in derived structs (AMINI,
2019).

2.3 Hardware Abstraction Layer

Microcontroller software tends to be designed for a highly specific task with little
room for scalability or code reuse (TREMAROLI, 2023). To avoid this limitation, a sep-
aration between hardware-dependent and independent implementation is a highly desir-
able task. With that in mind, BENINGO (2017) considers the HAL, the most interesting
firmware layer available to developers.

ECKER; MüLLER; DöMER (2009) defines that the HAL represents the thin soft-
ware layer that depends entirely on the underlying target architecture. Structuring the
hardware-dependent software in these well-defined layers, accessible through the appli-
cation programming interface, is essential to support software flexibility and portability

20

on different hardware platforms. Similarly, BENINGO (2017) defines a HAL as an inter-
face that provides the application developer with a standard function set that can be used
to access hardware functions without an in-depth understanding of how the hardware
works. Finally, ECOS (2024) describes a HAL as all the software directly dependent on
the underlying hardware. Whenever the hardware architecture is changed, adjustments to
the HAL are required.

The definition of generic HAL APIs for the target application domain makes it pos-
sible to start designing the software before the hardware is complete, thus enabling con-
current hardware and software design. The portability also facilitates the exchange of
the software code and architecture exploration, e.g. experimenting with different types of
processors to find an optimal target processor. The HAL includes two types of software
code (ECKER; MüLLER; DöMER, 2009):

• Processor-specific software code, such as context switch, boot code or code for
enabling and disabling the interrupt vectors.

• Device drivers, which represent the software code for configuring and accessing
hardware resources, including MMU (Memory Management Unit), system timer,
on-chip bus, bus bridge, I/O devices, and resource management, such as tracking
system resource usage (check battery status) or power management (set processor
speed).

2.4 Real-Time Systems

Typically, embedded systems are crafted with specific timing constraints in mind,
including the need for deterministic responses to interrupts and efficient completion of
interrupt processing. However, while these timing parameters serve as benchmarks, they
do not ensure universal feasibility. Conversely, embedded systems tailored for real-time
applications must adhere to exceptionally stringent timing criteria, guaranteeing response
times to interrupts and timely completion of all requested services within predefined lim-
its. This operational context closely resembles that of a true real-time system (WANG,
2017a).

Determinism is a fundamental characteristic of real-time systems that ensures opera-
tions are executed predictably within specified time constraints. It means that the timing
behavior of the system is consistent and predictable, allowing jobs to be completed within
their deadlines regardless of external conditions (SHIN; RAMANATHAN, 1994). This
predictability is crucial in safety-critical environments where failure to meet timing re-
quirements can lead to catastrophic outcomes.

Achieving real-time determinism involves careful design considerations, such as schedul-
ing algorithms, resource management strategies, and hardware configuration. Fixed-

21

priority preemptive scheduling, where tasks are assigned fixed priorities and higher-priority
tasks can interrupt lower-priority ones, is commonly used in real-time systems to enhance
determinism (STANKOVIC, 1996). Also, the use of RTOS further supports the determin-
istic behavior of the system.

Even non-real-time embedded systems can face time constraints. Consider a scenario
where a TV remote control takes over 5 seconds to transmit a command to a TV, followed
by an additional 5-second delay as the embedded device within the TV switches channels.
Naturally, such delays would lead to dissatisfaction. Consumers rightfully anticipate a
TV to respond to remote control inputs within a 1-second timeframe. Nonetheless, these
constraints primarily gauge system performance (WANG, 2017b).

Real-time systems are tasked with computing and delivering accurate results within
a predetermined timeframe. Making it simpler, every task in a real-time system operates
under a deadline, whether it’s classified as hard or soft. Missing a hard deadline ren-
ders the result useless, regardless of its accuracy. Take, for instance, the airbag control
system in automobiles. These systems are engineered to deploy airbags swiftly in the
event of frontal impacts. Given the rapid changes in vehicle speed during a crash, airbags
must inflate rapidly to mitigate the risk of occupants colliding with the vehicle’s interior.
Typically, the entire deployment and inflation process occurs within approximately 0.04
seconds, well within the prescribed limit of 0.1 seconds (WANG, 2017b).

2.4.1 Soft and Hard Real-Time Constraints

Numerous methods for categorizing real-time systems have been proposed and are
currently utilized. One pragmatic approach revolves around time and criticality (COOL-
ING, 2019). Typically, the timing constraint of a task is defined by its deadline, represent-
ing the moment at which its execution or service must be completed. Depending on the
severity of missing a task deadline, the timing constraint can be classified as either hard
or soft (FAN, 2015):

• A timing constraint is considered soft when the repercussion of a missed deadline
is unfavorable but manageable. Even if a response arrives late, it remains beneficial
as long as it falls within an acceptable range, meaning it occurs occasionally with a
suitably low probability.

• A timing constraint is deemed hard when the outcome of a missed deadline is catas-
trophic. In such cases, a delayed response, or the completion of the requested task
beyond the deadline, is not only useless but can also be entirely unacceptable.

Hard real-time systems operate under strict deadlines where the consequences of miss-
ing a deadline can be severe or even fatal. The system must ensure that every task meets
its deadline without exception, and the timing of each task must be thoroughly analyzed

22

and verified during the design phase (INTERVALZERO, 2019)(SHIN; RAMANATHAN,
1994).

Soft real-time systems also require deterministic behavior, but they offer more flexi-
bility. Missing a deadline in these systems may degrade performance or reduce the quality
of service, but it does not result in system failure. For example, in multimedia streaming,
slight delays in processing can lead to a drop in video quality or buffering, but the system
continues to function. However, even in soft real-time systems, maintaining a high degree
of determinism is essential to ensure a satisfactory user experience (KOPETZ; STEINER,
2022).

Different from soft and hard real-time, some systems can also be classified as near
real-time. This type of system can be described as a high-response sensitivity system
subjected to a negligible processing delay. Near real-time is usually used in cases where
time-critical responses are required, but the determinism required by hard real-time sys-
tems is unnecessary (GOMES et al., 2021).

2.4.2 Bare-Metal

Bare-metal software refers to software that runs directly on the hardware of a sys-
tem without the intervention of an operating system or a higher-level software layer
(OUALLINE, 2022). This type of software interacts directly with the hardware com-
ponents, such as the CPU, memory, and peripherals, allowing for precise control over the
system’s resources. Bare-metal software is often used in embedded systems, real-time ap-
plications, and environments where performance, low latency, and minimal overhead are
critical (BARR; MASSA, 2006). Since there is no operating system to manage resources,
the developer must handle tasks like memory management, task scheduling, and interrupt
handling, which can lead to highly efficient but complex code.

2.4.3 Real-Time Operating Systems

A general-purpose OS serves as system software, overseeing both user applications
and the computer’s hardware resources. It establishes regulations and programming in-
terfaces, enabling programs to request OS services and interact with the system at large.
On the other hand, an RTOS is fundamentally an OS comprising multiple software sub-
systems with its kernel at the nucleus (FAN, 2015).

Even though an RTOS may offer numerous services akin to those in general-purpose
OS, an RTOS should be temporally predictable (deterministic) (KOPETZ; STEINER,
2022). In contrast to operating systems for personal computers, real-time systems dead-
lines must always be met (especially in hard real-time). For that, it is crucial to ensure
that a well-designed RTOS, uniquely engineered with specialized scheduling algorithms
tailored for real-time applications, is used (GRACIOLI et al., 2013).

To adhere to rigorous timing demands, RTOSes are typically engineered with the fol-

23

lowing capabilities (WANG, 2017a):

1. Minimum interrupt latency: Interrupt latency measures the time interval from the
instant an interrupt is received until the CPU initiates execution of the correspond-
ing interrupt handler. To mitigate interrupt latency, an RTOS kernel should avoid
blocking interrupts for extended periods. This typically necessitates support for
nested interrupts within the system to ensure that the low-priority interrupt han-
dling does not hinder the processing of high-priority interrupts.

2. Short critical regions: In all OS kernels, critical regions safeguard shared data ob-
jects and facilitate process synchronization. However, in the context of an RTOS
kernel, it is imperative to keep these critical regions as brief as possible.

3. Preemptive task scheduling: Preemption in an OS context signifies that a task with
a higher priority can interrupt and take precedence over a lower-priority task at any
given moment. To effectively meet task deadlines, an RTOS kernel necessitates
support for preemptive task scheduling. Additionally, minimizing the duration of
task switching ensures efficient operation.

4. Advanced task scheduling algorithm: Preemptive scheduling is a crucial but not
sole requirement for real-time systems. Without preemptive scheduling, high-priority
tasks could encounter delays caused by low-priority tasks, rendering it unfeasible to
meet task deadlines consistently. Nevertheless, even with preemptive scheduling,
there’s no assurance that tasks will consistently meet their deadlines. To address
this challenge, the system must employ a suitable scheduling algorithm designed to
achieve this objective.

As embedded systems evolved into more sophisticated and complex systems, RTOSes
became widely used tools for embedded development. As of 2023, OSes are present in
74% of ongoing embedded projects and have a projection of being part of 86% in the near
future (ASPENCORE, 2023). RTOS can be separated into four categories (Figure 1):
open-source, commercial, commercial distribution of open-source, and in-house.

In recent years, big tech companies have acquired popular embedded RTOSes, boost-
ing their popularity in the development community. For example, FreeRTOS and ThreadX
were acquired by Amazon (AMAZON WEB SERVICES, 2024) and Microsoft (MI-
CROSOFT, 2019), respectively, as the official embedded OS for their cloud platforms. As
a result, companies become more susceptible to adopting open-source instead of in-house
or commercial solutions (Figure 2). Finally, the top most popular embedded RTOSes used
today (2023) are (ASPENCORE, 2023): FreeRTOS, RTX, ThreadX, Texas Instruments
RTOS, and QNX.

24

Figure 1 – OS Used in Current Embedded Project

Source: ASPENCORE (2023)

Figure 2 – Projection of the future OS usage in Embedded Project

Source: ASPENCORE (2023)

25

2.5 Quality Attributes

Quality attributes, also known as non-functional requirements, are characteristics of
a system that describe how well it performs its intended functions. While functional re-
quirements specify what the system should do, quality attributes define how the system
should behave, ensuring that it meets the needs of users, stakeholders, and developers in
terms of performance, reliability, usability, and more (SOMMERVILLE, 2016). Quality
attributes are often interrelated, and achieving a balance between them is essential for
creating robust and efficient software. These attributes are typically evaluated using met-
rics to ensure that the developed software achieves the desired expectations throughout its
lifecycle (ROGER; BRUCE, 2019).

2.5.1 Modularity

Modularity measures the degree to which the components of a system can be sepa-
rated and recombined. In software development, modularity means designing a system in
a way that it is divided into discrete, self-contained modules, each with a specific responsi-
bility. High modularity allows developers to work on individual modules independently,
making the code easier to understand, test, and maintain. It also enhances reusability
since modules can often be reused in different parts of the system or even in different
projects (GRADY BOOCH ROBERT A. MAKSIMCHUK, 2007).

2.5.2 Portability

Portability is the ability of software to run on different platforms or environments
with little or no modification. High portability means that the software can be easily
transferred from one system to another or from one type of hardware to another. Porta-
bility is achieved through platform-independent code. This quality attribute is especially
important in today’s diverse embedded environments, where firmware may need to op-
erate on different MCUs (BENINGO, 2022). High portability reduces the time and cost
associated with adapting software to new environments (COOLING, 2019).

2.5.3 Maintainability

Maintainability measures how easy a software can be modified to correct problems,
include new features, or adapt to a changed environment. It includes several factors, such
as code readability, documentation quality, and the simplicity of its design. High main-
tainability means that the software is easier to understand and modify, making it less prone
to errors during modifications, leading to greater reliability and reduced downtime (SOM-
MERVILLE, 2016).

26

2.6 Code Evaluation Metrics

To evaluate quality attributes, software metrics have played an increasingly impor-
tant role in software engineering searching for better source code quality. Metrics allow
the measurement, evaluation, control, and improvement of software products and pro-
cesses (DE BASSI et al., 2018). Also, the validation of software metrics shows that
metrics allow conclusions on the quality of software (BARKMANN; LINCKE; LÖWE,
2009). In this work, the following metrics were used to evaluate and compare the quality
of source code produced using the proposed methodology:

2.6.1 Lines of Code

Historically, Lines of Code (LOC) has been broadly used as one of the most common
metrics to measure the quality of a software project. Along with LOC, the Effective Lines
of Code (ELOC) metric can be used to improve the analysis. ELOC is the number of lines
of code that are not comments or preprocessors. LOC and ELOC can be used in multiple
sub-metrics to provide a better understanding of the project’s structure. For this analysis,
the following sub-metrics were used:

• Lines of Code (LOC): Number of lines of code.

– Lines of Code per File (LOCFI): Number of lines of code in each file.

– Lines of Code per Function (LOCFU): Number of lines of code in each func-
tion.

– Total Lines of Code (TLOC): Total number of lines of code in the project.

• Effective Lines of Code (ELOC): Number of lines of code that are not comments
or preprocessors.

– Effective Lines of Code per File (ELOCFI): Number of lines of code in each
file.

– Effective Lines of Code per Function (ELOCFU): Number of lines of code in
each function.

– Total Effective Lines of Code (TELOC): Total number of lines of code in the
project.

Well-structured and readable code, typically with fewer LOC, is easier to maintain
(LOUBSER, 2021). By being more readable, code becomes easier to understand, modify,
and debug, and besides that, less ELOC also means less work to maintain (WILLEN-
BRING; SINGH WALIA, 2021)(FOROUZANI; CHIAM; FOROUZANI, 2016).

Since high numbers of LOC and ELOC can reduce maintainability, projects with
larger TLOC are more challenging to maintain due to the increased complexity involved in

27

understanding and modifying the code (IFTIKHAR et al., 2023)(FOROUZANI; CHIAM;
FOROUZANI, 2016). In contrast, smaller, well-defined functions (LOCFU) or mod-
ules (LOCFI) are typically easier to maintain and reuse since they can be more easily
reused into other parts of the project or even be integrated into other projects (SOM-
MERVILLE, 2016). Finally, a higher comment density or ratio can indicate the code is
well-documented, making it easier for other developers to understand, reuse, and main-
tain (FOROUZANI; CHIAM; FOROUZANI, 2016).

2.6.2 McCabe’s Cyclomatic Complexity

McCabe’s Cyclomatic Complexity (MVG) is a software metric used to measure the
complexity of a program (FOROUZANI; CHIAM; FOROUZANI, 2016). It measures the
number of linearly independent paths through a program’s source code. This metric can be
used to determine the quality of functions and evaluate the following factors (BENINGO,
2022):

• The expected minimum number of test cases required to test a function

• The risk associated with modifying a function

• The likelihood that a function may contain unknown bugs

Modularity is crucial in reusable designs since it allows software to be divided into
smaller, more manageable parts. For that, MVG can help evaluate how modules are struc-
tured and how complex they are. High MVG values within a module might indicate that
it has too many decision points, which is a characteristic of poor modular design. As a
result, modularity gets degraded, making it challenging to adapt or reuse those modules in
different contexts. In contrast, a well-modularized design typically exhibits lower MVG
values within individual modules, making them easier to understand and modify inde-
pendently and, therefore, more likely to be reused (FENTON; BIEMAN, 2014)(ROGER;
BRUCE, 2019).

MVG can also provide assumptions about the maintainability of the code. As the
MVG increases, there is a higher chance of bugs existing in the code. For that, Table 1
presents the relationship between MVG and the risk of bugs.

Higher MVG values can also lead to more difficult debugging and modification pro-
cesses. For example, Table 2 presents the chance of injecting a bug in a function based on
its MVG. Conversely, as the MVG decreases, the maintenance process can be done eas-
ier, and software becomes more reliable (FOROUZANI; CHIAM; FOROUZANI, 2016)
(IFTIKHAR et al., 2023).

Finally, a high MVG value might also indicate that code is tightly coupled with a
specific environment, making it less portable (ROGER; BRUCE, 2019).

28

Table 1 – McCabe Cyclomatic Complexity value vs. the risk of bugs
Cyclomatic Complexity Risk Evaluation

1-10 A simple function without much risk

11-20 A more complex function with moderate risk

21-50 A complex function of high risk

51 and greater An untestable function of very high risk

Source: BENINGO (2022)

Table 2 – The risk of bug injection as the Cyclomatic Complexity rises
Cyclomatic Complexity Risk of Bug Injection

1-10 5%

11-20 20%

21-50 40%

51 and greater 60%

Source: BENINGO (2022)

2.6.3 Maximum Nesting Level

The Maximum Nested Level (MNL) is a software metric that measures a function’s
maximum number of nested blocks. Similar to MVG, MNL can be used as a measure of a
function’s complexity. The MNL is calculated based on the number of indentation levels
in a function.

The higher the MNL, the more complex the function is. Besides that, a high MNL can
drastically reduce the readability of the code (JOHNSON et al., 2019). As a result, higher
values of MNL can degrade maintainability and demotivate reusability (FOROUZANI;
CHIAM; FOROUZANI, 2016).

2.6.4 Simple Maintainability Index

The Simple Maintainability Index (SMI) is a metric that measures a function’s main-
tainability based on the values of MVG and ELOCFU. SMI values range from 1 to 25.
The lower the SMI, the easier it is to maintain a function (WILLENBRING; WALIA,
2024)(WILLENBRING; WALIA, 2022).

The SMI is calculated using the following formula:

SMI = MVGindex × ELOCFUindex (1)

Where MVGindex and ELOCFUindex values are obtained from the Table 3:
Even though the SMI provides how maintainable a function is, it does not provide

a clear understanding of the overall project’s maintainability. The impacts of worsening
a single function’s maintainability (increasing the SMI) may increase the difficulty of

29

Table 3 – Simple Maintainability Index Range Values
Index Cyclomatic Complexity (MVG) Effective Lines of Code (ELOCFU)

1 0-7 0-124

2 8-11 125-249

3 12-19 250-499

4 20-49 500-999

5 50 and Greater 1000 and Greater

Source: METRIX++ (2024)

maintaining the entire project. To better analyze this metric, the following equation can
calculate the project’s SMI Average (ASMI):

ASMI =
x× y

x+ y
(2)

Where:

• x is the product of all maintainability indexes. Which represents the overall effec-
tiveness or performance of the system in terms of maintainability.

• y is the sum of all maintainability indexes. Which represents the total potential or
capacity for maintainability improvements or efforts within the system.

Since the larger a project gets, the harder it becomes to maintain it, in ASMI, each
one of the system’s functions adds a portion of difficulty to the overall maintainability of
the system. On it, functions with SMI values of 1 have a linear impact on ASMI, while
others impact ASMI exponentially. Therefore, it is recommended that developers target
as many (and ideally all) project functions to an SMI value of 1.

2.6.5 Module Coupling

The Module Coupling (COUP) metric measures the degree of interdependence be-
tween software modules, and it can be used to infer the complexity of the project’s ar-
chitecture. Lower COUP values between modules mean a module is less dependent on
other parts of the system, making it easier to reuse in different contexts. Besides that,
COUP also relates to maintainability, where lower COUP values indicate easier mainte-
nance (FOROUZANI; CHIAM; FOROUZANI, 2016).

Unlike other programming languages, ANSI-C does not support any features that can
natively define what a C language module is. Instead, by not providing a standardized
structure, the language allows developers to freely organize projects how they see fit. Con-
sequently, a module definition and structure may change from project to project, making
it hard for metric tools to provide a generic approach for them. For that reason, Metrix++
was not used to extract COUP metrics, and instead, they were calculated manually.

30

3 RELATED WORKS

Several works are available in the literature addressing aspects of the proposed method-
ology. However, most of them do not provide a complete solution. Many of the contribu-
tions of those works were integrated or used as inspiration to address parts of the proposed
methodology. In the following sections, each aspect of the proposed methodology will be
reviewed individually.

3.1 C Code Standard

One of the main concerns of this methodology is to guarantee that all developers
design their code in a similar way, so they can “speak the same language”. Code standards
are a great way to start this culture within a team since they are well-established rules
that can be verified individually, making it easy to ensure that all developers follow the
guidelines.

A development code standard can be defined as a set of established guidelines and
best practices that guide the software development process. These standards are respon-
sible for ensuring that all stages of development are conducted in a consistent and struc-
tured way. By following these standards, developers can work more efficiently, reduce
errors, and ensure that the software meets both technical requirements and user expec-
tations (SCHMIDT, 2000). Ultimately, development standards help teams collaborate
more effectively and produce higher-quality software that aligns with industry norms and
regulations (PARGAONKAR, 2023).

Usually, most C code standards are separated into three system categories:

• Safety-Critical: These standards are used to develop safety-critical systems, in-
cluding medical devices, automotive, and aerospace. These standards are the most
restrictive as they ensure code determinism and consistent behavior to prevent fail-
ures caused by undefined and unspecified behaviors (KALAYCI, 2023). For years,
MISRA (2012) has defined the MISRA-C standard, which is one of the most well-
established standards for safety-critical embedded systems.

• Security-Critical: These standards are used to develop security-critical systems,

31

such as cryptographic systems, secure communication, and secure storage. These
standards emphasize eliminating security vulnerabilities and preventing cyber-attacks
(KALAYCI, 2023). In this regard, the CERT-C standard is one of the most well-
known standards (SEACORD, 2016).

• General: These standards are used to develop general-purpose systems that do
not require safety or security concerns. These standards are less restrictive than
the previous ones but still provide a higher code quality and maintainability. In
this regard, GANSSLE (2004) defines a structural coding standard while BARR-
C (BARR, 2018) defines a development focus standard.

Although critical standards ensure higher levels of code quality, they can be too over-
whelming and extensive for general-purpose systems. Besides that, the concepts they
present may be too advanced for novice developers. Also, their restrictive level may re-
sult in an unnecessary development time overhead. To reduce the complexity of critical
standards, HOLZMANN (2006) proposes a simple set of rules for safety-critical develop-
ment rather than an extensive standard. Next, to evaluate aspects of different standards,
ANDERSON (2008) compares popular standards and how they can be combined with
tools to ensure higher confidence levels of development.

Besides the system’s categories, standards may be designed to address specific at-
tributes and requirements. For example, standards such as MISRA (2012) and SEACORD
(2016) are defined to ensure the safety or security of the systems to which they are ap-
plied. However, to ensure those requirements, these standards expect their users to be
experienced developers with advanced knowledge of the C language and system develop-
ment. In contrast, standards such as GANSSLE (2004) and HOLZMANN (2006) try to
reduce complexity to be more suitable for novice developers.

Standards may also dictate rules to improve some quality attributes of systems. For
example, standards such as BARR (2018), MISRA (2012), and SEACORD (2016) restrict
the use of certain language features that may depend on architecture-specific characteris-
tics to improve code portability. Besides that, those standards also define rules to reduce
complex expressions and how code should structured to improve its readability.

Given the large number of well-established standards available, it becomes unneces-
sary to create a new one. However, a combination of multiple standards was defined to
address the aspects of the proposed methodology. For that, BARR (2018) was used as
the base standard, and it was adapted to fit some of the methodology requirements and to
include items from the other mentioned standards. Besides that, C99 was used as the base
language standard for all the reviewed works.

Table 4 compares the reviewed works and the proposed methodology.

32

Table 4 – Code Standard Works Comparison

Work
System

Category
Readability Portability

Novice
Development

MISRA (2012) Safety-Critical Yes Yes No

HOLZMANN (2006) Safety-Critical No No Yes

SEACORD (2016) Security-Critical Yes Yes No

GANSSLE (2004) General No No Yes

BARR (2018) General Yes Yes Yes

This Work General Yes Yes Yes

3.2 Modularity

Several works in the literature seek to address aspects of firmware design to make
it more portable and reusable. In the reuse field, many papers argue that modularity
is the basis of many reusable architectures. For example, Dano analyzes the impor-
tance of reuse and modularity while suggesting activities that can maximize these fac-
tors (DANO, 2019). Next, BENINGO (2017) discusses the importance of modularity in
portable firmware and describes the main characteristics and requirements of a modular
design for embedded systems.

Intending to make firmware more modular, YUAN et al. (2021) introduces a component-
based framework for embedded software that confines development to standalone compo-
nents and thus spares the developer from the need to understand the system in its entirety.
Furthermore, BENINGO (2022) applies the concepts presented in his previous work to
demonstrate design techniques for developing embedded software. Next, MUDE; JOSHI
(2023) evaluates the benefits of modular firmware development for a Genset Controller
Unit. Designed for scalability, the results show that his modular approach has produced
firmware with a smaller code size, allowing the implementation of other functionalities
and reducing the product cost. Finally, HÄNISCH (2023) seeks a different approach by
defining a modular architecture based on microservices. With independent and isolated
processes, the proposed architecture maximizes flexibility, reduces complexity, and facil-
itates maintenance.

