
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

HIAGO MAYK GOMES DE ARAÚJO ROCHA

Optimizing Graph Processing Execution on
NUMA Machines

Thesis presented in partial fulfillment of the
requirements for the degree of Doctor of
Computer Science

Advisor: Prof. Dr. Antonio Carlos S. Beck

Porto Alegre
February 2024

CIP — CATALOGING-IN-PUBLICATION

Rocha, Hiago Mayk Gomes de Araújo

Optimizing Graph Processing Execution on NUMA Ma-
chines / Hiago Mayk Gomes de Araújo Rocha. – Porto Alegre:
PPGC da UFRGS, 2024.

134 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2024. Advisor: Antonio Carlos S. Beck.

1. Parallel Graph Processing. 2. Thread and Data Mapping.
3. NUMA Systems. 4. Graphs’ High-Level Features. 5. Single-
Source Graph Algorithms. I. Beck, Antonio Carlos S.. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Júlio Otávio Jardim Barcellos
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Alberto Egon Schaeffer Filho
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

“The greatest triumphs of science are born out of the struggles and failures of

countless experiments.”

— MARIE CURIE

ACKNOWLEDGEMENTS

I dedicate this thesis to my beloved mother, Maria Marta, who has always sup-

ported me with her unwavering love and dedication. I am incredibly grateful to have such

an extraordinary mother by my side.

I would like to express my deepest appreciation to my girlfriend, Luiziani Mar-

inho, for her patience and unwavering support during the most challenging times through-

out this long journey.

My sincere gratitude goes to my advisor, Prof. Dr. Antonio Carlos S. Beck, for his

invaluable guidance and mentorship, not only for this work but also for shaping my career

as a researcher. I am also grateful for the collaboration of Prof. Dr. Arthur Lorenzon, Dra.

Janaina Schwarzrock, and Prof. Dr. Vicenç Querol. Thank you all for dedicating your

time and effort to the projects we worked on together.

Lastly, I extend my thanks to my lab colleagues. I wish each of you the utmost

success in your academic endeavors.

ABSTRACT

In recent years, there has been an unprecedented growth of interconnected data built on

top of graph data structures, with graph applications processing large amounts of informa-

tion. Graph algorithms, such as Breadth-First-Search (BFS) and PageRank (PR), directly

benefit several fields, such as scientific computing, neuroscience, and social network anal-

ysis, and execute on High-Performance Computing (HPC) servers. These HPC systems

are usually Non-Uniform Memory Access (NUMA) machines, where the memory access

time depends on the memory location in relation to the cores, so performance strongly

depends on how threads and pages (data) are mapped to different processor nodes, and

the number of actives cores. Given their highly irregular communication pattern and poor

data locality, graph processing are more sensitive to such alternative configurations, intro-

ducing additional challenges. Therefore, considering that the ideal thread/data mapping

and number of active threads may change according to the system (e.g., microarchitec-

ture and number of cores), graph algorithm, input graph, or even the source vertex, rightly

choosing the ideal configuration is not straightforward. In this scenario, this thesis pro-

poses new approaches to finding such near-optimal configurations for graph algorithms

executing on NUMA machines. To achieve that, we leverage the unique features that

characterize graph data (e.g., the number of vertices and clustering coefficient) to use

in a machine learning framework. Our experimental results, considering different input

graphs and algorithms executing on three NUMA machines, and comparing them with

other approaches for tuning the number of threads, thread mapping, and/or data mapping,

reveal the effectiveness of our proposed methods in improving algorithm execution time

while significantly reducing energy consumption.

Keywords: Parallel Graph Processing. Thread and Data Mapping. NUMA Systems.

Graphs’ High-Level Features. Single-Source Graph Algorithms.

Otimizando a Execução de Algoritmos de Processamento de Grafos em Máquinas

NUMA

RESUMO

Nos últimos anos, houve um crescimento sem precedentes de dados interconectados cons-

truídos sobre estruturas de dados de grafos, com aplicações de grafos processando grandes

quantidades de informações. Algoritmos de grafos, como Breadth-First-Search (BFS) e

PageRank (PR), beneficiam diretamente várias áreas, como computação científica, neu-

rociência e análise de redes sociais, executando em servidores de Computação de Alto

Desempenho (HPC). Esses sistemas de HPC geralmente são compostos por máquinas de

Acesso Não Uniforme à Memória (NUMA), onde o tempo de acesso à memória depende

da localização da memória em relação aos núcleos, portanto, o desempenho depende for-

temente de como as threads e páginas (dados) são mapeadas para diferentes nós do pro-

cessador e o número de núcleos ativos. Dada a natureza altamente irregular do padrão de

comunicação e a baixa localidade dos dados, o processamento de grafos é mais sensível

a essas configurações alternativas, introduzindo desafios adicionais. Portanto, conside-

rando que o mapeamento ideal de threads/dados e o número de threads ativas podem

mudar de acordo com o sistema (por exemplo, microarquitetura e número de núcleos),

algoritmo de grafos, grafo de entrada ou até mesmo o vértice de origem, escolher ade-

quadamente a configuração ideal não é uma tarefa trivial. Nesse cenário, esta tese propõe

novas abordagens para encontrar configurações otimizadas para algoritmos de grafos exe-

cutando em máquinas NUMA. Para alcançar isso, aproveitamos as características únicas

que descrevem a estrutura dos grafos (por exemplo, o número de vértices e coeficiente de

agrupamento) para usar em um framework de aprendizado de máquina. Nossos resultados

experimentais, considerando diferentes grafos de entrada e algoritmos executados em três

máquinas NUMA, e comparando-os com outras abordagens para ajuste do número de th-

reads e mapeamento de threads e dados, revelam a eficácia de nossos métodos propostos

em melhorar o tempo de execução do algoritmo, reduzindo significativamente o consumo

de energia.

Palavras-chave: Processamento Paralelo de Grafos, Mapemanto de Threads e Dados,

Sistemas NUMA, Características de Alto Nível dos Grafos, Algoritmos de Grafos de

Fonte Única.

LIST OF ABBREVIATIONS AND ACRONYMS

ANN Artificial Neural Network

BC Betweenness Centrality

BFS Brearth-First Search

CC Connected Components

CFS Completely Fair Scheduler

CSR Compressed Sparse Row

DRAM Dynamic Random-Access Memory

DSE Design Space Exploration

EDP Energy-Delay Product

GA Genetic Algorithm

GAPBS GAP Benchmark Suite

HPC High-Performance Computing

LLC Last Level Cache

NUMA Non-Uniform Memory Access

OpenMP Open Multi-Processing

OS Operating System

PR PageRank

QAP Quadratic Assignment Problem

SSSP Single-Source Shortest Path

TLB Translation Lookaside Buffer

WWW World Wide Web

NT Number of Threads

TM Thread Mapping

PM Page/Data Mapping

LIST OF FIGURES

Figure 1.1 Graph processing in 3 different perspectives...15
Figure 1.2 BC and PR running the kron and urand on Intel32 and on Intel6418
Figure 1.3 BFS algorithm execution when it starts from 3 different source vertices......19
Figure 1.4 Optimization potential of tuning NT ...21
Figure 1.5 Thesis’ proposal overview ...22

Figure 2.1 Diversity in the topologies of the graph extracted from actual data sources .26
Figure 2.2 Example of the high-level features values extracted from 2 synthetic graphs27
Figure 2.3 Illustration of an example input graph and its representation in adja-

cency matrix and adjacency list. ...30
Figure 2.4 CSR representation of the input graph ..32
Figure 2.5 Additional arrays used to represent the graph runtime state and the

working data in iterative graph algorithm computation..33
Figure 2.6 Example of SSSP execution with Vertex-centric and Scatter-Gather com-

puting model ...36
Figure 2.7 Push and Pull accessing modes to the graph data structure...........................38
Figure 2.8 Representation of a NUMA system...43
Figure 2.9 Examples of Scatter + First-Touch, Contiguous + Interleave, and Close

+ NUMA Balancing ..45
Figure 2.10 Timelines of an parallel application running on a system with 32 hard-

ware threads ..49

Figure 4.1 Graphith framework overview...65
Figure 4.2 Graphith’s optimization flow ...70
Figure 4.3 Examples of graph’s vertices distribution across threads, threads com-

munication, Graphith’s solution, Contiguous + First-Touch, Close + First-
Touch, and Scatter + First-Touch..71

Figure 4.4 GA’s optimization flow ..72
Figure 4.5 Chromosome representation ..73
Figure 4.6 Graphith’s execution time normalized by the baseline75
Figure 4.7 Graphith’s convergence ...77
Figure 4.8 Graphith’s execution time compared with all the combinations of the

standard thread and data policies evaluated. ...78

Figure 5.1 PredG framework overview...79
Figure 5.2 The number of evaluated vertices over the BFS iterations80
Figure 5.3 PredG’s Learning Phase...82
Figure 5.4 PredG’s Execution Phase...84
Figure 5.5 Execution time normalized to the Default ...89
Figure 5.6 Energy and EDP normalized to the Default ..91

Figure 6.1 GraphNroll framework overview...92
Figure 6.2 Distinct views of the BFS algorithm execution when it starts from 3

different source vertices on the Intel64 system...93
Figure 6.3 The difference in the execution time (in %) between the vertices with the

best and worst outcomes in performance when executing BC, BFS, and CC
algorithms on the Intel32 system with the Linux’s default thread and mapping
policies ..95

Figure 6.4 Execution time of the best thread and data mapping combination when
each algorithm (BC, BFS, and SSSP) starts from 3 different source vertices
(V1, V2, and V3) with 5 input graphs (road, web, twitter, kron, urand) on the
Intel32 and Intel64 machines ..96

Figure 6.5 GraphNroll’s Learning Phase ..98
Figure 6.6 GraphNroll’s Execution Phase...100
Figure 6.7 Execution times of BC, BFS, and SSSP on the evaluated machines when

using the different compared strategies ..102
Figure 6.8 Energy and EDP of BC, BFS, and SSSP algorithms when using the

different compared strategies. ...104

Figure 7.1 PotiGraph framework overview ..107
Figure 7.2 Comparison of different solutions ...108
Figure 7.3 PotiGraph’s Learning Phase ..109
Figure 7.4 PotiGraph’s Execution Phase ..111
Figure 7.5 PotiGraph vs. Default, Random, BstN, BstTP, and PredG..........................115
Figure 7.6 PotiGraph vs. Default, NTP, TNP, and TPN ...116
Figure 7.7 Energy and EDP normalized to the Default ..117

LIST OF TABLES

Table 1.1 The best number of threads on Intel32 and on Intel88....................................20

Table 2.1 Input graphs’ high-level Features..29
Table 2.2 Graph algorithms’ features..40

Table 3.1 Characteristics of the strategies proposed for generic applications62
Table 3.2 Graph processing frameworks targeting NUMA systems...............................63

Table 4.1 Execution time variation by changing the thread and data mappings on
Intel32, normalized by the baseline..67

Table 4.2 Execution time variation by changing the thread and data mappings on
Intel64, normalized by the baseline..68

Table 4.3 Graphith’s best thread mapping solution for PR on Intel32 compared to
the standard policies..76

Table 5.1 Graphs’ characteristics ..80
Table 5.2 PredG’s predictions ...87
Table 5.3 Performance of the PredG solutions on Intel64 normalized by Default

(the regular execution) ..90

Table 6.1 The ideal thread and data mapping policies combination when executing
3 single-source algorithms with 5 input graphs starting from 3 different source
vertices on 2 NUMA machines...96

Table 6.2 GraphNroll’s predictions for 3 different vertices of the road (roa), cit-
patents (cit), and amazon (ama) ..102

Table 6.3 Time consumed to train the embeddings...106

Table 7.1 Solutions predicted by PotiGraph ...113

Table 8.1 Execution time to collect the features. ..119

CONTENTS

1 INTRODUCTION...13
1.1 Challenges..15
1.2 Optimization Opportunities...17
1.2.1 Impact of Thread and Data Mapping ...17
1.2.2 Impact of Changing the Source Vertices..18
1.2.3 Impact of Adjusting the Number of Threads ...19
1.3 Contribution of this work...20
1.4 Document Organization ...24
2 BACKGROUND..25
2.1 Graphs Modeling Real-World Problems ..25
2.1.1 Graphs’s In-Memory Representation...30
2.2 Graph Processing Frameworks and Algorithms..33
2.2.1 Graph Algorithms ..40
2.3 NUMA Systems ...43
2.4 Thread/Data Mapping and Adjusting Number of Threads on NUMA Systems44
2.4.1 Thread Mapping...44
2.4.2 Data Mapping...47
2.4.3 Thread Throttling ...48
3 RELATED WORK ...51
3.1 Thread and Data Mapping on NUMA Systems ...51
3.2 Thread Throttling ...54
3.3 Thread Throttling along with Thread Mapping and Page Mapping57
3.4 Graph Analytics Optimization ..57
3.5 Contribution of This Thesis ...61
4 GRAPHITH: OPTIMIZING GRAPH EXECUTION ON NUMA MACHINES .65
4.1 Design Space Exploration ..66
4.2 Thread Mapping Problem as a QAP’s Instance...69
4.3 Graphith ..70
4.3.1 Genetic Algorithm (GA) ..72
4.4 Results ..74
4.4.1 Graphith’s Performance ...75
4.4.2 Graphith’s Convergence...76
4.4.3 Comparison Against Traditional Policies ..77
5 PREDG: EXPLOITING THE GRAPHS’ HIGH-LEVEL FEATURES FOR

ADAPTIVE GRAPH PROCESSING ..79
5.1 PredG ...81
5.1.1 Learning Phase...82
5.1.2 Execution Phase ...84
5.1.3 Implementation Details..85
5.2 Methodology ..85
5.3 Results ..86
5.3.1 Evaluation of the PredG’s Phases ..86
5.3.2 Performance Evaluation...88
5.3.3 The Impact of PredG on the Energy and EDP...90
6 GRAPHNROLL: OPTIMIZING SINGLE-SOURCE GRAPH EXECUTIONS .92
6.1 Design Space Exploration of Source Vertices...94
6.2 GraphNroll ..97
6.2.1 Learning Phase...97

6.2.2 Execution Phase ...100
6.2.3 Implementation Details..101
6.3 Methodology ..101
6.4 Results ..102
6.4.1 GraphNroll’s Performance and Solutions..102
6.4.2 Impact of GraphNroll on the Energy and Energy-Delay Product103
6.4.3 Costs...105
7 POTIGRAPH: ADJUSTING NUMBER OF THREADS AND THREAD/-

DATA MAPPING...107
7.1 PotiGraph ..109
7.1.1 Learning Phase...109
7.1.2 Execution Phase ...111
7.1.3 Implementation Details..111
7.2 Methodology ..112
7.3 Results ..113
7.3.1 Accuracy of PotiGraph ..113
7.3.2 Performance Evaluation...114
7.3.3 The Impact of PotiGraph on the Energy and EDP ..117
8 FINAL CONSIDERATIONS AND CONCLUSION ...118
8.1 Limitations...118
8.2 Future Works...119
8.3 List of Publications ...120
REFERENCES...124

13

1 INTRODUCTION

Graph theory provides an abstract model to represent entities and their relation-

ship in the form of graph data structures. Many real-world problems can intuitively be

cast into this format, such as social networks, business intelligence, electronic commerce,

and so on (SAHU et al., 2017). Besides the broad applicability, real-world graphs are con-

tinuously growing. For example, the number of active users in the Facebook social net-

work had grown from 1.23 billion in December 2013 (DOEKEMEIJER; VARBANESCU,

2014) to 3.063 billion in September 20231. Moreover, the largest publicly-available World

Wide Web (WWW) graph, extracted from a crawl in 2012, contains over 3.5 billion pages

and 128.7 billion links (DHULIPALA; BLELLOCH; SHUN, 2021). Therefore, process-

ing such large-scale graphs available today is non-trivial and has been attracting the at-

tention of researchers from academia and industry.

In the past years, several methods, e.g., machine learning and data mining, have

been proposed to extract useful information from large graphs on distributed memory or

external memory systems, e.g., PEGASUS (KANG; TSOURAKAKIS; FALOUTSOS,

2009), Pregel (MALEWICZ et al., 2010), and Galois (NGUYEN; LENHARTH; PIN-

GALI, 2013). However, thanks to the growing number of cores and memory capacity in

high-performance computing (HPC) systems, input graphs like the largest publicly avail-

able mentioned above can fit into the memory of a single commodity multicore server

(DHULIPALA; BLELLOCH; SHUN, 2021). Because of that, we have witnessed the de-

velopment of several methods capable of quickly analyzing large graphs on shared mem-

ory machines in top-end HPC servers, e.g., Ligra (SHUN; BLELLOCH, 2013), Polymer

(ZHANG; CHEN; CHEN, 2015), and GPOP (LAKHOTIA et al., 2020).

These modern HPC systems are based on Non-Uniform Memory Access (NUMA)

machines, where the memory access time depends on the Dynamic Random-Access Mem-

ories (DRAM) location in relation to the cores, which are distributed across multiple

nodes connected by high-speed interconnect links. Since DRAM is usually shared for all

applications running in any node, NUMA increases the memory bandwidth, which im-

plies more data being written/stored in memory simultaneously. Thus, shared-memory

NUMA architectures suit well for memory-bound applications, such as graph algorithms

running large input graphs, e.g., social network graphs (YAN et al., 2017).

In such systems, threads running on a specific core may access memory directly in

1Statista - Number of monthly active Facebook users worldwide as of 4th quarter 2023 (Accessed in
February 20th, 2024).

https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/

14

the same core’s node (local access) or access other nodes’ memories (remote access) via

the interconnect links - with much higher latency. Thus, the application performance in a

NUMA system strongly depends on which cores the threads are mapped and which data

mapping policy is used (DASHTI et al., 2013; DIENER et al., 2015; SCHWARZROCK et

al., 2020). Given that, one of the most effective ways to increase the performance of appli-

cations on NUMA systems is by improving the Thread Mapping (TM) and Data/Page

Mapping (PM) across the available resources (cores, nodes, and memories) (DASHTI

et al., 2013; DIENER et al., 2014). However, while TM and PM may mitigate some of

the intrinsic NUMA penalties, e.g., costly remote memory accesses (ZHANG; CHEN;

CHEN, 2015), another performance limitation remains w.r.t. the parallel applications’

scalability, where the increase in the amount of resources (e.g., cores) will not propor-

tionally deliver the same performance improvement levels. The reasons are well-known

in literature (LUAN et al., 2022; SCHWARZROCK et al., 2020; MALAVE; SHINDE,

2022), and so to achieve the best efficiency in terms of hardware usage, in many times

applying thread throttling, which artificially decreases the Number of Threads (NT),

may also be as important (SCHWARZROCK et al., 2020). On top of that, optimizing

graph applications is a nontrivial task: their irregular communication pattern incurs high

irregular data dependency and poor data locality, putting extra pressure on such NUMA

machines (ZHANG; CHEN; CHEN, 2015). Therefore, while the strong need to efficiently

process large graphs has been pushing the development of such methods for shared mem-

ory systems, the intrinsic characteristics of input graphs, algorithms, and NUMA systems

challenge software developers when it comes to fully exploiting the available HPC hard-

ware resources (LORENZON; FILHO, 2019).

Based on the discussion above, we can summarize graph processing from 3 dif-

ferent perspectives, as presented in Fig. 1.1: Data refers to the input graphs that come

from different data sources; Computing relates to the different graph processing algo-

rithms, which can be implemented by different graph processing frameworks (e.g., Ligra,

Polymer, and Galois); and System represents different HPC machines that execute the

algorithms. Fig. 1.1 also depicts the different challenges in the optimization of graph

processing presented in the next section.

15

Figure 1.1: Graph processing in 3 different perspectives: Data, the input graphs; Com-
puting, the algorithms that process the input graphs; and System, the HPC machines in
which the algorithms will be fired.

LLC

Memory

LLC

Memory

T1Core1

Cheap Local Mem. Access
Expensive Rem. Mem. Access
Thread Executing a subgraphT#

BC(Input B[V1, V2])

CC(Input A)

BFS(Input C[V2])

PR(Input C)

SSSP(Input A[V1])

Data Computing System

- Large amount of data
- Diff. structures

- Irregular mem. access
- Low data locality

- Complex mem. hierarchy

V1 V1

V1

V2

Input A Input C

Input B T0 Core3

V2

V2

Node 0 Node 1

Source: The author.

1.1 Challenges

We have identified many challenging aspects in designing optimization strategies

to execute graph applications on NUMA systems:

1. Input graphs’ diversity and irregular structure. As the input data for graph anal-

ysis can be extracted from different application domains (e.g., logistics, computer

network, and biology), their elements present distinct relationship patterns (topol-

ogy), i.e., how vertices and edges are distributed through the graph structure. More-

over, each of them also presents an irregular structure, which causes irregular mem-

ory access with poor data locality on shared memory systems. Such diversity and

irregularity are a challenge when it comes to developing an optimization strategy

that must be efficient and generic. In Fig. 1.1 (Data), we illustrate the different

input graphs, highlighting that they can represent large amounts of data and present

different structures;

2. Graph algorithms’ computation. Graph algorithms are widely applied as basic

kernels for several practical applications: while the PageRank (PR) algorithm is the

core of the Google search engine (ROGERS, 2002), the Breath-First Search (BFS)

algorithm is applied in the recommendation system of Alibaba’s Website (SAHU et

al., 2020). With that, each graph algorithm performs a distinct computation accord-

ing to its purpose. Some focus on the vertices’ properties computation, e.g., Be-

tweenness Centrality (BC) and PR, while others focus on visiting the graph’s ver-

tices/edges, e.g., BFS, Connected Components (CC), and Single-Source Shortest

Path (SSSP). Although there are different strategies to implement such algorithms,

e.g., vertex-/edge-/partition-centric and push-/pull-based computation (ZHANG;

16

CHEN; CHEN, 2015), no single strategy will deliver the best high-performance

implementation of all graph algorithms. We illustrate in Fig. 1.1 (Computing) the

different graph algorithms that a graph processing framework can implement. No-

tice that the algorithms receive input graphs to process. As illustrated in Fig. 1.1

(Computing), PR receives Input C, and CC receives Input A;

3. Differences in the NUMA machines. Even though today’s NUMA processors are

very fast, their performance can be affected by several factors: clock speed, cache

size, main memory size, number of cores, number of NUMA nodes, and NUMA

topology. On top of that, the complexity of the memory hierarchy significantly

impacts the performance of memory-bound applications, like graph processing al-

gorithms. As such, memory hierarchy can change drastically from one NUMA

machine to another, and a challenge arises when designing an optimization strategy

to be effective for all NUMA systems. In Fig. 1.1 (System), we illustrate the exe-

cution of an example application with two threads (T0 and T1) on a NUMA system

comprised of 2 NUMA nodes (Node 0 and Node 1). This figure also shows the local

and remote memory accesses to the system’s memories, highlighting the complex

memory hierarchy of the NUMA machines;

4. Variation in single-source algorithm executions. Single-source graph algorithms

are the ones that require a source vertex to start processing (BEAMER; ASANOVIĆ;

PATTERSON, 2015). Therefore, every time a new execution is fired (so the source

vertex changes), different parts of the graph with distinct structures and amounts

of vertices/edges are processed - even when using the very same graph algorithm

and input data. In other words, threads will process different data, changing how

they communicate and access the memory regions. Significant examples of single-

source graph algorithms are BFS and SSSP, widely applied for telecom network

routing, road navigation, and social network analysis (GOLDBERG; HARREL-

SON, 2005; BRANDES; PICH, 2007; PETERSON; DAVIE, 2007). In Fig. 1.1

(Data and Computing), we illustrate both (i) the algorithms that receive only the

input graph (e.g., PR and CC) and (ii) the ones that receive the input graph along

with a source vertex (e.g., BFS, SSSP, and BC). For example, while the PR receives

the Input C and processes over all the vertices in each iteration, the BFS also re-

ceives the Input C, but it starts execution on vertex V2 and processes only over the

vertices connected to V2.

17

1.2 Optimization Opportunities

All the aspects described in the previous section impact the parallel graph pro-

cessing performance because they affect how the data will be distributed throughout the

NUMA system’s memories, how the applications’ threads will access them to commu-

nicate, and the application scalability. Therefore, optimizing graph applications by ad-

justing thread/data mapping and the number of threads is a non-trivial task since the best

configuration of such variables may change if one of the above aspects changes. The

following sections present some optimization opportunities incurred from the previously

described aspects.

1.2.1 Impact of Thread and Data Mapping

To illustrate the impact of aspects 1-3 on the graph algorithms performance when

adjusting TM and PM on NUMA systems, we show in Figure 1.2 the BC (a and c) and PR

(b and d) algorithms execution time (y-axis) when running with different combinations

of TM and PM (represented by the bars with different colors), on 2 different NUMA

machines (a and b refer to Intel32, an Intel Xeon E5-2640v2 with 2 nodes / 16 cores / 32

threads, and c and d refer to Intel64, an Intel Xeon X7550 4 nodes / 32 cores / 64 threads

– more details will be given later). The following configurations are evaluated for TM:

Linux Operating System (OS) Default solution (Def), Close (Clo), Contiguous (Con),

and Scatter (Sca); and for PM: First-Touch (Def), Interleave (Int), and NUMA Balancing

(NUM) – we will also explain them in details later. Thus, each TM/PM label refers to

a specific combination of the above thread and data mapping policies. We performed

the experiments considering kron and urand input graphs (on the x-axis) (BEAMER;

ASANOVIĆ; PATTERSON, 2015). We normalized the results to the Def/Def execution

(the lower, the better).

These results highlight that there is no unique combination of thread and data

mapping policy that delivers the best performance when the (1.) input graph, (2.) algo-

rithm, and (3.) NUMA machine changes. Let us discuss some representative examples:

• For (1.), when executing PR on Intel32, while using Con/Int configuration delivers

the best performance on kron input graph (9% improvement), if one changes the

input graph to urand, the best configuration is Clo/Int with 14% improvement;

18

Figure 1.2: BC and PR running the kron and urand on Intel32 (Intel Xeon E5-2640v2
with 2 nodes / 16 cores / 32 threads) and on Intel64 (Intel Xeon X7550 with 4 nodes / 32
cores / 64 threads). Legend: the TM/PM refers to the combination of the thread and data
mapping policies.

kron urand
0.00
0.25
0.50
0.75
1.00
1.25
1.50

(a) BC on Intel32

kron urand
0.00
0.25
0.50
0.75
1.00
1.25
1.50

(b) PR on Intel32

kron urand
0.00
0.25
0.50
0.75
1.00
1.25
1.50

(c) BC on Intel64

kron urand
0.00
0.25
0.50
0.75
1.00
1.25
1.50

(d) PR on Intel64

Def/Def

Def/Int

Def/NUM

Clo/Def

Clo/Int

Clo/NUM

Con/Def

Con/Int

Con/NUM

Sca/Def

Sca/Int

Sca/NUM

E
xe

cu
ti

o
n
 T

im
e
 (

N
o
rm

.)

Source: The author.

• For (2.), still considering the urand input graph on the same machine, if one changes

the algorithm to BC, the best configuration is Sca/Def delivering 5% improvement;

• For (3.), considering again the PR-urand, when it executes on Intel64 the best con-

figuration is Clo/NUM with 64%, which differs from the Clo/Int configuration men-

tioned earlier for Intel32.

1.2.2 Impact of Changing the Source Vertices

Let us cover the challenge (4.) by highlighting the performance variation when

executing single-source graph algorithms from different source vertices. For that, we

show in Figure 1.3, the execution time (y-axis) in the execution of the BFS on web graph

starting from 3 different source vertices (V1, V2, and V3 – bars with different colors), on

Intel32 machine. We considered all the previously described TM and PM combinations

in the x-axis, and we normalized to the Linux’s default (De-De), represented by the black

19

Figure 1.3: BFS algorithm execution when it starts from 3 different source vertices (V1,
V2, and V3) on the Intel32 system. Legend: the TM-PM refers to the combination of the
thread and data mapping policies.

De
-D

e

De
-In

De
-N

U

Cl
-D

e

Cl
-In

Cl
-N

U

Co
-D

e

Co
-In

Co
-N

U

Sc
-D

e

Sc
-In

Sc
-N

U

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Ex
ec

. T
im

e
(N

or
m

.)

V1 V2 V3

Source: The author.

line). Hence, the lower the value, the greater the reduction in the execution time.

Based on such results, we also argue that the best thread and data mapping com-

bination for a single-source algorithm may also change if the source vertex changes. For

example, BFS-web executed from V1, V2, and V3 present 17%, 15%, and 18% perfor-

mance improvement over De-De when executed with Co-In, Sc-In, and De-In, respec-

tively.

1.2.3 Impact of Adjusting the Number of Threads

Although researchers have proposed different strategies to optimize graph appli-

cations (see chapter 3), most are unaware of the limitations of the parallel application

scalability, i.e., assuming a regular behavior for the parallel execution using the maxi-

mum number of threads. Not all graph applications scale well, and their scalability will

depend on the graph being processed, so reducing the number of threads (NT) may bring

significant performance benefits. To illustrate that, we show in Fig. 1.4.a and Fig. 1.4.b

the speedups results (y-axis) in two different views on Intel32 machine: (a) the scalability

of a specific graph application running different input graphs (the SSSP executing dif-

ferent input graphs by increasing the NT – x-axis); (b) the scalability of different graph

applications running the same input graph (5 algorithms executing the Ber input graph).

In addition, Table 1.1 shows the best number of threads when executing the 5 algorithms

on Intel88 (Intel Xeon E5-2699 v4 with 2 nodes / 44 cores / 88 threads) – explained

20

Table 1.1: The best number of threads on Intel32 (Intel Xeon E5-2640v2 with 2 nodes /
16 cores / 32 threads) and on Intel88 (Intel Xeon E5-2699 v4 with 2 nodes / 44 cores / 88
threads).

Intel32 Intel88

BC BFS CC PR SSSP BC BFS CC PR SSSP

road 32 32 32 32 32 40 30 44 44 44
cit 16 32 32 32 4 88 24 44 88 4
ama 14 32 32 32 1 18 36 34 34 1
CA 32 16 32 32 1 40 24 88 88 1
Ber 16 14 32 32 2 22 18 44 32 4

Source: The author.

later. For both Fig. 1.4 and Table 1.1, we consider the default policies for TM and PM

(Def-Def). These results show the same challenging aspects in designing optimization

strategies for graph applications previously described (see section 1.1):

• For (1.), the scalability of a specific application depends on the input graph being

processed. This fact is highlighted in Fig 1.4.a, where we see different scalability

patterns in the SSSP executing over different input graphs;

• For (2.), not all graph applications scale well by increasing NT, so the best number

of threads will likely differ for different algorithms. In 1.4.b., while the PageRank

(PR) and Connected Components (CC) algorithms have their best speedup when

using the maximum NT (32 threads), for the Betweenness Centrality (BC), Single-

Source Shortest Path (SSSP), and Breath-First Search (BFS) algorithms, it is better

reducing the NT to 16, 2, and 14, respectively;

• For (3.), the best number of threads may change if the machine changes. Taking

the cit graph as an illustrative example in Table 1.1, the best number of threads for

its execution differs on Intel32 compared to Intel88 in most algorithms, except for

SSSP.

1.3 Contribution of this work

Below, we describe the steps to develop this thesis, as illustrated in Fig. 1.5.

• Design Space Exploration (DSE): TM+PM. We analyzed the potential of tuning

thread and data mapping in executing graph applications on NUMA machines. For

that, we performed a DSE considering the combinations of several standard thread

and data mapping policies (see 1 in Fig. 1.5). Based on that, we show that no

21

Figure 1.4: Optimization potential of tuning NT.
(a) SSSP executing over different input graphs with an increasing NT.

1 2 4 6 8 10 12 14 16 32
Number of Threads

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Sp
ee

du
ps

roa
twi
cit

ama
ork
you

CA
Ber

Goo
wik

(b) Execution of 5 algorithms over the Ber input graph with an increasing the
NT.

1 2 4 6 8 10 12 14 16 32
Number of Threads

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Sp
ee

du
ps

BC
BFS

CC
PR

SSSP

Source: The author.

particular solution will deliver the best result for all input graphs, graph processing

algorithms, and NUMA machines.

From this experiment, we developed Graphith, an optimization strategy for tun-

ing the TM and PM of graph applications on NUMA systems (see 2 in Fig. 1.5).

Graphith is a framework to boost the graph processing algorithm performance by

fine-tuning the thread-to-core allocation and varying the data mapping policies,

considering the NUMA system, graph algorithm, and input graph at hand. Al-

though Graphith can improve the execution of graph applications, it is inflexible

and has a high optimization overhead since every time the input graph changes, one

must re-execute its expensive optimization process. This fact pressured us to search

for alternative solutions with low overhead while providing high-performance exe-

cution for graph applications.

From the issue above, we observed that graph data have structural attributes not

22

Figure 1.5: Thesis’ proposal overview.

Graphith:
Fine-tuning TM+PM

High-Level Features

DSE: TM+PM

BC

B) ML Workflow for Training

Create
Dataset

DSE

Collect
Features

BFS

SSSP

Learning Phase
C) Result

Predictor

ANN
Design

B) ML Workflow for Prediction

Solution

A) Read Inp.

Execution Phase

M

C) Result

Input
Merging

Predictor

ML Methodology

PredG: TM+PM

GraphNroll: TM+PM for
Single-Source Algorithms

PotiGraph: NT+TM+PM

M

SSSP

 S
ys

.

A

lg
.

 G

ra
.

 S
ys

.

A

lg
.

 G

ra
.

U
se

r:
 D

at
a

A
na

ly
st

U
se

r:
 S

ys
.

A
dm

.

A) Read Inputs

1

3

2

5

6

7

4

Source: The author.

found in generic parallel applications that can be succinctly described by High-

Level Features (see 3 in Fig. 1.5) such as the number of triangles, global clus-

tering coefficient, and average degree, already available in most of the graph data

sources (ROSSI; AHMED, 2015; LESKOVEC; KREVL, 2014), which reflect their

different topologies (better explained in chapter 2). Since similar topologies often

exhibit analogous high-level features, this similarity can be harnessed to propose

new strategies to optimize the graph algorithm executions while providing adapt-

ability with minimal run-time overhead.

We conducted additional experiments to assess the suitability of using the input

graph high-level features to predict the best TM and PM for graph application ex-

ecution. Our experiments also considered analyzing the applications’ scalability,

evaluating the best number of threads (NT) for each TM and PM combination.

Based on that, we proposed a Machine Learning (ML) methodology used as a foun-

dation for different approaches. This ML methodology leverages the input graphs’

high-level features to predict different system-level variables (e.g., NT, TM, PM) to

23

improve the execution of graph applications (see 4 in Fig. 1.5). The methodology

consists of two phases, as described as follows.

