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RESUMO

A pandemia da COVID-19 trouxe diversos desafios aos sistemas de saúde em todo o

mundo. Como a maioria dos pacientes com COVID-19 tem infecções pulmonares, uma

tomografia computadorizada (TC) do tórax se mostra eficiente na identificação de infec-

ções por COVID-19, bem como outras classes de doenças pulmonares. Arquiteturas de

redes profundas surgiram para identificar automaticamente classes de doenças pulmona-

res, usando as fatias de TCs como entrada para modelos de classificação. Este trabalho

propõe COVID-VR, uma nova abordagem para classificar COVID-19 baseado na classi-

ficação de imagens tiradas de diferentes ângulos da renderização do volume dos pulmões,

fornecendo assim uma visão global de todo o pulmão em cada imagem. Comparamos

nossa proposta com as principais estratégias concorrentes com soluções de código aberto

disponíveis, usando dados privados de hospitais parceiros e dados disponíveis publica-

mente. Os resultados mostram que nossa abordagem identifica lessões pulmonares de

COVID-19 com sucesso e é competitiva em relação aos métodos baseados em fatias de

TC. Embora nossos experimentos tenham sido focados em dados do COVID-19, nossa

solução é extensível a outras doenças pulmonares.

Palavras-chave: Deep-learning, Modelos de Classificação, Tomografia Compuratizada,

Renderização de Volume, COVID-19.





ABSTRACT

The COVID-19 pandemic brought several challenges to health systems worldwide. Since

most patients with COVID-19 have lung infections, a Computer Tomography (CT) of

the chest is often used to identify COVID-19 infections, as well as other classes of pul-

monary diseases. Deep-learning architectures surfaced to automatically identify classes

of pulmonary diseases, using the slices of CTs as inputs to classification models. This

work proposes COVID-VR, a novel approach for classifying COVID-19 based on vol-

ume rendering images of the lungs taken from different angles, thus providing a global

view of the entire lung in each image. We compared our proposal against leading com-

peting strategies with available solutions, using private data from partner hospitals and

publicly available data. Results show that our approach successfully identifies COVID-19

pulmonary lesions and is competitive against slice-based methods. Although our exper-

iments were focused on COVID-19 data, our solution is extensible to other pulmonary

diseases.

Keywords: Deep Learning. Classification Models. Computer Tomography. Volume

Rendering. COVID-19.
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1 INTRODUCTION

The COVID-19 pandemics, caused by SARS-CoV-2, have been widely spread,

reporting more than 540 million cases and making more than 6,32 million fatal victims

around the world between December 2019 and June 20221. This scenario leads to health

system overload in multiple countries, as the disease diagnosis is often expensive, time-

consuming, or requires specialized laboratories and doctors. The Real-Time Polymerase

Chain Reaction (RT-PCR) test, a widely used method to diagnose the infection, has con-

siderable drawbacks, such as the well-known possibility of false negatives (AREVALO-

RODRIGUEZ et al., 2020).

Chest computed tomography (CT) is a fast, non-invasive, painless, and accurate

exam that can be helpful in the diagnosis of diseases that include chest symptoms. Al-

though not all COVID-19 cases include lung infection, chest CT scanning constitutes an

accurate method of diagnosing the target disease. Still, that method requires around 20

minutes of specialized radiologist time. Aiming to increase the efficiency of COVID-19

diagnosis, a variety of works presenting Machine Learning (ML) solutions emerged. The

potential for using ML techniques comes from observations by radiologists about com-

mon patterns found in CTs, which are frequently associated with finding Ground-Glass

Opacities (GGOs).

A GGO is a CT finding defined as an area of increased attenuation in the lung.

It can be seen as a gray or hazy area, and it is non-specific, with wide etiology. In the

COVID-19 context, there are well categorized pulmonary lesion patterns that are identi-

fied as typical of that disease. The GGO often caused by COVID-19 infection is charac-

terized by being peripheral, bilateral, multifocal, rounded, possibly appearing with con-

solidation, etc. As an example, Figure 1.1 shows the comparison of two chest CTs (axial,

coronal, and sagittal views) varying the colormap range in the HU values between -1000

and 300; one normal patient (with no signs of pneumonia) and another presenting those

typical patterns of COVID-19 lung infection previously cited, the lesions are the light

magenta areas inside the lungs. Finally, we observe that the disease cases may or may not

cause a lung infection. Additional difficulties encountered in using ML for COVID-19

classification are the low availability of public datasets and the public models proposed.

In the present work, we propose a 3D Volume Rendering framework, COVID-VR,

which includes the step of Lung Segmentation and utilizes a ResNet architecture (HE et

1https://coronavirus.jhu.edu/map.html
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Figure 1.1: Axial, Coronal, and Sagittal CT slices of a normal (top) and a COVID-19
(bottom) patient. A color map was applied to highlight ground-glass opacities associated
with COVID-19 lesions (light magenta areas inside the lungs).

al., 2016) as the backbone. The proposed model applied in two main cases (ternary and

binary classification task) achieved an accuracy of 90.8% and an F1-score of 90.8% for

ternary classification in the COVID-CT-MD (AFSHAR et al., 2021) public dataset (using

classes COVID-19, Normal, and CAP). An accuracy of 92.2% with an F1-score of 87.2%

in the binary classification COVID-19 vs. Others (Negative, Indeterminate and Atypical

CT images) task; and accuracy of 96.1% with an F1-score of 96.3% in the binary classifi-

cation task COVID-19 vs. Normal (Negative) task using COVID-19 class as the positive

class in our private dataset given by Hospital das Clínicas de Porto Alegre (HCPA) and

Hospital Moinhos de Vento (HMV) hospitals.
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2 BACKGROUND

This chapter describes in more detail the concepts and definitions needed for a

better understanding of this work.

2.1 CT Features

CT is a diagnostic image test that provides detailed images of organs, bones, soft

tissues, and blood vessels using special X-Ray equipment. Chest CTs are very useful in

the diagnosis of the cause of unexplained chest symptoms. Some of the worth-mentioning

applications of that scanning test are to diagnose lung cancer and COVID-19. In our re-

search, we used only the pulmonary window, not the mediastinal window. In the medi-

astinal window, the lungs are overexposed and appear black. On the other hand, in the

pulmonary window, the lung tissues can be seen in detail, this includes vascular structures

and anomalies (SIMPSON, 2009).

The Hounsfield unit (HU) is a dimensionless scale used to express CT numbers in

a standardized form. It is obtained from a linear transformation of the measured absorp-

tion/attenuation of the X-Ray beam. As the physical density of each tissue is proportional

to its coefficient, the HU unit has many well-known uses. The HU ranges that contain the

lungs and ground-glass opacities will be discussed further.

Figure 2.1: Volume rendering of the segmented lung of a COVID-19 patient from three
different views. Ground-glass opacities associated with COVID-19 lesions correspond
to darker regions inside the lungs. The volume rendering image allows identifying the
extension of lesions in the entire lung, while 2D slices indicate lesions in planar sections
of the lung.
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2.2 Classification Radiology Standards

Identifying typical patterns in CT images allowed the formalization of standards

for the classification. Taking into consideration those well-known patterns, different ra-

diology standards were developed in the pandemic context, such as the one proposed by

the Radiology Society of North America (RSNA) (SIMPSON et al., 2020) and the British

Society of Thoracic Imaging (BSTI) and other standards like CO-RADS (COVID-19 Re-

porting and Data System), or the COVID-RADS (COVID-19 imaging reporting and data

system) as guidelines for the COVID-19 classifications from CT images.

The RSNA standard proposes four categories based on CT image features: Typical

appearance, Indeterminate appearance, Atypical appearance, and Negative for COVID-

19 pneumonia. The first classification corresponds to lesions associated with ground-

glass opacities, usually at the walls of the lungs, such as the ones illustrated in Fig-

ure 2.1 and 2.2a. Indeterminate classification suggests the absence of typical features,

plus the presence of multifocal, diffuse, perihilar, nonperipheral, nonrounded, or unilat-

eral ground-glass opacity with or without consolidation, as seen in Figure 2.2b. Atypical

classification denotes the absence of the previous classification features and presence of

isolated consolidation like in Figure 2.2c without ground-glass opacities, lung cavitation,

or discrete small nodules, and the latter classification appoints that the patient presents no

signs of pneumonia as shown in Figure 2.2d.

Since we only use the RSNA standard in our private dataset, we briefly describe

the BSTI. We refer the reader to (INUI et al., 2020) for more details with alternative

radiology standards like CO-RADS or COVID-RADS, and comparisons of Chest CT

Grading Systems. The BSTI classification is made up of four classes:

• CLASSIC COVID-19, 100% of confidence for COVID-19.

• PROBABLE COVID-19, between 71% and 99% of confidence for COVID-19.

• INDETERMINATE COVID-19, less or equal to 70% of confidence for COVID-19.

• NON-COVID-19, 70% of confidence for an alternative disease.

2.3 Lung Segmentation

Using Image Segmentation, it is possible to separate images into segments of in-

terest. Image segmentation has a wide field of applications such as object identification,
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Figure 2.2: RSNA classification for COVID-19 using plasma colormap for [-1000, 300]
range in HU scale.

(a) Typical (b) Indeterminate

(c) Atypical (d) Negative

content-based image retrieval, organ, and injury segmentation, etc. Numerous works re-

viewed in this dissertation (WANG et al., 2020; LI et al., 2020b; JADHAV et al., 2022;

AMARA et al., 2022; YANG et al., 2021; HEIDARIAN et al., 2021) carry out, in their

pre-processing stage, the segmentation of the lungs before the training of their models to

manage to separate the background from the lung (everything that does not correspond

to the region of interest). To achieve lung segmentation tasks, the literature explored in

this work uses neural networks; however, it should be noted that other efforts like the one

introduced by ALTIS (SOUSA et al., 2019) to address this task using Image Foresting

Transform (FALCAO; STOLFI; LOTUFO, 2004).

