
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

PEDRO FOLETTO PIMENTA

Solving the Kidney Exchange Problem
using Graph Neural Networks Trained with

No Supervision

Work presented in partial fulfillment of the
requirements for the degree of Bachelor in
Computer Science

Advisor: Prof. Dr. Luis C. Lamb
Coadvisor: Pedro H. C. Avelar

Porto Alegre
2023

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Profa. Patricia Helena Lucas Pranke
Pró-Reitora de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Marcelo Walter
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

“In a properly automated and educated world, then, machines may prove to be

the true humanizing influence. It may be that machines will do the work that

makes life possible and that human beings will do all the other things that make

life pleasant and worthwhile.”

— ISAAC ASIMOV

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my family: my mother, Ângela Foletto,

my father, Marcelo Soares Pimenta, and my sister, Clara Foletto Pimenta. I love you.

Thank you for encouraging me to pursue my passions, while still giving me space to be

who I am and make my own decisions. I am forever grateful for the education you gave

me.

I also thank my girlfriend, Teodora Foss, who made me a lot happier and filled my

life with more meaning since the day we met. I love you.

I would also like to thank all my friends. I love you all too. This page is obviously

too short to cite you all. However, I would like to give special thanks to two computer

scientist friends who I admire a lot: José P. S. Martinez, who helped me directly in this

work through long high level technical conversations, and João M. Flach, with whom I

talked to a lot and traded advice while writing this document, thus helping me to better

explain my ideas and describe the results.

I also wish to thank all my teachers throughout my life. I thank professor Paolo

Rech for teaching me what is a bit, professor Rodrigo Machado for teaching me what

is a graph, professor Bruno Castro da Silva for teaching me what is backpropagation,

and professor Manuel Menezes de Oliveira Neto for teaching me what is the Fourier

transform.

I also thank my colleagues for all the fun and sometimes even productive discus-

sions. This was surely a really important part of my graduation.

Last but not least, I would like to thank my advisers Prof. Dr. Luis C. Lamb and

Pedro H. C. Avelar. Thank you for the support and advice given throughout this project.

ABSTRACT

This work introduces a new machine learning-based approach for solving the Kidney Ex-

change Problem (KEP), an NP-hard problem on graphs. The problem consists of, given

a pool of kidney donors and patients waiting for kidney donations, optimally selecting

a set of kidney donations so as to optimize the quantity and quality of transplants per-

formed, while respecting a set of constraints about the arrangement of these donations.

The proposed technique consists of two main steps: the first one is a Graph Neural Net-

work (GNN) trained without supervision; the second is a deterministic non-learned search

heuristic that uses the output of the GNN to find a valid solution. To allow for compar-

isons, we have also developed and experimented with an exact solution method that uses

integer programming, two greedy search heuristics without the machine learning module,

and the GNN alone with no heuristic. Finally, we analyze and compare the methods ac-

curacy and performance and conclude that the learning-based two-stage approach is the

best one in terms of solution quality, as it outputs approximate solutions on average 1.1

times better than the ones from the deterministic heuristics alone.

Keywords: Kidney Exchange Problem. Graph Neural Networks. Machine Learning.

Deep Learning. Optimization.

Resolvendo o Problema de Troca de Rins Usando Redes Grafo-Neurais Treinadas

sem Supervisão

RESUMO

Esse trabalho introduz um método baseado em aprendizado de máquina para resolver

aproximadamente o problema de troca de rins (Kidney Exchange Problem), um problema

NP-difícil em grafos. A técnica proposta consiste em dois principais passos: o primeiro

é uma rede grafo-neural treinada sem supervisão que prediz um score para cada aresta

do grafo de entrada; o segundo é uma heurística de busca sem aprendizado que usa esses

scores para construir uma solução válida. Para fins de comparação, também foi imple-

mentado um método de solução exata que usa programação inteira e duas heurísticas de

busca usadas sem o módulo de aprendizado, assim como uma versão da GNN sem uma

heurística. Os métodos são analisados e comparados entre si, e é concluido que o método

de dois passos baseado em aprendizado de máquina atinge os melhores resultados em ter-

mos de qualidade, construindo soluções aproximadas em média 1.1 vezes melhores que

as de uma heurística sozinha.

Palavras-chave: Problema de Troca de Rins. Redes Grafo-Neurais. Aprendizado de

Máquina. Aprendizagem Profunda. Otimização..

LIST OF FIGURES

Figure 2.1 Example of a simple small weighted directed graph with 6 nodes and 7
edges. The number in each node correspond to their ID; and the thickness of
the edges represent their associated weight, which is written right beside or
above it. Source: Author. ..16

Figure 2.2 Embedding of a graph node u into a d-dimensional vector. Source:
(LESKOVEC, 2017) ...19

Figure 3.1 On the left, a kidney exchange cycle, i.e. a cycle of donations of Patient
Donor Pairs (PDPs). On the right, a kidney exchange path, i.e. a series of do-
nations starting on an altruistic donor (NDD), following through with PDPs,
and optionally ending on a patient without an associated donor. The green ar-
rows with a cross represent kidney donation incompatibility between patients
and their associated donor pair; yellow and orange arrows represent dona-
tion compatibility and together form the solution for each instance. Source:
(INFORMATION. . . , 2022). ..23

Figure 4.1 Diagram representing an overview of the two stage method. The GNN
takes the input KEP instance and computes a score for each edge of the graph;
then, a greedy heuristic such as GreedyCycles or GreedyPaths uses these edge
scores instead of the original edge weights to build an approximate solution,
which is a binary label for each edge (edge labels), indicating if the edge is
part of the approximate solution predicted or not. Source: Author.35

Figure 5.1 Jenson-Shannon Distance (dissimilarity) between in-degree distributions
in relation to the 10 thousand instances training dataset...38

Figure 6.1 Boxplot of the time it takes to run the solver on KEP instances of sizes
5 to 15 (i.e. number of nodes)...43

Figure 6.2 Evolution of the training and validation loss for GNN+GreedyPaths
method...43

Figure 6.3 Evolution of the training and validation loss for GNN+GreedyCycles
method...44

Figure 6.4 Evolution of the training and validation loss for the Unsupervised GNN
method...44

Figure 6.5 Evolution of the score measured in the validation dataset for the GNN+GreedyPaths
method...45

Figure 6.6 Evolution of the score measured in the validation dataset for the GNN+GreedyCycles
method...45

Figure 6.7 Evolution of the score measured in the validation dataset for the Unsu-
pervised GNN method. ...46

Figure 6.8 Evolution of the standard deviation of score measured in the validation
dataset for the GNN+GreedyPaths method...46

Figure 6.9 Box plot comparing the approximate solution scores obtained when
each of the evaluated methods was used in the test dataset. The evaluated
methods were two non-learnt heuristics, GreedyCycles and GreedyPaths, and
their 2 stage method versions, GNN+GreedyCycles and GNN+GreedyPaths.47

Figure 6.10 Box plot comparing the time to compute a solution on each of the
10 thousand KEP instances of the test dataset, each one with 300 nodes. The
evaluated methods were two non-learnt heuristics, GreedyCycles and Greedy-
Paths, their 2 stage method versions, GNN+GreedyCycles and GNN+GreedyPaths,
and UnsupervisedGNN, which is a GNN trained and used without an heuristic....48

LIST OF ABBREVIATIONS AND ACRONYMS

KEP Kidney Exchange Problem

ML Machine Learning

GPU Graphics Processing Unit

GNN Graph Neural Network

PNA Principal Neighborhood Aggregation

GAT Graph Attention Network

GATv2 Graph Attention Network updated version with dynamic attention

CONTENTS

1 INTRODUCTION...12
1.1 Motivation..12
1.1.1 Practical Motivation ...12
1.1.2 Theoretical Motivation...14
1.2 Objectives...14
1.3 Structure ..14
2 THEORETICAL BASIS ..16
2.1 Graphs..16
2.2 NP-Hard Problems..17
2.3 Heuristic Methods...17
2.4 Artificial Neural Networks ...18
2.5 Graph Neural Networks ...18
2.5.1 Message-Passing Layers ..19
2.6 Softmax ..21
3 MACHINE LEARNING AND THE KEP - A BRIEF REVIEW...........................22
3.1 Kidney Exchange Problem...22
3.1.1 Problem Definition...24
3.2 Machine Learning Methods for Optimization Problems in Graphs26
4 METHODS ..28
4.1 Integer Programming ...28
4.2 Non-Learnable Heuristics ..28
4.2.1 Greedy Paths ..29
4.2.2 Greedy Cycles..30
4.3 Learnable Heuristics...31
4.3.1 GNN Architecture..31
4.3.2 KEP Unsupervised Loss Function ...32
4.3.3 Loss Constraint Regularization..32
4.3.4 Node-wise Softmax..33
4.3.5 Unconstrained GNN Model Trained Without Supervision....................................33
4.3.6 Unconstrained GNN Model Trained With Supervision...34
4.3.7 Two Stage Method ...34
5 METHODOLOGY ...36
5.1 System configuration ..36
5.2 Implementation ...36
5.3 Dataset..37
5.3.1 Artificial KEP Instance Generation ...38
5.4 Metrics ...39
5.5 Experiments...40
5.5.1 Solver Execution Time Analysis..40
5.5.2 Training of the Machine Learning models...40
5.5.3 Evaluation of KEP Solving Methods ...41
6 RESULTS...42
6.1 Solver Time Measurements..42
6.2 Training of the GNN Models..42
6.3 Methods’ Performances..47
6.3.1 Methods’ Computational Time ..48
7 ANALYSIS OF EXPERIMENTAL RESULTS..49
7.1 Training of the GNN model..49

7.2 Solver Time Analysis ..50
7.3 Methods’ Performances..51
7.3.1 Methods’ Computational Time ..52
8 CONCLUSION AND FUTURE WORK ..54
8.1 Conclusion ...54
8.1.1 Answers to the Research Questions...54
8.1.2 Main Contributions ..55
8.2 Future Directions ..56
REFERENCES...59

12

1 INTRODUCTION

This chapter is separated in three sections. On the first one, the motivations for this

study will be explained. Then, in the second, the objective of this study will be presented.

Finally, on the third section, the structure of the rest of this document will be describe.

1.1 Motivation

This study addresses the use of machine learning approaches for the approximate

solving of the Kidney Exchange Problem (KEP), an NP-Hard problem on graphs. The

problem consists of, given a pool of kidney donors and patients waiting for kidney dona-

tions, optimally selecting a set of donations so as to optimize the quantity and quality of

transplants performed, while still respecting a set of constraints about the arrangement of

these donations. Solving this problem has both a practical and a theoretical motivation,

which are described below. KEP will be further explained in detail in Section 3.1.

1.1.1 Practical Motivation

There are thousands of patients on the waiting list for kidney donations registered

in the health systems of each country around the globe. Although many transplants are

successfully carried out each year (for instance, in 2021 there were 4,832 kidney dona-

tions in Brazil (SERIE. . . , 2022b)), it is common for a patient to wait several months or

even years for a transplant, and unfortunately many people die before receiving a dona-

tion.

In Brazil, out of the 54,964 patients waiting for transplants, 31,764 (57.7%) were

on the list for kidney donations, according to the official Brazilian health ministry data

(SERIE. . . , 2022a). In France, there are 16,181 patients waiting for a kidney transplant

on January of 2020 (DIVARD; GOUTAUDIER, 2021). Despite being a country with a

very developed and financed universal health care system, and being pioneer in kidney

transplantation, with the first living donor transplant performed in 1952, its waiting list

still increases from year to year. In the United States of America as of January 2023,

there are 104,398 candidates on the waiting list for organ transplants, according to the Or-

gan Procurement and Transplantation Network, the organization that serves as the United

13

State’s organ transplant system; 89,005 (85.2%) of these patients wait for kidney dona-

tions (OPTN. . . , 2023).

Considering the extremely high demand, a good way to optimize the kidney ex-

changes in order to maximize the donations is very important. Besides the absolute

quantity of donations, other metric that needs to be taken into account is the quality of

donations. Some donors-patient transplants have more compatibility than others, and a

low compatibility may be associated with a higher chance that the transplant goes wrong

somehow (e.g. the patient’s organism may reject the transplanted organ). Other than that,

a patient may have a higher priority due to them having been waiting more time, or due

to the severity of their disease or the urgency of the treatment. In this scenario where a

donation could be the difference that saves a life, any minor improvement is welcome.

In order to maximize the kidney donations, the scenario was formalized into a

combinatorial optimization problem, which consists of finding the optimal selection of

kidney donations considering a pool of kidney donors and patients waiting for kidney

transplants (ROTH; SöNMEZ; UNVER, 2004). Most of the KEP instances that need to

be solved in real world situations are small enough to be solved with operational research

algorithms in a reasonable time, even though the computational cost scales exponentially

with the size of the input, due to the problem being NP-Hard. One may argue that this

makes any work in solving this problem with an heuristic an useless effort, because even

if the heuristic method’s solution is almost as good as the optimal solution, any slight

improvement may still be extremely valuable, as we are dealing with human lives, thus

justifying the extra computational time and resources used for the obtaining the latter.