Learning Phase. This phase aims to create a Predictor that will be used in the

next phase (Execution Phase) to predict the best system-level variables (e.g., NT,

TM, PM) for a given graph application. For that, the methodology receives as input

(Gra.) a set of representative input graphs and (Alg.) algorithms as well as (Sys.) the

NUMA machine where it will be deployed. Then, the methodology will perform an

ML Workflow for Training based on the given inputs. It will collect the high-level

features from the input graphs (Collect Features) and perform a DSE to select the

best solutions for all the combinations of graphs and algorithms. Data from these

procedures will be merged to generate a dataset (Create Dataset) that will be used

to build an Artificial Neural Network (ANN) model (ANN Design) – our Predictor

– to be applied in the next phase;

Execution Phase. This phase applies the Predictor to find the best system-level

configuration (NT, TM, or PM) when a new incoming graph has to be executed.

For that, the methodology receives (Gra.) the input graph along with its high-level

features, (Alg.) the algorithm that will process the graph (that should have been

considered during the Learning Phase), and (Sys.) the current NUMA machine.

The methodology performs a ML Workflow for Prediction by merging the given

input into the ANN input format and performing the prediction. Then, it fires the

application execution with the system-level configuration set in the target NUMA

system.

Using the above-described ML methodology as a foundation, we proposed three

offline strategies that adapt to new input graphs or source vertices without any need

for application profiling by adjusting: TM and PM simultaneously (TM+PM) for

generic graph applications and also for the specific cases of single-source algo-

rithms; and NT, TM, and PM simultaneously (NT+TM+PM) for generic graph ap-

plications.

• PredG. It is an ML tool that improves the graph analytics execution time by

predicting the ideal TM+PM policies configuration as new input graphs need

to be processed;

• GraphNroll. It is highly based on the investigation carried out specifically for

single-source graph algorithms. GraphNroll framework enhances the single-

source graph algorithms’ execution time by predicting the ideal TM+PM poli-

24

cies configuration as the source vertices change for any input graph, algo-

rithm, and NUMA machine;

• PotiGraph. It is a framework that exploits the scalability of graph applica-

tions by adjusting the NT along with the TM and PM (NT+TM+PM), finding

the best configuration as new input graphs need to be processed.

1.4 Document Organization

We organized this work as follows. Chapter 2 introduces the basics of graph pro-

cessing and provides a background on the NUMA systems, presenting the search space for

NT along with the TM and PM techniques evaluated in this thesis. Chapter 3 discusses

the related work that applies NT, TM, or PM for optimizing generic parallel applica-

tions and also for the specific case of graph algorithms. This Chapter also highlights our

main contributions concerning the state-of-the-art. Chapter 4 presents some preliminary

experiments that have led us to converge to this proposal. It discusses some optimiza-

tion potentials we found by performing a DSE and Graphith, our strategy to provide

high-quality TM+PM solutions on NUMA machines. Chapter 5 shows how we can use

the input graphs’ high-level features to propose the graph processing framework PredG.

Chapter 6 presents GraphNroll, a graph processing framework for single-source algo-

rithms. Chapter 7 describes our last proposal, PotiGraph, which extends from PredG,

but now considering the optimization on NT, TM, and PM altogether. Finally, Chapter 8

concludes this thesis with some final considerations.

25

2 BACKGROUND

In this section, we introduce the concepts used throughout this thesis, such as input

graphs, graph algorithms, NUMA machines, and thread and data mapping.

2.1 Graphs Modeling Real-World Problems

A graph is a data structure that accurately models abstract elements and their rela-

tionship. A graph is formally defined asG = (V,E) where V represents the set of vertices

(i.e., elements) and E is the set of edges (i.e., the relationship among the elements of V).

Each (v, u) ∈ E in a directed graph strictly indicates an edge pointing from v to u. On

the other hand, for an undirected graph, each (v, u) ∈ E represents a mutual relationship

(i.e., there is an edge pointing from v to u and vice-versa) (GUI et al., 2019; LU et al.,

2021).

Although graph presents a simple notation, it is a powerful data structure that can

model problems related to diverse fields, such as social networks graphs (RAPOPORT;

HORVATH, 1961), WWW (HUBERMAN, 2003), citation graphs for academic papers

(MITCHELL, 1974), airline routes (AMARAL et al., 2000), and biological graphs to

represent neural networks (WHITE et al., 1986) and protein interaction (JEONG et al.,

2001). Real-world graphs (i.e., those extracted from actual sources) comprise a huge

amount of data and may present different topological structures. A survey conducted by

Sahu et al. (2017) considering graph software developers, users, a review of the mailing

lists, source repositories, and white papers shows that the largest graphs comprise billions

of edges.

Regarding their topologies, we show in Figure 2.1 the diversity in the structure

of the graphs extracted from actual data sources. The depicted graphs are: (a) A road

network of California1 where vertices represent endpoints and road’s intersections and

undirected edges represent the roads; (b) A crawl of the Google web pages2 where ver-

tices represent web pages and edges represent hyperlinks between them; (c) A friendship

social network and user-defined communities extracted from Orkut3 where vertices rep-

resent users and edges represent their friendship; (d) Network of talk pages changes of

1California road network (Accessed on September 26th, 2023).
2Google web graph (Accessed on September 26th, 2023).
3Orkut social network and ground-truth communities (Accessed on September 26th, 2023).

https://snap.stanford.edu/data/roadNet-CA.html
https://snap.stanford.edu/data/web-Google.html
https://snap.stanford.edu/data/com-Orkut.html

26

Figure 2.1: Diversity in the topologies of the graph extracted from actual data sources.
(a) California (b) Google

(c) Orkut (d) Wiki-Talk

Source: Extracted from the Network Repository (ROSSI; AHMED, 2016).

Wikipedia4 where vertices represent users and a directed edge from vertex v to u repre-

sents that user v at least once edited a talk page of user u.

As shown in Figure 2.1, actual graphs present large diversity in their structure.

For example, some show significant sparsity (e.g., California and Google) and density

(e.g., Orkut and Wiki-Talk). In addition to the visual/graphical representation, we can

identify these graph diversity by analyzing their high-level features, such as the diameter

and averaged degree. In Fig 2.2, we illustrate some important features extracted from two

different toy input graphs (GraphA and GraphB). The features are described as follows.

• Number of Vertices (V): It is the number of vertices in the graph;

4Wikipedia Talk network (Accessed on September 26th, 2023).

https://snap.stanford.edu/data/wiki-Talk.html

27

Figure 2.2: Example of the high-level features values extracted from 2 synthetic graphs
(GraphA and GraphB).

1

2

4

3
5

6

7 9

8 10

11 7

6 1

5 4 3
2

98 18
19

12

11

10

17

15

16
14GraphA GraphB 13

Source: The author.

• Number of Edges (E): It is the number of edges in the graph;

• Vertex Degree (VD): For undirected graphs, it refers to the number of edges incident

to a vertex. In the case of directed graphs, it is the number of incoming (in-) and

outgoing (out-) edges (also called in-degree and out-degree, respectively);

• Diameter (Dia): It is the largest number of vertices that must be traversed to travel

from one vertex to another of the graph. For example, in Fig 2.2, the Dia of GraphA

is 6, which is the distance from vertex 1 to 11;

• Isolated Vertices (IV): It is the number of vertices without connection with any other

vertices. For example, while GraphA has no IV, the GraphB has 3 IV;

• Density (Den): It represents the ratio between the number of edges in a graph and

the maximum possible number of edges that this graph can contain. In other words,

it provides an idea of how dense a graph is regarding edge connectivity. For exam-

ple, for a complete (fully dense) directed or undirected graph, the Den is always 1.

On the other hand, a graph with all IV has a Den of 0;

• Local Clustering Coefficient (LCC): It is the clustering coefficient of a vertex in a

graph. The LCC quantifies how close the neighbors of a given vertex are to be a

complete subgraph, i.e., a clique – a subgraph in which every pair of vertices are

adjacent (LUCE; PERRY, 1949). In Fig 2.2, the LCC for both graphs is 0 when

considering their vertex 1;

• Global Clustering Coefficient (GCC): The GCC is based on the concept of triplets of

vertices: 3 vertices that are connected by either 2 (open triplet) or 3 (closed triplet)

undirected edges. Thus, it is computed by the number of closed triplets divided

by the total number of triplets (both open and closed) (LUCE; PERRY, 1949). An

alternative way to obtain the GCC is by computing the overall level of clustering in

28

a graph (WATTS; STROGATZ, 1998). It can be obtained by computing the average

of the LCC of all the vertices;

• Minimum Degree (MinD): It is the vertex degree with the minimum number of

edges. In the example of Fig 2.2, MinD of GraphA and GraphB are 1 (vertex 11)

and 0 (vertices 17, 18, and 19), respectively;

• Maximum Degree (MaxD): It is the degree of the vertex with the maximum number

of edges. In the example of Fig 2.2, MaxD of GraphA and GraphB are 5 (vertices 3

and 4) and 9 (vertex 1), respectively;

• Averaged Degree (AvgD): It is the average vertices’ degrees;

• Degree Assortativity (DA): It is the tendency for vertices with high degrees in a

graph to be connected to high-degree vertices (it is the same for low-degree ver-

tices);

• Number of Connected Components (NCC): A connected component (CC) is a set of

vertices in which every pair of vertices is linked by path (i.e., a sequence of edges

that joins a sequence of distinct vertices). Thus, the NCC is the number of CCs in

the graph. Notice that while GraphA has only 1 CC (all vertices are connected),

GraphB has 6 CC, including the IVs;

• Size of the Largest Connected Components (SLCC): It is the number of vertices in

the graph’s largest CC;

• Percentage of the Largest Connected Components (PLCC): It is the percentage of

vertices in the largest CC of the graph. Notice that only 63.16% of GraphB’s ver-

tices belong to its largest CC;

• Degree Distribution (DD): It is the probability that defines the number of edges

connecting the graph’s vertices. The DD of a graph can be defined as: normal

when it follows a normal distribution; power-law when it follows an exponential

distribution (a few vertices connected by most of the graph’s edges). In this case,

we can define the fraction of vertices with k edges to other vertices as P (k) ∼ k−γ ,

where γ is a parameter usually in the range 2 < γ < 3 (BEAMER; ASANOVIC;

PATTERSON, 2015); and bounded, which usually follows any distribution, but the

degree of any vertex is limited to a specific value. It is worth noticing that the DD

is directly related to the above features. For example, while a power-law graph

may present a low Dia, a lot of low-degree vertices (small value for MinD) and a

few high-degree vertices (very large value for MaxD), the bounded are identified

29

Table 2.1: Input graphs’ high-level features
V E Dia IV Den LCC GCC MinD MaxD AvgD DA NCC SLCC PLCC

urand 1.34e+08 2.15e+09 7 0.00e+00 0.00e+00 0.00 0.00 6.00 6.80e+01 32.00 0.00 1.00e+00 1.34e+08 100.00

kron 1.34e+08 2.11e+09 6 7.11e+07 0.00e+00 0.01 0.04 0.00 1.57e+06 31.47 -0.04 7.12e+07 6.30e+07 46.96

twitter 6.16e+07 1.20e+09 14 1.99e+07 1.00e-06 0.05 0.08 0.00 3.00e+06 39.06 -0.04 1.99e+07 4.17e+07 67.64

web 5.06e+07 1.81e+09 135 9.20e+01 1.00e-06 0.63 0.68 0.00 8.56e+06 71.49 -0.02 1.23e+02 5.06e+07 100.00

road 2.39e+07 2.89e+07 6304 0.00e+00 0.00e+00 0.02 0.02 1.00 9.00e+00 2.41 0.08 1.00e+00 2.39e+07 100.00

cit-patents 6.01e+06 1.65e+07 22 2.23e+06 1.00e-06 0.12 0.09 0.00 7.93e+02 5.50 0.18 2.24e+06 3.76e+06 62.64

orkut 3.07e+06 1.17e+08 9 1.86e+02 2.50e-05 0.17 0.17 0.00 3.33e+04 76.28 0.08 1.87e+02 3.07e+06 99.99

wikitalk 2.39e+06 4.66e+06 9 0.00e+00 2.00e-06 0.05 0.20 1.00 1.00e+05 3.89 -0.04 2.56e+03 2.39e+06 99.77

california 1.97e+06 2.77e+06 849 6.08e+03 1.00e-06 0.05 0.05 0.00 1.20e+01 2.81 0.19 8.71e+03 1.96e+06 99.28

texas 1.39e+06 1.92e+06 1054 1.35e+04 2.00e-06 0.05 0.06 0.00 1.20e+01 2.76 0.19 1.39e+04 1.35e+06 96.97

youtube 1.16e+06 2.99e+06 20 2.29e+04 4.00e-06 0.08 0.18 0.00 2.88e+04 5.16 -0.03 2.29e+04 1.13e+06 98.02

pennsylvania 1.09e+06 1.54e+06 786 2.83e+03 3.00e-06 0.05 0.06 0.00 9.00e+00 2.83 0.18 3.03e+03 1.09e+06 99.69

google 9.16e+05 4.32e+06 21 4.07e+04 1.00e-05 0.49 0.62 0.00 6.33e+03 9.43 -0.05 4.35e+04 8.56e+05 93.38

berkley 6.85e+05 6.65e+06 514 1.00e+00 2.80e-05 0.60 0.63 0.00 8.42e+04 19.41 -0.11 6.77e+02 6.55e+05 95.56

amazon 5.49e+05 9.26e+05 44 2.14e+05 6.00e-06 0.24 0.43 0.00 5.49e+02 3.38 -0.06 2.14e+05 3.35e+05 61.04

Source: The author.

by high Dia with a relatively small value to MaxD (usually close to MinD).

Several other graph features can be analyzed (BONDY; MURTY et al., 1976),

however, by using only the above-described ones, we can accurately identify the struc-

ture of a specific graph. In Table 2.1, we show examples of some high-level features

extracted from 15 different input graphs available in the GAP Benchmark Suite (GAPBS)

(BEAMER; ASANOVIĆ; PATTERSON, 2015) (e.g., urand, kron, twitter, web, and road)

and in the Stanford Network Analysis Project (SNAP) (LESKOVEC; KREVL, 2014)

(e.g., cit-patents, orkut, wikitalk, california, texas, youtube, pennsylvania, google, berkley,

and amazon).

Although there are different ways to classify the topology of graphs (SAHU et

al., 2017; SHAO; LI, 2018), according to Beamer, Asanovic and Patterson (2012), we

can simplify the analysis by focusing solely on the Dia and DD of real-world graphs.

This approach allows us to classify them into two broad categories named after their

emblematic members: meshes and social networks.

• Meshes. They are usually derived from physically spatial sources, such as road

maps, infrastructure networks, and finite-element mesh applications. Thus, it is

straightforward to partition mesh graphs into a few spatial dimensions. They are

usually identified by having a high Dia and following a bounded and low DD. For

instance, analyzing the Figure 2.1 and Table 2.1, the california, with a high Dia

and the lower MaxD and AvgD (e.g., MaxD is bounded by 12 edges), represents a

mesh;

• Social Networks. These networks come from non-spatial sources, so they are hard

30

to partition into a reasonable number of dimensions. Social network graphs can rep-

resent WWW hyperlinks, social network websites, and social media apps, among

many other applications. They are usually identified by having a low Dia and fol-

lowing a power-law DD. For example, the orkut graph, with its low Dia and high

MaxD and AvgD, represents a social network graph (e.g., MaxD is 33,313). Ad-

ditionally, such graphs are also known as “small-world” because of their low Dia,

which means that most vertices are not neighbors of others, but most of them can

be reached from every vertex by a small number of hops (WATTS; STROGATZ,

1998).

2.1.1 Graphs’s In-Memory Representation

There are different ways to represent graphs as a data structure, such as edge list,

adjacency matrix, adjacency list, etc., each with specific particularities. However, the

top computer science textbooks mainly focus on adjacency matrices and adjacency lists

(CORMEN et al., 2022; KLEINBERG; TARDOS, 2006). Next, we give an overview of

such representations.

• Adjacency matrix. In the adjacency matrix, graphs are represented as a 2D matrix

(V × V) of vertices, where the indexes of rows/columns indicate the vertices. The

matrix positions consist of 0’s and 1’s. Thus, if an edge (v, u) connects two vertices

v and u, it is indicated by 1. Otherwise, it is 0. For example, in Fig. 2.3b, we

show the adjacency matrix representation of the example graph shown in Fig. 2.3a.

Notice that while a directed edge connects vertices 1 and 2, there are no edges

between 2 and 1. Thus, their respective matrix positions are 1 and 0;

Figure 2.3: Illustration of a) an example input graph and its representation in b) adjacency
matrix and c) adjacency list.

2

43

1

a) Input Graph

0 1 1 0
0 0 0 1
1 0 0 1
1 0 0 0

1 2 3 4
1
2
3
4

b) Adj. Matrix

1
2
3
4 1

1 4
4
2 3

c) Adj. List

sr
c

dst dstsrc

Source: The author.

31

• Adjacency list. In the adjacency list, graphs are represented as an array of linked

lists. The vertices are stored as indexes of a one-dimensional array, and the edges

are stored as a linked list, representing the neighbors of each vertex. For example,

in Fig. 2.3c, also considering the example graph shown in Fig. 2.3a, vertex 1 has

directed edges to vertices 2 and 3.

An adjacency matrix is efficient in some operations, such as verifying if an edge

connects a given pair of vertices in constant time. However, the major disadvantage is

that it requires O(|V |2) memory space to store an input graph, even for sparse graphs

(which are very common) in which edges do not connect most pairs of vertices – there

will be many 0’s in the matrix positions. Sparse graphs are common in practice, so using

an adjacency matrix for large sparse graphs is not worth using since it wastes too much

memory on zero entries. On the other hand, adjacency lists are a more flexible and com-

pact way to represent graphs, so most textbooks recommend adjacency lists to represent

sparse graphs (KLEINBERG; TARDOS, 2006; CORMEN et al., 2022).

Although an adjacency list provides an easy way to insert and remove vertices in

the graph and a memory space that fits better to the number of vertices and edges of the

input graph (O(|V |×|E|)), it incurs overheads for space allocation and memory accesses:

(i) the space allocation overhead comes from the need for a “next” pointer for every list’

node, and each node will carry allocations overheads to create them (e.g., using malloc

for C implementation); (ii) The overhead of memory accesses arises from chasing pointers

across the address space, occurring when an algorithm traverses the adjacency list. In this

scenario, the algorithm generates many random memory accesses, which are typically less

efficient and slower than sequential memory accesses (ZHANG; CHEN; CHEN, 2015).

Compressed Sparse Row (CSR) format. To overcome the downsides mentioned

above, most graph processing works use a compact and memory-hierarchy-friendly rep-

resentation, called Compressed Sparse Row (CSR), to represent large graphs. CSR orig-

inates from high-performance scientific computing representing large sparse matrices

comprised mostly of zeros. Its idea is to pack the column indices of non-zero entries

into a dense array. The advantage of CSR is that it is more compact and fits more con-

tinuously in memory, eliminating any space overhead while reducing random memory

accesses. However, CSR has reduced flexibility, so it is more suitable for input graphs

with a fixed structure. In Fig. 2.4, we illustrate the CSR representation of the example

graph presented in Fig. 2.3a, and we detail it below:

• The CSR format splits the input graph into two basic arrays: the Vertices array

32

represents the vertices, with indices indicating the vertices’ IDs, and the contents

store the position in the Edges array; The Edges array stores the neighbors of the

vertices, representing the edges of the graph.

The above definition is used to represent undirected graphs. However, for directed

graphs, as the one illustrated in Fig. 2.3a, two Vertices and Edges arrays are required

to represent in- and out-edges. In this case, the input graphs are represented as

follows:

– To represent in-edges: All vertices are partitioned by their target vertex (Ver-

tices array), storing the position of source vertices (In-edges array). The Ver-

tices array represents the vertices, where indexes indicate the vertices’ ID and

the contents store the position in In-edges array where the in-edges of specific

vertices can be accessed. The In-edges array stores the IDs of the in-edges

neighbors of each vertex. For example, to access the in-edges neighbors of

vertex 4, an algorithm must access the position 4 of Vertices array to get the

position to access its neighbors in In-edge array (in this case, position 5), to

then access each neighbor sequentially (vertices 2 and 3);

– To represent out-edges: It is similar to the previous one, but in this case,

the Vertices array stores the position in Out-edges array where the out-edge

neighbors of specific vertices can be accessed. Similarly, the Out-edges array

stores the IDs of the out-edge neighbors of each vertex. For example, to access

the out-edge neighbor of vertex 4, an algorithm must access the position 4

of Vertices array to get the position to access its neighbor in Out-edge array

(position 6), to then access the neighbor (vertex 1).

Most graph processing works mainly propose algorithm implementations that pro-

cess the input graphs iteratively, so not all the vertices will be processed at a specific iter-

ation (as will be explained later). Therefore, in addition to Vertices and Edges arrays (and

Figure 2.4: CSR representation of the input graph showed in Fig. 2.3a.

In-edges

Vertices
1 3 4 5

3 4 1 1 2 3 Out-edges

1 3 4 6

2 3 4 1 4 1

Compressed Sparse Row

Vertices1 2 3 4 1 2 3 4

Source: The author.

33

Figure 2.5: Additional arrays used to represent a) the graph runtime state and b) the
working data in iterative graph algorithm computation. This example is based on the
example graph showed in Fig. 2.3a.

Curr

Next

d1 d2 d3 d4Curr

Next

1 0 1 1

DataState

0 1 0 0

1 2 3 4 1 2 3 4

1 2 3 41 2 3 4
d1 d2 d3 d4

Source: The author.

the respective In-/Out-edges for in- and out-edges) of the CSR representation, iterative

graph processing algorithms use two other kinds of arrays to represent the computation

state (State) and the data being processed (Data):

• State. It represents the input graph runtime states, indicating the vertices being

processed at a specific iteration (i.e., a frontier of active vertices). For that, it uses

an array where the indexes indicate the vertices’ ID, and the contents indicate if

the vertices are active (1) or not (0). For example, Fig. 2.5 shows two arrays, Curr

and Next, indicating the frontier of active vertices of the current and next iterations,

respectively. In this example, vertices 1, 3, and 4 are active in the current iteration,

and vertex 2 will be active in the next one;

• Data. It represents the application-defined data, thus, it depends on the kind of

computation and amount of data computed/generated for each vertex. Similarly to

State, it can be represented by arrays where indexes indicate the vertices’ ID, and

the contents are the working data of each vertex. The application-defined edge data

can be handled similarly if necessary. In Fig. 2.5, we also illustrate two versions of

the Data arrays, Curr and Next, which store the working data of the vertices in the

current and next active frontiers, respectively.

2.2 Graph Processing Frameworks and Algorithms

Graphs extracted from actual data sources (e.g., communications, recommenda-

tion systems, and logistics) are continuously growing in size and complexity, so imple-

menting algorithms to perform scalable analysis over such complex networks for in-

formation retrieval and data mining becomes a significant bottleneck (DHULIPALA;

BLELLOCH; SHUN, 2021). To face that, since 2008, several programming paradigms,

34

models, libraries, and frameworks focused on development productivity or speeding up

graph analysis have been proposed in the literature (DOEKEMEIJER; VARBANESCU,

2014). However, such graph processing systems strive to find the best trade-off between

productivity-enhancing front-ends (i.e., simple and user-friendly) and high-performance

back-ends (i.e., optimized algorithms implementations), which means none of them will

present neither the best way to express computation nor the best performance for all kinds

of graph computation (DOEKEMEIJER; VARBANESCU, 2014).

The concepts of framework and library differ because of the notion of “inversion

of control” (HUBERMAN, 2003): while libraries only offer a collection of objects and

functions, leaving the coordination to the user, frameworks also take care of the control

flow. Thus, used-defined methods are called by the framework itself, meaning it serves

as an “extensible skeleton”. Graph processing frameworks usually offer Domain-Specific

Languages (DSL) as the front-end (i.e., programming interfaces) and compile to a lower-

level execution. For example, graph DSLs such as OptiML (SUJEETH et al., 2011)

and Green-Marl (HONG et al., 2012) target graph processing frameworks, offering a

more natural programming interface for users familiar with the graph domain but not

with programming in general.

The most used frameworks usually have off-the-shelf implementations of graph

algorithms that are basic kernels of other complex applications, such as the Betweenness

Centrality (BC), Breadth-First Search (BFS), Connected Components (CC), PageRank

(PR), and Single-Source Shortest Paths (SSSP) – the ones we evaluate in this work. How-

ever, they differ in how the algorithms are implemented regarding the programming, com-

puting models, and access to graph data structures. Next, we give an overview of some

implementation decisions used on most graph processing frameworks.

Graph programming models. In the context of graph computation, graph pro-

gramming models refer to the basic data abstraction to analyze large-scale networks (MC-

CUNE; WENINGER; MADEY, 2015). There are different manners in graph processing

frameworks to abstract the graph data, but the most common ones are: vertex-, edge-, and

partition-centric.

• Vertex-centric. This model follows the Think-Like-A-Vertex (TLAV) principle, where

the graph algorithm is expressed by a user-defined computation performed on each

vertex (MCCUNE; WENINGER; MADEY, 2015). Thus, each vertex contains its

own information and of all its outgoing edges. The computation is expressed in

terms of a single vertex. Pregel (MALEWICZ et al., 2010) and GraphLab (LOW

35

et al., 2014) are representative examples of vertex-centric graph processing frame-

works. In both frameworks, the computation for a vertex involves receiving mes-

sages from other vertices and then updating the states and data of the vertex and its

neighbors;

• Edge-centric. This model considers edges as the fundamental unit for graph com-

putation, so the graph is partitioned by its edges, i.e., each edge is a single partition

(HEIDARI et al., 2018). The partitioning can be done by scanning the entire edge

list of the graphs. X-Stream is a representative example of an edge-centric graph

processing framework (ROY; MIHAILOVIC; ZWAENEPOEL, 2013);

• Partition-centric. This model considers subgraphs (i.e., partitions) as the funda-

mental unit for graph computation. Partitions can be defined as disjoint sets of

contiguously labeled vertices. For example, the work of Lakhotia et al. (2020) uses

a lightweight index scheme for partitioning vertices into k disjoint sets of equal

size: the set of vertices Vp of a partition p comprises all the vertices with indices in

the interval [pV
k
, (p+ 1)V

k
], while Ep denotes all the edges in p.

Although the vertex-centric model is easy to program and has been proven to be

useful for many algorithms (MCCUNE; WENINGER; MADEY, 2015) – it suits well

for traversing along all the vertices in a graph –, it is very short-sighted: it has the in-

formation of only the immediate vertex’s neighbors, so the information is propagated

slowly throughout the graph. Consequently, it takes many computation steps to prop-

agate information from a source to a destination vertex, which makes it unsuitable for

subgraph-centric perspective algorithms such as local clustering coefficient and triangle

counting (KALAVRI; VLASSOV; HARIDI, 2017). Moreover, it incurs heavy communi-

cation overhead with highly irregular memory accesses through indices or pointers, which

conventional memory controllers can not efficiently handle. On the other hand, the edge-

centric model traverses the graph in a streaming fashion, eliminating the random memory

accesses to the edges. With that, it has shown superior performance than the vertex-

centric model for those graphs whose number of edges is much larger than the number

of vertices (ROY; MIHAILOVIC; ZWAENEPOEL, 2013). In the case of the partition-

centric, it leverages vital information about subgraphs (e.g., their connections) to provide

exclusive partition ownership to one thread, avoiding unnecessary synchronization and

achieving good scalability. For example, the proposal of Lakhotia et al. (2020) partitions

the graph into cacheable vertex subsets, providing cache efficiency and high bandwidth

for sequential memory accesses.

36

Figure 2.6: Example of SSSP execution with a) Vertex-centric and b) Scatter-Gather com-
puting models.

(a) Vertex-Centric

2

43

1 2

43

1

1 ∞

1

∞

∞

∞

∞ ∞

∞0 0 1

∞1

2 2

2

Sup 0 Sup 1

…

(b) Scatter-Gather

2

43

1 2

43

1

1 ∞

1

∞

∞

∞

∞ ∞

∞0 0 1

∞1

Sup 0

…

Scatter Gather

Source: The author.

Graph computing models. In general, graph processing algorithms need to tra-

verse the input graph in some way to retrieve information, so they naturally perform itera-

tive computation (BATARFI et al., 2015). Based on that, the graph processing frameworks

have used different iterative computation models, such as the Vertex-Centric iterative pro-

cessing and Scatter-Gather, explained in the following.

• Vertex-Centric iterative processing. Introduced in the work of Malewicz et al.

(2010), this computing model follows the TLAV principle. Similar to its corre-

spondent vertex-centric programming model detailed above, this model focuses on

the information of a vertex and those of all its one-hop neighbors. The computa-

tion process occurs in synchronized iterations, called supersteps. In each superstep,

the framework processes all the active vertices in parallel by calling a user-defined

function which will perform the computation over the vertices’ data in a single su-

perstep. Each vertex has a unique ID and can communicate with any other vertices

in the graph through messages. As the supersteps are executed synchronously, the

messages sent during one superstep are guaranteed to be delivered at the beginning

of the next superstep (i.e., they will be available to the vertex function of the vertex

which is the receiver of the message).

As an illustrative example, in Fig. 2.6a, we present the execution of the SSSP algo-

rithm over the example graph depicted in Fig. 2.3a with the vertex-centric comput-

ing model. We illustrate only two supersteps (Sup 0 and Sup 1), but the remaining

ones perform similarly. Initially, all the vertices are set to an infinite distance value

(∞), except the source vertex (vertex 3), which is set to zero. In Sup 0, the source

vertices propagate distances to their neighbors. For example, vertex 3 sends mes-

37

sages to vertices 1 and 4, which is the sum of its current distance with the edge cost

(assuming that all the edges have cost 1). During the following supersteps, each ver-

tex checks its received messages and chooses the minimum distance among them.

If a value is smaller than the current one, it updates its value and produces messages

to its neighbors. For instance, in Sup 1, while the vertex 3 is not updated, so it does

not send messages, the vertex 1 is updated and then sends messages to its neighbors

(vertices 3 and 2). The algorithm converges when it does not update vertices or

reaches the maximum number of supersteps.

• Scatter-Gather. This computing model also divides the computation in synchro-

nized supersteps, but each superstep computes a Scatter phase followed by a Gather

phase. In the Scatter phase, each of the active vertices executes a user-defined func-

tion to send messages along out-going edges, and during the Gather phase, they

collect messages from neighbors and execute another user-defined function to up-

date the vertices’ states based on the received messages. It is worth noticing that,

unlike the Vertex-centric model, Scatter-Gather sends and receives messages in the

same superstep.

To illustrate this computing model, consider again the execution of the SSSP al-

gorithm over the example graph depicted in Fig. 2.3a, but now in Fig. 2.6b. We

illustrate only the first superstep (Sup 0), but the remaining supersteps work in the

same way. In the Scatter phase, each vertex sends a candidate distance message

to all its neighbors. For example, the source vertex (vertex 3) sends messages to

vertices 1 and 4, which is the sum of its current distance with the edge cost. In the

Gather phase, with the received candidate distances messages, each vertex calcu-

lates the minimum distance, and if a shorter path has been discovered, it updates its

value. If a vertex does not change its value during a superstep, it does not produce

messages for its neighbors for the next superstep. The algorithm converges when

there are no more updates.

The Vertex-centric computing model is the most used to express a broad set of

iterative graph algorithms. This model fits well for computation that can be expressed as a

local vertex function that only needs to access data on adjacent vertices and edges, such as

the PageRank algorithm. However, it is not trivial to compute graph transformations and

single-pass graph computation (i.e., non-iterative computation) in this model. Because of

that, the Vertex-centric model is not a good fit for algorithms like triangle counting. In the

case of the Scatter-Gather model, it is a computing abstraction that can express different

38

graph algorithms concisely and elegantly. As it decouples the logic of producing messages

to the logic of updating vertex values based on the received messages, programs written

in this model are usually easy to follow and maintain. Like the Vertex-centric model, this

model is also a good fit for iterative, value-propagation algorithms such as the PageRank

algorithm.

Access to graph data structures. In addition to the programming and computation

models described above, the way the graph application accesses the CSR data structure

(described in section 2.1.1) and how the data is propagated throughout the vertices/edges

also significantly impacts on its performance. This is done by two basic modes (push and

pull), applied independently of the programming and computation models used. Next, we

explain both modes, giving an illustrative example in Fig. 2.7 considering the ordering

and the types of accesses to the data structure shown in section 2.1.1 – CRS (Vertices

and In-/Out-edges), State, and Data arrays. The types of accesses are sequential (Seq) or

random (Rand), and for reading (R) or writing (W) data.

• Push direction. In this mode, at each iteration, the algorithm first evaluates the

current vertices frontier (i.e., the State/Curr array in Fig. 2.5) to push/propagate

the data of the active vertices to their outgoing neighbors. For that, it performs the

following steps (see Fig. 2.7 – left side):

(i) The worker thread first scans the State/Curr state array (Sequentially for Read-

ing data, Seq-R) to identify active vertices in the CSR/Vertices array (Seq-

R) and then obtains its outgoing neighbors through the CSR/Out-edges array

Figure 2.7: Push and Pull accessing modes to the graph data structure.

2

4

1

1 0 1 1

Pull

3

State/Next

Graph
2

4

1

Push

Graph

3

State/Curr

Vectors Access

Seq-R

Seq-R

Seq-R

State/Next 1 0 1 1

1 3 4 6CSR/
Vertices

 CSR/
Out-edges

1 0 1 1

Data/Next

Data/Curr

2 3 4 1 4 1

CSR/
Vertices 1 3 4 6

 CSR/
In-edges

State/Curr

3 4 1 1 2 3

d1 d2 d3 d4

1 0 1 1

d1 d2 d3 d4

Data/Curr

Data/Next

Seq-R

Rand-Wd1 d2 d3 d4

d1 d2 d3 d4

Rand-W

Seq-R

Seq-R

Rand-R

Rand-R

Seq-W

Seq-W

Vectors Access

Source: The author.

39

(Seq-R);

(ii) Thus, the worker thread pushes the value of the active vertex in the Data/Curr

array (Seq-R) to its neighbors in the Data/Next data array (Randomly for Writ-

ing data, Rand-W) and sets the State/Next array (Rand-W).

For instance, in Fig.2.7 (left side), the value of vertex 3 will be pushed to its neigh-

boring vertices 1 and 4 along out-edges, which we highlighted in red arrows.

• Pull direction. In this mode, at each iteration, the algorithm evaluates the entire

vertices array (i.e., the CSR/Vertices array in Fig. 2.5 – right side) to pull/gather

the data of their active incoming neighbors to update their own data. For that, it

performs the following steps:

(i) For each vertex in the Vertices array (Seq-R), the worker thread first obtains

its active neighbors through the CSR/In-edges array (Seq-R) and State/Curr

state arrays (Rand-R);

(ii) Thus, the worker thread pulls the value from the active neighbors in the Data/Curr

array (Rand-R) to update the vertex’s data in the Data/Next array (Seq-W) and

sets the State/Next array (Seq-W).

For instance, vertex 3 will pull the value of its neighbor vertex 1 along the in-edge

to update its own value.