Modern programming languages use OOP to allow modularity and decoupling. How-
ever, the C language does not natively support it. In that regard, NESER; VAN SCHOOR
(2009) addresses this question by introducing a framework to simulate OOP features in
C language called OOC. The method does not allow a full OOP implementation. How-
ever, most core features can be imported similarly. Alternatively, QUANTUM LEAPS
LLC (2020) also proposes a similar OOC framework that does not use preprocessors for
emulating OOP features.

Multiple aspects of those works were applied in the proposed methodology to design

33

and enable modularity. The work of YUAN et al. (2021) and MUDE; JOSHI (2023)
inspired the hierarchical design of the different methodology component types. Addition-
ally, HÄNISCH (2023) provided insights for decoupling component dependencies and
delimiting application module scopes. Next, NESER; VAN SCHOOR (2009) provided
ideas for expanding the applicability of OOP in C language while the work of QUAN-
TUM LEAPS LLC (2020) was integrated into the methodology to define the class module
type. Finally, the rich work of BENINGO (2022) provided multiple insights into develop-
ment pitfalls, modular design patterns, and other small aspects that were integrated into
this work.

Table 5 compares the reviewed works and the proposed methodology.

Table 5 – Modularity Works Comparison

Work
Contribution to the Methodology

Object
Oriented

Dependency
Decoupling

Componentization Microservices

YUAN et al. (2021) Yes No Yes No

BENINGO (2022) Yes No Yes No

MUDE; JOSHI (2023) No No Yes No

HÄNISCH (2023) No Yes No Yes

NESER; VAN SCHOOR (2009) Yes No No No

QUANTUM LEAPS LLC (2020) Yes No No No

3.3 Portability

Concerning portability, several studies have sought to employ methods to facilitate the
implementation of portable firmware. For example, MARCONDES et al. (2006) adopts
an application-oriented and component-based operating system that includes code porta-
bility between MCUs with different architectural sizes. In contrast, SUN; LI; MEMON
(2017) provides a microservices-based framework for IoT where service and physical lay-
ers communicate through a common message broker medium. At the same time, many
legacy codes may be required so that they can be ported in the future. In this context,
M. GOMES; BAUNACH (2021) analyzes what the current portable IoT operating sys-
tems are like and the quality of the currently available ports.

Rehosting techniques allow firmware testing without an MCU or a device application
process. When conducting the test, researchers must be able to port the current code to an
emulator or a general application computer so that they can work out their routines. Even
though the objective is not the same, the result of rehosting methods is very similar to that
of portability since the ultimate goal is to port an existing code to a different host.

In this context, ZADDACH et al. (2014) recommends Avatar, a hardware-in-the-loop
design for an event-based arbitration framework that orchestrates the communication be-

34

tween an emulator and a targeted physical device. Next, Pretender makes observations of
the interactions between the original hardware and the firmware to automatically create
models of peripherals that allow the execution of firmware in a fully emulated environ-
ment (GUSTAFSON et al., 2019). In the same way FENG; MERA; LU (2020), finds a
solution that involves abstracting various peripherals and handling firmware I/O on the fly
based on automatically generated models, thus ensuring sufficient code coverage.

After identifying the challenges of rehosting firmware, LEE et al. (2023) identifies
that existing rehosting techniques have limited applicability. To address that, the author
proposes the VDEmu rehosting system that does not require path elimination and sup-
ports dynamic direct memory. As another approach, CLEMENTS et al. (2020) introduces
the HALucinator framework. This high-level emulation method offers simple, analyst-
created replacements that carry out the same task from the standpoint of the firmware.
Subsequently, the authors expand HALucinator by adding a re-hosting support layer, sig-
nificantly reducing device porting time for VxWorks (CLEMENTS et al., 2021).

Table 6 – Portability Works Comparison

Work
Contribution to the Methodology

Hardware
Abstraction

Layer

Hardware
Decoupled

Development

Design
Quality
Aspects

Development
Quality
Aspects

MARCONDES et al. (2006) Yes No Yes Yes

SUN; LI; MEMON (2017) Yes No Yes Yes

M. GOMES; BAUNACH (2021) No No Yes No

ZADDACH et al. (2014) No Yes No No

GUSTAFSON et al. (2019) No No No Yes

FENG; MERA; LU (2020) Yes No Yes No

LEE et al. (2023) No No No Yes

CLEMENTS et al. (2020) Yes Yes Yes No

CLEMENTS et al. (2021) Yes Yes Yes No

Some of the techniques described in these previous works were used to inspire the
design of a portable development structure for the proposed methodology. First, the
proposed abstraction layer designed by MARCONDES et al. (2006) was integrated into
the methodology structure to create a separation between hardware-specific and system-
specific code. Next, the work of ZADDACH et al. (2014) inspired the use of an approach
that restricts the use of hardware-dependent language features to achieve an architecture-
agnostic code. Also, the work of M. GOMES; BAUNACH (2021) provided insights on
design aspects that may improve or deteriorate portability. Finally, other works con-
tributed with insights into development practices that may potentially result in less portable
systems.

35

Table 6 compares the reviewed works and the proposed methodology.

3.4 Maintainability

To improve the maintainability of projects developed with this methodology, several
studies have sought to identify the best practices and activities that can be employed to
improve the quality of the code and reduce the chance of errors being made by novice de-
velopers or even experienced developers. To achieve this, MOTOGNA; VESCAN; ŞER-
BAN (2023) studies the quality attributes prioritized in embedded systems and identifies
the best practices and activities they involve. Their research revealed that maintainabil-
ity, along with safety, security, performance, and energy efficiency, are among the most
important quality attributes in embedded systems development. Since maintainability is
often cited in the literature as an essential feature of reusable and portable code, several
studies offer solutions.

For this reason, SPRAY; SINHA (2018) integrates the knowledge of software archi-
tecture with the experience in designing embedded software from the Tru-Test Group to
create an abstraction layered architecture and create code bases with improved long-term
maintainability. In addition, WILLOCX et al. (2018) establish a layered IoT architecture
to support the development of complex and maintainable IoT applications. By abstracting
low-level implementation details, developers can focus on business logic without being
experts in IoT sensor technology.

Furthermore, MAKHSHARI; MESBAH (2021) conducted a study to identify the most
common challenges in IoT development and maintenance. The research revealed the most
frequent and severe bugs, their correlations, and their root causes, allowing early fault
prevention during development or easy detection and correction during the maintenance
phase.

Finally, a violation of the design of reusable firmware is a notable cause of portabil-
ity problems. Thus, the most common mistakes in the development process may result
from insights taken to find solutions. HUBALOVSKY; SEDIVY (2010) examines the
most common OOP mistakes made by both beginners and experienced programmers.
Also, (STEWART, 1999) analyses the most frequent mistakes made in RT software de-
velopment.

3.5 Similar Works

All the previously mentioned works seek to address specific areas of portable firmware
development. However, none of them can reach a complete end-to-end solution. Besides
that, other more generic development methodologies available in the literature, industry,
and community are mainly designed to facilitate the development process by establishing,

36

structuring, and providing reusable and portable components that can be used to develop
a given system (TREMAROLI, 2023).

In addition to methodologies, a wide range of works in the literature address the de-
velopment process of embedded systems ((BENINGO, 2022), (HOBBS, 2019), (COOL-
ING, 2019), (BANIK; ZIMMER, 2022), (GARCÍA TUDELA; MARÍN MARÍN, 2023),
(WHITE, 2024), and (MARTIN, 2017)). Although they provide valuable insights into the
complete development process, they do not provide or define a development methodology
that structures and rules a complete system development lifecycle. At the time of writing
this work, the author was not aware of any work that provides a complete solution that
defines a firmware development methodology tailored to the specific domain and scope
addressed herein.

37

4 THE PROPOSED METHODOLOGY

The proposed methodology is based on three core elements: well-defined team roles,
adaptable workflows, and a robust firmware architecture. These elements were designed
to boost teamwork, speed up operations, and ensure uniformity in the development pro-
cess, making the proposed methodology flexible to handle various project demands.

With clear team roles, the proposed methodology aims to reduce confusion and im-
prove efficiency. By assigning specific responsibilities, each team member can easily un-
derstand their tasks, enhancing the team’s communication and encouraging a cooperative
environment. Finally, defining roles and responsibilities allows projects to be executed
and managed more smoothly.

The workflows are designed to be flexible and accomodate the needs of different de-
velopment models such as Spiral, Waterfall, and Agile. This flexibility is important for
keeping the methodology relevant and practical, adjusting to project changes and require-
ments.

The firmware architecture seeks modularity, portability, and maintainability. It is orga-
nized hierarchically with layers composed of different modules. Each module is defined
by a particular development pattern to address different aspects of the system. This struc-
ture makes it easier to navigation and promotes consistent implementation across multiple
projects, resulting in modules that are easy to understand and reuse in future projects.

The effectiviness of the proposed methodology is achieved by the sinergy between
clear team roles, adaptable workflows, and a solid firmware architecture. Defined roles
allows workflows to be executed efficiently, which is crucial for leveraging the benefits of
the architecture. Altogether, these elements combine into a cohesive and flexible method-
ology that meets organizational and technical requirements for projects.

4.1 Team Roles

It is expected that teams be composed of developers of multiple levels of experience.
In that sense, one of the main objectives of the proposed methodology is to train junior
members while enabling them to collaborate productively on the project. For that, these

38

members will be assigned to roles that may require frequent interactions with senior mem-
bers.

The methodology defines five roles that members can be assigned to:

• Architect (ARCH): Responsible for structuring and leading the team throughout the
development life-cycle.

• Developer (DEV): Responsible for translating tasks into production code.

• Tester (TEST): Responsible for testing DEV submissions.

• Maintainer (MAIN): Responsible for solving internal and external reports of prob-
lems and bugs and requests for changes.

• DevOps (OPS): Responsible for providing solutions to improve the whole project
life-cycle.

In this structure, multiple members can be assigned to the same role. Opposite to
that, companies may have a limited number of developers to allocate to a given project.
Therefore, members can assume multiple roles in the same team.

Architect

The ARCH is responsible for structuring and leading the team throughout the devel-
opment life-cycle. This person must be the most (or one of the most) experienced member
of the team. The ARCH should architect and guide all other members on the development
of the ARCH’s vision. Being the most required role by other members, the ARCH should
never assume any other roles.

Before the project development can be started, the ARCH should gather all project
requirements and structure a system that can address them. After that, this system should
be translated into the methodology modular structure, and then deliverables should be
established for each development phase. Finally, the ARCH should plan and assign tasks
to other team members.

During the development process, the ARCH should help other members in under-
standing and developing their tasks. Basically, this individual should act as a facilitator to
help other members overcome any problems they may encounter. The ARCH is also ex-
pected to assist the development of other team members’ skills by providing on-demand
training, pair programming sections, live reviews, and support to any other matter where
they can be of help.

The final responsibility of the ARCH is to review and approve every change made
to the production code. In this process, the ARCH should evaluate code aspects such
as quality, readability, correctness and organization, in addition to ensuring that other

39

members are correctly following the methodology guidelines, structure, standards, and
best practices.

In summary, the ARCH responsibilities are:

• Leading, managing and guiding the development team

• Structuring the project and translating it into tasks

• Supporting, training and empowering other members

• Reviewing the work of other members

• Enforcing methodology guidelines, structure, standards and best practices.

Developer

The main responsibility of DEVs is to translate tasks into production code. The out-
come of their work will have a great impact on the quality of the developed system.
Therefore, more experienced developers are expected to be assigned to this role.

To ensure that the project advances at the desired pace, DEVs should not receive
or address external demand. The reason for that is that frequent multitasking and task
priority shifting often lead to context switching as people try to manage different tasks. As
a result, members may switch context at inopportune moments when they have maximum
context about their current task and are in a state of flow, resulting in high task resumption
costs and loss of productivity (KAUR et al., 2020).

Finally, members in this role have extensive knowledge of the parts of the system they
are involved in. Consequently, it is expected that these members also provide support and
help in the skill development of less experienced team members.

Tester

The TEST role should be the entry point for new and inexperienced developers as
these members will be able to study and evaluate higher-quality code created by DEVs.
They will be required to fully understand what a given code does to execute their tasks.
In this process, they will obtain a better understanding of the current state of the system,
develop their programming skills and get used to all methodology aspects.

The main responsibility of these members is to offload DEVs from the overhead of
extensive testing of their work. Testing represents almost 19% of the time developers
spend dealing with code-related activities (GRAMS, 2019). Therefore, in this structure,
DEVs can focus on the progress of the project, while TESTs verify the correctness of their
work. However, this workflow does not exempt DEVs from testing their work. Instead,
they should always verify that the expected behavior is correct before submitting their
work for review.

40

The inexperience of TESTs should not disregard the fact that testing can be considered
a risk-based activity. Testers must understand how to minimize a large number of tests
into a manageable test set and make wise decisions about the risks that are important to
test or the ones that are not (JAMIL et al., 2017). Therefore, it is of great importance that
the ARCH and DEV provide guidance to these members on what and how they should
proceed with their activities.

Finally, TESTs are also responsible for release tests. Before each release, TESTs must
validate the stability of the product as a whole. During this process, they should evaluate
every feature and functionality to ensure that the product behaves as expected.

In summary, TESTs are responsible for:

• Testing DEV submissions

• Writing unit and automation tests

• Function and non-functional tests

• Integration and system tests

• Release tests

Maintainer

Maintenance is usually the longest part of the software life-cycle and may constitute
a portion that surpasses more than 80% of overall costs in software development (AL-
MOGAHED et al., 2023). However, it is usual for small companies to focus heavily on
development while lacking a structured maintenance model altogether. When needed,
maintenance tasks are solved on an ad hoc basis with the best effort available. These
processes work well in a small context with occasional maintenance tasks, however, as
the project grows, this model becomes no longer scalable and impacts the team’s ability
to advance and deliver new features (TYRKKÖ et al., 2019).

To address that, as novice developers improve their skills and become more experi-
enced, they can assume the role of MAIN. MAINs are responsible for receiving and solv-
ing internal and external reports of problems and bugs and requests for changes. When
assuming this role, members can improve their communication and requirement gathering
skills, since they will have frequent interactions with system users, clients, and so on.

Additionally, the MAIN role has the purpose of shielding DEVs from external de-
mands. Maintenance represents almost 28% of the time developers spend dealing with
code activities (GRAMS, 2019). Therefore, MAINs can reduce DEVs workload, allow-
ing them to focus on other activities.

41

DevOps

The OPS is a role that does not directly participate in the development or maintenance
workflows of a team. Instead, this role provides solutions to improve the whole project
life-cycle.

DevOps can be defined as a software engineering methodology that aims to integrate
the work of software development and software operations teams by facilitating a culture
of collaboration and shared responsibility (BENINGO, 2022). Its main goal is to shorten
feedback loops and the development cycle through collaboration, automation and frequent
software releases (LWAKATARE et al., 2016).

In general, embedded software teams have often overlooked DevOps, choosing to
use more traditional development approaches due to hardware dependencies (BENINGO,
2022). Yet, the embedded domain can benefit from it to improve a great number of as-
pects. It is not the goal of this methodology to provide a complete DevOps methodology
for embedded systems. Instead, it creates opportunities for OPS members to introduce
new solutions that may be beneficial to the project.

4.2 Workflows

One of the aspects of this methodology is that it is not restricted to a given type of de-
velopment philosophy. Teams can freely choose methodologies, such as Waterfall, Spiral,
Agile, or others. Independent of the chosen methodology, ensuring that code standards,
architecture structure, and other development conventions are respected is essential.

For that, code review is essential in ensuring code quality and reducing the likelihood
of errors and bugs (BEN SGHAIER; SAHRAOUI, 2024). In addition, they can also
promote teaching, bonding, and improving understanding within teams (ELDH, 2024).
Besides ensuring the correctness of conventions, software testing is crucial for ensuring
the quality and reliability of software products (WANG et al., 2024).

Applying code reviews and testing processes is a fundamental factor in the pursuit
of successful software products (HOMÈS, 2024). For those reasons, supported by the
roles defined in Section 4.1, the proposed methodology defines two main workflows to
introduce new code into production:

Development Workflow

The development workflow (Figure 3) consists of the processes in which new features
and functionalities must be performed before getting into production.

Initially, the ARCH will define and describe the scope and requirements of a given
new feature. Next, this professional will assign a DEV to implement it. After completion,
the work developed by the DEV must be submitted to the ARCH for review. On approval,
the ARCH will assign a TEST to evaluate this new feature and, if approved, move it into

42

production. In case of disapproval, the DEV should be reassigned and follow the same
steps again.

Figure 3 – Development Workflow Flowchart

Source: The Author

Maintenance Workflow

The maintenance workflow (Figure 4) consists of the processes where changes, fixes
and corrections need to go through before getting into production.

After receiving a new report or request, the MAIN should evaluate and/or debug it
to classify it as a minor or major activity. In this context, minor activities are the ones
that do not require extensive changes and, therefore, the MAIN has a clear vision of how
to address them. Opposite to that, major activities represent more complex problems or
changes that may impact large portions of the code.

Minor tasks should be dealt with by the MAIN who evaluated them, while major ones
should be assigned to the ARCH. According to priority and criticality, the ARCH should
assign a DEV to this task. After implementation is completed, either minor or major tasks
should be submitted to the ARCH for review. On approval, the ARCH should assign a

43

TEST to evaluate it and, if approved, move it into production. In case of disapproval, the
task should be reassigned to the member responsible for its implementation and follow
the same steps again.

Figure 4 – Maintenance Workflow Flowchart

Source: The Author

44

4.3 Firmware Architecture

One of the goals of this methodology is to allow a complete decoupling between
hardware and system implementations. For that, projects are separated into two different
repositories. The first repository should contain all system implementations in a generic
form and will be called CORE Project (blue region of Figure 5). Next, a second repository
should contain all hardware-specific implementations for a given target MCU and will be
called TARGET Project (red region of Figure 5). Finally, each TARGET should include
CORE as a submodule.

Figure 5 – Firmware Architecture Levels UML Component Diagram

Source: The Author

Besides portability, the methodology provides organizational procedures to improve
reuse and how firmware code is maintained. To do so, it enforces the standardization
of the development process by providing a set of module types. Each module type has
specific development patterns that compartmentalize a part of a given system layer.

Another methodology concern is that novice developers are often included in projects
with little or no supervision from other experienced developers. As a result, these de-
velopers may introduce problems to the system or violate the design choices made by
the system architect. To address this issue, the methodology provides definitions called
Novice Firmware Choices (NFC) aimed at guiding these developers and preventing them

45

from making their most common mistakes.

4.3.1 Target Project

Embedded systems projects are frequently implemented according to how a given
MCU and its peripherals were designed to work. The reason is that many embedded
applications are conceived at the edge of available MCU resources. Since the cooperative
development of the hardware and software components can be used to achieve the best
performance of an embedded system (ZHENG; LIANG; XIONG, 2021), this strategy
becomes the most efficient.

However, hardware-specific implementation designs may introduce many obstacles
regarding the portability and reuse of the code of these systems. In addition, many modern
embedded projects do not exist in those limits, allowing their implementations to spend
more resources in favor of other benefits. Opposite to hardware-specific implementations,
this methodology proposes a system-specific design allowing system-level code to be
retargeted by simply replacing TARGET repositories.

Towards that end, TARGET provides a space where all MCU-specific implementa-
tions can be freely developed without directly interacting with any system code (Layer 0
in Figure 5). In this context, the methodology does not establish module types or devel-
opment rules for development done in this layer. Besides being subjected to the rules of
interaction between TARGET and CORE (Section 4.6), developers are free to structure
and design code as they please.

The flexibility provided in this region allows teams to leverage a wide range of re-
sources and tools provided by vendors and the open-source community. For example, for
each different target MCU, developers may choose to use or mix code generation tools,
HAL frameworks, driver examples, or even design their own register-level implemen-
tations from scratch. Even though the methodology defines no module types, Figure 5
exemplifies one of these scenarios with the help of two different module types (Drivers

and V endor HAL) that were used to implement hardware-specific according to the re-
quirements provided by CORE.

As a result of not being required to follow the same structure, porting times can be
expressively reduced and simplified for different MCUs. This is because no consideration
needs to be given to other TARGET projects when developing a new one. Besides that, in
many cases, the developers may only be required to develop middleware implementations
to fit CORE’s functional requirements since most of the MCU-specific code is already
provided or generated by a vendor tool. Additionally, this flexible structure does not
prevent developers from designing more advanced and optimized implementations.

46

Portability Domain

Even though conceptually possible, designing a system to be universally portable may
result in implementations with excessive or unnecessary complexity or even become im-
practicable. Also, systems may have intrinsic requirements limiting them to be targeted
only to a given domain. For example, a system may require a minimum of 128KB of
RAM, a given number of UART peripherals, or a maximum time to produce results of a
given algorithm. Besides that, limiting the portability domain may be a simple strategic
choice. For example, a company could decide only to use ARM microcontrollers for their
products.

Regardless of the reasons, the ARCH is expected to provide a portability specification
(SPECS) containing all domain considerations foreseen by the system architecture. In
this process, the ARCH may attempt to reduce the development complexity by either
restricting the domain too much or defining a broad portable domain, which may result in
a substantial increase in development complexity. Therefore, one must balance those two
edges and provide a reasonable domain for the reality of the product under development.

Since all TARGET projects will share it, the SPECS documentation should be main-
tained inside the CORE repository. Examples of common domain specifications are:

• MCU Specifications

– Bit depth (8-bits, 32-bits, etc.)

– Architecture (ARM, RISC-V, AVR, PIC, etc.)

– Endianness (little-endian or big-endian)

– Minimal memory size

– Minimal operating frequency

– Required peripherals

• Bare-Metal or RTOS

• Third-Party library support

• Compiler

• Peripheral configurations

• Driver design features (blocking, IRQ, DMA, etc.)

4.3.2 Third-Party

Third-party libraries are those that are not maintained or developed in-house. Open-
source or purchased libraries are examples of this type of library. Since one of the main

47

objectives of this methodology is code reuse, it is highly recommended that developers
make use of good-quality libraries instead of starting everything from scratch.

The main disadvantage of third-party libraries is that they may be limited to a partic-
ular domain. For example, an LCD library may apply to only a specific list of display
devices. However, for several reasons, replacing the display device with a different un-
supported model may be necessary. Having third-party-specific calls inside the product
code would cause problems since a revised implementation would be required. For this
reason, an Interface Library should abstract every third-party library.

Third-party libraries are often found to be provided with vendor code-generator tools
and placed inside TARGET. At the same time, developers may also use third-party li-
braries obtained elsewhere for system-level functionalities, which should be placed inside
CORE. For these reasons, they are an exception layer that can exist in both TARGET and
CORE.

4.3.3 Core Project

The CORE project can best be described as the repository containing the complete
hardware-decoupled system implementation. Modules are organized into one of three
hierarchical layers (Layers 1, 2, and 3, of Figure 5). Each layer comprises a sum of
modules describing small parts of the system.

Besides being portable to another MCU, the separation between hardware and sys-
tem allows developers to run CORE on a host computer or continuous development ap-
plications without any hardware. As a result, the development time gets reduced since
time-consuming processes, such as programming the MCU, can be avoided.

Firmware developers can also use tools that were previously exclusive to software
developers. For example, even though unit testing has proven its effectiveness and ad-
vantages in software development, embedded developers tend to avoid it. This is because
using microcontrollers, peripherals, sensors, and similar devices may create a hostile envi-
ronment for unit testing (TOTH; KARLSSON, 2021). Since CORE is hardware-agnostic,
developers no longer face that problem, and the whole system can undergo unit and auto-
mated testing without hardware emulation.

4.4 Conventions

Another common mistake many firmware projects make is the failure to include de-
veloper conventions. However, these play a crucial role in a well-organized environment
and make it easy to understand the developed system. For this reason, the methodology
establishes a few conventions. It is also advisable for the system architect to define his
conventions.

48

4.4.1 Coding Standard

Coding standards and guidelines are meant to define the rules of how it should be
structured and which language features should and should not be used (HOLZMANN,
2006). By following guidelines, developers may be restricted to a subset of the lan-
guage, thus removing or reducing the opportunity to make mistakes (MISRA, 2012). Be-
sides that, coding standards can also increase the readability and portability of source
code (BARR, 2018).