The segmentation models used in this work receive as input the image or volume

(set of images in DICOM or NIfTI format) and return a mask with each region identified

with a different value. For example, P-HNN (HARRISON et al., 2017) introduces a

neural network based on the VGG16 network that receives a volumetric CT image (NIfTI
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format in our experiments) and returns a volumetric probability mask also in NIfTI format

with the probabilities of each voxel being pulmonary region. Subsequently, they made a

round of the values considering a threshold to specify what is a region of interest or

not, returning a mask based on that threshold; if we choose a threshold of 0.75 as the

probability for a voxel to be considered a lung region, all values greater than 0.75 will

be 1. The rest will be 0 (where 0, black, is considered background and 1, white, is

considered lung region). Finally, to get the segmented lung, it is enough to make a pixel-

wise multiplication between the original image and the binary mask. In Figure 2.3, we

depict this process.

We explore other techniques such as Lungmask (HOFMANNINGER et al., 2020a)

that, through the training of neural networks, returns masks for each lung, as can be seen

in Figure 2.4; and also lobe masks, unlike binary masks which contain 0s and 1s, these

masks add more labels (2, 3, etc.) to denote different regions of interest depending on the

number of classes needed. UBC (LENSINK et al., 2020), proposes L3-Net, a network

based on 2D U-Net (RONNEBERGER; FISCHER; BROX, 2015), and PSPNet (ZHAO

et al., 2017) as the backbone of its architecture, which offers masks with lung segmen-

tation (differentiating right from left), pleura effusion, and Pure GGO, GGO w/ Smooth

Figure 2.3: Simplified pipeline for P-HNN to obtain segmented lung. In (A) receive the
formatted volumetric image to proceed to the segmentation step. (B) shows the binary
mask generated by the P-HNN approach. Finally, (C) presents the original image (A)
cropped by the binary mask (B) to get a volumetric image with only the region of interest.

A B

Segmentation 
(P-HNN)

Threshold 0.75

Cropping by 
binary mask

C
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Figure 2.4: Lung and lobes masks overlapping original CT images to highlight regions of
interest in images

Lungs segmentation Lobes segmentation

Interlobular Septal Thickening, Consolidation, etc.
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3 RELATED WORK

In this section, we provide a review of related works. We restrict our analysis to

solutions that use CT images as inputs to their classification model and have a patient-

level result or explored volume rendering in COVID-19 context.

3.1 Deep Learning-based models for COVID-19 diagnosis from CT images

Since the start of the COVID-19 pandemic, several works described ML tech-

niques to automatically classify chest radiography or CT scan images to make COVID-19

diagnostic less time-consuming.

Even though both standards detailed in Section 2.2 propose a separation into four

distinct classes, the first models to appear in the literature were either binary classifying

in COVID-19 or non COVID-19 or ternary classifying in COVID-19, Normal (i.e., with

no perceptible lesions) or Community-Acquired Pneumonia (CAP). One good place to

start reviewing many related works published so far is the survey by ROBERTS et al..

Their systematic review narrowed down 2212 studies initially found to 62 papers. The

survey points out common pitfalls that work in this area are subjected to, arguing that

none of them had successfully solved the proposed task due mainly to the lack of possible

comparisons to other works and reproducibility of the experiments since most proposed

works do not provide access to the training data utilized. Another recurring problem is

the lack of annotated data because many of the reviewed models depend on slice-level

annotations, which are more challenging to obtain in real situations.

Among the revised papers, we have a special interest in those that use CT images

as inputs to their classification models and a 3D approach to classifying at the patient-

level (JIN et al., 2020; WANG et al., 2020; LI et al., 2020b; HE et al., 2020; WANG;

LIN; WONG, 2020; GOZES et al., 2020; JIN et al., 2020; HAN et al., 2020).

We highlight below the main competitors to our approach that has code available,

thus allowing us to perform comparisons. The CT classification models reported early

in the pandemic were binary and aimed to estimate the probability of a CT scan to be

classified as COVID-19. DeCoVNet (WANG et al., 2020), as shown in Figure 3.1, uses

a weakly-supervised 3D deep convolutional network. In a pre-processing step, DeCoV-

Net receives CT images in DICOM format and performs the re-scale operation to obtain

isometric volumes of 1×1×1mm and normalizes the HU scale in the range [-1200, 600]
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returning a 3D array for the following steps. Next, they use a U-NET to segment the lung

and create a 3D binary mask. The original pre-processed volume and its 3D lung mask

are sent to DeCoVNet, consisting of three stages: 3D convolution, 3D residual blocks,

and a progressive classifier. The code for DeCoVNet is publicly available1, thus allowing

us to include it in our tests.

Figure 3.1: Architecture proposed by WANG et al.. A U-NET network performs lung
segmentation generating a binary mask for the CT image. Afterward, the binary mask
and CT volume are the inputs for the DeCoVNet model. Figure taken from Wang et al.
(2020)

DeCoVNet architecture

Ternary models soon followed binary models to allow the separation of COVID-

19 from normal cases and other types of CAP. COVNet (LI et al., 2020b) uses a 3D deep

learning framework that takes 3D slices as input and has ResNet50 as backbone architec-

ture, generating features and combining them using a max-pooling operation, and finally

generating a probability score for each class. Like DeCoVNet, COVNet also relies on a

pre-processing step that uses a U-NET to create a segmented lung and mask for the lung,

later resampled to the same spacing between slices of 1mm in the z-axis, downsampled

five times, and scaled to S×224×224, where S is the number of slices after the downsam-

pling. Since code for COVNet is also available2, we include comparisons in our results.

Figure 3.2 graphs their proposed architecture.

We include comparisons against the winner of the IEEE ICASSP 2021 Signal

Processing Grand Challenge(SPGC) in the COVID-19 competition (top ten results in Ta-

1DeCoVNet source code: <https://github.com/sydney0zq/covid-19-detection>
2COVNet source code: <https://github.com/bkong999/COVNet>

https://github.com/sydney0zq/covid-19-detection
https://github.com/bkong999/COVNet
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Figure 3.2: Architecture proposed by LI et al.. COVNet uses as backbone ResNet50
and receives as input the CT volume and binary mask, then processes each CT slice,
finally aggregating them by a max-pooling operation to produce a feature map fed to a
fully connected layer returning the probability of each class. Figure taken from Li et al.
(2020b)

COVNet architecture

ble 3.1). We will refer to this competition as SPGC 2021. SPGC 2021 brought an opportu-

nity to perform comparisons among methods by providing a public dataset of CT images

(COVID-CT-MD described by Afshar et al. (2021)) and a contest of performing classi-

fication in 3 possible classes: Normal, COVID-19, or (CAP). The six best-performing

solutions for this competition were later presented at the ICASSP conference (CHAUD-

HARY et al., 2021; GARG et al., 2021; YANG et al., 2021; XUE; ABHAYARATNE,

2021; BOUGOURZI et al., 2021; LI et al., 2021), and we summarize their results and

approaches below.

Table 3.1: Results of top ten methods for SPGC-ICASSP Competition 2021.
Team Accuracy COVID-19 Sens. CAP Sens. Normal Sens.

TheSaviours 90.00% 85.71% 90.00% 94.29%
IITDelhi 88.89% 88.57% 90.00% 88.57%
LLSCP 87.78% 80.00% 90.00% 100.00%

UniSheff_EEE 85.56% 82.86% 80.00% 91.43%
CNRIEMEN 81.11% 91.43% 45.00% 91.43%

Deepcam 81.11% 82.86% 100.00% 68.57%
FushionSTAR 80.00% 91.43% 30.00% 97.14%

Bingo 80.00% 88.57% 35.00% 97.14%
SAIVT 80.00% 68.57% 95.00% 82.86%
Winter 76.67% 85.71% 70.00% 71.43%

The first place (team TheSaviours (CHAUDHARY et al., 2021), we will use ’The-

Saviours’ as the name to refer to this approach and authors) achieved an accuracy of 90%.



32

The received training CT images were not fully classified at the slice level as detailed by

Afshar et al. (2021). Thus, TheSaviours describes an approach of two stages. In the first

stage, as shown in stage-1 in Figure 3.3, they trained two networks that use DenseNet121

architecture as a backbone with a dense layer additional and sigmoid activation for bi-

nary classification with different tasks, the first one to classify images with the presence

of COVID-19 infection against no infection; and the second to classify images with the

presence of CAP infection against no infection. With these trained networks, they finish

the annotation of the remaining slices. In the next stage, they perform a 90/10 split for

training and validation for task classification with the set of annotated images obtained

from Stage 1. They train a ternary model, as shown in stage-2 in Figure 3.3, that uses the

EfficientNet-B6 architecture as the backbone, adding two dense layers of 2048 and 1024

features, ending with the softmax activation to classify images in COVID-19, CAP, and

Normal classes. Finally, as this is an image-level approach to obtain a classification at the

patient level, this approach classifies the 80 central images of the CT image. It proceeds

to make a weighted sum giving greater weight to the 40 middle images, thus obtaining

the final classification per patient. Since source code is public available3 we included this

approach in our comparisons.

The second place (team IITDelhi (GARG et al., 2021)) achieved an accuracy of

88.89%. Their approach follows a three-level approach. In the first level, they use a

slice-level classifier that performs feature extraction from all the slices of the CT to learn

different sizes of infection. The next level performs a patient-level classifier, using four

classifiers designed to distinguish between infected and normal slices. The last level uses

an ensemble-learning that combines the scores of the previous level classifiers.