Nevertheless, in the future larger instances may appear more and more often, for one

reason or another, which may lead to intractability. For instance, as health systems around

the globe cooperate, the sets of patients waiting for donations in each country may merge.

Another situation that could happen is that, as more people get access to health systems,

more people may discover a kidney disease through a medical diagnostic. The appearance

of larger instances would thus potentially bring about the necessity of the use of heuristics,

which would be the only way to solve them in reasonable time. Anyhow, even if that

is not the case, improving the solution of this problem could still contribute to future

advancements and, at the long term, these advancements could potentially save lives,

decrease the cost of the kidney exchange allocation systems or, at least, improve our

understanding of the problem and its solutions.

14

1.1.2 Theoretical Motivation

To the best of our knowledge, no other machine learning solution has been pre-

sented for the Kidney Exchange problem. Several methods that involve learning have

already been successfully applied to other NP hard optimization problems in graphs, as

better described in section 3.2. Considering that, it would seem very probable that the

Kidney Exchange problem could also be solved with similar methods. However, we can-

not be sure of it without actually implementing and verifying it. It may be very valu-

able to evaluate how well machine learning methods would perform, what would be their

advantages and disadvantages when compared to the exact solution and to non-learned

heuristics. Additionally, studying the obstacles and limits of the approach may lead to

useful insights, new techniques, and possibly new directions for research. These insights,

techniques and research directions are potentially extendable to the application of ML

methods on other graph optimization problems, as a lot of them share many similarities

with KEP.

1.2 Objectives

The main objective of this work is, thus, to answer the following question: Can

the Kidney Exchange problem be better approximately solved with the help of ma-

chine learning? If positive, we want to evaluate the feasibility of utilizing such an ap-

proach in terms of the quality of the solutions it provides. Further, we are also interested in

assessing how viable would such a method be in terms of computational time. Addition-

ally, it is hoped that, by trying to answer these questions, we may also better understand

the limitations of the employed machine learning methods for this problem and the po-

tential future research directions for solving not only the KEP but also other optimization

problems in graphs.

1.3 Structure

The remainder of this document is organized in the following manner: In chapter

2, Theoretical Basis, some key concepts for the understanding of this study are explained

and reviewed. Next, in chapter 3, Related Work, other relevant studies related to this one

15

are described. Then, the methods employed in this study will be presented and described

in chapter 4, Methods. Chapter 5, Methodology explains the practicalities of the imple-

mentation and execution of the performed experiments. Chapter 6, Results, presents the

results of the experiments described in the previous chapter. Chapter 7, Discussion, anal-

yses and discusses the results presents in the previous chapter. Finally, chapter 8 reports

the objectives described at section 1.2 with the results presented at 6, summarizing the

study’s contribution, and then suggests future research directions.

16

2 THEORETICAL BASIS

This chapter aims to provide an explanation and review of the fundamental con-

cepts that are necessary to understand this study.

2.1 Graphs

In computer science, graphs are widely used as models in a number of applica-

tions. For instance, they can represent a vast range of diverse situations, and are used

to model real world scenarios like computer networks, knowledge databases, social net-

works, protein interactions, the world wide web and the connections between its pages,

and many others (CAI; ZHENG; CHANG, 2017; GOYAL; FERRARA, 2018). Once a

real world context of a problem is mapped to a graph, we are able to create computer ap-

plications that solve this problem using its graph, like finding the shortest route between

two points in a map, for example.

A graph is a mathematical discrete object G = {V,E} composed of a set of nodes

V and a set of edges E that connect these nodes. A graph whose edges are directed,

i.e. each edge has an origin node and a destination node, is called a directed graph, or

a digraph, and a graph whose edges are not directed is called an undirected graph. Each

node and edge of a graph may have attributes and/or properties associated to it. A very

common scenario is that the graph’s edges have weights, which may represent various

quantities, such as distance, cost, or strength; in that case, we call it a weighted graph. In

this work, we deal mainly with weighted directed graphs, such as the one in figure 2.1.

Figure 2.1 – Example of a simple small weighted directed graph with 6 nodes and 7 edges. The
number in each node correspond to their ID; and the thickness of the edges represent their

associated weight, which is written right beside or above it. Source: Author.

17

2.2 NP-Hard Problems

“If something is [NP-]hard to do, then it’s not worth doing.”

— HOMER SIMPSON

The class of NP-hard problems consists of computational problems that are no-

toriously difficult to solve. These problems are characterized by the fact that no known

algorithm can solve them efficiently in the worst case. As the size of the problem in-

stance, i.e. the input data for the algorithm, increases, the time required to solve it grows

exponentially. Consequently, they are are intractable to solve optimally at large scales.

Many important optimization problems, such as the traveling salesman problem

and the graph coloring problem, are NP-hard. These problems have significant implica-

tions for fields such as computer science, mathematics, and operations research, and have

motivated the development of sophisticated algorithms and heuristics to approximate their

solutions.

2.3 Heuristic Methods

“You can try the best you can

The best you can is good enough”

— RADIOHEAD

Heuristic methods are problem-solving strategies that prioritize efficiency over op-

timality. Unlike exact algorithms, which guarantee a globally optimal solution, heuristic

methods provide a solution that is not necessarily the optimal solution, although some-

times they are likely to be very close to it. These methods are often used to tackle complex

optimization problems that cannot be solved using exact algorithms, such as NP-Hard

problems, either because the problem size is too large or because the solution space is

too complex to be fully explored. Consequently, heuristic methods play an important role

in tackling real-world optimization problems and are essential in many practical applica-

tions.

18

2.4 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a class of machine learning algorithm orig-

inally inspired by the structure and function of the human brain. There are numerous dif-

ferent neural network-based models (also called deep learning models), and their archi-

tectures have been designed and optimized for specific applications and tasks, but overall

all of them are based on the Feed Forward Network (FNN). FNNs consist of multiple

layers of artificial neurons, each one receiving an input vector from the previous one, ap-

plying a learned non-learned linear transformation, and then passing the resulting vector

to the next layer. Convolutional Neural Networks (CNNs), for instance, were developed

specifically for image and signal processing tasks, and use a combination of convolutional

layers and pooling layers to learn spatial or other signal-based features more efficiently.

Recurrent neural networks, on the other hand, were designed to process sequential data,

and thus are very efficient for tasks like time-series analysis and natural language process-

ing. In this work, we deal with Graph Neural Networks, which were designed to operate

on graph-structured data.

2.5 Graph Neural Networks

“As a net is made up of a series of ties, so everything in this world is connected

by a series of ties. If anyone thinks that the mesh of a net is an independent,

isolated thing, he is mistaken. It is called a net because it is made up of a series

of interconnected meshes, and each mesh has its place and responsibility in

relation to other meshes.”

— BUDDHA

Graph Neural Networks (GNNs) are (deep) learning models that operates on graph-

structured data. These opened up a number of applications in social networks, molecu-

lar structures, knowledge graphs, and now instances of the Kidney-Exchange Problem.

GNNs incorporate graph structures into their architecture as an inductive bias, allowing

them to capture the relationships between nodes in a graph. Graphs can vary in their

structures and sizes, which does not conform to the fixed size vectors that FNNs and a

great part of other ML methods expect as input. Another property of graphs is the permu-

tation invariance of its nodes and edges, which means that they do not have an order or

19

Figure 2.2 – Embedding of a graph node u into a d-dimensional vector. Source: (LESKOVEC,
2017)

a sequence; what matters it the relations between them. GNNs were designed to address

particularities of graph-structured data such as these ones, and to learn to capture not only

the raw information contained in the individual components of the graph, but also high

level contextual information about the relations between them. The concept of GNNs

were defined and introduced in 2005 (GORI; MONFARDINI; SCARSELLI, 2005), al-

though further elaborated only in 2009 (SCARSELLI et al., 2009) with a definition that is

closer to the current understanding. Since then they have been shown to achieve state-of-

the-art performance on a wide range of graph-related tasks, such as node classification,

graph classification, and link prediction.

Although there are many variations of GNNs, as a general rule they work by per-

forming representation learning on graphs. Namely, they learn to map each node into a

an embedding, i.e. an n-dimentional vector representation. Each node embedding con-

tains relevant information about the node for the task, considering its position or role in

the context of the graph, as well as information about the overall structure of the graph.

There are also GNNs designed for edge-embedding, where it learns to map each edge of

the graph into an embedding, or even graph-embedding, where it does the same but for

the whole graph.

2.5.1 Message-Passing Layers

The key design element of GNNs is the use of message passing layers, which

propagate information from a node’s neighbors to the node itself, allowing the algorithm

to learn about the node’s properties and its position in the context of the graph, i.e. its

relationship with other nodes in the graph. With each forward pass of a GNN message

20

passing layer, each node representation is updated incorporating information of its neigh-

bor nodes, leading to an improved representation of each node of the graph, more useful

for the task being solved. Consequently, stacking N message passing layers allows the

GNN to compute representations from the N-neighborhood of each node. Not only that,

but stacking more message passing layers also allows the GNN to build more refined node

features, with more complex information about the relation between the node and its con-

text in the graph. However, it comes with a cost: more layers also increase the inference

and the training time, and has the chance of making the training harder, as deeper neural

networks may suffer from vanishing gradient, which is when the partial derivative of the

loss function approaches a value close to zero, and the partial derivative vanishes.

In the GNNs employed in this work, two different message passing layers were

used: Principal Neighbourhood Aggregation (PNA) layers and Graph Attention Net-

work (GAT) layers. Principal Neighbourhood Aggregation layers were presented in 2020

(CORSO et al., 2020), and use multiple aggregation functions with degree-scalers to bet-

ter capture information from neighbor nodes. Graph Attention Network (GAT) layers

were introduced in (VELIčKOVIć et al., 2017). This type of layer combines message

passing layers with the attention mechanism that, although used at least since 1990 under

names like multiplicative modules and sigma pi units (LECUN, 2020), were first intro-

duced with this name to deep learning models in 2014, in Recurrent Neural Network

models (BAHDANAU; CHO; BENGIO, 2014). This technique received then a surge of

interest in the machine learning community after the 2017 article that introduced Trans-

former models (VASWANI et al., 2017). A way to think about the attention mechanism

is that it aims to dynamically give “focus” on the most relevant part of the data, given a

context (or query); in the case of GAT, each time before the message vectors of neighbor

nodes of a given node are aggregated, these vectors are first weighted by attention co-

efficients, which are computed dynamically. Later, on 2021, (BRODY; ALON; YAHAV,

2021) an improved version of the GAT layers, called GATv2, was proposed. While GAT’s

attention mechanism assigns an attention score to each neighbor node unconditioned on

the query node, GATv2 computes what the authors have called dynamic attention where,

for every node, different attention coefficients are computed for each of their neighbor

nodes.

21

2.6 Softmax

The softmax function is designed to convert an input vector y into a a probability

distribution, and is defined by Formula 2.1. First, it applies the exponential function to

each element yi of y; then, it normalizes the resulting values by dividing each one by the

sum of all the exponentials. Two important properties of the softmax operation are that

it assures that all output values are between 0 and 1 and that their sum is equal to one,

therefore serving as a kind of normalization.

σ(yi) =

 eyi∑
j

eyj

 j = 1, ..., n (2.1)

22

3 MACHINE LEARNING AND THE KEP - A BRIEF REVIEW

“Scientific knowledge belongs to humanity.”

— ALEXANDRA ELBAKYAN

This chapter aims to present a brief review of other works related to this study.

It is separated in two parts: one about the Kidney-Exchange Problem and another about

machine learning models for optimization problems in graphs. There have been work on

both KEP and on ML methods applied to graph-based optimization problems, but to the

best of our knowledge, this work is the first one that uses ML methods to solve KEP.

3.1 Kidney Exchange Problem

Kidney disease affects millions of people worldwide, and the two known treatment

options for end-stage kidney disease are dialysis and kidney transplantation (DELORME

et al., 2022). Transplantation is the preferred treatment for the most serious forms of

kidney disease (ROTH; SöNMEZ; UNVER, 2004) due to it being cheaper and offering a

better quality of life and better life expectancy (AXELROD et al., 2018). The source of

the kidney can be either a cadaver or a live donor, as the human body has two kidneys and

often only one suffices.

The compatibility of a transplant between a donor and a recipient is determined

by a number of different factors, such as the blood-group compatibility, tissue-type com-

patibility, the ages and general health of the donor and the recipient, the size of the donor

kidney, and many others (DELORME et al., 2022). The lower the compatibility between

a donor and a patient, the lower is the chance of success of a kidney transplant between

them.