ARCHs are free to create their own coding standards or make use of existing ones.
However, this methodology recommends the use of the provided development standard
(Appendix A). This standard was designed by combining the work of multiple authors
((BARR, 2018), (MISRA, 2012), (HOLZMANN, 2006) and (QUANTUM LEAPS LLC,
2020)).

Instead of providing a simple standard, the proposed methodology could have defined
that a standard already established in the industry should be used. However, one of the
main aspects that the methodology seeks to deliver is allowing novice developers to con-
tribute as much as possible to their projects.

The problem with more advanced standards is that they might be overly complicated
and discouraging for inexperienced developers. For example, the MISRA C standard
introduces safety-critical rules that require a more advanced understanding of the C pro-
gramming language (MISRA, 2012).

As an example, the MISRA C standard defines rules and restrictions for complex
pointer arithmetic. Although those rules prevent critical errors, discussing those concepts
may overwhelm beginners still trying to learn basic pointer usage. Besides that, for novice
developers, achieving clear and understandable code is more important than defining rules
for concepts that these developers might rarely encounter. For those reasons, the provided
methodology standard tries to find a balance between a standard that novice developers
can easily follow and, at the same time, provides a high level of safety and portability and
addresses most of the methodology’s characteristics.

4.4.2 Prefixes

Architects are free to choose module naming prefixes as they see fit. However, the
methodology recommends a three-letter pattern for CORE modules. The prefixes should
be used in the conventioned module files and every public function name. Moreover, the
methodology advises that other code elements should use them (typedefs and macros, for
example), although this is not an essential requirement. Using prefixes allows developers
to locate and understand the dependencies of the code they are working on, while also
ensuring that the project is better organized.

49

4.4.3 Standard Files

The methodology stipulates that the modules can only be imported by their respective
public headers. This allows developers to implement their modules safely without an ex-
tensive documentation overhead of what should or should not be used outside a module.
Additionally, a set of standard files (Table 7) is defined to ensure an improved module or-
ganization. Also, this was carried out as a NFC to allow developers to get used to the OOP
access modifier. Finally, the public type header was added as another NFC as a simple
solution to major recursive inclusion problems. These typedefs can be separated from
prototype functions, allowing the modules to share types without experiencing conflicts.

Table 7 – Methodology Standard Files
File Filename

source prefix_name.c

public header prefix_name.h

public types prefix_name_types.h

private header prefix_name_private.h

internal header prefix_name_internal.h

override header prefix_name_override.h

override source prefix_name_override.c

readme document readme.md

4.4.4 Documentation

Every module must contain a documentation file. Since most version control systems
support this, the methodology recommends using readme.md files written in markdown.
Developers should use these files to provide essential information regarding module spec-
ifications, design choices, how-to-use tutorials, examples, reference links and files, state-
flow diagrams, and any other key areas. Architects should also define an in-code docu-
mentation standard. Even though this is not a requirement, the methodology recommends
using the Doxygen format since it is well-known by the embedded systems community.

4.4.5 Domains

Each project layer may contain one or more types of modules with restricted access
to other modules. Moreover, the convention’s access permissions should be respected to
preserve the correct level of abstraction. Module types are designed to address different
requirements. For that reason, developers should respect the design patterns established
by the methodology. Finally, modules may be used for other implementation domains,
meaning that multi-threading must always be taken into account if dependencies are not
thread-safe.

50

4.5 Robot Example

To better guide the reader into a clear understanding of the different types of mod-
ules in CORE, a system draft was designed (ROBOT). To contextualize this example, an
imaginary robotics company has successfully implemented the proposed methodology in
its development processes. Throughout the years, many products have been developed
according to it, and now, this company wants to develop a new arm robot for its portfolio
of products. This robot is composed of a three-joint arm and a claw.

For this robot, four identical I2C servo motors were used to control each individual
joint and claw. This servo motor model has been used for many other products, and
therefore, the company wants to leverage the reusable aspects of the methodology to
speed up the development process by reusing previously developed modules. Besides
that, it is a requirement that this robot supports a set of common Application modules,
therefore requiring it to interact with them the same way other robots do.

After evaluating the requirements of this robot and the available reusable modules,
the development team defined the firmware architecture presented in Figure 6. In the
diagram, pre-existing reused modules have their names in red. In the following sections,
the details of each module presented in this example will be discussed.

4.6 Layer 1 Interfaces

Layer 1 can be defined as the CORE’s project hardware abstraction layer. For this
layer, the methodology defines a single module type called Interfaces, which should be
the only link between CORE and TARGET. It is important to notice that Layer 1, along
with Interface modules, is the only HAL that should be used inside of the CORE project.
Although HAL modules (not defined by this methodology) may exist in Layer 0, they
should only be used inside of it and should never be accessible or used inside the CORE
project.

The role of Interfaces is to provide the necessary function prototypes that may be re-
quired (DOUGLASS, 2010) by CORE to access all peripheral devices and MCU-specific
functionalities and information. Another NFC is that Interface functions must be the only
interaction between the two firmware regions, and this border should never be crossed.
This ensures that the functions can be independent and that CORE modules do not re-
quire hardware-specific knowledge.

In addition to accessing peripherals and functionalities, all hardware-specific informa-
tion should be provided to CORE by middleware functions. For example, an application
jumping address or non-volatile data may be stored in different memory regions for differ-
ent MCUs. Thus, this information should be abstracted to CORE to make it independent.
Finally, Interfaces should only be displayed in the form of header files.

Since Interfaces contain no implementations, these modules should provide a detailed

51

Figure 6 – UML Class Diagram for the Example of Robot Modules

Source: The Author

implementation and requirements documentation. Every function detail should be de-
scribed to ensure that new TARGET implementations are consistent with the system ar-
chitecture.

In many situations, iInterface functions are designed as a one-to-one abstracted rep-
resentation of the hardware used to develop the initial TARGET. For example, a product
may be developed for a given MCU (MCU_A) that contains a UART peripheral that re-
ceives serial data and stores it in a 32-byte FIFO buffer. Whenever a new byte is received
with a full buffer, the hardware removes the first queued element to make space for the
new byte. When creating the Interface module (Listing 1) for this UART, the developers
decided that no changes to how MCU_A works were needed. Therefore, the requirements

52

for this module were set identically to how MCU_A works (Listing 2).

Listing 1 – Example CORE Interface Module for a UART
/ * *

* @br ie f Rece ive n e x t RX b y t e from UART b u f f e r

*
* @ d e t a i l s UART R e q u i r e m e n t s :

* − Minium b u f f e r s i z e : 32 b y t e s

* − Should a lways r e t u r n o l d e s t r e c e i v e d b y t e a v a i l a b l e

* − R e c e i v i n g new b y t e wi th f u l l b u f f e r s h o u l d drop o l d e s t b y t e

*
* @param b y t e [o u t] Byte t o s t o r e r e c e i v e d b y t e

*
* @return t r u e Byte r e c e i v e d

* @return f a l s e Empty b u f f e r

* /
boo l m i d _ u a r t _ r e c e i v e _ b y t e (u i n t 8 _ t * b y t e) ;

Listing 2 – Example of TARGET implementation for MCU A
i n c l u d e " mcu_a . h " / / MCU A vendor HAL
i n c l u d e " m i d _ u a r t . h "

boo l m i d _ u a r t _ r e c e i v e _ b y t e (u i n t 8 _ t * b y t e) {
r e t u r n m c u _ a _ v e n d o r _ h a l _ u a r t 3 _ r e c e i v e _ b y t e (b y t e) ;

}

After a while, the product may need to be retargeted to a different MCU (MCU_B)
that contains a bufferless UART peripheral. On it, each serial byte is received and stored
in a register that can be read inside of an ISR. In this case, the serial reception function
was implemented following the design of MCU_A. However, for MCU_B, the developer
should provide an implementation that mimics the MCU_A behavior (Listing 3). In this
process, the developer should not be required to check the MCU_A implementation code
or to review its datasheet. Instead, the developer should only need to read the Interface
function documentation to understand the requirements and the expected behavior of this
function.

Listing 3 – Example of TARGET implementation for MCU B
i n c l u d e " mcu_b . h " / / MCU B vendor l i b r a r y
i n c l u d e " m i d _ u a r t . h "

d e f i n e BUFFER_SIZE 32

u i n t 8 _ t b u f f e r [BUFFER_SIZE] = { 0 } ;
u i n t 3 2 _ t head = 0 ;
u i n t 3 2 _ t t a i l = 0 ;

vo id UART0_RX_IRQHandler (vo id) {

i f (UART−>STATUS & UART_STATUS_RX_BYTE) {

u i n t 3 2 _ t n e x t _ h e a d = ((head + 1) % BUFFER_SIZE) ;
i f (n e x t _ h e a d == t a i l) {

t a i l = (t a i l + 1) % BUFFER_SIZE ; / / f u l l , d rop o l d e s t b y t e

53

}
b u f f e r [head] = UART−>RXDATA;
head = n e x t _ h e a d ;

}
}

boo l m i d _ u a r t _ r e c e i v e _ b y t e (u i n t 8 _ t * b y t e) {

boo l h a s _ b y t e = f a l s e ;

i f (head != t a i l) {

* b y t e = b u f f e r [t a i l] ;
t a i l = ((t a i l + 1) % BUFFER_SIZE) ;
h a s _ b y t e = t r u e ;

}

r e t u r n h a s _ b y t e ;
}

Finally, the Interface module domain is summarized in Table 8:

Table 8 – Interface Domain
Implementation Bare-Metal

Access Layers None

Design Prototyping

Analysis in the Robot Example

Similarly to the UART example, ROBOT (Figure 6) needs to provide an abstraction
for TARGET’s I2C peripheral so that other CORE modules can later use it. For such pur-
pose, the I2C Interface module was designed, providing function prototypes along with
their respective documentation (Listing 4). Finally, TARGET developers can implement
those functions according to the specifications provided in this module.

Listing 4 – Robot Example: I2C Interface Module Implementation Fragments
/ * *

* @br ie f Send I2C d a t a

*
* @ d e t a i l s Should b l o c k u n t i l t h e d a t a i s s e n t

*
* @param a d d r e s s [i n] Device bus a d d r e s s

* @param d a t a [i n] Data b u f f e r

* @param s i z e [i n] Data s i z e (By tes)

*
* @return t r u e S u c c e s s

* @return f a l s e F a i l

* /
boo l mid_ i2c_send (u i n t 8 _ t a d d r e s s , u i n t 8 _ t * da t a , u i n t 3 2 _ t s i z e) ;

/ * *
* @br ie f Read I2C d a t a

*
* @ d e t a i l s Should b l o c k u n t i l t h e d a t a i s r e a d

54

*
* @param a d d r e s s [i n] Device bus a d d r e s s

* @param d a t a [o u t] Data b u f f e r

* @param s i z e [i n] Data s i z e (By tes)

*
* @return t r u e S u c c e s s

* @return f a l s e F a i l

* /
boo l m i d _ i 2 c _ r e a d (u i n t 8 _ t a d d r e s s , u i n t 8 _ t * da t a , u i n t 3 2 _ t s i z e) ;

4.7 Layer 2 Domains

Layer 2 is designed to allow code modularization and reuse. The primary purpose
of this layer is to separate codes and break down their implementation into small, easily
understood units. For that, modules from this layer can be divided into two domains:

4.7.1 Project Domain

Modules of this domain are designed for the firmware under development and, cur-
rently, only exist in it. They do not have to be reusable and may depend on other modules.
This flexibility is intended to reduce the developer’s overhead for features that should only
exist in a single project. At the same time, they should still be designed as modular parts
of the system. As a result, they create an abstraction level between generic and system-
specific behavior patterns. Finally, Project modules are the only ones that can directly
import Interface modules from Layer 1.

4.7.2 External Domain

Modules of this domain are designed to be reused by multiple projects. They can be
seen as generic modules that can be imported into projects. They must be self-contained
and decoupled from other project-specific modules. In addition, they must be versioned
independently, and only released versions should be used by CORE. This decoupling
system enables external modules to be tested, debugged, and reused more simply since
implementations are not interdependent or contain lots of unrelated content.

This methodology recommends developers to follow the KISS (”keep it simple, stupid”)
principle (MILICCHIO, 2007), meaning that developers should restrict themselves to
their current task scope. This is an important NFC since novice developers tend to over-
complicate their code by trying to predict future requirements and address every possible
scenario that may never be required. This is a common mistake that can lead to a signifi-
cant increase in development time and complexity.

Developers also tend to neglect inconvenient tasks whenever possible (BODEN; NETT;
WULF, 2010). Developers may avoid adding new features or changes to external modules
to avoid the work overhead of recompiling them. Therefore, unless strictly necessary, ex-
ternal modules should not be provided as compiled libraries. Having direct access to the

55

source code of the external modules encourages developers to follow the KISS principle
since they can easily add future requirements later.

Analysis in the Robot Example

In Figure 6, it is possible to observe that ROBOT contains five external domain mod-
ules (Servo Motor, Joint, Claw, Arm Robot, and 3 Joint Arm Robot) and a single project
module (Robot). It is interesting to notice that, although the 3 Joint Arm Robot mod-
ule was developed specifically for this project, it was designed as an external module,
enabling it to be reused in future projects that might require the same type of arm robot.

4.8 Layer 2 Module Types

Besides domains, Layer 2 modules are separated into three module types (Devices,
Classes, and Libraries), each of which is responsible for a different modularization pattern
and is thus designed to meet different requirements. As a result, it becomes possible
for developers to leverage from beneficial aspects of both procedural and object-oriented
development.

4.8.1 Devices

Devices are modules representing IC peripherals that are external to the target MCU.
These modules must be separate from the project (always be external domain) so that a
reusable IC devices library can be formed. The Device implementation process is also
expected to be bare-metal and allow multiple instances to provide a wider portability
domain. Finally, it is important to mention that, in Figure 5, it is possible to notice that,
different from other Layer 2 modules, Device modules must not depend on or include any
other modules.

Every Device should provide a type of handler variable containing all the informa-
tion regarding a single instance. This handler is always expected to be passed on as the
first function argument to access Device instance functionalities, thus dispensing with the
need for instance-specific implementations that may result in undesirable repetitiveness.
To illustrate, Listing 5 exemplifies both instance-specific and instance-handler implemen-
tations.

Listing 5 – Example of Instance-Specific versus Instance Handler Implementation
/ / I n s t a n c e − S p e c i f i c I m p l e m e n t a t i o n s example :

vo id l e d _ 0 _ s e t (boo l on) {
/ / I m p l e m e n t a t i o n f o r LED 0

}
vo id l e d _ 1 _ s e t (boo l on) {

/ / I m p l e m e n t a t i o n f o r LED 1
}

56

/ / I n s t a n c e − Hand le r I m p l e m e n t a t i o n example :

t y p e d e f s t r u c t {
u i n t 3 2 _ t l e d _ i d ;

} l e d _ t ; / / I n s t a n c e h a n d l e r D e f i n i t i o n

vo id l e d _ s e t (l e d _ t * led , boo l on) {
/ / G e n e r i c LED i m p l e m e n t a t i o n

}

Even though this structure may seem similar to the one described in classes (Sec-
tion 4.8.2), devices do not follow OOP principles. Modules of this type do not provide
features such as inheritability, interfaceability, or polymorphism. The reason behind this
approach is to extend the use of these implementations to other projects that do not follow
this methodology and to facilitate the adaptation of third-party implementation of these
devices to the methodology structure.

The Device module domain is presented in Table 9:

Table 9 – Device Domain
Implementation Bare-Metal

Access Layers None

Design Instance Handlers

Analysis in the Robot Example

In the ROBOT example, since the servo motor was already used in a different project,
the Device module was already available and, thus, did not require any new development.
Consequently, developers do not need to spend time understanding specifics about imple-
menting that particular peripheral (as long as no functionality expansion is required). To
better describe this module structure, Listing 6 presents fragments of its implementation.

Listing 6 – Robot Example: Servo Motor Device Module Implementation Fragments
/ * *

* @br ie f Device I n s t a n c e Hand le r

* /
t y p e d e f s t r u c t {

u i n t 8 _ t i 2 c _ a d d r e s s ; / * * I2C Device a d d r e s s * /

/ * *
* @br ie f I2C Send

* @ d e t a i l s E x p e c t s b l o c k i n g b e h a v i o r

*
* @param a d d r e s s [i n] Device a d d r e s s

* @param d a t a [i n] Data B u f f e r

* @param s i z e [i n] Data b u f f e r s i z e (By tes)

*
* @return t r u e S u c c e s s

* @return f a l s e Communicat ion F a i l e d

* /

57

boo l (* i 2 c _ s e n d) (u i n t 8 _ t a d d r e s s , u i n t 8 _ t * da t a , u i n t 3 2 _ t s i z e) ;

/ * *
* @br ie f I2C Rece ive

* @ d e t a i l s E x p e c t s b l o c k i n g b e h a v i o r

*
* @param a d d r e s s [i n] Device a d d r e s s

* @param d a t a [o u t] Data B u f f e r

* @param s i z e [i n] Data s i z e (By tes)

*
* @return t r u e S u c c e s s

* @return f a l s e Communicat ion F a i l e d

* /
boo l (* i 2 c _ r e a d) (u i n t 8 _ t a d d r e s s , u i n t 8 _ t * da t a , u i n t 3 2 _ t s i z e) ;

} s e r v o _ m o t o r _ t ;

/ / . . .

/ * *
* @br ie f I n i t i a l i z e Servo Motor

*
* @param motor [i n / o u t] I n s t a n c e Hand le r

* /
vo id d e v _ s e r v o _ m o t o r _ i n i t (s e r v o _ m o t o r _ t * motor) {

/ / Servo Motor Device I n i t i a l i z a t i o n P r o c e s s
}

/ * *
* @br ie f S e t Servo Motor Angle

*
* @param motor [i n] I n s t a n c e Hand le r

* @param a n g l e [i n] Angle (Rad ians * 100)

*
* @return t r u e S u c c e s s

* @return f a l s e I2C Communicat ion F a i l e d

* /
boo l d e v _ s e r v o _ m o t o r _ s e t _ a n g l e (s e r v o _ m o t o r _ t * motor , u i n t 3 2 _ t a n g l e) {

u i n t 1 6 _ t d a t a = a n g l e _ t o _ r e g i s t e r (a n g l e) ;
r e t u r n motor −> i 2 c _ s e n d (motor −> i 2 c _ a d d r e s s , (u i n t 8 _ t *)&da ta , s i z e o f (d a t a)) ;

}

To be able to use this module, developers only need to provide the required API func-
tions and variable values through the defined instance handler and initialize the module.
This process will be demonstrated in Section 4.8.2.

4.8.2 Classes

One advantage of modern programming languages is their built-in support for OOP.
Unfortunately, C is a procedural language that does not natively support OOP. Since the
proposed methodology does not define any restriction about the use of programming lan-
guages and thanks to the large degree of source compatibility between C and C++, Archi-
tects may choose to combine those languages to support OOP (POSCH, 2019).

In parallel to that, for several reasons, Architects may also choose to restrict their
projects to a single programming language. For that reason, projects that are restricted

58

to C language require a proper definition and standardization of how Class-type modules
should be structured and designed. In that direction, it is possible to replicate some of the
core features of OOP in C by following design guidelines, often called Object-Oriented
C, in the literature.

For projects that require the development of OOC Class modules, the proposed method-
ology used the work of QUANTUM LEAPS LLC (2020) as the base to define a structure
for Class modules that provides the following OOP features:

• Encapsulation

• Inheritance

• Interface

• Polymorphism

Classes should always provide the initialization (input argument) and instance (output
argument) structures used by the class constructor method. If another class is inherited,
these structures must contain the respective parent structures, called super, as their ini-
tial elements. The inherited class structures must be the first element that determines
subtyping behavior in the child. Finally, only single inheritance is allowed.

Project Classes can be bare-metal or RTOS, while external Classes must always be
bare-metal. If external Classes require RTOS functionalities, they should be provided in
an abstract format as arguments of the initialization structure.

Since C language struct elements do not have access modifiers, as an NFC, Class
handlers should only contain protected elements. This means that only the class and child
classes can directly access variables from the instance handler. Any other external access
should always be done through getter and setter methods. Besides making the reviewing
process more straightforward, this also avoids the violation of OOC principles and, if
necessary, facilitates the inclusion of thread safety in the module.

The Class module also defines a module subtype called Interface Classes. In OOC,
the lines between inheritance, interface, and abstraction are blurred because the language
does not explicitly enforce those concepts. In terms of implementation, mimicking the
OOP interface and abstract classes in OOC has such a slight difference that providing
individual descriptions may be redundant. For that reason, the methodology assumes that
when developed in OOC, the Interface Class module type can be used for both concepts.

Finally, the Class module domain is presented in Table 10:

Analysis in the Robot Example

In ROBOT, the reuse of multiple previously developed modules was the key factor for
the fast development of the project. By observing Figure 6, it is possible to notice that

59

Table 10 – Class Domain
Implementation Bare-Metal/RTOS

Access Layers 1 and 2

Design Object Oriented C

most of the parts of this system were already available, and developers were only required
to develop a single Class module to provide the specific characteristics of the robot under
development.

In Listing 7, it is possible to observe the structure of the Joint Class. As described
in Figure 6, Joint is an External Domain Class Module that does not depend on project-
specific modules.

The first aspect to observe in its implementation is that both joint_init_t and joint_t
structs are identical. Even though this might not be the case for every Class, it may
seem redundant in this case. However, each one of them has a different purpose. While
joint_t purpose is to maintain all the data regarding a single Class instance throughout the
execution of the system, joint_init_t only exists in the initialization of the instance. After
the initialization is executed, there are no guarantees that the data stored on it will still be
available or accessible, and, therefore, joint_init_t should only be used for initialization
purposes.

Another item worth discussing is that, in this simplified scenario, the existence of
different motor Devices was not considered. Since one of the Joint Class responsibilities
is to abstract specifics about the servo motor, it could be expanded to support multiple
different motor Device modules. In this situation, Joint would be required to provide
means to select the desirable Device module and standardize all available Devices into a
single behavior.

Listing 7 – Robot Example: Joint Class Module Implementation Fragments
/ * *

* @br ie f C l a s s I n i t i a l i z a t i o n P a r a m e t e r s

* /
t y p e d e f s t r u c t {

s e r v o _ m o t o r _ t s e r v o _ m o t o r ; / * * Servo Motor I n i t i a l i z a t i o n * /
} j o i n t _ i n i t _ t ;

/ * *
* @br ie f C l a s s I n s t a n c e Hand le r

* /
t y p e d e f s t r u c t {

s e r v o _ m o t o r _ t s e r v o _ m o t o r ; / * * Servo Motor * /
} j o i n t _ t ;

/ / . . .

/ * *
* @br ie f C r e a t e C l a s s O b j e c t

*

60

* @param h a n d l e r [o u t] I n s t a n c e Hand le r

* @param i n i t [i n] I n i t i a l i z a t i o n P a r a m e t e r s

* /
vo id c l s _ j o i n t _ i n i t (j o i n t _ t * c o n s t h a n d l e r , j o i n t _ i n i t _ t * c o n s t i n i t) {

h a n d l e r −> s e r v o _ m o t o r = i n i t −> s e r v o _ m o t o r ;
d e v _ s e r v o _ m o t o r _ i n i t (& h a n d l e r −> s e r v o _ m o t o r) ;

}

/ * *
* @br ie f S e t J o i n t Angle

*
* @param h a n d l e r [i n] I n s t a n c e Hand le r

* @param a n g l e [i n] Angle (Rad ians * 100)

*
* @return t r u e S u c c e s s

* @return f a l s e Communicat ion F a i l e d

* /
boo l c l s _ j o i n t _ s e t _ a n g l e (j o i n t _ t * c o n s t h a n d l e r , u i n t 3 2 _ t * a n g l e) {

r e t u r n d e v _ s e r v o _ m o t o r _ s e t _ a n g l e (& h a n d l e r −> se rvo_motor , a n g l e) ;
}

To evaluate the next Class module, Listing 8 presents the implementation of the Claw
Class module. Reviewing this module makes it possible to notice a high similarity be-
tween Joint and Claw Classes. Because of that, the considerations done by Joint can be
replicated in the Claw module. Besides that, although similar, Joint and Claw modules can
clearly highlight the OOP encapsulate concept. While the Joint module encapsulates the
behavior of positioning the angle of a single robot arm joint, Claw encapsulates control
of opening and closing a robotic claw.

