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Efficient computational modeling 
of electronic stopping power 
of organic polymers for proton 
therapy optimization
F. Matias 1*, T. F. Silva 2, N. E. Koval 3, J. J. N. Pereira 1, P. C. G. Antunes 1, P. T. D. Siqueira 1, 
M. H. Tabacniks 2, H. Yoriyaz 1, J. M. B. Shorto 1 & P. L. Grande 4

This comprehensive study delves into the intricate interplay between protons and organic polymers, 
offering insights into proton therapy in cancer treatment. Focusing on the influence of the spatial 
electron density distribution on stopping power estimates, we employed real-time time-dependent 
density functional theory coupled with the Penn method. Surprisingly, the assumption of electron 
density homogeneity in polymers is fundamentally flawed, resulting in an overestimation of stopping 
power values at energies below 2 MeV. Moreover, the Bragg rule application in specific compounds 
exhibited significant deviations from experimental data around the stopping maximum, challenging 
established norms.

In the last two decades, clinical therapy using proton beams to treat cancerous tumors has experienced steady 
growth1–5. Although this form of radiotherapy already counts with highly developed technology, it still retains 
significant challenges in terms of physical and clinical aspects6–8. One of these challenges is the precise accounting 
of relative biological effectiveness (RBE), which is the ratio between the doses required by two types of radiation 
to cause the same biological effect. This factor, measurable through linear energy transfer (LET) or microdosim-
etry, depends on how the energy is deposited on a micrometric scale9.

In proton therapy, relative biological effectiveness (RBE) is traditionally defined by a constant value of 1.1 
(relative to X-ray dose) for all points along the beam path and all stopping points10,11. However, a comprehensive 
review of the available experimental data in the literature12 reveals that, despite a lack of experimental stand-
ardization and large uncertainties, there is evidence that RBE values vary considerably and can exceed 1.1 at the 
end of the beam range. These differences have clinical implications13,14. Therefore, it is important to accurately 
reduce experimental uncertainties to describe the effects of proton beams on tissues.

When an ion with kinetic energy moves through matter, it interacts with the target electrons and nuclei, 
leading to deceleration. These interactions are known as electronic and nuclear stopping, respectively15,16. The 
stopping power expresses a medium’s force on the ion, leading to the mean energy loss per unit path length while 
traveling in that medium. In the proton-matter interaction, the electronic stopping power is dominant. There 
is a very small contribution from nuclear-stopping power for v ≪ vF (with vF being the Fermi velocity). For the 
current proposal, we will focus solely on calculations of electronic stopping power.

The energy of the proton transferred to the biological tissue is directly related to its velocity. As the proton 
slows down, the energy transferred to the tissue per unit path length, determined by the electronic stopping 
power, increases, resulting in maximum dose deposition at a specific depth. This region around the peak of 
maximum dose deposition is known as the Bragg peak17 and is closely related to the stopping maximum. It is 
the region of greatest interest in proton beam radiotherapy applications, and its precise positioning is crucial 
during the definition of the irradiation plan. This particular profile of proton beam energy deposition presents 
significant clinical advantages, especially for pediatric patients, by allowing optimal dose delivery to tumor tissue 
and by minimizing dose to organs at risk in surrounding areas, thus reducing the chances of future complications 
and induction of secondary tumors18–20. On the other hand, the high and relatively narrow dose peak makes 
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quality control in dose monitoring and precise patient positioning even more crucial, with the risk of damaging 
health tissues with high radiation doses. Therefore, in-depth investigations of the uncertainties in the range and 
stopping power values are essential for a more accurate dose distribution in patients21,22.

Accurate knowledge of electronic stopping power is essential in proton therapy. It is also important in many 
fields of science and technological applications, such as outer space exploration (space weathering), nanotech-
nology (ion beam modeling), material modifications, and nuclear fusion research (plasma-wall interaction)23–27. 
However, as depicted above, its most critical application lies in dosimetry for cancer treatment using ions, given 
the increasing global use of protons and heavier ions in radiation therapy and the risks involved28,29. For conveni-
ence, stopping power can be normalized by the atomic density to eliminate the dependence on the material’s 
density. The resulting quantity is known as the stopping cross-section (SCS). Therefore, SCS is a fundamental 
quantity that requires a detailed understanding of energy-loss processes.