In the last decades, there have started to be paired kidney exchanges, which are

cycles involving donor-patient pairs such that each donor cannot give a kidney to their

intended recipient because of some kind of incompatibility, but each patient can receive a

kidney from a donor from another pair (ROTH; SöNMEZ; UNVER, 2004). These cycles

were first performed with only two donor-patient pair nodes, but later longer cycles of

kidney exchanges were performed. One small example of a kidney exchange cycle is

illustrated on the left of Figure 3.1. Another possibility of exchange scheme is to create

exchange chains, that begin with a donation of an altruistic or cadaveric kidney donor,

23

Figure 3.1 – On the left, a kidney exchange cycle, i.e. a cycle of donations of Patient Donor Pairs
(PDPs). On the right, a kidney exchange path, i.e. a series of donations starting on an altruistic

donor (NDD), following through with PDPs, and optionally ending on a patient without an
associated donor. The green arrows with a cross represent kidney donation incompatibility

between patients and their associated donor pair; yellow and orange arrows represent donation
compatibility and together form the solution for each instance. Source: (INFORMATION. . . ,

2022).

follows with chained donations of patient-donor pairs, and then finishes with a donation

either to a patient with or without associated donor. In this study, the donation chains are

also referred to as paths, a term often used for describing sequences of connected nodes in

graph problems. One small example a kidney exchange path is illustrated on the right of

Figure 3.1. To find the best possible allocation, i.e. the optimal solution to the problem,

considering a set of donors, patients, and patient-donor pairs, a mix of both cycles and

chains can be selected, as long as the cycles and paths do not intersect each other.

Ideally, these cycles and chains could have an unlimited size. In real life, however,

there is a practical limit to the size of the paired kidney exchange cycles and chains: the

kidney donation surgeries in a chain often must be done simultaneously, so as to ensure

that every patient receives a kidney before her associated donor donates her kidney. How-

ever, organizing many simultaneous surgeries is logistically very complex, and sometimes

impractical or even impossible. Even if they do not have to be done simultaneously, it is

generally required at least that every patient-donor pair receive a kidney before they give

a kidney. Furthermore, there are numerous other logistical difficulties that rise when deal-

ing with longer cycles and chains, which makes it highly desirable or sometimes even

necessary that these donation cycles and chains have limited size. The longest kidney

transplant chain successfully performed had a size of 35, and happened between 6 Jan-

uary and 17 June 2015, in the USA (LONGEST. . . , 2020), although in most situations

24

the maximum reasonable size is considerably smaller.

3.1.1 Problem Definition

The Kidney Exchange Problem (KEP) was first mathematically formalized by A.

Roth et al. in (ROTH; SöNMEZ; UNVER, 2004), and then slightly updated in various

ways in subsequent works. A summary of the variations found in the literature and of

models and techniques currently employed to solve them can be found at (BIRó et al.,

2021).

In the formalization used in this study, each instance of the KEP is represented by

a directed weighted graph G = {V,E}, and an optional nonnegative integer parameter

k, which represents the maximum length allowed for the cycles and paths in the solution.

Each patient, donor, and patient-donor pair is mapped to a graph node v ∈ V ; they will

be referred to as patient (P) nodes, non-directed (or altruistic) donor (NDD) nodes, and

patient-donor pair (PDP) nodes. The set of nodes V is thus accordingly partitioned into

sets P , NDD and PDP . The graph’s edges e ∈ E represent donation compatibility: an

edge going from one node to another represents that a kidney donation in this direction is

possible; the corresponding edge weight we encodes how compatible the donor is to the

recipient.

Solving a KEP instance means to optimally select a set of cycles and chains to

optimize the transplants performed. This includes maximizing not only the quantity but

also the quality of the transplants, which is encoded in the edge weights. The solution

must also respect a set of constraints. Each node may participate at most in one transplant

as a donor and in another as a receiver. Also, PDP nodes can only donate a kidney if

they receive one, although they can receive without donating. Nodes of type P can only

receive donations, and NDD nodes can only donate. The problem could thus be put in a

single phrase: "Given a list of kidney needing patients, kidney donors, and patient-donor

pairs, and a compatibility index between each possible donor and receiver, what is the

best possible selection of donations that can be performed so that the total quantity of

transplants, weighted by the compatibility indexes, is maximized, while still respecting a

given size limit to the kidney exchange cycles and chains in the solution?"

Our KEP formalization is represented in the set of equations below, inspired on the

so-called Recursive Algorithm formulation described by (ANDERSON et al., 2015). We

use a binary variable ye for each edge e ∈ E that indicates if the edge is part of the solution

25

or not, as well as auxiliary variables f i
v and f o

v for each node v ∈ V , which represent its

flow in and flow out values, i.e. the node’s number of incoming and outcoming edges in

the solution, and are defined at Equations 3.9 and 3.10. C represents the set of existing

cycles and paths in graph, where C ∈ C is a collection of edges, i.e. C ⊂ E. Ck is a

subset of C (i.e. Ck ⊂ C) containing the cycles and paths that use k or fewer edges. The

objective (defined at Expression 3.1) is to maximize the number of edges in the solution

y, weighted by the associated edge weights w, while still respecting the KEP constraints

(Equations 3.4, 3.5, 3.6, 3.7, and 3.8).

max
∑
e∈E

weye (3.1)

s. t.
∑

e∈Nin(v)

ye = f i
v v ∈ V (3.2)

∑
e∈Nin(v)

ye = f o
v v ∈ V (3.3)

f o
v ≤ f i

v ≤ 1 v ∈ PDP (3.4)

f o
v ≤ 1 v ∈ NDD (3.5)

f i
v ≤ 1 v ∈ P (3.6)∑

e∈C

ye ≤ |C| − 1 C ∈ C \ Ck (3.7)

ye ∈ {0, 1} e ∈ E (3.8)

f i
v =

∑
e∈Nin(v)

ye v ∈ V (3.9)

f o
v =

∑
e∈Nout(v)

ye v ∈ V (3.10)

Nin(v) = {e∀e ∈ E, e = (v′, v)}

Nout(v) = {e∀e ∈ E, e = (v, v′)}

The constraints ensure the result is a valid solution for KEP: the first two (Eq. 3.2

and Eq. 3.3) are necessary for the use of the flow in and flow out variables, the third one

(Eq. 3.4) controls the flow in and flow out of the PDP nodes, the fourth one (Eq. 3.5) does

the same but for NDD nodes, the fourth one (Eq. 3.6) does the same but for P nodes, the

26

sixth one (Eq. 3.7) prohibits cycles or paths with length longer than a given limit k, and

the seventh one (Eq. 3.8) defines the domain of the y variable.

It has been proven that this problem is NP-Hard (ABRAHAM; BLUM; SAND-

HOLM, 2007), although it can become polynomial-time solvable if some of the con-

straints are relaxed, such as limiting the exchange cycles and chains length to 2, or re-

moving the length restriction entirely.

3.2 Machine Learning Methods for Optimization Problems in Graphs

In the last few years, many machine learning-based approaches that effectively

solve several different optimization problems in graphs have been proposed, although

none of them designed for solving KEP. Graph optimization problems already solved with

the help of machine learning include the Set Covering Problem (YANG; RAJGOPAL,

2020), Graph Colouring (LEMOS et al., 2019; SANTOS; LAMB, 2020), Minimum Ver-

tex Cover (SATO; YAMADA; KASHIMA, 2019; ABE et al., 2019), Maximum Cut (DAI

et al., 2017), Graph Partitioning (NAZI et al., 2019), Maximum Independent Set (LI;

CHEN; KOLTUN, 2018), Maximum Common Subgraph (BAI et al., 2020), and the Trav-

elling Salesperson Problem (also called the travelling salesman problem or TSP), one of

the most famous NP-hard problems, often used to represent the class, and some variants

of it (JOSHI; LAURENT; BRESSON, 2019; JOSHI et al., 2021; PRATES et al., 2018;

VINYALS; FORTUNATO; JAITLY, 2015; WU et al., 2019; KOOL; HOOF; WELLING,

2018).

In 2015, the authors of (VINYALS; FORTUNATO; JAITLY, 2015) presented a

new type of neural network called Pointer Networks, designed to learn how to reorder the

elements of an input sequence; they validated the method by using it to solve 3 problems,

including the TSP. In 2016, researchers presented in (BELLO et al., 2016) a framework for

combinatorial optimization problems using neural networks and reinforcement learning;

the work focused on the TSP, which is a graph problem, but the approach was designed

to work with any combinatorial optimization problem. In 2017, the authors of (DAI

et al., 2017) proposed the utilization of a combination of graph representation learning

and reinforcement learning to solve graph optimization problems; they showed that their

proposed approach effectively learns to solve at least three of those problems: Minimum

Vertex Cover, Maximum Cut, and TSP. In 2018, the decision variant of the TSP, called

Decision Traveling Salesman Problem (DTSP), which is to decide if a given TSP instance

27

admits a Hamiltonian route with a cost no greater than a given threshold C, and is also

NP-Hard, was solved in (PRATES et al., 2018) with a GNN.

In 2019, the authors of (JOSHI; LAURENT; BRESSON, 2019) tried to solve the

TSP using a two stage technique that is very similar to the one presented in this study (de-

scribed at section 4.3.7 and illustrated at Figure 4.1): firstly, a GNN processes the input

graph and create scores for each edge of the graph; then, a non-learned search heuris-

tic, which in this case was beam search, uses these scores to construct a solution. There

have been other approaches that use similar techniques: in (PENG; CHOI; XU, 2021) the

authors review graph learning methods for solving combinatorial optimization problems,

with a focus on two-stage techniques, where the first is based on graph representation

learning, which embeds the input graph into low-dimension vectors, and the second uses

the embeddings learned in the first stage; (LAMB et al., 2020) surveys the use of GNNs

as a model of neural-symbolic computing and their applications, which includes combi-

natorial optimization problems; (JOSHI et al., 2021) unifies and refines several of such

two stage techniques for neural combinatorial optimization, and test it on the TSP.

28

4 METHODS

This chapter describes the methods used in this study for solving the Kidney Ex-

change Problem. We classified these methods in 3 categories: integer programming meth-

ods, non-learnable heuristic methods, and learnable heuristic methods. All of them use

the same input information, which is a KEP instance, and return the solution in the same

format, which is a binary label for each edge, indicating if it is in the solution or not. All of

them are evaluated on the test dataset, described at Section 5.3, with the exception of the

integer programming method, as explained in Section 5.5, but only the learned heuristics

use the training dataset, during their training phase.

4.1 Integer Programming

To obtain the analytical solution, i.e. the optimal solution, the formulation pre-

sented in 3.1.1 was implemented with PyCSP3 (LECOUTRE; SZCZEPANSKI, 2020).

There are other integer programming formulations for the KEP, including another one

presented in the same article, as well as others in (ROTH; SöNMEZ; ÜNVER, 2007),

(ABRAHAM; BLUM; SANDHOLM, 2007) and (CONSTANTINO et al., 2013). This

formulation was chosen because it is the most straightforward one.

As PyCSP3, the solver used for implementing this problem, does not support float

values in the objective function, the edge weights had to be adapted. Originally float

values between 0 and 1, each of them was multiplied by 10000 and converted to integer,

changing their domain to values between 0 and 10000. This transformation can be seen

as having the same effect as limiting the digits of precision of the original decimal value

representation to that of 4 decimal digits. Thus, its effect is similar to a small noise in the

edge weight values, and the adaptation should not affect significantly the results.

4.2 Non-Learnable Heuristics

To evaluate the implemented methods that use machine learning, we decided to

compare them to non-learnable heuristics, i.e. heuristic methods that do not use learning

techniques. This section aims to describe these non-learnable heuristic methods. To the

best of our knowledge, however, there are no canonical heuristics for the KEP. For this

29

reason, we implemented two search heuristics, which are described below.

4.2.1 Greedy Paths

This algorithm greedily selects paths that start on NDD nodes and goes through

PDP or P nodes one by one until there is no more nodes to be selected, or until a P node

is reached. It starts by selecting the edge with the highest weight considering only the

subset of edges that have an NDD node as source. Then, considering only the edges that

come from the previous node, it follows by selecting always the next edge with the highest

weight, until there are no more available edges left that would continue the path. After a

path has been added to the solution, the edges connected to nodes of this path are masked,

and the Greedy Paths algorithm repeats the process until no more NDD nodes with valid

outcoming edges are available. This algorithm is described at Algorithm 1.