Listing 8 – Robot Example: Claw Class Module Implementation Fragments
d e f i n e OPEN_CLAW_ANGLE 200 / * * Open Claw Angle (Rad ians * 100) * /
d e f i n e CLOSE_CLAW_ANGLE 400 / * * Close Claw Angle (Rad ians * 100) * /

/ * *
* @br ie f C l a s s I n i t i a l i z a t i o n P a r a m e t e r s

* /
t y p e d e f s t r u c t {

s e r v o _ m o t o r _ t s e r v o _ m o t o r ; / * * Servo Motor I n i t i a l i z a t i o n * /
} c l a w _ i n i t _ t ;

/ * *
* @br ie f C l a s s I n s t a n c e Hand le r

* /
t y p e d e f s t r u c t {

s e r v o _ m o t o r _ t s e r v o _ m o t o r ; / * * Servo Motor * /
} c l a w _ t ;

/ / . . .

/ * *
* @br ie f C r e a t e C l a s s O b j e c t

*
* @param h a n d l e r [o u t] I n s t a n c e Hand le r

* @param i n i t [i n] I n i t i a l i z a t i o n P a r a m e t e r s

* /
vo id c l s _ c l a w _ i n i t (c l a w _ t * c o n s t h a n d l e r , c l a w _ i n i t _ t * c o n s t i n i t) {

61

h a n d l e r −> s e r v o _ m o t o r = i n i t −> s e r v o _ m o t o r ;
d e v _ s e r v o _ m o t o r _ i n i t (& h a n d l e r −> s e r v o _ m o t o r) ;

}

/ * *
* @br ie f S e t Claw Open

*
* @param h a n d l e r [i n] I n s t a n c e Hand le r

*
* @return t r u e S u c c e s s

* @return f a l s e Communicat ion F a i l e d

* /
boo l c l s _ c l a w _ o p e n (c l a w _ t * c o n s t h a n d l e r) {

r e t u r n d e v _ s e r v o _ m o t o r _ s e t _ a n g l e (& h a n d l e r −> se rvo_motor , OPEN_CLAW_ANGLE) ;
}

In the introduction of ROBOT (Section 4.5), it was discussed that this new robot
should be able to interact in the same way other robots do to be integrated with the com-
mon Application modules. For that, all the company’s arm robots use the same Arm Robot
Interface Class (ARIC) module. This module is responsible for defining the behaviors to
be implemented by other robot Class modules, along with providing generic implemen-
tations. Because of those characteristics, the ARIC module can be better described as an
implementation of an OOP abstract class.

In Listing 9, the implementation of the ARIC module is presented and new aspects
of OOC can observed. The Overridable structure defined in this module can be used for
overriding methods and implementing virtual ones. This design makes implementations
and overrides persistent when upcasting the object. Also, to ensure the runtime safety of
the code, placeholder functions should always be assigned to virtual or unused methods.

Listing 9 – Robot Example: Interface Arm Robot Class Module Implementation Frag-
ments
/ * *

* @br ie f C l a s s I n i t i a l i z a t i o n P a r a m e t e r s

* /
t y p e d e f s t r u c t {

c h a r * model ; / * * Robot Model * /
} a r m _ r o b o t _ i n i t _ t ;

/ * *
* @br ie f C l a s s I n s t a n c e Hand le r

* /
t y p e d e f s t r u c t {

c h a r * model ; / * * Robot Model * /
c o n s t s t r u c t a r m _ r o b o t _ a p i * a p i ; / * * O v e r r i d a b l e API * /

} a r m _ r o b o t _ t ;

/ * *
* @br ie f C l a s s O v e r r i d a b l e API

* /
s t r u c t a r m _ r o b o t _ a p i {

boo l (* s e t _ p o s i t i o n) (a r m _ r o b o t _ t * c o n s t h a n d l e r , x y z _ t * p o s i t i o n) ; / * * @ref
c l s _ a r m _ r o b o t _ s e t _ p o s i t i o n * /

62

boo l (* g e t _ p o s i t i o n) (a r m _ r o b o t _ t * c o n s t h a n d l e r , x y z _ t * p o s i t i o n) ; / * * @ref
c l s _ a r m _ r o b o t _ g e t _ p o s i t i o n * /
boo l (* p i c k) (a r m _ r o b o t _ t * c o n s t h a n d l e r) ; / * * @ref
c l s _ a r m _ r o b o t _ p i c k * /
boo l (* r e l e a s e) (a r m _ r o b o t _ t * c o n s t h a n d l e r) ; / * * @ref
c l s _ a r m _ r o b o t _ r e l e a s e * /

} ;

/ * *
* @br ie f C r e a t e C l a s s O b j e c t

*
* @param h a n d l e r [o u t] I n s t a n c e Hand le r

* @param i n i t [i n] I n i t i a l i z a t i o n P a r a m e t e r s

* /
vo id c l s _ a r m _ r o b o t _ i n i t (a r m _ r o b o t _ t * c o n s t h a n d l e r , a r m _ r o b o t _ i n i t _ t * c o n s t i n i t) ;

/ * *
* @br ie f Get Robot Model

*
* @param h a n d l e r [i n] I n s t a n c e Hand le r

*
* @return Robot Model S t r i n g

* /
s t a t i c i n l i n e c h a r * c l s _ a r m _ r o b o t _ g e t _ m o d e l (a r m _ r o b o t _ t * c o n s t h a n d l e r) {

r e t u r n h a n d l e r −>model ;
}

/ * *
* @br ie f S e t Robot P o s i t i o n

*
* @param h a n d l e r [i n] I n s t a n c e Hand le r

* @param p o s i t i o n [i n] P o s i t i o n (mm)

*
* @return t r u e S u c c e s s

* @return f a l s e Communicat ion F a i l e d

* /
s t a t i c i n l i n e boo l c l s _ a r m _ r o b o t _ s e t _ p o s i t i o n (a r m _ r o b o t _ t * c o n s t h a n d l e r , x y z _ t *

p o s i t i o n) {
r e t u r n h a n d l e r −> ap i −> s e t _ p o s i t i o n (h a n d l e r , p o s i t i o n) ;

}

/ / . . .

/ * *
* @ref c l s _ a r m _ r o b o t _ s e t _ p o s i t i o n

* /
s t a t i c boo l s e t _ p o s i t i o n _ i n t e r f a c e (a r m _ r o b o t _ t * c o n s t h a n d l e r , x y z _ t * p o s i t i o n) {

(vo id) h a n d l e r ;
(vo id) p o s i t i o n ;
a s s e r t (0) ; / / No I m p l e m e n t a t i o n
r e t u r n f a l s e ;

}

/ / . . .

vo id c l s _ a r m _ r o b o t _ i n i t (a r m _ r o b o t _ t * c o n s t h a n d l e r , a r m _ r o b o t _ i n i t _ t * c o n s t i n i t) {
a s s e r t (i n i t −>model) ;
h a n d l e r −>model = i n i t −>model ;

63

s t a t i c c o n s t s t r u c t a r m _ r o b o t _ a p i a p i = {
. s e t _ p o s i t i o n = s e t _ p o s i t i o n _ i n t e r f a c e ,
. g e t _ p o s i t i o n = g e t _ p o s i t i o n _ i n t e r f a c e ,
. p i c k = p i c k _ i n t e r f a c e ,
. r e l e a s e = r e l e a s e _ i n t e r f a c e ,

} ;
h a n d l e r −> a p i = &a p i ;

}

In order to integrate all previously discussed Layer 2 modules and implement the
structure provided by the ARIC module, the new Class module 3 Joint Arm Robot Class
(3JAR) module was designed to support the specific implementation of the new robot
(Listing 10). This Class instance handler comprises instances of the three joints and
claw, along with the parent class, which combines all the system’s individual parts. By
providing the correct initialization of each one of those objects, the module becomes
operational, requiring developers to implement only methods for the interaction between
those objects.

Listing 10 demonstrates this by presenting the implementation of two virtual methods
defined by the ARIC module. The first one (three_joint_arm_robot_set_position) po-
sitions the arm in a three-dimensional coordinate by calculating the final angle required
for each joint and repositioning them. Similar to that, the three_joint_arm_robot_pick
controls the claw to pick an object by closing it. Finally, with 3JAR development com-
pleted, an operational version of the completely new robot design could already be tested.

Listing 10 – Robot Example: Three Joint Arm Robot Class Module Implementation
Fragments
d e f i n e JOINTS 3 / * * Number o f J o i n t s * /

/ * *
* @br ie f C l a s s I n i t i a l i z a t i o n P a r a m e t e r s

* /
t y p e d e f s t r u c t {

a r m _ r o b o t _ i n i t _ t s u p e r ; / * * I n h e r i t e d C l a s s I n i t i a l i z a t i o n * /
s e r v o _ m o t o r _ t j o i n t [JOINTS] ; / * * J o i n t s Servo Motor I n i t i a l i z a t i o n * /
s e r v o _ m o t o r _ t claw ; / * * Claw Servo Motor I n i t i a l i z a t i o n * /

} t h r e e _ j o i n t _ a r m _ r o b o t _ i n i t _ t ;

/ * *
* @br ie f C l a s s I n s t a n c e Hand le r

* /
t y p e d e f s t r u c t {

a r m _ r o b o t _ t s u p e r ; / * * I n h e r i t e d C l a s s * /
j o i n t _ t j o i n t [3] ; / * * Robot J o i n t s * /
c l a w _ t claw ; / * * Robot Claw * /

} t h r e e _ j o i n t _ a r m _ r o b o t _ t ;

/ * *
* @br ie f C r e a t e C l a s s O b j e c t

*
* @param h a n d l e r [o u t] I n s t a n c e Hand le r

* @param i n i t [i n] I n i t i a l i z a t i o n P a r a m e t e r s

* /

64

vo id c l s _ t h r e e _ j o i n t _ a r m _ r o b o t _ i n i t (t h r e e _ j o i n t _ a r m _ r o b o t _ t * c o n s t h a n d l e r ,
t h r e e _ j o i n t _ a r m _ r o b o t _ i n i t _ t * c o n s t i n i t) ;

/ / . . .

/ * *
* @ref c l s _ a r m _ r o b o t _ s e t _ p o s i t i o n

* /
s t a t i c boo l t h r e e _ j o i n t _ a r m _ r o b o t _ s e t _ p o s i t i o n (a r m _ r o b o t _ t * c o n s t h a n d l e r , x y z _ t *

p o s i t i o n) {
boo l r e s u l t = f a l s e ;

u i n t 3 2 _ t a n g l e [JOINTS] = { 0 } ;
c a l c u l a t e _ j o i n t _ a n g l e s (p o s i t i o n , a n g l e) ;

t h r e e _ j o i n t _ a r m _ r o b o t _ t * t h r e e _ j o i n t _ a r m _ h a n d l e r = (t h r e e _ j o i n t _ a r m _ r o b o t _ t *)
h a n d l e r ;

f o r (u i n t 3 2 _ t i = 0 ; i < JOINTS ; ++ i) {
i f (! c l s _ j o i n t _ s e t _ a n g l e (& t h r e e _ j o i n t _ a r m _ h a n d l e r −> j o i n t [i] , a n g l e [i])) {

go to end ;
}

}
r e s u l t = t r u e ;

end :
r e t u r n r e s u l t ;

}

/ / . . .

/ * *
* @ref c l s _ a r m _ r o b o t _ p i c k

* /
s t a t i c boo l t h r e e _ j o i n t _ a r m _ r o b o t _ p i c k (a r m _ r o b o t _ t * c o n s t h a n d l e r) {

t h r e e _ j o i n t _ a r m _ r o b o t _ t * t h r e e _ j o i n t _ a r m _ h a n d l e r = (t h r e e _ j o i n t _ a r m _ r o b o t _ t *)
h a n d l e r ;
r e t u r n c l s _ c l a w _ c l o s e (& t h r e e _ j o i n t _ a r m _ h a n d l e r −>claw) ;

}

/ / . . .

vo id c l s _ t h r e e _ j o i n t _ a r m _ r o b o t _ i n i t (t h r e e _ j o i n t _ a r m _ r o b o t _ t * c o n s t h a n d l e r ,
t h r e e _ j o i n t _ a r m _ r o b o t _ i n i t _ t * c o n s t i n i t) {

c l s _ a r m _ r o b o t _ i n i t (& h a n d l e r −> super , &i n i t −> s u p e r) ; / / I n i t i a l i z e P a r e n t C l a s s

/ / I n i t i a l i z e J o i n t s
f o r (u i n t 3 2 _ t i = 0 ; i < JOINTS ; ++ i) {

j o i n t _ i n i t _ t j o i n t _ i n i t = {
. s e r v o _ m o t o r = i n i t −> j o i n t [i] ,

} ;
c l s _ j o i n t _ i n i t (& h a n d l e r −> j o i n t [i] , &i n i t −> j o i n t [i]) ;

}

/ / I n i t i a l i z e Claw
c l a w _ i n i t _ t c l a w _ i n i t = {

. s e r v o _ m o t o r = i n i t −>claw ,
} ;

65

c l s _ c l a w _ i n i t (& h a n d l e r −>claw , &c l a w _ i n i t) ;

s t a t i c c o n s t s t r u c t a r m _ r o b o t _ a p i a p i = {
. s e t _ p o s i t i o n = t h r e e _ j o i n t _ a r m _ r o b o t _ s e t _ p o s i t i o n ,
. g e t _ p o s i t i o n = t h r e e _ j o i n t _ a r m _ r o b o t _ g e t _ p o s i t i o n ,
. p i c k = t h r e e _ j o i n t _ a r m _ r o b o t _ p i c k ,
. r e l e a s e = t h r e e _ j o i n t _ a r m _ r o b o t _ r e l e a s e ,

} ;
h a n d l e r −> a p i = &a p i ;

}

4.8.3 Libraries

Libraries are single instance modules that may cluster a group of other modules to
implement a system functionality. These modules are responsible for providing higher-
level functionalities without the need for instances and for reducing the need to share and
maintain objects in multiple different parts of the system.

As discussed in Section 4.8.2, Class modules seek to modularize behaviors by break-
ing system characteristics into smaller, easier-to-maintain structures. In contrast, the Li-
brary module’s design goes in a different direction by bundling different smaller parts of
the system to provide implementations for more advanced and complex functionalities
that the system may require. Therefore, by abstracting the interactions between the mul-
tiple small elements into a single module, the system’s workflows become more compact
and focused on the functional aspects of the product.

Libraries may also reduce complexity in implementing thread safety for multi-thread
projects. For example, by maintaining instances of the small pieces they use inside their
private environment, Library modules can have more control over access control and re-
source sharing of those elements, allowing them to provide external access protection in
a grouped way.

The Library module also defines a module subtype called Interface Libraries. These
subtype modules abstract and standardize third-party libraries into a single process flow.
Following the previous LCD example (Section 4.3.2), every third-party display library
could be added to the generic Interface Display Library, carrying out abstracted display
functions (Figure 7). Also, the Interface Library could select the corresponding library
using a run-time implementation or compile time through a macro compiler preprocessor.

The RTOS kernel itself should be seen as a third-party library for RTOS projects and,
thus, be abstracted by an Interface Library. Some vendors already possess kernel abstrac-
tion libraries. For example, ARM has an API called CMSIS-RTOS that already abstracts
several RTOS (RENAUX, 2014). Unfortunately, these libraries are usually architecture-
specific and may not follow the requirements for the portability domain defined by the
project Architect. Therefore, an in-house Interface Library should always abstract the
RTOS kernel to avoid potential issues.

Finally, the Library module domain is presented in Table 11:

66

Figure 7 – Display Interface Library UML Class Diagram

Source: The Author

Table 11 – Library Domain
Implementation Bare-Metal/RTOS

Access Layers 1 and 2

Design Procedural

Analysis in the Robot Example

In ROBOT, the Robot Library module (Listing 11) has three main responsibilities:

• It is responsible for managing the robot’s 3JAR instance.

• It adds thread safety to the robot’s access and operation.

• It provides more advanced, project-specific functionalities for the system.

Since 3JAR is an External Domain module, it cannot include project modules such as
the I2C Interface module. In order to be able to access the system peripherals required
for its operations, 3JAR requires the aid of another Layer 2 Project Domain module so it
can be initialized appropriately according to its specifications. The Robot Library module
was added to the ROBOT firmware design for that. In its initialization process, it provides
3JAR with the required dependencies and configurations and proceeds with its instance
initialization. As a result of this process, the robot finally becomes fully operational.

In order to meet the requirements for supporting the common Application modules,
ARIC has already defined the API required for their integration with 3JAR. However, no
considerations have been made to address the required multi-thread support. Although
the 3JAR module could support multi-thread access, the team decided to address it by

67

controlling access to the robot through the Robot Library module to easily allow full
control of 3JAR for a single application at a time.

Besides managing and controlling the access of 3JAR, the Robot Library module also
provides project-specific implementations that could be used throughout the project and
avoid repetitiveness. To exemplify this, the Library provides the function lib_robot_move_item,
which commands the robot into the multiple steps of picking an object and moving it to
another location.

Listing 11 – Robot Example: Robot Library Module Implementation Fragments
d e f i n e JOINT_0_ADDRESS 0x01 / * * J o i n t 0 I2C Address * /
d e f i n e JOINT_1_ADDRESS 0x02 / * * J o i n t 1 I2C Address * /
d e f i n e JOINT_2_ADDRESS 0x03 / * * J o i n t 2 I2C Address * /
d e f i n e CLAW_ADDRESS 0x04 / * * Claw I2C Address * /

d e f i n e DEFAULT_TIMEOUT 1000 / * * D e f a u l t Timeout (ms) * /

s t a t i c t h r e e _ j o i n t _ a r m _ r o b o t _ t r o b o t = { 0 } ; / * * Robot I n s t a n c e * /
s t a t i c boo l l o c k e d = f a l s e ; / * * Robot Lock S t a t u s * /

/ * *
* @br ie f I n i t i a l i z e Robot L i b r a r y

* /
vo id l i b _ r o b o t _ i n i t (vo id) {

t h r e e _ j o i n t _ a r m _ r o b o t _ i n i t _ t r o b o t _ i n i t = {
. s u p e r = {

. model = " Three J o i n t Arm Robot " ,
} ,
. c law = {

. i 2 c _ a d d r e s s = CLAW_ADDRESS,

. i 2 c _ s e n d = mid_i2c_send ,

. i 2 c _ r e a d = mid_ i2c_ read ,
} ,

} ;
r o b o t _ i n i t . j o i n t [0] . i 2 c _ a d d r e s s = JOINT_0_ADDRESS ;
r o b o t _ i n i t . j o i n t [0] . i 2 c _ s e n d = mid_ i2c_send ;
r o b o t _ i n i t . j o i n t [0] . i 2 c _ r e a d = m i d _ i 2 c _ r e a d ;
r o b o t _ i n i t . j o i n t [1] . i 2 c _ a d d r e s s = JOINT_1_ADDRESS ;
r o b o t _ i n i t . j o i n t [1] . i 2 c _ s e n d = mid_ i2c_send ;
r o b o t _ i n i t . j o i n t [1] . i 2 c _ r e a d = m i d _ i 2 c _ r e a d ;
r o b o t _ i n i t . j o i n t [2] . i 2 c _ a d d r e s s = JOINT_2_ADDRESS ;
r o b o t _ i n i t . j o i n t [2] . i 2 c _ s e n d = mid_ i2c_send ;
r o b o t _ i n i t . j o i n t [2] . i 2 c _ r e a d = m i d _ i 2 c _ r e a d ;

c l s _ t h r e e _ j o i n t _ a r m _ r o b o t _ i n i t (& r o b o t , &r o b o t _ i n i t) ;
}

/ / . . .

/ * *
* @br ie f Reques t Robot Lock Access

*
* @param t i m e o u t [i n] Timeout (ms)

*
* @return a r m _ r o b o t _ t * Robot I n s t a n c e

* @return NULL Timeout

68

* /
c o n s t a r m _ r o b o t _ t * l i b _ r o b o t _ l o c k (u i n t 3 2 _ t t i m e o u t) {

a r m _ r o b o t _ t * r e s u l t = NULL;
i f (l o c k (t i m e o u t)) {

r e s u l t = (a r m _ r o b o t _ t *) r o b o t ;
}
r e t u r n r e s u l t ;

}

/ / . . .

/ * *
* @br ie f Move i t em from s t a r t t o end p o s i t i o n

*
* @param s t a r t [i n] S t a r t P o s i t i o n (mm)

* @param end [i n] End P o s i t i o n (mm)

*
* @return t r u e S u c c e s s

* @return f a l s e Busy Timeout o r Communicat ion F a i l e d

* /
boo l l i b _ r o b o t _ m o v e _ i t e m (x y z _ t * s t a r t , x y z _ t * end) {

boo l r e s u l t = f a l s e ;

i f (! l o c k (DEFAULT_TIMEOUT)) {
go to end ;

} e l s e i f (! c l s _ a r m _ r o b o t _ s e t _ p o s i t i o n ((a r m _ r o b o t _ t *)&r o b o t , s t a r t)) {
go to c o m m u n i c a t i o n _ f a i l e d ;

} e l s e i f (! c l s _ a r m _ r o b o t _ p i c k ((a r m _ r o b o t _ t *)&r o b o t)) {
go to c o m m u n i c a t i o n _ f a i l e d ;

} e l s e i f (! c l s _ a r m _ r o b o t _ s e t _ p o s i t i o n ((a r m _ r o b o t _ t *)&r o b o t , end)) {
go to c o m m u n i c a t i o n _ f a i l e d ;

} e l s e i f (! c l s _ a r m _ r o b o t _ r e l e a s e ((a r m _ r o b o t _ t *)&r o b o t)) {
go to c o m m u n i c a t i o n _ f a i l e d ;

} e l s e {
r e s u l t = t r u e ;

}

c o m m u n i c a t i o n _ f a i l e d :
un lo ck () ;

end :
r e t u r n r e s u l t ;

}

4.9 Layer 3 Applications

Layer 3 is the last layer defined by the proposed methodology and comprises a single
module type called Application Module. These modules are responsible for deploying
every system workflow to provide the desired functionalities of a product.

Although the definition of Project Domain and External Domain, defined in Sec-
tion 4.7, is limited to Layer 2, the proposed methodology does not restrict the reuse of
Application modules. Instead, Architects can design the structure of tasks, APIs, and
other elements to provide reusable Application modules.

69

The Application module domain is presented in Table 12:

Table 12 – Application Domain
Implementation Bare-Metal/RTOS

Access Layers 2 and 3

Design Procedural

Since the methodology supports both mono and multi-thread approaches, Application
modules can be designed as either bare-metal state machines or RTOS threads. In the
case of RTOS support, a typical problem that novice developers face is encountering un-
expected patterns of behavior caused by their inexperience in the implications of running
a code outside the context of the RTOS. For that, the methodology defines another NFC:
every CORE should contain a System Application module (even for bare-metal projects).

It is important to iterate that the System Application module is not a module type
but, yes, a unique application that should be seen as the project’s main function. All the
system initialization processes and starting points for other activities should be carried
out inside this application, ensuring all the CORE’s code is always executed in the RTOS
environment.

As previously discussed, the methodology does not allow TARGET to include CORE
code. However, each TARGET requires a starting point for running CORE. For that
reason, the methodology defines that the System Application module as the only non-
Layer 1 module that TARGET can access directly. Also, the only interaction allowed
between the System and TARGET should be done through a single function that does not
expect arguments or return any data. Finally, this should, strictly, be the only exception
defined by the methodology, given that violating this principle may lead to non-portable
systems.

Analysis in the Robot Example

As the final step of the ROBOT system development from Figure 6, the company’s
common Application modules were added to the project. Finally, as required by the
methodology, the System Application was also added to provide the CORE’s starting
point for TARGET projects.

To conclude, the ROBOT example described a scenario capable of applying the com-
plete structure of this methodology. By providing a design that covers all Layers and
module types of the proposed methodology, ROBOT demonstrated some of the benefits
the defined architecture can provide.

As a final consideration, even though the architecture describes a wide range of def-
initions that enable the developing high-quality systems, enforcing those definitions is
crucial to ensuring those quality standards are met. To be able to extract the fullness of

70

the benefits provided by the proposed methodology, it is essential for teams to respect the
responsibilities of the roles defined in Section 4.1 and follow the development (Figure 3)
and maintainment (Figure 4) steps described in Section 4.2 to ensure the correctness of
the proposed methodology’s architecture implementation is achieved.