Perturbation theories employing the dielectric function were used to compute electronic stopping power30–36, 
presenting limitations in energy ranges relevant to studying biological damage caused by the radiation. Real-time 
time-dependent density functional theory (TDDFT) is a non-perturbative method based on modern quantum-
mechanical simulations. It has been used as an alternative approach to investigate electronic stopping in complex 
systems like water and DNA37–42. However, using the precise atomic structure of complex chemical systems, 
such as DNA, within real-time TDDFT requires the computation of multiple trajectories to obtain an average 
(random) electronic stopping power and is highly computationally demanding.

On the other side, in investigations into ion-matter interactions, it is customary to employ simplified models, 
exemplified by the homogeneous, free electron gas (FEG) model, to represent valence electrons within materials. 
This pragmatic approach facilitates straightforward predictions of stopping power and yields results that closely 
align with experimental data43–49. Although the FEG model is reliable for materials with simple electronic struc-
tures, its effectiveness diminishes when dealing with materials characterized by complex electronic excitations. 
Here, we demonstrate that these materials can still be treated as a collection of FEGs with high accuracy, ensur-
ing simplicity and avoiding time-consuming full atomistic ab initio calculations. For this purpose, we utilized 
electronic stopping power for a FEG with different densities or plasmon frequencies from the real-time TDDFT 
calculations43,48,50,51. The results were averaged according to the Penn method52.

Knowledge of materials’ energy-loss function (ELF) is essential in this framework. The Penn approach53 intro-
duced an algorithm to determine the electron inelastic mean free paths (IMFP) by utilizing a model dielectric 
function derived from the experimental ELF specific to the material under investigation. The same model has 
been applied to estimate the electron stopping power in various materials54 and has been extended to calculate the 
non-linear stopping power of ions52. This extension involves using the ELF to appropriately weight contributions 
from different electron gas components within a statistical ensemble that characterizes the material of interest. 
ELF functions at the optical limit can be found for different materials elsewhere55.

The Bragg rule has been used to calculate the stopping values for compounds such as hydrocarbons. Accord-
ing to this rule, the SCS per atom in a compound is the weighted average of the SCS of each of its constitu-
ent elements17, similar to a gas system of non-interacting atoms. The Bragg rule is considered relatively accu-
rate for solids, with measurements of stopping powers for ions in compounds deviating less than 5% from its 
predictions56. However, the rule applicability has limitations, as the energy lost by the ions to the electrons in 
a material depends on its detailed orbital and excitation structure, which are affected by neighboring atoms. 
Additionally, these interactions can alter the charge state of the traveling ion, affecting the intensity of interac-
tions with the medium.

According to Lodhi and Powers57, the Bragg rule may fail close to stopping power maximum for hydrocar-
bons compared to experimental data. The core and bounds (CAB) approach proposes that the stopping power 
of compounds can be predicted by combining the stopping caused by the atomic “core” electrons with the cor-
responding stopping of the bound electrons58,59. The core’s contribution to stopping power is determined by 
applying the Bragg rule to the atoms in the compound. In contrast, the bounding electrons in the compound 
would then include the necessary stopping correction. The CAB approach generates corrections to the Bragg 
rule for polymers containing light elements, such as H, C, N, and O. These light atoms have the most significant 
bonding effect on stopping powers. The application of these corrections is explained in reference 59.

By applying the proposed formalism, we aim to verify the validity of the Bragg rule and the FEG model, 
assuming homogeneous electron density in the context of organic polymers. Specifically, we examined the cases 
of polyethylene (PE), polystyrene (PS), poly(2-vinylpyridine) (P2VP), polyacetylene (PA), poly(methyl meth-
acrylate) (PMMA) and polyimide (PI). The study of these polymers is important because virtually all phantoms 
used for dose verification and quality assurance in proton therapy treatments are manufactured with polymers 
such as PMMA. Furthermore, some components that make up the proton accelerators are constructed with PE 
or PS32,60–65.

Results and discussion
Real-time TDDFT-Penn calculations were performed according to Eqs. (3) to (5), and the electronic SCS results 
for PE, PS, P2VP, PA, PMMA, and PI to energetic protons are presented in Fig. 2, 3, 4, 5, 6 and 7, respectively. 
The data used to calculate SCS with the real-time TDDFT-Penn method are listed in Table 1, and the optical-ELF 
data for each polymer are shown in Fig. 1.

We compare the results of our approach with ICRU4968, ICRU3769, SRIM-201370, and real-time TDDFT 
with the homogeneous assumption. This comparison shows the need to completely break down the assumption 
of spatial homogeneity of the valence electron density in complex materials, such as polymers. For example, 
the homogeneous assumption leads to overestimating the SCS values for proton energies below approximately 
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Table 1.   Data used in the real-time TDDFT-Penn approach to calculate the electronic SCS of different 
polymers based on their monomers31,66,67.