Algorithm 1 Greedy-Paths

procedure GREEDY-PATHS(G = (N,E), k)
paths← []
while |GP(G, k)| > 0 do

path← GP(G, k)
paths← paths⊕[path]
G← (N \ {n ∀ n ∈ paths}, E \ {e ∀ e ∈ E, src(e) = n ∨ tgt(e) = n})

return paths
procedure GP(G = (N,E), k) ▷ Gets one Greedy Path

ENDD ← {e ∀ e ∈ E, src(e) ∈ NDD}
if |ENDD| = 0 then

return []
ec ← argmaxe∈ENDD}we

path← [src(ec)]
while |OE(tgt(ec))| > 0 ∧ | path | < (k + 1) do

path← path⊕[tgt(ec)]
ec ← argmaxe∈OE(tgt(ec))\

⋃
n∈path IE(n) we

return path
procedure OE(G = (N,E), n) ▷ Outgoing Edges

return {e ∀ e ∈ E, src(e) = n}
procedure IE(G = (N,E), n) ▷ Incoming Edges

return {e ∀ e ∈ E, tgt(e) = n}

30

4.2.2 Greedy Cycles

This algorithm greedly selects cycles of PDP nodes. It starts by selecting the

edge with the highest weight considering only the subset of edges that have a PDP node

as source and a PDP node as destination. Then, PDP nodes are greedly added to the

solution in the same way as done by the Greedy Paths method until the cycle ends, or

until it arrives at a node already added in the cycle, in which case the cycle is closed and

the nodes before the node where it is closed are removed from the cycle. After a cycle is

added to the solution, the Greedy Cycles algorithm applies a mask on the edges connected

to nodes of this cycle, and then repeats the process until no more PDP nodes with valid

outcoming edges are available. This algorithm is described at Algorithm 2.

Algorithm 2 Greedy-Cycles

procedure GREEDY-CYCLES(G = (N,E), k)
cycles← []
while |GC(G, k)| > 0 do

cycle← GP(G, k)
cycles← cycles⊕[cycle]
G← (N \ {n ∀ n ∈ cycles}, E \ {e ∀ e ∈ E, src(e) = n ∨ tgt(e) = n})

return cycles
procedure GP(G = (N,E), k) ▷ Gets one Greedy Cycle

EPDP ← {e ∀ e ∈ E, src(e) ∈ PDP, dst(e) ∈ PDP}
if |EPDP | = 0 then

return []
ec ← argmaxe∈EPDP }we

cycle← [src(ec)]
while tgt(ec) /∈ cycle do

if |OE(tgt(ec))| ≤ 0 ∨ | cycle | ≥ k then
return [] ▷ Unable to close cycle (dead end)

cycle← cycle⊕[tgt(ec)]
ec ← argmaxe∈OE(tgt(ec))\

⋃
n∈cycle IE(n)

we

return cycle
procedure OE(G = (N,E), n) ▷ Outgoing Edges

return {e ∀ e ∈ E, src(e) = n}
procedure IE(G = (N,E), n) ▷ Incoming Edges

return {e ∀ e ∈ E, tgt(e) = n}

31

4.3 Learnable Heuristics

This section aims to describe the learnable heuristics designed for KEP. Subsec-

tions 4.3.1, 4.3.2, 4.3.3, and 4.3.4 explain the most important modules and techniques,

and subsections 4.3.5, 4.3.6, and 4.3.7 explain how they are used and combined to create

methods that approximately solve KEP.

4.3.1 GNN Architecture

As KEP instances are graphs, using GNNs to extract more detailed and abstract

information can help in constructing an approximate solution. Therefore, GNN models

were chosen as the main learning module for the machine learning methods.

Before the execution of the GNN, the initial node features are set: the number of

incoming edges, the number of outcoming edges, and the type of the node (NDD, PDP or

P) represented with a one-hot vector.

The architecture of the GNN used in this work is the following: firstly, there is a

message passing phase, where the node features are passed through a PNA layer, and then

through two consecutive GATv2 layers; after each message passing layer, a ReLU acti-

vation function is applied, followed by a dropout regularization; next, for each node, the

node features are passed through a fully connected feed forward neural network, followed

by another ReLU activation function; then, the edge features are constructed by concate-

nating the original input edge features with the node features of the origin and destination

nodes associated to each edge; these edge features are then passed, individually, through

a fully connected feed forward neural network, which outputs a score for each edge; at

this point, a skip connection adds the original edge weights to the edge scores; finally, a

node-wise softmax operation, which is described at 4.3.4, is applied so as to normalize

these scores in relation to the scores of other edges that share the same source node.

In order to make information flow not only in the original direction of the original

edges, each message passing layer is accompanied by an associated layer, which we call

counter edge layer, that is exactly similar, but with different learned weights, and with the

difference that the information is propagated in the opposite direction, i.e. flowing from

the destination node to the origin node. Each time message layers are executed, the output

of the original and of the counter edge layers is concatenated before being passed to the

next layers.

32

4.3.2 KEP Unsupervised Loss Function

This loss was designed to capture, without the need for the exact solution as a

label or any other supervision, the essence of what we are trying to maximize: the sum of

weights of edges that are in the predicted solution. It is defined as the log of the sum of

weights of all edges of the input instance over the sum of weights of edges that are in the

predicted solution, weighted by the scores predicted by the GNN. This loss function is

presented in Formula 4.1, where w represents the vector of edge weights, pred represents

the vector of predicted classes (which indicates if each edge is contained in the solution

or not), and s represents the vector of scores attributed by the GNN for each edge.

KEP_Loss (w, pred, s) = log

∑
e∈E we∑

e∈E wepredese
(4.1)

The multiplication by the sum of weights of all edges of the input instance serves

as a normalization; this way, if an input instance were to have unusually high or unusually

low values for its edge weights, this variation would not affect the loss function as much.

The log function was applied at the end because the range of possible values coming out

of dividing the two sums is extremely large, and this would certainly disrupt the training

process.

4.3.3 Loss Constraint Regularization

In order to integrate information about the first three constraints of the Recursive

Algorithm KEP formulation (described at section 4.1) into the learning of the model, a

loss regularization function was developed. It aims to model the restriction that each

node must have at maximum one single outcoming edge and one incoming edge that are

part of the solution. It is defined as the log of the division between the total quantity

of edges in the solution and the number of unique nodes that appear in the solution as a

origin/destination node. This makes it so that the regularization term value is proportional

to the number of invalid edges in the solution, i.e. the total quantity in the graph of

extra edges for each source/destination node. This function can then be added to the

unsupervised loss (described in the subsection above) by summing their output values,

weighted by coefficients, which become new hyper-parameters of the training.

33

4.3.4 Node-wise Softmax

The node-wise softmax operation is the application of an independent softmax

operation (described at section 2.6) for each group of edges that share the same source

node. In this way, for each node we will have a probability for each outgoing edge; in

KEP, these values may represent a probability distribution for the donation options of

the donor for each source node. Although in this work the operation was used grouping

edges by source node, with a simple change of a parameter it can group edges by groups

of common destination node as well.

node-wise-softmax(se(ni,nj)
) =

e
−se(ni,nj)∑

nk∈N (ni)
e
−se(ni,nk)

(4.2)

The best of our knowledge, such a function does not exist in Pytorch Geometric,

nor in any other publicly available library. The implementation uses Pytorch operations

in order to allow PyTorch’s automatic differentiation engine pytorch.autograd to work,

which is necessary for training Pytorch models. As a bonus, it also allows it to run it in a

GPU with CuDA, as other Pytorch methods do, and thus makes it easily paralellizable.

This method is potentially useful for any edge classification task on graphs, spe-

cially when the problem involves constraints in which only one edge may be chosen per

node, be it destination or origin node. These constraints are very common in optimization

problems in graphs; this is the case for KEP, for example: each donor or patient-donor

pair may donate at most one kidney, and each patient or patient-donor pair may receive at

most one kidney.

4.3.5 Unconstrained GNN Model Trained Without Supervision

This method, referred to from now on as Unsupervised GNN, consists of a GNN

model with the architecture described at 4.3.1, which receives a KEP instance and outputs,

for each edge of the input instance, a score and a binary prediction, which indicates if the

edge is part of the predicted solution or not. The binary prediction is made independently

for each edge, and consists of a simple decision threshold. This GNN model is trained

using the unsupervised loss described at subsection 4.3.2 with the loss regularization term

described at subsection 4.3.3. Although there is no guarantee that the solutions given by

this method will be valid, the loss regularization term is used with the goal of inducing it

34

to respect the problem constraints.

4.3.6 Unconstrained GNN Model Trained With Supervision

The goal of this method, referred to from now on as Supervised GNN, is to try

to induce the model to learn to predict, for each edge of the input instance, if it belongs

or not in the optimal solution. Just as the method described at subsection above (4.3.5),

it also consists of a GNN model with the architecture described at 4.3.1. With a single

prediction step, it outputs, for each edge of the input instance, a score and a binary pre-

diction, which indicates if the edge is part of the predicted solution or not. Similarly

to the unsupervised version (described at 4.3.5), the binary prediction is made indepen-

dently for each edge, and consists of a simple decision threshold. However, instead of

the loss function described at subsection 4.3.2, the function used for training this GNN

is the binary cross entropy loss function, which is very popular for supervised training of

binary classification models. The exact solution, computed with the integer programming

method described at section 4.1, would be used to generate a binary label for each edge,

indicating if it belongs or not in the optimal solution. Also similarly to the unsupervised

version, there is no guarantee that this method will output valid solutions; nonetheless, it

is hoped that the model could learn to choose edges so as to mimic all properties of the

optimal solutions, including being valid.

4.3.7 Two Stage Method

Inspired by the approach used in (JOSHI; LAURENT; BRESSON, 2019) and

(JOSHI et al., 2021), this method follows a two steps structure: firstly, the learnable step,

which is a GNN, takes the KEP graph instance as an input and outputs a score for each

edge; then, the non-learnable step, which is one of the heuristic methods described above

in the 4.2 section is executed, but using the scores given by the GNN instead of the edge

weights. This process is illustrated in the diagram on Figure 4.1. The intuition behind this

idea is that the GNN model will learn to encode in the edge score contextual information

that will change the decisions of the search heuristic so as to maximize the total score of

the final output solution.

This method is trained without supervision using loss described at subsection

35

Figure 4.1 – Diagram representing an overview of the two stage method. The GNN takes the
input KEP instance and computes a score for each edge of the graph; then, a greedy heuristic

such as GreedyCycles or GreedyPaths uses these edge scores instead of the original edge weights
to build an approximate solution, which is a binary label for each edge (edge labels), indicating if

the edge is part of the approximate solution predicted or not. Source: Author.

4.3.2. There is no need to use the loss regularization term described at subsection 4.3.3

because the second step of the method ensures that the output will be a valid solution.

Two versions of the two stage method were implemented for the experiments.

Both use the GNN described in subsection 4.3.1 for the first stage, but their second stage

consist of different search heuristics. One uses the Greedy Paths search heuristic de-

scribed at subsection 4.2.1 and is referred to later on as GNN+GreedyPaths. The other

uses the Greedy Cycles search heuristic described at subsection 4.2.2 and is referred to

later on as GNN+GreedyCycles.

36

5 METHODOLOGY

This chapter aims to explain in more detail the practical aspects of this work, such

as how the experiments were implemented and conducted.

5.1 System configuration

The experiments described in this section, as well as the generation of the datasets

and the executions of the solver that solves the problem, were run in a personal computer

with the following specifications:

Processors: 4x Intel®Core™ i5-6600 CPU @ 330GHz.

Memory: 7,7Gb of RAM.

Graphics Processing Unit: NVIDIA GeForce GTX 1050 Ti/PCIe/SSE2.

Operating System: Ubuntu 22.04.1 LTS

5.2 Implementation

The code developed in this study was written with the objective of being clear,

readable, reusable, and reproducible. It is available in a public repository in GitHub

(KEP. . . , 2023), and pull requests with extensions, suggestions, or corrections are wel-

come and encouraged, as well any feedback. The code includes implementations for the

generation of the dataset, the methods described in Chapter 4, the experiments and eval-

uations described at section 5.5, as well as scripts written to automate or facilitate the

experiments, to visualize and investigate data, and to debug code.

The implementations were developed using the Python (PYTHON. . . , 2023) pro-

gramming language (version 3.10.6). The libraries PyTorch (PYTORCH. . . , 2023) (ver-

sion 1.13.1) and PyTorch Geometric (FEY; LENSSEN, 2019) (version 2.2.0) were exten-

sively used for the implementation of all the methods used in this study, described at the

section 4, as well as training and evaluation of the machine learning models, and creating,

saving, loading, and manipulating data. Using PyTorch and PyTorch Geometric not only

allowed for faster development, but also enables the training and inference of the models

to be run in parallel in a GPU. For the generation of the dataset synthetic KEP instances,

37

the library NetworkX (NETWORKX. . . , 2023), which contains useful graph data struc-

tures and tools, was also used. The analytical integer programming solution described at

4.1 was implemented using the PyCSP3 library (LECOUTRE; SZCZEPANSKI, 2020),

which allow us to model and solve combinatorial constraint satisfaction and optimiza-

tion problems. Other popular Python libraries such as Pandas and Numpy were also uti-

lized. The Matplotlib library was employed to generate the plots of comparisons between

methods, the evolution of training loss, and so forth. With the purpose of maintaining

a consistent programming style and high code quality, the Pre-Commit (PRE-COMMIT,

2023) framework was used in the project; it runs linters and code analysers before each

commit, therefore automatically correcting and/or highlighting issues so as to alert the

programmer of the need to adjust the code.