71

5 CASE STUDIES

Two different case studies are presented to evaluate the proposed methodology’s ef-
fectiveness and benefits. In each case study, a comparison was made between the Legacy
Project (LEGP) and the New Project (NEWP) based on the metrics results extracted by
the code metric analyzer software Metrix++ (METRIX++, 2024). Finally, each study
was selected to address different aspects of the methodology, providing a comprehensive
assessment of its capabilities.

The first case study was based on an author’s previous work. For that, the source
code used to evaluate that work (LEGP) was refactored using the methodology approach
into the NEWP (FARINA et al., 2024). This project was chosen because it represents a
typical scenario where the proposed methodology could be easily applied, allowing for
an initial demonstration of its principles. The primary goal of this case study was to
evaluate the methodology’s impact on code modularity, portability, and maintainability in
a controlled environment with straightforward requirements. This study highlights how
the methodology can enhance development, even for smaller-scale projects.

In contrast, the second case study involves a more complex, real-world project with
significantly higher levels of complexity and requirements. This study was designed to
push the boundaries of the methodology, testing its scalability and adaptability in a more
demanding environment. By being actual life employment of the proposed methodology
in the industry, the chosen product was never intended to be used as a demonstration
or to evaluate this methodology. Instead, the NEWP development team worked on its
development without any guidance other than the company’s development methodology
training received during their orientation, making it an ideal candidate for assessing the
benefits of the methodology in a real-world scenario.

Together, these two case studies provide a holistic evaluation of the proposed method-
ology. The first study serves as a proof of concept, demonstrating the methodology’s
benefits in a simpler and controlled context. In contrast, the second study validates its ap-
plicability and effectiveness in more complex, real-world scenarios. This dual approach
ensures that the methodology is not only theoretically sound but also practically viable
across different scales and complexities of embedded firmware development.

72

5.1 Case Study 1

For this first case study, an IoT system developed by the author in a previous work,
was used to evaluate the aspects and benefits of the proposed methodology. The system
supports an application that collects environmental data from IoT devices and provides
fused data to end-users. Besides that, an essential feature of this system is the ability to
autonomously calibrate new sensor nodes that are added to the network (FARINA; DOS
ANJOS; DE FREITAS, 2023).

In that work, a proof of concept system was implemented to test and evaluate the
proposed system. For that, the author developed a monolithic firmware (LEGP) whose
only intention was to be used for that. Therefore, no consideration was made to ensure
the quality of the developed firmware. Refactoring the firmware for this self-calibration
sensor device (NEWP) according to the structure described in Figure 5 made it possible
to compare LEGP and NEWP and to demonstrate the value of applying the proposed
methodology to firmware development.

The target hardware used for this firmware was an ESP32-WROOM-32 Module from
Espressif, and the official vendor framework (ESP-IDF) was used to develop the hardware-
specific implementations (ESPRESSIF SYSTEMS, 2017). Following the structure de-
fined by the proposed methodology, each firmware region was implemented in a different
repository. First, TARGET 1 was created, and then the initial project files were added.
Next, CORE 2 was built and included as a submodule of TARGET.

In NEWP, CORE was designed according to Figure 8. For that, a Calibration Appli-
cation module was designed to provide the system’s self-calibration workflow. Besides it,
as required by the methodology, the System Application module was also implemented
to provide the required initialization and start the calibration task.

Next, Layer 2 modules were implemented to provide the required functionalities for
those applications. For this project, similarly to the display example (Figure 7), third-party
libraries (FreeRTOS and ESP MQTT Client) were abstracted by two different Interface
Library modules (RTOS and MQTT Client, respectively). Besides those, two other Li-
brary modules were designed to provide implementations for the Status LED and the WiFi
connectivity (Status LED and WiFi Library modules). Finally, the Sensor Interface Class
module was used to define and enforce the requirements for the different types of hetero-
geneous sensors that could be used, and the Sensor A Class module was implemented as
an example of one of those sensors.

To conclude the design of CORE, two Layer 1 modules were included to abstract
TARGET. First, the GPIO Interface module abstracted the access to the GPIO peripheral
required for controlling the status LED. Next, the WiFi Interface module provided access

1https://github.com/mauriciofarina/Framework-Example-Project
2https://github.com/mauriciofarina/Framework-Core-Example

73

Figure 8 – UML Class Diagram for Case Study 1 System’s Design

Source: The Author

to the wireless communication peripheral.

5.1.1 Code Comparison

The implementation of the calibration process workflow for the two projects was used
to evaluate and compare LEGP and NEWP. First, Listing 12 displays the implementation
LEGP. On it, it is possible to observe several items that are potential indicators of poor
design:

• Excessive number of LOC

• High MNL and MVG

74

• Bad readability

• Lack of separation between concerns

• Strong dependency coupling

Understanding and maintaining this code can be challenging, even for experienced
developers. As a result, the aspects described by (BENINGO, 2022) in tables 1 and 2
about the increased chance of introducing problems along with code changes in complex
code become evident. Besides maintainability, the mix of system-level, target-specific,
and third-party implementations significantly reduces portability and the chance of reuse
of this code in the future.

Listing 12 – Legacy Project Calibration Process Fragments
s t a t i c vo id m q t t _ e v e n t _ h a n d l e r (vo id * h a n d l e r _ a r g s , e s p _ e v e n t _ b a s e _ t base , i n t 3 2 _ t

e v e n t _ i d , vo id * e v e n t _ d a t a) {

e s p _ m q t t _ e v e n t _ h a n d l e _ t e v e n t = e v e n t _ d a t a ;
e s p _ m q t t _ c l i e n t _ h a n d l e _ t c l i e n t = even t −> c l i e n t ;

s w i t c h ((e s p _ m q t t _ e v e n t _ i d _ t) e v e n t _ i d) {
c a s e MQTT_EVENT_CONNECTED:

ESP_LOGI (TAG, "MQTT_EVENT_CONNECTED") ;
e s p _ m q t t _ c l i e n t _ p u b l i s h (c l i e n t , l a s t _ w i l l _ t o p i c , "ONLINE" , 0 , 2 , 1) ;

c h a r t o p i c [3 2] = { 0 } ;
s p r i n t f (t o p i c , " /%d /+ " , SENSOR_ID) ;
e s p _ m q t t _ c l i e n t _ s u b s c r i b e (c l i e n t , t o p i c , 1) ;
b r e a k ;

c a s e MQTT_EVENT_DISCONNECTED:
ESP_LOGI (TAG, "MQTT_EVENT_DISCONNECTED") ;
b r e a k ;

c a s e MQTT_EVENT_SUBSCRIBED :
ESP_LOGI (TAG, "MQTT_EVENT_SUBSCRIBED, msg_id=%d " , even t −>msg_id) ;
b r e a k ;

c a s e MQTT_EVENT_UNSUBSCRIBED:
ESP_LOGI (TAG, "MQTT_EVENT_UNSUBSCRIBED, msg_id=%d " , even t −>msg_id) ;
b r e a k ;

c a s e MQTT_EVENT_PUBLISHED :
b r e a k ;

c a s e MQTT_EVENT_DATA: {
c h a r t o p i c [3 2] = { 0 } ;
memcpy (t o p i c , even t −> t o p i c , even t −> t o p i c _ l e n) ;

s w i t c h (even t −> t o p i c [3]) {

c a s e ’ 1 ’ : / / Rece ive Image
{

i f (even t −> d a t a _ l e n != s i z e o f (d a t a _ s a m p l e _ t)) {
ESP_LOGE(TAG, " SIZE ERROR 1 (GOT %u EXPECT %u) " , even t −> d a t a _ l e n

, s i z e o f (d a t a _ s a m p l e _ t)) ;
} e l s e i f (xSemaphoreTake (im ag e_ re ce ive _s em ap ho re , 0) == pdTRUE) {

memcpy(& da ta_sample , even t −> da ta , s i z e o f (d a t a _ s a m p l e _ t)) ;
u p d a t e _ v e c t o r _ c l o c k (& d a t a _ s a m p l e . t imes t amp) ;
xSemaphoreGive (i m a g e _ r e c e i v e _ s e m a p h o r e) ;

75

}
} b r e a k ;
c a s e ’ 2 ’ : / / Reques t Image
{

i f (even t −> d a t a _ l e n != s i z e o f (v e c t o r _ c l o c k _ t)) {
ESP_LOGE(TAG, " SIZE ERROR 2 (GOT %u EXPECT %u) " , even t −> d a t a _ l e n

, s i z e o f (v e c t o r _ c l o c k _ t)) ;
} e l s e i f (xSemaphoreTake (im ag e_ re ce ive _s em ap ho re , 0) == pdTRUE) {

u p d a t e _ v e c t o r _ c l o c k ((v e c t o r _ c l o c k _ t *) even t −> d a t a) ;
c h a r t o p i c [3 2] = { 0 } ;
s p r i n t f (t o p i c , " / SENSOR/%d / 2 " , SENSOR_ID) ;
u p d a t e _ v e c t o r _ c l o c k (NULL) ;
memcpy(& d a t a _ s a m p l e . t imes tamp , &s e n s o r _ c l o c k , s i z e o f (

v e c t o r _ c l o c k _ t)) ;
e s p _ m q t t _ c l i e n t _ p u b l i s h (c l i e n t , t o p i c , (c h a r *)&da ta_sample ,

s i z e o f (d a t a _ s a m p l e _ t) , 0 , 0) ;
xSemaphoreGive (i m a g e _ r e c e i v e _ s e m a p h o r e) ;

}
} b r e a k ;
c a s e ’ 3 ’ : / / Reques t P r e d i c t i o n
{

i f (even t −> d a t a _ l e n != s i z e o f (v e c t o r _ c l o c k _ t)) {
ESP_LOGE(TAG, " SIZE ERROR 3 (GOT %u EXPECT %u) " , even t −> d a t a _ l e n

, s i z e o f (v e c t o r _ c l o c k _ t)) ;
} e l s e {

i f (xSemaphoreTake (i ma ge _ r ec e i ve _s em ap hor e , 0) == pdTRUE) {
u p d a t e _ v e c t o r _ c l o c k ((v e c t o r _ c l o c k _ t *) even t −> d a t a) ;
xSemaphoreGive (i m a g e _ r e c e i v e _ s e m a p h o r e) ;

}
xSemaphoreGive (p r e d i c t _ s e m a p h o r e) ;

}
} b r e a k ;
c a s e ’ 4 ’ : / / Scan Dev ices
{

w i f i _ a p _ r e c o r d _ t a p _ r e c o r d s [3 0] = { 0 } ;
u i n t 1 6 _ t r e c o r d s = 3 0 ;
w i f i _ s c a n (a p _ r e c o r d s , &r e c o r d s) ;

a p _ i n f o _ t a p _ i n f o [r e c o r d s] ;
f o r (u i n t 3 2 _ t i = 0 ; i < r e c o r d s ; ++ i) {

memcpy (a p _ i n f o [i] . s s i d , a p _ r e c o r d s [i] . s s i d , 33) ;
a p _ i n f o [i] . r s s i = a p _ r e c o r d s [i] . r s s i ;

}

c h a r t o p i c [3 2] = { 0 } ;
s p r i n t f (t o p i c , " / SENSOR/%d / 4 " , SENSOR_ID) ;
e s p _ m q t t _ c l i e n t _ p u b l i s h (c l i e n t , t o p i c , (c h a r *)&a p _ i n f o , (s i z e o f (

a p _ i n f o _ t) * r e c o r d s) , 2 , 0) ;
} b r e a k ;

}
} b r e a k ;
c a s e MQTT_EVENT_ERROR:

ESP_LOGI (TAG, "MQTT_EVENT_ERROR") ;
e s p _ r e s t a r t () ;
b r e a k ;

d e f a u l t :
ESP_LOGI (TAG, " Othe r e v e n t i d :%d " , even t −> e v e n t _ i d) ;
b r e a k ;

}

76

}

In contrast, in NEWP, the implementation of the same workflow is done by the Cal-
ibration Application module (Listing 13), and it is possible to observe a visually more
organized design on it. In further analysis, it is possible to notice that the different parts
of this workflow are clearly separated according to the system’s different modules.

Opposite to LEGP, which mixes MQTT protocol aspects, system API structure, and
calibration workflow, NEWP separates those concerns into different modules. As a result,
it becomes easier to focus and more straightforward to understand the specifics of the Cal-
ibration Application module workflow since large parts of the development required for it
are encapsulated in the other specialized modules. Consequently, novice developers can
easily collaborate in NEWP since introducing code changes does not require extensive
development experience to mitigate the high risk of adding problems to the system any-
more. Along with that, advanced C language patterns, such as callbacks, could be used
without compromising the comprehension of novice developers.

Listing 13 – New Project Calibration Application Module Fragments
s t a t i c vo id g e t _ r a w _ s a m p l e _ c a l l b a c k (c h a r * t o p i c , u i n t 8 _ t * da t a , u i n t 3 2 _ t l e n g t h) {

u i n t 8 _ t b u f f e r [1 2 8] = { 0 } ;
u i n t 3 2 _ t s i z e = c l s _ s e n s o r _ g e t _ r a w _ s a m p l e (s e n s o r , b u f f e r) ;
l i b _ m q t t _ c l i e n t _ p u b l i s h (r e s p o n s e _ t o p i c , b u f f e r , s i z e , 0) ;

}
s t a t i c vo id p r e d i c t _ c a l l b a c k (c h a r * t o p i c , u i n t 8 _ t * da t a , u i n t 3 2 _ t l e n g t h) {

u i n t 3 2 _ t l a b e l = c l s _ s e n s o r _ p r e d i c t (s e n s o r) ;
l i b _ m q t t _ c l i e n t _ p u b l i s h (r e s p o n s e _ t o p i c , (u i n t 8 _ t *)&l a b e l , s i z e o f (u i n t 3 2 _ t) , 0) ;

}
s t a t i c vo id s e t _ m o d e l _ c a l l b a c k (c h a r * t o p i c , u i n t 8 _ t * da t a , u i n t 3 2 _ t l e n g t h) {

c l s _ s e n s o r _ s e t _ m o d e l (s e n s o r , da t a , l e n g t h) ;
}
s t a t i c vo id s c a n _ d e v i c e s _ c a l l b a c k (c h a r * t o p i c , u i n t 8 _ t * da t a , u i n t 3 2 _ t l e n g t h) {

c h a r b u f f e r [5 1 2] = { 0 } ;
l i b _ w i f i _ s c a n (b u f f e r) ;
l i b _ m q t t _ c l i e n t _ p u b l i s h (r e s p o n s e _ t o p i c , (u i n t 8 _ t *) b u f f e r , s t r l e n (b u f f e r) , 0) ;

}

s t a t i c vo id s u b s c r i b e _ t o p i c s (vo id) {

m q t t _ s u b s c r i p t i o n _ t s u b s c r i b e = {
. qos = 0 ,

} ;

s p r i n t f (s u b s c r i b e . t o p i c , " /%d / raw " , SENSOR_ID) ;
s u b s c r i b e . c a l l b a c k = g e t _ r a w _ s a m p l e _ c a l l b a c k ;
l i b _ m q t t _ c l i e n t _ s u b s c r i b e (& s u b s c r i b e) ;

s p r i n t f (s u b s c r i b e . t o p i c , " /%d / p r e d i c t " , SENSOR_ID) ;
s u b s c r i b e . c a l l b a c k = p r e d i c t _ c a l l b a c k ;
l i b _ m q t t _ c l i e n t _ s u b s c r i b e (& s u b s c r i b e) ;

s p r i n t f (s u b s c r i b e . t o p i c , " /%d / model " , SENSOR_ID) ;
s u b s c r i b e . c a l l b a c k = s e t _ m o d e l _ c a l l b a c k ;
l i b _ m q t t _ c l i e n t _ s u b s c r i b e (& s u b s c r i b e) ;

77

s p r i n t f (s u b s c r i b e . t o p i c , " /%d / scan " , SENSOR_ID) ;
s u b s c r i b e . c a l l b a c k = s c a n _ d e v i c e s _ c a l l b a c k ;
l i b _ m q t t _ c l i e n t _ s u b s c r i b e (& s u b s c r i b e) ;

}

s t a t i c vo id a p p _ c a l i b r a t i o n _ t a s k (vo id * c o n t e x t) {

(vo id) c o n t e x t ;

s u b s c r i b e _ t o p i c s () ;

w h i l e (1) {
l i b _ m q t t _ c l i e n t _ l o o p () ;

}
}

The improvements in the reuse aspects can also be observed by comparing Listing 12
and Listing 14. In their corresponding projects, both of those implementations were
placed into an MQTT Client context. However, in LEGP, other non-related implemen-
tations were added, resulting in a particular implementation that cannot be applied for a
different purpose. In contrast, NEWP provides a generic implementation of the MQTT
Client that does not contain any project-specific implementations, thus making it possible
to reuse it in several other projects.

Listing 14 – New Project MQTT Client Interface Library Module Fragments
s t a t i c vo id m q t t _ d a t a _ e v e n t _ h a n d l e r (e s p _ m q t t _ e v e n t _ h a n d l e _ t * e v e n t) {

f o r (u i n t 3 2 _ t i = 0 ; i < MQTT_MAX_SUBSCRIPTIONS ; ++ i) {

i f (s t r l e n (m q t t _ s u b s c r i p t i o n [i] . t o p i c) == even t −> t o p i c _ l e n) {
i f (0 == memcmp(even t −> t o p i c , m q t t _ s u b s c r i p t i o n [i] . t o p i c , even t −> t o p i c _ l e n))

{
m q t t _ s u b s c r i p t i o n [i] . c a l l b a c k (even t −> t o p i c , (u i n t 8 _ t *) even t −> da ta , (

u i n t 3 2 _ t) even t −> d a t a _ l e n) ;
b r e a k ;

}
}

}
}

s t a t i c vo id m q t t _ e v e n t _ h a n d l e r (vo id * h a n d l e r _ a r g s , e s p _ e v e n t _ b a s e _ t base , i n t 3 2 _ t
e v e n t _ i d , vo id * e v e n t _ d a t a) {

e s p _ m q t t _ e v e n t _ h a n d l e _ t e v e n t = e v e n t _ d a t a ;

s w i t c h ((e s p _ m q t t _ e v e n t _ i d _ t) e v e n t _ i d) {
c a s e MQTT_EVENT_DATA:

ESP_LOGI ("MQTT_CLIENT" , "GOT DATA %s %d " , even t −> t o p i c , even t −> t o p i c _ l e n) ;
m q t t _ d a t a _ e v e n t _ h a n d l e r (& e v e n t) ;
b r e a k ;

c a s e MQTT_EVENT_ERROR:
ESP_LOGE("MQTT_CLIENT" , "MQTT_EVENT_ERROR") ;
a s s e r t (0) ;
b r e a k ;

d e f a u l t :
/ / I g n o r e

78

b r e a k ;
}

}

/ / . . .

vo id l i b _ m q t t _ c l i e n t _ s u b s c r i b e (m q t t _ s u b s c r i p t i o n _ t * s u b s c r i p t i o n) {

f o r (u i n t 3 2 _ t i = 0 ; i < MQTT_MAX_SUBSCRIPTIONS ; ++ i) {

i f (NULL == m q t t _ s u b s c r i p t i o n [i] . c a l l b a c k) {
memcpy(& m q t t _ s u b s c r i p t i o n [i] , s u b s c r i p t i o n , s i z e o f (m q t t _ s u b s c r i p t i o n _ t)) ;
b r e a k ;

}
a s s e r t (i != (MQTT_MAX_SUBSCRIPTIONS − 1)) ; / / Check i f B u f f e r i s f u l l

}

e s p _ m q t t _ c l i e n t _ s u b s c r i b e (m q t t _ c l i e n t , s u b s c r i p t i o n −> t o p i c , s u b s c r i p t i o n −>qos) ;
}

5.1.2 Region Analysis

The initial analysis (Table 13) compares the outlines of both projects, and the results
show a significant increase in all three regions. This was expected since the methodology
enhances the system modularization; thus, more files are required to encapsulate these
modules.

Also, to improve readability and maintainability, the methodology advises that the
LOC in a function should not exceed 40. The reason for this is that most IDEs can display
at least this number of lines (in their default configuration) without requiring any scrolling.
As a consequence, functions become less complex and more specialized.

Modularization of systems promotes reuse, and therefore, it would be expected that
NEWP presented fewer functions in comparison with LEGP (as demonstrated in Sec-
tion 5.2). However, in a project with such a small scope, it becomes unavoidable for
NEWP to require more functions to modularize the few monolithic functions of LEGP.
Because of that, further analysis will be provided in Section 5.1.3 to evaluate if the ex-
pressive changes in the number of functions resulted in system overheads.

Table 13 – Case Study 1 Region Overview
Legacy New

Modules 4 10

Files 10 33

Functions 17 45

79

5.1.3 Lines of Code

Projects with less LOC tend to be more readable, maintainable, and less error-prone.
Since both projects execute the same system flow, a smaller LOC could indicate improved
quality of the developed code. Since LEGP was developed in a certain monolithic way
and it was not expected to be used after the experiment it was designed for, no efforts
were made to provide documentation comments, configuration preprocessors, and other
similar elements. For that reason, those metrics will be disregarded for this analysis.

As the first comparison, Table 14 shows that the TLOC and, for the same reasons of
Section 5.1.2, TELOC for NEWP have increased more than double that of the previous
version. Although this may seem like a negative result for maintainability, it is important
to remember that smaller and simple functions have a linear impact on maintainability,
while large and complex exponential (Section 2.6.4). Therefore, TLOC should not be
considered for small projects since it may result in misleading conclusions.

In contrast to TLOC and TELOC, LOCFI and ELOCFI have significantly decreased.
By increasing the number of modules and functions in the project, files and functions have
become more specialized and, therefore, easier to reuse and maintain. Finally, Figure 9
shows that files are now distributed in a better ELOC range in a more specialized way.

Figure 9 – Effective File Lines of Code Distribution for Case Study 1

Source: The Author

Next, the ELOCFU results are shown in Table 15. The results show that NEWP
functions are smaller and have fewer size variations than the LEGP functions, confirming
that functions are now more specialized and easier to understand and maintain. Moreover,
the lower standard deviation indicates that developers got more consistent in their function
implementation scopes.

80

Table 14 – File Lines of Code results for Case Study 1
Legacy New Difference Change

Code
Mean 38.6 14.1 -24.5 -63.4%

Standard Deviation 48.3 18.4 -29.9 -62.0%

Min 2 0 -2 -100.0%

Max 160 76 -84 -52.5%

Total 386 466 80 20.7%

Comments
Mean 1.0 15.8 14.8 1484.8%

Standard Deviation 1.9 13.1 11.2 590.4%

Min 0 5 5 100.0%

Max 6 51 45 750.0%

Total 10 523 513 5130.0%

Preprocessor
Mean 9.2 7.3 -1.9 -20.3%

Standard Deviation 4.9 7.1 2.2 43.8%

Min 3 0 -3 -100.0%

Max 21 32 11 52.4%

Total 92 242 150 163.0%

Total
Mean 48.4 35.7 -12.7 -26.2%

Standard Deviation 46.9 25.5 -21.4 -45.7%

Min 10 6 -4 -40.0%

Max 167 98 -69 -41.3%

Total 484 1179 695 143.6%

Table 15 – Effective Function Lines of Code results for Case Study 1
Legacy New Difference Change

Mean 19.1 7.8 -11.3 -59.3%

Standard Deviation 20.9 4.4 -16.6 -79.1%

Min 3 3 0 0.0%

Max 91 20 -71 -78.0%

Total 325 350 25 7.7%

Even though most of the LEGP functions are in a good ELOC range, many present
an expressive size compared to NEWP (Figure 10). This hints that the functions may be
more complex than necessary. However, this can only be confirmed by the analysis of

81

their complexity.

Figure 10 – Effective Function Lines of Code Distribution for Case Study 1

Source: The Author

Returning to the Section 5.1.2 discussion about NEWP’s expressive increase in the
number of functions, further conclusions can be obtained with the ELOCFU metric. Even
though the number of functions increased, Table 15 displays that the total number of
ELOCFU has increased by less than 10%. This indicates that, although more functions
were added, no significant overhead in instructions was observed, and consequently, no
considerable system overhead should be expected.

5.1.4 Maximum Nesting Level

The MNL comparison between LEGP and NEWP is shown in Table 16, and the results
show that both projects present good results in terms of readability. However, by analyz-
ing the distribution of functions MNL (Figure 11), compared with LEGP, it is possible
to see that a more significant portion of NEWP functions is distributed in a lower MNL
range. Those results indicate that the NEWP functions are easier to read and understand
and, therefore, to maintain and reuse.