Polymer Formula ELF range (eV) Total/valence electrons ρ (g/cm3)

PE (C2H4)n 0–790 16/12 0.93

PS (C8H8)n 0–670 56/40 1.06

P2VP (C7H7N)n 0–1000 56/40 1.15

PA (C2H2)n 0–1000 14/10 1.36

PMMA (C8H8O2)n 0–3000 54/40 1.19

PI (C22H10N2O5)n 0–800 196/138 1.42
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Figure 1.   Optical-ELF data for PE, PS, P2VP, PA, PMMA, and PI obtained from31,66,67 and used to calculate 
electronic SCS with the real-time TDDFT-Penn approach.
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Figure 2.   Proton SCS in PE polymer. Real-time TDDFT results with a unique FEG ( rs = 1.75 au) are shown 
in the blue dash-dot line, and the real-time TDDFT-Penn is in the cyan short dash line. Experimental data 
(uppercase letters) around the stopping maximum71,72. Semi-empirical models ICRU4968 and SRIM-201370 
presented.
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2 MeV compared to the SRIM-2013 data. Our approach produces more realistic values and, at the same time, 
offers a physically sound approach to dealing with inhomogeneities.

We also included in the comparison the experimental data available at the IAEA database71,72 (uppercase let-
ters), with which the real-time TDDFT-Penn results show an excellent agreement, as well as with semi-empirical 
SRIM-201370 results (red dashed line) using the Bragg rule17, as can be seen in Figs. 2 and 3. SCS results from 
the dielectric formalism, particularly the Mermin-Energy-Loss-Function Generalized Oscillator Strength model 
(MELF-GOS)31, are also included in the comparisons. This approach also considers inhomogeneities in the 
material’s electron density utilizing a similar optical ELF. Thus, both methods will give similar mean excitation 
energies (I) (occurring in the Bethe formula for fast projectiles). Several studies have employed this approach to 
calculate SCS in biological media31,32,38,73. However, even though such a linear model typically performs better 
at projectile energies above the maximum for protons, it underestimates the SCS by a significant amount at the 
maximum for the present polymers. Because this theoretical model is linear, it loses accuracy for ion energies 
around the stopping maximum and below. In this energy range, the non-linear effects become significant. Even 
though we have not presented MELF-GOS results for PE, we expect similar behavior to the others. This issue is 
expected to be significantly more severe for heavier projectiles than protons.

In particular, the real-time TDDFT-Penn results for PS (refer to Fig. 3) agree better with the experimental 
data than SRIM-2013. SRIM-2013 employs the Bragg rule, resulting in an excitation energy (I) for PS of 65.5 
eV74. However, electron energy loss spectroscopy (EELS) data from experiments67 for the compound PS suggest 
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Figure 3.   Proton SCS in PS polymer. Real-time TDDFT results using a unique FEG ( rs = 1.66 au) and 
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Dielectric formalism results in purple dash-dot line32. Semi-empirical models ICRU4968 and SRIM-201370 
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a lower I value (59.3 eV). This observation explains the higher values obtained with our approach around the 
stopping maximum.

SCS results for P2VP and PA (see Figs. 4 and 5) agree well with SRIM-2013. However, it is important to note 
that we did not find any experimental data for comparison in this context. Furthermore, the dielectric approach, 
employing a similar ELF function as input31, deviates significantly below the position of the stopping maximum.

Interestingly, for PMMA and PI (see Figs. 6 and 7), the Bragg rule indicates 74 eV68 and 79.6 eV69, while the 
experimental ELF31 points to significantly lower values of 66 eV and 68 eV, respectively. It is worth noting that 
the core and bond (CAB) correction on SRIM-201370 is small but makes the deviation from our approach even 
higher, pointing to a correction in the opposite direction.

As shown in Figs. 2, 3, 4, 5, 6 and 7, the differences between real-time TDDFT-Penn and SRIM-2013 are small 
but more pronounced for PMMA and PI at the position of the stopping maximum. They can be attributed to a 
stronger breakdown of the Bragg rule due to the complex molecular structures of PMMA and PI, which feature 
bonds between C, O, and N.

Table 2 shows the different types of chemical bonds in the respective polymeric monomers of PE, PS, P2VP, 
PA, PMMA, and PI. PMMA and PI exhibit higher chemical structure complexity than other polymers. While 
PMMA has one C = O and two C−O bonds, PI has four C = O , two C−O bonds, and four N− C bonds. 
The electronegativity of the atoms in these bonds varies, with oxygen being more electronegative than nitrogen, 
which is more electronegative than carbon.