The third place (team LLSCP (YANG et al., 2021)) achieved an accuracy of

87.78%. They use a multi-stage progressive learning approach composed of a 3D ResNet

module, an ensemble binary classifier, and a final combining stage. The fourth place (team

UniShef_EEE (XUE; ABHAYARATNE, 2021), achieved an accuracy of 85.56%, using

a 3D Resnet50 classifier. The fifth place (team CNRIEMEN (BOUGOURZI et al., 2021))

achieved an accuracy of 81.11%). Their approach uses a 2-stage classifier composed

of a slice-level classifier followed by a patient-level classifier. The sixth place (team

FushionSTAR (LI et al., 2021)) achieved an accuracy of 80%. Their approach consists

of an ensemble classifier composed of a slice classifier followed by a supervised-learning

sequence classifier.

3TheSaviours source code: <https://github.com/shubhamchaudhary2015/ct_covid19_cap_cnn/>

https://github.com/shubhamchaudhary2015/ct_covid19_cap_cnn/
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Figure 3.3: Architecture proposed by team TheSaviours with two-stage. In stage 1, two
proposed networks based on DenseNet121 fully annotated the slices; in stage 2, an Effi-
cientNet B6 network to classify CT slices into COVID-19, CAP, and Normal class. Figure
is taken from Chaudhary et al. (2021)

3.2 Volume Rendering Applications in COVID-19

Among other methods, including Multiplanar Reformation and Surface Render-

ing, Volume Rendering techniques are widely used in medical image visualization (ZHANG;

EAGLESON; PETERS, 2011). Surface Rendering provides a 3D view from the surface of

an object. Since this technique focuses on the surface of volumes, almost 90% of the data

is lost. On the other hand, internal structures can be better observed through techniques

that preserve the internal object information, such as Volume Rendering (DALRYMPLE

et al., 2005). Volume Rendering combines opacity mapping and lighting effects through

multiple rendering techniques (ARENS; DOMIK, 2010; J"̈ONSSON et al., 2014; KNISS;

KINDLMANN; HANSEN, 2002) to allow the appreciation of spatial relationships be-

tween structures. Cinematic rendering of the lungs is discussed in (SILVA; GELLADA,

2020) to produce more realistic images from CT and magnetic resonance data.

Despite the widespread application of Volume Rendering in medical fields, few

studies addressed this technique in the COVID-19 context. Tang et al. (2020a) introduces
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one of the first efforts visualizing COVID-19 pneumonia, exhibiting the lung lesions in a

color coronal image and a tridimensional volume rendering of the lungs, bronchus, and

trachea from a 54 years old patient shown in Figure 3.4 showing that volume rendering

succeeds in highlighting lung infections. Li et al. (2020a) shows the advantage of 3D

volume rendering to detect the extent of small pulmonary vessel microangiopathy and

alveolar damage from an autopsy of a COVID-19 patient.

Figure 3.4: Images of a 54-year-old woman with severe COVID-19 pneumonia. (A) The
red regions are the distribution of lesions in the patient. (B) Three-dimensional volume
rendering image of lung and lesions. Figure taken from Tang et al. (2020a)

COVID-view (JADHAV et al., 2022) describes a system for COVID-19 diagno-

sis that combines a classification system with explainable visualizations of activations

over 2D slices and volume rendering of the lungs. The user interface as shown in Fig-

ure 3.5 allows the user to modify the transfer functions used for volume rendering, either

by choosing from a preset transfer function or by creating their own. They also use a

coronal clipping tool that allows better inspection of the inner structures inside the lungs.

However, their proposed classification model does not rely on volume rendering images

but uses 2D slices instead. Its pipeline as shown in Figure 3.6 receive as input the 2D

slices from CT images. Then, proceeding to the stage of Lung Segmentation, which uses

the method proposed by Hofmanninger et al. (2020b) which also contains a model for

lob lung segmentation. In the next stage, COVID-19 Lesion Localization, they included

and adapted the model from Shamim et al. (2022) for COVID-19 lesion segmentation

task. They proposed a model based on ResNet18 for their slice-based deep Multi-Instance

Learning (MIL) for the classification step. Finally, in the Visualization Step, they integrate

all the results from previous steps, offering 2D and 3D views of the segmented lungs, and
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Grad-CAM for the CT slices of the activation maps.

Figure 3.5: Overview of COVID-View system. (a) The user interface for 2D and 3D
views. (b) Classification result. (c) Axial view and Grad-CAM applied. (d) Lung volume-
rendered showing the thick interlobular septation (pink surface-like structure in the right
lung). The figure is taken from Jadhav et al. (2022)

Figure 3.6: Proposed pipeline in COVID-View. The figure is taken and adapted from
Jadhav et al. (2022)

Similarly, COVIR (AMARA et al., 2022) proposes a classification model based on

2D slices and a virtual reality platform to explore 3D reconstructed lungs and segmented

infected lesions caused by COVID-19. Figure 3.7 presents the pipeline proposed, starting

from the CT images in DICOM format as input and pre-processing these images, such

as resize and border cropping. Then, they proposed a new model architecture named O-

Net that consists of convolutional auto-encoders based on U-NET architecture generating

lung and COVID-19 lesion segmentation. The 3D visualization relies on software such

as Blender to fix problems with the models and Unity to produce the final renderings and
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support the interaction through VR devices.

Figure 3.7: Proposed pipeline in COVIR. The figure is taken and adapted from Jadhav et
al. (2022)

Finally, from the observed related works and as Roberts et al. (2021) details, many

works fail in the reproducibility of their results due to the lack of public source code or the

required annotations at the slice level and are found in private datasets. On the other hand,

some works exploit volume rendering that was only used in the final stage to show/justify

results. COVID-VR proposes to use these volumetric visualization techniques to train

a classifier on images generated using both a private and public dataset requiring only

patient-level annotations.
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4 DATASETS

This study used COVID-19-related CT datasets from three different sources. The

first source is the public dataset of CT scans prepared for the SPGC-ICASSP competition

for positive and negative COVID-19 patients from Tehran, Iran. The other two sources are

partner hospitals from the Rio Grande do Sul (Brazil) that provided CT scans for COVID-

19 and non-COVID-19 cases. These datasets are referred to as our private datasets. All

images were provided in DICOM format composed of studies with different spacing be-

tween slices, pixel intensity, origin source, etc. In what follows, we explain in more detail

these datasets.

4.1 COVID-CT-MD Public Dataset

The COVID-CT-MD public dataset (AFSHAR et al., 2021) was released for the

SPGC-ICASSP competition and was adopted for model development in several related

works (e.g., (CHAUDHARY et al., 2021; GARG et al., 2021)), thus allowing the com-

parison of our approach about state-of-the-art methods. The COVID-CT-MD dataset is

composed of CT scans with patient-level annotations divided into three classes: confirmed

positive COVID-19, Normal, and CAP cases. The COVID-19 cases were collected from

February to April 2020, while CAP and normal cases were collected from April 2018 to

December 2019 and January 2019 to May 2020, respectively. Although slice-level an-

notations are available for some patients, they were not explored in our approach. The

COVID-CT-MD dataset is composed of 307 labeled CT scans that are used for model

training and validation based on a stratified random split: 30% of these CT scans are

randomly selected as the validation set, and the remaining are used as the train set. All

patients were adults recruited from the Babak Imaging Center in Tehran, Iran, and exam

labeling was conducted by three experienced radiologists as explained in (AFSHAR et

al., 2021). Table 4.1 shows the number of CT scans per class.

In addition to the train/validation set, the SPGC 2021 competition released the

SPGC-COVID Test Set (HEIDARIAN et al., 2021), with four independent test sets for

models’ evaluation. Three were used to calculate the competition’s results and are ap-

plied for performance assessment in our work to enhance comparability with previous

approaches. We do not use the fourth Test Set because it was not used to obtain the com-

petition’s winner, and we would not have fair comparisons concerning the results reported
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Table 4.1: Public dataset: COVID-CT-MD, number of CT images obtained from each
source, and distribution by class.

Class Train/Validation
(307)

Test
(90)

F M Total F M Total
COVID-19 63 108 171 9 26 35
Normal 36 40 76 15 20 35
CAP 26 34 60 7 13 20

in Table3.1.

Each of the three test datasets contains 30 CT scans, as described by HEIDAR-

IAN et al.. The first set (Test Set 1) comprises COVID-19 and Normal cases (15 and 15,

respectively), obtained from the same image center as the train/validation set. The second

set (Test Set 2) contains the three classes, COVID-19, Normal, and CAP, with 10 cases for

each one, obtained from another imaging center (Tehran Heart Center, Iran) using differ-

ent scanner and scanner parameters. The third set (Test Set 3) contains the three classes,

COVID-19, Normal (without lesions caused by lung infections), and CAP, with ten sam-

ples for each one, collected in the same imaging center as Test Set 1. We note that Test

Set 2 differs from the others because it includes patients with a history of cardiovascular

diseases and surgeries. Some of these differences in test sets are shown in Figure 4.1,

where images corresponding to Test 1 have more noise, a cardiovascular-related compli-

cation in Test 2, and high image quality and contrast in Test 3. The distribution of samples

per class for the SPGC-COVID Test Sets is also given in Table 4.1 and Table 4.2 present

some important parameters for image quality and characteristics.

Table 4.2: Adquisition parameters used to obtain dataset COVID-CT-MD. Table taken
from HEIDARIAN et al.