5.1.5 McCabe’s Cyclomatic Complexity

The MVG results provided by Table 17 show that NEWP significantly decreases
64.3% in the average complexity of functions. Besides that, NEWP stays only in a low-
risk range, while LEGP contains functions in a medium-risk range (Figure 12). Also, a
significant increase in complexity 1 functions in NEWP confirms that functions are indeed
more specialized.

82

Table 16 – Maximum Nesting Level results for Case Study 1
Legacy New Difference Change

Mean 2.7 1.8 -1.0 -35.1%

Standard Deviation 1.7 0.8 -0.9 -50.4%

Min 1 1 0 0.0%

Max 8 5 -3 -37.5%

Total 46 79 33 71.7%

Figure 11 – Maximum Nesting Level Distribution for Case Study 1

Source: The Author

Table 17 – McCabe’s Cyclomatic Complexity results for Case Study 1
Legacy New Difference Change

Mean 3.2 1.2 -2.1 -64.3%

Standard Deviation 4.3 0.5 -3.8 -89.1%

Min 1 1 0 0.0%

Max 18 3 -15 -83.3%

Total 55 52 -3 -5.5%

Next, LEGP and NEWP bug risks are compared in Table 18. The results show that the
chance of changes introducing bugs in NEWP is around 15% lower than in LEGP. Even
though this is already a significant improvement for projects of this size, it becomes more
expressive when we consider that the NEWP has almost 8% more ELOC than LEGP.

Finally, the MVG results were used by a script to calculate the system’s flow with the
maximum number of paths (Table 19). The results show a significant decrease in possible
paths within a single function. These results demonstrate that as well as portability and
reuse, the methodology can improve the quality of the developed code, enabling it to be
more easily understood, changed, and debugged.

83

Figure 12 – McCabe’s Cyclomatic Complexity Distribution for Case Study 1

Source: The Author

Table 18 – Risk of Bugs and Changes of Bug Injection results for Case Study 1

Low
(5%)

Medium
(20%)

High
(40%)

Very High
(60%)

Bug
Injection

Risk
Legacy 16 (94.1%) 1 (5.9%) 0 (0.0%) 0 (0.0%) 5.9%

New 45 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 5.0%

Table 19 – Code Paths for Case Study 1
Paths

Legacy 129600

New 72

It is essential to mention that this metric does not evaluate paths for functions that are
not system-level implementation. This means that for LEGP, all drivers, HAL, third-party,
and auto-generated functions were disregarded. Additionally, only CORE functions were
considered for NEWP (except third-party functions). Since this value does not introduce
new paths, all non-system-level functions were set as complexity 1 functions. Finally, to
simplify the analysis, all loops were disregarded. This means that functions inside a loop
were considered to be called only once.

5.1.6 Simple Manintaibility Index

Table 20 provides the results for the SMI metric. Even though most LEGP functions
have SMI 1 values (Figure 13) and a good ASMI, all NEWP functions have SMI 1 values,
which provides the best ASMI possible.

This metric may not be very expressive in terms of improvement for small projects.
However, in this case study, an important aspect to observe is how much a few bad im-
plementations can affect the result of the project’s overall maintainability. Even though
LEGP has only two functions with SMI greater than 1, that resulted in an ASMI 78.8%
worse than NEWP.

84

Table 20 – Maintainability Index results for Case Study 1
Legacy New Difference Change

Mean 1.2 1.0 -0.2 -15.0%

Standard Deviation 0.5 0.0 -0.5 -100.0%

Min 1 1 0 0.0%

Max 3 1 -2 -66.7%

Total 20 45 25 125.0%

Overall Index 4.6 1.0 -3.6 -78.8%

Figure 13 – Maintainability Index Distribution for Case Study 1

Source: The Author

5.1.7 Module Coupling

In LEGP, no abstraction was made to separate ESP-IDF from the system functions.
For this reason, the required dependencies from the API vendor were added to this anal-
ysis. In the case of the NEWP version, implementations on the TARGET do not directly
interact with CORE modules. Therefore, NEWP only takes into account the dependencies
that are included inside of CORE. The LEGP and NEWP dependency maps are shown in
Table 21 and Table 22, respectively.

Since both projects make use of an RTOS, it is natural that multiple modules depend
on either FreeRTOS (LEGP) or lib_rtos (NEWP). These dependencies on methodology
modules could be reduced by including kernel functions within the module initialization
parameters. However, the RTOS can be regarded as a global dependency for project
modules.

Application modules are designed to use different other modules to implement the
workflow of system processes. As discussed in Section 4.9, although Application modules

85

Table 21 – Case Study 1 Dependency Map for Legacy Project

Dependency
Module Dependency

of Totalmqtt wifi model main

mqtt X X 2
wifi X X 2

model X X 2
main 0

esp-event X 1
esp-wifi X 1
esp-nvs X 1
esp-gpio X 1
esp-mqtt X 1

FreeRTOS X X X X 4
Total

Dependencies
5 3 1 6

Table 22 – Case Study 1 Dependency Map for New Project
Dependency

Module Dependency
of Totalmid_gpio mid_wifi cls_sensor cls_sensor_demo lib_mqtt lib_rtos lib_status_led lib_wifi app_calibration app_system

mid_gpio X 1
mid_wifi X 1

cls_sensor X 1
cls_sensor_demo X 1

lib_mqtt X 1
lib_rtos X X X X X X 6

lib_status_led X 1
lib_wifi X X 2

app_calibration X 1
app_system 0

esp-mqtt X 1
FreeRTOS X 1

Total
Dependencies

0 0 1 1 2 1 2 2 4 4

can be reusable, the proposed methodology does not define rules to enforce it. Therefore,
it is acceptable that Application modules may rely on multiple dependencies.

Finally, the quality of the module encapsulation of NEWP is clear from the results
obtained for the other modules. In contrast with the LEGP, each NEWP module is com-
pletely decoupled from the others, evidencing high reusability characteristics. Moreover,
these modules can be replaced by different module versions without implicating changes
in the other modules.

5.2 Case Study 2

Even though Case Study 1 (CS1) was a great starting point to evaluate the benefits of
this methodology, the results obtained from it may be shallow and insufficient to provide

86

a clear picture of the methodology’s potential. Therefore, a second case study (CS2) was
conducted to evaluate the methodology further. To provide a more realistic scenario, a
comparison was made between two firmware versions of the same product from Lumina-
tor Technology Group (LTG). The first version (LEGP) was developed using traditional
software development practices, while the second version (NEWP) was developed using
the methodology proposed in this work.

To contextualize, LTG is a company that develops and manufactures electronic equip-
ment for the public transportation market. During the 2020 pandemic and the consequent
global microchip supply chain shortage, LTG faced a challenge to keep up with the de-
mand for their products. One of their products, an LED display controller, was particularly
affected by the shortage, as it relied on a microcontroller that was no longer available. To
overcome this challenge, the LTG firmware department was tasked with developing a new
version of the controller using a different microcontroller that was available in the market.

Since both products were expected to provide the exact same functionalities, the ini-
tial idea was to port LEGP to the new microcontroller. However, after evaluating the
LEGP code, the assigned development team concluded that it was developed with no
considerations for portability, making porting it a very time-consuming task. Considering
this issue, along with the fact that the proposed methodology was already being applied
to all new projects, the team decided to pursue another approach and developed NEWP
from scratch. The NEWP was then able to take advantage of the methodology’s bene-
fits. For example, the developers were already familiar with the methodology’s structure
and could easily identify previously developed modules that could be reused in the new
project. This allowed the NEWP to be developed much faster since the developers could
focus primarily on developing product-specific features and functionalities.

Even though the selected microcontroller was available in the market at the time, there
were no guarantees that LTG would again face long lead times or even shortages of this
component in the near future. For this, the methodology’s portability aspect provided an
essential benefit to the company. Due to its portability, NEWP could be easily ported
to a different microcontroller if needed, reducing the risks of future supply chain issues.
Moreover, NEWP could also be ported to the previous microcontroller used in LEGP,
allowing the same system to be used for both products and reducing maintenance costs.

Since this is an LTG proprietary project, no sensitive or project-specific data can be
shared. However, similar to CS1, the required metric data was collected to evaluate the
methodology’s benefits. The following sections present the results obtained from com-
paring LEGP and NEWP.

5.2.1 Performance Analysis

In order to ensure the quality of the images displayed by the LTG LED displays,
internal tests proved that a minimal 120 frames-per-second rate is required. The high

87

frame rate is required because those LED displays are designed with eight channels of
multiplexation, which, in comparison with other types of display, requires a higher refresh
rate to provide a stable image to the user.

The processing times for frames were measured to evaluate that the multiple levels of
abstraction and encapsulation, defined by the proposed methodology, did not introduce
performance overhead that prevent the system from achieving the expected performance
requirements. For that, the devices were configured using the same configuration and
image files. A GPIO pin was used to generate a square wave, which was measured with
the support of a logic analyzer to observe the processing time of single frames.

For each firmware version, the time for 7200 frames was measured, and the results are
presented in Table 23:

Table 23 – Frame Processing Time Performance Evaluation
Legacy New

Mean 6.72 ms 5.40 ms

Standard Deviation 1.37 ms 0.27 ms

Min 4.70 ms 4.93 ms

Max 12.74 ms 5.88 ms

Missed Deadlines Count 327 0

The results show that although LEGP can reach faster processing times, it does not
ensure the RT constraints to provide the quality requirements of this system. Besides this,
LEGP’s processing time for different samples does not present consistency, resulting in
the unpredictability of the system behavior.

In contrast, NEWP provides expressive improvements in the RT aspects of the system.
By maintaining a more consistent processing time and a minor standard deviation, NEWP
can successfully ensure that the system’s RT requirements are met.

In summary, the results demonstrate that, in contrast with LEGP, which exhibits in-
consistencies in frame processing times and numerous missed deadlines, the NEWP ver-
sion consistently meets the real-time constraints required by the system, ensuring greater
predictability and stability. This confirms that the proposed methodology does not com-
promise the system’s performance but significantly enhances its real-time characteristics.

5.2.2 Region Analysis

Similar to CS1, the initial overview analysis (Table 24) shows that NEWP has more
modules and files than LEGP. Since this project is of a much larger scale than CS1, the
reuse aspects of modularization discussed in Section 5.1.2 can be better observed in this
study.

In contrast to CS1, the number of functions in CS2 was reduced by almost 38% from

88

LEGP, demonstrating that a modular approach with well-architected modules can have a
more comprehensive use domain of functions. Therefore, the reduction in the number of
functions results from reusing functions in other parts of the project.

Table 24 – Case Study 2 Region Overview
Legacy New

Modules 22 50

Files 152 217

Functions 915 569

5.2.3 Lines of Code

For the LOC analysis, Table 25 presents the results for project and file LOC levels.
The results show a drastic reduction of 83.7% and 90.3%, respectively, in the TLOC and
TELOC of NEWP compared to LEGP. Based on this reduction, a few conclusions can be
drawn.

Since both projects were designed to provide the exact same functionalities, the results
demonstrate that using the methodology allowed developers to achieve the same effective
results with a much smaller codebase. Even though a LOC metric does not directly mea-
sure the required effort to develop a project, it can provide a rough estimate that NEWP
demanded just about 10% of the work required for LEGP. Additionally, it is important to
consider that the NEWP uses previously developed modules, which were also included in
this codebase size.

Besides reducing the development work required, a smaller codebase also provides
other benefits. Smaller project codebases can be easier to understand since less informa-
tion needs to be processed. Also, they are less prone to bugs, as there are fewer lines
of code to contain bugs or to find them. The binary size is also reduced, which can be
important for embedded systems with limited memory.

Since such a drastic reduction in codebase size was achieved, the number of com-
ments and preprocessors is expected also to be reduced. Despite the reduction, for every
100 ELOC in LEGP, there are about 17 lines of comment, while in NEWP, there are ap-
proximately 91 lines of comment. This difference may indicate that NEWP has better
code documentation. Moreover, a higher density of preprocessors in NEWP may indicate
fewer magic numbers, thus improving code readability and maintainability.

For the LOC analysis, Table 25 presents the results for project and file LOC levels.
The results show a drastic reduction of 83.7% and 90.3%, respectively, in the TLOC and
TELOC of NEWP compared to LEGP. Based on this reduction, a few conclusions can be
drawn.

Since both projects were designed to provide the exact same functionalities, the results

89

Table 25 – File Lines of Code results for Case Study 2
Legacy New Difference Change

Code
Mean 573.6 39.0 -534.6 -93.2%

Standard Deviation 1702.2 86.7 -1615.5 -94.9%

Min 0 0 0 0.0%

Max 9181 1141 -8040 -87.6%

Total 87192 8464 -78728 -90.3%

Comments
Mean 99.7 35.6 -64.1 -64.3%

Standard Deviation 166.2 27.7 -138.5 -83.3%

Min 0 12 12 100.0%

Max 921 164 -757 -82.2%

Total 15155 7718 -7437 -49.1%

Preprocessor
Mean 22.9 7.4 -15.5 -67.6%

Standard Deviation 37.1 9.4 -27.7 -74.6%

Min 0 1 1 100.0%

Max 279 88 -191 -68.5%

Total 3487 1612 -1875 -53.8%

Total
Mean 683.6 77.9 -605.6 -88.6%

Standard Deviation 1724.0 91.2 -1632.7 -94.7%

Min 4 15 11 275.0%

Max 9199 1160 -8039 -87.4%

Total 103904 16914 -86990 -83.7%

demonstrate that using the methodology allowed developers to achieve the same effective
results with a much smaller codebase. Even though a LOC metric does not directly mea-
sure the required effort to develop a project, it can provide a rough estimate that NEWP
demanded just about 10% of the work required for LEGP. Additionally, it is important to
consider that the NEWP uses previously developed modules, which were also included in
this codebase size.

Besides reducing the development work required, a smaller codebase also provides
other benefits. Smaller project codebases can be easier to understand and maintain since
less information needs to be processed. Also, they are less prone to bugs, as there are
fewer LOC to find and contain bugs. Finally, the binary size is also reduced, which can
be important for embedded systems with limited memory.

90

Since such a drastic reduction in codebase size was achieved, the number of com-
ments and preprocessors is expected also to be reduced. Despite the reduction, for every
100 ELOC in LEGP, there are about 17 lines of comment, while in NEWP, there are ap-
proximately 91 lines of comment. This difference may indicate that NEWP has better
code documentation and, therefore, is easier for other developers to reuse and maintain.
Moreover, a higher density of preprocessors in NEWP may indicate fewer magic num-
bers, thus improving code readability and maintainability.

By evaluating the ELOCFI distribution in Figure 14, it is possible to observe that
around 20% of LEGP files have more than 300 ELOC. Although this may not be a prob-
lem, large files may be more complex to maintain and understand. On the other hand,
NEWP has a more balanced distribution, with most files having fewer than 100 ELOC.
This distribution indicates that NEWP files are more focused and specialized, providing a
better separation of concerns and better maintainability.

Figure 14 – Effective File Lines of Code Distribution for Case Study 2

Source: The Author

Going deeper into the LOC analysis, Table 26 presents the ELOCFU results, which
show that NEWP functions are well distributed with a maximum of 59 ELOCFU. By
reviewing the distribution in Figure 15, it is possible to observe that less than 1% of
NEWP functions have more than the ideal 40 LOCFU. In comparison, LEGP contains
functions going up to 1160 ELOCFU, with more than 10% of the functions falling into a
range greater than NEWP.

With fewer functions and an almost ideal ELOCFU distribution, NEWP presents less
complexity regarding readability and, thus, better maintainability. By being specialized
and easy to understand, NEWP functions require less effort to introduce changes and have
less chance to introduce bugs.

91

Table 26 – Effective Function Lines of Code results for Case Study 2
Legacy New Difference Change

Mean 31.2 10.2 -20.9 -67.1%

Standard Deviation 72.8 8.6 -64.3 -88.2%

Min 3 3 0 0.0%

Max 1160 59 -1101 -94.9%

Total 28269 5831 -22438 -79.4%

Figure 15 – Effective Function Lines of Code Distribution for Case Study 2

Source: The Author

5.2.4 Maximum Nesting Level

To evaluate complexity and readability aspects, Table 27 presents the MNL results.
Unlike the other metric results, the MNL does not display drastic improvements for this
metric. However, in contrast with LEGP, NEWP has reduced the average MNL by almost
20%, indicating that NEWP functions have reduced complexity and, therefore, increased
maintainability.

Table 27 – Maximum Nesting Level results for Case Study 2
Legacy New Difference Change

Mean 2.3 1.8 -0.5 -19.8%

Standard Deviation 1.7 1.0 -0.6 -37.8%

Min 1 1 0 0.0%

Max 12 6 -6 -50.0%

Total 2064 1038 -1026 -49.7%

92

The MNL distribution (Figure 16) was analyzed to better understand why this metric
did not present similar improvements to other metrics. This methodology recommends
avoiding functions that exceed more than three levels of indentation. Therefore, LEGP
has about 82% for that range while NEWP has about 92.5%. Additionally, LEGP presents
functions with up to 12 levels, while NEWP functions have a maximum of 6 levels. Even
though expressive results could not be observed in this metric, it is possible to notice that,
compared with LEGP, NEWP displayed an overall improvement in complexity.

Figure 16 – Maximum Nesting Level Distribution for Case Study 2

Source: The Author

Going deeper into the analysis, unlike MVG, which measures the total of paths within
a function, MNL only measures the maximum level of nesting on it. Although LEGP
does not have expressive MNL values, its functions nested levels may vary widely. For
example, according to Table 26, LEGP has functions with up to 1160 ELOC and, by com-
bining it with high MNL values, indicates that LEGP functions have poor maintainability
when compared to NEWP.

5.2.5 McCabe’s Cyclomatic Complexity

To evaluate the complexity of the projects, Table 28 presents the MVG results, indicat-
ing that NEWP has a drastic reduction of about 70% in complexity compared with LEGP.
Furthermore, the standard deviation of MVG in NEWP has also been reduced by almost
90%, meaning that most of its functions exhibit a narrow range of complexity. This is
illustrated in Figure 17, where about 72% of NEWP functions have an MVG value of 1,
while in LEGP, only about 54%. This means that NEWP presents a larger set of small and
single-pathed functions.

A large number of complexity 1 functions may indicate two opposite scenarios. The
first is that functions are over-simplified or over-specialized, resulting in a poor project
design. In the second scenario, functions are well-designed and focused, providing a

93

Table 28 – McCabe’s Cyclomatic Complexity results for Case Study 2
Legacy New Difference Change

Mean 6.1 1.8 -4.3 -70.1%

Standard Deviation 17.5 1.9 -15.7 -89.4%

Min 1 1 0 0.0%

Max 310 15 -295 -95.2%

Total 5522 1037 -4485 -81.2%

Figure 17 – McCabe’s Cyclomatic Complexity Distribution for Case Study 2

Source: The Author

better separation of concerns and readability.

Scenarios of the first type are usually observed in projects with a high number of
functions and LOCFI, along with the inexistence of higher complexity functions. In such
cases, complexity is distributed among them, and more LOC are required to encapsulate
all those functions. Besides that, another possible characteristic of this scenario is the
presence of functions with very high MVG values since they are needed to encapsulate a
large number of smaller functions.

Since NEWP not only expressively reduces the number of functions and LOCFI com-
pared to LEGP but also presents a good complexity range distribution, the first scenario
is unlikely. Therefore, NEWP functions can be considered more consistent and well-
designed to encapsulate the procedures while reducing complexity.

To support that, the system’s flow with the maximum number of paths (Table 29) was
calculated using the same methodology as CS1. In comparison with LEGP, the results
show that NEWP has decreased the exponential level by about 74%. This means that
NEWP has indeed improved the system’s architecture and design, achieving the same
results with a narrow number of path ramifications.

To assess the risk of the projects, Table 30 presents the MVG risk results. The data
shows that 5.3% of LEGP functions have a high and very high risk of bugs, while NEWP
has none. Furthermore, 6.1% of LEGP functions have medium risk, while NEWP has
only 0.9%. Supporting the conclusion for CS1, these results also demonstrate the method-

94

Table 29 – Code Paths for Case Study 2
Paths

Legacy 3e322

New 7e83

ology’s benefits in reducing bugs and improving the quality and maintainability of the
projects.

Table 30 – Risk of Bugs and Changes of Bug Injection results for Case Study 2

Low
(5%)

Medium
(20%)

High
(40%)

Very High
(60%)

Bug
Injection

Risk
Legacy 804 (88.6%) 55 (6.1%) 29 (3.2%) 19 (2.1%) 8.2%

New 564 (99.1%) 5 (0.9%) 0 (0.0%) 0 (0.0%) 5.1%

In addition to these considerations, the MVG risk analysis provides good insight into
how to improve the project. However, poorly architectured and designed projects may be
too entangled to allow those types of improvement. Therefore, although this may be true
for projects that follow the methodology, it may not always be true for those that do not.

By following the workflows provided by the methodology in Section 4.2, OPS can
provide solutions to automate this metric and identify high and very high-risk functions
in the review process. As a result, developers can focus on improving those functions,
reducing the risk of bugs, and enhancing the project’s overall quality.

5.2.6 Simple Manintaibility Index

Table 31 presents the SMI results, indicating substantial maintainability improvements
in NEWP compared to LEGP. Even though NEWP does not reach the ideal SMI value for
all functions, it only presents SMI values of up to 3, while LEGP reaches the maximum
SMI of 25. Furthermore, approximately 97.4% of NEWP functions have ideal SMI, while
LEGP has only about 84.2% (Figure 18).

It is important to note that any function with an SMI value above 1 is considered
poorly designed. Therefore, with a mean value of 1.7 and a standard deviation of 2.4,
LEGP is considered highly difficult to maintain. On the other hand, even though NEWP
has room for improvement, it can be regarded as an easy-to-maintain project. Overall,
NEWP improved the project’s maintainability by more than 61% compared to LEGP.

5.2.7 Module Coupling

Comparing the COUP metric for CS2 was not possible due to how LEGP was im-
plemented. By analyzing the project, it was possible to identify that LEGP has a single

95

Table 31 – Maintainability Index results for Case Study 2
Legacy New Difference Change

Mean 1.7 1.0 -0.6 -37.8%

Standard Deviation 2.4 0.2 -2.2 -92.2%

Min 1 1 0 0.0%

Max 25 3 -22 -88.0%

Total 1501 586 -915 -61.0%

Overall Index 1501.0 581.4 -919.6 -61.3%

Figure 18 – Maintainability Index Distribution for Case Study 2

Source: The Author

global header that contains all project dependencies. This header is included in every file
in the project, making it impossible to identify the actual dependencies of each module
since every module depends on all others.

96

6 CONCLUSIONS

This work presents a development methodology for hardware-independent firmware
development. By establishing a set of rules and architecture, this methodology provides
numerous benefits besides facilitating project portability across different hardware plat-
forms. By providing a common ground of system comprehension to all team members, it
enables them to easily get up-to-speed with new projects or even different modules that
they may not have previously participated in. This structure also allows novice developers
to improve their development skills and start contributing to the project quickly without
limiting the more experienced developers.

By enabling module reuse, the methodology also improves the efficiency of develop-
ing new projects or features since developers can leverage previously developed modules.
Additionally, modularization facilitates the introduction of new features, corrections, or
improvements without affecting the rest of the system. This is a significant advantage
when working with large codebases, where changes can have unexpected side effects.
Furthermore, automated testing becomes more straightforward, as modules can be tested
independently.

In this work, many important aspects of the development process were addressed and
defined to ensure a simple, yet effective, development process. Firstly, the team roles
were presented and defined. This section outlines the responsibilities and requirements of
each role to ensure that the team members understand their roles and the importance of
their work.

Next, the team’s development workflow was introduced. This workflow distinguishes
between development and maintenance tasks to ensure that these activities do not interfere
with each other. This separation is essential to ensure that the team can focus on their
current task without interruptions from other activities.

Finally, the methodology’s architecture was presented. The architecture defines a
structure where system and hardware implementations are separated into different do-
mains that only communicate through a well-defined process. Concepts such as porta-
bility domain, conventions, standards and patterns were introduced. Next, accompanied
by the robot example system, layers and their modules were described to provide a clear

97

understanding of where each module fits within the system, their interactions and depen-
dencies, and how they should be implemented.