Analogously, in TiN compounds, there is a transfer of 1.51 electrons from titanium to nitrogen49, and the 
transferred charges. The transfer of charges is expected to be more noticeable in the double bonds between 
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carbon and oxygen in polymers like PMMA and PI. Therefore, our results suggest the possibility of charge 
transfer occurring from carbon to oxygen or nitrogen on these polymers. If this transfer occurs, employing the 
Bragg rule will likely lead to a decreased accuracy in predicting the SCS. Indeed, the SRIM-2013 results (red 
dashed line) for the PMMA and PI compounds are numerically lower in the position of the stopping maximum 
compared to real-time TDDFT-Penn predictions.

Finally, it should be pointed out that the consideration of neutral hydrogen (H0 ) charge states may affect the 
calculated stopping power around the stopping power maximum. The presence of neutral hydrogen will reduce 
the energy loss for target ionization and excitation but will add other energy-loss mechanisms, such as capture 
and electron loss. Simulations using the CasP program75 show that these mechanisms compensate for the reduc-
tion in ionization and excitation.

Conclusion
Theorists have been working for decades to develop methods to model the physical processes responsible for 
electronic SCS. Although these methods have been successful, they have yet to be able to cover a wide range of 
energy using a single approach. Some models explain a limited energy range, while others achieve good agree-
ment with experimental data by treating inner and valence electrons differently. This work presents a theoretical 
framework based on ab initio calculations of different FEGs and the Penn method. This framework achieves 
excellent agreement with experimental data and reference data tables across a wide range of energy using a single 
approach for all electrons.

To showcase our approach’s efficiency, we investigated the electronic stopping power of organic polymers for 
protons. Generally, a single FEG model cannot accurately describe the electronic stopping power around the 
stopping maximum. Our new method provides a theoretical framework to tackle electron density variations. We 
have demonstrated the effectiveness of our method by obtaining excellent agreement with the experimental data 
and the reference data tables for polymers such as PE, PS, P2VP, PA, PMMA, and PI (as shown in Figs. 2, 3, 4, 
5, 6 and 7). Our findings highlight the importance of considering the intricate electronic structures of polymers 
in the theoretical modeling of stopping power.

Table 2.   Description of the types of bonds in the polymeric monomers PE, PS, P2VP, PA, PMMA, and PI. The 
bonds may be of type single ( σ-bonds) or double ( π-bonds).

Types of bonds PE PS P2VP PA PMMA PI

C = C – Three bonds Two bonds One bond – Nine bonds

C− C One bond Five bonds Four bonds – Three bonds Thirteen bonds

C−H Four bonds Eight bonds Seven bonds Two bonds Eight bonds Ten bonds

C = O – – – – One bond Four bonds

C−O – – – – Two bonds Two bonds

C = N – – One bond – – –

C−N – – One bond – – Four bonds
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These findings emphasize the importance of considering the complex electronic structures of polymers in 
predicting stopping power accurately. The agreement between the real-time TDDFT-Penn approach and the 
experimental data, indicated by uppercase letters in Figs. 2 and 3, demonstrates the theoretical framework’s 
precision. However, further validation is necessary, particularly for polymers with limited data.

Differences in predicted mean excitation energies and SCS magnitudes between the real-time TDDFT-Penn 
approach and semi-empirical models such as SRIM-2013, particularly around the stopping maximum, high-
light the potential influence of molecular structure on these predictions. The distinct chemical compositions of 
PMMA and PI, which have varying electronegativities in their bonds, likely contribute to charge transfer effects 
not adequately accounted for by the Bragg rule. The primary consequence of the breakdown of the Bragg rule is 
a reduction in the mean excitation energy by approximately 10% and a decrease in the projectile range by about 
3 mm for 200 MeV protons.

In conclusion, the results of this research challenge established assumptions and emphasize the need for 
precise modeling of materials with complex electronic structures. This study enhances our understanding of 
ion-polymer interactions. It provides a solid foundation for future applications in proton therapy and other fields 
where accurate predictions of stopping power are essential.

Simulation methods
Real‑time TDDFT approach
Real-time TDDFT is a highly effective ab initio tool for describing electronic stopping power in spherical jelliums. 
The jellium model assumes a positive background (representing the ion cores) that provides a charge balancing 
for the electron gas. Compared to fully atomistic models, the advantage of such representation is computational 
efficiency. The real-time TDDFT in a FEG has been shown to provide accurate results for near-free-electron 
systems. On the other hand, using an atomistic representation requires careful consideration of trajectories to 
calculate the random stopping power76,77.