Dataset
Slice

Thickness
(mm)

Reference
Exposure

(mAs)

kVp
(kV)

Radiation
(mSv)

Number
of slices

(per patient)
Train/Val. 2 50 110−130 ∼7 68−195
Test 1 2 15−20 110 ∼0.3−1.5 126−169
Test 2 1.5−5 25 110−130 ∼2 53−221
Test 3 2 50 100−110 ∼7 115−183

4.2 Private Datasets

The private datasets were retrospectively obtained from patients admitted to two

Brazilian hospitals in Porto Alegre: a private institution, Hospital Moinhos de Vento
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Figure 4.1: Sample CT slices from the first three test sets. In Test set 1, the noise level is
high. In Test 2, some cases reveal cardiovascular-related complications. In Test 3, the im-
age quality and contrast are higher compared to other test sets. Taken from HEIDARIAN
et al.

Test 1

Test 2

Test 3

(HMV), and a public institution, Hospital de Clínicas de Porto Alegre (HCPA). The Re-

search Ethics Committee approved the study of the participating hospitals (HCPA-CAAE:

32314720.8.0000.5327, HMV-CAAE: 32314720.8.3001.5330), and informed consent was

waived due to the study’s retrospective nature. All data were de-identified by providers to

ensure patient privacy.

The HMV dataset contains 284 CT scans from patients admitted between March

and May 2020, whereas the HCPA dataset comprises 105 CT scans collected from March

to June 2020. Both datasets have patient-level annotations provided by expert radiolo-

gists, following the Radiology Society of North America (RSNA) standard for reporting
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CT imaging findings potentially attributable to COVID-19 (SIMPSON et al., 2020). As

previously explained (Chapter 2), the RSNA standard classifies images in one of four

classes: Typical appearance, Indeterminate appearance, Atypical appearance, and Neg-

ative for pneumonia. The first category corresponds to exams showing CT features fre-

quently and seen explicitly in patients with COVID-19 pneumonia (e.g., bilateral, periph-

eral, and multifocal ground-glass opacities), thus representing our class of interest (i.e.,

positive). The distribution of CT scans among classes is shown in Table 4.3.

Table 4.3: Private Dataset, number of CT images obtained from each source, and distri-
bution by class.

Class HMV
(289)

HCPA
(105)

Female Male Total Female Male Total
Typical 34 58 92 13 17 30
Negative 54 38 92 11 4 15
Indeterminate 32 35 67 16 14 30
Atypical 16 17 33 13 17 30

4.2.1 Cross-Dataset Validation

As the CT images from our private dataset came from different sources and distinct

types of equipment, we performed some experiments as a proof of concept to prove we

could use the data as one unique dataset. We train a model with five folds cross-validation

and use our pipeline (discussed in Chapter 5) for each case:

1. A binary model (with the same architecture described in Chapter 5) with the dataset

from HMV and HCPA together using the origin hospital for each exam as labels for

classification.

2. A model following the architecture described in Chapter 5 for binary classification

(distinguishing typical COVID-19 from other classifications) trained and validated

with the HMV dataset and tested with the HCPA dataset.

3. A model following the architecture described in Chapter 5 for binary classification

(distinguishing typical COVID-19 from other classifications) trained and validated

with the dataset from HCPA and tested with HMV exams.

The trained model for the Case 1 achieved an average accuracy of 93.9%. There-

fore, we concluded that there are visible differences in data from different sources, as the
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model can successfully discriminate the source of the exams.

Despite that, the trained models for Cases 2 and 3 obtained an average precision

score of 85.7% and 81.8%, which suggests that those spottable differences in dataset

sources do not interfere with the ability of our binary models to learn and generalize.

Hence, we decided to treat these sets as a unique dataset.
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5 THE CLASSIFICATION ARCHITECTURE

This section describes the proposed approach, named COVID-VR. Our pipeline

involves two stages, as depicted in Figure 5.1, providing an end-to-end pipeline for anal-

ysis of CT images, from lung segmentation to patient-level classification regarding the

presence of COVID-19-related infections based on volumetric information. The follow-

ing sections will explain our methodology, covering initial data pre-processing and input

preparation (Stage 1) to model development (Stage 2).

Figure 5.1: The pipeline of our proposed COVID-VR approach is divided into two stages.
Stage 1 carries out data preparation to obtain the input images for model development,
which is conducted in Stage 2. Data preparation involves the steps of image resizing by
interpolation, lung segmentation, 3D volume rendering using pre-defined transfer func-
tions, and snapshots generation for axial and coronal planes. In Stage 2, DL models are
trained for each plane to distinguish among the classes of interest, and their outputs are
combined to obtain a final patient-level classification.
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5.1 Preprocessing Steps

5.1.1 Conversion to NIfTI

Initially in DICOM format, the received CT scans (Figure 5.1A) are first converted

to the NIfTI format. We use dicom2nifti python package and additional configuration to

make the conversion to NIfTI format and cropping the values of HU to [-1500, 2000]; i.e.,
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all values lower than -1500 are set as -1500, all values above 2000 are set as 2000. This

script is available in our repository 1.

5.2 Lung Segmentation

After converting the images to NIfTI format, we use the iftNormalize script (SOUSA

et al., 2019) for interpolating and resizing the images to get isometric volumes with a slice

spacing of 1mm in all dimensions, thus obtaining a more homogeneous representation

across patients. Lung segmentation is carried out with the Progressive holistically nested

networks (P-HNN) model (HARRISON et al., 2017). We use the pre-trained model of

P-HNN to get the segmented lungs as shown in Figure 5.1B, choosing a threshold of 75%

or above from the probability mask to consider a voxel as part of the lung. This output is

saved in NIfTI format.

We note that other available methods for lung segmentation were considered, such

as UBC (LENSINK et al., 2020) and Lungmask (HOFMANNINGER et al., 2020a), that

perform additional tasks than lung segmentation as a whole. For example, Lungmask

presents segmentation at the level of lobes and lungs, generating masks that manage to

differentiate the right lung from the left and similarly achieve to differentiate the lobes.

On the other hand, UBC accomplishes to identify COVID-19 lesions. While P-HNN only

performs the segmentation of the lungs without separating the lungs, lobes, or lesions.

Nonetheless, P-HNN was selected after recommendation by expert radiologists

against UBC, who compared the results of these methods and observed that P-HNN loses

fewer lung portions; and doing some experiments (full train and validation of our pipeline)

for P-HNN against Lungmask, P-HNN arranges better results than Lungmask, thus being

more appropriate to our approach.

5.3 Volume Rendering from CT scans

With the lung segmented in NIfTI format, we perform a 3D volumetric rendering

with the Medical Imaging Interaction Toolkit (MITK) framework (WOLF et al., 2004) by

applying a customized transfer function (TF), as shown in Figure 5.1C. In-house scripts

implemented in C++ based on MITK Framework were used to render the 3D volume

1<https://github.com/covid-vr/p-hnn-lung-segmentation>

https://github.com/covid-vr/p-hnn-lung-segmentation
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of the segmented lungs, trying multiple TFs to map each voxel to color, transparency,

and opacity. Our motivation for exploring different TFs is that each one of them can

potentially highlight other regions of interest or reveal distinct relevant features present

in CT exams. Thus, we define a set of TFs interactively, intuitively assigning color and

opacity to original voxel intensities and observing the TF capacity to express relevant

characteristics to the intended utility (i.e., lung changes observed in COVID-19 patients).

The HU is a dimensionless scale used to express CT numbers in a standardized

form. It is obtained from a linear transformation of the measured absorption/attenuation

of the X-ray beam. As the physical density of each tissue is proportional to its coefficient,

the HU unit has many well-known uses. Our first task was identifying the best range to

map our TFs in the images’ HU scale values to restrict our options. Related works (TANG

et al., 2020b; LU et al., 2021) show that the normal HU scale for lung is [-1000, -700]

and for ground-glass opacity is [-700, -300]. Therefore, we chose similar intervals to test

while defining our TFs.

Figure 5.2 shows the six TFs (TF1 to TF6) that were defined after preliminary

empirical analysis. Although they were all applied to the same CT exam, the obtained

rendered volume differs among distinct TFs. TF1 (Figure 5.2a) highlights the outer layer

of the lungs and provides information about the surface texture of the thoracic cavity, but

a significant disadvantage is that it can miss the lesions that occur within the inner layer,

which covers the lungs, blood vessels, nerves, and bronchi. On the other hand, transfer

functions 2 to 6 (TF2 to TF6, in Figure 5.2) allow better visualization of internal lesions,

with varying capabilities in terms of wall delineation and highlighting imaging features

that were typically described for COVID-19 pneumonia. TF2 (Figure 5.2b) is defined

within the lower range of values in the limit of lung and ground-glass opacity (i.e., [-

700, -300]), mapping only HU values in this interval. This function conserves a certain

spatial distribution of the ground-glass opacity present in the lung but misses details on

the lungs’ texture and regions without any lesions. TF3 (Figure 5.2c) aims to replicate

the behavior of 2D CTs that vary in a single color scale (usually gray-scale), mapping

original values in the range of [-750, -200] with variations applied to the brightness. TF3

manages to preserve the lung as a three-dimensional image without losing critical infor-

mation on the internal lesions caused by COVID-19, such as ground-glass opacity. TF4

to TF6 are obtained by including more colors to help differentiate lungs’ textures and

highlight different imaging features that may be present in the distinct classes comprised

by our datasets (see Section 4). With TF4 (Figure 5.2d), we observe a thin delineation
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Figure 5.2: Volume rendering of the lung using different transfer functions for COVID-19
diagnosis. The defined transfer functions explore a variety of mapping combinations for
color and opacity, thus highlighting different regions or features of interest when applied
to CT scans.