As mentioned, the graph processing algorithms perform differently when imple-

mented with the above modes. For instance, the work of Beamer, Asanović and Patterson

(2017) showed that the pull-based implementation of the PageRank algorithm is often

more efficient than the push-based one since it removes the need for atomic operations

to add each neighbor’s rank score. Beamer, Asanovic and Patterson (2012) have also

shown that a hybrid push-pull implementation benefits the Breath-First Search (BFS) al-

gorithm. The observation is that the push mode is better when the frontier of active ver-

tices is small (i.e., a few 1’s in the State/Curr array). Otherwise, the pull mode will yield

speedups when the active frontier is a substantial fraction of the total graph, commonly

occurring in small-world graphs such as social networks. Later, this idea was generalized

by the work of Shun and Blelloch (2013), which implemented different graph algorithms

that switch between push and pull modes depending on the size of the frontier of active

vertices.

As a summary, although different frameworks combine some of the techniques

mentioned above to provide efficient execution for various algorithms and input graphs,

40

Table 2.2: Graph algorithms’ features.

single-source
/whole-graph (Un)Weighted Vertex per

iteration
push
/pull

traversal/
compute

BC single-source Unweighted Part push compute
BFS single-source Unweighted Part push e pull traversal
CC whole-graph Unweighted Part push traversal
PR whole-graph Unweighted All pull compute
SSSP single-source Weighted Part push traversal

Source: The author.

each graph algorithm has its characteristics that need to be considered to achieve high

performance, such as: whether it requires a starting vertex or not; if it considers the

weight of the graphs; the number of vertices processed in each iteration; and also if the

algorithm focuses on to traverse the graph’s vertices (e.g., search for a vertex using BFS)

or to compute properties of the graph’s vertices (e.g., compute the rank score of a vertex

using the PR algorithm).

2.2.1 Graph Algorithms

This thesis mainly evaluates five distinct graph algorithms, which represent many

applications within social network analysis, engineering, and science (SAHU et al., 2020).

We considered algorithms that focus the optimization in both graph traversal and compute

the vertices’ properties. Next, we describe them and summarize their characteristics in

Table 2.2.

• PageRank (PR). Although it is the core of the Google search engine (ROGERS,

2002), the PR algorithm has been applied in many other applications, such as to

quantify the scientific impact of researchers and in the analysis of protein networks

(SENANAYAKE; PIRAVEENAN; ZOMAYA, 2015; IVÁN; GROLMUSZ, 2011).

PR algorithm iteratively calculates the rank scores for all vertices in the graph. For

that, it computes the rank score for each vertex using the following formula:

PR(v) =
1− d
|V |

+ d
∑

u∈N−(v)

PR(u)

|N+(u)|
,

where d is the dumping factor, V is the set of vertices in the graph, N−(v) is the set

of vertices that v has an in-going edge to them, and similarly, N+(u) is the set of

41

vertices that u has an out-going edge to them. Therefore, the score of a vertex v is

based on the score of the vertices that point to v (u ∈ N−(v)). The dumping factor

d is a click-through probability, which prevents vertices with no outgoing edges

(sinks) from absorbing the ranks of those vertices connected to the sinks. Thus,

d = 0 means that all edges are random and uniformly distributed throughout the

vertices (the 1
|V | coefficient in the first term) by definition. A common value for this

parameter is 0.85 (FU; LIN; TSAI, 2006).

• Connected Components (CC). This algorithm is used in social network applications

to identify groups of people who are friends of each other or who have common

interests (BEAMER; ASANOVIĆ; PATTERSON, 2015). A CC is a set of vertices

Vc ⊆ V in which an undirected path exists between any pair of vertices belonging

to Vc. The algorithm assigns a unique label to each CC and all its vertices. Vertices

with zero degrees (isolated vertices) are considered CC and receive labels. When

the input graph has direct edges, the algorithm only requires weakly connected

components. Thus, in this case, a CC is interpreted as a set of vertices Vc ⊆ V

where for each pair of vertices (v, u) ∈ E there exists a path from v to u or from u

to v.

• Breadth-First Search (BFS). One can find BFS in the literature as a kernel of sev-

eral other graph processing algorithms, such as the connected components and the

topological ordering (BEAMER; ASANOVIC; PATTERSON, 2012; MCCUNE;

WENINGER; MADEY, 2015). It has wide applicability in recommendation sys-

tems, such as the one used by Alibaba’s Website (SAHU et al., 2020). BFS algo-

rithm traverses the graph from a source vertex, visiting all vertices of the same depth

(distance from the source) before advancing to the next one. For that, it keeps track

of parent vertices. However, for any vertex reached from the source, there is often

more than one possible parent vertex since any incoming vertex in a depth one less

than the reached vertex could be its parent. Thus, different parent vertices cause

more than one correct solution to BFS. Because of that, a correct solution for the

BFS starting from a source vertex gives a final parent array satisfying the following

rules: Let source, v, u,∈ V , where source is the source vertex, and parent[v] and

depth[v] are the parent and depth of a vertex v, respectively.

– parent[source] = source;

– parent[v] = −1 if v is unreachable from source;

42

– if v is reachable from source and parent[v] = u, there exists an edge from u

to v;

– if v is reachable from source and parent[v] = u, depth[v] = depth[u] + 1.

• Single-Source Shortest Paths (SSSP). This algorithm has been widely applied in

Global Positioning System (GPS) applications for path mapping purposes (SAHU

et al., 2020). However, it also has applicability in plant and facility layout, robotics,

and VLSI design (CHEN, 1996). SSSP calculates all the shortest reachable paths

from a given source vertex. The distance between a pair of vertices is defined

as the sum of edge weights along the minimum path connecting them. Unlike

BFS, SSSP does not keep track of the parent vertices since the final solution is

the distances and not the shortest paths. Although there may be more than one

shortest path connecting a pair of vertices, all of them will have the same distance.

Therefore, a correct SSSP solution is the one that satisfies the following rules: Let

source, v, u,∈ V , where source is the source vertex, and distance[v] being the

distance from the source vertex.

– distance[source] = 0;

– distance[v] = ∞ (or some known sentinel value) if v is unreachable from

source;

– If v is reachable from source, there is a path of combined weight distance[v]

from the source to v;

– If v is reachable from source, there is no path of combined weight less than

distance[v] from the source to v.

• Betweenness Centrality (BC). One can find practical BC applications in social net-

work analysis (STOLZ; SCHLERETH, 2021), and the analysis of the topological

complexity of river networks as well as their use in maritime trade (SARKER et al.,

2019). BC approximates the BC score of the graph by a subset of vertices, in which

the score for a vertex v is the ratio between the shortest paths that go through v and

all the shortest paths of the considered set. BC updates the vertices scores using the

following formula:

BC(v) =
∑

s,t∈V,s 6=v 6=t

σst(v)
σst

,

where σst is the number of shortest paths between vertices s and t, and σst(v) is the

43

number of those shortest paths that pass through v.

2.3 NUMA Systems

The computing power and memory storage capacity of the High-Performance

Computing (HPC) servers have been increasing on a large scale in recent years, pushing

forward applications that extract useful information from massive data (DHULIPALA;

BLELLOCH; SHUN, 2021). Modern HPC servers comprise several shared memory mul-

tiprocessors based on Non-Uniform Memory Access (NUMA) architecture. NUMA ma-

chines present better scalability than Uniform Memory Access (UMA) ones as the number

of cores increases, supporting higher available bandwidth. Because of that, such systems

have become commonly used in top-end HPC servers (for example, the Fugaku Super-

computer, which led the TOP500 in November 20205).

NUMA systems comprise several NUMA nodes. A NUMA node consists of a

multicore processor with its own memory controller and memory attached. NUMA nodes

are connected by fast interconnect links (e.g., QuickPath Interconnect and HyperTransport

Interconnect on Intel and AMD computers, respectively). Figure 2.8 illustrates a NUMA

system composed of 2 nodes (Node 0 and Node 1). Each node has 2 cores with 2-way

Simultaneous Multi-Threading (SMT), resulting in a total of 8 hardware threads, e.g.,

4 physical cores (C0, C1, C2, and C3) and 4 logical cores (C4, C5, C6, and C7). As

a real example, the Fugaku Supercomputer mentioned above comprises many A64FX

processors, which are Arm-based HPC processors composed of 4 NUMA nodes with 12

cores and 48 hardware threads.

Figure 2.8: Representation of a NUMA system.

LLC

Memory

L1/L2 L1/L2

LLC

Memory

L1/L2 L1/L2

C0 C4 C2 C6 C1 C5 C3 C7

T0

1 2

Node 0 Node 1

Source: The author.

Although NUMA systems have more than one physical memory, they usually

5Top500 - Supercomputer Fugaku.

https://top500.org/system/179807/

44

share a single physical address space, with consistency being kept by the use of ad-

vanced cache coherence mechanisms. Therefore, threads running on any core can access

data locally (in the same NUMA nodes’ memory) or remotely (in any available system’s

memories). However, as the interconnect link is slower than the local node’s memory

bus, remote memory accesses present higher latency than the local ones. Similarly, data

accesses resolved by remote caches also impose a higher latency (DIENER et al., 2015).

Therefore, where threads and data are located across the available resources plays

an essential role in the performance: when threads request data from a memory region

located in another node (remote access), the access latency will be higher than if it was

accessing data from its node’s memory (local access). Hence, reducing the number of

accesses to remote memory will likely improve application performance (TAM; AZIMI;

STUMM, 2007; DIENER et al., 2015). Such performance benefits also come when the

parallel application uses only the necessary processing resources obtained by setting a

number of threads compatible with the application’s scalability. Next, we describe how to

adjust the thread and data mapping as well as the number of threads on NUMA machines.

2.4 Thread/Data Mapping and Adjusting Number of Threads on NUMA Systems

2.4.1 Thread Mapping

Also called thread placement, thread mapping (TM) is the process of assigning

threads to cores (DIENER et al., 2016). It can specify a fine-grain mapping, defining

a thread-to-core allocation, or a coarse-grain mapping, indicating only the NUMA node

where the threads must run (i.e., threads can run in any core of that node). Taking again

the Fig 2.8 as an example, it shows a single thread T0 that is mapped to core C0 of the

example NUMA system.

The Linux Operating System (OS) uses the Completely Fair Scheduler (CFS) to

perform thread mapping, which aims at fairness (to share running time to all tasks) and

resource usage balance (LINUX, 2021). The CFS allocates threads in a round-robin way

across the NUMA nodes (similar to the Scatter policy explained next), which may not be

the best one for many applications since it can assign threads that likely share data far from

each other. Moreover, to save power, CFS can map a group of idle threads to the same

core, and when they become active, CFS migrates them to different cores. Even though

it may be beneficial w.r.t. system utilization, migrating threads among the cores requires

45

context copying, which may become very expensive when performed several times in a

time slice. As an alternative, other thread mapping policies in the literature consider the

execution of several parallel applications to perform the placements (DIENER et al., 2015;

SCHWARZROCK et al., 2020). In Figure 2.9, we illustrate the thread-to-core assignment

generated by 3 different thread mapping policies (Scatter, Contiguous, and Close) when

executing an example application comprised of 8 threads (blue circles, where T# refers to

thread #, for example) on the NUMA system illustrated in Figure 2.8. We describe each

thread mapping policy below.

• Scatter. This thread mapping policy focuses on load balancing and reducing cache

contention. It allocates the threads in a round-robin way, distributing them across

the nodes as evenly as possible, first in the physical cores and then the logical

cores. As shown in Fig. 2.9A, while the first 4 threads are allocated to physical

cores threads (T0→ C0, T1→ C1, T2→ C2, T3→ C3), the remaining threads are

assigned to the logical ones (T4→ C4, T5→ C5, T6→ C6, T7→ C7);

• Contiguous. It aims to improve the locality of memory accesses. Threads are

placed continuously across a node’s cores by placing neighboring threads (consid-

ering the threads’ ID) on neighboring cores (i.e., first in the physical cores and after

in the logical cores). As shown in Fig. 2.9B, while the first 4 threads are allocated

to the cores in the first NUMA node (e.g., T0 → C0, T1→ C2, T2 → C4, T3 →

C6), the remaining threads are assigned to the second NUMA node (e.g., T4→ C1,

T5→ C3, T6→ C5, T7→ C7);

• Close. This policy aims to improve cache utilization. The neighboring threads are

allocated on the same core, i.e., the physical and the logical cores. For example,

in Fig. 2.9C), each pair of consecutive thread tend to share some level of cache

memory (e.g., T0 and T1 shares L1/L2 and T0 and T2 shares LLC).

Controlling Thread Mapping. Configuring the thread mapping policies on the

Figure 2.9: Examples of A) Scatter + First-Touch, B) Contiguous + Interleave, and C)
Close + NUMA Balancing.

BA C

LLC

Memory

L1/L2 L1/L2

LLC

Memory

L1/L2 L1/L2

C0 C4 C2 C6 C1 C5 C3 C7

T0 T4 T2 T6 T1 T5 T3 T7

LLC

Memory

L1/L2 L1/L2

LLC

Memory

L1/L2 L1/L2

C0 C4 C2 C6 C1 C5 C3 C7
T0 T2 T1 T3 T4 T6 T5 T7

LLC

Memory

L1/L2 L1/L2

LLC

Memory

L1/L2 L1/L2

C0 C4 C2 C6 C1 C5 C3 C7
T1 T2 T3 T4 T5 T6 T7

Scatter + First-Touch Contiguous + Interleave Close + NUMA Balancing

T0

1 2 1 2 221

Source: The author.

46

Linux OS can be done in different ways. This section explains tools capable of setting

any of the above standard thread mapping policies or another user-defined mapping con-

figuration (i.e., a solution based on the user expertise of a specific parallel application) –

we will explore both in this work.

For OpenMP applications, the OpenMP runtime library provides some options to

set TM policies, as explained above, through environment variables. One can set standard

thread mapping policies through the variable OMP_PROC_BIND, such as Close and Scat-

ter. The same policies can be set inside the parallel code through the proc_bind clause.

On top of that, in the GNU implementation of the OpenMP, the GOMP_CPU_AFFINITY

environment variable can be used to set the thread-to-core affinities. Thus, one can set the

policies by specifying the placement according to the system topology. Notice that other

user-defined thread mappings can also be defined through the GOMP_CPU_AFFINITY

environment variable. Similarly, Intel’s implementation of the OpenMP offers this func-

tionality through KMP_AFFINITY.

For parallel applications implemented with other shared memory libraries (e.g.,

Pthreads implementations), one can use the “Linux-portable” methods taskset or numactl

tool (KLEEN, 2004), as explained below.

• taskset. As an example, one can launch an app.x as taskset -c 0,2,4,6

app.x specifying that the application must run on cores 0,2,4,6 (any core of Node

0 in Fig. 2.8). However, it is not a strict thread-to-core assignment, so the threads

can execute on any core and even share the same cores, leaving other cores idle.

To take control of the thread-to-core allocations, one must identify the threads’

ID (using ps or top commands after firing the application execution) and use the

taskset command to set the affinities specifying the ID of the thread and the core

to assign it to. For example, the command taskset -p -c 0 1234 assigns a

thread with ID 1234 to core 0;

• numactl. Since the numactl tool is aware of the processor topology and how the

CPU cores map to CPU sockets, one is capable of setting the affinity on a coarser-

grained basis (i.e., CPU sockets rather than individual CPU cores) than taskset (only

CPU cores). To specify the same set of cores as shown in the taskset example above

(i.e., to specify the Node 0 of the NUMA system of Fig. 2.8), one can use numactl

-cpunodebind=0 app.x. However, the same problem to set the thread-to-core

affinity happens here. Thus, one also must identify the threads’ ID (using ps or top

commands during the application execution) and use the numactl command. For

47

example, using numactl -physcpubind=0 1234 to map a thread with ID

1234 to core 0.

2.4.2 Data Mapping

Also called memory page placement, data mapping (PM – page mapping) is the

assignment of pages to memory controllers, i.e., it defines which NUMA node each mem-

ory page will be allocated. For example, Fig 2.8 shows the placement of two pages (1 and

2 in green) in two different NUMA nodes. The literature has different mapping poli-

cies, each differing in their optimization objectives (DIENER et al., 2016). First-Touch is

the default page mapping policy in many OS, including Linux. Next, we describe such

a policy and two other widely used policies available on the Linux OS. In addition to

thread mapping policies, we also show in Figure 2.9 the data mapping policies, where the

numbered green figures represent the application’s data/pages and the red arrows indicate

which threads are accessing them (and in which memory).

• First-Touch. As mentioned before, it is the default data mapping policy on the

Linux OS. This policy places the data on the NUMA node where the thread that

performs the first access to the data is running (DIENER et al., 2016). First-Touch

assumes that the first thread to access a data will perform the most accesses to it, as

shown in Figure 2.9A;

• Interleave. This policy aims at maximizing load balance by distributing the pages

as evenly as possible among the nodes, balancing the load on the memory con-

trollers, and increasing memory system throughput. As shown in Figure 2.9B, even

though page 1 and page 2 are accessed by threads running on the same NUMA

node, they are mapped to different memories;

• NUMA Balancing. The above mapping policies are static, so the pages are allo-

cated and remain in the same NUMA node until the execution ends, not considering

the applications’ dynamic access behavior. On the other hand, Linux’s NUMA Bal-

ancing tool is dynamic since it adapts the data mapping as the application executes

(CORBET, 2012). The NUMA Balancing policy attempts to adapt the page map-

ping to changes in the memory access behavior by migrating memory pages to the

node where the thread accessing that page is running whenever a page fault occurs.

For example, as shown in Figure 2.9C, page 2 was initially placed on one memory

48

accessed by T2, but it had to change to another memory when T4 accessed it.

Controlling Data Mapping. Configuring the above standard data mapping poli-

cies is performed at the OS level, regardless of which shared memory library the appli-

cation implements (e.g., OpenMP and Pthreads). As mentioned, the First-Touch is the

default data mapping policy in Linux OS. To set the Interleave policy, one must use the

numactl tool specifying the parameter -interleave=all (KLEEN, 2004). Also,

one can enable the NUMA Balancing feature by configuring a kernel parameter, speci-

fying Linux’s file /proc/sys/kernel/numa_balancing to 0 or 1 to disable and

enable NUMA Balancing, respectively.

2.4.3 Thread Throttling

Thread Throttling is a technique to optimize the parallel application execution by

adjusting the number of threads (NT). It is an effective technique for many parallel ap-

plications that have sub-linear scalability (CHADHA; MAHLKE; NARAYANASAMY,

2012; LORENZON et al., 2018) so that reducing the number of threads to execute such

applications brings performance benefits over the default parallel execution, which uses

the maximum number of threads (SULEMAN; QURESHI; PATT, 2008). The parallel

scalability limitations are related to both software and hardware issues (LORENZON et

al., 2018), such as:

• Saturation of functional units. Although SMT can benefit applications with low

instruction level parallelism (ILP), it may result in extra idle cycles if an individual

thread presents enough ILP to issue instructions in most of the core’s functional

units;

• Off-chip bus saturation. The off-chip bus bandwidth is limited by the number of

I/O pins, which does not increase as the number of cores increases. Thus, when it

saturates, there are no further improvements by increasing the number of threads;

• Overhead of data synchronization. The overhead of threads’ communication through

shared regions on caches and main memories may also become a bottleneck;

• Number of accesses of shared memory. As a single thread must execute a critical

section (region of code) at once when the number of threads increases, more threads

must be serialized inside the critical sections, increasing the synchronization time.

49

Figure 2.10: Timelines of an parallel application running on a system with 32 hardware
threads. The application has three parallel regions (identified by circles with different
colors). Each number inside the circles indicates the number of threads used to execute
the parallel region.

(a) Default execution of a parallel application.

Exec. Timeline
Serial Regions Parallel Regions

32 32 32 32 32 32

Number of Threads

Default

Exec. Timeline

16 16 16 16 16 16

OMP_NUM_THREADS = 16

Static

Exec. Timeline

16 16 32 32 12 12

omp_set_num_threads(16)

Dynamic
omp_set_num_threads(12)

omp_set_num_threads(32)

(b) Static thread throttling.

Exec. Timeline
Serial Regions Parallel Regions

32 32 32 32 32 32

Number of Threads

Default

Exec. Timeline

16 16 16 16 16 16

OMP_NUM_THREADS = 16

Static

Exec. Timeline

16 16 32 32 12 12

omp_set_num_threads(16)

Dynamic
omp_set_num_threads(12)

omp_set_num_threads(32)

(c) Dynamic thread throttling.

Exec. Timeline
Serial Regions Parallel Regions

32 32 32 32 32 32

Number of Threads

Default

Exec. Timeline

16 16 16 16 16 16

OMP_NUM_THREADS = 16

Static

Exec. Timeline

16 16 32 32 12 12

omp_set_num_threads(16)

Dynamic
omp_set_num_threads(12)

omp_set_num_threads(32)

Source: The author.

We illustrate in Fig. 2.10 different timelines representing different ways to set the

number of threads of a parallel application executing on a multicore with 32 hardware

threads, where lines and circles represent serial and parallel regions, respectively. The

application is represented by three different parallel regions, each with a different color.

The number inside each circle indicates the number of threads used to execute that specific

parallel region. Fig. 2.9a depicts the Default parallel execution, where every parallel

region uses the maximum number of threads available on the system.

Adjusting the number of threads can be applied Statically or Dynamically. Static

thread throttling, as illustrated in Fig. 2.9b, consists in setting the specific number of

threads at the beginning of the application’s execution and keeping the same value dur-

ing the entire execution, i.e., it uses the same number of threads for all parallel regions.

50

Dynamic thread throttling, on the other hand, adapts the number of threads based on the

behavior of each parallel region, so it adjusts the number of threads for each of them as

the application executes, as illustrated in Fig. 2.9c.

Controlling the Number of Threads. One can control the number of threads of

a parallel application through an application programming interface (API). In the case of

OpenMP applications, Static thread throttling can be defined by setting the OMP_NUM_THREADS

environment variable before the application execution so all parallel regions will execute

with the same number of threads. However, for the Dynamic thread throttling, as OpenMP

does not allow changing the number of threads using environment variables during exe-

cution, one has to use the omp_set_num_threads() routine or the num_thread

clause of a parallel directive inside the application source code. When no value is set

for such a routine or clause, the parallel region is executed with the maximum number of

threads (the default configuration).

51

3 RELATED WORK

In this chapter, we present the related work concerning (i) the works that enhance

generic parallel applications by optimizing thread and data mapping on NUMA systems,

(ii) the works that adjust the number of threads of generic parallel applications, and (iii)

the graph processing frameworks that focus their optimization on NUMA systems.

3.1 Thread and Data Mapping on NUMA Systems

Thread Mapping. Some approaches in the literature place threads according to

applications’ communication behavior. However, there is no direct and easy way to iden-

tify the communication among the application’s threads on shared memory systems since

they communicate implicitly, i.e., the communication happens when threads share data at

the same time slice. For that, most of them collect statistics from the application execu-

tion, taking optimization decisions either offline (before firing the application execution)

or online (during the application execution). Such statistics-based thread mapping mech-

anisms work by (i) detecting the threads’ communication behavior and (ii) computing

the thread-to-core placement using the communication behavior and the target hardware

topology. After that, such approaches place or migrate the threads accordingly.

In this context, the work of Tam, Azimi and Stumm (2007) proposed an online

scheme to cluster threads based on their data-sharing pattern and place each cluster into

the same NUMA node. Their proposal monitors stall cycles and data cache misses to de-

termine the communication pattern. Cruz, Diener and Navaux (2012) proposed a mech-

anism to detect threads’ communication by monitoring information from the Transla-

tion Lookaside Buffer (TLB). The proposed mechanism outputs a communication matrix,

which is used to compute the thread mapping through a heuristic method based on an

algorithm for the graph-matching problem. A later work (CRUZ; DIENER; NAVAUX,

2015) inherited their idea to propose an online mechanism that migrates pages using the

mapping strategy they have proposed before. Similarly, Diener, Cruz and Navaux (2013)

proposed an online mechanism that allocates threads with a high amount of communi-

cation between them to neighbor cores. For that, it detects the communication between

threads by monitoring page table accesses and uses a heuristic based on an algorithm for

the graph-matching problem to define the thread-to-core allocation.

Along with the threads’ communication behavior, the works of Jeannot, Mercier

52

and Tessier (2013) and Cruz et al. (2015) also considered information on the target hard-

ware topology to propose algorithms to compute the thread-to-core placement. The al-

gorithms aim to maximize the data access locality by placing threads that share data into

cores closer to each other. Jeannot, Mercier and Tessier (2013) and Cruz et al. (2015)

have evaluated their proposal when employing it in an offline mechanism, but it can also

be applied to online approaches.

There are also works that used the traditional thread mapping policies (as de-

scribed in section 2) to improve the performance of parallel applications. For example,

Papadimitriou, Chatzidimitriou and Gizopoulos (2019) have used such policies along with

voltage and clock frequency adjustment to save energy on ARMv8 servers.

Data Mapping. Similar to the above-presented works, there are also statistics-

based data mapping proposals in the literature, either offline or online. The offline strate-

gies collect the memory access behavior and compute the page mapping before applica-

tion execution, and then apply the data mapping when the application starts (MARATHE;

THAKKAR; MUELLER, 2010; DIENER; CRUZ; NAVAUX, 2015). The online ones

perform the mapping and data migration during the application execution (DASHTI et

al., 2013; GUREYA et al., 2020a).

Marathe, Thakkar and Mueller (2010) propose a method to maximize local mem-

ory accesses by allocating memory pages to the node with the most accesses. The work

of Diener, Cruz and Navaux (2015) proposed two new data mapping policies: Balance

and Mixed. While the Balance leads to load-balance between memory controllers by con-

sidering the number of access to each page, Mixed focuses on combining memory access

locality and page interleaving. Dashti et al. (2013) proposed Carrefour, an online data

mapping algorithm that replicates or migrates data to maximize memory bandwidth uti-

lization. It decides the data placement dynamically based on global observations of traffic

congestion and access patterns of individual pages. Based on that, Carrefour places some

data to maximize locality and interleaves the others. The work of Gureya et al. (2020a)

proposed an asymmetric data placement mechanism that interleaves the pages based on

a weighted distribution to maximize bandwidth. The proposal incrementally migrates

data until an appropriate page distribution for the application is found during the applica-

tion execution. Although it is an online approach, calibrating the target system topology

bandwidth model requires an offline phase.

Thread and Data Mapping Together. The above-presented works assume the

thread affinity knowledge as prior information and place the data according to it (DASHTI

53

et al., 2013; DIENER; CRUZ; NAVAUX, 2015). However, the benefits of data mapping,

especially for those statistic-based approaches, depend on thread mapping since the best

local for memory pages depends on where the threads that access them the most are

running. In this context, some works have proposed memory tracer tools for analyzing

the memory access behavior of parallel applications, such as Numalize (DIENER et al.,

2015), Tabarnac (BENIAMINE et al., 2015), and NumaMMA (TRAHAY et al., 2018).

These tools support offline optimizations by providing information that helps with thread

placement and data placement decisions.

Numalize (DIENER et al., 2015) is an offline tool that provides information about

threads’ communication through a communication matrix that gives the amount of com-

munication between each pair of threads. For that, it considers, as a communication event,

each access to the same cache line within the same time slice. Since Numalize collects the

memory trace by a fine-grained level, it incurs an overhead of about 10× the application

execution time. It also provides page usage statistics – the number of accesses each page

received from each thread. The other two tools, Tabarnac (BENIAMINE et al., 2015)

and NumaMMA (TRAHAY et al., 2018), offer a graphical environment that allows the

developer to understand the memory access patterns and, based on that, fix performance

issues.

Based on the communication matrix generated as output of the Numalize tool,

Diener et al. (2015) proposed an offline approach to place threads that share data on cores

that shared caches and pages on the NUMA node with the most access to them. It also

performs threads and data migrations. For that, it uses Numalize to collect information at

each time slice, and with that, it can provide the mappings for each application phase.

Other statistic-based approaches have also been proposed to provide online thread

and data mapping/migrations for parallel application execution. In this context, Broquedis

et al. (2010a) and Broquedis et al. (2010b) proposed ForestGOMP, an extension to the

OpenMP runtime environment. ForestGOMP decides thread and page migration based

on memory affinities (given by the programmer) and hardware counters. With that, it

schedules threads to cores to maximize cache memory reuse and maps the data to reduce

remote memory accesses. The work of Diener et al. (2014) proposed kMAF, an OS-level

tool that aims to improve data locality by adjusting thread and page mapping. kMAF

analyzes page faults to identify memory access behavior. Based on that, it decides the

optimized mappings and migrates threads and memory pages. Finally, Lepers, Quéma

and Fedorova (2015) proposed AsymSched, a runtime algorithm that migrates threads and

54

pages to maximize memory bandwidth. AsymSched considers asymmetric interconnect

present in some NUMA systems to make migration decisions.

3.2 Thread Throttling

Static Approaches. A few studies have proposed to find a single number of

threads that optimizes the entire application execution. The methods introduced by Pusukuri,

Gupta and Bhuyan (2011) and by Sensi (2016) serve as examples of such approaches.

Thread Reinforcer (PUSUKURI; GUPTA; BHUYAN, 2011) entails running the applica-

tion multiple times over a short interval, varying the number of threads to identify the

optimal configuration. It relies on OS-level data to guide this exploration. The approach

detailed by Sensi (2016) employs a multiple linear regression model to predict the ideal

combination of thread count and CPU frequency level for achieving optimal performance

and power efficiency.

Some static methods opt for a particular configuration for each parallel region,

considering their different requirements. An example of such an approach is NuCore, a

model to predict the ideal number of threads for each parallel region to maximize band-

width usage while minimizing the load on cores of different NUMA nodes. The model

considers scalability concerns related to bandwidth saturation but does not address the

performance drawbacks resulting from cache contention and data synchronization in par-

allel applications.

Dynamic Approaches. The strategies described here are dynamic, operating en-

tirely during runtime. As they make thread count decisions during the application execu-

tion, they focus on optimizing each application’s phase individually. These approaches

mainly vary in their learning methods or determining the optimal number of threads:

whether they predict a solution or evaluate different solutions to converge to the best one.

The following studies employ prediction and estimation techniques. In Suleman,

Qureshi and Patt (2008), the FDT framework is introduced, which dynamically predicts

the optimal number of threads at runtime, considering data synchronization and bus band-

width saturation issues. Varuna (SRIDHARAN; GUPTA; SOHI, 2014) consists of an an-

alytical engine that continually monitors system changes to determine the optimal level

of parallelism, along with a manager that oversees the execution to align with the prede-

fined level of parallelism. In the work by Shafik et al. (2015), an adaptive and scalable

energy-saving model for OpenMP programs is proposed. This model leverages DCT and

55

dynamic voltage and frequency scaling (DVFS) and involves two steps: (i) the program-

mer inserts code notations in the code to enable energy saving with specified performance

requirements, and (ii) the runtime system reads these requirements and uses the informa-

tion to guide energy saving. Finally, in Sensi, Torquati and Danelutto (2016), Nornir is

introduced, which is an algorithm aimed at determining a configuration encompassing the

number of threads, CPU frequency, and thread placement policy to meet specific bounds,

either on performance or power consumption.

The runtime systems introduced by Chadha, Mahlke and Narayanasamy (2012)

and Porterfield et al. (2013) implement thread count adjustments based on runtime ob-

servations. In the case of the LIMO runtime system proposed by Chadha, Mahlke and

Narayanasamy (2012), it reduces the number of active threads to prevent cache saturation

or when a thread is suspended. Additionally, LIMO employs DVFS to increase the fre-

quency of active cores when a few threads are executing. The runtime system outlined by

Porterfield et al. (2013) incorporates dynamic cache throttling (DCT) and CPU duty-cycle

techniques to conserve energy. By monitoring hardware performance counters, this sys-

tem decides when to modify the configuration, and such changes are implemented during

the next available opportunity, typically in the subsequent parallel region execution.

The following studies employ methods to evaluate multiple solutions during appli-

cation execution to converge to an optimal solution: Conductor by Marathe et al. (2015)

is a runtime system designed to enhance performance within power constraints for Open-

MP/MPI applications. It requires code modifications to insert functions into the applica-

tions. Conductor parallelizes the search by distributing various thread counts and CPU

frequency configurations among MPI processes to accelerate the online search. In the

work of Li and Martinez (2006), a hill-climbing heuristic and a linear search are used to

identify the thread count and DVFS level configuration that optimizes power while meet-

ing performance constraints. Various libraries proposed in Lorenzon, Souza and Beck

(2017), Schwarzrock et al. (2017), Lorenzon et al. (2018), Alessi et al. (2015) employ a

hill-climbing-based algorithm to determine specific configurations for each parallel region

during application execution. The focus of these libraries varies, with some directed at

Intel and AMD processors (LORENZON et al., 2018) and others targeting ARM proces-

sors (SCHWARZROCK et al., 2017). Alessi’s library also fine-tunes the CPU operating

frequency and the number of threads. The framework introduced by Bari et al. (2016)

optimizes OpenMP parallel applications within specified power constraints by adjusting

the number of threads, scheduling policies, and chunk sizes for each parallel region. The

56

framework identifies configurations using a Nelder-Mead search algorithm. As proposed

by Oliveira (2019), Odin utilizes a Fibonacci-based algorithm to reduce the search space

and discover the best configuration for the number of threads and CPU frequency during

runtime.

Hybrid Approaches. Some approaches follow a hybrid learning strategy so that

they determine the optimal thread count during application execution but require prior

knowledge of the application or undergoing an offline training phase specific to the target

system: In the work by Jung et al. (2005), a performance model for SMT multiprocessor

architectures is introduced to identify the optimal number of threads for each parallel loop.

This technique includes a compiler time phase for identifying parallel regions with sub-

optimal scalability. Thread Tailor, proposed by Lee et al. (2010), is a dynamic compiler

that reduces active threads by combining them to minimize communication and synchro-

nization. It incorporates an offline phase to analyze the inter-thread relationships within

each application. The runtime system developed by Curtis-Maury et al. (2006, 2008) pre-

dicts the optimal configuration for various dimensions of parallelism, such as the number

of multicore processors, cores within processors, and threads within cores. It adapts this

configuration for each parallel region. Their approach features an offline phase for con-

structing prediction models and calibrating coefficients, a process performed once for the

specific target system. In the work by Li et al. (2010), an instrumentation library for

hybrid MPI/OpenMP applications is proposed to optimize individual OpenMP regions.

The library includes an offline phase for training a model used at runtime to estimate the

suitable thread count and CPU frequency configuration.

Most of the works discussed in this section ignore the influence of thread and page

placement on application performance, particularly when running on NUMA systems.

However, a few proposals address thread placement in addition to adapting the number of

threads: Nornir by Sensi, Torquati and Danelutto (2016) considers thread placement and

deploys threads based on traditional placement policies; NuCore by Wang, Davidson and

Soffa (2016) defines the number of active cores per NUMA node, which can be consid-

ered a coarse-grain form of thread placement. However, neither of the works mentioned

address data mapping.

In summary, the works discussed so far typically focus on either thread and data

mapping or thread throttling individually. The following section will describe works that

couple thread and page mapping with thread throttling.

57

3.3 Thread Throttling along with Thread Mapping and Page Mapping

Only the studies proposed by Popov, Jimborean and Black-Schaffer (2019) and

Schwarzrock et al. (2020) have explored the potential of fine-tuning NT+TM+PM for

generic applications. Both are offline strategies: one employs a comprehensive search

across all possible NT+TM+PM combinations (POPOV; JIMBOREAN; BLACK-SCHAFFER,

2019), while the other optimizes each parameter separately along defined sequences (SCHWARZ-

ROCK et al., 2020).