To evaluate the proposed work, the development methodology was demonstrated through
the implementation of the first case study. For this purpose, a simple IoT system devel-
oped from previous work was refactored according to the methodology. Although the
system was simple, the refactoring process was able to demonstrate the benefits of the
methodology. The refactored system was more organized, modular, and easier to under-
stand and maintain.

The second case study was a real-world project of a much larger scale and complexity.
Besides the benefits previously observed in the first case study, the comparison between
new and legacy versions of this system, provided more realistic insights into the benefits
of the methodology. Finally, these results demonstrated that the use of the methodology
can significantly improve the development process and the quality of the final product.

In conclusion, the methodology presented in this work provides a solid foundation
for hardware-independent and modular firmware development. By providing a set of
rules, conventions, and architecture, the methodology enables the development of more
organized, modular, and maintainable systems. The benefits of the methodology were
demonstrated through two case studies, showing that the methodology can significantly
improve the development process and the quality of the final product. The methodology
is a valuable tool for firmware development teams that want to improve their development
process and the quality of their products.

Some possible future work directions that can be followed based on the results ob-
tained in this work are:

• The development of a set of tools to automate the generation of the methodology’s
structure, modules, and configurations;

• The development and application of tools to automate the testing of the system;

• The development of tools to automate the enforcement and review of the method-
ology’s rules, conventions, and structure;

• The design and implementation of a package management system to facilitate the
reuse of modules.

98

99

REFERENCES

ALMOGAHED, A. et al. A Refactoring Classification Framework for Efficient Software
Maintenance. IEEE Access, [S.l.], v. 11, p. 78904–78917, 2023.

AMAZON WEB SERVICES. FreeRTOS. Avaliable in:
https://www.freertos.org/FAQ_Amazon.html#why_has_amazon_taken_stewardship_of_freertos.
Accessed in: 01-03-2024.

AMINI, K. Extreme C: taking you to the limit in concurrency, oop, and the most
advanced capabilities of c. [S.l.]: Packt Publishing Ltd, 2019.

ANDERSON, P. Coding standards for high-confidence embedded systems. In:
MILCOM 2008-2008 IEEE MILITARY COMMUNICATIONS CONFERENCE, 2008.
Proceedings [. . .] [S.l.: s.n.], 2008. p. 1–7.

ASPENCORE. The Current State of Embedded Development. Avaliable in:
https://www.embedded.com/wp-content/uploads/2023/05/Embedded-Market-Study-For-
Webinar-Recording-April-2023.pdf. Accessed in: 23-02-2024.

BANIK, S.; ZIMMER, V. Firmware Development. [S.l.]: Apress, 2022.

BARKMANN, H.; LINCKE, R.; LÖWE, W. Quantitative evaluation of software quality
metrics in open-source projects. In: INTERNATIONAL CONFERENCE ON
ADVANCED INFORMATION NETWORKING AND APPLICATIONS
WORKSHOPS, 2009. Proceedings [. . .] [S.l.: s.n.], 2009. p. 1067–1072.

BARR, M. Embedded C Coding Standard. [S.l.]: Barr Group, 2018.

BARR, M.; MASSA, A. Programming embedded systems: with c and gnu
development tools. [S.l.]: " O’Reilly Media, Inc.", 2006.

BEN SGHAIER, O.; SAHRAOUI, H. Improving the learning of code review successive
tasks with cross-task knowledge distillation. Proceedings of the ACM on Software
Engineering, [S.l.], v. 1, n. FSE, p. 1086–1106, 2024.

100

BENINGO, J. Reusable Firmware Development: a practical approach to apis, hals and
drivers. [S.l.]: Springer, 2017.

BENINGO, J. Embedded Software Design: a practical approach to architecture,
processes, and coding techniques. [S.l.]: Springer, 2022.

BODEN, A.; NETT, B.; WULF, V. Operational and strategic learning in global software
development. IEEE Software, [S.l.], v. 27, 2010.

BROOKS, F. P. Essence and accidents of software engineering. IEEE computer, [S.l.],
v. 20, n. 4, p. 10–19, 1987.

CLEMENTS, A. A. et al. {HALucinator}: firmware re-hosting through abstraction layer
emulation. In: USENIX SECURITY SYMPOSIUM, 29., 2020. Proceedings [. . .]
[S.l.: s.n.], 2020. p. 1201–1218.

CLEMENTS, A. A. et al. Is your firmware real or re-hosted?. In: WORKSHOP ON
BINARY ANALYSIS RESEARCH, 2021. Proceedings [. . .] [S.l.: s.n.], 2021.

CONNECTIVITY STANDARDS ALLIANCE. Matter: the foundation for connected
things. Avaliable in: https://csa-iot.org/all-solutions/matter/. Accessed in: 22-04-2024.

COOLING, J. Software Engineering for Real-Time Systems (The Complete
Edition). [S.l.]: Packt Publishing Ltd, 2019.

CROSSLEY, C. Software Supply Chain Security: securing the end-to-end supply
chain for software, firmware, and hardware. 1. ed. [S.l.]: O’Reilly Media, 2024.

DANO, E. B. Importance of Reuse and Modularity in System Architecture. In:
INTERNATIONAL SYMPOSIUM ON SYSTEMS ENGINEERING, 2019.
Proceedings [. . .] [S.l.: s.n.], 2019. p. 1–8.

DE BASSI, P. R. et al. Measuring developers’ contribution in source code using quality
metrics. In: IEEE 22ND INTERNATIONAL CONFERENCE ON COMPUTER
SUPPORTED COOPERATIVE WORK IN DESIGN, 2018. Proceedings [. . .]
[S.l.: s.n.], 2018. p. 39–44.

DEEPA, M. et al. Leveraging Agile Framework for a Project Based Learning
Environment in Embedded Systems Design Course. Journal of Engineering Education
Transformations, [S.l.], v. 37, 2024.

DOUGLASS, B. P. Design patterns for embedded systems in C: an embedded
software engineering toolkit. [S.l.]: Elsevier, 2010.

101

DUNN, J. COVID-19 and Supply Chains: a year of evolving disruption. Cleveland Fed
District Data Briefs, [S.l.], n. cfddb 20210226, p. 1–8, 2021.

ECKER, W.; MüLLER, W.; DöMER, R. Hardware-dependent software: principles
and practice. [S.l.: s.n.], 2009.

ECOS. The eCos Hardware Abstraction Layer (HAL). Avaliable in:
http://www.ecos.sourceware.org/docs-1.3.1/ref/ecos-ref.b.html. Accessed in:
12-01-2024.

ELDH, S. Code Review Evolution. IEEE Software, [S.l.], v. 41, n. 5, p. 4–8, 2024.

ESPRESSIF SYSTEMS. ESP-WROOM-32 Datasheet. Avaliable in:
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-
32_datasheet_en.pdf. Accessed in: 17-01-2024.

FAHMIDEH, M. et al. Software Engineering for Internet of Things: the practitioners’
perspective. IEEE Transactions on Software Engineering, [S.l.], v. 48, n. 8, p.
2857–2878, 2022.

FAN, X. Real-Time Embedded Systems: design principles and engineering practices.
[S.l.: s.n.], 2015.

FARINA, M. D.; DOS ANJOS, J. C.; DE FREITAS, E. P. Real-Time Auto Calibration
for Heterogeneous Wireless Sensor Networks. Journal of Internet Services and
Applications, [S.l.], v. 14, n. 1, p. 1–9, 2023.

FARINA, M. D. et al. Hardware-Independent Embedded Firmware Architecture
Framework. Journal of Internet Services and Applications, [S.l.], v. 15, n. 1, p. 14–24,
2024.

FENG, B.; MERA, A.; LU, L. {P2IM}: scalable and hardware-independent firmware
testing via automatic peripheral interface modeling. In: USENIX SECURITY
SYMPOSIUM, 29., 2020. Proceedings [. . .] [S.l.: s.n.], 2020. p. 1237–1254.

FENTON, N.; BIEMAN, J. Software metrics: a rigorous and practical approach. [S.l.]:
CRC press, 2014.

FERREIRA, L. C. B. et al. The three-phase methodology for iot project development.
Internet of Things, [S.l.], v. 20, p. 100624, 2022.

FOROUZANI, S.; CHIAM, Y. K.; FOROUZANI, S. Method for assessing software
quality using source code analysis. In: FIFTH INTERNATIONAL CONFERENCE ON
NETWORK, COMMUNICATION AND COMPUTING, 2016. Proceedings [. . .]
[S.l.: s.n.], 2016. p. 166–170.

102

FOWLER, M. Patterns of Enterprise Application Architecture: pattern enterpr
applica arch. [S.l.]: Addison-Wesley, 2012.

FRÖHLICH, A. A.; WANNER, L. F. Operating system support for wireless sensor
networks. Journal of Computer Science, [S.l.], v. 4, n. 4, p. 272, 2008.

GANSSLE, J. G. A firmware development standard. Embedded Systems
Programming, [S.l.], 2004.

GARCÍA TUDELA, P. A.; MARÍN MARÍN, J. A. Use of Arduino in Primary
Education: a systematic review. Education Sciences, [S.l.], v. 13, n. 2, p. 134, 2023.

GOMES, E. et al. A survey from real-time to near real-time applications in fog
computing environments. In: TELECOM, 2021. Proceedings [. . .] [S.l.: s.n.], 2021. v.
2, n. 4, p. 489–517.

GRACIOLI, G. et al. Implementation and evaluation of global and partitioned
scheduling in a real-time OS. Real-Time Systems, [S.l.], v. 49, p. 669–714, 2013.

GRADY BOOCH ROBERT A. MAKSIMCHUK, M. W. E. Object-oriented analysis
and design with applications. 3rd ed. ed. [S.l.]: Addison-Wesley, 2007. (The
Addison-Wesley object technology series).

GRAMS, C. How Much Time Do Developers Spend Actually Writing Code. The New
Stack, [S.l.], 2019.

GUERRERO-ULLOA, G.; RODRÍGUEZ-DOMÍNGUEZ, C.; HORNOS, M. J. Agile
methodologies applied to the development of Internet of Things (IoT)-based systems: a
review. Sensors, [S.l.], v. 23, n. 2, p. 790, 2023.

GUSTAFSON, E. et al. Toward the analysis of embedded firmware through automated
re-hosting. In: INTERNATIONAL SYMPOSIUM ON RESEARCH IN ATTACKS,
INTRUSIONS AND DEFENSES, 22., 2019. Proceedings [. . .] [S.l.: s.n.], 2019. p.
135–150.

HÄNISCH, T. A Case Study on using Microservice Patterns in an Embedded System.
In: ATINER’S CONFERENCE PAPER PROCEEDINGS SERIES, 2023. Proceedings
[. . .] [S.l.: s.n.], 2023.

HOBBS, C. Embedded Software Development for Safety-Critical Systems. [S.l.]:
CRC Press, 2019.

HOLZMANN, G. J. The Power of 10: rules for developing safety-critical code.
Computer, [S.l.], v. 39, 2006.

103

HOMÈS, B. Fundamentals of software testing. [S.l.]: John Wiley & Sons, 2024.

HORSTMANNM, L. P. et al. Handling WSN Communication Faults at the Edge with
Confidence Attribution for Data Imputation. In: IEEE 9TH WORLD FORUM ON
INTERNET OF THINGS, 2023. Proceedings [. . .] [S.l.: s.n.], 2023. p. 1–6.

HUBALOVSKY, S.; SEDIVY, J. Mistakes in object oriented programming. In:
INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY, 2., 2010.
Proceedings [. . .] [S.l.: s.n.], 2010. p. 113–116.

IFTIKHAR, U. et al. A tertiary study on links between source code metrics and external
quality attributes. Information and Software Technology, [S.l.], p. 107348, 2023.

INTERVALZERO. Understanding Hard Real-time Determinism. Avaliable in:
https://www.intervalzero.com/understanding-hard-real-time-determinism/. Accessed in:
04-05-2024.

JAMIL, M. A. et al. Software testing techniques: a literature review. In:
INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION
TECHNOLOGY FOR THE MUSLIM WORLD, 6., 2017. Proceedings [. . .] [S.l.: s.n.],
2017.

JIA, M. et al. Transient computing for energy harvesting systems: a survey. Journal of
Systems Architecture, [S.l.], v. 132, p. 102743, 2022.

JOHNSON, J. et al. An empirical study assessing source code readability in
comprehension. In: IEEE INTERNATIONAL CONFERENCE ON SOFTWARE
MAINTENANCE AND EVOLUTION, 2019. Proceedings [. . .] [S.l.: s.n.], 2019. p.
513–523.

KALAYCI, M. Fortifying Automotive Cybersecurity: the imperative of compliance to
misra c and cert c. Avaliable in: https://medium.com/@mkklyci/fortifying-automotive-
cybersecurity-the-imperative-of-compliance-to-misra-c-and-cert-c-5b6f968f9c04.
Accessed in: 21-04-2024.

KAUR, H. et al. Optimizing for Happiness and Productivity: modeling opportune
moments for transitions and breaks at work. In: HUMAN FACTORS IN COMPUTING
SYSTEMS, 2020. Conference [. . .] [S.l.: s.n.], 2020.

KOPETZ, H.; STEINER, W. Real-time systems: design principles for distributed
embedded applications. [S.l.]: Springer Nature, 2022.

KRÖNING, M. W. Concurrency Techniques and Hardware Abstraction Layer
Concepts for Embedded Systems in Rust. 2023. Tese (Doutorado em Engenharia
Elétrica) — Universitätsbibliothek der RWTH Aachen, 2023.

104

LEE, Y. et al. Embedded Firmware Rehosting System through Automatic Peripheral
Modeling. IEEE Access, [S.l.], 2023.

LOUBSER, N. Software Engineering for Absolute Beginners. [S.l.]: Springer, 2021.

LWAKATARE, L. E. et al. Towards DevOps in the embedded systems domain: why is it
so hard? In: ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM
SCIENCES, 2016. Proceedings [. . .] [S.l.: s.n.], 2016. v. 2016-March.

M. GOMES, R.; BAUNACH, M. A Study on the Portability of IoT Operating Systems.
Tagungsband des FG-BS Frühjahrstreffens 2021, [S.l.], 2021.

MAKHSHARI, A.; MESBAH, A. IoT bugs and development challenges. In: IEEE/ACM
43RD INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 2021.
Proceedings [. . .] [S.l.: s.n.], 2021. p. 460–472.

MARCONDES, H. et al. Operating Systems Portability: 8 bits and beyond. In: IEEE
CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY
AUTOMATION, 2006. Proceedings [. . .] [S.l.: s.n.], 2006. p. 124–130.

MARTIN, R. Clean Architecture: a craftsman’s guide to software structure and design.
[S.l.]: Pearson Education, 2017.

METRIX++. Extendable Tool for Code Metrics Collection and Analysis. Avaliable
in: https://github.com/metrixplusplus/metrixplusplus. Accessed in: 23-01-2024.

MICROSOFT. Microsoft acquires Express Logic, accelerating IoT development for
billions of devices at scale. Avaliable in:
https://blogs.microsoft.com/blog/2019/04/18/microsoft-acquires-express-logic-
accelerating-iot-development-for-billions-of-devices-at-scale/. Accessed in: 10-01-2024.

MILICCHIO, F. The Unix KISS: a case study. arXiv preprint cs/0701021, [S.l.], 2007.

MISRA. MISRA C 2012: guidelines for the use of the c language in critical systems.
[S.l.]: Motor Industry Software Reliability Association, 2012.

MOTOGNA, S.; VESCAN, A.; ŞERBAN, C. Empirical investigation in embedded
systems: quality attributes in general, maintainability in particular. Journal of Systems
and Software, [S.l.], v. 201, p. 111678, 2023.

MUDE, R.; JOSHI, R. D. Modular Design Implementation in the Firmware of Complex
Micro-Controller Based Products. In: ANNUAL INTERNATIONAL CONFERENCE
ON EMERGING RESEARCH AREAS: INTERNATIONAL CONFERENCE ON
INTELLIGENT SYSTEMS, 2023. Proceedings [. . .] [S.l.: s.n.], 2023. p. 1–6.

105

NESER, M.; VAN SCHOOR, G. Object-oriented embedded C. SAIEE Africa Research
Journal, [S.l.], v. 100, n. 4, p. 90–96, 2009.

OUALLINE, S. Bare Metal C: embedded programming for the real world. [S.l.]: No
Starch Press, 2022.

PARGAONKAR, S. Enhancing Software Quality in Architecture Design: a survey-based
approach. International Journal of Scientific and Research Publications (IJSRP),
[S.l.], v. 13, n. 08, 2023.

PASSIG HORSTMANN, L.; CONRADI HOFFMANN, J. L.; FRÖHLICH, A. A.
Monitoring the performance of multicore embedded systems without disrupting its
timing requirements. Design Automation for Embedded Systems, [S.l.], v. 27, n. 4, p.
217–239, 2023.

POSCH, M. Hands-On Embedded Programming with C++ 17: create versatile and
robust embedded solutions for mcus and rtoses with modern c++. [S.l.]: Packt
Publishing Ltd, 2019.

QUANTUM LEAPS LLC. Object-Oriented Programming in C. Avaliable in:
https://github.com/QuantumLeaps/OOP-in-C. Accessed in: 22-02-2024.

RENAUX, D. P. Comparative performance evaluation of CMSIS-RTOS. In:
EUROPEAN SIGNAL PROCESSING CONFERENCE, 2014. Proceedings [. . .]
[S.l.: s.n.], 2014. v. 1998-January.

ROGER, S. P.; BRUCE, R. M. Software engineering: a practitioner’s approach. [S.l.]:
McGraw-Hill Education, 2019.

SCHMIDT, M. Implementing the IEEE software engineering standards. [S.l.]:
Sams, 2000.

SEACORD, R. C. SEI CERT C Coding Standard. [S.l.]: Carnegie Mellon University,
2016.

SHIN, K. G.; RAMANATHAN, P. Real-time computing: a new discipline of computer
science and engineering. Proceedings of the IEEE, [S.l.], v. 82, n. 1, p. 6–24, 1994.

SIMMANN, G.; VEERANNA, V.; KRIESTEN, R. Design of an Alternative Hardware
Abstraction Layer for Embedded Systems with Time-Controlled Hardware Access.
[S.l.]: SAE Technical Paper, 2024.

SOLOVEV, A.; YULDASHEV, T. Embedded System Design: challenges of hardware
and software development. Integra Sources, [S.l.], 2023.

106

SOMMERVILLE, I. Software engineering. 10th. Book Software Engineering. 10th,
Series Software Engineering, [S.l.], v. 10, 2016.

SPRAY, J.; SINHA, R. Abstraction layered architecture: writing maintainable embedded
code. In: EUROPEAN CONFERENCE ON SOFTWARE ARCHITECTURE, 2018.
Proceedings [. . .] [S.l.: s.n.], 2018. p. 131–146.

STANKOVIC, J. A. Real-time and embedded systems. ACM Computing Surveys
(CSUR), [S.l.], v. 28, n. 1, p. 205–208, 1996.

STEWART, D. B. Twenty-five most common mistakes with real-time software
development. In: EMBEDDED SYSTEMS CONFERENCE, 1999., 1999. Proceedings
[. . .] [S.l.: s.n.], 1999. v. 141.

SUN, L.; LI, Y.; MEMON, R. A. An open IoT framework based on microservices
architecture. China Communications, [S.l.], v. 14, n. 2, p. 154–162, 2017.

THIRUMALAI, G. K. A Beginner’s Guide to SSD Firmware: designing, optimizing,
and maintaining ssd firmware. [S.l.]: Springer, 2023.

TOTH, J.; KARLSSON, F. Selecting unit testing framework for embedded
microcontroller development. 2021. Dissertação (Mestrado em Engenharia Elétrica) —
Jonkoping Univeristy, 2021.

TREMAROLI, N. J. Adaptive Firmware Framework for Microcontroller
Development. 2023. Tese (Doutorado em Engenharia Elétrica) — Virginia Tech, 2023.

TYRKKÖ, M. et al. Organizing Software Maintenance in a Small Aviation Software
Company: a case study. 2019. Dissertação (Mestrado em Engenharia Elétrica) — , 2019.

WANG, J. Real-Time Embedded Systems. [S.l.]: John Wiley & Sons, Inc., 2017.

WANG, J. et al. Software testing with large language models: survey, landscape, and
vision. IEEE Transactions on Software Engineering, [S.l.], 2024.

WANG, K. C. Embedded and real-time operating systems. [S.l.: s.n.], 2017.

WHITE, E. Making embedded systems. [S.l.]: " O’Reilly Media, Inc.", 2024.

WILLENBRING, J. M.; WALIA, G. S. Using Complexity Metrics with Hotspot
Analysis to Support Software Sustainability. In: IEEE INTERNATIONAL
SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING WORKSHOPS,
2022. Proceedings [. . .] [S.l.: s.n.], 2022. p. 37–42.

107

WILLENBRING, J. M.; WALIA, G. S. The utility of complexity metrics during code
reviews for CSE software projects. Future Generation Computer Systems, [S.l.], v.
160, p. 65–75, 2024.

WILLENBRING, J.; SINGH WALIA, G. Evaluating the Sustainability of
Computational Science and Engineering Software: empirical observations. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND
KNOWLEDGE ENGINEERING, 2021. Proceedings [. . .] [S.l.: s.n.], 2021. p. 453–456.

WILLOCX, M. et al. Developing maintainable application-centric iot ecosystems. In:
IEEE INTERNATIONAL CONGRESS ON INTERNET OF THINGS, 2018.
Proceedings [. . .] [S.l.: s.n.], 2018. p. 25–32.

YUAN, C. et al. A Component Development Framework for Embedded Software. In:
IEEE INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION
AND SOFTWARE ENGINEERING, 2021. Proceedings [. . .] [S.l.: s.n.], 2021. p.
71–75.

ZADDACH, J. et al. AVATAR: a framework to support dynamic security analysis of
embedded systems’ firmwares. NDSS, [S.l.], v. 14, p. 1–16, 2014.

ZHENG, X.; LIANG, S.; XIONG, X. A hardware/software partitioning method based on
graph convolution network. Design Automation for Embedded Systems, [S.l.], v. 25,
2021.

108

APPENDIX A DEVELOPMENT STANDARD

A.1 Standard Rules

1. Non-compliance modules should have a note on each file header comment.

2. In case of a code standard revision or update, legacy files should only be updated
to the new version when code changes are required. In this case, the whole module
should be updated to the new standard version.

3. Always check if third-party licenses allow their use in closed, commercial and pro-
prietary code.

4. Any code, comment, documentation and filenames should be written in proper En-
glish language.

5. All programs should be written to comply with the C99 version of the ISO C Pro-
gramming Language Standard.

A.2 Formatting and Indentation Rules

1. Braces should always surround the blocks of code, following if , else, switch,
while, do, and for statements. Single statements and empty statements follow-
ing these keywords should also always be surrounded by braces.

2. Each indentation level should align at a multiple of 4 characters from the start of
the line.

3. The tab character (ASCII 0x09) should never appear within any source code file.
Use 4 spaces instead (Automate your code editor!).

4. There is no characters per line limit, however, whenever possible try to stay below
100 characters.

5. Whenever a line of code is too long to fit within the maximum line width, indent
the second and any subsequent lines in the most readable manner possible.

109

6. All source code lines should end only with the single character LF (ASCII 0x0A),
not with the pair CR− LF (0x0D 0x0A).

7. Left Braces ({) should always be on the same line of its statement:

/ / Do Th i s :
i f (x > 0) {

/ / Some Code . .
}
/ / Not Th i s :
i f (x > 0)
{

/ / Some Code . .
}

8. Within a switch statement, the case labels should be aligned; the contents of each
case block should be indented once from there.

A.2.1 White Space Rules

1. The left brace ({) on each if , while, for and switch should be separated by one
space:

i f (x > 0) {
w h i l e (1) {
}

}

2. Each of the assignment operators =, + =, − =, ∗ =, / =, % =, & =, | =, =, =,
and ! = should always be preceded and followed by one space.

x += 1 ;

3. Each of the binary operators +, −, ∗, /, %, <, <=, >, >=, ==,! =, <<, >>, &,
|, ∧, &&, and || should always be preceded and followed by one space.

i f (x != 0)

4. Each of the unary operators +, −, ++, −−, !, and ∼, should be written without a
space on the operand side.

x ++;

5. The pointer operators ∗ and & should be written without a space on the operand
side.

u i n t 3 2 _ t * p t r = &v a r :

6. The structure pointer and structure member operators (− > and ., respectively)
should always be without surrounding spaces.