(a) Transfer Function 1 - TF1 (b) Transfer Function 2 - TF2

(c) Transfer Function 3 - TF3 (d) Transfer Function 4 - TF4

(e) Transfer Function 5 - TF5 (f) Transfer Function 6 - TF6
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of the lungs’ inner layer, in addition to a prominent highlighting of the bronchi, which in

the presence of COVID-19 may show changes such as bronchial wall thickening (YE et

al., 2020). With TF5 and TF6 (Figure 5.2e and 5.2f, respectively), we observe a clearer

differentiation of the ground-glass opacity from other characteristics, which may be in-

teresting for the classification model as this feature is the most common imaging finding

in COVID-19 patients (YE et al., 2020). Thus, by exploring a wide range of mapping

combinations for color and opacity, each TF can highlight different regions or features

of interest when applied to CT scans, such as external surfaces of the lungs, as shown in

Figure 5.2a, arteries as shown in Figure 5.2c, and ground-glass opacity as in Figures 5.2e

and 5.2f.

5.4 Extraction of Coronal and Axial Views for Model Input

Our classification model receives as input images derived from CT scans, with a

dimension of 448×448px (Figure 5.1D). To generate these images from the reconstructed

3D volumes, we obtain a series of snapshots for coronal and axial planes. We first place

the virtual camera in the axial plane and displace it for ±12.0° degrees in the Y and X-

axis, taking pictures of the lungs every 1.2° degrees. We repeat the same process after

positioning the camera in the coronal plane. With this procedure, we extract 42 different

images per view (i.e., coronal or axial), thus generating a total of 84 images per CT exam.

Examples of the resulting images are shown in Figure 5.3.

5.5 Classification with a DNN Model

5.5.1 Model Architecture and Training

Our models are developed using deep neural networks (DNN) and the Tensor-

flow framework. The network architecture is summarized in Figure 5.1E. To improve the

learning process for COVID-19 classification, we explore the concept of transfer learn-

ing, reusing a pre-trained model as the backbone for our architecture. We try multiple

Convolution Neural Network (CNN) families such as VGG (SIMONYAN; ZISSERMAN,

2015), ResNet (HE et al., 2016), DenseNet (HUANG et al., 2017), and EfficientNet (TAN;

LE, 2020). Figure 5.1E shows the Resnet101 as the backbone network, represented in or-
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Figure 5.3: Some view images obtained from the reconstructed 3D volumes are used as
inputs for our DL-based classification model. The first row represents images extracted
for the axial plane. The third image in this row shows our initial position (0,0), to which
the camera points for the axial view. From this position, we capture snapshots every 1.2°
towards the horizontal and vertical axis directions, going from -12° to +12° on each axis.
The same process is repeated for the coronal plane, as seen in the second row.

-12°
+12° -12° +12°0°

-12°
+12° -12° +12°0°

ange. To this backbone, we add a sequence of modern deep learning modules commonly

explored in the literature to help model training. Specifically, following the backbone,

we append a Global Average Pooling layer, a 20% Dropout layer to avoid overfitting,

two fully-connected Dense layers, a new 20% Dropout layer, and a Batch Normalization

layer. The final module is a Dense layer with a Sigmoid activation function for the binary

classification task and a Softmax activation function for the ternary classification task.

The definition of network architecture was performed empirically through several prelim-

inary experiments. For model compilation, we use the Adam optimizer with a learning

rate of 2 × 10−5, adopting the Binary Cross-entropy loss function for binary models and

Categorical Cross-entropy loss function for ternary models.

Model training and validation are carried out using stratified 5-fold cross-validation

(CV) for the private datasets. For the public dataset, we follow the competition organizers’

orientation and use a random 70%/30% split from the COVID-CT-MD dataset (AFSHAR

et al., 2021) to generate the train and validation sets, also respecting original class distri-

butions among splits. The model developed is further evaluated with three independent

test sets provided by the SPGC-ICASSP competition (HEIDARIAN et al., 2021), as pre-

viously described in Section 4.1. Additionally, to increase the amount and variety of the

dataset at the training step and reduce the chances of overfitting, we use data augmenta-

tion methods in the training partition, like rotation up to 15°, zoom (±5%), rescaling of

1/255 (RGB pixel value to float number between [0-1]), and shift for width and height

image up to 10%.



49

We note that our approach trains an individual DNN for each defined plane, ei-

ther axial or coronal (we did not use sagittal because it has overlapped images which do

not represent better performance for our proposed approach as mentioned in Section 6.2),

based on the set of image views extracted from it. Moreover, despite the use of patient-

level annotations for the supervised learning task, the output of our DNNs is a classifica-

tion per image view. Thus, the batch of image views obtained for a given CT scan (e.g., 42

axial views or 42 coronal views) is classified by the corresponding network, specialized

in either the axial or coronal view, generating a class label for each image analyzed. From

this output, we obtain a distribution of class votes (Figure 5.1F) per image batch, which

is further passed through a consensus-extraction module by majority voting to generate a

patient-level prediction.

5.5.2 Patient-level Classification

As shown in Figure 5.1F, our classification approach is defined based on two sub-

models, each of which predicts the COVID-19 diagnosis using images obtained from a

specific view of the reconstructed 3D volume, axial or coronal. We generate a patient-

level consensus distribution based on the distribution of class votes received from each

submodel by summing up the number of votes per class. For example, in the ternary

classification task shown in Figure 5.1F, the 42 images generated from the axial view are

classified by the corresponding submodel with the following distribution: 6 votes for class

COVID-19, 21 votes for class CAP, and 15 votes for class Normal. On the other hand,

the submodel trained for coronal view images assigns 37 votes for class COVID-19, 3 for

class CAP, and 3 for class Normal. The ensemble-based solution generated from the sum

of submodels’ votes results in 43 images classified as COVID-19, 24 images classified

as CAP, and 18 images classified as Normal. The final result, shown in Figure 5.1G, is

used to predict a single label for the input CT scan, which is the class with the maximum

number of votes according to both views. In this example, the input CT scan would be

classified as COVID-19 by our approach.
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5.5.3 Model Evaluation

Based on CT scans, we adopt traditional evaluation metrics to assess our model’s

performance for COVID-19 diagnosis. Using diverse metrics to reflect different types of

correct and incorrect predictions helps investigate the model’s clinical utility and eventual

limitations. Thus, performance assessment was based on the accuracy (Acc), sensitiv-

ity (Sens, also called recall), specificity (Spec), precision (Prec, i.e., positive predictive

value), F1-score (i.e., the harmonic mean between recall and precision), and the area un-

der the Receiver Operating Characteristic (ROC) Curve (AUC score). For the ternary

model, given its multiclass nature, we adopted the micro-, and macro-average (OPITZ;

BURST, 2019) for all metrics except accuracy.

Additionally, to calculate the true positive rate (TPR) and the false positive rate

(FPR) of positive classes for each configuration (we consider COVID-19 as a positive

class), we need the probabilities of each class. Since our approach is not directly based on

the probabilities per class at the image level (as seen in Figure 5.1E the network returns

three probabilities for each of the input 42 images. We only consider the final labels from

these values to proceed with the operations detailed in chapter 5.5.2). Taking the same

example of the Figure 5.1 if we have 43 images classified as COVID-19, 24 as CAP, and

18 as Normal for a given patient, it will be defined that patient has a probability of 0.5243

of being COVID-19, 0.2927 of being CAP, and 0.2195 of being classified as Normal

and we use these probabilities as values to calculate ROC curve in the results section

(Chapter 7). These results per patient are also available in 2.

2<https://covid-vr.github.io/>

https://covid-vr.github.io/
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6 DESIGN CHOICES

This chapter aims to describe some of the choices we made during this study’s

development, presenting the respective justifications.

6.1 Environment for experiments

For the development of this work, we have three primary experimentation envi-

ronments detailed below.

1. Local Environment: this consists of a computer with Intel(R) Core(TM) i7-4790

as CPU and GeForce GTX Titan graphics card with 6GB of RAM; additional infor-

mation is reported in Table 6.1. We managed to start our first scripts for both steps,

volume rendering, and first network models with this environment. Subsequently,

we focused mainly on performing only the part of the volumetric rendering of the

lungs that our Server Environment could not manage to run due to administrator

permissions. Finally, using this environment, we build and execute the COVID-

VR end-to-end deployment, deploying a Docker Image built with all the necessary

packages for our presented approach detailed in Appendix B.

2. Server Environment: consists of a computer that has an Intel(R) Xeon(R) Silver

4208 CPU and GeForce RTX 2080 Ti graphics card with 22GB of RAM (separated

into 2 GPUs with 11 GB of RAM each). Since this environment was available

months after starting this work, the first steps were carried out in the Local Envi-

ronment. Afterward, we pass to this instance the process of segmentation, training,

validation, testing of the models, the data storage, and the implementation of the

models to be compared (DeCoVNet, COVNet, TheSaviours). Some other impor-

tant details of this environment are detailed in Table 6.1.

3. COVNet Environment: consists of a computer that has an Intel(R) Core(TM) i5-

9400F CPU and GeForce RTX 3090 graphics card with 24GB of RAM. During the

development process of our comparison experiments with other models, we faced a

problem with the approach presented in COVNet due to memory errors during GPU

allocation. Despite our GPU in the Server Environment having 22GB of memory,

we only managed to use one of the GPU, which limited us to use 11 GB of RAM.

We tried to go after the error. However, we did not get any workable solution.



52

Finally, we got access to this COVNet environment where we performed only the

experiments in COVNet approach in this environment (COVID-VR, DeCoVNet,

and TheSavioursexperiments were performed in the Server Environment). Some

important details of this instance are detailed in Table 6.1.