Popov, Jimborean and Black-Schaffer (2019) is the first attempt to integrate the

optimization of thread and page mapping with thread throttling. They introduce an offline

approach for finding the best configuration through an exhaustive search that evaluates

all possible combinations of such variables. To accelerate the search process, they em-

ploy a technique called codeletes, which involves running representative portions of the

application’s execution to assess each configuration. However, the search procedure can

still be laborious despite the efficiency gains of using codeletes. This is due to the in-

clusion of data mapping policies that require information of the application’s page access

behavior for computing the page placement. To gather the necessary data for this pur-

pose, the authors profile each application using the Numalize tool, which comes with a

significant execution time overhead, approximately 10×, that causes a high overhead for

the developer or user since each possible thread count requires a new profile.

Schwarzrock et al. (2020) evaluated the search space of tuning thread mapping

(TM), page mapping (PM), and number of threads (NT) to identify optimization paths

able to significantly reduce the search space (in at least 70% and up to 86%) while deliv-

ering results 5% different from the optimal one. Their evaluation found that the best path

depends on the application being optimized, but optimizing NT→TM→PM (e.i., NT, TM,

and PM, in this sequence), TM→NT→PM, and TM→PM→NT are the most promising

paths.

3.4 Graph Analytics Optimization

Overview of Graph Optimization Proposals. Since 2004, more than 80 graph

processing works have been proposed from both academia and industry (BATARFI et

al., 2015; YAN et al., 2017; HEIDARI et al., 2018), including specific graph algo-

rithms targeting specific platforms (HARISH; NARAYANAN, 2007; HONG et al., 2011),

58

Graph DataBase Management Systems (HOLZSCHUHER; PEINL, 2013; MCCOLL et

al., 2014), domain-specific languages (DSL) (SUJEETH et al., 2011; HONG et al., 2012),

libraries (GREGOR; LUMSDAINE, 2005; BULUÇ; GILBERT, 2011), and frameworks

(STUTZ; BERNSTEIN; COHEN, 2010; KYROLA; BLELLOCH; GUESTRIN, 2012;

LOW et al., 2014), being the graph processing frameworks the most proposed ones.

From 2010 onward, graph processing frameworks, such as Pregel introduced by Google

(MALEWICZ et al., 2010), became very popular. They usually offer DSLs as the front-

end (i.e., programming interfaces) and compile to a lower-level execution. For example,

graph DSLs such as OptiML (SUJEETH et al., 2011) and Green-Marl (HONG et al.,

2012) target graph processing frameworks, offering a more natural programming inter-

face for users familiar with the graph domain but not with programming in general.

Signal/Collect (STUTZ; BERNSTEIN; COHEN, 2010), GraphChi (KYROLA;

BLELLOCH; GUESTRIN, 2012), and GraphLab (LOW et al., 2014) were the first graph

processing frameworks to be implemented for shared memory environments, enabling

graph processing on consumer computers. Since then, several other graph processing

frameworks have been proposed over the past years (SHUN; BLELLOCH, 2013; NGUYEN;

LENHARTH; PINGALI, 2013; ZHANG; CHEN; CHEN, 2015; ZHU et al., 2016; ZHANG

et al., 2018). They mainly focus on increasing the data locality by applying some sort of

preprocessing in the graph layout or changing the algorithm computation during its exe-

cution. Moreover, they usually offer programming interfaces allowing users to write the

algorithms’ computation while automatically leveraging hardware properties such as data

locality and system efficiency.

Graph Processing on NUMA Machines. Despite many graph processing frame-

works in the literature, most are NUMA-oblivious, so their optimizations may not be

effective for modern NUMA-based machines. Next, we explain the existing works.

The work of Agarwal et al. (2010) investigates the execution of the Breadth-First-

Search (BFS) on NUMA systems to propose a new BFS implementation for large-scale

graph processing. In the proposed BFS, the authors organize the computation around

work queues spread over multiple sockets. Moreover, they use efficient spinning locks

and lock-free channels to synchronize threads, and they also introduce peephole opti-

mizations, e.g., to avoid atomic operations by verifying if they will fail. With that, the

authors combine a high-level BFS design that captures the machine-independent aspects

(ensuring portability with performance to next-generation processors) with an implemen-

tation that embeds processor-specific optimizations.

59

Frasca, Madduri and Raghavan (2012) proposed a NUMA-aware Betweenness

Centrality (BC) implementation. The proposed BC uses (i) an Adaptive Data Layout

(ADL) that observes parallel memory access behavior and dynamically reorders the graph

to improve data locality and (ii) a NUMA-aware task scheduler that encourages better

task to thread assignment while considering the NUMA distances between threads. The

authors show that their dynamic design adapts to hardware topology and dramatically

improves energy and performance.

The work of Zhang, Chen and Chen (2015) investigated the NUMA characteristics

and their impact on the efficiency of graph analytics. Although the conventional wisdom

is that remote memory accesses have higher latency and lower throughput than local ones,

Zhang, Chen and Chen (2015) have shown that sequential remote accesses have much

higher bandwidth than both random local and random remote ones (2.92× and 6.85×).

Further, they also showed that either interleaved or centralized allocation of graph data

on existing graph analytics frameworks causes poor data locality and limited parallelism.

Based on the above observation, Zhang, Chen and Chen (2015) proposed Polymer, a

NUMA-aware graph-analytics framework that aims to minimize both random and remote

memory accesses by optimizing graph data layout and access strategies. For that, Polymer

(i) differentially allocates and places topology data, application-defined data, and muta-

ble runtime states of a graph system according to their access patterns to minimize remote

accesses; and (ii) for some remaining random accesses, Polymer carefully converts ran-

dom remote accesses into sequential remote accesses, by using lightweight replication of

vertices across NUMA nodes.

Sun, Vandierendonck and Nikolopoulos (2017) investigated the adverse effects of

NUMA-based graph partitions on the performance of graph analytics, including load im-

balance, increase in work performed per vertex, and reduction in the density of the graph

connections. They showed that these issues limit the applications’ scalability for large

partition counts (i.e., increasing the number of partitions reaches a tipping point, after

which overheads quickly dominate performance gains). Based on that, Sun, Vandieren-

donck and Nikolopoulos (2017) proposed GraphGrind, a NUMA-aware graph analytics

framework that addresses the limitations incurred by graph partitioning by providing a

fair graph partition strategy and changing from different graph representation (e.g., CSR

and CSC) during the application execution. GraphGrind is based on the Ligra API and

extends from the Cilk programming language, enabling NUMA-aware scheduling and

work stealing.

60

Krause et al. (2019) proposes NeMeSys, a NUMA-aware graph pattern processing

engine that aims to improve graph algorithm execution by leveraging different partitioning

strategies and applying Bloom filter-based messaging optimization. NeMeSys uses the

concept of Near Memory Processing to limit the scope of each worker thread to memory

domains, which are directly connected to their socket, precluding them from performing

expensive remote accesses. NeMeSys focuses its optimization on graph pattern matching

computation, which usually launches several queries from different source vertices. Thus,

the NeMeSys mechanisms for graph partitioning consider an outgoing edge table that

partitions the graphs based on the source vertices.

Inspired by the shared-nothing scale-out designs of distributed graph processing

frameworks, the works of Aasawat, Reza and Ripeanu (2018) and Aasawat et al. (2020)

proposed the Hybrid Graph processing engine for NUMA (HYGN): a graph processing

engine that exploits the characteristics of the synchronous and asynchronous processing

modes. Their solution partitions the graph and binds each partition to a NUMA node to

maximize locality. Then, considering the algorithm, phase of execution, and graph topol-

ogy, HYGN shifts from one processing mode to another during the application execution,

harnessing conditions where each mode holds unique advantages. For example, when the

frontier of active vertices is larger, HYGN takes advantage of remote traffic aggregation

and fast sequential remote access, addressing the limitation of the asynchronous mode

design (e.g., a large amount of expensive remote random access during computation).

Considering the context of NUMA-based machines with hybrid main memories,

the work of Liu et al. (2021) proposes HNGraph, a graph processing framework for

NUMA systems comprised of volatile (DRAMs) and non-volatile memories (NVM).

Since accessing DRAM memories is cheaper than accessing NVM memories (even re-

mote access to DRAM is cheaper than local access to NVM), HNGraph mainly focuses

on improving performance by reducing random access to NVM nodes. For that, it per-

forms a degree-aware partitioning strategy, which distributes high-degree and low-degree

vertices to DRAM and NVM nodes, respectively. For the algorithm execution, HNGraph

exploits two communication primitives: in DRAM nodes, HNGraph aggregates several

accesses to NVM nodes and uses a message-passing communication to perform a single

remote random NVM update; and in NVM nodes, HNGraph uses shared memory prim-

itives to access remote DRAM directly. With that, HNGraph can mitigate the impact of

high-latency NVM accesses on the performance of graph processing.

61

3.5 Contribution of This Thesis

While the works presented in sections 3.1, 3.2, and 3.3 have already shown the

benefits of adjusting the thread/data mapping and the number of threads for generic paral-

lel applications on NUMA systems, most depend entirely on the threads’ communication

behavior. Since graph processing algorithm execution experiences highly irregular com-

munication patterns, such techniques may not benefit graph applications significantly. Be-

cause of that, in this section, we aim to highlight our main contributions concerning works

that aim to optimize graph execution on NUMA machines. As we have already shown

in section 3.4, in this niche of graph computation, only a few works are NUMA-aware

(AGARWAL et al., 2010; FRASCA; MADDURI; RAGHAVAN, 2012; ZHANG; CHEN;

CHEN, 2015; SUN; VANDIERENDONCK; NIKOLOPOULOS, 2017; KRAUSE et al.,

2019; AASAWAT et al., 2020; LIU et al., 2021).

We summarize in Table 3.1, the works described in sections 3.1, 3.2, and 3.3,

which optimize the thread/data mapping and the number of threads for generic parallel

applications. We also summarize in Table 3.2, the works that optimize the execution of

graph applications on NUMA machines, described in the end of section 3.4 (Graph Pro-

cessing on NUMA machines). Both tables describe information of their tuning parameters,

adaptability, if they require changing the source code, and the target APIs. In addition,

Table 3.2 also includes the input graph information used for optimization. Next, we detail

what each column refers to.

Parameters. It indicates what is optimized: Thread/Data mapping and/or Number

of Threads;

Information (only in Table 3.2). It specifies the information gathered and used for

decision-making during the optimization process. As one of our proposals (Graph-

Nroll) considers the source vertex variation, we have a specific column (Src Vertex)

to indicate those works that consider, in some way, which vertex the graph algo-

rithms will start executing;

Adaptability. In this column, the field Learning indicates when the approaches learn

the optimized solution: Offline (OFF) when they learn the solution before applica-

tion execution, which requires profiling/monitoring previously the entire applica-

tion to find the best solution; Online (ON) when they learn without any previous

information, i.e., they have the entire learning process done during application ex-

ecution using only data gathered during the execution; and Hybrid (HY) when they

62

Table 3.1: Characteristics of the strategies proposed for generic applications We mark the
values as “?” when the authors have given no (or unclear) information about that.

Parameters Adaptability

Proposal

T
hr

ea
d

M
ap

pi
ng

D
at

a
M

ap
pi

ng

N
um

be
ro

fT
hr

ea
ds

L
ea

rn
in

g

Se
tti

ng

N
o

C
od

e
C

ha
ng

in
g

APIs

Tam, Azimi and Stumm (2007) x ON DY x Java multithreading
Cruz, Diener and Navaux (2012, 2015) x ON DY x OpenMP, Pthreads
Diener, Cruz and Navaux (2013) x ON DY x Any
Jeannot, Mercier and Tessier (2013) x OFF ST x MPI
Cruz et al. (2015) x OFF DY ? Any
Papadimitriou et al. (2019) x ON DY x Multi-workload
Marathe, Thakkar and Mueller (2010) x OFF ST OpenMP
Dashti et al. (2013) x ON DY x Any
Diener, Cruz and Navaux (2015) x OFF ST OpenMP, Pthreads
Gureya et al. (2020a) x HY DY Any
Broquedis et al. (2010a, 2010b) x x ON DY OpenMP
Diener et al. (2014) x x ON DY x Any
Lepers, Quéma and Fedorova (2015) x x ON DY x Any
Diener et al. (2015) x x OFF DY Any
Beniamine et al. (2015) x x OFF ST ?
Trahay et al. (2018) x x OFF ST ?
Pusukuri, Gupta and Bhuyan (2011) x OFF ST x OpenMP, PThreads
Sensi (2016) x OFF ST x OpenMP, PThreads
Jung et al. (2005) x HY DY x OpenMP
Lee et al. (2010) x HY DY PThreads, MPI
Curtis-Maury et al. (2006, 2008) x HY DY x OpenMP
Li et al. (2010) x HY DY MPI+OpenMP
Suleman, Qureshi and Patt (2008) x ON DY x OpenMP
Sridharan, Gupta and Sohi (2014) x ON DY PThreads, TBB
Shafik et al. (2015) x ON DY OpenMP
Chadha et al. (2012) x ON DY x OpenMP, PThreads
Porterfield et al. (2013) x ON DY x OpenMP
Li and Martinez (2006) x ON DY OpenMP
Marathe et al. (2015) x ON DY MPI+OpenMP
Bari et al. (2016) x ON DY x OpenMP
Alessi et al. (2015) x ON DY OpenMP
Lorenzon, Souza and Beck (2017) x ON DY OpenMP
Schwarzrock et al. (2017) x ON DY OpenMP
Lorenzon et al. (2018) x ON DY x OpenMP
Oliveira (2019) x ON DY x OpenMP
Wang, Davidson and Soffa (2016) x x OFF DY ? Any shared mem.
Sensi, Torquati and Danelutto (2016) x x ON DY OpenMP, PThreads
Popov et al. (2019) x x x OFF DY ? OpenMP
Schwarzrock et al. (2020) x x OFF ST x OpenMP
Graphith x x OFF ST x OpenMP*
PredG x x OFF ST x OpenMP*
GraphNroll x x OFF ST x OpenMP*
PotiGraph x x x OFF ST x OpenMP*

Source: The author.

63

Table 3.2: Graph processing frameworks targeting NUMA systems. We mark the values
as “?” when the authors have given no (or unclear) information about that.

Parameters Information Adaptability

Proposal

T
hr

ea
d

M
ap

pi
ng

D
at

a
M

ap
pi

ng

N
um

be
ro

fT
hr

ea
ds

D
ec

is
io

n-
M

ak
in

g

Sr
c

V
er

te
x

L
ea

rn
in

g

Se
tti

ng

N
o

C
od

e
C

ha
ng

in
g

APIs

Agarwal et al. (2010) Number of NUMA nodes OFF ST x ?

Frasca, Madduri and Raghavan (2012) NUMA topology HY DY x OpenMP

Zhang, Chen and Chen (2015) x Partitioning: number of edges HY DY Pthread, Cilk, OpenMP

Sun, Vandierendonck and Nikolopoulos (2017) x Execution modes: frontier size HY DY Cilk

Krause et al. (2019) Source vertices x OFF ST ? ?

Aasawat et al. (2020) x
Partitioning: vertices’ degree

Execution modes: frontier size
HY DY X OpenMP

Liu et al. (2021) x Partitioning: vertices’ degree OFF ST ? ?

Graphith x x Previous executions OFF ST x OpenMP*
PredG x x Graphs’ features OFF ST x OpenMP*
GraphNroll x x Graphs’ features x OFF ST x OpenMP*
PotiGraph x x x Graphs’ features OFF ST x OpenMP*

Source: The author.

learn as the application executes but rely on some offline training or analysis;

The field Setting indicates when the approaches apply the optimized solution: Static

(ST) when they set the optimized solution at the beginning of the execution, keeping

the same configuration during the entire execution; and Dynamic (DY) when they

set the solution while the application executes, which may change at run-time;

No Code Changing. In this column indicates the approaches that do not demand

the software developer to apply any change in the source code;

APIs. The column API shows the parallel libraries supported by each referred work.

Our proposals focus on optimizing graph processing algorithms, which is not cov-

ered by any of the works in Table 3.1. Although our proposals learn and set the best

solution before the application’s execution (OFF learning and ST setting), PredG, Graph-

Nroll, and PotiGraph leverage the characteristics of the input data to make decisions,

providing adaptability for new input graphs or source vertices (in the case of GraphN-

roll). Therefore, our proposals do not incur any learning overhead during the application’s

execution after being deployed on the target systems. Moreover, they also cover the si-

multaneous adjustment of TM+PM (Graphith, PredG, and GraphNroll) and NT+TM+PM

(PotiGraph), which is addressed by only a fraction of such works.

Regarding the works that optimize graph processing on NUMA machines (Table

3.2), they are:

(i) Not aware of the benefits that simultaneously optimizing NT+TM+PM for graph

64

execution on NUMA system may bring to their proposals (AGARWAL et al., 2010;

FRASCA; MADDURI; RAGHAVAN, 2012; ZHANG; CHEN; CHEN, 2015; SUN;

VANDIERENDONCK; NIKOLOPOULOS, 2017; KRAUSE et al., 2019; AASAWAT

et al., 2020; LIU et al., 2021);

(ii) Not suitable for different graph algorithms since they optimize specific algorithms,

leveraging NUMA topology information that benefits each case (FRASCA; MAD-

DURI; RAGHAVAN, 2012; AGARWAL et al., 2010);

(iii) Time-consuming as they require reordering or partitioning the graph’s vertices be-

fore (AASAWAT et al., 2020; ZHANG; CHEN; CHEN, 2015; SUN; VANDIEREN-

DONCK; NIKOLOPOULOS, 2017; KRAUSE et al., 2019) or during the appli-

cation execution (FRASCA; MADDURI; RAGHAVAN, 2012) (which slowdowns

execution) for each different graph being processed;

(iv) Requires the user to write or change the application code (ZHANG; CHEN; CHEN,

2015; SUN; VANDIERENDONCK; NIKOLOPOULOS, 2017);

(v) Based on improving the data locality by using offline (AASAWAT et al., 2020;

ZHANG; CHEN; CHEN, 2015; SUN; VANDIERENDONCK; NIKOLOPOULOS,

2017; KRAUSE et al., 2019) or online (FRASCA; MADDURI; RAGHAVAN,

2012) strategies that suffer learning overheads before or during the application ex-

ecution.

Contributions. To our knowledge, we are the first to propose strategies that ex-

ploit the input graphs’ high-level characteristics to optimize execution (other than the

number of vertices and edges, as shown in Table 3.2). With that, we can use a strategy

similar to the offline ones but without any sort of profiling; and still adapt to different

input data before execution, offering significant levels of adaptability without incurring

any penalties presented by online methods. Therefore, by using a Machine Learning

methodology to process the high-level graph features, we can accurately apply the right

thread/data mapping policies and the best number of threads in NUMA systems when pro-

cessing a new input graph, without any extra application execution, profiling, or the need

for changing the application source code or the input graph structure. On top of that, our

proposal is orthogonal to any graph processing framework presented in section 3.4 since

it improves graph processing performance by selecting an optimized thread/data and/or

number of threads for the execution without requiring any algorithm changes.

65

4 GRAPHITH: OPTIMIZING GRAPH EXECUTION ON NUMA MACHINES

The execution of large real-world graphs, such as web searches and social net-

works, has been boosted by modern HPC systems. However, their irregular communica-

tion patterns and poor data locality impose many challenges, mainly when executed on

NUMA systems. As Fig. 1.2 of chapter 1 showed, adjusting the thread and data place-

ments effectively improves the parallel graph application’s performance on NUMA sys-

tems. In this chapter, (i) we perform a Design Space Exploration (DSE) to analyze the

potential of thread and data mapping for graph applications. Based on that, we show that

there is no one-fits-all solution for all input graphs, algorithms, and NUMA systems, i.e.,

no single combination of thread and data mapping that achieves the best performance if

the input graph, algorithm, or NUMA system changes. (ii) We also show the complex-

ity of finding the ideal solution for our tackled problem by presenting its relation to a

well-known NP-Hard problem, the Quadratic Assignment Problem (QAP).

On top of the no-one-fits-all behavior, we also argue that there is still room for

improvements when it comes to thread mapping: the traditional mapping policies avail-

able on Linux OS apply only specific deterministic rules (e.g., to locate the threads/data

in a round-robin fashion or to locate neighboring threads in neighboring cores – see chap-

ter 2). It limits the graph algorithms for further improvements since only a small part

of the search space is evaluated. To overcome that, (iii) we propose Graphith: a frame-

work that improves graph processing performance by adapting its execution considering

the NUMA system, graph algorithm, and a particular input graph. As illustrated in Fig

4.1, Graphith (Inputs) receives the algorithm and input graph to be optimized, (Search) it

performs fine-tuning in the thread-to-core allocation, which evaluates the entire problem’s

search space, and (Output) gives the best solution of thread and data mapping found. With

that, Graphith converges to high-quality solutions, further improving the existing TM and

PM policies. In summary, the main contributions presented in this chapter are:

Figure 4.1: Graphith framework overview.

Graphs
Algs

Search Output

Genetic
Algorithm

Inputs

Thread and Data
Mappings

Source: The author.

66

• A DSE considering the combinations of several standard thread and data mapping

policies;

• The correlation of the tackled problem with a well-known NP-Hard (the QAP),

showing its complexity in finding the ideal thread and data mapping solution;

• Graphith: a framework to boost the graph processing algorithm performance on

NUMA systems.

Results on two real NUMA systems composed of 2 and 4 nodes show that Graphith

outperforms, on average, 21% and 7% the default execution and the best combination of

TM+PM policies found through an exhaustive search of such policies.

4.1 Design Space Exploration

This section describes the DSE performed to analyze the potential for TM and PM

on NUMA systems. Next, we present the considered input graphs, algorithms, machines,

and the evaluated mapping policies.

Input Graphs. For the input graphs, we evaluated five representative real-world

and synthetic graphs, which cover the two comprehensive classes of topologies (meshes

and social networks) and different sizes (BEAMER; ASANOVIĆ; PATTERSON, 2015).

The graphs are urand, kron, twitter, web, and road – the five largest ones presented in

Table 2.1 of chapter 2.

Graph Algorithms. We used the GAP Benchmark Suite (GAPBS) (BEAMER;

ASANOVIĆ; PATTERSON, 2015). GAP contains a collection of well-known and rep-

resentative graph algorithms – as described in chapter 2. The benchmark provides high-

performance implementations for each algorithm using the optimization strategy that is

the most appropriate for each one. All algorithms are written in C++11 and parallelized

with OpenMP. For our experiments, we compiled the applications with GNU g++ 10.1.0

and OpenMP 4.5, with the optimization flag -O3.

Execution Environment. We performed our experiments in two real NUMA sys-

tems using the Ubuntu OS with kernel v. 4.19:

• Intel32: 2x 8-core Intel Xeon E5-2640v2 (Ivy Bridge) @2.0GHz, 2-way SMT (2

nodes / 16 cores / 32 threads). Each core has a 32KB L1 cache and 256KB L2

cache; and shares 2x20MB L3 cache and 2x64 GB of main memory;

• Intel64: 4x 8-core Intel Xeon X7550 (Nehalem) @2.0 GHz, 2-way SMT (4 nodes

67

Table 4.1: Execution time variation by changing the thread and data mappings on Intel32,
normalized by the baseline.

PM Default Interleave NUMA Balancing

TM Clo Con Sca Def Clo Con Sca Def Clo Con Sca

BC
kron 0.98 1.00 0.97 0.98 1.00 1.00 0.99 1.01 1.04 0.99 0.98
road 0.99 1.01 1.04 1.00 1.04 1.04 1.01 1.04 1.07 1.05 1.04
twitter 1.04 1.01 0.97 1.03 1.03 1.03 0.97 1.01 1.03 1.02 0.96
urand 1.02 1.01 0.95 1.01 1.02 1.03 0.99 1.02 1.05 1.01 1.00
web 0.98 1.01 1.00 1.00 1.03 1.01 1.02 1.02 1.02 1.02 0.99

BFS
kron 1.03 1.01 1.01 1.01 1.03 1.06 1.03 1.12 1.12 1.07 0.99
road 1.04 1.02 1.14 1.01 0.93 1.02 0.94 1.14 1.19 1.13 0.93
twitter 0.96 0.97 0.99 0.98 0.96 0.95 0.98 1.09 1.19 1.14 0.97
urand 0.98 0.98 1.04 0.99 1.04 1.09 1.10 1.08 1.08 1.05 1.04
web 0.98 0.99 0.98 1.00 0.90 0.90 0.91 1.10 1.04 1.15 1.01

CC
kron 0.99 0.99 1.02 1.00 0.97 0.98 0.96 1.02 1.00 1.01 1.02
road 1.06 1.06 1.02 1.01 1.01 1.01 1.01 1.01 1.11 1.07 1.01
twitter 0.99 0.99 1.03 0.99 0.92 0.93 0.98 1.03 1.04 1.02 1.03
urand 0.97 0.97 1.02 0.97 0.96 0.96 0.96 0.98 1.00 1.02 1.03
web 1.00 1.01 1.02 0.98 0.87 0.87 0.98 1.01 1.03 1.03 1.00

PR
kron 1.00 1.00 1.01 0.99 0.92 0.91 0.93 1.02 1.47 1.04 1.02
road 1.05 1.05 1.01 1.02 1.05 1.05 1.05 1.00 1.09 1.05 1.01
twitter 0.91 0.92 1.02 1.00 0.91 0.91 0.91 1.06 0.94 0.94 1.02
urand 0.87 0.88 0.89 0.88 0.86 0.89 0.91 0.99 0.99 0.90 0.99
web 1.01 1.01 0.95 1.02 0.85 0.89 0.85 1.03 0.96 0.97 0.95

SSSP
kron 1.00 1.00 1.04 1.02 0.86 0.91 0.86 1.02 1.04 1.06 1.04
road 1.00 1.00 1.01 1.01 1.01 1.00 1.01 1.01 1.05 1.02 1.01
twitter 1.02 1.01 1.02 1.01 0.96 0.96 0.98 1.04 1.05 1.05 1.03
urand 1.00 1.01 1.03 0.91 0.91 0.94 0.91 1.05 1.06 1.06 1.04
web 1.00 1.00 0.99 1.00 0.97 0.98 0.94 1.05 1.05 1.05 0.99

Source: The author.

/ 32 cores / 64 threads). Each core has a 32KB L1 cache and 256KB L2 cache and

shares 4x18MB L3 cache and 4x32 GB of main memory.

Thread and Data Mapping Policies. Our experiments considered the execution

of the TM and PM policies explained in Chapter 2: Linux’s Default solution (Def), Close

(Clo), Contiguous (Con), and Scatter (Sca) for TM; and First-Touch (Def), Interleave

(Int), and NUMA Balancing (NUM) for PM.

Results. In Tables 4.1 and 4.2, we show the execution time of the TM and PM

policies combinations evaluated in this work (columns). Results are normalized to the

baseline (so the lower, the better - for instance, 0.98 means that a given metric is better

than the baseline in 2%) and grouped by graph algorithms and input graphs (rows). Also,

we highlight the best combination for each row in bold.

By analyzing the results, we observed that the best solution changes according to:

• Input graph. For example, on Intel64, while BC-urand is better executed with the

combination of Default TM and NUMA Balancing PM (Def/NUM with 31% im-

provement), the BC-kron has its best performance using Contiguous and NUMA

Balancing (Con/NUM with 43% improvement);

68

Table 4.2: Execution time variation by changing the thread and data mappings on Intel64,
normalized by the baseline.

PM Default Interleave NUMA Balancing

TM Clo Con Sca Def Clo Con Sca Def Clo Con Sca

BC
kron 0.98 1.00 0.70 0.75 0.96 0.71 0.69 0.60 0.59 0.57 0.59
road 1.07 1.06 1.04 1.03 1.06 1.06 1.07 1.05 1.12 1.08 1.08
twitter 0.99 0.97 1.01 1.73 1.48 1.67 1.65 1.11 1.02 0.98 1.00
urand 1.16 1.15 1.06 0.83 1.52 0.90 0.88 0.69 0.70 0.74 0.69
web 0.97 1.01 1.03 1.09 0.99 1.16 1.08 0.94 0.97 0.95 0.98

BFS
kron 0.95 1.05 0.82 1.14 1.06 1.18 1.07 0.91 0.90 1.08 0.88
road 1.32 1.33 1.38 1.40 1.24 1.06 1.36 1.30 1.16 1.04 1.35
twitter 0.91 0.96 0.95 0.98 1.02 0.99 1.06 1.14 1.35 1.12 1.08
urand 1.19 1.07 1.02 1.35 1.29 1.39 1.35 1.06 1.03 1.19 1.06
web 0.91 0.98 0.95 1.03 0.82 1.14 0.98 1.05 1.01 1.07 1.01

CC
kron 1.02 1.01 1.00 0.91 0.78 1.03 0.88 0.98 1.02 1.05 0.97
road 1.38 1.38 1.11 1.20 0.90 1.23 1.08 1.22 1.42 1.32 1.00
twitter 0.98 1.00 0.95 0.71 0.62 0.75 0.63 1.04 0.96 1.04 0.98
urand 1.03 1.05 1.00 0.86 0.83 0.87 0.84 1.01 1.06 1.08 0.99
web 0.96 0.99 0.98 0.59 0.47 0.56 0.59 0.97 0.98 0.95 1.00

PR
kron 1.04 1.03 1.39 1.43 1.05 1.37 1.45 0.75 0.66 0.59 0.66
road 1.06 1.09 1.01 1.35 1.16 1.21 1.28 1.09 1.13 1.19 1.06
twitter 1.08 1.00 1.02 2.12 2.13 2.09 2.00 1.05 1.79 1.20 1.07
urand 0.76 0.43 0.55 1.01 0.83 1.03 1.03 0.44 0.38 0.49 0.40
web 0.99 1.00 0.95 0.93 0.81 1.06 0.90 0.94 1.00 0.87 0.93

SSSP
kron 0.93 0.99 1.23 1.00 0.95 0.90 0.91 0.95 0.95 0.95 0.97
road 0.97 0.96 0.97 0.97 0.94 0.94 0.95 1.07 1.06 0.99 0.99
twitter 1.04 1.05 1.01 0.97 0.97 0.99 0.97 1.05 1.09 1.12 1.05
urand 0.97 0.97 1.02 1.15 1.06 0.97 1.02 1.03 1.01 1.02 1.02
web 0.97 1.01 1.40 1.02 0.96 0.94 0.94 1.23 1.28 1.34 1.13

Source: The author.

• Graph algorithm. For example, also on Intel64, the BFS-kron is better executed

with Scatter TM and Default PM (Sca/Def with 18% improvement), while CC-

kron presets its best execution with Close TM and Interleave PM (Clo/Int);

• NUMA machine. For instance, when running the PR-urand on Intel64, the combina-

tion of Close TM and the NUMA Balancing PM (Clo/NUM) improves performance

by 62% over the baseline (Def/Def). However, such improvement does not exist

when changing the NUMA system (only 1% improvement on Intel32).

The observation above reinforces our discussion in the introduction that no ideal

combination of TM and PM exists for all applications and graph structures since each

graph algorithm performs a distinct computation. Some focus on the computation of the

vertices’ properties (BC and PR), while others traverse the graph vertices (BFS, CC, and

SSSP). Additionally, several other characteristics of the algorithms and input graphs (see

Tables 2.2 and 2.1) impose even more challenges in optimizing the performance of graph

algorithms by adjusting the TM and PM policies.

69

4.2 Thread Mapping Problem as a QAP’s Instance

So far, this thesis has addressed a practical problem of improving the graph pro-

cessing algorithms execution by tuning the thread-to-core allocation and data placement.

However, defining only the thread-to-core affinity is already a challenging problem since

it can be seen as an instance of the Quadratic Assignment Problem (QAP), an NP-Hard

problem (KNOWLES; CORNE, 2003; GAREY; JOHNSON, 2002). To highlight the the-

oretical complexity, we present the relationship between the thread-to-core allocation

and the QAP. The QAP entails the assignment of n facilities to n locations aiming to min-

imize the flow×distance product given by Equation 4.1. It is given the problem size n, the

flow ai,j exchanged between facilities i and j, and the distance bπi,πj between locations

πi and πj . πi represents the location in which the facility i is allocated in a specific per-

mutation π ∈ Pn. Pn is the set of all possible permutation of {1, 2, . . . , n} (KNOWLES;

CORNE, 2003). Then, the objective of the problem is to find a permutation π in the set of

all possible permutations of size n, Pn, that minimizes the objective function minC(n)

minC(n) = minπ∈Pn

n∑
i=1

n∑
j=1

ai,j × bπi,πj (4.1)

To define a relationship between the QAP and the thread-to-core allocation, we

need to correlate each element of them:

• Threads→ Facilities: Although each thread executes a set of graph’s vertices, we

can see them as individual entities. In this sense, each thread performs its own

computation and eventually communicates with other threads to exchange data;

• Communication Between Threads→ Flows: Data exchanging between threads is

done through shared memory accesses. The communication pattern highly depends

on the graph’s structure, the computation performed by the graph algorithms, and

the vertices distribution throughout the threads;

• System’s Cores → Locations: The system’s cores are the locations where the

threads are assigned to execute. Hence, we can consider all resources available

to execute the application’s threads as the set of locations in our problem;

• NUMA Topology→ Distances: The distance between each core in a NUMA sys-

tem is given by its node location.

Hence, theoretically, the thread-to-core allocation search space is the same as the

QAP, requiring the evaluation of n! solutions to perform an exact procedure. However,

70

the problem addressed in this work may be even more challenging because we also con-

sider data mapping optimization. Furthermore, TM and PM are highly correlated: if one

changes the PM policy, the best TM policy may change, and vice versa.

Some of our experiments consider all the search space of thread-to-core allocation

and data mapping policies variation in this work, requiring n! × d evaluations, where n

is the number of threads/cores, and d is the number of data mapping policies considered.

However, evaluating all the search space for a larger n is impractical, e.g., finding an exact

solution for the QAP with a size greater than 30 is already impractical (RAMKUMAR et

al., 2008). Therefore, metaheuristics such as Genetic Algorithm (GA) emerge as a suitable

approach to dealing with the thread-to-core allocation and data mapping problem. The

next section will show our proposal to tackle this problem.

4.3 Graphith

To handle the above-presented problem, in this section, we present the Graphith

framework, which consists of an offline method for finding a configuration of thread and

data mappings to optimize the execution of a given graph processing algorithm running a

specific input graph. Graphith framework is depicted in Fig. 4.2 and works as follows:

(i) The user provides the input graph and graph algorithm to be optimized;

(ii) Then, the Graphith applies a search for the best configuration of the thread and data

mappings. For that, it verifies whether the given algorithm running the input graph

was already optimized or not. If it is true, Graphith recovers the configuration

stored in the Database and starts execution. Otherwise, Graphith applies a GA to

perform a fine-tuning in the thread-to-core allocation and vary the data mapping

Figure 4.2: Graphith’s optimization flow.

Alg. Genetic
Algorithm

Already
Optimized?

Best
Thread and Data

Mappings

Graph

Inputs Search Output

Yes

No

Database

Source: The author.