110

x = t h e _ p o i n t e r −>x ;
y = t h e _ s t r u c t . y ;

7. The left and right brackets of the array subscript operator ([and]) should be without
surrounding spaces, except as required by another white space rule.
u i n t 3 2 _ t x [1 0] ;

8. Expressions within parentheses should always have no spaces adjacent to the left
and right parenthesis characters.
x = (a + b) ;

9. The left and right parentheses of the function call operator should always be without
surrounding spaces. Except when at the end of a line, each comma separating
function parameters should always be followed by one space.
vo id foo (u i n t 3 2 _ t a , u i n t 3 2 _ t b) ;

10. Each semicolon separating the elements of a for statement should always be fol-
lowed by one space.
f o r (i = 0 ; i < 10 ; ++ i) {
}

11. Each semicolon should follow the statement it terminates without a preceding space.
u i n t 3 2 _ t x = 1 ; / / Good
u i n t 3 2 _ t x = 1 ; / / Bad

A.3 Comments and Code Documentation Rules

1. Each Module and function should be documented in Doxygen comment format.

(a) The Module Main Header file should contain at least the following informa-
tion:

• @file Header Filename

• @author Code Author Name and Email

• @brief Module Description

/ * *
* @f i l e a p p _ t e m p l a t e . h

* @author Author Name (Deve lope r Email)

* @br ie f A p p l i c a t i o n Templa te

* /

(b) Function prototypes should contain at least the following information:

• @brief Function description

111

• @param Function argument description

• [in] and [out] tags should be used for input and output arguments respec-
tively

• @return Function return value

/ * *
* @br ie f Copy S t r i n g wi th O f f s e t

*
* @param s t r _ 0 [i n] I n p u t S t r i n g

* @param s t r _ 1 [o u t] Outpu t S t r i n g

* @param o f f s e t [i n] I n p u t S t r i n g O f f s e t

*
* @return boo l t r u e S u c c e s s

* @return boo l f a l s e F a i l e d

* /
boo l c o p y _ s t r i n g (c o n s t c h a r * s t r _ 0 , c h a r * s t r _ 1 , s i z e _ t o f f s e t) {

boo l e r r o r = t r u e ;

s i z e _ t i n _ l e n g t h = s t r l e n (s t r _ 0) ;

i f (i n _ l e n g t h < o f f s e t) {
s t r c p y (s t r _ 1 , &s t r _ 0 [o f f s e t]) ;
e r r o r = f a l s e ;

}

r e t u r n e r r o r ;
}

(c) Global Variables and Definitions should contain an inline brief description:
d e f i n e STRING_LENGTH 10 / * * S t r i n g Length * /
c o n s t u i n t 3 2 _ t s t r [STRING_LENGTH] = " H e l l o World " ; / * * H e l l o World S t r i n g * /

(d) Structures and Enumerators should contain a header @brief description and
inline item descriptions:
/ * *
* @br ie f Foo S t r u c t

* /
t y p e d e f s t r u c t {

u i n t 3 2 _ t i t em_0 ; / * * I tem 0 D e s c r i p t i o n * / u i n t 3 2 _ t i t em_1 ; / * * I tem 1
D e s c r i p t i o n * /
} f o o _ s t r u c t _ t ;

/ * *
* @br ie f Foo Enum

* /
t y p e d e f enum {

ITEM_0 , / * * I tem 0 D e s c r i p t i o n * / ITEM_1 , / * * I tem 1 D e s c r i p t i o n * /
} foo_enum_t ;

(e) Macros should contain at least the following information:

• @brief Macro description

112

• @param Macro argument description

• [in] and [out] tags should be used for input and output arguments respec-
tively

/ * *
* @br ie f Copy S t r i n g wi th O f f s e t

*
* @param r e s u l t [o u t] Sum R e s u l t

* @param a [i n] v a l u e

* @param b [i n] v a l u e

* /
d e f i n e SUM_TWO_NUMBERS(r e s u l t , a , b) { \

r e s u l t = a + b ; \
}

(f) Always document all measurement units:
d e f i n e TIMEOUT 100 / * * Timeout Time (ms) * /

/ * *
* @br ie f C a r t e s i a n C o o r d i n a t e

* /
t y p e d e f s t r u c t {

u i n t 3 2 _ t x ; / * * X Axis (cm) * /
u i n t 3 2 _ t y ; / * * Y Axis (cm) * /

} c o o r d i n a t e _ t ;

2. Do not use the traditional C style comments (/∗ ...∗/), use C++ style instead (//...)

3. Inline comments should always describe a single line of code. Comments on top of
a block of code should describe the block behavior.
/ / C r e a t e B u f f e r
u i n t 3 2 _ t * b u f f e r = NULL; / / D e c l a r e B u f f e r P o i n t e r
s i z e _ t b u f f e r _ s i z e = 1 0 ; / / D e c l a r e B u f f e r S i z e
b u f f e r = m a l l oc (b u f f e r _ s i z e) ; / / A l l o c a t e B u f f e r on Heap

4. Comments should never contain the preprocessor tokens /∗, //, or
.

5. Committed code should never be commented out, even temporarily. Delete it before
committing or use the preprocessor’s conditional compilation feature instead. For
example:
/ / Some Code . . .
i f d e f DEBUG
p r i n t f (" Debug Log \ n ") ;
e n d i f
/ / Some Code . .

6. Whenever an algorithm or technical detail is defined in an external reference (e.g.,
a design specification, patent, or textbook), a comment should include a sufficient
reference to the original source to allow a reader of the code to locate the document.

113

7. All assumptions should be spelled out in comments.

8. All comments should be written in clear and complete sentences, with proper spelling
and grammar and appropriate punctuation.

9. Avoid explaining the obvious. Assume the reader knows the C programming lan-
guage.

10. Use the following capitalized comment markers to highlight important issues:

• WARNING: alerts a maintainer there is risk in changing this code.

• NOTE: provides descriptive comments about the "why" of a chunk of code.

• TODO: indicates an area of the code is still under construction and explains
what remains to be done.

• FIXME: alerts about a non-fixed problem.

• FUTURE: informs something to be done in the future.

11. Each project module should provide a readme.md file (written in Markdown) con-
taining the complete module’s description and documentation.

12. All external documentation files should be placed inside a docs directory inside the
respective module directory.

A.4 General Rules

1. (NFC) Do not use auto, register, restrict and continue keywords.

2. (NFC) C Standard Library functions abort(), exit(), setjmp(), and longjmp()

should not be used.

3. Do not use ternary expressions ((a > b)?10 : 20).

4. No line of code should contain more than one statement.

5. Unintended behavior should be protected with assert().

6. Avoid repeating blocks of code (copy and paste code). Code blocks should never
be repeated more than once (create a new function instead).

7. Jumps (goto) should always respect code flow:
/ / Good
boo l good (vo id) {

boo l r e s u l t = f a l s e ;

114

i f (do_someth ing_0 ()) {
go to end ;

}

i f (do_someth ing_1 ()) {
go to end ;

}

r e s u l t = t r u e ;

end :
r e t u r n r e s u l t ;

}

/ / Bad
vo id bad (vo id) {

loop_back :

u i n t 3 2 _ t v a l u e = do_someth ing () ;

i f (v a l u e > 10) {
go to loop_back ;

}
}

A.5 Naming Rules

A.5.1 Files

1. All file names should consist entirely of lowercase letters, numbers, and under-
scores. No spaces should appear within the header and source file names.

2. No header file name should share the name of a header file from the C Standard Li-
brary or C++ Standard Library. For example, modules should not be named stdio.h

or math.h.

3. Any module containing a main() function should have the word main as part of
its source file name.

4. Whenever possible, name module files as follows:

A.5.2 Data Types

1. The names of all new data types, including structures, unions, and enumerations
should consist only of lowercase characters and internal underscores and end with
_t.

2. All new structures, unions, and enumerations should be named via a typedef .

3. The name of all public data types should be prefixed with their module name and
an underscore.

115

Filename Use
name.c Main Source

name.h Public Header

name_private.h Private Header

name_types.h Type Declarations

name_internal.h Restricted Header

name_override.c Class Override Methods Source Code

name_override.h Class Override Methods Header

4. Enumerates items should always be uppercase characters and internal underscores
and end with ,.
t y p e d e f enum {

ITEM_0 ,
ITEM_1 ,
ITEM_2 , / / Do n o t f o r g e t t h e " , " on t h i s one !

} f o o _ t ;

A.5.3 Variables

1. No variable should have a name that is a keyword of C, C++, or any other well-
known extension of the C programming language, including specifically K&R C
and C99. Restricted names include interrupt, inline, restrict, class, true, false,
public, private, friend, and protected.

2. No variable should have a name that overlaps with a variable name from the C
Standard Library (e.g., errno).

3. No variable should have a name that begins with an underscore.

4. No variable name should be shorter than 3 characters (Unless extremely meaning-
ful).
/ / Bad
u i n t 3 2 _ t e = 0 ; / / Where e s t a n d s f o r e v e n t
u i n t 3 2 _ t ch = 0 ; / / Where ch s t a n d s f o r c h a n n e l

/ / A c c e p t a b l e
/ / Where x and y s t a n d f o r c a r t e s i a n c o o r d i n a t e s
u i n t 3 2 _ t x = 0 ;
u i n t 3 2 _ t y = 0 ;

/ / A c c e p t a b l e
f o r (u i n t 3 2 _ t i = 0 ; i < 10 ; ++ i) {}

5. No variable name should contain any uppercase letters.

6. No variable name should contain any numeric value that is called out elsewhere,
such as the number of elements in an array.

116

/ / Bad
u i n t 8 _ t b u f f e r _ 1 0 [1 0] ;

7. Underscores should be used to separate words in variable names.

8. Each variable’s name should be descriptive of its purpose.

9. Variable names should never be prefixed with their data types.

10. The names of all Boolean variables or Integers containing Boolean information
should be phrased as the question they answer. For example, done_yet or is_buffer_full.

A.5.4 Functions, Macros and ISR

1. All functions that implement ISRs or are ISR-Safe should be given names ending
with _isr.

2. All functions that encapsulate threads of execution (a.k.a., tasks, processes) should
be given names ending with _task (or _thread, _process).

3. No procedure should have a name that is a keyword of any standard version of the C
or C++ programming language. Restricted names include interrupt, inline, class,
true, false, public, private, friend, protected, and many others.

4. No procedure should have a name that overlaps a function in the C Standard Library.
Examples of such names include strlen, atoi, and memset.

5. No procedure should have a name that begins with an underscore or numbers.

6. No function name should contain any uppercase letters.

7. No macro name should contain any lowercase letters.

8. Underscores should be used to separate words in procedure names.

9. Each procedure’s name should be descriptive of its purpose. Note that procedures
encapsulate the "actions" of a program and thus benefit from the use of verbs in their
names (e.g., adc_read()); this "noun-verb" word ordering is recommended. Alter-
natively, procedures may be named according to the question they answer (e.g.,
is_led_on()).

10. The names of all public functions should be prefixed with their module name and
an underscore (e.g., module_name_read()).

117

Postfix Use Access
.c Main Source Private

.h Public Header Public

_private.h Private Header Private

_types.h Type Declarations Public

_internal.h Restricted Header Restricted

_override.c Class Override Methods Source Code Restricted

_override.h Class Override Methods Header Restricted

A.6 Module Rules

1. Module files should respect the following access level:

2. Each header file should contain a preprocessor guard against multiple inclusion:
i f n d e f __FILENAME_H__
d e f i n e __FILENAME_H__
. . .
e n d i f

3. The header file should identify only the procedures, constants, and data types (via
prototypes or macros, #define, and typedef) about which it is strictly necessary
for other modules to be informed.

• Do not declare variables on header files (Headers containing const variable
data only are exceptions)

• Do not extern variables

• No storage for any variable should be allocated in a header file

• Do not include any executable lines of code in a header file (Macros and inline

Functions are exceptions)

4. No public header file should contain a #include of any private/restricted header
file.

5. Each source file should #include only the behaviors appropriate to control one en-
tity. Examples of entities include encapsulated data types, active objects, peripheral
drivers (e.g., for a UART), and communication protocols or layers (e.g., ARP).

6. Each source file should always #include the header file of the same name (e.g., file
adc.c should #include ”adc.h”).

7. Absolute paths should not be used in #include file names.

8. Each source file should be free of unused #include files.

9. No source file should #include another source file.

118

A.7 Preprocessors Rules

1. Preprocessor directive #define should not be used to alter or rename any keyword
or other aspect of the programming language. For example:
/ / Do n o t do t h i s . . .
d e f i n e b e g i n {
d e f i n e end }

f o r (i n t row = 0 ; row < MAX_ROWS; row ++)
b e g i n
/ / Loop Code . . .
end

2. (NFC) Parameterized macros should not be used if a function can be written to
accomplish the same behavior. Use inline functions instead.

3. If parameterized macros are used for some reason, these rules apply:

• Surround the entire macro body with parentheses.

• Surround each use of a parameter with parentheses.

• Never include a transfer of control (e.g., return keyword).

d e f i n e MAX(A, B) ((A) > (B) ? (A) : (B)) / / You s t i l l s h o u l d n o t use t e r n a r y . I t
was used h e r e j u s t f o r s i m p l i c i t y .

A.8 Variable Rules

1. (NFC) All variables should be initialized before use. This will avoid issues such
as:
/ / Wi l l r e t u r n unknown / t r a s h v a l u e i f (a <= b)
u i n t 3 2 _ t foo (u i n t 3 2 _ t a , u i n t 3 2 _ t b) {

u i n t 3 2 _ t v a l u e ;

i f (a > b) {
v a l u e = (a + b) ;

}

r e t u r n v a l u e ;
}

2. (NFC) It is always preferable to initialize variables on declaration.

3. It is preferable to define local variables as you need them, rather than all at the top
of a function.

4. If global variables are used, their definitions should be grouped together and placed
at the top of a source code file.

119

5. (NFC) Any pointer variable lacking an initial address should be initialized to NULL.

6. The comma operator (,) should not be used within variable declarations.

7. The static keyword should be used to declare all global variables that do not need
to be visible outside the file where were declared.

8. The const keyword should be used whenever appropriate. Examples include:

(a) To declare variables that should not be changed after initialization;

(b) To define call-by-reference function parameters that should not be modified
(e.g., constchar ∗ param);

(c) To define fields in a struct or union that should not be modified (e.g., in a
struct overlay for memory-mapped I/O peripheral registers);

(d) As a strongly typed alternative to #define for numerical constants.

9. The volatile keyword should be used whenever appropriate. Examples include:

(a) To declare a global variable accessible (by current use or scope) by any inter-
rupt service routine;

(b) To declare a global variable accessible (by current use or scope) by two or
more threads;

(c) To declare a pointer to a memory-mapped I/O peripheral register set (e.g.,
constvolatiletimer_t ∗ timer);

(d) To declare a delay loop counter/spin-lock.

10. The order: static, volatile, const and data-type, should be respected.

11. Each unsafe cast should feature an associated comment describing how the code
ensures proper behavior across the range of possible values on the right side.
u i n t 3 2 _ t b y t e _ v a l u e = 128 ;
u i n t 8 _ t b y t e = (u i n t 8 _ t) b y t e _ v a l u e ; / / L i m i t s v a l u e r a n g e t o 8 b i t v a l u e s

A.8.1 Structures, Unions, Enumerates

1. (NFC) Appropriate care should be taken to prevent the compiler from inserting
padding bytes within struct or union types. Special attention should be given to
these types when used to (but not restricted to):

• communicate with peripherals

• communicate over a bus or network

• communicate with another processor

120

• casting data arrays to a given type pointer

In such cases, unused spaces should be explicitly declared by the developer.
/ / For a 32 b i t p r o c e s s o r , t h i s s t r u c t w i l l consume 12 Bytes o f memory .
t y p e d e f s t r u c t {

u i n t 8 _ t b ;
u i n t 1 6 _ t a ;
u i n t 3 2 _ t c ;

} f o o _ t ;

/ / Whenever r e l e v a n t , padd ing s h o u l d be a v o i d e d as i n t h e example below
t y p e d e f s t r u c t {

u i n t 8 _ t b ;
u i n t 8 _ t n o t _ u s e d _ 0 [3] ;
u i n t 3 2 _ t c ;
u i n t 1 6 _ t a ;
u i n t 8 _ t n o t _ u s e d _ 1 [2] ;

} f o o _ t ;

Also, compiler modifiers should not be used to solve this problem.

2. Appropriate care should be taken to prevent the compiler from altering the intended
order of the bits within bit-fields (even if unused, declare variables that sum the
total number of bits of the used data type).

3. Bit-fields should not be defined within signed integer types.

A.8.2 Fixed-Width Integers

1. Do not use char, short, int, long, or longlong for integer values. Use the stdint.h
data types int8_t, uint8_t, int16_t, uint16_t, int32_t, uint32_t, int64_t or uint64_t
instead.

2. The char type should be restricted to the declaration of an operations concerning
strings.

3. None of the bitwise operators (i.e., &, |, ∼, ∧, <<, and >>) should be used to
manipulate signed integer data.

4. signed integers should not be combined with unsigned integers in comparisons or
expressions.

5. Always prefer using data types with the size of your processor architecture.

6. Whenever a third-party library expects the data types char, short, int, long, or
longlong as fixed-width integers, all developed code should comply with stdint.h

data types and, on library function call, be explicitly cast to the respective data
type. Variable checks should be made to ensure that variables are equivalent (e.g.,
use sizeof(int)).

121

A.8.3 Booleans

1. Boolean variables should be declared as type bool defined in stdbool.h.

A.8.4 Floating Point

1. (NFC) Avoid the use of floating point constants and variables whenever possible.
Fixed-point math may be an alternative.

2. When floating point calculations are necessary:

• Do not use the float and double types. Use instead the C99 type names
float32_t, float64_t, and float128_t.

• Append an f to all single-precision constants (e.g., pi = 3.141592f).

• Ensure that the compiler supports double precision if your math depends on
it.

• Never test for equality (==) or inequality (! =) of floating point values.

• Always invoke the isfinite() macro to check that prior calculations have re-
sulted in neither INFINITY nor NaN .

A.9 Operations Rules

1. (NFC) Do not rely on C’s operator precedence rules, use parentheses to ensure
proper execution order within a sequence of operations. Statements with only addi-
tion and subtraction operations are an exception.

x = a / b / c ; / / Bad
x = (a / b) / c ; / / Good

x = a *b + c ; / / Bad x = (a *b) + c ; / / Good

x = a + b + c − d ; / / Th i s i s a c c e p t a b l e

2. Unless it is a single identifier or constant, each operand of the logical AND (&&)
and logical OR (||) operators should be surrounded by parentheses.

/ / Do t h i s :
i f ((x >= 0) && (x <= 100)) {

/ / Some Code . .
}

/ / Do n o t do t h i s :
i f (x >= 0 && x <= 100) {

/ / Some Code . .
}

3. (NFC) Every non-constant division should be protected to avoid zero divisions.

122

/ / Unsafe
u i n t 3 2 _ t foo (u i n t 3 2 _ t a , u i n t 3 2 _ t b) {

r e t u r n (a / b) ;
}

/ / Sa f e
u i n t 3 2 _ t foo (u i n t 3 2 _ t a , u i n t 3 2 _ t b) {

a s s e r t (b != 0) ;
r e t u r n (a / b) ;

}

/ / Sa f e
u i n t 3 2 _ t foo (u i n t 3 2 _ t a , u i n t 3 2 _ t b) {

u i n t 3 2 _ t v a l u e = 0 ;

i f (b != 0) {
v a l u e = (a / b) ;

}

r e t u r n v a l u e ;
}

A.10 Statement Rules

1. Nested if /else statements should not be deeper than two levels. Use function calls
or switch statements to reduce complexity and aid understanding.

2. Assignments should not be made within an if or elseif test.

3. (NFC) When evaluating the equality of a variable against a constant, the constant
should always be placed to the left of the equal-to operator (==). This avoids
problems where a missing = may still result in a valid operation. For Example:

u i n t 3 2 _ t x = 1 0 ;

/ / The d e v e l o p e r missed an = i n t h i s compar i son
/ / However , t h e o p e r a t i o n i s s t i l l v a l i d b u t t h e
/ / compar i son w i l l be i n c o r r e c t .
i f (x = 100) {

p r i n t f (" S u c c e s s \ n ") ;
} e l s e {

p r i n t f (" F a i l \ n ") ;
}

For that reason, always prefer:

u i n t 3 2 _ t x = 1 0 ;

i f (100 == x) {
p r i n t f (" S u c c e s s \ n ") ;

} e l s e {
p r i n t f (" F a i l \ n ") ;

}

123

If the developer misses an =, the expression will become invalid and the compiler
will accuse an error.

4. All switch statements should contain a default block.

5. Any case designed to fall through to the next should be commented to clearly ex-
plain the absence of the corresponding break.

6. Magic numbers should not be used as the initial value or in the endpoint test of a
while, do. . .while, or for loop.

7. Except for the initialization of a loop counter in the first clause of a for statement
and the change to the same variable in the third, no assignment should be made in
any loop’s controlling expression.

8. Infinite loops should be implemented via controlling expression for(; ;).

9. (NFC) Each loop with an empty body should feature a set of braces enclosing a
comment to explain why nothing needs to be done until after the loop terminates.

10. Decremental to 0 for loops are usually more efficient than Incremental. Also, prefix
operations (−− and ++) are more efficient than postfix.

f o r (u i n t 3 2 _ t i = 0 ; i < 100 ; i ++) ; / / S l o w e s t
f o r (u i n t 3 2 _ t i = 0 ; i < 100 ; ++ i) ; / / Slow
f o r (u i n t 3 2 _ t i = 100 ; i > 0 ; i − −) ; / / F a s t
f o r (u i n t 3 2 _ t i = 100 ; i > 0 ; −− i) ; / / F a s t e r
f o r (u i n t 3 2 _ t i = 100 ; i != 0 ; −− i) ; / / F a s t e s t

A.11 Function Rules

1. The static keyword should be used to declare all functions that do not need to be
visible outside the file where they were declared.

2. (NFC) Unless Single-Lined, the returning value should always be declared as the
function’s first line of code. Also, every function should only contain a single exit
point (return) at the bottom of the function.

u i n t 3 2 _ t foo (vo id) {

u i n t 3 2 _ t v a l u e = 0 ; / / Always f i r s t l i n e o f code

i f (b != 0) {
v a l u e = (a / b) ;

}

r e t u r n v a l u e ; / / Always l a s t l i n e o f code
}

124

This will avoid issues where returning values may be undefined or not present. For
example:

/ / Wi l l Never r e t u r n i f (a == b)
u i n t 3 2 _ t foo (u i n t 3 2 _ t a , u i n t 3 2 _ t b) {

i f (a < b) {
r e t u r n 1 0 ;

} e l s e i f (a > b) {
r e t u r n 2 0 ;

}

}

/ / Wi l l Never r e t u r n i f SOME_TAG i s n o t d e f i n e d
u i n t 3 2 _ t foo (u i n t 3 2 _ t a , u i n t 3 2 _ t b) {
i f d e f SOME_TAG

r e t u r n (a + b) ;
e n d i f
}

3. (NFC) It is a preferred practice that all returning variables be initiated with fail/false/0
values. This allows functions to only result in success after conditions are met. For
example:

boo l foo (u i n t 3 2 _ t a , u i n t 3 2 _ t b) {

boo l r e s u l t = f a l s e ;

i f (a < 10) {
go to end ;

}

i f (b > 200) {
go to end ;

}

i f (a != b) {
r e s u l t = (a < b) ; / / Wi l l on ly p r o c e s s t h e r e s u l t h e r e

}

end :
r e t u r n r e s u l t ;

}

4. A prototype should be declared for each public function in their respective header
file.

5. A prototype should be declared for each private function in their respective private
header file.

6. Whenever possible, all private functions should be declared static.

7. Each parameter should be explicitly declared and meaningfully named.

125

8. Always prefer passing struct variables by reference.

9. Functions that return float or double types should always have a prototype (The
compiler will consider an integer return type otherwise).

10. To ensure that ISRs are not inadvertently called from other parts of the software
(they may corrupt the CPU and call stack if this happens), each ISR function should
be declared static.

11. A stub or default ISR should be installed in the vector table at the location of all
unexpected or otherwise unhandled interrupt sources. Each such stub could attempt
to disable future interrupts of the same type, say at the interrupt controller, and
assert.