The polymeric media are modeled as jellium spheres in all the DFT and real-time TDDFT calculations. 
The positive background density of the jellium with radius Rcl is defined by n+0 (r) = n+0 (rs)�(Rcl − r) , where 
�(x) denotes the Heaviside step-function and n+0 (rs) is the constant bulk density, which depends only on the 
Wigner-Seitz radius rs : ( 4πr3s /3) = 1/n0 . The total number of electrons in the neutral clusters, Ne , is then given by 
Ne = (Rcl/rs)

3 . Thus, the size of each closed-shell cluster is determined by the density parameters rs and the total 
number of electrons, Ne = 588 . According to the polymer’s ELFs (see Fig. 1), and using the relation ω2

p = 4πno , 
the most important Wigner-Seitz radii vary from rs = 1.00 to 5.00 au. The jellium spheres corresponding to this 
range have sizes varying from Rcl = 8.38 to 1.68 au.

Although there have been minor refinements in terms of accuracy, the approach adopted in this work reflects 
the methodology used in43,48,50,78, and as such, it will be briefly explained in this section. In this approach, the 
time evolution of electronic density incorporates, in a non-perturbative manner, the complete dynamic interac-
tion between an external field and the medium. This computational framework has been used to analyze various 
issues in condensed matter systems, such as dynamic charge screening in metallic media79, energy loss of atomic 
particles in matter43,48,80, as well as many-body effects associated with hole screening in photoemission78.

A static density functional theory (DFT) calculation is performed to obtain the system’s ground state. The 
time evolution of the complete electronic density, n(r, t) , in response to an external field (in this case, a proton), 
is conducted within the framework of real-time TDDFT in the Kohn–Sham regime (atomic units are used 
throughout unless specified otherwise):

where ψj(r, t) are the Kohn-Sham orbitals and T is the kinetic energy operator. The Kohn-Sham effective poten-
tial, Veff([n], r, t) , is a function of the electronic density of the system: n(r, t) =

∑

j∈occ.
∣

∣

ψj(r, t)
∣

∣

2 . The effective 
potential Veff = V+

ext(r)+ VH([n], r, t)+ Vxc([n], r, t)+ Vp(r, t) is obtained as the sum of the external potential 
created by the positive background of the jellium sphere V+

ext(r) , the Hartree potential VH([n], r, t) , the exchange-
correlation potential Vxc([n], r, t) , and the potential representing the projectile Vp(r, t) , which is modeled as a 
bare Coulomb charge. Vxc([n], r, t) is treated within a standard adiabatic local density approximation (ALDA) 
approach. The numerical procedure is that employed in Refs.43,79–81, where additional details can be found.

The energy loss is calculated by integrating the time-dependent induced force over the proton:

where v is the (constant) velocity at which the proton traverses the jellium. Once the induced force on the proton 
is calculated, the average or effective stopping power is computed as the energy loss per unit path length, i.e.,

Recently, an alternative non-linear method has been introduced to characterize the stopping power of light and 
heavy ions in materials52. This method incorporates the influence of non-free electron distributions within a 
theoretical model for stopping power calculations, such as real-time TDDFT. For a low energy proton ( v < vF ), 
the Penn approach has been used recently in the transport cross section (TCS)49. This approach considers the 
combination of electron-gas responses characterized by inhomogeneous densities, similar to the approach out-
lined in the Penn method53.

(1)i
∂ψj(r, t)

∂t
= {T + Veff ([n], r, t)}ψj(r, t),

(2)Eloss(v) = −v

∫ +∞

−∞
Fz(t)dt,

(3)
[

dE

dz
(v)

]

TDDFT

=
Eloss(v)

2Rcl
.
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Real‑time TDDFT‑Penn approach
To achieve this goal, each free electron density is analyzed based on the material’s ELF at the optical limit, as 
follows52:

The stopping power depends on the plasmon frequency ωp , a value determined by the individual electron gas 
contributions obtained from rs ; ωp =

√
3r

−3/2
s  . Therefore, the stopping power is now calculated as follows52:

In the above equation, the term 
[

dE/dz(v,ωp)
]

TDDFT
 is calculated in the real-time TDDFT framework using 

Eq. (3). Because of that, we named the Eq. (5) as the real-time TDDFT-Penn approach.

Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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