71

policies (it will be explained in section 4.3.1). Finally, Graphith stores the obtained

solution in the Database for future reuse. Although Graphith uses a GA, this search

part can be easily modified to support any other search strategies; and

(iii) The Graphith’s output is the best configuration found for that graph input/algorithm

and will be used whenever that specific occurrence is called again.

How Graphith Goes Beyond OS Mappings. It is worth noticing that the stan-

dard policies limit further performance improvements as only a small part of the entire

search space is evaluated: a total of 12 combinations of thread mapping and data map-

ping. As discussed in chapter 2, they apply only specific deterministic rules (e.g., mapping

the threads/data in a round-robin fashion or placing neighboring threads in neighboring

cores). Given that, Graphith is totally flexible w.r.t. thread-to-core allocations: it may

potentially test any combination without following any specific rule in opposition to the

TM policies available in the OS.

Therefore, Graphith extends the default design space by applying fine-tuning in

thread-to-core allocations (considering all possible allocations of any thread to any core)

and varying the PM policies available in the OS (see Figure 4.5 for a solution structure

used in the Graphith’s optimization process, which we will explain later). Figure 4.3

compares a possible Graphith solution (Fig. 4.3C) with other TM policies (Contiguous,

Close, and Scatter) combined with First-Touch PM. This figure considers the input graph

in Fig. 4.3A being processed by an application with the communication pattern among

its threads as illustrated in Fig. 4.3B, where numbers in red indicate the number of edges

connecting the set of vertices processed by each thread. By fine-tuning the placement

Figure 4.3: Examples of A) graph’s vertices distribution across threads, B) threads com-
munication, C) Graphith’s solution, D) Contiguous + First-Touch, E) Close + First-
Touch, and F) Scatter + First-Touch.
A

D

B

E

LLC

Memory

L1/L2 L1/L2

LLC

Memory

L1/L2 L1/L2

C0 C4 C2 C6 C1 C5 C3 C7
T0 T2 T1 T3 T4 T6 T5 T7

LLC

Memory

L1/L2 L1/L2

LLC

Memory

L1/L2 L1/L2

C0 C4 C2 C6 C1 C5 C3 C7
T1 T2 T3 T4 T5 T6 T7

Contiguous + First-Touch Close + First-Touch

Graphs’s Verteces Distribution Threads’ Communication Pattern

6 6 6 6

T2

T3
T4

T0
T1 T5

T6

T7

2

T2

T4

T0 T1
T5

T3 T6

T7

2

2

2

2

2

2

T0

C

LLC

Memory

L1/L2 L1/L2

LLC

Memory

L1/L2 L1/L2

C0 C4 C2 C6 C1 C5 C3 C7
T0 T2 T3 T4 T1 T7 T5 T6

Graphith (thread-to-core) + First-Touch

2 2

F

LLC

Memory

L1/L2 L1/L2

LLC

Memory

L1/L2 L1/L2

C0 C4 C2 C6 C1 C5 C3 C7

T0 T4 T2 T6 T1 T5 T3

Scatter + First-Touch

66

Source: The author.

72

of threads, Graphith considers all possible thread-to-core combinations and can find a

solution with only 4 remote memory accesses (arrows and numbers in red) against 12

presented by the other TM policies available in the OS.

4.3.1 Genetic Algorithm (GA)

As mentioned, Graphith uses a GA for learning the best TM and PM configura-

tion. GA is an evolutionary strategy that uses the concept of population, i.e., a set of

individuals (given by chromosomes that represent the tackled problem’s solutions) that

can evolve to an optimum solution through generations (GOLDBERG, 2000). In a GA,

the best individuals (parents) are selected for reproduction to generate new individuals

(offspring). Three basic operators are used to process the population (described later in

this section): selection, crossover, and mutation. These operators, the fitness function

(which indicates each individual’s quality), and the algorithm’s stop criterion must be

suitable to solve the tackled problem. Next, we describe our proposed GA, as illustrated

in Fig. 4.4.

Optimization Flow. Our GA creates N random solutions (individuals) to com-

pose the initial population. In each iteration (generation), the GA selects two parent solu-

tions to perform an information exchange through the crossover operator (according to a

probability φ, called crossover rate). The main idea of this step is to exchange the chro-

mosomes’ characteristics that can generate even better offspring. It can also be seen as an

intensification procedure (or exploitation), combining two good solutions to generate an

even better solution. Later, according to a probability θ (mutation rate), the GA selects

a solution to perform the mutation operator. Mutation usually prevents the search from

Figure 4.4: GA’s optimization flow.

Initial Population

...

Selection Crossover

50%

Mutation

Selection

rand(Policies)

Update Population

Current
Population

Next
Population

Elitism

Optimized Population

...
Stop Criteria
Reached?

Yes

No

Optimization Flow

Source: The author.

73

Figure 4.5: Chromosome representation.

3 7 1 5 2 6 4 0 First-Touch

0 1 2 3 4 5 6 7 8
CPU Cores

Thread affinity Data affinity

Data Policies
Index

Value

Source: The author.

being stuck in a region of a local optimum. They are not performed if their respective

probabilities are not satisfied in both crossover and mutation. At the end of each gener-

ation, the GA selects individuals to compose the next generation by an elitist procedure.

Finally, if the algorithm reaches the stop criterion (we chose 50 generations, which is a

good trade-off between the time and the algorithm’s convergence), the optimized popula-

tion is given as a result. Otherwise, the algorithm performs the next iteration.

Chromosome Representation. We represent the chromosome structure as a vec-

tor of n elements, as shown in Fig. 4.5. A chromosome has two pieces of information:

the thread mapping and the data mapping policy. For the thread mapping part, indexes

[0 : n − 2] represent the application’s threads, and the [0 : n − 2] values represent the

system’s cores. For the data mapping part, the last index (n − 1) value indicates the PM

policy, e.g., First-Touch, Interleave, or NUMA Balancing.

We set the thread-to-core mapping with the GOMP_CPU_AFFINITY OpenMP

environmental variable. For the data placement, the First-Touch and NUMA Balancing

policies are available in Linux systems (DIENER et al., 2016). On the other hand, to

interleave the data among the system’s memories (applying the Interleave policy), we

have used the Linux numaclt tool (KLEEN, 2005).

Initial Population. We generated the initial population randomly according to

a uniform distribution. The number of generated solutions is given as the algorithm’s

parameter N , which is kept unchanged throughout the optimization process.

Selection. We used the roulette wheel selection. This selection operator assigns

probabilities to each chromosome based on their fitness function values, then randomly

selects some for the next stage. Using this operator, the proposed GA keeps a high pro-

portion of better solutions moving forward to the next generations. This procedure speeds

up GA’s convergence since the probability of searching in nonpromising regions is very

low.

Crossover. Our GA uses the binary crossover. This operator combines two se-

lected parents’ genetic codes, generating two new solutions (offspring). This operator

74

replicates the parents’ genetic code through a complete sequential evaluation of their

chromosomes, applying a 50% probability of choosing a genetic code from one of them,

i.e., we chose 50% to keep a fair balancing of both selected solutions. When this proce-

dure generates an invalid solution, i.e., a solution with two or more threads assigned to a

specific core, the algorithm fixes it by performing a random relocation in the empty cores.

Mutation. This operator acts in both chromosome parts: thread mapping and

data mapping policy. For the thread mapping part, it randomly chooses two threads to

perform a swap (changing their respective positions). While for the data mapping part,

the operator randomly chooses one of the evaluated data mapping policies (First-Touch,

Interleave, or NUMA Balancing) to replace the current one.

Update Population. Our GA uses the elitist criterion to insert new individuals

into the population and to select individuals to move forward to the next generation. The

algorithm keeps the population’s elements sorted by their fitness values in increasing order

during the optimization process. For every new individual p generated by crossover or

mutation operator, the algorithm tests if it is suitable to enter the population P . Then, the

algorithm removes the worst individual in the set P ∪ {p}. At the end of each generation,

the GA selects all inserted offspring and the current generation’s best individuals to move

forward to the next generation.

Fitness Function. Our GA aims to optimize the application execution time. To

assign each solution to its fitness value, we performed three executions of the application

and averaged the execution times.

Parameterization. For our GA, we considered a population size of 20 solutions, a

crossover rate of 80%, and a mutation rate of 5%. We chose these values experimentally

by running the GA algorithm several times, changing its parameter values deterministi-

cally, and selecting those that resulted in the best performance. By doing that, we get

the GA’s parameterization that matches that of other problems from the GA’s literature

(GOLDBERG, 2000).

4.4 Results

This section presents the Graphith results regarding its performance over the base-

line and its convergence behavior. Moreover, we also compare the Graphith against all

the evaluated TM and PM combinations.

Executions settings. Due to the non-deterministic behavior of Graphith’s search

75

part, which uses a GA, we performed 15 executions for each particular set of algorithms

and input graphs. Results show the average of these executions (our experiments showed a

coefficient of variation less than 1). We normalized the results by the baseline: the regular

OpenMP execution, which uses the thread placement defined by the Linux’s scheduler

and the First-Touch data mapping. We executed the experiments on the same NUMA

machines used in the DSE (Intel32 and Intel64 – see section 4.1 for details).

4.4.1 Graphith’s Performance

To demonstrate the Graphith effectivity, we show in Fig. 4.6 the averaged results

normalized by the baseline (y-axis). Each bar represents a particular input executed by

a graph algorithm (x-axis). Graphith presents better results in most cases, showing, on

average (geometric mean), 10% and 21% improvements in performance on the Intel32

and Intel64, respectively.

While Graphith outperforms the baseline in most cases, the computations per-

Figure 4.6: Graphith’s performance normalized by the baseline.
(a) Intel32

BC BFS CC PR SSSP GEOMEAN
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
.)

kron road twitter urand web

(b) Intel64

BC BFS CC PR SSSP GEOMEAN
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
.)

kron road twitter urand web

Source: The author.

76

Table 4.3: Graphith’s best thread mapping solution for PR on Intel32 compared to the
standard policies (last four rows).

Solution Thread Mapping

Thr.id 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

kron 10 14 9 22 2 5 31 30 15 24 20 13 21 19 1 18 0 29 8 12 17 6 7 25 28 3 16 4 11 26 23 27
road 13 26 18 15 28 9 23 16 4 19 25 14 30 31 3 24 21 2 5 12 11 10 22 20 1 8 7 29 6 0 27 17
twitter 8 18 22 15 17 14 9 13 23 16 0 20 1 19 29 7 4 26 11 21 24 3 30 28 25 10 6 5 31 12 27 2
urand 30 19 17 4 21 0 10 29 27 3 2 6 25 28 18 20 31 23 13 12 1 26 16 5 15 8 9 24 14 7 22 11
web 27 17 25 20 26 10 3 11 23 29 9 5 0 18 16 2 21 1 6 19 8 12 7 30 31 14 13 22 28 4 24 15

Default 0 16 1 17 2 18 3 19 4 20 5 21 6 22 7 23 8 24 9 25 10 26 11 27 12 28 13 29 14 30 15 31
Close 0 16 2 18 4 20 6 22 8 24 10 26 12 28 14 30 1 17 3 19 5 21 7 23 9 25 11 27 13 29 15 31
Contig. 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Scatter 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source: The author.

formed by the GA’s operators are intrinsically random. As a result, it may converge to

low-quality solutions in a few cases. Examples of this behavior can be seen in Figure 4.6,

particularly with the PR running on the road graph on the Intel64 system and the BFS and

SSSP running on the web graph on both systems. Despite Graphith’s control over GA’s

parameters and its operators’ implementation, the performance at execution time and the

search space region the algorithm will exploit can still exhibit significant randomness.

Finally, as another representative example, in Table 4.3, we compare Graphith’s

solutions with the SO standard ones when optimizing the PR algorithm on the Intel32.

This table depicts the thread-to-core placement. For example: in the Scatter policy,

threads 0, 1, and 2 are allocated to cores 0, 1, and 2, respectively; and in the Close

policy, threads 0, 1, and 2 are allocated to cores 0, 16, and 2. Unlike the standard poli-

cies, Graphith’s solutions do not follow specific rules (highlighted in the last four rows).

Throughout the generations, Graphith adjusts the solution according to the graph algo-

rithm behavior and the structure of the input graph. With that, Graphith converges to

solutions that outperform all the TM+PM combinations (up to 18% for PR-twitter on

Intel64).

4.4.2 Graphith’s Convergence

To demonstrate the convergence of our framework, we plotted in Fig. 4.7 how

it evolves throughout the generations (x-axis), considering the fitness value of the GA

population best’s solution (Best in blue) and the average fitness values of all the solutions

in the population (Average in red) when the GA optimizes the BC running the kron graph

on both Intel32 and Intel64 – the other graph algorithms present similar convergence

77

Figure 4.7: Graphith’s convergence when optimizing the BC algorithm running (a) the
kron graph on Intel32 and (b) the urand graph on Intel64.

(a) BC-kron on Intel32.

Generations

E
xe

c.
 T

im
e

(s
ec

)

45

55

65

75

85

0 10 20 30 40 50

Best Average

(b) BC-urand on Intel64.

Generations

E
xe

c.
 T

im
e

(s
ec

)

45

55

65

75

85

0 10 20 30 40 50

Best Average

Source: The author.

behavior.

The population keeps evolving even when the best solution does not present a

significant convergence pattern in Graphith’s optimization. Note that the average line

(red) continuously evolves and sometimes gives a light touch to the best one (blue). The

sudden improvements shown in Fig. 4.7, mainly in the best solution’s fitness, are due to

the mutation operator. Besides changing some thread places, this operator also changes

the PM policies and can drastically change the algorithms’ performance.

4.4.3 Comparison Against Traditional Policies

In Figure 4.8, we present the results obtained with Graphith in comparison to all

of the TM+PM policy combinations evaluated in our DSE (see section 4.1) on both In-

tel32 and Intel64 systems. Each chart shows the execution times for each combination

of TM+PM (y-axis, normalized by the baseline). We averaged the results for each graph

algorithm executing all the evaluated input graphs (x-axis). As one can see, in most cases,

Graphith outperforms any existing mapping combinations. Overall, Graphith’s perfor-

mance is, in most cases, better than the baseline and the exhaustive search’s best solution

(which considers only the TM and PM policies available on the OS). The Graphith effi-

ciency comes from its automatic GA that allows for a larger search space exploration -

bringing significant gains without any code modification. While performing an exhaus-

tive search with the available policies may provide performance improvements of up to

39% over the baseline (e.g., Sca/NUM in PR on the Intel64), Graphith goes beyond that

and is capable of optimizing over the best possible solution available by the OS: 51% for

78

Figure 4.8: Graphith performance compared with all the combinations of the standard
thread and data policies evaluated. Results are normalizes by the baseline. Legend: the
<thread>/<data> refers to the combination of the thread and data mapping policies.

(a) Intel32

BC BFS CC PR SSSP
0.00
0.25
0.50
0.75
1.00
1.25
1.50

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
.)

Def/Int
Def/NUM

Clo/Def
Clo/Int

Clo/NUM
Con/Def

Con/Int
Con/NUM

Sca/Def
Sca/Int

Sca/NUM
Graphith

(b) Intel64

BC BFS CC PR SSSP
0.00
0.25
0.50
0.75
1.00
1.25
1.50

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
.)

Def/Int
Def/NUM

Clo/Def
Clo/Int

Clo/NUM
Con/Def

Con/Int
Con/NUM

Sca/Def
Sca/Int

Sca/NUM
Graphith

Source: The author.

the same graph algorithm and system.

Although Graphith significantly improves graph processing performance, it is an

inflexible strategy with a high learning overhead. It is worth noting that Graphith aims to

find the best thread-to-core and PM solution for each algorithm when executing a specific

input graph. Therefore, the entire search process must be re-executed if the graph changes.

The next chapter introduces another approach to overcome this limitation.

79

5 PREDG: EXPLOITING THE GRAPHS’ HIGH-LEVEL FEATURES FOR ADAP-

TIVE GRAPH PROCESSING

This chapter introduces the PredG, a framework that uses a machine learning (ML)

methodology to optimize the execution of graph applications on NUMA machines by ad-

justing TM and PM policies. In Fig. 5.1, we provide an overview of PredG, which

operates in two phases (further details will be provided later): in the Learning Phase, it

performs an ML workflow to train a Predictor. In the Execution Phase, it carries out an-

other ML workflow using the Predictor to find the best TM and PM policies combination

(defined as TM+PM) for executing a new input graph.

The motivation to design PradG is that, although Graphith framework (presented

in the previous chapter) is capable of improving the performance of graph applications

significantly, it lacks adaptability. As already mentioned, Graphith fully optimizes the ex-

ecution of each algorithm executing a specific input graph, but if the input graph changes,

the entire search process needs to be re-executed. Similarly, most of the current graph

analytic frameworks present the same drawbacks of Graphith since they implement graph

partitioning and hybrid computation/communication strategies (ZHANG; CHEN; CHEN,

2015; SUN; VANDIERENDONCK; NIKOLOPOULOS, 2017; SHUN; BLELLOCH,

2013; AASAWAT et al., 2020). Because of that, they are far from reaching near-optimal

solutions for many input graphs due to the huge amount of data and different topological

Figure 5.1: PredG framework overview.

B) ML Workflow for Training

Learning Phase
C) Result

Predictor

B) ML Workflow for Prediction

TM+PM

A) Read Inputs

Execution Phase
C) Result

Graphs

Algorithms

System

U
se

r:
 D

t A
na

ly
st

U
se

r:
 S

ys
.

A
dm

.

A) Read Inputs

Preprocessing Model Design

Data
Extraction

Graph

Algorithm

System

Data
Preparation Predictor

Prediction

Training

Source: The author.

80

Table 5.1: Graphs’ characteristics: Number of Vertices (V), Number of Edges (E), Di-
ameter (Dia), Global Clustering Coefficient (GCC), Maximum Degree (MaxD), Averaged
Degree (AvgD), and Degree of Assortativity (DA).

V E Dia GCC MaxD AvgD DA

twitter 6.16e+07 1.20e+09 14 0.08 3.00e+06 39.06 -0.04
road 2.39e+07 2.89e+07 6304 0.02 9.00e+00 2.41 0.08

Source: The author.

structures (e.g., meshes and social networks). The reason is that the algorithm perfor-

mance depends not only on the algorithm itself or the optimization strategy performed on

it but also on the structure of the input graph to be executed.

To discuss the variation brought by changing the input graph, let us consider two

graphs that present distinct topologies (see Table 5.1): road with the highest Diameter

(Dia) and the lowest Maximum and Average Degree (MaxD and AvgD), representing

a mesh; and twitter with a low Dia and high MaxD and AvgD, representing a social

network graph. We show in Fig. 5.2 the iterations of the Breadth-First Search (BFS)

algorithm executing over both input graphs, where each number in the x-axis represents

one iteration, while the y-axis is the number of vertices executed at each iteration. As

observed in Fig. 5.2, while bfs-road takes 6835 iterations to finish, processing a significant

number of vertices throughout its execution (on average 3.503 vertices per iteration of a

total of 2.39e+07), the bfs-twitter execution takes only 16 iterations to finish, with 98%

of all the vertices (6.16e+07 in total) processed in only 3 iterations (5-7). This difference

in the inputs affects the total execution time even if the algorithm is the same (BFS): the

bfs-road takes 10% longer to run than the bfs-twitter, even though the road is 41.68×

smaller (in the number of edges) than twitter (see Table 5.1).

Figure 5.2: The number of evaluated vertices (y-axis) over the BFS iterations (x-axis).
(a) road

0.000

0.002

0.004

0.006

0.008

0.010

1 1001 2001 3001 4001 5001 6001

#
V

e
r
ti

c
e
s

(x
1

0
6
)

Iteration

(b) twitter

0.000

5.000

10.000

15.000

20.000

25.000

1 3 5 7 9 11 13 15 17

#
V

e
r
ti

c
e
s

(x
1

0
6
)

Iteration

Source: The author

Fortunately, the graph structures that impact the execution time and cause the

81

above execution variation may somehow be inferred by evaluating some graphs’ high-

level features, such as the Dia and the Global Clustering Coefficient (GCC) (see others in

Table 5.1). These features are already available along with the graph data sources (LESKOVEC;

KREVL, 2014) and can be exploited before each graph execution for optimization, pre-

cluding any profiling. Therefore, our main challenge is correlating such high-level fea-

tures with low-level decisions (i.e., mapping) through a neural network.

Therefore, to design PredG, we exploited the input graph’s high-level features not

found in generic parallel applications to develop a novel offline strategy that adapts to new

input graphs without needing application profiling. In other words, by taking advantage of

these specific features only found in graphs, we can offer significant levels of adaptability

in an offline method without incurring any penalties presented by online methods; and still

cover NUMA systems, which is not adequately done by most specific graph processing

frameworks (SHUN; BLELLOCH, 2013; ROY; MIHAILOVIC; ZWAENEPOEL, 2013;

ZHANG et al., 2018; NGUYEN; LENHARTH; PINGALI, 2013).

In this scenario, the contribution of this chapter is:

• The proposal of PredG: a Machine Learning (ML) framework that considers only

the high-level features of a given graph (see Table 5.1) to predict the best TM and

PM policies for any graph execution. PredG works in two phases: in the Learning

Phase, PredG builds and trains an Artificial Neural Network (ANN) model to learn

from representative graphs by considering their high-level features and execution

of several algorithms on NUMA systems; and in the Execution Phase, before trig-

gering the execution of a given incoming graph, PredG predicts the best TM+PM

by only using the trained ANN with the already available high-level features.

By evaluating PredG with widely used graph analysis algorithms processing real-

world data on three different NUMA machines, we show that PredG finds the best solu-

tions for the most applications (on average 81.33% of accuracy). Performance-wise, it is

up to 41% better than the Linux OS Default and the Best Static mapping configuration –

and on average only 2% worse than the Oracle. We also show that PredG is on average

8% and 16% more energy efficient than the Default and the Best Static strategies.

5.1 PredG

PredG is divided into two phases: Learning and Execution, as described next.

82

5.1.1 Learning Phase

PredG learns the best TM+PM based on the behavior of the given algorithms and

system by processing different graphs with different structures (identified by different

features). This phase is executed only once in the entire optimization process. For that,

PredG applies the following steps, as can be seen in Fig. 5.3 and Fig. 5.4:

A) Inputs. This step consists of feeding PredG with the following inputs: the

graphs in edgelist files representation (e.g., orkut.el and texas.el), the binary of the graph

algorithms, and the target NUMA systems.

B) Data Extraction. PredG creates a Dataset composed of (i) the graphs’ features

and (ii) the best TM+PM for each graph, algorithm, and NUMA system. For the former

(i), PredG extracts the high-level features (e.g., diameter and averaged vertices degree) by

using NetworKit, a parallel tool for large-scale network analysis (STAUDT; SAZONOVS;

MEYERHENKE, 2016). For the latter (ii), PredG performs a Design Space Exploration

(DSE) by executing all the combinations of the input graphs and algorithms on the target

NUMA system, considering the thread and data mapping policies available on the Linux

OS. PredG uses the results found by the DSE to know which are the TM+PM solutions

that result in the best performance for each evaluated graph and algorithm. Both (i) and

(ii) are merged to compose the Dataset, used in the following steps.

C) Preprocessing. To avoid data issues that can bias the ML model (e.g., under-

fitting and overfitting), PredG preprocesses the Dataset by applying the following steps:

(i) Discretization. Because machine learning models require all variables to be nu-

meric, this step encodes each categorical feature (string) to numbers before fitting

and evaluating the ML model. For that, PredG uses the One-Hot Encoding as all

categorical features in the Dataset do not present any sequence order (e.g., algo-

rithm);

Figure 5.3: PredG’s Learning Phase.

B) Data Extraction

Features
Extraction

DSE

Data
set

C) Preprocessing
Discretization

Normalization

Augmentation

D) Model Design

ReLU
Softmax

A) Inputs

Gr.
Alg.

Sys.

E) Training
5-Fold

CV

Predictor

Learning Phase

Best

Solutions

Source: The author.

83

(ii) Normalization. PredG normalizes the Dataset to a common scale because differ-

ent features have different ranges (e.g., for the evaluated graphs in Table 2.1, while

diameter (Dia) varies from 6 to 6304, the degree assortativity (DA) ranges from

−0.11 to 0.19). PredG uses the Min-Max normalization strategy, computed by the

equation x−xmin

xmax−xmin
, where x, xmin, and xmax are the current, minimum, and maxi-

mum values of the current column being normalized, respectively. This procedure

fits the Dataset to the range of [0, 1]; and

(iii) Augmentation. Selecting the best TM+PM solutions for each graph and algorithm

(as done in the B) Data Extraction) may generate an unbalanced Dataset as specific

solutions may present the best results for different graphs and algorithms while oth-

ers do not. This can lead to overfitting, as the TM+PM solution that appears the

most may bias the learning process. Therefore, PredG performs the random data

augmentation strategy to randomly select, modify, and insert examples in the mi-

nority target classes to avoid such a problem, resulting in a balanced Dataset. PredG

modifies the selected data to avoid identical samples in the Dataset. The modifica-

tion is mainly done in the graph’s high-level features, which slightly changes the

graph’s structure.

D) Model Design. PredG analytically performs the hyperparameter optimization

(e.g., number of layers, types of activation functions, and learning rate value) to build an

ANN model that best fits the Dataset created in the previous step. For that, it uses the

Keras Tuner, a scalable hyperparameter optimization library that automatically searches

for the best configuration and parameters of the ANN model (O’MALLEY et al., 2019).

The considered ANN configurations are: number of hidden layers (varying in the range

of [1, 5]); number of neurons in each hidden layer (8, 16, 32, and 64); activation function

(Sigmoid, ReLU, Softmax, and Softplus); learning rate (0.01, 0.03, 0.05, 0.07, and 0.09);

momentum (0.1, 0.3, 0.5, 0.7, and 0.9); and the number of epochs (50, 100, 150, 200, and

250).

E) Training. To train the ANN model, PredG uses the 5-Fold Cross-Validation

strategy (YADAV; SHUKLA, 2016). This strategy randomly divides the Dataset into 5

folds/sections evaluated through the iterations. For example, in the first iteration, the first

fold is used to test the model, and the rest are used to train the model. In the second

iteration, the second fold is used as the testing set, while the rest serve as the training

set. This procedure repeats until all 5 folds have been used as the testing set. As running

an ANN is a stochastic procedure and each iteration of the above-described strategy may

84

present a different outcome, PredG performs 30 executions of the 5-Fold Cross-Validation

strategy and selects the best model to be the Predictor.

5.1.2 Execution Phase

This phase is triggered whenever a graph needs to be processed. After training,

PredG can predict the best TM+PM policies for every graph without further application

executions. For that, PredG applies the following steps (see Fig. 5.4).

A) Inputs. The user is responsible for providing PredG with the following inputs:

the new graph required to be processed – in edgelist files representation (e.g., twitter.el

and road.el); the binary of the algorithm that was considered during the Learning Phase;

and a description (string) indicating the current NUMA machine in which GraphNroll

must have been trained in the Learning Phase.

B) Data Preparation. PredG preprocesses the data to feed the Predictor. It col-

lects the same graph’s high-level features of the input graph used in the Learning Phase

using the NetworKit tool. Then, these features are merged with the target algorithm and

system descriptions.

C) Prediction. Based on the information obtained in the previous step, PredG ap-

plies the Predictor (the previously trained ANN model) to find the best TM+PM policies

for the specified graph, algorithm, and system.

D) Result. Finally, PredG fires the application execution with the predicted TM+PM

solution set in the system.

Figure 5.4: PredG’s Execution Phase.

Execution Phase
A) Inputs B) Data Preparation

Features
Extraction

Input
Merging

Predictor

C) Prediction D) Result

Thr/Dt
MappingAlg.

Sys.

Gr.

Source: The author.

85

5.1.3 Implementation Details

We have implemented PredG using Python version 3.8.10. Currently, it is de-

signed to work with OpenMP applications and utilizes the GOMP_CPU_AFFINITY OpenMP

environment variable to establish specific thread mapping policies, as detailed in section

2. For data mapping, PredG configures the Linux system’s file located at

/proc/sys/kernel/numa_balancing, setting it to either 0 for First-Touch only or 1 for

First-Touch with NUMA Balancing, allowing for data migration as required. The Inter-

leave policy is set using the numactl tool (KLEEN, 2004). To measure the execution time

of each application, PredG employs the time.time() function provided by Python3’s

time module.

5.2 Methodology

Graphs Algorithms. We considered the same algorithms from GAPBS that were

evaluated in the previous chapter (chapter 4), parallelized and compiled in the same way.

Graphs Data Input. We consider 15 representative real-world and synthetic graphs,

which cover two comprehensive classes of topologies (i.e., meshes and social networks)

and different dimensions (i.e., number of vertices and edges). In Table 2.1 (in chapter

2), we present each graph along with its high-level features that comprise the training

Dataset. In the PredG’s Learning Phase, we considered the following graphs: the modi-

fied versions of urand, kron, twitter, web, and road (see the Preprocessing step in section

5.1.1 – (iii) Augmentation); and the original and modified versions of cit-patents, orkut,

wikitalk, california, texas, youtube, pennsylvania, google, berkley, and amazon. In the

PredG’s Execution Phase, we considered only the original versions of the largest graphs:

urand, kron, twitter, web, and road – the same we evaluated in the previous chapter (chap-

ter 4).

Execution Environment. We performed the experiments in three NUMA ma-

chines (using the Linux kernel v. 4.19): Intel32 and Intel64, as described in the previous

chapter (chapter 4), and the following additional machine.

• Intel88: 2x 22-core Intel Xeon E5-2699 v4 (Broadwell) @2.2 GHz, 2-way SMT

(2 nodes / 44 cores / 88 threads). Each core has a 32KB L1 cache and 256KB

L2 cache, and the system comprises 2x55MB of L3 cache and 2x128GB of main

86

memory.

Evaluated Configurations. Our study considers all the TM and PM policies de-

scribed in chapter 2: Linux’s Default solution (De), Close (Cl), Contiguous (Co), and

Scatter (Sc) for TM; and First-Touch (De), Interleave (In), and NUMA Balancing (NU)

for PM. Based on that, we compared PredG with the following three strategies:

• Default, the regular execution, which uses the De/De thread and data mapping

configuration;

• Best Static, the TM+PM solution that delivers the averaged best execution time for

all algorithms and graphs evaluated in this chapter (which is the Scatter/Interleave

on Intel32 and Intel88, and Scatter/Default on Intel64);

• Oracle, the best TM+PM for each algorithm and input graph considered in the

Execution Phase, found via an exhaustive search that tries all possible combinations

of mapping policies.

Analysis Tools. We used the Intel Performance Counter Monitor (WILLHALM;

DEMENTIEV; FAY, 2016) to collect hardware counter information (e.g., memory ac-

cesses and interconnect links usage) for the results presented in section 5.3.2. We also

collected the energy consumed by the DRAM and core domains, i.e., CPU and cache

memories, through the Intel Running Average Power Limit (RAPL) (HÄHNEL et al.,

2012) for the results in section 5.3.3.

5.3 Results

5.3.1 Evaluation of the PredG’s Phases

In this section, we present (i) the ANN model built by PredG and its accuracy

for training, (ii) the PredG’s predicted solutions, discussing its adaptability as the input

graph changes, and (iii) we compare the PredG optimization overhead against the Oracle

strategy.

(i) Learning Phase. Given the data obtained from the combination of 15 graphs,

5 algorithms, and 3 NUMA systems executed on the 12 different TM+PM configurations

(resulting in 2700 executions), PredG built the ML model for each machine. For all

machines (Intel32, Intel64, and Intel88), the models consist of an ANN of four layers

with 36 neurons in the input layer, 64/32 neurons in the hidden layer and 12 neurons in

87

the output layer. Also, the following parameters are considered by the ANN: for Intel32

and Intel64 the learning rate is 0.01, the momentum is 0.9, and the number of epochs is

150; and for the Intel88 the learning rate is 0.01, the momentum is 0.7, and the number of

epochs is 100.

Once the model has been generated, PredG performs 30 executions of the 5-Fold

Cross Validation strategy, selecting the best trained model to be the Predictor. The chosen

model shows an accuracy of 91%, 89%, and 92% on Intel32, Intel64, and Intel88.

(ii) Execution Phase. We consider the evaluation of 5 large-scale input graphs

not used in the PredG’s Learning Phase with the 5 available algorithms, resulting in a

total of 25 different executions (algorithm and input). Table 5.2 shows the PredG pre-

dicted solutions for the evaluated multicore systems (Intel32, Intel64, and Intel88), where

TM+PM indicates the predicted combination of thread and data mapping policies, while

the number between parenthesis (x.xx) represents how distant the solution is from the Or-

acle, given in percentage of the execution time. Overall, PredG can correctly predict the

best TM+PM in 88%, 68%, and 88% of the evaluated applications in Intel32, Intel64, and

Intel88, respectively. Considering the design space exploration performed to find the best

(Oracle) solutions, we found out that the PredG solutions are in the top 3 best solutions

92% of the time (while Default and Best Static reach the top 3 in only 26.67% and 44%

Table 5.2: PredG’s predictions: TM+PM (x.xx) indicates the predicted thread and data
mapping policies combination followed by the percentage difference from the Oracle
solution.

bc bfs cc pr sssp

I32

kr Cl-In (0.00) Cl-In (0.00) Cl-In (0.00) Sc-In (0.00) Cl-In (0.00)
ro Cl-In (0.00) De-In (0.00) Co-De (8.14) Sc-In (0.00) Co-De (0.00)
tw Cl-In (0.00) De-In (5.74) De-In (0.00) De-In (0.00) Cl-In (0.00)
ur Co-In (0.00) Sc-De (0.00) Sc-De (6.31) Sc-In (0.00) Cl-In (0.00)
we Cl-De (0.00) Cl-In (0.00) Sc-In (0.00) Co-In (0.00) Sc-In (0.00)

I64

kr De-In (3.44) De-In (0.00) De-In (9.05) De-In (82.49) De-In (0.00)
ro Co-De (0.00) De-De (0.00) De-In (0.00) Co-De (11.50) Sc-In (0.00)
tw Cl-De (1.50) Cl-De (0.00) De-In (0.00) Co-De (0.00) Sc-In (0.00)
ur Co-In (0.90) Co-In (0.00) Co-In (0.00) De-In (4.57) De-In (0.00)
we De-De (13.58) Cl-In (0.00) Cl-In (0.00) Cl-In (0.00) Co-In (0.00)

I88

kr Sc-In (0.00) Cl-De (0.00) Sc-NU (0.00) Sc-In (0.00) Co-De (0.00)
ro De-De (0.00) De-De (0.00) De-De (0.00) Cl-In (0.00) De-De (0.00)
tw De-De (0.00) De-De (0.00) Sc-De (0.00) Cl-In (0.00) Cl-De (0.00)
ur Sc-In (0.00) Sc-In (0.00) Sc-NU (0.00) Cl-NU (0.00) Co-De (0.00)
we De-In (9.35) De-In (0.00) De-In (0.00) De-In (0.03) De-In (2.66)

Source: The author.

88

of the times).