Table 6.1: Environments of experiments are presented in this work.
Local

enviroment
Server

enviroment
COVNet

enviroment

CPU
Intel(R) Core(TM)

i7-4790
Intel(R) Xeon(R)

Silver 4208
Intel(R) Core(TM)

i5-9400F
N° cores 8 32 6

RAM 24 GB 314 GB 16 GB
Operating

System Ubuntu 19.04 Debian 4.19 Ubuntu 20.04

Graphic card GeForce GTX Titan GeForce RTX 2080 Ti GeForce RTX 3090

GPU RAM 6 GB
22 GB (2 GPU

of 11 GB each one) 24 GB

Cuda version 11.0 11.2 11.1

6.2 Volume Rendering cases

For the development of our work, we used the volumetric visualization part only as

a visual aid. We noticed that according to the established transfer functions, we were able

to highlight various parts of the desired lung and regions of interest that were increasingly

interesting based on the change in transfer function (TF). Using the scripts developed and

based on the MITK project, we can place a camera anywhere in the space surrounding the

lung. Hence, we can take screenshots and videos from any point of view of the lung.

For simplicity, we decided to focus only on the six views that we found to be

representative and similar to the views currently used in medicine, the Axial, Coronal,

and Sagittal views. This corresponds taking camera shots from the top for the Axial view

(Figure 6.1.1), the bottom (Figure 6.1.3), from the Coronal view front and back shots

(Figure 6.1.2 and Figure 6.1.4, respectively), and the Sagittal view taking pictures from

the right and left views of the lung (Figure 6.1.5 and 6.1.6, respectively).

Since our network works by training one model per view and we had six views

available, making a majority vote on the results of all the networks, training six networks

for each test was much more time-consuming. Additionally, the results obtained by the

Sagittal views had worse performance than the others. One hypothesis could be due to
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Figure 6.1: All six views of the lungs proposed by our approach COVID-VR to analyze.

(1) Axial top view (2) Coronal frontal view (3) Axial bottom view

(4) Coronal back view (5) Sagittal right view (6) Sagittal left view

the overlapped lungs as seen in Figures 6.1.5 and 6.1.6. Subsequently, we continued the

experiments; however, the training of four networks was still very time-consuming. From

the observed accuracy metrics, using all four views had almost the same performance as

using only two (an axial and a coronal view). We raised the idea of using three views, two

axial and one coronal and vice versa, but the results were not better since one view ended

up biasing the final result. Thus, we finally consider using only the Top Axial and Front

Coronal views to continue the work.

The next point to discuss was that since we could generate numerous images (cam-

era shots) as long as we managed to take captures from any point of view towards the lung.

The challenge was how many picture shots were ideal. Without a metric of how many

images are recommended to take, we used the idea presented in Section 5.4 where we

consider taking the following amounts of pictures: 162, 82, 42, and 22 sweeping angles

of a maximum 15° and a minimum 9° (since greater angles than these causes the image of

the lungs begins to deform and lose the idea of still identifying the Axial or Coronal view

like can be seen in Figure 6.2). Finally, we took the decision for image quantity based on

the performance of the networks trained for each of the models, obtaining the best results
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with 82 and 42 images per view. To reduce the training time amount, we decided to use

42 images per view for each network.

Figure 6.2: Pictures of lungs were taken from angles which causes overlapped images.

-36°

(a) Picture was taken from -36° (horizontal
axis) in axial top view.

+36°

(b) Picture was taken from +36° (horizontal
axis) in coronal front view.

In addition to the transfer functions detailed in Figure 5.2, we tested some others

(we did not train a model for everyone) as shown in Figure 6.3. Another decision to make

was the background of the images. We tested only two background colors, white and

black. As reported in Section 5.3, when we change the background by applying the same

transfer function we manage to highlight different lung regions. From the experiments

that we carried out when we changed the background color from black to white with the

selected transfer function TF6, we obtained an improvement of 3% of accuracy concern-

ing the model used by training the images with a black background color in the ternary

classification task using the COVID-CT-MD dataset.

Finally, similar to the step-by-step reported by TheSavioursto use only the center

80 slices for classification, we perform the analog for our approach. Hence, obtaining an

image without the top and bottom of the lungs. This changes the axial and top views as

shown in Figure 6.5. With this attempt, we want to check if removing these edges from

the bottom and top could give additional information. One example is removing these

borders in the coronal model so that the network does not pay attention to these features.

Another is removing in the axial view the top of the lungs. This case shows how the

image achieves a difference because we remove part of the outer region to concentrate on

the inner region of the lungs. This additional step did not improve the results obtained by

the trained networks, which is why it is disregarded from the final model.
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Figure 6.3: Some of the other transfer functions studied for COVID-VR

Figure 6.4: Same transfer function with different background colors. It should be noted
how the lesions in the white background are easily seen in contrast with a black back-
ground.

(a) (b)

6.3 Network architectures

At this stage, we will provide details of some of the networks trained to carry out

this work, likewise the change in the inputs of our neural networks.
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Figure 6.5: Volume rendering from 80 center slices for COVID-CT-MD.

(a) Axial view, the image is a bit clear in
contrast to Figure 6.11 because of the ab-
sence of the top lung region (b) Coronal view

Among the first networks we tested are VGG16 and VGG19 using an architecture

similar to the one presented in figure 5.1, where VGG was used as a backbone, continuing

the following layers. From the additional layers of the backbone, we added a dropout of

20% (we also experimented with other dropout values of 10%, 15%, and 25%; however,

we obtained the best results with 20%). Likewise, we discussed whether or not Batch

Normalization should be used together with Dropout. We performed the experiments

removing the Batch Normalization layer, concluding that the metrics did not reach the

baseline, including the Dropout and BatchNormalization layers. For the Dense layers

found after the first Dropout of our network, we also tried 2048×2048 and 2048×1024,

but the results did not improve significantly. So, we kept the 1024×1024 dense layers.

Finally, we used Adam as the Optimizer with a Learning Rate in the set {1 × 10−3,

1× 10−4, 1× 10−5, 2× 10−5, 5× 10−4, 5× 10−5}, obtaining better results with the value

of 2× 10−5 and using it for our experiments.

Some other architectures experimented with had a network with multiple inputs

(one input per chosen view), and the output was unique for all inputs. That is, the net-

work receives as input three images of each chosen view, and each of these images passed

through a subnetwork similar (for each view) to the one shown in Figure 5.1. Still, the

output passes through an assembly of a smaller dense network. We performed this ex-

periment with the VGG16 network as the backbone; however, the returned results did not

improve significantly and as the model was bigger, the training time did not validate the

use of this architecture.
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Another point to be discussed was the size of the inputs of our proposed network.

To do this, we tried different image sizes in the following set {512× 512px, 448× 448px,

384 × 384px, 320 × 320px, 256 × 256px, and 224 × 224px}, finding best between the

first two values of 512px and 448px, using the latter since it manages to make the network

smaller. Therefore the training time and the results obtained are highly similar to using a

512px input.

6.4 Views Aggregation

The justification for using two views and not focusing on just one is that in almost

all the experiments carried out, we observed that the accumulated view obtains better

results than the application independently. This can be seen in the confusion matrices in

Figure 6.6 comparing them against their cumulative shown in Figure 7.1b.

The Table 6.2 also shows that almost all the metrics perform better in the cumu-

lative model (except for specificity and precision in the Normal class for the axial view

model). From the weighted metrics, we appreciate that the accumulated method has an

improvement of 4.1% compared to the model of the axial view and 2% of the coronal

view.

Figure 6.6: Confusion matrices for ternary classification using the public dataset COVID-
CT-MD. (a) shows the confusion matrix for AXIAL view model; and (b) shows the confu-
sion matrix for CORONAL view model, both using TF6 and Resnet101 as the backbone.
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Table 6.2: Comparison among COVID-VR individual views against accumulated views
(axial + coronal) using the public dataset provided by the SPGC 2021 competition.

Metrics COVID-VR (Axial) COVID-VR (Coronal) COVID-VR

Overall

Accuracy 86.7% 88.8% 90.8%
F1-Score 86.9% 88.7% 90.8%
Kappa 78.0% 81.2% 84.6%
AUC score 94.3 94.0 95.4

COVID-19

Sensitivity 85.5% 87.3% 89.1%
Specificity 90.7% 90.7% 93.0%
Precision 92.2% 92.3% 94.2%
F1-Score 88.7% 89.7% 91.6%

Normal

Sensitivity 91.7% 100.0% 100.0%
Specificity 95.9% 93.2% 94.6%
Precision 88.0% 82.8% 85.7%
F1-Score 89.8% 90.6% 92.3%

CAP

Sensitivity 84.2% 78.9% 84.2%
Specificity 92.4% 97.5% 97.5%
Precision 72.7% 88.2% 88.9%
F1-Score 78.0% 83.3% 86.5%

6.5 Backbone Network Choice

To perform CT scan classification with the model described in Section 5.5 and

summarized in Figure 5.1, several popular CNN architectures were tested as the backbone

network, namely ResNet (HE et al., 2016), DenseNet (HUANG et al., 2017), VGG (SI-

MONYAN; ZISSERMAN, 2015), and EfficientNet (TAN; LE, 2020) families. For each of

these, we tried different depths (i.e., ResNet50, ResNet101, DenseNet121, DenseNet201,

EfficientNet-B0, EfficientNet-B1, EfficientNet-B6, VGG16, and VGG19) with fixed train-

ing and validation sets contained in the COVID-CT-MD dataset and compared their clas-

sification performance. Table 6.3 presents the most promising models obtained for each

network family, using the TF6 (Figure 5.2f) as a fixed transfer function for 3D volume

rendering. These results are obtained for the ternary classification models using the train

and validation sets from the SPGC-ICASSP competition (i.e., COVID-CT-MD dataset).

We provide the performance for the COVID-19 class and overall performance for the

three classes. Overall F1-score and AUC score are obtained with the micro-average; the

macro-averages and the complete performance analysis per class can be found in the Ap-

pendix A.

Our model achieved the best results using the ResNet101 network as its back-

bone. The validation accuracy and F1-score were the highest among the best models

obtained for each network family. Both accuracy and F1-score for the overall classifi-
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cation in a ternary approach were 90.8%, approximately two percentage points above

VGG16, which presented the second-best performance (Table 6.3). In terms of AUC

score, DenseNet121 achieved the highest mark of 96.5 compared to 95.4 for ResNet101.