In order to improve the readability and comprehensibility of the code, some basic

documentation was written. Most of the implemented functions, classes, and scripts have

docstrings with descriptions of the functionality and instructions on how to use it. Other

than that, some README files were added to the repository for more general high level

information and instructions.

5.3 Dataset

Deep learning methods such as GNNs require lots of data; usually, many thou-

sands of instances, or even millions, depending on the problem and the size of the model,

are necessary for the models to converge to a good minima. With insufficient data, deep

learning models are very prone to overfitting, or sometimes may not even learn anything

at all. Medical data, however, is very scarce, and rarely available at this quantity. This

happens for two main reasons. Firstly, a major problem with healthcare data is its sen-

sitivity: as a lot of it is confidential information about the patients, it is usually highly

protected and as a rule cannot be used without special consent, be it from the patients

or at least from the health institute that owns the data. Furthermore, there are a limited

number of medical cases of each given situation registered; although it would be useful to

have a KEP dataset with millions of instances, this situation has not happened that many

times, and not necessarily all of them have been registered digitally.

Due to the scarcity of the data, and considering that to train a machine learning

model it usually takes at least tens of thousands of examples, the datasets were generated

artificially. Three separate datasets were generated: the train dataset, with 10 thousand

38

Figure 5.1 – Jenson-Shannon Distance (dissimilarity) between in-degree distributions in relation
to the 10 thousand instances training dataset.

instances for the training of the model; the validation dataset with 100 instances, used

for validation step during the training; and the test dataset, with 10 thousand instances,

used to evaluate the performance of each one of the employed methods. This number

of instances for the validation dataset was chosen because it was sufficiently big so that

still kept roughly the same properties as the train and test datasets, but small enough that

the validation does not slow down the training too much. To measure how different a

randomly generated KEP dataset from a given size was from the 10 thousand instances

train dataset, we measured the Jenson-Shannon Distance between the node’s in-degree

distributions of the two datasets. The results can be seen on Figure 5.1.

5.3.1 Artificial KEP Instance Generation

To generate each instance, first 300 separated nodes are created, and then 5500

edges are added sequentially linking random nodes, while still guaranteeing that no two

edges connect the same two nodes in the same direction. The weight value of each edge

is sampled from an uniform distribution of values between 0 and 1. To choose the number

of nodes and edges of the KEP generated instances, the instances used for benchmark-

ing in (ANDERSON et al., 2015) were used as reference. Considering the 25 instances

presented in the Table S3, which they call "difficult" real-data instances, the average num-

39

ber of nodes on a KEP instance is 265.84, and the average number of edges is 5695.92.

Thus, the values for the number of nodes and number of edges chosen were 300 and 5500,

respectively. The proportion of the types of nodes was also chosen to be similar to the

instances: roughly 90% of the nodes are PDP nodes, 5% are NDD nodes, and 5% are P

nodes.

To keep track of the instances, an unique ID was assigned to each. For this, the We-

isfeiler Lehman graph hash (SHERVASHIDZE et al., 2011) was used, which has strong

guarantees that non-isomorphic graphs will get different hashes; it also considers node and

edge features in its computation, thus differentiating even between graphs which have the

same structure but different edge weight values.

5.4 Metrics

The objective of the Kidney Exchange Problem is to maximize the number of

donations weighted by their compatibility index, i.e. their associated edge weights in the

graph. Therefore, this was the main metric used to quantify the quality of each solution

and to compare the different methods, and is also referred to as score in this study. As the

operational performance of the methods was also to be compared, the total time that each

method took to run per instance was also measured.

Ideally, the heuristics could be compared by using the optimality gap, which is de-

fined as the distance between the heuristic solution score and the optimal solution score.

However, as the randomly generated KEP instances of 300 nodes have shown to be in-

tractable while using the PyCSP3 solver, i.e. impossible to solve optimally in a reasonable

time, the optimality gap could not be measured.

For the trainable heuristics, the total training time was also measured and com-

pared. To monitor and guide the training process, the evolution of the loss function value

over the training time was also collected. Additionally, the mean score of the current

model in the validation dataset was measured at each validation phase.

For a fair comparison between methods, all the measurements were made in the

same test dataset, which is described in section 5.3, with the exception of the exact solu-

tion method, as explained in Section 5.5 below.

40

5.5 Experiments

The main goal of the experiments was to assess the machine learning methods,

and compare them to the deterministic heuristics and to the exact solution, both in terms

of the quality of the solutions as well as of their operational performance, i.e. the time it

takes for a solution to be calculated.

Subsection 5.5.3 describes how the solution quality of each method described in

Chapter 4 was measured and compared. The integer programming method, however,

could not be measured in the same dataset because it took to long to run the solver. As

a consequence, the Supervised GNN method, described in Subsection 4.3.6, could not be

trained nor measured as well. To discover what instance sizes could be solved optimally

in a reasonable time, an experiment was done to measure how much time it took to solve

a KEP instance in relation to the input size; this experiment is described at Subsection

5.5.1. Subsection 5.5.2 describes the measurements and analysis done on the models

training process.

5.5.1 Solver Execution Time Analysis

To measure how much time it takes to solve a KEP instance in relation to the input

size, the following experiment was designed: first, we randomly generate 100 instances of

each graph size (i.e. number of nodes), starting from 5 nodes and up to 300 nodes; then,

each one is solved optimally using the integer programming method described at section

4.1. The elapsed time of each solver execution is collected for later analysis.

5.5.2 Training of the Machine Learning models

The training of the GNN models was separated in epochs. In each epoch, we iter-

ate through the 10 thousand instances of the train dataset, predicting, calculating the loss,

and updating the GNN weights according to it. At every 500 instances, a validation phase

is run, where the model is evaluated on the validation dataset and a checkpoint is saved.

The chosen batch size was 1, which means that the predictions were done on one instance

at a time, because it empirically seemed to be the best for the learning process. There

were two machine learning models that were trained in this study: the unconstrained un-

41

supervised GNN and the two stage method, which are described at subsections 4.3.6 and

4.3.7, respectively. For each training process, it was measured how the loss value evolved

over time in the training and in the validation datasets.

5.5.3 Evaluation of KEP Solving Methods

In order to do a fair comparison between the different heuristic methods, all of

them were evaluated by predicting the solutions of all 10 thousand instances of the test

dataset. We did not set the cycle/path size limit (parameter k in constraint represented by

Eq. 3.7), i.e. the cycles and paths could have any length, as long as they respect the KEP

constraints. For each prediction, it was measured the solution score, the number of edges

in the solution, and the relation between the solution score (which is the sum of the edge

weights of the solution edges) and the total sum of edge weights of the graph. In addition,

the validity of the predicted solution was evaluated; if invalid, we measure the number

of invalid edges in the solution, i.e. the number of edges that disrespect the restrictions.

Furthermore, we measured the time it took for each method to solve each instance using

a CPU. Then, it was measured, for each model in relation to the whole test dataset, the

mean, standard deviation, and distribution for the scores and the prediction elapsed times.

42

6 RESULTS

This chapter aims to present the results obtained from the experiments described

in the Section 5.5 of the previous chapter.

6.1 Solver Time Measurements

Figure 6.1 shows a box plot of the time that the solver took to optimally solve KEP

instances in relation to the instance size. For that, graphs of sizes 5 to 15 (i.e. number

of nodes) were used; initially, graphs with up to 300 nodes were going to be included

in the analysis, but as solving graphs with 16 nodes or more would take several days to

compute, they were excluded. To solve a hundred instances with 15 nodes, for instance,

it took 101.2 hours in total.

As we can see, the experiment results show a pattern of exponential growth of

computational time in relation to the input size. The mean time it took when the graph

node number was beneath 10 was always below 1.5 seconds. For instances with 15 nodes,

the mean time measured was 3569.33 seconds, i.e. roughly one hour.

6.2 Training of the GNN Models

Figures 6.2, 6.3, and 6.4 show the evolution of the loss value on the training and

validation datasets for the two stage methods described at Subsection 4.3.7, GNN+GreedyPaths

and GNN+GreedyCycles, and for the Unsupervised GNN method described at Subsection

4.3.5, respectively. The training of GNN+GreedyPaths took, in total, 44046 seconds (i.e.

12 hours); for GNN+GreedyCycles, it took 15705 seconds (i.e. 4.3 hours); for Unsuper-

visedGNN, 13275 seconds (i.e. 3.6 hours). As the labels for the artificial datasets could

not be generated, the Supervised GNN method (described in section 4.3.6) could not be

trained.

Figures 6.5, 6.6, and 6.7 show the evolution of the the mean score value for

GNN+GreedyPaths, GNN+GreedyCycles, and Unsupervised GNN, respectively. Figure

6.8 shows the evolution of the standard deviation of the scores predicted on the validation

dataset.

43

Figure 6.1 – Boxplot of the time it takes to run the solver on KEP instances of sizes 5 to 15 (i.e.
number of nodes).

Figure 6.2 – Evolution of the training and validation loss for GNN+GreedyPaths method.

44

Figure 6.3 – Evolution of the training and validation loss for GNN+GreedyCycles method.

Figure 6.4 – Evolution of the training and validation loss for the Unsupervised GNN method.

45

Figure 6.5 – Evolution of the score measured in the validation dataset for the GNN+GreedyPaths
method.

Figure 6.6 – Evolution of the score measured in the validation dataset for the
GNN+GreedyCycles method.

46

Figure 6.7 – Evolution of the score measured in the validation dataset for the Unsupervised GNN
method.

Figure 6.8 – Evolution of the standard deviation of score measured in the validation dataset for
the GNN+GreedyPaths method.

47

Figure 6.9 – Box plot comparing the approximate solution scores obtained when each of the
evaluated methods was used in the test dataset. The evaluated methods were two non-learnt

heuristics, GreedyCycles and GreedyPaths, and their 2 stage method versions,
GNN+GreedyCycles and GNN+GreedyPaths.

6.3 Methods’ Performances

Figure 6.9 shows a box plot of the approximate solution scores (i.e. the sum of the

weights of the edges contained in the approximate solution) achieved by each method in

the test dataset, with the exception of the Unsupervised GNN, integer programming, and

Supervised GNN methods. As all the solutions found by the Unsupervised GNN method

were invalid, there was no reason to evaluate their quality. The integer programming

method is also absent from the plot, as it was not possible to run it in instances with 300

nodes. As a consequence, the Supervised GNN method also could not be evaluated, since

it needed the exact solution from the integer programming method in order to be trained.

As we can see, the GreedyPaths heuristic method found much better solutions

than GreedyCycles. The 2 stage method variations, GNN+GreedyCycles and GNN+

GreedyPaths, obtained very different performances. Unfortunately, the GNN module in

the GNN+GreedyCycles method did not manage to learn to output edge scores that help

the heuristic; on the contrary, the quality of its approximate solutions are considerably

worse than those from GreedyCycles. The GNN+GreedyPaths method, however, effec-

48

Figure 6.10 – Box plot comparing the time to compute a solution on each of the 10 thousand KEP
instances of the test dataset, each one with 300 nodes. The evaluated methods were two

non-learnt heuristics, GreedyCycles and GreedyPaths, their 2 stage method versions,
GNN+GreedyCycles and GNN+GreedyPaths, and UnsupervisedGNN, which is a GNN trained

and used without an heuristic.

tively learned to output better solutions than the non-learnt heuristic achieving a mean

score of 228.40 on the test dataset, while GreedyPaths obtained 203.79; this shows an im-

provement of 12% of the mean solution score with the use of the GNN. We can also see

that, although the best scores achieved by each of them are very similar, the score distri-

bution is very different: while GreedyPaths outputs approximate solutions with very large

range of scores, GNN+GreedyPaths’s approximate solutions have much more consistent

scores, obtaining a decent performance throughout all instances of the dataset.

6.3.1 Methods’ Computational Time

The box plot in Figure 6.10 shows the comparison between the time it took for

each method to solve the KEP instances of the test dataset. As we can see, all of them took

less then a second. Although the difference is not large, the two basic search heuristics

took less time than the GNN based methods, and GNN+GreedyPaths took, on average,

the most time.

49

7 ANALYSIS OF EXPERIMENTAL RESULTS

This chapter aims to present an analysis and interpretation of the results presented

in the previous section, discussing the possible causes and consequences of what was

observed.

7.1 Training of the GNN model

As we can see in Figure 6.2, the training of the GNN+GreedyPaths method was

successful, seen as it managed to optimize the GNN by minimizing the loss function.

The training of the GNN+GreedyCycles and Unsupervised GNN methods, however, were

unsuccessful, as shown by the loss curves of Figures 6.3 and 6.4, which do not decrease

over time.