Table 5.2 also depicts that there is no one-fits-all solution for all graphs, algo-

rithms, and machines (i.e., it is not possible to find a single TM+PM solution that would

present the best result for all particular algorithms and inputs). We can highlight the fol-

lowing examples: (i) the BFS algorithm presents different solutions as the input graph

changes in both machines; (ii) the road graph on Intel64 presents different solutions as

the algorithm changes; and (iii) the best solutions for bc-road are Cl/In, Co/De, and De/De

on Intel32, Intel64, and Intel88, respectively.

(iii) Costs of the Oracle (Exhaustive Search). If one would use the Oracle to find

the best TM+PM solution, the exhaustive search to evaluate all possible combinations

of algorithms, NUMA systems, and TM+PM configurations would take more than 85

hours, according to our experiments. This process would have to be repeated every time

a new graph must be executed. On the other hand, the PredG’s Execution Phase takes

only 0.08 seconds to perform 30 predictions (with a standard deviation of 0.0521) for all

combinations of algorithms, input graphs, and machines.

5.3.2 Performance Evaluation

Let us now compare the performance achieved by PredG’s solutions with the De-

fault, Best Static, and Default strategies. For that, Fig. 5.5 shows the execution time

(y-axis) of each strategy (bars with different colors) grouped by the evaluated algorithms

(the average of all evaluated input graphs) along with the gmean (x-axis). Results are nor-

malized by the Default, hence, the lower, the better. On average, PredG is 8%, 22%, and

10% better than the Default and 1%, 18%, and 9% better than the Best Static on Intel32,

Intel64, and Intel88, respectively.

PredG presented better results on the Intel64 system as it is a more complex ma-

chine. Compared to Intel32 and Intel88, Intel64 has a more complex memory hierarchy

composed of 4 NUMA nodes instead of 2 NUMA nodes in the other machines. To fur-

ther assess the main sources of improvements obtained by the PredG’s solutions in such a

machine, we show in Table 5.3 the following metrics normalized by the Default strategy

(so the lower, the better): Time is the application execution time (in seconds); L2 is the

miss rate in the cache level 2; L3 is the miss rate in the cache level 3; Rem is the remote

memory access rate; MRead and WRead are the numbers of bytes read/written from/to

main memories; WRem is the number of bytes transferred in the most used system’s in-

89

Figure 5.5: Execution time normalized to the Default, represented by the black line (↓
values = better execution time).

bc bfs cc pr sssp gmean
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Intel32

bc bfs cc pr sssp gmean
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Intel64

bc bfs cc pr sssp gmean
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Intel88

BStatic PredG Oracle
Ex

ec
ut

io
n

Ti
m

e
(N

or
m

.)

Source: The author.

terconnect links (the highest value considering all the system’s sockets and interconnect

links); WMRead and WMWrite are the number of bytes read/written from/to the most used

system’s main memory.

Our results show that the predicted solutions reduce the metrics related to the most

accessed interconnect link and memory controller (WRem, WMRead, and WMWrite). For

instance, in the most significant case for Time (cc-web), the reductions of 47%, 50%, and

11% in these respective metrics improve the execution time by 49%.

Considering that the computation performed by each algorithm is the same regard-

less of the TM+PM policies set in the SO, the number of memory operations is roughly

the same. Hence, improvements on WRem, WMRead, and WMWrite indicate that the

PredG’s solutions evenly distribute the application’s data transferred across the intercon-

necting links (WRem), balancing the amount of work done by each memory controller

(WMRead and WMWrite).

Note that, in most cases, there are no significant improvements in the other metrics

90

Table 5.3: Performance of the PredG solutions on Intel64 normalized by Default (the
regular execution).

Alg-Gr Time L2 L3 Rem MRead MWrite WRem WMRead WMWrite

bc-kr 0.71 1.00 1.00 0.97 1.04 1.00 0.78 0.78 0.58
bc-ro 0.76 1.00 1.01 1.02 0.98 0.98 0.99 0.92 0.94
bc-tw 0.93 1.00 1.00 0.99 1.01 1.00 0.86 0.87 1.01
bc-ur 0.72 1.00 1.00 0.98 1.02 1.00 0.72 0.70 0.66
bc-we 0.86 1.00 1.00 0.95 1.02 1.02 0.65 0.70 0.80

bf-kr 0.83 1.00 1.00 0.96 1.00 1.05 0.65 0.85 0.89
bf-ro 0.75 1.00 0.99 1.04 0.96 0.90 0.86 0.81 0.90
bf-tw 0.72 0.99 0.98 1.22 0.99 0.94 0.56 0.48 0.85
bf-ur 0.68 1.00 1.00 1.00 0.99 0.97 0.92 0.91 0.79
bf-we 0.57 1.00 1.00 1.07 0.99 0.93 0.57 0.55 0.77

cc-kr 0.79 1.00 1.00 1.03 1.03 1.01 0.68 0.63 0.56
cc-ro 0.77 0.97 1.00 1.07 1.01 1.00 0.70 0.63 0.99
cc-tw 0.64 0.98 0.99 1.07 1.02 0.99 0.60 0.56 0.97
cc-ur 0.80 1.00 1.00 1.01 1.02 0.98 0.86 0.72 0.56
cc-we 0.51 1.00 1.01 1.03 1.01 1.03 0.53 0.50 0.89

pr-kr 0.69 1.00 0.99 0.94 1.07 0.95 0.65 0.64 0.68
pr-ro 0.98 1.00 1.00 1.01 1.01 1.00 0.83 0.68 0.94
pr-tw 0.93 1.00 1.00 1.00 1.00 1.00 0.97 0.92 0.95
pr-ur 0.98 1.00 1.00 1.00 1.00 1.03 0.94 0.94 1.03
pr-we 0.81 0.99 1.02 1.03 1.00 1.03 0.93 0.93 0.83

ss-kr 0.89 1.00 1.00 1.00 1.00 1.01 0.88 0.86 0.78
ss-ro 0.94 1.02 1.01 1.03 1.05 1.38 0.82 0.53 1.17
ss-tw 0.95 1.00 1.00 1.02 1.01 1.02 1.06 1.01 0.92
ss-ur 0.90 1.01 1.00 1.02 1.00 1.00 0.88 0.85 0.87
ss-we 0.95 1.00 1.00 1.04 1.00 1.02 0.90 0.84 0.97

gmean 0.79 1.00 1.00 1.02 1.01 1.01 0.78 0.74 0.84

Source: The author.

(e.g., L2, L3, MRead, and MWrite) rather than the ones discussed above, which shows

the importance of optimizing the memory accesses (i.e., avoiding remote accesses) and

therefore the use of a proper thread/data mapping strategy.

5.3.3 The Impact of PredG on the Energy and EDP

When proposing techniques to optimize the performance of graph applications in

cloud servers and HPC systems, a key challenge is not significantly increasing the en-

ergy consumption and the trade-off between both metrics (e.g., EDP) of the applications.

Hence, to show that PredG can also bring energy and EDP improvements on top of opti-

mizing for performance, we compare the energy and EDP of PredG with the previously

91

Figure 5.6: Energy and EDP normalized to the Oracle, represented by the black line (↓
values = better energy and EDP).

Energy EDP
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Intel32

Energy EDP
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Intel88
BStatic PredG Oracle

No
rm

. t
o

De
fa

ul
t

Source: The author.

discussed strategies. For that, we illustrate the overall geometric mean results for the In-

tel32 and Intel88 systems1 in Fig. 5.6, where the energy and EDP of each strategy are

normalized by the Default configuration (so the lower, the better). As one can observe,

because PredG is capable of selecting the TM+PM policies that balance the amount of

work done by each memory controller, reducing the congestion in the interconnect links

and the usage of remote memories, it provides energy savings and EDP improvements:

when considering the overall geometric mean, PredG reduces the energy consumption in

8% and 16% over the Default on the Intel32 and Intel88, respectively. Furthermore, the

very same behavior, but at different rates, is observed when the EDP metric is considered.

PredG delivers results comparable to the Oracle (on average for all systems, only 1% and

2% worse than the Oracle in energy and EDP).

1The Intel64 does not have support for energy counters.

92

6 GRAPHNROLL: OPTIMIZING SINGLE-SOURCE GRAPH EXECUTIONS

In this chapter, we introduce a new graph processing framework, GraphNroll,

which fully leverages the optimization of single-source graph algorithms. Fig. 6.1 pro-

vides an overview of GraphNroll. Notice that it is very similar to PredG shown in Fig.

5.1, except that GraphNroll’s Learning Phase follows ML workflow for training based on

different source vertices, and its Execution Phase receives a source vertex. Additionally,

its Execution Phase receives not only the input graph but also the source vertex, enabling

it to predict the best TM+PM configuration based on this source.

The motivation to propose GraphNroll is that the current graph processing frame-

works (including the ones we have proposed in previous chapters) have been designed

to extract valuable information from large graphs efficiently, none of them thoroughly

analyze the variations that occur when executing single-source graph algorithms from

different source vertices. In this kind of graph algorithm, every time a new execution

is fired (so the source vertex changes), different parts of the graph with distinct struc-

tures and amounts of vertices/edges are processed. In other words, threads will process

different data, changing how they communicate and access the memory regions. Signif-

icant examples of single-source graph algorithms are BFS and SSSP, widely applied for

telecom network routing (PETERSON; DAVIE, 2007), neural image reconstruction (LI

et al., 2019; MARRETT et al., 2021), road navigation (GOLDBERG; HARRELSON,

Figure 6.1: GraphNroll framework overview.

B) ML Workflow for Training

Learning Phase
C) Result

Predictor

B) ML Workflow for Prediction

TM+PM

A) Read Inputs

Execution Phase
C) Result

Graphs

Algorithms

System

U
se

r:
 D

t A
na

ly
st

U
se

r:
 S

ys
.

A
dm

.

A) Read Inputs

Model Design
Data

Extraction

Graph + src

Algorithm

System

Data
Preparation Predictor

Prediction

Source: The author.

93

Figure 6.2: Distinct views of the BFS executing the web graph on the Intel64. (a) depicts
the structure of the sub-graphs to which the vertices V1, V2, and V3 belong, (b) shows
the number of vertices processed in each iteration, and (c) shows the results of different
thread and data mapping combinations. Legend: the TM-PM refers to the combination
of the thread and data mapping policies.

(a) Graph Visualization

V1

V2

V3

(b) Execution Variation

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

#
 V

e
r
ti

c
e
s

Iterations

V1 V2 V3

(c) Thread and Data Mapping Comparison

De
-D

e

De
-In

De
-N

U

Cl
-D

e

Cl
-In

Cl
-N

U

Co
-D

e

Co
-In

Co
-N

U

Sc
-D

e

Sc
-In

Sc
-N

U
0.00
0.25
0.50
0.75
1.00
1.25
1.50

Ex
ec

. T
im

e
(N

or
m

.)

V1 V2 V3

Source: The author.

2005), and social network analysis (BRANDES; PICH, 2007).

To illustrate the discussion above, we present in Fig. 6.2 three different perspec-

tives of the BFS executing the web input graph. Fig. 6.2 (a) depicts the source vertices

(V1, V2, and V3) for three particular executions. When processing the graph from these

different sources, a different number of vertices is processed in each iteration of the BFS,

as presented in Fig. 6.2.b. The amount of data processed throughout execution may also

vary, as in V1, in which only a small fraction of the graph is processed. The outcome

of these variations is that the best TM+PM to execute the algorithm will change accord-

ing to the source vertex, as illustrated in Fig. 6.2.c. It shows the execution time obtained

by 12 different combinations of TM+PM policies normalized to Linux’s default solution

(De-De). As one can observe, V1 is better executed with the combination Contiguous-

Interleave (Co-In) while V2 and V3 achieve better performance with Scatter-Interleave

94

(Sc-In) and Default-Interleave (De-In), respectively.

Similar to the context of PredG (see chapter 5), it is evident that adaptability is

essential here, but at a higher level since the optimization strategy must be resilient across

different inputs and distinct source vertices that belong to the same input. With that in

mind, we can exploit the same PredG’s idea of using specific input graphs’ high-level

features to train ANNs, but now, considering the features of the subgraph generated from

the given source vertices. Fortunately, the sub-graph structure where a vertex belongs in

large graph data can be expressed by embeddings. Graph embeddings are transformations

of the graph’s properties (e.g., topology, vertex-to-vertex relationship, and vertex similar-

ities) to low-dimensional vectors so that they can be used as inputs of Artificial Neural

Network (ANN) models. Thus, the embeddings of the source vertices can be exploited to

develop a novel strategy to optimize the execution of single-source graph algorithms with

almost no runtime overhead but offering significant levels of adaptability, exploiting at the

same time the advantages of online and offline techniques, as also presented by PredG.

In this context, this chapter presents the following contributions:

• A DSE considering 3 single-source algorithms (BC, BFS, and SSSP) executing 5

real-world inputs graphs (road, web, twitter, kron, and urand), each starting from

15 different source vertices. With that, we evaluated the optimization potential of

adjusting TM and PM for executing single-source algorithms;

• GraphNroll, a Machine Learning (ML) framework for enhancing the single-source

graph algorithms’ execution time by predicting the ideal TM+PM policies config-

uration as the source vertices change for any input graph, algorithm, and NUMA

machine.

6.1 Design Space Exploration of Source Vertices

To further highlight the performance variation when executing single-source graph

algorithms from different source vertices, we have performed a design space exploration

(DSE) considering 3 single-source algorithms (BC, BFS, and SSSP) executing 5 real-

world input graphs (road, web, twitter, kron, and urand), each starting from 15 different

source vertices. We have used an Intel Xeon E5-2640 processor (Intel32 - described in

section 5.2) and Linux’s default thread and data mapping policy (De-De). Based on this

DSE, Fig. 6.3 presents, for each algorithm, the execution time difference (in %) between

95

Figure 6.3: The difference in the execution time (in %) between the vertices with the best
and worst outcomes in performance when executing BC, BFS, and CC algorithms on the
Intel32 system with the Linux’s default thread and mapping policies. The lower the bar,
the lower the difference.

0%

10%

20%

30%

40%

50%

road web twitter kron urand gmean

E
x

e
c
u

ti
o

n
 T

im
e
 D

if
f.

BC BFS SSSP(88.9)

(96.0)

(99.0)

Source: The author.

the vertex that took the longest and the shortest time to execute. For instance, the two

corner case vertices of BFS-kron have a 42.47% difference in execution time. This dif-

ference is even more evident for the web input graph: up to 99% (SSSP algorithm). This

huge discrepancy happens because there is a significant variation in the number of pro-

cessed vertices when the source vertex changes, as illustrated in Fig. 6.2.b. For instance,

while BFS-web processes 58,264 vertices when starting from V1, it processes 50,539,645

vertices when it begins from V2. When considering the geometric mean of different input

graphs on each algorithm, the time difference is 12.85%, 27.70%, and 12.43% in the BC,

BFS, and SSSP, respectively.

On top of the above-presented results, as we showed in chapter 4, Linux’s default

thread and data mapping policies combination (De-De) is not always the best choice to

execute graph applications. We illustrate this scenario for the single-source algorithms in

Fig. 6.4 for the execution of the same algorithms and inputs as the previous experiment,

but now considering 3 different source vertices (V1, V2, and V3 - that do not represent

the corner cases in execution time), and 2 distinct NUMA machines (Intel32 and Intel64,

described in section 5.2). Each bar in the plot represents the execution time achieved by

the best thread and data mapping combination for the respective execution (algorithm +

input graph + source vertex) normalized to the Linux’s default (De-De, represented by the

black line). Hence, the lower the value, the greater the reduction in the execution time.

We also argue that there is no one-fits-all solution, as shown in Table 6.1, which depicts

the best combination for each algorithm, input graph, and source vertex.

Therefore, based on this discussion, we can highlight the following:

96

Figure 6.4: Execution time of the best thread and data mapping combination when each
algorithm (BC, BFS, and SSSP) starts from 3 different source vertices (V1, V2, and V3)
with 5 input graphs (road, web, twitter, kron, urand) on the Intel32 and Intel64 machines.
Results are normalized by the Linux’s default thread and data mapping policies combina-
tion. The lower the bar, the better.

bc
-ro

bc
-w

e

bc
-tw

bc
-k

r

bc
-u

r

bf
-ro

bf
-w

e

bf
-tw bf
-k

r

bf
-u

r

ss
-ro

ss
-w

e

ss
-tw ss
-k

r

ss
-u

r0.00
0.25
0.50
0.75
1.00
1.25
1.50

Intel32
bc

-ro

bc
-w

e

bc
-tw

bc
-k

r

bc
-u

r

bf
-ro

bf
-w

e

bf
-tw bf
-k

r

bf
-u

r

ss
-ro

ss
-w

e

ss
-tw ss
-k

r

ss
-u

r0.00
0.25
0.50
0.75
1.00
1.25
1.50

Intel64

V1 V2 V3

Ex
ec

ut
io

n
Ti

m
e

(N
or

m
.)

Source: The author.

Table 6.1: The ideal thread and data mapping policies combination when executing 3
single-source algorithms (BC, BFS, and SSSP) with 5 input graphs (road, web, twitter,
kron, and urand) starting from 3 different source vertices (V1, V2, and V3) on 2 NUMA
machines (Intel32 and Intel64).

Intel32 Intel64

V1 V2 V3 V1 V2 V3

bc-road Cl-In Co-In Co-De Co-In Sc-In Cl-De
bc-web De-In Co-De De-In De-De Co-In Cl-In
bc-twitter De-In De-In De-In De-In Co-In Sc-In
bc-kron De-In De-In De-In De-NU De-In De-De
bc-urand De-In De-In De-In De-In De-In Sc-De
bf-road De-NU De-NU De-NU Co-De Cl-De Sc-De
bf-web Co-In Cl-In De-In Co-In Sc-In De-In
bf-twitter Sc-In Co-Ine Sc-De Cl-In Co-In Sc-In
bf-kron Co-In De-NU Sc-De Co-In Sc-In Cl-In
bf-urand Cl-In De-De Cl-De Co-In Co-In Sc-In
ss-road Sc-In De-NU Cl-In Co-In Cl-In Sc-In
ss-web Cl-De De-In Cl-De Co-In Cl-In Co-De
ss-twitter De-In De-In De-In De-In De-In Cl-In
ss-kron De-In De-In De-In Cl-In De-In De-In
ss-urand De-In De-In De-In Sc-In De-In De-NU

Source: The author.

• Since single-source algorithms process different amounts of data with different

structures, the ideal TM+PM solution for the same input graph and algorithm will

97

very likely change if the source vertex changes. This scenario can be observed for

the BC-urand on the Intel64 machine. When the execution starts at V1, the best

outcome in the execution time is achieved with the combination De-In (35% of im-

provements over De-De). However, when the source vertex is V3, the combination

Sc-De reaches the best execution time, being 11% better than the default configura-

tion;

• Even when the same TM+PM solution yields the best results for multiple source

vertices, the rates of performance improvement over Linux’s default solution can

vary significantly. As a representative example, let us consider the SSSP execution

over the web input graph (SSSP-web) on the Intel32 system. In this scenario, when

one defines the source vertices V1 and V3, the best outcome reached for both is with

the combination Cl-De, but with different rates: V1 and V3 are 17% and 9% faster

than the default configuration, respectively;

• Furthermore, the same observations as those presented in section 4.1 remain with

regard to the variation in the input graph, algorithm, and machines. Thus, the best

TM+PM solution may also change if any of these variables change.

6.2 GraphNroll

Similar to PredG, as described in chapter 5, GraphNroll is a two-phase frame-

work. The Learning Phase of GraphNroll is employed by the system administrator on the

available NUMA machine. It learns the best TM+PM solution for each configuration of

algorithm, input graph, and sampled source vertices (explained later) to create a Predictor

(Fig. 6.5). In the Execution Phase, the end-user or data analyst uses the Predictor to give

the best TM+PM solution to execute a given single-source algorithm over an input graph

starting from a new source vertex (Fig. 6.6).

6.2.1 Learning Phase

To build the Predictor, GraphNroll learns the best TM+PM solutions based on the

behavior of the given algorithms and NUMA system by processing different input graphs

from different source vertices. For that, it applies the following steps, as can be seen in

Fig. 6.5:

98

Figure 6.5: GraphNroll’s Learning Phase.

A) Read Inputs

Sy

s.

 A
lg

.

 G
ra

.

BC

B) Data Extraction

Sample
Vertices

Create
DatasetDSE Get Best Solutions

C) Model Design

D) Predictor

M

Generate
Embeddings

Preprocess

DatasetBFS

SSSP

Database

Embs. of the
Sampled Verts.

Predictor

Learning Phase

Source: The author.

A) Read Inputs. In this step, the system administrator is responsible for feeding

GraphNroll with the following inputs: (Gra.) the input graphs in edgelist files represen-

tation (e.g., orkut.el and texas.el); (Alg.) the binary of the graph algorithms compiled

in the target machine; and (Sys.) the description of the target NUMA machine. With

these inputs, GraphNroll sets up the input graphs and algorithms and identifies the ma-

chine configuration (e.g., number of cores, number of NUMA nodes, and memories’ size)

before moving to the next step.

B) Data Extraction. In this step, GraphNroll creates a Dataset comprised of (i)

the embeddings of a subset of sampled source vertices of each given input graph and (ii)

the ideal combination of TM+PM for each algorithm running each input graph starting

from the sampled source vertices.

For (i), GraphNroll considers all the given input graphs to generate the embed-

dings of all of their vertices (Generate Embeddings). Each embedding is a 1-dimensional

vector representing the sub-graph structure where the vertex belongs (i.e., it encodes the

vertex-to-vertex relationship in a vector representation). Hence, although different ver-

tices will have different embeddings, those that belong to sub-graphs with similar struc-

tures will tend to be more similar to each other than those that belong to sub-graphs with

different structures. To generate the embeddings, GraphNroll uses the PyTorch BigGraph,

a scalable tool developed by Facebook AI Research, to create and handle large graph em-

beddings for ML (LERER et al., 2019). For each trained input graph, GraphNroll uses

PyTorch BigGraph with different models to generate 20-dimension embeddings by fol-

lowing the methodology of Lerer et al. (LERER et al., 2019): GraphNroll adjusts the

learning rates from 0.001-0.1, margins from 0.05-0.2, and negative batch sizes of 100-

500, and each configuration is trained for 10 epochs. In the end, GraphNroll returns the

highest accurate model, which is stored in a Database to be used in the Execution Phase.

99

For (ii), a DSE is performed to find the best TM+PM solution for each algorithm,

input graph, and sampled vertex. Because graph data may contain billions of vertices and

edges – the largest publicly-available real-world graph, the HyperlinkWeb, comprises over

3.5 billion vertices and 128 billion edges (DHULIPALA; BLELLOCH; SHUN, 2021)

– performing a DSE that covers the whole graph vertices for all graphs is impractical.

Hence, GraphNroll samples representative source vertices (Sample Vertices) based on the

work of Beamer et al. (BEAMER; ASANOVIĆ; PATTERSON, 2015), where vertices

with a non-zero degree are randomly selected from each input graph. Then, GraphNroll

performs the DSE by executing the given algorithms with the input graphs starting from

each sampled source vertex on the target NUMA system, considering the following TM

and PM policies combination available on the Linux OS (detailed in chapter 2): OS’s

Default (De), Scatter (Sc), Contiguous (Co), and Close (Cl) for TM; and First-Touch

(De), Interleave (In), and NUMA Balancing (NU) for PM.

With the DSE, GraphNroll selects the TM+PM solutions that result in the best per-

formance for each sampled vertex of each input graph (Get Best Solutions). Both outputs

of steps (i) and (ii) are merged (Create Dataset) to compose the rows of the Dataset, e.g.,

embeddings + classes. Finally, this Dataset is preprocessed (Preprocess) by discretiza-

tion, normalization, and data augmentation procedures to avoid overfitting or underfitting

issues that can bias the ML model. For discretization, GraphNroll applies the One-Hot

Encoding strategy to encode each categorical feature to numbers. For normalization, it fits

the Dataset to the range of [0, 1] using the Min-Max strategy. Lastly, for data augmenta-

tion, it performs a random strategy that randomly selects, modifies, and inserts examples

in the minority target classes, resulting in a balanced Dataset. The resulting Dataset is

then moved to the next step.

C) Model Design. With the created Dataset, GraphNroll performs the analytic

hyperparameter optimization to build the best ANN models by automatically changing

the ANN model’s parameters to find the one that delivers the best accuracy. The values

evaluated for each parameter are the number of hidden layers, varying in the range of

[1, 5]; the number of neurons in each hidden layer (8, 16, 32, 64, and 128); activation

function (Sigmoid, ReLU, LeakyReLU, Softmax, and Softplus); learning rate (0.001,

0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009); and momentum (0.01, 0.02, 0.03,

0.04, 0.05, 0.06, 0.07, 0.08, 0.09). For each combination of these parameters, GraphNroll

trains throughout several epochs until it achieves a threshold of 0.1 for the mean square

error (value analytically found by exhaustive evaluations, which precludes the model of

100

Figure 6.6: GraphNroll’s Execution Phase.

 S
ys

.

A
lg

.
 G

ra
.

B) Data Prep. C) Prediction

D) Solution

M

BFS

Predictor

Thr/Dt
Mapping

A) Read Inp.

Vertex

Embedding

Input
Merging

Database

Execution Phase

Source: The author.

overfitting). The final product of the Learning Phase is the resulting model, referred to as

Predictor (see illustration D in Fig.6.5).

6.2.2 Execution Phase

This phase employs the Predictor generated in the previous phase to find the best

TM+PM solutions without any further application execution. For that, GraphNroll applies

the following steps (see Fig. 6.6):

A) Read Inputs. The data analyst is responsible for feeding GraphNroll with

the following inputs: (Gra.) the input graph required to be processed in edgelist files

representation (e.g., orkut.el and google.el); (Alg.) the binary of the algorithm that was

considered during the Learning Phase; (Vertex) the ID of the new source vertex to start

the execution; and (Sys.) indicating the current NUMA machine in which GraphNroll

must have been trained in the Learning Phase.

B) Data Preparation. GraphNroll obtains the previously generated embedding of

the source vertex in the Database (see Data Extraction section) and merges it with the

descriptions of the target algorithm and system to feed the Predictor.

C) Prediction. With the merged data obtained in the previous step, GraphNroll

applies the Predictor to find the ideal TM+PM solutions for the graph, starting with the

specified vertex, algorithm, and system. Finally, GraphNroll sets the predicted thread and

data mapping configuration on the NUMA system and starts the application execution

(see illustration D in Fig.6.6).

101

6.2.3 Implementation Details

We implemented GraphNroll using the same methodology as that of PredG, as

presented in chapter 5, employing the same Python version and settings for TM and PM.

6.3 Methodology

Graph Algorithms. We evaluate GraphNroll’s ability to optimize the following

three single-source algorithms available on the GAP Benchmark Suite (GAPBS) reposi-

tory (BEAMER; ASANOVIĆ; PATTERSON, 2015): BC, BFS, and SSSP (the same used

in chapter 5). We compiled each application with GNU g++ 10.1.0 and OpenMP 4.5,

with the -O3 optimization flag.

Graph Data Input. We consider 11 representative real-world input graphs: road,

amazon, berkley, california, cit-patents, google, orkut, pennsylvania, texas, wikitalk, and

youtube (LESKOVEC; KREVL, 2014).

Execution Environment. We performed the experiments on the same three NUMA

machines as described in chapter 5, all running Linux kernel version 4.19: Intel32, In-

tel64, and Intel88.

Evaluated Configurations. We compared GraphNroll with three different strate-

gies:

• Default, the regular execution, which uses the De-De thread and data mapping

configuration;

• Random, a random TM+PM solution generated for each algorithm, input graph,

and initial vertex executed on each machine;

• Oracle, the best TM+PM for each input graph and algorithm executed on a given

source vertex found through an exhaustive search evaluating all 12 possible combi-

nations of mapping policies.

Training and Validation Vertices Sets. For each evaluated input graph, we sam-

pled 50 different source vertices and split them into an 80%-20% proportion as training

and validation sets (i.e., 40 and 10 vertices used only for GraphNroll’s Learning and Ex-

ecution phases, respectively).

102

Figure 6.7: Execution times of BC, BFS, and SSSP on the evaluated machines (Intel32,
Intel64, and Intel88) when using the different compared strategies. Results are normalized
to the Default, so the lower, the better.

BC BFS SSSP GMEAN
0.00
0.25
0.50
0.75
1.00
1.25
1.50

Intel32

BC BFS SSSP GMEAN
0.00
0.25
0.50
0.75
1.00
1.25
1.50

Intel64

BC BFS SSSP GMEAN
0.00
0.25
0.50
0.75
1.00
1.25
1.50

Intel88

Random GraphNroll Oracle

Ex
ec

. T
im

e
(N

or
m

.)

Source: The author.

Table 6.2: GraphNroll’s predictions for 3 different vertices of the road (roa), cit-patents
(cit), and amazon (ama): TM-PM (x.xx) indicates the predicted thread and data mapping
policies combination followed by the percentage difference from the Oracle solution.

Intel32 Intel64 Intel88

V1 V2 V3 V1 V2 V3 V1 V2 V3

bc-roa Co-De (0.00) Cl-De (0.24) Co-De (0.85) Cl-De (0.00) Cl-De (0.17) Sc-De (0.00) Co-De (0.00) Cl-De (0.00) Sc-De (0.00)

bc-cit Cl-De (0.00) De-NU (0.00) Cl-De (0.00) Sc-NU (3.05) Cl-De (0.00) Sc-NU (3.05) Cl-NU (0.00) De-NU (1.44) Cl-NU (0.00)

bc-ama Co-In (2.83) Cl-NU (0.00) Co-De (2.24) De-De (0.00) De-In (9.27) De-De (0.00) De-NU (0.00) De-De (5.29) De-De (0.00)

bfs-roa De-NU (0.00) De-NU (16.03) Co-De (0.00) Cl-De (0.00) De-De (0.00) Co-De (0.00) Sc-NU (0.00) Co-De (9.20) De-NU (1.79)

bfs-cit Cl-De (0.00) Cl-De (7.01) Cl-De (0.00) Sc-In (0.00) De-In (0.00) Sc-In (0.00) Cl-NU (0.00) Cl-NU (10.92) Cl-NU (0.00)

bfs-ama De-NU (0.00) Sc-De (1.78) Cl-De (2.65) Cl-In (28.19) Co-De (0.00) Sc-In (0.00) Cl-In (0.00) De-De (0.00) Cl-In (0.00)

sssp-roa Cl-In (1.92) Cl-De (0.90) Sc-In (1.86) Sc-In (0.36) Sc-In (1.34) Sc-In (0.00) Sc-De (0.00) Cl-NU (0.00) Sc-De (0.00)

sssp-cit Co-NU (0.00) Sc-De (1.24) Co-NU (0.00) Co-NU (25.12) Cl-NU (34.10) Co-NU (25.12) Co-NU (3.57) Cl-NU (0.27) Co-NU (3.57)

sssp-ama Sc-NU (0.00) Co-NU (0.00) Cl-In (0.89) Co-NU (0.00) Sc-De (11.37) Co-NU (0.00) Cl-NU (0.00) Cl-NU (0.00) Sc-De (0.00)

6.4 Results

6.4.1 GraphNroll’s Performance and Solutions

We start by comparing the performance achieved by the GraphNroll’s solutions

with the evaluated strategies (Default, Random, and Oracle – see section 6.3). For that,

we show in Fig. 6.7 the execution time (y-axis) for each strategy (bars with different

103

colors) grouped by the evaluated algorithms along with the geometric mean (GMEAN) –

x-axis – for each machine (each different bar chart). Each bar shows the average of all

evaluated input graphs and 10 source vertices used in the GraphNroll’s Execution Phase

(see section 6.3) with mean variation coefficients for all machines of 0.16, 0.22, 0.11 for

Default, Random, and GraphNroll, respectively. The variation coefficient indicates the

standard deviation relative to the mean of each strategy considering all input graphs and

source vertices. Results are normalized to the Default, hence, the lower, the better.

When considering the geometric mean, GraphNroll outperforms the Default by

6%, 14%, and 4%, and the Random by 4%, 8%, and 8%, on Intel32, Intel64, and Intel88,

respectively. In the most significant scenario, it achieves up to 18% improvement over the

Default when executing BFS on Intel64.

Table 7.1 depicts the solutions predicted by GraphNroll compared to the Oracle

ones on each target architecture. TM-PM indicates the predicted combination of thread

and data mapping policies, while the number between parenthesis (x.xx) represents how

distant the performance is from the Oracle, given in percentage of the execution time.

We highlight the results for the 3 most representative graphs evaluated in this chap-

ter: road represents a mesh, cit is a citation network, and ama, a social network graph.

When considering the cases in which GraphNroll achieved the same results as the Oracle

(i.e., percentage distance is 0.00), one can highlight the no one-fits-all behavior in the

single-source algorithm execution, as we also presented in the DSE of this chapter (see

6.1). Therefore, we can see that the ideal TM+PM solution changes if the source vertex

changes: the single-source algorithm will process different amounts of data with distinct

structures. This behavior is evident in the case of bc-cit when starting from V1 and V2

on the Intel32 machine. Even if we keep the same source vertex, variations still arise due

to differences in the input graph, algorithm, and NUMA machine, as discussed in section

6.1.

6.4.2 Impact of GraphNroll on the Energy and Energy-Delay Product

In Fig.6.8, we compare the energy and energy-delay product (EDP) results of

GraphNroll with the evaluated configurations on the Intel32 and Intel88 (Intel64 machine

does not support hardware energy counters). We collected the energy spent by the DRAM

and core domains, i.e., CPU and cache memories, through the Intel Running Average

Power Limit (RAPL) (HÄHNEL et al., 2012). Similar to the performance results, each

104

Figure 6.8: Energy and EDP of BC, BFS, and SSSP algorithms on Intel32 and Intel88
when using the different compared strategies. Results are normalized to the Default, so
the lower, the better.

(a) Energy

BC BFS SSSP GMEAN
0.00
0.25
0.50
0.75
1.00
1.25
1.50

Intel32

BC BFS SSSP GMEAN
0.00
0.25
0.50
0.75
1.00
1.25
1.50

Intel88
Random GraphNroll Oracle

En
er

gy
 (N

or
m

.)

(b) EDP

BC BFS SSSP GMEAN
0.00
0.25
0.50
0.75
1.00
1.25
1.50

Intel32

BC BFS SSSP GMEAN
0.00
0.25
0.50
0.75
1.00
1.25
1.50

Intel88
Random GraphNroll Oracle

ED
P

(N
or

m
.)

Source: The author.

bar shows the average of all evaluated input graphs execution from 10 source vertices

and normalized to the Default, hence, the lower, the better. Such results showed mean

variation coefficients, for all machines, of 0.24, 0.08, and 0.07 on energy and 0.39, 0.09,

and 0.09 on EDP for Default, Random, and GraphNroll, respectively.

As one can observe when considering the overall geometric mean, GraphNroll

reduces energy consumption and EDP compared to all other approaches. It reduces the

energy consumption in 4% and 3%, and the EDP in 11% and 7% over the Default on the

Intel32 and Intel88, respectively. Compared to the Random solution, GraphNroll is better

by 4% and 6% in energy and by 8% and 15% in EDP on Intel32 and Intel88. GraphNroll

delivers results comparable to the Oracle since it is only, on average, 2% and 5% far from

the Oracle in energy and EDP, respectively.