Nonetheless, observing the classification results for the COVID-19 class (Table 6.3), we

note that ResNet101 showed the best performance for all metrics. Moreover, it achieved

outstanding performance for CAP cases and competitive performance for Normal cases

(Appendix A). Thus, we chose ResNet101 as the backbone network for the proposed

COVID-VR approach, using it for all the experiments further reported in our work.

Table 6.3: Comparison of distinct backbone network architectures in our COVID-VR
approach. Model training and validation were carried out with the train and validation
sets from the COVID-CT-MD public dataset for the ternary classification task (COVID-
19 vs. CAP vs. Normal). F1-score and AUC scores are based on the micro-average.

Metrics VGG16 DenseNet121 EfficientNet-B2 ResNet101

Overall
Acc 88.8% 87.8% 86.7% 90.8%
F1 88.6% 87.7% 86.7% 90.8%
AUC 95.6 96.5 95.1 95.4

COVID-19

Sens 89.1% 85.5% 83.6% 89.1%
Spec 88.4% 93.0% 90.7% 93.0%
Prec 90.7% 94.0% 92.0% 94.2%
F1 89.9% 89.5% 87.6% 91.6%

6.6 Transfer Function Choice

As explained in Chapter 5.3, different transfer functions were tested in the pre-

processing step to generate the 3D rendered images. Results for TF4 and TF5 were omit-

ted due to similar performance obtained with TF3 and TF2, respectively. We observed

that TF6 presented the best accuracy and overall F1-score performance. Although it did

not show the highest sensitivity among the TFs compared, it had a balanced performance

in detecting COVID-19 cases. In addition, TF6 achieved the best sensitivity for CAP and

normal cases (Appendix A).

Figure 6.7 compares the ROC curves obtained for distinct TFs. Although a little

difference is observed between the AUC score for TF6 and TF2, we note that the ROC

curve for TF6 achieves the highest sensitivity for a 10% false positive rate. Therefore, TF6

was chosen as the standard transfer function for our approach. Besides the visual detection

of different features highlighted by each TF, this test proved relevant, as switching the TF

while keeping the same model architecture results in considerable accuracy variation, as
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shown in Table 6.4.

Table 6.4: Comparison among Transfers Functions in the COVID-VR approach using
train and validation sets from the COVID-CT-MD public dataset for the ternary classifi-
cation task (COVID-19 vs. CAP vs. Normal). F1-score and AUC scores are based on the
micro-average.

Metrics TF1 TF2 TF3 TF6

Overall
Acc 79.6% 85.7% 87.8% 90.8%
F1 78.7% 84.5% 87.6% 90.8%
AUC 91.8 96.3 94.7 95.4

COVID-19

Sens 89.1% 96.4% 89.1% 89.1%
Spec 72.1% 72.1% 88.4% 93.0%
Prec 80.3% 81.5% 90.7% 94.2%
F1 84.5% 88.3% 89.9% 91.6%

Figure 6.7: Micro-average ROC curves for four distinct Transfer Functions (i.e., TF1,
TF2, TF3, and TF6) in our COVID-VR approach.
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In the results discussed in the next chapter, we use ResNet101 as the backbone

and TF6 as the transfer function.
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7 RESULTS

This section reports the results obtained with the proposed COVID-VR approach.

The first step was to perform binary classification with our private dataset from

HCPA and HMV, distinguishing patients classified as having typical COVID-19 lung in-

fection by a radiologist from one of the two hospitals. This binary classification was

conceived by combining three radiological RSNA diagnoses: negative, atypical, and in-

determinate. Tests with quaternary classification, preserving all four private dataset’s

original radiological classifications, were realized, but none of our designed models or re-

lated works tested achieved satisfactory results. Possible reasons include class imbalance

and an insufficient number of instances in the dataset. While working with the private

dataset, we performed a simple 5-fold Cross-Validation technique.

The second line of experiments consisted in using the public dataset from SPGC to

perform ternary classification using the dataset original classes (COVID-19, Normal, and

CAP), which provided a more direct comparison with other published works that reported

their results training and validating with data from the competition. While working with

the SPGC dataset, we defined training and validation sets according to the data split pub-

lished by the SPGC 2021 competition and the dataset itself, in a nearly 0.68/0.32 (207/98

patients) proportion.

Our best results in each line of the experiment are displayed in Figure 7.1. The

configuration utilized, the model backbone architecture, and chosen transfer function, will

be detailed further. The following subsections contain the tests that justify our choices

regarding backbone architecture and transfer function. Later, we present a comparison

between our model using the chosen configuration and related works to each of the two

lines of experiments described.

Later, we present the results for comparing different backbone networks and trans-

fer functions using the public dataset, COVID-CT-MD. We extract the insights support-

ing model architecture definitions from these findings applied to the other experiments.

Then, we provide the classification performance of our model in comparison with state-

of-the-art approaches for detecting COVID-19-related pneumonia in the COVID-CT-MD

dataset. Finally, we discuss the performance of the models developed from the private

datasets. We note that for some experiments, we compare both ternary and binary clas-

sification models. Moreover, given the class imbalance in our datasets, we focus our

discussion on the metrics’ micro-average for the ternary models. Full details about the
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Figure 7.1: Confusion matrices of our main results: (a) binary classification using hospi-
tals (private) dataset and (b) ternary classification using SPGC (public) dataset.

Covid-19 Others
Predicted

Co
vi

d-
19

Ot
he

rs
Ac

tu
al

83.6%
102/122

16.4%
20

3.8%
10

96.2%
253/263

0.0

0.2

0.4

0.6

0.8

1.0

(a)

Covid-19 Normal CAP
Predicted

Co
vi

d-
19

No
rm

al
CA

P
Ac

tu
al

89.1%
49/55

7.3%
4

3.6%
2

100.0%
24/24

15.8%
3

84.2%
16/19

0.0

0.2

0.4

0.6

0.8

1.0

(b)

results obtained with our approach are provided in Appendix A.

7.1 Classification Performance for the Public Dataset

We conducted experiments to analyze COVID-VR’s performance for a ternary

classification model (COVID-19 vs. CAP vs. Normal) in the validation set and the three

test sets (here unified in a single test set) released by the SPGC 2021 competition. All

models presented in this section use the ResNet101 backbone network and TF6 for vol-

ume rendering to achieve better performance in previous results. We compared the pro-

posed approach against the winner of the competition (TheSaviours) (CHAUDHARY et

al., 2021), and two other state-of-the-art methods, DeCoVNet (WANG et al., 2020) and

COVNet (LI et al., 2020b). We emphasize that the model for the TheSaviours approach

in the validation test (Subsection 7.1.2) results was trained for us following the instruc-

tions in the provided repository1, while in the model for test set we use the pre-trained

weights also available in the public repository, the reason for these choices are described

in Chapter 6.

The results for the ternary models are presented in Table 7.1 for validation set and

Table 7.2 for test set.

1TheSaviours repository: <https://github.com/shubhamchaudhary2015/ct_covid19_cap_cnn/>

https://github.com/shubhamchaudhary2015/ct_covid19_cap_cnn/
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7.1.1 Results in Validation Set of Public Dataset

Our approach achieved the highest scores for overall performance in the validation

set (Table 7.1): COVID-VR’s accuracy was 90.8%, in contrast to 77.6% obtained with

COVNet, ranked in second place. Regarding AUC score, our approach achieved 95.4

while COVNet achieved 89.8. Our method also had the best predictive power for COVID-

19 cases, achieving high and balanced sensitivity and specificity values. We also observed

the outstanding performance of our method when comparing the metrics computed for

CAP and Normal cases: COVID-VR had a 100% sensitivity and 94% specificity for the

Normal class, and 84.2% sensitivity and 97.5% specificity for the CAP class − in both

cases surpassing the counterpart methods.

Table 7.1: Validation Set − Comparison among COVID-VR and state-of-the-art ap-
proaches for ternary classification using the VALIDATION sets from the public dataset
provided by the SPGC 2021 competition.

Metrics COVID-VR DeCovNet COVNet TheSaviours

Overall

Accuracy 90.8% 67.3% 77.6% 74.5%
F1-Score 90.8% 66.8% 77.7% 75.5%
Kappa 84.6% 44.9% 63.2% 58.8%
AUC score 95.4 78.2 89.8 88.4

COVID-19

Sensitivity 89.1% 74.5% 74.5% 70.9%
Specificity 93.0% 67.4% 83.7% 86.0%
Precision 94.2% 74.5% 85.4% 86.7%
F1-Score 91.6% 74.5% 79.6% 78.0%

Normal

Sensitivity 100.0% 41.7% 83.3% 75.0%
Specificity 94.6% 94.6% 86.5% 77.0%
Precision 85.7% 71.4% 66.7% 51.4%
F1-Score 92.3% 52.6% 74.1% 61.0%

CAP

Sensitivity 84.2% 78.9% 78.9% 84.2%
Specificity 97.5% 82.3% 93.7% 97.5%
Precision 88.9% 51.7% 75.0% 88.9%
F1-Score 86.5% 62.5% 76.9% 86.5%

Figure 7.3 compares the micro-average ROC curves for the ternary classification

models using the validation test. The superior performance of COVID-VR in the valida-

tion set is clear, notably improving the true positive rate (i.e., sensitivity) for false positive

rates ranging from 0 to 0.3.
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Figure 7.2: Micro-average ROC curves for the ternary classification task using the public
dataset, considering the Validation set released by the SPGC 2021 competition.
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7.1.2 Results in Test Set of Public Dataset

Regarding the test set (Table 7.2), COVID-VR achieved an accuracy of 86.7%,

while TheSaviours correctly classified 90.0% of the test instances. Nonetheless, when

analyzing the performance per class, our approach was the best among the four methods

in detecting COVID-19 cases (94.3% sensitivity), keeping high specificity (92.7%), and

F1-score (91.7%). In contrast, TheSaviours achieved the highest F1 score for Normal

and CAP cases. It should be noted that our model is trained with labels at the patient

level, while the approach presented by TheSaviours (CHAUDHARY et al., 2021) trains a

model exploring labels at the slice level. Thus, we reach very competitive results despite

employing a more coarse-grained annotation in CT scans.