Although at first glance at Figure 6.7 the Unsupervised GNN model seems to

achieve great scores, unfortunately all its output solutions were invalid, i.e. they did not

comply to the KEP constraints. It is clear that the loss constraint regularization (described

at 4.3.3) added to the loss function was unsuccessful in helping the model learn to comply

to the KEP constraints. This highlights the necessity of having a methods that guarantees,

with total certainty, that all its output solutions are valid. However, even though there

were many manual trials with different hyperparameter combinations, it is still possible

that a variation of this technique could work with a different setting, i.e. another GNN

architecture, other hyperparameters, and so on.

Because of the skip connection that sums the original edge weights to the pre-

dicted edge scores at the end of the GNN, the predicted solutions start off very similar to

the ones made by GreedyPaths. Then, the changing of the GNN weights disrupts these

scores, which increases the loss, but goes on to improve them, eventually arriving at a

performance that is better than GreedyPaths. After some point (around epoch 6 in Fig-

ure 6.5), the learning converges to a solution, and after a while the performance starts to

slowly worsen. The final model was chosen from the checkpoint with the highest score

measured on the validation dataset, which was in epoch 6, step 3500. As we can see on

Figure 6.8, at this point the model’s scores on the validation also presented the lowest

standard deviation, which indicates that the model’s predictions were more consistent,

maintaining a decent performance throughout all instances.

50

7.2 Solver Time Analysis

Because the Kidney Exchange problem is NP Hard, the time it takes to optimally

solve each instance is expected to grow exponentially as the instance size grows. Re-

gardless, considering that in (ANDERSON et al., 2015) real life KEP instances could be

optimally solved in a reasonable time, it was expected that we would also be able to opti-

mally solve the ones used in this study, since they have been constructed to have similar

sizes to the ones used in the article. However, as described in Subsection 6.1, instances

of size as small as 15 already took in average 1 hour to solve. Considering that we would

want to optimally solve all 10 thousand instances of the test set in order to fairly compare

to the other methods and to measure their optimality gap, this process would take an un-

reasonable time, estimated to be around 10 thousand hours, i.e. roughly 1.14 years. This

estimate is only if the KEP instances on the test dataset had 15 nodes; for instances with

300 nodes, it would surely take an unreasonably enormous amount of time.

The number of nodes of the input instance is not, however, the sole factor that

determines the time it takes to optimally solve it; in a set of instances with the same

number of nodes, some are "harder" than others, i.e. take more time to solve. As the

instance size increases, so does the variability of the time to solve it: the minimum and

maximum times measured for instances with 15 nodes were 5.17 seconds and 29779.01

seconds (i.e. roughly 8 hours); for comparison, the minimum and maximum times for

instances with 5 nodes were 0.8 and 1.3 seconds.

There can be several reasons why the authors of (ANDERSON et al., 2015) could

compute the optimal solution of their KEP instances in much less time. First of all, they

probably used a solver tool that is much more efficient than PyCSP3. In addition, the

computer used may be much more powerful than the one used in this study. Also, it is

important to remember that the NP-Hardness of KEP guarantees that the computational

time it takes to solve the worst case scenario grows exponentially, but in practice real life

instances may often have specific properties which may cause them to be either harder or

easier to solve. Hence, another plausible reason is that their instances may be much easier

to solve. Furthermore, the authors used a constrain relaxation technique that speeds up

significantly the solving process. These set of reasons alone may not explain totally why

they were able to optimally solve their KEP instances much faster than we did on our

data; this may be further investigated in future work.

51

7.3 Methods’ Performances

Ideally, we would want to evaluate and compare each method by measuring their

optimality gap for each instance, i.e. how far the approximate solution is from the optimal

one. However, as we do not have access to the optimal solution, this was not possible. We

can nevertheless estimate it roughly by examining an upper bound: each instance has 300

nodes, and each node may donate and receive at most one kidney; thus, the solution with

the most edges would contain cycles that together comprehend all nodes. As each edge

weight is a value between 0 and 1, the maximum score possible is equal to 300, when

all edges in the solution have a weight of 1. Hence, an upper bound for the score is the

number of nodes, which in this case is 300. This is obviously extremely unrealistic, as

it assumes that all nodes are PDPs, that there are a set of cycles that links all of them,

and that the solution edge weights are equal to 1 (as the edge weights are values sampled

from a uniform distribution between 0 and 1, their average value is 0.5). Considering the

score upper bound of 300 as a very conservative estimate for the mean optimal solution

value, we can estimate that the absolute and relative optimality gap for the GreedyPaths

method would be 96.28 and 32%; for GreedyCycles, these values would be 286.29 and

95.4%; for GNN+GreedyPaths, 71.59 and 23.8%; for GNN+GreedyCycles, 299.15 and

99.7%. Hence, the improvement on the optimality gap of the GNN+GreedyPaths method

in relation to GreedyPaths would be at least 34.4% (96.28 to 71.59), which is already a

very substantial improvement.

It is clear that the two methods that searched for paths performed much better than

the ones that searched for cycles. There are many possible explanations for this observed

behaviour. Maybe the best cycles-only solution in a KEP instance is usually much worse

than the best paths-only solution. This, however, can only be verified by making compar-

isons to the cycles-only and paths-only exact solutions, which are unavailable. Also, the

GreedyCycles method is probably less efficient because it discards the path it is construct-

ing if it does not end up closing a cycle. It also shortens the constructed cycle if it closes

before the node it had begun on, which may also lead to worse performance overall. The

GreedyPaths method does not have these issues, as it always keeps the edges it adds to

each path it constructs.

We can also observe that the while the GNN module in the GNN+GreedyPaths im-

proved the performance in relation to the basic non-learnable heuristic, in GNN+GreedyCycles

it only worsened it. It is possible that its GNN module in GNN+GreedyCycles could not

52

learn the needed context to know if a given edge would lead to a longer and higher-valued

cycle because it is too complex, and does not depend that much on the 3-neighborhood

context, which is the limit of information gather in each node with the GNN architec-

ture used, as it only has 3 message passing GNN layers. Another possible explanation

is that it is way harder for a model to learn to compute edge scores that help the choices

of GreedyCycles because it is inherently more complex than GreedyPaths, i.e. it is not

just a sequence of simple decisions, as it also has to keep track of the rest of the nodes of

the cycle being constructed, check if it closed a cycle, and remove from the solution in

construction the edges added before the node where the cycle was closed. Put simply, the

more complex the second step heuristic is, the harder it is for a machine learning model

to learn to help it.

As explained at Section 6.3, GNN+GreedyPaths approximate solutions have much

more consistent scores, which suggests that it probably handle much better "hard" in-

stances. A plausible interpretation is that the GNN module helps the subsequent greedy

heuristic to avoid choosing edges that are only locally good, but lead to worse paths over-

all. It is able to do this because it considers information of the neighborhood context.

7.3.1 Methods’ Computational Time

The bottleneck of our GNN model is the message passing layers part that, con-

sidering the worst case of a complete graph, has a O(|V |2) quadratic computational com-

plexity, as for each node, it aggregates the messages from each of its neighbors. The next

part of the GNN architecture, which makes computations on the edge features indepen-

dently, is O(|E|), as it perform a fixed amount of computations per edge. At the end,

the node-wise softmax operation (described at Susection 4.3.4) is equivalent to a softmax

operation applied separately for the set of edges coming out of each node; its complexity

is thus O(|V | ∗ |E|). Thus, it can be said that the GNN module has a computation com-

plexity of O(|V |2 + |V | ∗ |E| + |E|). It is also important to note that these operations

are done mostly with matrix multiplication and thus are highly parallelizable. As for the

heuristic methods GreedyPaths and GreedyCycles, their computational complexity is lin-

ear O(|V |), as in the worst case scenario one edge for each node will be added, one by

one, into the solution; hence, it always performs a quantity of computational operations

linearly proportional to the number of nodes of the input instance, at worst. The 2 stage

method consists of a GNN module followed by one of the above-mentioned heuristics,

53

and has consequently a computational complexity of O(|V |2 + |V | ∗ |E|+ |E|+ |V |).

The results from Subsection 6.3.1 show that every method tested in this work

took very little time to execute, with the exception of the integer programming method,

which took so much time that applying it to 300 nodes instances became intractable.

The GreedyPaths method took a bit more time than GreedyCycles probably because it

found better solutions overall, and consequently took more computing steps to construct

each solution. The same effect may also explain the prediction time difference between

GNN+GreedyPaths and GNN+GreedyCycles. The UnsupervisedGNN method took a bit

less time to execute than the two step methods, which was expected because it runs the

same computations, but without the second step, which is the basic search heuristic.

54

8 CONCLUSION AND FUTURE WORK

This chapter summarizes this study, starting by trying to answer the questions pre-

sented in subsection 1.2 using the results from Chapter 6 and the analysis done in Chapter

7. Then, the main contributions will be reviewed. Finally, future research directions are

suggested.

8.1 Conclusion

In this work, several heuristic methods with and without machine learning for

approximately solving the Kidney Exchange Problem were proposed and investigated.

They were tested on an artificial dataset and compared between each other and with an

implementation of an exact solution method. Additionally, it was made an experiment for

measuring the time it took for the exact solution method to solve an instance in relation to

the instance size. The results of the evaluations and experiments were then analysed and

discussed.

8.1.1 Answers to the Research Questions

As seen from the results in subsection 7.3, the main question presented at sub-

section 1.2 was answered: yes, the Kidney Exchange problem can be better approxi-

mately solved with the help of machine learning.

As for the feasibility of the ML methods, the GNN+GreedyPaths method sur-

passed all other evaluated heuristics in terms of the quality of the solutions it provides;

among all evaluated methods, it remains the one that best approximately solves the dataset

instances in a reasonable time. The other ML methods evaluated in the work (Unsuper-

visedGNN and GNN+GreedyCycles), however, did not achieve good results, as seen in

Chapters 6 and 7.

Regarding the viability of such methods in terms of computational time, the GNN

module adds an almost insignificant overhead when compared to the non-learnable heuris-

tics. When compared to the solver running the exact solution, it is several orders of magni-

tude faster for instances with at least 15 nodes. The complexity of the two stage methods

is linear, turning instances that were previously intractable due to their size into easily

55

approximately solvable in a reasonable time.

As for the limitations of the employed machine learning methods for this problem,

it is clear that they are not simple to use, as they need to be properly trained, which is not

easy to do. Although using the two stage method potentially improves considerably the

performance in relation to the basic heuristics, as happened with the GNN+GreedyPaths

method, it also introduces several new hyperparameters which need to be adequately set

in order for the method to work. Applying supervised learning turned out to be unfeasible

because of the need for the exact solution to be used as edge labels. Regarding the Un-

supervisedGNN method, our results suggest that imposing the constraints through adding

terms in a loss function is actually really hard; hence, the method never learns to output

valid solutions, rendering it useless. Concerning future research directions, several of

them were gathered throughout the research process, and are listed in Section 8.2.

8.1.2 Main Contributions

In the following list, a summary of each of the main contributions that this work

provided is presented.

Learnable Heuristics for KEP Although the two stage approach was already used by

past work (JOSHI; LAURENT; BRESSON, 2019; PENG; CHOI; XU, 2021; JOSHI

et al., 2021), this was the first work to adapt it and apply it to KEP. Two variations

of the approach were implemented: GNN+GreedyPaths and GNN+GreedyCycles,

the first one having achieved satisfactory performance.

Non-Learnable Heuristics for KEP Two new deterministic heuristic methods for ap-

proximately solving the Kidney Exchange Problem were introduced: GreedyPaths

and GreedyCycles. They were also evaluated in the test dataset, giving insight on

their effectiveness.

Node-wise Softmax A variation of the softmax activation function designed to be applied

to edge scores in graph problems was created and implemented. It showed to be

useful for the GNN, empirically improving the its performance. The author plans

to contribute to the PyTorch library with the implementation of this technique, thus

making it available and easily usable by its future users.

KEP Unsupervised Loss A novel loss function (described at 4.3.2) designed for KEP

was introduced. It optimizes the weighted sum of the edges in the predicted so-

56

lution without the need for supervision. It was validated in the training of the

GNN+GreedyPaths method, as seen in Figure 6.2 in Section 6.2, where it lead the

GNN to learn to effectively help the heuristic method construct better approximate

solutions.

Loss Constraint Regularization Terms for KEP Although the proposed loss regular-

ization terms (described at 4.3.3) showed no positive results, it can still be con-

sidered a first step in the direction The author believes that it can be tweaked and

improved upon, and as a result become useful in the future.

8.2 Future Directions

“Todos os caminham levam à morte.

Perca-se.”

— JORGE LUIS BORGES

In terms of possible directions of further research, we include:

Using real data Use data collected by countries’ or hospital’s healthcare system to eval-

uate how the presented methods would perform in real life situations. This would

also allow us to compare our proposed methods with others that were already eval-

uated in the same data.