105

6.4.3 Costs

While executing single-source algorithms using the Default or Random TM+PM

configurations is straightforward with no training overheads, such strategies lack solution

quality. As we show in Fig. 6.7, Default and Random are up to 49% and 45% (BFS

on Intel64) far from the Oracle, respectively. On the other hand, one can try to find the

Oracle solution to extract the full performance potential from the single-source algorithms

at hand. However, to find the Oracle solution, one must execute an exhaustive search

to evaluate all possible TM+PM combinations for new source vertices, which takes a

considerable amount of time. For example, it takes 3.23 hours to find the best solutions

for the SSSP processing the texas input graph starting from 50 different source vertices

and running on Intel64.

GraphNroll provides the benefit of quickly delivering a solution, as Default and

Random) strategies, but with solutions very close to the Oracle (on average 7%). It also

achieves the top-3 best solutions in 62.51% of the times, while the Default and Random

reach the top-3 in only 20.56% and 24.54% of the times. The GraphNroll’s presents an

average inference time of 0.0665 seconds (with a standard deviation of 0.0161) to predict

the best solution for all machines, algorithms, input graphs, and source vertices.

It is important to mention that all the above results consider the availability of

vertex embeddings. Otherwise, one must train the embeddings using PyTorch Big Graph,

which can be time-consuming. Table 6.3 presents the execution time required to train em-

beddings for each evaluated graph. Due to time-sharing limitations on the clusters where

we conducted our experiments and some scalability issues of PyTorch Big Graph, we

were unable to obtain the embeddings of larger graphs, like twitter, kron, urand, and web

evaluated in chapters 4 and 5. To maintain consistency with the input graphs evaluated in

previous work, we assessed only the 11 graphs shown in Table 6.3.

106

Table 6.3: Time consumed to train the embeddings.

Graphs Time

orkut 01:39:29

road 01:13:54

cit-patents 00:15:09

berkley 00:08:21

roadNet-CA 00:06:33

wikitalk 00:06:23

google 00:06:03

roadNet-TX 00:04:50

roadNet-PA 00:03:51

youtube 00:03:47

amazon 00:01:17

Source: The author.

107

7 POTIGRAPH: ADJUSTING NUMBER OF THREADS AND THREAD/DATA MAP-

PING

As we have shown in the previous chapters, a smart Thread Mapping (TM) and

Data/Page mapping (PM) across the available resources are mandatory to improve the

performance of graph applications on NUMA machines. However, while TM and PM

may mitigate some of the intrinsic NUMA penalties, e.g., costly remote memory accesses

(ZHANG; CHEN; CHEN, 2015), another performance limitation remains w.r.t. the par-

allel applications’ scalability, where the increase in the amount of resources (e.g., cores)

will not proportionally deliver the same performance improvement levels. The reasons are

well-known in literature (SCHWARZROCK et al., 2020; LUAN et al., 2022; MALAVE;

SHINDE, 2022), and so to achieve the best performance, in many times applying thread

throttling, which artificially decreases the Number of Threads (NT), may also be as

important (SCHWARZROCK et al., 2020).

Motivated by this, in this chapter, we extend PredG (as discussed in Chapter 5)

to optimize NT alongside TM+PM (referred throughout this work as NT+TM+PM).

This extension results in a new framework named PotiGraph. An overview of PotiGraph

is depicted in Figure 7.1. It also comprises two phases, with a major difference from

PredG being the creation of three distinct predictions that simultaneously predict each of

the respective variables (NT, TM, and PM). These predictors are represented by squares

Figure 7.1: PotiGraph framework overview.

B) ML Workflow for Training

Learning Phase
C) Result

B) ML Workflow for Prediction

NT+TM+PM

A) Read Inputs

Execution Phase
C) Result

Graphs

Algorithms

System

U
se

r:
 D

t A
na

ly
st

U
se

r:
 S

ys
.

A
dm

.

A) Read Inputs

Graph

Algorithm

System

Data
Preparation

Prediction

TMNT PM
Predictors

TMNT PM

Model Design
Data

Extraction

B) ML Workflow for Training

Source: The author.

108

Figure 7.2: Comparison of different solutions: Default, the regular execution; TM, only
TM; PM, only PM; NT, only number of threads; TM+PM, TM and PM together; and
NT+TM+PM, NT, TM and PM together.

ork Ber twi
0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
im

e
 N

o
rm

a
liz

e
d

Default

TM

PM

TM+PM

NT NT+TM+PM

(1
6

,
C

o
-I

n
)

(4
,
C

o
-D

e
) (3

2
,
D

e
-I

n
)

Source: The author.

with different colors in C of the Learning Phase and in B of the Execution Phase depicted

in Fig. 7.1. Due to the limitations explained at the end of the previous chapter, PotiGraph

does not consider single-source graph algorithms specifically.

To demonstrate the PotiGraph’s potential of optimizing NT alongside TM and

PM, we present Figure 7.2. The figure showcases the execution time comparison of the

SSSP algorithm on three input graphs: ork, Ber, and twi. The evaluated solutions in-

clude: the Linux’s Default Configuration (DIENER et al., 2014; GUREYA et al., 2020b;

MALAVE; SHINDE, 2022); the optimization of a single parameter (NT, TM, or PM)

while keeping the others at their default settings; the optimization of TM+PM with NT at

max; and the simultaneous optimization of NT, TM, and PM (more details are given in

section 7.2). Results are normalized against the Default (the lower, the better). Observa-

tions from the results include:

• When the application scales to the maximum thread count (twi), optimizing TM+PM

(as we have done so far) results in noteworthy performance enhancements. For

instance, in the twi graph, this optimization yields a 24% improvement over the

Default configuration;

• When the application exhibits limited scalability, we can enhance its performance

by adjusting NT+TM+PM. For instance, in scenarios where SSSP does not scale

with increasing NT (ork and Ber), optimizing TM+PM results in performance im-

provements of up to 10%. Nevertheless, optimizing all parameters (NT+TM+PM)

leads to significantly higher improvements, reaching up to 80% (Ber).

Hence, it is evident that optimizing NT, TM, and PM together is crucial for exploit-

109

ing their full potential. PotiGraph adopts the same PredG approach, leveraging high-level

features from input graphs to train three separate Artificial Neural Network (ANN) mod-

els. These models predict the best NT+TM+PM solutions (when deployed on the target

NUMA machines) without requiring further application execution, utilizing only these

high-level features. Consequently, PotiGraph strikes a balance between the benefits of

offline and online methods, mitigating their respective drawbacks.

7.1 PotiGraph

Similar to PredG (see chapter 5), PotiGraph consists of two phases, as illustrated

in Fig. 7.3 and Fig. 7.4: Learning Phase, when it learns the best NT+TM+PM combina-

tion for each graph algorithm and input data to create three different Predictors (one for

each variable to be optimized – NT, TM, and PM) (Fig. 7.3); and Execution Phase, which

will be triggered when a new incoming graph arrives for execution, and is used to deliver

the best NT+TM+PM combination by using the predictors (Fig. 7.4).

7.1.1 Learning Phase

The Learning Phase is composed of the following steps, as can be seen in Fig. 7.3:

A) Read Inputs. PotiGraph is fed with the following inputs (the same as PredG

in chapter 5): (Gra.) the input graphs in edgelist files representation (e.g., google.el and

texas.el); (Alg.) the binary of the graph algorithms compiled in the target machine; and

(Sys.) the description of the target NUMA machine.

Figure 7.3: PotiGraph’s Learning Phase.

A) Read Inputs

Sy

s.

 A
lg

.

 G
ra

.

PR

B) Data Extraction

Create
Datasets

DSE Get Best
Solutions

C) Model Design

M

Preprocess
SSSP

Database
CC

Collect
Features

N
T

TM P
M

Targets

Da
ta

se
ts

TMNT PM
PredictorsU

se
r:

 S
ys

. A
dm

in
is

tra
to

r

Learning Phase

Source: The author.

110

B) Data Extraction. PotiGraph creates three Datasets, one for each optimization

target (NT, TM, and PM). Each Dataset comprises (i) the high-level features of the input

graphs and (ii) the ideal solution of the respective target for each graph algorithm run-

ning a given input graph. The high-level features (i) of the graph data are also given as

input if they are present in the graph source (which is the case for most of them (ROSSI;

AHMED, 2015; LESKOVEC; KREVL, 2014)), otherwise, they are extracted using the

NetworKit tool (STAUDT; SAZONOVS; MEYERHENKE, 2016) (Collect Features), a

tool for large-scale network analysis. These features are then stored in a Database for

subsequent use in the Execution Phase. Then, PotiGraph performs a design space explo-

ration (DSE) to find optimal NT+TM+PM combinations for each graph and algorithm.

The DSE is done by applying a binary search for the NT, and, for each probe of NT, it

tests all possibilities for TM and PM (outlined in chapter 2). Then, data from both (i) and

(ii) are integrated (Create Datasets) and undergo preprocessing (Preprocess), including

One-Hot Encoding for categoricals, Min-Max normalization to a [0, 1] range, and Random

data augmentation for balanced class representation. This results in the refined Datasets,

which will be used during the step below.

C) Model Design. PotiGraph generates three different models using the pre-

viously created datasets: (i) a regression model to NT and (ii) classification models to

TM and PM. For that, it performs analytic hyperparameter optimizations, changing the

model’s parameters to find the one that delivers the best accuracy. In case (i) PotiGraph

considers only one neuron with a Linear activation function in the output layer. For the

remaining layers, it tunes the number of hidden layers considering the range [1, 5]; the

number of neurons in each hidden layer (8, 16, 32, 64, and 128); the activation function

(Sigmoid, ReLU, LeakyReLU, Softmax, and Softplus); the learning rate (0.001 to 0.009,

interval of 0.001); and momentum (0.01 to 0.09, interval of 0.01). For case (ii), PotiGraph

does the same as above, but considering 4 and 3 neurons with the Softmax activation func-

tion in the last layer for the TM and PM model, respectively. For each combination of

these parameters, PotiGraph trains throughout several epochs until it achieves a threshold

of 0.1 for the mean square error (value analytically found by exhaustive evaluations to

avoid overfitting). These resulting models are referred to as the NT, TM, and PM predic-

tors, which work individually to predict the best number of threads, thread mapping, and

data mapping, respectively.

111

Figure 7.4: PotiGraph’s Execution Phase.

 S
ys

.

A
lg

.
 G

ra
.

B) Data Prep.

NT+TM+PMM

SSSP

A) Read Inp.

Collect
Features

Input
Merging

TMNT PM

C) Prediction
Execution Phase

U
se

r:
 D

at
a

A
na

ly
st

Source: The author.

7.1.2 Execution Phase

This phase is similar to PredG (see chapter 5), but applying the three different

predictors for predicting NT, TM, and PM simultaneously (NT+TM+PM). The steps per-

formed by PotiGraph are (see Fig. 7.4):

A) Read Inputs. PotiGraph receives the following inputs: (Gra.) the new input

graph in edgelist files representation; (Alg.) the binary of the graph algorithm (that should

have been considered during the Learning Phase); and (Sys.) the current NUMA machine.

B) Data Preparation. PotiGraph collects the same high-level graphs’ features

from the input graph, which is available in the graph data or will be collected by using the

NetworKit tool (Collect Features). Then, the features are merged with the descriptions of

the target algorithm and system to feed the NT, TM, and PM predictors.

C) Prediction. PotiGraph applies the predictors to find the best NT+TM+PM

combination for the incoming input graph. Then, it fires the application execution with

the predicted solution set in the target system.

7.1.3 Implementation Details

We implemented PotiGraph using the same methodology as that of PredG, as

presented in chapter 5, employing the same Python version and settings for TM and PM.

To adjust the number of threads, PotiGraph uses OMP_NUM_THREADS environmental

variable.

112

7.2 Methodology

Graph Algorithms. We evaluated the graph processing algorithms available in

the GAPBS repository (BEAMER; ASANOVIĆ; PATTERSON, 2015) also evaluated by

PredG: BC, BFS, CC, PR, and SSSP. They were parallelized and compiled in the same

way.

Graph Data Input. We considered the same 15 input graphs evaluated by PredG.

From these graphs, we considered 5 for validation (used only in the Execution Phase):

road, cit-patents, amazon, california, and berkley, leaving the remaining 10 graphs for

training.

Considered High-Level Features. We considered the same features as in PredG

(also shown in Table 2.1 of chapter 2).

Execution Environment. We ran our experiments on Intel32 and Intel88, each

configured with Linux kernel v. 4.19 (see sections 4.1 and 5.2 for details).

Compared Solutions. We compared PotiGraph with the following:

• Default, the regular execution, with the maximum NT, TM as defined by the Linux’s

scheduler, and First-Touch as PM (DIENER et al., 2014; GUREYA et al., 2020b;

MALAVE; SHINDE, 2022);

• Random, a random combination of NT+TM+PM;

• Oracle (100% accuracy), when the predictors determine the optimal NT+TM+PM

configuration. It is important to note that TM and PM only consider the traditional

policies explained in chapter 2;

• BstN, the best solution for NT but with defaults TM and PM;

• BstTP, the best solution for TM+PM but with default NT;

• PredG, our proposal to optimize TM+PM, as shown in Chapter 5;

• NTP, the optimization of NT, TM, and PM, in this specific order (which is the best

order for most generic applications (SCHWARZROCK et al., 2020));

• TNP, the optimization of TM, NT, and PM, in this specific order;

• TPN, the optimization of TM, PM, and NT, in this specific order;

Note that the Oracle consistently provides the optimal NT+TM+PM combination,

resulting in superior performance compared to other strategies. We considered the same

four TM and three PM policies as described in chapter 2 for all the compared strategies.

Results have a standard deviation between 0.0014 and 0.0033 (15 executions each).

113

Table 7.1: Solutions predicted by PotiGraph.

Intel32 Intel88

NT TM-PM
Diff to
Oracle

NT TM-PM
Diff to
Oracle

BC-roa 16 Cl-De (1.00) 40 De-De (1.00)
BC-cit 16 Sc-NU (1.00) 20 Sc-NU (1.00)
BC-ama 8 Sc-De (1.14) 12 Co-NU (1.01)
BC-CA 16 De-De (1.38) 40 De-NU (1.00)
BC-Ber 13 Co-NU (1.02) 14 Co-De (1.00)

BFS-roa 18 Cl-NU (1.30) 21 Co-De (1.00)
BFS-cit 16 Sc-De (1.00) 25 Sc-De (1.00)
BFS-ama 16 Sc-NU (1.00) 22 Co-In (1.00)
BFS-CA 16 Co-NU (1.00) 29 Cl-NU (1.00)
BFS-Ber 8 Co-NU (1.00) 18 Co-De (1.00)

CC-roa 32 De-In (1.00) 88 De-In (1.00)
CC-cit 32 Cl-In (1.00) 88 Co-De (1.16)
CC-ama 32 Sc-NU (1.00) 36 De-NU (1.06)
CC-CA 32 De-NU (1.03) 88 Cl-De (1.00)
CC-Ber 16 Sc-NU (1.00) 42 Sc-De (1.10)

PR-roa 32 Cl-In (1.00) 45 De-In (1.00)
PR-cit 32 Sc-NU (1.00) 88 Sc-NU (1.00)
PR-ama 16 Sc-NU (1.00) 34 Cl-NU (1.00)
PR-CA 32 De-NU (1.00) 88 Co-In (1.00)
PR-Ber 32 Sc-NU (1.30) 35 Sc-In (1.00)

SSSP-roa 15 Sc-In (1.20) 44 Co-NU (1.02)
SSSP-cit 4 Co-NU (1.00) 2 Co-NU (1.00)
SSSP-ama 2 Co-De (1.00) 2 Co-NU (1.03)
SSSP-CA 1 Co-De (1.00) 1 Co-NU (1.00)
SSSP-Ber 4 Co-De (1.00) 4 Co-De (1.00)

Source: The author.

7.3 Results

7.3.1 Accuracy of PotiGraph

We start by discussing the NT+TM+PM configurations predicted by PotiGraph.

For that, Table 7.1 depicts the configuration (represented by the columns NT, TM-PM)

and the execution time difference to the Oracle, for each graph application and input,

on both architectures. Hence, a value 1.00 means that the Execution Phase of PotiGraph

successfully predicted either the same configuration as the Oracle (i.e., perfect predictors)

or a similar configuration that delivers the same performance. To facilitate the visualiza-

114

tion, we highlight in bold the individual solutions of NT, TM, and PM that were correctly

predicted by PotiGraph. PotiGraph accurately predicts the optimal configuration in 74%

of cases (37 out of 50 executions). When evaluating the accuracy of each predictor indi-

vidually, we find that the NT has an accuracy of 80%, the TM has 86%, and the PM has

94%.

When the predictors and Oracle do not match, in most cases, the predictors de-

liver configurations that are close to the Oracle performance-wise: in the geometric mean

across all graphs, input sets, and NUMA architectures, the performance of the executions

with configurations given by the predictors are only 3% slower than executing with the

configurations delivered by the Oracle. Only in specific scenarios, such as with the BC-

CA on the Intel32, when PotiGraph incorrectly predicts the TM variable, the execution is

significantly slower (38%).

Another important point to highlight is that similar to the optimization of only

TM+PM, there is also the no one-fits-all behavior for NT+TM+PM as the input graph, al-

gorithm, and machine changes. Representative examples include: BC on Intel88 yielding

different solutions with changes in the input graph; BFS and PR processing the CA input

graph on Intel32 achieving their best performance with different configurations; and the

BC-road solution on Intel32 differing from the solution on Intel88.

7.3.2 Performance Evaluation

Figures 7.5 and 7.6 demonstrate the execution time for each graph algorithm (x-

axis) considering the average of all input graphs evaluated along with the overall geomet-

ric mean on each NUMA architecture (GMEAN). In each subfigure (a and b), results are

normalized to the Default strategy (the lower, the better).

In Figure 7.5, we compare the PotiGraph results with Default, Random, BstN,

BstTP, and PredG. When compared to the Default strategy, PotiGraph reduces the execu-

tion time by up to 87% (SSSP on the Intel88) and 44% on the overall geometric mean of

algorithms, inputs, and machines. These significant improvements are result of a better

use of the hardware resources: by employing ideal thread mapping, the PotiGraph solu-

tions mitigate cache pollution as each thread can effectively use caches without frequent

cache evictions caused by other threads (it reduces by 29% and 38% the misses in L2

and L3 caches over the Default1); Also, by ideally selecting the page mapping policy,

1We obtained hardware counter values from Intel32 using Intel Performance Counter Monitor (PCM)

115

Figure 7.5: PotiGraph vs. Default, Random, BstN, BstTP, and PredG. Execution time
normalized to Default, represented by the black line: ↓ values = better execution time of
each strategy.

BC BFS CC PR SSSP GMEAN
0.0
0.5
1.0
1.5
2.0
2.5

Intel32

BC BFS CC PR SSSP GMEAN
0.0
0.5
1.0
1.5
2.0
2.5

Intel88

Random BstNT BstTP PredG PotiGraph

Ex
ec

ut
io

n
Ti

m
e

(N
or

m
.)

the system can ensure that graph data is stored closer to the processing threads, optimiz-

ing memory access patterns, reducing memory latency, and enhancing memory bandwidth

utilization (PotiGraph reduces by 62% and 21.5% the number of remote memory accesses

and accesses to the most congested memory controller over the Default). Moreover, when

compared to the Random strategy, the execution time is reduced by up to 70% for the ex-

ecution of the PR algorithm on the Intel88.

Now, let us compare the performance improvements of PotiGraph over two of-

fline strategies, BstN and BstTP, and the hybrid (PredG) – also in Figure 7.5 –, PotiGraph

achieves better performance results across all algorithms, inputs, and architectures. On the

overall geometric mean, PotiGraph delivers 10%, 39%, and 41% better performance than

BstN, BstTP, and PredG, respectively. Since BstN operates with the optimal thread count,

its reliance on default thread and page mapping precludes it from archiving the same

levels of reduction in remote memory accesses as when optimizing NT+TM+PM (its re-

duction in remote accesses is 32% lower than the reductions of PotiGraph’s solutions). In

contrast, although BstTP employs the ideal mapping, its falls to select the optimal thread

count significantly reduces performance. Notice that the performance improvements of

PotiGraph are even more significant when compared to PredG. Since PredG optimizes

(WILLHALM; DEMENTIEV; FAY, 2012).

116

Figure 7.6: PotiGraph vs. NTP, TNP, and TPN. Execution time normalized to Default,
represented by the black line: ↓ values = better execution time for each strategy.

BC BFS CC PR SSSP GMEAN
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Intel32

BC BFS CC PR SSSP GMEAN
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Intel88

NTP TNP TPN PotiGraph

Ex
ec

ut
io

n
Ti

m
e

(N
or

m
.)

only TM+PM, its best case is limited to BstTP. Therefore, these results reinforce the need

for a strategy that optimizes the three variables (thread count and thread/page mapping)

at the same time.

Another point to consider is the (offline) time taken for BstN and BstTP to find the

best configuration: for instance, they take 1060.15s and 546.30s, respectively, to find an

optimal configuration for a single graph application (BC algorithm processing the road

input on Intel32), and must be re-executed for every new input graph. On the other hand,

the Execution Phase of PotiGraph takes only 0.1234 seconds, on average, with a standard

deviation of 0.0504, to predict the best NT+TM+PM for all combinations of algorithms,

input graphs, and machines. While PredG exhibits similar optimization costs to Poti-

Graph (only 0.0492 seconds, on average, with a standard deviation of 0.0102), our results

show that it performs poorly compared to PotiGraph. It is worth noting that, since PredG

optimizes only TM+PM, its best achievable solutions yield performance at most equal to

that of BstTP.

Similarly, PotiGraph outperforms the optimization paths proposed by Schwarz-

rock et al. (SCHWARZROCK et al., 2020) for generic applications in most scenarios,

as shown in Figure 7.6. On average of all experiments, PotiGraph reduces the execu-

tion time by 2%, 42%, and 19% compared to the optimization sequences NTP, TNP, and

TPN, respectively. However, it is worth mentioning that, in the same way as BstN and

117

Figure 7.7: Energy and EDP normalized to the Default, represented by the black line: ↓
values = better energy and EDP.

Intel32 Intel88
Energy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d

 t
o
 D

e
fa

u
lt

Intel32 Intel88
EDP

Random

BstN

BstTP

PredG

NTP TNP TPN PotiGraph Oracle

2.82

BstTP, all these combinations need an exhaustive search for each parameter and must re-

execute whenever the algorithm, input graph, or machine changes. For instance, for the

BC algorithm processing the road input on Intel32, NTP takes 1374.15s.

7.3.3 The Impact of PotiGraph on the Energy and EDP

When proposing techniques to optimize the performance of graph applications

running on HPC environments, a key challenge is not significantly increasing energy con-

sumption. Hence, to show that PotiGraph can also bring energy savings while optimiz-

ing the performance, we compare the energy consumption2 and the energy-delay product

(EDP) of PotiGraph with all the previously discussed strategies in Figure 7.7. The results

of each strategy consider the geometric mean of all graph applications and input graphs

on each multicore architecture. Note that now we use the default execution as the base-

line. Because PotiGraph can better use the hardware resources by tuning the number of

threads, the thread, and page mapping to the input graph, it provides lower energy con-

sumption and better EDP than the other strategies even targeting performance only. When

considering the overall geometric mean, it is 42% and 68% better than Default and only

2% and 5% distant from the Oracle on the two respective metrics.

2We collected energy consumed by the DRAM and core domains through the Intel Running Average
Power Limit (RAPL) (HÄHNEL et al., 2012).

118

8 FINAL CONSIDERATIONS AND CONCLUSION

In this thesis, we proposed to optimize the execution of parallel graph applica-

tions on NUMA machines. For that, we explored the adjustment of thread mapping (TM)

and data mapping (PM) as well as the number of threads (NT) through different Ma-

chine Learning (ML) strategies. Our main proposals leveraged the available input graphs’

high-level features to implement ML approaches that can learn from different graphs and

predict the best solution of TM+PM or NT+TM+PM as a new graph arrives for processing

without any further application execution. The effectiveness of our proposals was exper-

imentally proven by optimizing different algorithms, input graphs, and NUMA machines

and comparing them with other strategies. On top of that, we also showed that no sin-

gle solution of TM+PM or NT+TM+PM delivers the best performance for all machines,

algorithms, input graphs, or the source vertices (for the algorithms that require a source

vertex to start execution). Therefore, improving the graph application’s performance over

the above variation is a challenge this thesis faces.

8.1 Limitations

Although our proposals have improved the performance and energy savings of the

parallel graph applications, they have some limitations, which we describe below.

• Learning Overhead. Even though our PredG, GraphNroll, and PotiGraph frame-

works overcome the limitation of Graphith so that they do not require to be re-

executed every time a new graph arrives for execution, they yet present an expensive

learning overhead. Notice that the Learning Phase of such approaches (executed

only once before the frameworks are deployed on the target system) perform a De-

sign Space Exploration (DSE) that considers the execution of different algorithms,

input graphs, and NUMA machines, which takes considerable time. Based on our

experiments, PredG, GraphNroll, and PotiGraph took 66.05, 850.45, and 5059.60

minutes to be deployed of the target machines.

• Optimizing Only for New Input Graphs. Since PredG, GraphNroll, and PotiGraph

learn and decide the best solution based on the input graph’s high-level features,

they are adaptive only for the cases where a new input graph arrives for execution.

Thus, the frameworks must be re-executed if one wants to insert new algorithms or

119

Table 8.1: Execution time (in seconds) to collect the high-level features of the entire
graph.

Graph Seconds

kron -
road 19.80
twitter 1033.05
urand 893.51
web 323.16
cit-patents 15.31
amazon 3.22
orkut 75.60
youtube 4.40
roadNet-CA 4.25
roadNet-PA 2.75
roadNet-TX 2.58
berkley 3.03
boogle 3.53
wikitalk 4.90

Source: The author.

machines.

• Overhead of Collecting the High-Level Features. Our proposals assume that the

input graph’s high-level features are already available in the data source. However,

when unavailable, the user must collect the features using a graph analytic tool, such

as the NetworKit (STAUDT; SAZONOVS; MEYERHENKE, 2016) used by our

frameworks (PyTorch BigGraph in the case of GraphNroll (LERER et al., 2019)).

Depending on the input graph, it can be expensive. In Fig. 8.1, we summarize the

costs of collecting features for all input graphs evaluated in this thesis.

• Limited Available NUMA Machines. Our experiments are limited to the NUMA

machines available on the Parque Computacional de Alto Desempenho (PCAD)

<http://gppd-hpc.inf.ufrgs.br> from UFRGS.

8.2 Future Works

Graph processing is a comprehensive research topic that different research groups

worldwide have studied (BATARFI et al., 2015; YAN et al., 2017; HEIDARI et al., 2018).

http://gppd-hpc.inf.ufrgs.br

120

Therefore, there is significant scope for research in graph optimization. Next, we describe

some perspectives on future research topics that can be derived from this thesis.

• Heterogeneous Multi-core. Since energy efficiency is one of the most critical con-

straints of processor design, new multiprocessors with an asymmetric microarchi-

tecture have become available on the market, such as the Apple M1 SoC and the

Intel Alder Lake processor (BILBAO; SAEZ; PRIETO-MATIAS, 2023). They are

inspired by ARM’s big.LITTLE processors but more suitable for high-performance

workloads, proving effective for applications like graphics-intensive games and

scientific simulation software (SAEZ; PRIETO-MATIAS, 2022). Optimizing the

graph processing on such machines may be a challenge since, beyond the irreg-

ularity of the graph processing computation, there will be the irregularity of the

heterogeneous processors.

• NUMA Machine with Hybrid Memories. We have observed a rise in works that

propose optimizing graph processing on NUMA machines comprised of RAM and

NVM memories (DUAN et al., 2019; LIU et al., 2021). However, no work proposes

an approach to predict the best solution using only the high-level features of the

input graphs.

• Dynamic Voltage and Frequency Scaling (DVFS). Another room for optimization

is to adjust the CPU’s frequency levels for graph applications’ execution through

the DVFS technique. Such a technique leverages time intervals of process in-

activity, commonly caused by I/O operations or memory requests. Since the in-

put voltage has a quadratic influence on dynamic power, a system supporting the

DVFS technique can take advantage of the CPU idleness (e.g., data-synchronization

or communication among threads) to achieve cubic power reduction (OLIVEIRA;

LORENZON; BECK, 2018). Therefore, adjusting DVFS for graph execution may

yield significant energy-saving benefits.

8.3 List of Publications

Publications related to this proposal:

1. (Outstanding Paper Award) Schwarzrock, J., Rocha, H. M. G. A., Lorenzon, A. F.,

and Beck, A. C. S. (2020, December). Effective Exploration of Thread Throttling

and Thread/Page Mapping on NUMA Systems. In 2020 IEEE 22nd International

121

Conference on High Performance Computing and Communications (HPCC) (pp.

239-246). IEEE. (SCHWARZROCK et al., 2020)

2. Rocha, H. M. G. A., Schwarzrock, J., Lorenzon, A. F., and Beck, A. C. S. (2021,

March). Boosting Graph Analytics by Tuning Threads and Data Affinity on NUMA

Systems. In 2021 29th Euromicro International Conference on Parallel, Distributed

and Network-Based Processing (PDP) (pp. 161-168). IEEE. (ROCHA et al., 2021)

3. Moori, M. K., Rocha, H. M. G. D. A., Schwarzrock, J., Lorenzon, A. F., and Beck,

A. C. S. (2021, October). Aumentando a Eficiência na Execução de Algoritmos de

Grafos em HPC. In Anais do XXII Simpósio em Sistemas Computacionais de Alto

Desempenho (pp. 132-143). SBC. (MOORI et al., 2021)

4. Rocha, H. M. G. A., Schwarzrock, J., Lorenzon, A. F., and Beck, A. C. S. (2022,

July). Using Machine Learning to Optimize Graph Execution on NUMA Machines.

In 2022 59th ACM/IEEE Design Automation Conference (DAC) (pp. 1-6). IEEE.

(ROCHA et al., 2022)

5. Moori, M. K., Rocha, H. M. G. D. A., Schwarzrock, J., Lorenzon, A. F., and Beck,

A. C. S. (2022) Improving the Efficiency of Graph Algorithm Executions on HPC.

Concurrency and Computation: Practice and Experience, e6600. (MOORI et al.,

2023b)

6. Moori, M. K., Rocha, H. M. G. D. A., Schwarzrock, J., Lorenzon, A. F., and Beck,

A. C. S. (2022). Decidindo entre GPU e CPU para Processar Grafos com Base em

Métricas de Alto Nível. In Anais do XXII Simpósio em Sistemas Computacionais

de Alto Desempenho. SBC. (MOORI et al., 2022)

7. (Best Student Paper Award) Moori, M. K., Rocha, H. M. G. D. A., Matheus A.

Silva, Schwarzrock, J., Lorenzon, A. F., and Beck, A. C. S. (2023, March). Auto-

matic CPU-GPU Allocation for Graph Execution. In 2023 31th Euromicro Interna-

tional Conference on Parallel, Distributed and Network-Based Processing (PDP).

IEEE. (MOORI et al., 2023a)

8. Rocha, H. M. G. D. A., Querol, V. B., Lorenzon, A. F., and Beck, A. C. S. (2023,

November). Optimizing Single-Source Graph Execution on NUMA Machines. In

2023 XIII Brazilian Symposium on Computing Systems Engineering (SBESC) (pp.

1-8). IEEE. (ROCHA et al., 2023)

9. Moori, M. K., Rocha, H. M. G. D. A., Lorenzon, A. F., and Beck, A. C. S. (2024).

Allok: A Machine Learning Approach for Efficient Graph Execution on CPU-GPU

122

Clusters. In The Journal of Supercomputing (SUPE). Springer.

Other publications:

1. Tonetto, R. B., Hiago, M. D. A., Nazar, G. L., and Beck, A. C. S. (2020, July). A

machine learning approach for reliability-aware application mapping for heteroge-

neous multicores. In 2020 57th ACM/IEEE Design Automation Conference (DAC)

(pp. 1-6). IEEE. (TONETTO et al., 2020a)

2. Rocha, H., Korol, G., Jordan, M., Krause, A., Silveira, R., Vieira, C., ... and

Beck, A. C. S. (2020, August). Firefly: An Open-source Rocket-based Intermittent

Framework. In 2020 33rd Symposium on Integrated Circuits and Systems Design

(SBCCI) (pp. 1-6). IEEE. (ROCHA et al., 2020a)

3. Tonetto, R. B., Hiago, M. D. A., Zatt, B., Beck, A. C. S., and Nazar, G. L. (2020,

October). A Reliability-Oriented Machine Learning Strategy for Heterogeneous

Multicore Application Mapping. In 2020 IEEE International Symposium on Cir-

cuits and Systems (ISCAS) (pp. 1-5). IEEE. (TONETTO et al., 2020b)

4. da Silva, V., Medeiros, T., Rocha, H., Luizelli, M., Rossi, F., Beck, A. C., and

Lorenzon, A. (2020, October). Análise da execuçao concorrente de aplicaçoes par-

alelas em arquiteturas multicore. In Anais do XXI Simpósio em Sistemas Com-

putacionais de Alto Desempenho (pp. 61-72). SBC. (SILVA et al., 2020)

5. Rocha, H., Schwarzrock, J., Pereira, M., Schnorr, L., Navaux, P., Lorenzon, A., and

Beck Filho, A. C. S. (2020, November). AtTune: A Heuristic based Framework for

Parallel Applications Autotuning. In Anais Estendidos do X Simpósio Brasileiro

de Engenharia de Sistemas Computacionais (pp. 151-156). SBC. (ROCHA et al.,

2020b)

6. (3° Best Paper Award) Rocha, H. M. G. D. A., Beck, A. C. S., Maia, S. M., Kreutz,

M. E., and Pereira, M. M. (2020, November). A Routing based Genetic Algorithm

for Task Mapping on MPSoC. In 2020 X Brazilian Symposium on Computing Sys-

tems Engineering (SBESC) (pp. 1-8). IEEE. (ROCHA et al., 2020c)

7. da Silva, V. S., Nogueira, A. G., de Lima, E. C., de A. Rocha, H. M., Serpa, M. S.,

Luizelli, M. C., ... and Francisco Lorenzon, A. (2021). Smart resource allocation

of concurrent execution of parallel applications. Concurrency and Computation:

Practice and Experience, e6600. (SILVA et al., 2023)

8. Schwarzrock, J., Rocha, H. M. G. A., Lorenzon, A. F., and Beck, A. C. S. (2022,

June). Smoothing on Dynamic Concurrency Throttling. In 2022 IEEE Interna-

123

tional Parallel and Distributed Processing Symposium Workshop (pp. 1-8). IEEE.