Using better artificial data There more sophisticated methods for generating artificial

KEP instances, such as the ones presented at (SAIDMAN et al., 2006) and (DE-

LORME et al., 2022). They are still far from sufficiently similar to real data so as to

substitute evaluating it. However, it would still probably give an evaluation of KEP

solving methods that is closer to that of real life situations. Furthermore, training

the model with these instances could also potentially lead to better results. Another

possibility of generating better artificial data would be to use a graph generator

model that learns to create instances similar to the real data; the Graph Variational

Auto-Encoder presented at (SIMONOVSKY; KOMODAKIS, 2018) and the Mol-

GAN presented at (CAO; KIPF, 2018) are good examples of candidate methods to

be adapted for that goal.

Considering compatible Patient-Donor Pairs The current formulation does not con-

sider how compatible is a donor to a patient in a patient-donor pair. This could

be represented by self-loops in these nodes.

57

Simulating KEP instances over time Another possible improvement in the artificial data

is to simulate the evolution of a KEP instance through time. Starting with an arbi-

trary KEP instance, a solution would be chosen, and the remaining nodes of the

instance (i.e. those which were not chosen as part of the solution) would form

a new KEP instance. Then, some nodes might be added or deleted to account for

changes in the donation pool not related to KEP donations executed, and the process

would start again. It would be expected that these series of instances would better

reflect real life situations, and possibly give further insight on the performance of

each method. Furthermore, this would also allow us to evaluate a method’s perfor-

mance on the long term, i.e. how much it contributes to the quality of successive

approximate solutions. Methods which perform good on the long term would there-

fore maintain good performance on a series of simulated successive KEP instances,

thus contributing to the reduction of the donation pool in the long term.

Training the models with supervised learning Another direction is to train the Super-

visedGNN method described in Subsection 4.3.6, evaluate it, and compare it to

the other methods. For that, we would first have to obtain the exact solutions.

This could be done either by improving a lot the integer programming method’s

speed and/or by training on much smaller instances (i.e. instances with less than 15

nodes). Another promissing variation of this idea is to use the N best solutions, and

create soft labels where each edge would have a value between 0 and 1 that would

indicate how often it appears in the best solutions, weighted by the quality of these

solutions.

Measuring the method’s generalization with different instance sizes Inspired by (JOSHI

et al., 2021), a promising future experiment is to assess how much the ML methods

generalize to bigger or smaller graphs than the ones seen in the training phase.

Improving the GNN model There are several promising directions of improvement for

the GNN model used in this work. For instance, its architecture could be changed

in many different ways: by using different layers, adding new ones, changing the

size of each layer, and so on. As there is too many possibilities, an automated

process like a neural architecture search could be used to facilitate and speed up

the procedure. Techniques such as batch normalization and layer normalization

could also be tested. Another possible improvement is to make the GNN learn

to compute an embedding (i.e. a vector representation) for the whole graph, and

then use it in the forward pass by concatenating it to edge and/or node features at

58

some point. Another one is to focus more on the edge features, as we want to learn

information about the edges, and not about the nodes; the edge features could be

better propagated through the network using more complex operations or utilized

earlier, before the message passing stage.

Experimenting with other machine learning models The GNN model used for creat-

ing the edge embeddings for the greedy heuristic could be subtituted by or com-

bined with other machine learning models such as Transformers (VASWANI et al.,

2017).

Running a GNN before every step of the greedy heuristic Instead of running the GNN

once and then passing the edge scores to the greedy heuristic method, new node

embeddings could be generated before each step of the heuristic. Although sig-

nificantly costlier in terms of inference, as the GNN is executed many times per

instance, this has shown good results for other graph route optimization problems

(KOOL; HOOF; WELLING, 2018). This approach is called autoregressive decod-

ing and explored for solving the TSP by (JOSHI et al., 2021).

Improving the search heuristic The greedy heuristics presented in section 4.2 could be

improved; one such way is to use the beam search technique (MEDRESS et al.,

1977). Alternatively, new search heuristics could be implemented as well.

Comparing with other heuristics There has been a few other heuristic designed to solve

KEP, such as the Top Trading Cycles and Chains algorithm presented in (ROTH;

SöNMEZ; UNVER, 2004) and the 7-step metaheuristic presented in (DELORME

et al., 2022). One could also implement new heuristics; one possibility would be to

combine the GreedyPaths and GreedyCycles heuristics in a new heuristic that tries

to find both cycles and chains. To compare the presented method with these other

ones, however, their performance would need to be measured using the same test

data.

59

REFERENCES

ABE, K. et al. Solving NP-Hard Problems on Graphs with Extended AlphaGo Zero.
arXiv, 2019. Disponível em: <https://arxiv.org/abs/1905.11623>.

ABRAHAM, D. J.; BLUM, A.; SANDHOLM, T. Clearing algorithms for barter ex-
change markets: Enabling nationwide kidney exchanges. In: Proceedings of the 8th
ACM Conference on Electronic Commerce. New York, NY, USA: Association for
Computing Machinery, 2007. (EC ’07), p. 295–304. ISBN 9781595936530. Disponível
em: <https://doi.org/10.1145/1250910.1250954>.

ANDERSON, R. et al. Finding long chains in kidney exchange using the traveling sales-
man problem. Proceedings of the National Academy of Sciences, v. 112, n. 3, p. 663–
668, 2015. Disponível em: <https://www.pnas.org/doi/abs/10.1073/pnas.1421853112>.

AXELROD, D. A. et al. An economic assessment of contemporary kidney transplant prac-
tice. American Journal of Transplantation, v. 18, n. 5, p. 1168–1176, 2018. Disponível
em: <https://onlinelibrary.wiley.com/doi/abs/10.1111/ajt.14702>.

BAHDANAU, D.; CHO, K.; BENGIO, Y. Neural Machine Translation by Jointly
Learning to Align and Translate. arXiv, 2014. Disponível em: <https://arxiv.org/abs/
1409.0473>.

BAI, Y. et al. GLSearch: Maximum Common Subgraph Detection via Learning to
Search. arXiv, 2020. Disponível em: <https://arxiv.org/abs/2002.03129>.

BELLO, I. et al. Neural Combinatorial Optimization with Reinforcement Learning.
arXiv, 2016. Disponível em: <https://arxiv.org/abs/1611.09940>.

BIRó, P. et al. Modelling and optimisation in european kidney exchange programmes.
European Journal of Operational Research, v. 291, n. 2, p. 447–456, 2021.
ISSN 0377-2217. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S0377221719307441>.

BRODY, S.; ALON, U.; YAHAV, E. How Attentive are Graph Attention Networks?
arXiv, 2021. Disponível em: <https://arxiv.org/abs/2105.14491>.

CAI, H.; ZHENG, V. W.; CHANG, K. C.-C. A Comprehensive Survey of Graph
Embedding: Problems, Techniques and Applications. arXiv, 2017. Disponível em:
<https://arxiv.org/abs/1709.07604>.

CAO, N. D.; KIPF, T. Molgan: An implicit generative model for small molecular graphs.
arXiv, 2018. Disponível em: <https://arxiv.org/abs/1805.11973>.

CONSTANTINO, M. et al. New insights on integer-programming models for the kidney
exchange problem. European Journal of Operational Research, v. 231, n. 1, p. 57–68,
2013. ISSN 0377-2217. Disponível em: <https://www.sciencedirect.com/science/article/
pii/S0377221713004244>.

CORSO, G. et al. Principal Neighbourhood Aggregation for Graph Nets. arXiv, 2020.
Disponível em: <https://arxiv.org/abs/2004.05718>.

https://arxiv.org/abs/1905.11623
https://doi.org/10.1145/1250910.1250954
https://www.pnas.org/doi/abs/10.1073/pnas.1421853112
https://onlinelibrary.wiley.com/doi/abs/10.1111/ajt.14702
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2002.03129
https://arxiv.org/abs/1611.09940
https://www.sciencedirect.com/science/article/pii/S0377221719307441
https://www.sciencedirect.com/science/article/pii/S0377221719307441
https://arxiv.org/abs/2105.14491
https://arxiv.org/abs/1709.07604
https://arxiv.org/abs/1805.11973
https://www.sciencedirect.com/science/article/pii/S0377221713004244
https://www.sciencedirect.com/science/article/pii/S0377221713004244
https://arxiv.org/abs/2004.05718

60

DAI, H. et al. Learning Combinatorial Optimization Algorithms over Graphs. arXiv,
2017. Disponível em: <https://arxiv.org/abs/1704.01665>.

DELORME, M. et al. Improved instance generation for kidney exchange pro-
grammes. Computers and Operations Research, v. 141, p. 105707, 2022.
ISSN 0305-0548. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S0305054822000107>.

DIVARD, G.; GOUTAUDIER, V. Global perspective on kidney transplantation: France.
Kidney360, Ovid Technologies (Wolters Kluwer Health), v. 2, n. 10, p. 1637–1640, out.
2021.

FEY, M.; LENSSEN, J. E. Fast Graph Representation Learning with PyTorch Geo-
metric. 2019.

GORI, M.; MONFARDINI, G.; SCARSELLI, F. A new model for learning in graph do-
mains. In: Proceedings. 2005 IEEE International Joint Conference on Neural Net-
works, 2005. [S.l.: s.n.], 2005. v. 2, p. 729–734 vol. 2.

GOYAL, P.; FERRARA, E. Graph embedding techniques, applications, and perfor-
mance: A survey. Knowledge-Based Systems, Elsevier BV, v. 151, p. 78–94, jul 2018.
Disponível em: <https://doi.org/10.1016%2Fj.knosys.2018.03.022>.

INFORMATION for patients - ANZKX program. 2022. <https://www.donatelife.gov.
au/for-healthcare-workers/ANZKX/information-patients-anzkx-program>. Accessed:
2023-03-17.

JOSHI, C. K. et al. Learning tsp requires rethinking generalization. In: . Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021. Disponível em: <https://drops.dagstuhl.de/opus/
volltexte/2021/15324/>.

JOSHI, C. K.; LAURENT, T.; BRESSON, X. An Efficient Graph Convolutional Net-
work Technique for the Travelling Salesman Problem. arXiv, 2019. Disponível em:
<https://arxiv.org/abs/1906.01227>.

KEP GNN GitHub repository. 2023. <https://github.com/pfpimenta/kep_gnn>.

KOOL, W.; HOOF, H. van; WELLING, M. Attention, Learn to Solve Routing Prob-
lems! arXiv, 2018. Disponível em: <https://arxiv.org/abs/1803.08475>.

LAMB, L. C. et al. Graph Neural Networks Meet Neural-Symbolic Computing:
A Survey and Perspective. arXiv, 2020. Disponível em: <https://arxiv.org/abs/2003.
00330>.

LECOUTRE, C.; SZCZEPANSKI, N. PYCSP3: modeling combinatorial constrained
problems in python. CoRR, abs/2009.00326, 2020. Disponível em: <https://arxiv.org/
abs/2009.00326>.

LECUN, Y. Week 6 – Lecture: CNN applications, RNN, and attention. 2020. <https:
//www.youtube.com/watch?v=ycbMGyCPzvE#t=43m30s>.

LEMOS, H. et al. Graph Colouring Meets Deep Learning: Effective Graph Neural
Network Models for Combinatorial Problems. arXiv, 2019. Disponível em: <https:
//arxiv.org/abs/1903.04598>.

https://arxiv.org/abs/1704.01665
https://www.sciencedirect.com/science/article/pii/S0305054822000107
https://www.sciencedirect.com/science/article/pii/S0305054822000107
https://doi.org/10.1016%2Fj.knosys.2018.03.022
https://www.donatelife.gov.au/for-healthcare-workers/ANZKX/information-patients-anzkx-program
https://www.donatelife.gov.au/for-healthcare-workers/ANZKX/information-patients-anzkx-program
https://drops.dagstuhl.de/opus/volltexte/2021/15324/
https://drops.dagstuhl.de/opus/volltexte/2021/15324/
https://arxiv.org/abs/1906.01227
https://github.com/pfpimenta/kep_gnn
https://arxiv.org/abs/1803.08475
https://arxiv.org/abs/2003.00330
https://arxiv.org/abs/2003.00330
https://arxiv.org/abs/2009.00326
https://arxiv.org/abs/2009.00326
https://www.youtube.com/watch?v=ycbMGyCPzvE#t=43m30s
https://www.youtube.com/watch?v=ycbMGyCPzvE#t=43m30s
https://arxiv.org/abs/1903.04598
https://arxiv.org/abs/1903.04598

61

LESKOVEC, J. Graph Representation Learning. 2017. <https://cci.drexel.edu/bigdata/
bigdata2017/files/Keynote_Leskovec.pdf>.

LI, Z.; CHEN, Q.; KOLTUN, V. Combinatorial Optimization with Graph Convo-
lutional Networks and Guided Tree Search. arXiv, 2018. Disponível em: <https:
//arxiv.org/abs/1810.10659>.

LONGEST Kidney Transplant Chain - Guinness World Record Organization Dis-
tinguishes the National Kidney Registry for World’s Longest Kidney Transplant
Chain. 2020. <https://transplantsurgery.ucsf.edu/news--events/ucsf-news/88223/
UCSF-Part-of-Longest-Kidney-Transplant-Chain---Guinness-World-Record-Organization-Distinguishes-the-National-Kidney-Registry-for-World%
E2%80%99s-Longest-Kidney-Transplant-Chain#>. Accessed: 2023-03-01.
Disponível em: <https://transplantsurgery.ucsf.edu/news--events/ucsf-news/88223/
UCSF-Part-of-Longest-Kidney-Transplant-Chain---Guinness-World-Record-Organization-Distinguishes-the-National-Kidney-Registry-for-World\
%E2\%80\%99s-Longest-Kidney-Transplant-Chain#>.

MEDRESS, M. et al. Speech understanding systems: Report of a steering committee.
Artificial Intelligence, v. 9, n. 3, p. 307–316, 1977. ISSN 0004-3702. Disponível em:
<https://www.sciencedirect.com/science/article/pii/0004370277900261>.

NAZI, A. et al. GAP: Generalizable Approximate Graph Partitioning Framework.
arXiv, 2019. Disponível em: <https://arxiv.org/abs/1903.00614>.

NETWORKX.ORG. 2023. <https://networkx.org/>. Accessed: 2023-02-17.

OPTN data on organ donation, waitlist and transplant activity. 2023. <https://optn.
transplant.hrsa.gov/data/view-data-reports/national-data/#>. Accessed: 2023-01-25.

PENG, Y.; CHOI, B.; XU, J. Graph learning for combinatorial optimization: A survey of
state-of-the-art. Data Science and Engineering, v. 6, n. 2, p. 119–141, Jun 2021. ISSN
2364-1541. Disponível em: <https://doi.org/10.1007/s41019-021-00155-3>.

PRATES, M. O. R. et al. Learning to Solve NP-Complete Problems - A Graph Neural
Network for Decision TSP. arXiv, 2018. Disponível em: <https://arxiv.org/abs/1809.
02721>.

PRE-COMMIT. 2023. <https://pre-commit.com/>. Accessed: 2023-02-17.

PYTHON.ORG. 2023. <https://www.python.org/>. Accessed: 2023-02-17.

PYTORCH.ORG. 2023. <https://pytorch.org/>. Accessed: 2023-02-17.

ROTH, A.; SöNMEZ, T.; UNVER, U. Kidney exchange. The Quarterly Journal of
Economics, v. 119, n. 2, p. 457–488, 2004. Disponível em: <https://EconPapers.repec.
org/RePEc:oup:qjecon:v:119:y:2004:i:2:p:457-488.>

ROTH, A. E.; SöNMEZ, T.; ÜNVER, M. U. Efficient kidney exchange: Coincidence of
wants in markets with compatibility-based preferences. American Economic Review,
v. 97, n. 3, p. 828–851, June 2007. Disponível em: <https://www.aeaweb.org/articles?id=
10.1257/aer.97.3.828>.

https://cci.drexel.edu/bigdata/bigdata2017/files/Keynote_Leskovec.pdf
https://cci.drexel.edu/bigdata/bigdata2017/files/Keynote_Leskovec.pdf
https://arxiv.org/abs/1810.10659
https://arxiv.org/abs/1810.10659
https://transplantsurgery.ucsf.edu/news--events/ucsf-news/88223/UCSF-Part-of-Longest-Kidney-Transplant-Chain---Guinness-World-Record-Organization-Distinguishes-the-National-Kidney-Registry-for-World%E2%80%99s-Longest-Kidney-Transplant-Chain#
https://transplantsurgery.ucsf.edu/news--events/ucsf-news/88223/UCSF-Part-of-Longest-Kidney-Transplant-Chain---Guinness-World-Record-Organization-Distinguishes-the-National-Kidney-Registry-for-World%E2%80%99s-Longest-Kidney-Transplant-Chain#
https://transplantsurgery.ucsf.edu/news--events/ucsf-news/88223/UCSF-Part-of-Longest-Kidney-Transplant-Chain---Guinness-World-Record-Organization-Distinguishes-the-National-Kidney-Registry-for-World%E2%80%99s-Longest-Kidney-Transplant-Chain#
https://transplantsurgery.ucsf.edu/news--events/ucsf-news/88223/UCSF-Part-of-Longest-Kidney-Transplant-Chain---Guinness-World-Record-Organization-Distinguishes-the-National-Kidney-Registry-for-World\%E2\%80\%99s-Longest-Kidney-Transplant-Chain#
https://transplantsurgery.ucsf.edu/news--events/ucsf-news/88223/UCSF-Part-of-Longest-Kidney-Transplant-Chain---Guinness-World-Record-Organization-Distinguishes-the-National-Kidney-Registry-for-World\%E2\%80\%99s-Longest-Kidney-Transplant-Chain#
https://transplantsurgery.ucsf.edu/news--events/ucsf-news/88223/UCSF-Part-of-Longest-Kidney-Transplant-Chain---Guinness-World-Record-Organization-Distinguishes-the-National-Kidney-Registry-for-World\%E2\%80\%99s-Longest-Kidney-Transplant-Chain#
https://www.sciencedirect.com/science/article/pii/0004370277900261
https://arxiv.org/abs/1903.00614
https://networkx.org/
https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/#
https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/#
https://doi.org/10.1007/s41019-021-00155-3
https://arxiv.org/abs/1809.02721
https://arxiv.org/abs/1809.02721
https://pre-commit.com/
https://www.python.org/
https://pytorch.org/
https://EconPapers.repec.org/RePEc:oup:qjecon:v:119:y:2004:i:2:p:457-488.
https://EconPapers.repec.org/RePEc:oup:qjecon:v:119:y:2004:i:2:p:457-488.
https://www.aeaweb.org/articles?id=10.1257/aer.97.3.828
https://www.aeaweb.org/articles?id=10.1257/aer.97.3.828

62

SAIDMAN, S. L. et al. Increasing the opportunity of live kidney donation by match-
ing for two- and three-way exchanges. Transplantation, v. 81, n. 5, 2006. ISSN 0041-
1337. Disponível em: <https://journals.lww.com/transplantjournal/Fulltext/2006/03150/
Increasing_the_Opportunity_of_Live_Kidney_Donation.20.aspx>.

SANTOS, H. L. d.; LAMB, L. d. C. O. Solving the decision version of the Graph
Coloring Problem : a neural-symbolic approach using graph neural networks. [s.n.],
2020. Disponível em: <https://search.ebscohost.com/login.aspx?direct=true&AuthType=
shib&db=cat07377a&AN=sabi.001114939&lang=pt-br&scope=site&authtype=guest,
shib&custid=s5837110&groupid=main&profile=eds>.

SATO, R.; YAMADA, M.; KASHIMA, H. Approximation Ratios of Graph Neural
Networks for Combinatorial Problems. arXiv, 2019. Disponível em: <https://arxiv.org/
abs/1905.10261>.

SCARSELLI, F. et al. The graph neural network model. IEEE Transactions on Neural
Networks, v. 20, n. 1, p. 61–80, 2009.

SERIE HISTORICA LISTA DE ESPERA - BRASIL. 2022. <https://www.gov.br/saude/
pt-br/composicao/saes/snt/arquivos/serie-historica-lista-de-espera-brasil.pdf/view>. Ac-
cessed: 2023-01-25.

SERIE HISTORICA TRANSPLANTES - BRASIL. 2022. <https://www.gov.br/
saude/pt-br/composicao/saes/snt/arquivos/serie-historica-transplantes-brasil.pdf/view>.
Accessed: 2023-01-25.

SHERVASHIDZE, N. et al. Weisfeiler-lehman graph kernels. Journal of Machine
Learning Research, v. 12, n. 77, p. 2539–2561, 2011. Disponível em: <http://jmlr.org/
papers/v12/shervashidze11a.html>.

SIMONOVSKY, M.; KOMODAKIS, N. Graphvae: Towards generation of small graphs
using variational autoencoders. CoRR, abs/1802.03480, 2018. Disponível em: <http://
arxiv.org/abs/1802.03480>.

VASWANI, A. et al. Attention Is All You Need. arXiv, 2017. Disponível em: <https:
//arxiv.org/abs/1706.03762>.

VELIčKOVIć, P. et al. Graph Attention Networks. arXiv, 2017. Disponível em: <https:
//arxiv.org/abs/1710.10903>.

VINYALS, O.; FORTUNATO, M.; JAITLY, N. Pointer Networks. arXiv, 2015.
Disponível em: <https://arxiv.org/abs/1506.03134>.

WU, Y. et al. Learning Improvement Heuristics for Solving Routing Problems. arXiv,
2019. Disponível em: <https://arxiv.org/abs/1912.05784>.

YANG, Y.; RAJGOPAL, J. Learning Combined Set Covering and Traveling Salesman
Problem. arXiv, 2020. Disponível em: <https://arxiv.org/abs/2007.03203>.

https://journals.lww.com/transplantjournal/Fulltext/2006/03150/Increasing_the_Opportunity_of_Live_Kidney_Donation.20.aspx
https://journals.lww.com/transplantjournal/Fulltext/2006/03150/Increasing_the_Opportunity_of_Live_Kidney_Donation.20.aspx
https://search.ebscohost.com/login.aspx?direct=true&AuthType=shib&db=cat07377a&AN=sabi.001114939&lang=pt-br&scope=site&authtype=guest,shib&custid=s5837110&groupid=main&profile=eds
https://search.ebscohost.com/login.aspx?direct=true&AuthType=shib&db=cat07377a&AN=sabi.001114939&lang=pt-br&scope=site&authtype=guest,shib&custid=s5837110&groupid=main&profile=eds
https://search.ebscohost.com/login.aspx?direct=true&AuthType=shib&db=cat07377a&AN=sabi.001114939&lang=pt-br&scope=site&authtype=guest,shib&custid=s5837110&groupid=main&profile=eds
https://arxiv.org/abs/1905.10261
https://arxiv.org/abs/1905.10261
https://www.gov.br/saude/pt-br/composicao/saes/snt/arquivos/serie-historica-lista-de-espera-brasil.pdf/view
https://www.gov.br/saude/pt-br/composicao/saes/snt/arquivos/serie-historica-lista-de-espera-brasil.pdf/view
https://www.gov.br/saude/pt-br/composicao/saes/snt/arquivos/serie-historica-transplantes-brasil.pdf/view
https://www.gov.br/saude/pt-br/composicao/saes/snt/arquivos/serie-historica-transplantes-brasil.pdf/view
http://jmlr.org/papers/v12/shervashidze11a.html
http://jmlr.org/papers/v12/shervashidze11a.html
http://arxiv.org/abs/1802.03480
http://arxiv.org/abs/1802.03480
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1506.03134
https://arxiv.org/abs/1912.05784
https://arxiv.org/abs/2007.03203

	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Motivation
	1.1.1 Practical Motivation
	1.1.2 Theoretical Motivation

	1.2 Objectives
	1.3 Structure

	2 Theoretical Basis
	2.1 Graphs
	2.2 NP-Hard Problems
	2.3 Heuristic Methods
	2.4 Artificial Neural Networks
	2.5 Graph Neural Networks
	2.5.1 Message-Passing Layers

	2.6 Softmax

	3 Machine Learning and the KEP - A Brief Review
	3.1 Kidney Exchange Problem
	3.1.1 Problem Definition

	3.2 Machine Learning Methods for Optimization Problems in Graphs

	4 Methods
	4.1 Integer Programming
	4.2 Non-Learnable Heuristics
	4.2.1 Greedy Paths
	4.2.2 Greedy Cycles

	4.3 Learnable Heuristics
	4.3.1 GNN Architecture
	4.3.2 KEP Unsupervised Loss Function
	4.3.3 Loss Constraint Regularization
	4.3.4 Node-wise Softmax
	4.3.5 Unconstrained GNN Model Trained Without Supervision
	4.3.6 Unconstrained GNN Model Trained With Supervision
	4.3.7 Two Stage Method

	5 Methodology
	5.1 System configuration
	5.2 Implementation
	5.3 Dataset
	5.3.1 Artificial KEP Instance Generation

	5.4 Metrics
	5.5 Experiments
	5.5.1 Solver Execution Time Analysis
	5.5.2 Training of the Machine Learning models
	5.5.3 Evaluation of KEP Solving Methods

	6 Results
	6.1 Solver Time Measurements
	6.2 Training of the GNN Models
	6.3 Methods' Performances
	6.3.1 Methods' Computational Time

	7 Analysis of Experimental Results
	7.1 Training of the GNN model
	7.2 Solver Time Analysis
	7.3 Methods' Performances
	7.3.1 Methods' Computational Time

	8 Conclusion and Future Work
	8.1 Conclusion
	8.1.1 Answers to the Research Questions
	8.1.2 Main Contributions

	8.2 Future Directions

	References