(SCHWARZROCK et al., 2022)

9. Rocha, H. M. G. D. A., Beck, A. C. S., Maia, S. M., Kreutz, M. E., and Pereira, M.

M. (2023). Using Evolutionary Metaheuristics to Solve the Mapping and Routing

Problem in Networks on Chip. Design Automation for Embedded Systems (p. 1-

33). Springer. (ROCHA et al., 2023)

10. Moori, M. K., Rocha, H. M. G. D. A., Lorenzon, A. F., and Beck, A. C. S. (2023,

November). Searching for the Ideal Number of Threads on Asymmetric Multipro-

cessors. In 2023 XIII Brazilian Symposium on Computing Systems Engineering

(SBESC) (pp. 1-8). IEEE. (MOORI et al., 2023)

124

REFERENCES

AASAWAT, T. et al. Hygn: Hybrid graph engine for numa. In: IEEE. 2020 IEEE
International Conference on Big Data (Big Data). [S.l.], 2020. p. 383–390.

AASAWAT, T. K.; REZA, T.; RIPEANU, M. Scale-free graph processing on a numa
machine. In: IEEE. 2018 IEEE/ACM 8th Workshop on Irregular Applications:
Architectures and Algorithms (IA3). [S.l.], 2018. p. 28–36.

AGARWAL, V. et al. Scalable graph exploration on multicore processors. In: IEEE.
SC’10: Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis. [S.l.], 2010. p. 1–11.

ALESSI, F. et al. Application-level energy awareness for openmp. In: SPRINGER.
International Workshop on OpenMP. [S.l.], 2015. p. 219–232.

AMARAL, L. A. N. et al. Classes of small-world networks. Proceedings of the national
academy of sciences, National Acad Sciences, v. 97, n. 21, p. 11149–11152, 2000.

BARI, M. A. S. et al. Arcs: Adaptive runtime configuration selection for power-
constrained openmp applications. In: IEEE. 2016 IEEE International Conference on
Cluster Computing. [S.l.], 2016. p. 461–470.

BATARFI, O. et al. Large scale graph processing systems: survey and an experimental
evaluation. Cluster Computing, Springer, v. 18, n. 3, p. 1189–1213, 2015.

BEAMER, S.; ASANOVIC, K.; PATTERSON, D. Direction-optimizing breadth-first
search. In: IEEE. SC’12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. [S.l.], 2012. p. 1–10.

BEAMER, S.; ASANOVIĆ, K.; PATTERSON, D. The gap benchmark suite. arXiv
preprint arXiv:1508.03619, 2015.

BEAMER, S.; ASANOVIC, K.; PATTERSON, D. Locality exists in graph processing:
Workload characterization on an ivy bridge server. In: IEEE. 2015 IEEE International
Symposium on Workload Characterization. [S.l.], 2015. p. 56–65.

BEAMER, S.; ASANOVIĆ, K.; PATTERSON, D. Reducing pagerank communication
via propagation blocking. In: IEEE. 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). [S.l.], 2017. p. 820–831.

BENIAMINE, D. et al. Tabarnac: visualizing and resolving memory access issues
on numa architectures. In: ACM. Proceedings of the 2nd Workshop on Visual
Performance Analysis. [S.l.], 2015. p. 1.

BILBAO, C.; SAEZ, J. C.; PRIETO-MATIAS, M. Flexible system software scheduling
for asymmetric multicore systems with pmcsched: A case for intel alder lake. CCPE,
Wiley Online Library, p. e7814, 2023.

BONDY, J. A.; MURTY, U. S. R. et al. Graph theory with applications. [S.l.]:
Macmillan London, 1976.

125

BRANDES, U.; PICH, C. Centrality estimation in large networks. International
Journal of Bifurcation and Chaos, World Scientific, v. 17, n. 07, p. 2303–2318, 2007.

BROQUEDIS, F. et al. Structuring the execution of openmp applications for multicore
architectures. In: IEEE. 2010 IEEE International Symposium on Parallel &
Distributed Processing (IPDPS). [S.l.], 2010. p. 1–10.

BROQUEDIS, F. et al. Forestgomp: an efficient openmp environment for numa
architectures. International Journal of Parallel Programming, Springer, v. 38, n. 5-6,
p. 418–439, 2010.

BULUÇ, A.; GILBERT, J. R. The combinatorial blas: Design, implementation,
and applications. The International Journal of High Performance Computing
Applications, Sage Publications Sage UK: London, England, v. 25, n. 4, p. 496–509,
2011.

CHADHA, G.; MAHLKE, S.; NARAYANASAMY, S. When less is more (limo):
controlled parallelism forimproved efficiency. In: Proceedings of the 2012 international
conference on Compilers, architectures and synthesis for embedded systems. [S.l.:
s.n.], 2012. p. 141–150.

CHEN, D. Z. Developing algorithms and software for geometric path planning problems.
ACM Computing Surveys (CSUR), ACM New York, NY, USA, v. 28, n. 4es, p. 18–es,
1996.

CORBET, J. Toward better NUMA scheduling. 2012. Available from Internet:
<https://lwn.net/Articles/486858/>.

CORMEN, T. H. et al. Introduction to algorithms. [S.l.]: MIT press, 2022.

CRUZ, E. H.; DIENER, M.; NAVAUX, P. O. Using the translation lookaside buffer to
map threads in parallel applications based on shared memory. In: IEEE. 2012 IEEE
26th International Parallel and Distributed Processing Symposium. [S.l.], 2012. p.
532–543.

CRUZ, E. H.; DIENER, M.; NAVAUX, P. O. Communication-aware thread mapping
using the translation lookaside buffer. Concurrency and Computation: Practice and
Experience, Wiley Online Library, v. 27, n. 17, p. 4970–4992, 2015.

CRUZ, E. H. et al. An efficient algorithm for communication-based task mapping. In:
IEEE. 2015 23rd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing. [S.l.], 2015. p. 207–214.

CURTIS-MAURY, M. et al. Prediction-based power-performance adaptation of
multithreaded scientific codes. IEEE Transactions on Parallel and Distributed
Systems, IEEE, v. 19, n. 10, p. 1396–1410, 2008.

CURTIS-MAURY, M. et al. Online power-performance adaptation of multithreaded
programs using hardware event-based prediction. In: Proceedings of the 20th annual
international conference on Supercomputing. [S.l.: s.n.], 2006. p. 157–166.

https://lwn.net/Articles/486858/

126

DASHTI, M. et al. Traffic management: a holistic approach to memory placement on
numa systems. ACM SIGARCH Computer Architecture News, ACM, v. 41, n. 1, p.
381–394, 2013.

DHULIPALA, L.; BLELLOCH, G. E.; SHUN, J. Theoretically efficient parallel graph
algorithms can be fast and scalable. ACM Transactions on Parallel Computing
(TOPC), ACM New York, NY, USA, v. 8, n. 1, p. 1–70, 2021.

DIENER, M. et al. Affinity-based thread and data mapping in shared memory systems.
ACM Computing Surveys (CSUR), ACM New York, NY, USA, v. 49, n. 4, p. 1–38,
2016.

DIENER, M.; CRUZ, E. H.; NAVAUX, P. O. Communication-based mapping using
shared pages. In: IEEE. 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing. [S.l.], 2013. p. 700–711.

DIENER, M.; CRUZ, E. H.; NAVAUX, P. O. Locality vs. balance: Exploring data
mapping policies on numa systems. In: IEEE. 2015 23rd Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing. [S.l.], 2015. p.
9–16.

DIENER, M. et al. kmaf: Automatic kernel-level management of thread and data affinity.
In: Proceedings of the 23rd international conference on Parallel architectures and
compilation. [S.l.: s.n.], 2014. p. 277–288.

DIENER, M. et al. Characterizing communication and page usage of parallel applications
for thread and data mapping. Performance Evaluation, Elsevier, v. 88, p. 18–36, 2015.

DOEKEMEIJER, N.; VARBANESCU, A. L. A survey of parallel graph processing
frameworks. Delft University of Technology, v. 21, p. 5, 2014.

DUAN, Z. et al. Hinuma: Numa-aware data placement and migration in hybrid memory
systems. In: IEEE. 2019 IEEE 37th International Conference on Computer Design
(ICCD). [S.l.], 2019. p. 367–375.

FRASCA, M.; MADDURI, K.; RAGHAVAN, P. Numa-aware graph mining techniques
for performance and energy efficiency. In: IEEE. SC’12: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis. [S.l.], 2012. p. 1–11.

FU, H.-H.; LIN, D. K.; TSAI, H.-T. Damping factor in google page ranking. Applied
Stochastic Models in Business and Industry, Wiley Online Library, v. 22, n. 5-6, p.
431–444, 2006.

GAREY, M. R.; JOHNSON, D. S. Computers and intractability. [S.l.]: wh freeman
New York, 2002.

GOLDBERG, A. V.; HARRELSON, C. Computing the shortest path: A search meets
graph theory. In: CITESEER. SODA. [S.l.], 2005. v. 5, p. 156–165.

GOLDBERG, D. E. Genetic Algorithms in Search Optimization & Machine learning,
Second Reprint. [S.l.]: Pearson Education Asia pte. Ltd, 2000.

127

GREGOR, D.; LUMSDAINE, A. The parallel bgl: A generic library for distributed graph
computations. Parallel object-oriented scientific computing (POOSC), Glasgow, UK,
v. 2, n. 1, 2005.

GUI, C.-Y. et al. A survey on graph processing accelerators: Challenges and
opportunities. Journal of Computer Science and Technology, Springer, v. 34, n. 2, p.
339–371, 2019.

GUREYA, D. et al. Bandwidth-aware page placement in numa. In: IEEE. 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). [S.l.], 2020.
p. 546–556.

GUREYA, D. et al. Bandwidth-aware page placement in numa. In: IEEE. IPDPS. [S.l.],
2020. p. 546–556.

HÄHNEL, M. et al. Measuring energy consumption for short code paths using rapl.
ACM SIGMETRICS Performance Evaluation Review, ACM New York, NY, USA,
v. 40, n. 3, p. 13–17, 2012.

HARISH, P.; NARAYANAN, P. J. Accelerating large graph algorithms on the gpu using
cuda. In: SPRINGER. International conference on high-performance computing.
[S.l.], 2007. p. 197–208.

HEIDARI, S. et al. Scalable graph processing frameworks: A taxonomy and open
challenges. ACM Computing Surveys (CSUR), ACM New York, NY, USA, v. 51, n. 3,
p. 1–53, 2018.

HOLZSCHUHER, F.; PEINL, R. Performance of graph query languages: comparison of
cypher, gremlin and native access in neo4j. In: Proceedings of the Joint EDBT/ICDT
2013 Workshops. [S.l.: s.n.], 2013. p. 195–204.

HONG, S. et al. Green-marl: a dsl for easy and efficient graph analysis. In: Proceedings
of the seventeenth international conference on Architectural Support for
Programming Languages and Operating Systems. [S.l.: s.n.], 2012. p. 349–362.

HONG, S. et al. Accelerating cuda graph algorithms at maximum warp. Acm Sigplan
Notices, ACM New York, NY, USA, v. 46, n. 8, p. 267–276, 2011.

HUBERMAN, B. A. The laws of the Web: Patterns in the ecology of information.
[S.l.]: mit Press, 2003.

IVÁN, G.; GROLMUSZ, V. When the web meets the cell: using personalized pagerank
for analyzing protein interaction networks. Bioinformatics, Oxford University Press,
v. 27, n. 3, p. 405–407, 2011.

JEANNOT, E.; MERCIER, G.; TESSIER, F. Process placement in multicore clusters:
Algorithmic issues and practical techniques. IEEE Transactions on Parallel and
Distributed Systems, IEEE, v. 25, n. 4, p. 993–1002, 2013.

JEONG, H. et al. Lethality and centrality in protein networks. Nature, Nature Publishing
Group, v. 411, n. 6833, p. 41–42, 2001.

128

JUNG, C. et al. Adaptive execution techniques for smt multiprocessor architectures. In:
Proceedings of the tenth ACM SIGPLAN symposium on Principles and practice of
parallel programming. [S.l.: s.n.], 2005. p. 236–246.

KALAVRI, V.; VLASSOV, V.; HARIDI, S. High-level programming abstractions
for distributed graph processing. IEEE Transactions on Knowledge and Data
Engineering, IEEE, v. 30, n. 2, p. 305–324, 2017.

KANG, U.; TSOURAKAKIS, C. E.; FALOUTSOS, C. Pegasus: A peta-scale graph
mining system implementation and observations. In: IEEE. 2009 Ninth IEEE
international conference on data mining. [S.l.], 2009. p. 229–238.

KLEEN, A. An NUMA API for Linux. 2004. Available from Internet: <http:
//andikleen.de/numaapi3.pdf>.

KLEEN, A. A numa api for linux. Novel Inc, 2005.

KLEINBERG, J.; TARDOS, E. Algorithm design. [S.l.]: Pearson Education India,
2006.

KNOWLES, J.; CORNE, D. Instance generators and test suites for the multiobjective
quadratic assignment problem. In: SPRINGER. Evolutionary Multi-Criterion
Optimization: Second International Conference, EMO 2003, Faro, Portugal, April
8–11, 2003. Proceedings 2. [S.l.], 2003. p. 295–310.

KRAUSE, A. et al. Nemesys-a showcase of data oriented near memory graph processing.
In: Proceedings of the 2019 International Conference on Management of Data. [S.l.:
s.n.], 2019. p. 1945–1948.

KYROLA, A.; BLELLOCH, G.; GUESTRIN, C. {GraphChi}:{Large-Scale} graph
computation on just a {PC}. In: 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12). [S.l.: s.n.], 2012. p. 31–46.

LAKHOTIA, K. et al. Gpop: A scalable cache-and memory-efficient framework for
graph processing over parts. ACM Transactions on Parallel Computing (TOPC),
ACM New York, NY, USA, v. 7, n. 1, p. 1–24, 2020.

LEE, J. et al. Thread tailor: dynamically weaving threads together for efficient, adaptive
parallel applications. In: Proceedings of the 37th annual international symposium on
Computer architecture. [S.l.: s.n.], 2010. p. 270–279.

LEPERS, B.; QUÉMA, V.; FEDOROVA, A. Thread and memory placement on numa
systems: Asymmetry matters. In: 2015 USENIX Annual Technical Conference. [S.l.:
s.n.], 2015. p. 277–289.

LERER, A. et al. Pytorch-biggraph: A large scale graph embedding system. Proceedings
of Machine Learning and Systems, v. 1, p. 120–131, 2019.

LESKOVEC, J.; KREVL, A. SNAP Datasets: Stanford Large Network Dataset
Collection. 2014. <http://snap.stanford.edu/data>.

LI, D. et al. Hybrid mpi/openmp power-aware computing. In: IEEE. 2010 IEEE
International Symposium on Parallel & Distributed Processing. [S.l.], 2010. p. 1–12.

http://andikleen.de/numaapi3.pdf
http://andikleen.de/numaapi3.pdf
http://snap.stanford.edu/data

129

LI, J.; MARTINEZ, J. F. Dynamic power-performance adaptation of parallel computation
on chip multiprocessors. In: IEEE. The Twelfth International Symposium on
High-Performance Computer Architecture, 2006. [S.l.], 2006. p. 77–87.

LI, R. et al. Precise segmentation of densely interweaving neuron clusters using g-cut.
Nature communications, Nature Publishing Group, v. 10, n. 1, p. 1–12, 2019.

LINUX. The Linux Kernel documentation: Linux Scheduler. 2021. Available from
Internet: <https://www.kernel.org/doc/html/latest/scheduler/index.html>.

LIU, W. et al. Hngraph: Parallel graph processing in hybrid memory based numa
systems. In: IEEE. 2021 IEEE International Conference on Cluster Computing
(CLUSTER). [S.l.], 2021. p. 388–397.

LORENZON, A. F.; FILHO, A. C. S. B. Parallel Computing Hits the Power Wall:
Principles, Challenges, and a Survey of Solutions. [S.l.]: Springer Nature, 2019.

LORENZON, A. F. et al. Aurora: Seamless optimization of openmp applications. TPDS,
IEEE, v. 30, n. 5, p. 1007–1021, 2018.

LORENZON, A. F.; SOUZA, J. D.; BECK, A. C. S. Laant: A library to automatically
optimize edp for openmp applications. In: IEEE. Design, Automation & Test in Europe
Conference & Exhibition, 2017. [S.l.], 2017. p. 1229–1232.

LOW, Y. et al. Graphlab: A new framework for parallel machine learning. arXiv
preprint arXiv:1408.2041, 2014.

LU, S. et al. Cache-efficient fork-processing patterns on large graphs. In: Proceedings
of the 2021 International Conference on Management of Data. [S.l.: s.n.], 2021. p.
1208–1221.

LUAN, G. et al. Online thread auto-tuning for performance improvement and resource
saving. IEEE TPDS, IEEE, v. 33, n. 12, p. 3746–3759, 2022.

LUCE, R. D.; PERRY, A. D. A method of matrix analysis of group structure.
Psychometrika, Springer, v. 14, n. 2, p. 95–116, 1949.

MALAVE, S.; SHINDE, S. Reinforced manta ray foraging optimiser for determining the
optimal number of threads in multithreaded applications. IJISAE, v. 10, n. 3s, p. 17–26,
2022.

MALEWICZ, G. et al. Pregel: a system for large-scale graph processing. In: Proceedings
of the 2010 ACM SIGMOD International Conference on Management of data. [S.l.:
s.n.], 2010. p. 135–146.

MARATHE, A. et al. A run-time system for power-constrained hpc applications. In:
SPRINGER. International conference on high performance computing. [S.l.], 2015.
p. 394–408.

MARATHE, J.; THAKKAR, V.; MUELLER, F. Feedback-directed page placement for
ccnuma via hardware-generated memory traces. Journal of Parallel and Distributed
Computing, Elsevier, v. 70, n. 12, p. 1204–1219, 2010.

https://www.kernel.org/doc/html/latest/scheduler/index.html

130

MARRETT, K. et al. Recut: a concurrent framework for sparse reconstruction of
neuronal morphology. bioRxiv, Cold Spring Harbor Laboratory, 2021.

MCCOLL, R. C. et al. A performance evaluation of open source graph databases.
In: Proceedings of the first workshop on Parallel programming for analytics
applications. [S.l.: s.n.], 2014. p. 11–18.

MCCUNE, R. R.; WENINGER, T.; MADEY, G. Thinking like a vertex: a survey
of vertex-centric frameworks for large-scale distributed graph processing. ACM
Computing Surveys (CSUR), ACM New York, NY, USA, v. 48, n. 2, p. 1–39, 2015.

MITCHELL, J. C. Social networks. Annual review of anthropology, JSTOR, v. 3, p.
279–299, 1974.

MOORI, M. K. et al. Searching for the ideal number of threads on asymmetric
multiprocessors. In: IEEE. 2023 XIII Brazilian Symposium on Computing Systems
Engineering (SBESC). [S.l.], 2023. p. 1–8.

MOORI, M. K. et al. Aumentando a eficiência na execuçao de algoritmos de grafos
em hpc. In: SBC. Anais do XXII Simpósio em Sistemas Computacionais de Alto
Desempenho. [S.l.], 2021. p. 132–143.

MOORI, M. K. et al. Decidindo entre gpu e cpu para processar grafos com base
em metricas de alto nível. In: SBC. Anais do XXIII Simpósio em Sistemas
Computacionais de Alto Desempenho. [S.l.], 2022. p. 288–299.

MOORI, M. K. et al. Automatic cpu-gpu allocation for graph execution. In: IEEE.
2023 31st Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP). [S.l.], 2023. p. 27–34.

MOORI, M. K. et al. Improving the efficiency of graph algorithm executions on
high-performance computing. Concurrency and Computation: Practice and
Experience, Wiley Online Library, v. 35, n. 18, p. e7419, 2023.

NGUYEN, D.; LENHARTH, A.; PINGALI, K. A lightweight infrastructure for graph
analytics. In: Proceedings of the twenty-fourth ACM symposium on operating
systems principles. [S.l.: s.n.], 2013. p. 456–471.

OLIVEIRA, C. C. d. Odin: online, non-intrusive and self-tuning DCT and DVFS
to optimize openMP applications. Dissertation (Master) — Federal University of
Rio Grande do Sul, Brazil, Porto Alegre, 2019. 92 p. Masters thesis (M.Sc. degree in
computer science) - Institute of Informatics, Federal University of Rio Grande do Sul,
Brazil, Porto Alegre, 2019.

OLIVEIRA, C. C. D.; LORENZON, A. F.; BECK, A. C. S. Automatic tuning tlp and
dvfs for edp with a non-intrusive genetic algorithm framework. In: IEEE. 2018 VIII
Brazilian Symposium on Computing Systems Engineering (SBESC). [S.l.], 2018. p.
146–153.

O’MALLEY, T. et al. Keras Tuner. 2019. <https://github.com/keras-team/keras-tuner>.

https://github.com/keras-team/keras-tuner

131

PAPADIMITRIOU, G.; CHATZIDIMITRIOU, A.; GIZOPOULOS, D. Adaptive
voltage/frequency scaling and core allocation for balanced energy and performance on
multicore cpus. In: IEEE. 2019 IEEE international symposium on high performance
computer architecture (HPCA). [S.l.], 2019. p. 133–146.

PETERSON, L. L.; DAVIE, B. S. Computer networks: a systems approach. [S.l.]:
Elsevier, 2007.

POPOV, M.; JIMBOREAN, A.; BLACK-SCHAFFER, D. Efficient thread/page/-
parallelism autotuning for numa systems. In: ACM ICS. [S.l.: s.n.], 2019. p.
342–353.

PORTERFIELD, A. K. et al. Power measurement and concurrency throttling for energy
reduction in openmp programs. In: IEEE. 2013 IEEE International Symposium on
Parallel & Distributed Processing, Workshops and Phd Forum. [S.l.], 2013. p.
884–891.

PUSUKURI, K. K.; GUPTA, R.; BHUYAN, L. N. Thread reinforcer: Dynamically
determining number of threads via os level monitoring. In: IEEE. 2011 IEEE
International Symposium on Workload Characterization. [S.l.], 2011. p. 116–125.

RAMKUMAR, A. et al. Iterated fast local search algorithm for solving quadratic
assignment problems. Robotics and Computer-Integrated Manufacturing, Elsevier,
v. 24, n. 3, p. 392–401, 2008.

RAPOPORT, A.; HORVATH, W. J. A study of a large sociogram. Behavioral science,
Wiley Online Library, v. 6, n. 4, p. 279–291, 1961.

ROCHA, H. et al. Firefly: An open-source rocket-based intermittent framework. In:
IEEE. 2020 33rd Symposium on Integrated Circuits and Systems Design (SBCCI).
[S.l.], 2020. p. 1–6.

ROCHA, H. et al. Attune: A heuristic based framework for parallel applications
autotuning. In: SBC. Anais Estendidos do X Simpósio Brasileiro de Engenharia de
Sistemas Computacionais. [S.l.], 2020. p. 151–156.

ROCHA, H. M. G. d. A. et al. A routing based genetic algorithm for task mapping on
mpsoc. In: IEEE. 2020 X Brazilian Symposium on Computing Systems Engineering
(SBESC). [S.l.], 2020. p. 1–8.

ROCHA, H. M. G. d. A. et al. Optimizing single-source graph execution on numa
machines. In: IEEE. 2023 XIII Brazilian Symposium on Computing Systems
Engineering (SBESC). [S.l.], 2023. p. 1–8.

ROCHA, H. M. G. d. A. et al. Boosting graph analytics by tuning threads and data
affinity on numa systems. In: IEEE. 2021 29th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP). [S.l.], 2021. p.
161–168.

ROCHA, H. M. G. de A. et al. Using machine learning to optimize graph execution
on numa machines. In: Proceedings of the 59th ACM/IEEE Design Automation
Conference. [S.l.: s.n.], 2022. p. 1027–1032.

132

ROCHA, H. M. Gomes de A. et al. Using evolutionary metaheuristics to solve the
mapping and routing problem in networks on chip. Design Automation for Embedded
Systems, Springer, p. 1–33, 2023.

ROGERS, I. The google pagerank algorithm and how it works. 2002.

ROSSI, R. A.; AHMED, N. K. The network data repository with interactive
graph analytics and visualization. In: AAAI. [s.n.], 2015. Available from Internet:
<https://networkrepository.com>.

ROSSI, R. A.; AHMED, N. K. An interactive data repository with visual analytics. ACM
SIGKDD Explorations Newsletter, ACM New York, NY, USA, v. 17, n. 2, p. 37–41,
2016.

ROY, A.; MIHAILOVIC, I.; ZWAENEPOEL, W. X-stream: Edge-centric graph
processing using streaming partitions. In: Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. [S.l.: s.n.], 2013. p. 472–488.

SAEZ, J. C.; PRIETO-MATIAS, M. Evaluation of the intel thread director technology on
an alder lake processor. In: ACM SIGOPS APSYS. [S.l.: s.n.], 2022. p. 61–67.

SAHU, S. et al. The ubiquity of large graphs and surprising challenges of graph
processing. Proceedings of the VLDB Endowment, VLDB Endowment, v. 11, n. 4, p.
420–431, 2017.

SAHU, S. et al. The ubiquity of large graphs and surprising challenges of graph
processing: extended survey. The VLDB Journal, Springer, v. 29, n. 2, p. 595–618,
2020.

SARKER, S. et al. Critical nodes in river networks. Scientific Reports, Springer, v. 9,
n. 1, p. 1–11, 2019.

SCHWARZROCK, J. et al. Potential gains in edp by dynamically adapting the number
of threads for openmp applications in embedded systems. In: IEEE. 2017 VII Brazilian
Symposium on Computing Systems Engineering. [S.l.], 2017. p. 79–85.

SCHWARZROCK, J. et al. Effective exploration of thread throttling and thread/page
mapping on numa systems. In: IEEE. 2020 IEEE 22nd International Conference on
High Performance Computing and Communications; IEEE 18th International
Conference on Smart City; IEEE 6th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS). [S.l.], 2020. p. 239–246.

SCHWARZROCK, J. et al. Smoothing on dynamic concurrency throttling. In:
IEEE. 2022 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). [S.l.], 2022. p. 962–971.

SENANAYAKE, U.; PIRAVEENAN, M.; ZOMAYA, A. The pagerank-index: Going
beyond citation counts in quantifying scientific impact of researchers. PloS one, Public
Library of Science San Francisco, CA USA, v. 10, n. 8, p. e0134794, 2015.

SENSI, D. D. Predicting performance and power consumption of parallel applications.
In: IEEE. 2016 24th Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing. [S.l.], 2016. p. 200–207.

https://networkrepository.com

133

SENSI, D. D.; TORQUATI, M.; DANELUTTO, M. A reconfiguration algorithm for
power-aware parallel applications. ACM Transactions on Architecture and Code
Optimization, ACM New York, NY, USA, v. 13, n. 4, p. 1–25, 2016.

SHAFIK, R. A. et al. Adaptive energy minimization of openmp parallel applications on
many-core systems. In: Proceedings of the 6th Workshop on Parallel Programming
and Run-Time Management Techniques for Many-core Architectures. [S.l.: s.n.],
2015. p. 19–24.

SHAO, B.; LI, Y. Parallel processing of graphs. Graph Data Management:
Fundamental Issues and Recent Developments, Springer, p. 143–162, 2018.

SHUN, J.; BLELLOCH, G. E. Ligra: a lightweight graph processing framework
for shared memory. In: Proceedings of the 18th ACM SIGPLAN symposium on
Principles and practice of parallel programming. [S.l.: s.n.], 2013. p. 135–146.

SILVA, V. da et al. Análise da execuçao concorrente de aplicaçoes paralelas em
arquiteturas multicore. In: SBC. Anais do XXI Simpósio em Sistemas Computacionais
de Alto Desempenho. [S.l.], 2020. p. 61–72.

SILVA, V. S. da et al. Smart resource allocation of concurrent execution of parallel
applications. Concurrency and Computation: Practice and Experience, Wiley Online
Library, v. 35, n. 17, p. e6600, 2023.

SRIDHARAN, S.; GUPTA, G.; SOHI, G. S. Adaptive, efficient, parallel execution
of parallel programs. In: Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation. [S.l.: s.n.], 2014. p. 169–180.

STAUDT, C. L.; SAZONOVS, A.; MEYERHENKE, H. Networkit: A tool suite for
large-scale complex network analysis. Network Science, Cambridge University Press,
v. 4, n. 4, p. 508–530, 2016.

STOLZ, S.; SCHLERETH, C. Predicting tie strength with ego network structures.
Journal of Interactive Marketing, SAGE Publications Sage CA: Los Angeles, CA,
v. 54, n. 1, p. 40–52, 2021.

STUTZ, P.; BERNSTEIN, A.; COHEN, W. Signal/collect: graph algorithms for the
(semantic) web. In: SPRINGER. International Semantic Web Conference. [S.l.], 2010.
p. 764–780.

SUJEETH, A. et al. Optiml: an implicitly parallel domain-specific language for machine
learning. In: Proceedings of the 28th International Conference on Machine Learning
(ICML-11). [S.l.: s.n.], 2011. p. 609–616.

SULEMAN, M. A.; QURESHI, M. K.; PATT, Y. N. Feedback-driven threading:
power-efficient and high-performance execution of multi-threaded workloads on cmps.
ACM Sigplan Notices, ACM New York, NY, USA, v. 43, n. 3, p. 277–286, 2008.

SUN, J.; VANDIERENDONCK, H.; NIKOLOPOULOS, D. S. Graphgrind: Addressing
load imbalance of graph partitioning. In: Proceedings of the International Conference
on Supercomputing. [S.l.: s.n.], 2017. p. 1–10.

134

TAM, D.; AZIMI, R.; STUMM, M. Thread clustering: sharing-aware scheduling on
smp-cmp-smt multiprocessors. In: ACM. ACM SIGOPS Operating Systems Review.
[S.l.], 2007. v. 41, n. 3, p. 47–58.

TONETTO, R. B. et al. A machine learning approach for reliability-aware application
mapping for heterogeneous multicores. In: IEEE. 2020 57th ACM/IEEE Design
Automation Conference (DAC). [S.l.], 2020. p. 1–6.

TONETTO, R. B. et al. A reliability-oriented machine learning strategy for heterogeneous
multicore application mapping. In: IEEE. 2020 IEEE International Symposium on
Circuits and Systems (ISCAS). [S.l.], 2020. p. 1–5.

TRAHAY, F. et al. Numamma: Numa memory analyzer. In: ACM. Proceedings of the
47th International Conference on Parallel Processing. [S.l.], 2018. p. 19.

WANG, W.; DAVIDSON, J. W.; SOFFA, M. L. Predicting the memory bandwidth and
optimal core allocations for multi-threaded applications on large-scale numa machines.
In: IEEE. 2016 IEEE International Symposium on High Performance Computer
Architecture. [S.l.], 2016. p. 419–431.

WATTS, D. J.; STROGATZ, S. H. Collective dynamics of ‘small-world’networks.
nature, Nature Publishing Group, v. 393, n. 6684, p. 440–442, 1998.

WHITE, J. G. et al. The structure of the nervous system of the nematode caenorhabditis
elegans: the mind of a worm. Phil. Trans. R. Soc. Lond, v. 314, n. 1, p. 340, 1986.

WILLHALM, T.; DEMENTIEV, R.; FAY, P. Intel performance counter monitor-
a better way to measure cpu utilization. Dosegljivo: https://software. intel.
com/en-us/articles/intelperformance-countermonitor-a-better-way-to-measure-cpu-
utilization.[Dostopano: September 2014], 2012.

WILLHALM, T.; DEMENTIEV, R.; FAY, P. Intel performance counter monitor. 2016.

YADAV, S.; SHUKLA, S. Analysis of k-fold cross-validation over hold-out validation
on colossal datasets for quality classification. In: IEEE. 2016 IEEE 6th International
conference on advanced computing (IACC). [S.l.], 2016. p. 78–83.

YAN, D. et al. Big graph analytics platforms. Foundations and Trends® in Databases,
Now Publishers, Inc., v. 7, n. 1-2, p. 1–195, 2017.

ZHANG, K.; CHEN, R.; CHEN, H. Numa-aware graph-structured analytics. In:
Proceedings of the 20th ACM SIGPLAN symposium on principles and practice of
parallel programming. [S.l.: s.n.], 2015. p. 183–193.

ZHANG, Y. et al. Graphit: A high-performance graph dsl. Proceedings of the ACM on
Programming Languages, ACM New York, NY, USA, v. 2, n. OOPSLA, p. 1–30, 2018.

ZHU, X. et al. Gemini: A {Computation-Centric} distributed graph processing system.
In: 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). [S.l.: s.n.], 2016. p. 301–316.

	ACKNOWLEDGEMENTS
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Challenges
	1.2 Optimization Opportunities
	1.2.1 Impact of Thread and Data Mapping
	1.2.2 Impact of Changing the Source Vertices
	1.2.3 Impact of Adjusting the Number of Threads

	1.3 Contribution of this work
	1.4 Document Organization

	2 Background
	2.1 Graphs Modeling Real-World Problems
	2.1.1 Graphs's In-Memory Representation

	2.2 Graph Processing Frameworks and Algorithms
	2.2.1 Graph Algorithms

	2.3 NUMA Systems
	2.4 Thread/Data Mapping and Adjusting Number of Threads on NUMA Systems
	2.4.1 Thread Mapping
	2.4.2 Data Mapping
	2.4.3 Thread Throttling

	3 Related Work
	3.1 Thread and Data Mapping on NUMA Systems
	3.2 Thread Throttling
	3.3 Thread Throttling along with Thread Mapping and Page Mapping
	3.4 Graph Analytics Optimization
	3.5 Contribution of This Thesis

	4 Graphith: Optimizing Graph Execution on NUMA Machines
	4.1 Design Space Exploration
	4.2 Thread Mapping Problem as a QAP's Instance
	4.3 Graphith
	4.3.1 Genetic Algorithm (GA)

	4.4 Results
	4.4.1 Graphith's Performance
	4.4.2 Graphith's Convergence
	4.4.3 Comparison Against Traditional Policies

	5 PredG: Exploiting the Graphs' High-Level Features for Adaptive Graph Processing
	5.1 PredG
	5.1.1 Learning Phase
	5.1.2 Execution Phase
	5.1.3 Implementation Details

	5.2 Methodology
	5.3 Results
	5.3.1 Evaluation of the PredG's Phases
	5.3.2 Performance Evaluation
	5.3.3 The Impact of PredG on the Energy and EDP

	6 GraphNroll: Optimizing Single-Source Graph Executions
	6.1 Design Space Exploration of Source Vertices
	6.2 GraphNroll
	6.2.1 Learning Phase
	6.2.2 Execution Phase
	6.2.3 Implementation Details

	6.3 Methodology
	6.4 Results
	6.4.1 GraphNroll's Performance and Solutions
	6.4.2 Impact of GraphNroll on the Energy and Energy-Delay Product
	6.4.3 Costs

	7 PotiGraph: Adjusting Number of Threads and Thread/Data Mapping
	7.1 PotiGraph
	7.1.1 Learning Phase
	7.1.2 Execution Phase
	7.1.3 Implementation Details

	7.2 Methodology
	7.3 Results
	7.3.1 Accuracy of PotiGraph
	7.3.2 Performance Evaluation
	7.3.3 The Impact of PotiGraph on the Energy and EDP

	8 Final Considerations and Conclusion
	8.1 Limitations
	8.2 Future Works
	8.3 List of Publications

	References