In Figure 7.3 we compare the micro-average ROC curves for the ternary classifica-

tion models using the test set. Here, the performance of the TheSaviours model improves

in relation to experiments with the validation set and surpasses our approach by about

two points (i.e., 97.4 vs. 95.7) in the AUC score. Nonetheless, we highlight that our

approach had the most stable performance between validation and test sets, despite the

clinical and technical differences introduced in the CT images from the COVID-CT-MD

Test Set (HEIDARIAN et al., 2021).

Finally, we note that our approach had an accuracy close to that reported by the

first places of the competition like IITDelhi (GARG et al., 2021) with 88.9%, LLSCP (YANG
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Table 7.2: Test Set − Comparison among COVID-VR and state-of-the-art approaches for
ternary classification using the TEST sets from the public dataset provided by the SPGC
2021 competition.

Metrics COVID-VR DeCovNet COVNet TheSaviours

Overall

Accuracy 86.7% 52.2% 67.8% 90.0%
F1-Score 86.8% 47.6% 67.7% 90.0%
Kappa 79.7% 30.3% 50.0% 84.6%
AUC score 95.7 74.4 86.1 97.4

COVID-19

Sensitivity 94.3% 57.1% 77.1% 85.7%
Specificity 92.7% 61.8% 67.3% 94.5%
Precision 89.2% 48.8% 60.0% 90.9%
F1-Score 91.7% 52.6% 67.5% 88.2%

Normal

Sensitivity 77.1% 20.0% 57.1% 94.3%
Specificity 98.2% 96.4% 87.3% 97.1%
Precision 96.4% 77.8% 74.1% 89.2%
F1-Score 85.7% 31.8% 64.5% 90.0%

CAP

Sensitivity 90.0% 100.0% 70.0% 90.0%
Specificity 90.0% 71.4% 94.3% 97.1%
Precision 72.0% 50.0% 77.8% 90.0%
F1-Score 80.0% 66.7% 73.7% 90.0%

Figure 7.3: Micro-average ROC curves for the ternary classification task using the public
dataset, considering the Test set released by the SPGC 2021 competition .
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et al., 2021) with 87.8%, and UniSheff_EEE (XUE; ABHAYARATNE, 2021) with 85.56%

reported previously in Table 3.1. The results for these approaches were not included in

the table due to the lack of public code to reproduce the experiments when we developed

this work.
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7.2 Classification Performance for the Private Dataset

We analyzed the methods’ performance for a binary classification task, COVID-

19 vs. non-COVID-19, using the private datasets. The experiments were run considering

two different definitions for the negative class: in the first, we merged the Negative, In-

determinate, and Atypical classes into a unique non-COVID-19 class, and in the second,

we considered only the original negative class (i.e., Negative for pneumonia) as the clas-

sifiers’ non-COVID-19 class. In both cases, the Typical classification was considered the

positive class (i.e., COVID-19). Performance assessment was based on a 5-fold CV, using

the configuration of the same folds for COVID-VR, DeCoVNet, and COVNet. Results

are presented in Table 7.3 demonstrating that our approach obtained the best results in all

the metrics, obtaining 92.2% of accuracy and 95.6% of AUC for this binary classification

task.

Table 7.3: Comparison of approaches in COVID-19 vs. Others task. Training and valida-
tion technique in the private (HMV+HCPA) dataset

Metrics COVID-VR DeCovNet COVNet
Accuracy 92.2% 87.8% 89.4%
Sensitivity 83.6% 78.7% 83.6%
Specificity 96.2% 92.0% 92.0%
F1-score 87.2% 80.3% 83.3%

Cohen Kappa 81.6% 71.5% 75.5%
AUC 95.6 89.2 93.1

Figure 7.4: ROC curves comparison for binary classification task in private dataset
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We also perform the comparison for a binary classification task of COVID-19

vs. Normal (i.e., Negative for RSNA standard) in our private dataset. We compare our

approach against DeCoVNet and COVNet using the 5-fold Cross-Validation technique

(Table 7.4), achieving an accuracy of 96.1% in this task, similarly to COVNet and sur-

passing DeCoVNet all metrics, our method also get a greater value of AUC (98.6) against

both other approaches as could be seen in micro-average ROC curves in Figure 7.5. It

is worth noting that we execute the COVNet approach in another environment due to an

error in memory in GPU allocation as mentioned in Section 6.1.

Table 7.4: Comparison of approaches in COVID-19 vs. Normal task. Training and vali-
dation technique in the private (HMV+HCPA) dataset

Metrics COVID-VR DeCovNet COVNet
Accuracy 96.1% 92.5% 96.1%
Sensitivity 96.7% 91.0% 95.9%
Specificity 95.3% 94.3% 96.2%
F1-score 96.3% 92.9% 96.3%

Cohen Kappa 92.1% 85.1% 92.1%
AUC 98.6 96.3 97.7

Figure 7.5: ROC curves comparison for binary classification task (COVID-19 vs. Normal)
in private dataset
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7.2.1 Generalization Between Datasets

Finally, one of the questions we seek to answer in this work is the possible gen-

eralization and application of our trained models to other datasets. Thus, we analyze the

generalization of the classification task of COVID-19 against Normal (Negative in RSNA

standard), training a model with the preceding detailed parameters (ResNet101 as the

backbone and using TF6 to render the segmented lungs).

We carry out the training and validation process with data distribution of 90% and

10%, respectively, using only our private dataset for this step. Afterward, we tested over

the public dataset (COVID-CT-MD, training and validation set), obtaining an accuracy

of 91.5% and 93.5% as F1-measure. Table 7.5 presents the rest of the metrics assuming

COVID-19 as the positive class. We must highlight that we used only these two classes

since they were the intersection labels in our datasets and argue that our approach achieves

high values in generalization tasks despite the different sources of the datasets.

Table 7.5: Inference test of COVID-19 vs. Normal task classification using Private
Dataset for training/validation and the Training/Validation Set of the COVID-CT-MD
dataset (Public Dataset) to test.

Metrics COVID-VR
Accuracy 91.5%
Precision 100.0%
Sensitivity 87.7%
Specificity 100.0%
F1-score 93.5%
Cohen Kappa 81.5%
AUC 96.7

It should be noted that we also did the reverse process of training our approach

using the public dataset for the binary model with the split given by the competition.

With this, we did not obtain metrics as high as those presented in the inverse process,

for example, we reached an accuracy of 63.6% and an F1-score of 74.6%, and the other

metrics are detailed in Table 7.6. One hypothesis is that the difference in values is the

input data quality; private data has better image quality and higher resolution and number

of slices.
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Table 7.6: Inference test of COVID-19 vs. Normal task classification using Public Dataset
for training/validation and the Private Dataset to test.

Metrics COVID-VR
Accuracy 63.6%
Precision 59.5%
Sensitivity 100.0%
Specificity 21.7%
F1-score 74.6%
Cohen Kappa 22.9%
AUC 93.4

7.3 Visualization

To explain and intuitively verify the features our trained Convolutional Neural

Network learned, we generated Grad-CAM visualizations (SELVARAJU et al., 2017).

Figure 7.6 shows the last convolutional layer activation heatmaps for the three classes

(COVID-19, Normal, and CAP) of our model of the axial and coronal view to a COVID-

19 patient. Since our model works by classifying 42 images (rotated by small angles) per

patient and view, each image generates an activation map for each class. Hence, Figure

7.6 shows these activation maps as thumbnails in the first row for the axial view and the

fourth for the coronal view. In the second row, we display the simple mean of all ac-

tivation maps (thumbnails shown in the first row) for each class overlapping the central

image, point (0, 0) as shown in Figure 5.3, generated by our approach. The third row

follows the same logic as the second row but for the coronal view.

In Figure 7.6 focusing on the second and third row, the first column shows the

heatmaps’ brightest areas (that most influenced the final classification) for COVID-19

class correspond to areas that are visibly injured in the central rendered image in axial

and coronal views. In the second column, the Normal class activates almost the entire

image avoiding one of the principal lesions from COVID-19 activation map in axial and

coronal views and some other remarkable lesions in the coronal view. In the third column,

we observe the activation of the CAP class for our case study, presenting that almost the

entire image is activated but with less intensity than in the Normal class (aqua color to

green color) and not centralizing the activation map only in the lesions but in their entire

contour, unlike the activation map of the COVID-19 class.
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Figure 7.6: Grad-CAM visualization results were obtained with our model, using a
COVID-19 patient from the COVID-CT-MD dataset. The first column contains gener-
ated heatmaps indicating which areas from the input image most activated the model for
the class COVID-19, leading it to classify that patient correctly. In contrast, the second
and third column shows the heatmaps of activation maps for Normal and CAP class re-
spectively. The first and last rows show thumbnails of all the activation maps for the 42
images generated by the patient; the second and third rows show the mean of the 42 acti-
vation maps for each view overlapping the central image generated by our model.

COVID-19 patient (classified as COVID-19) 

COVID-19 activation map Normal activation map CAP activation map

Axial 
view

Coronal 
view
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8 CONCLUSION AND FUTURE WORKS

The results of our experiments suggest that our proposed framework reasonably

achieves the goal of learning to recognize typical COVID-19 patterns in chest CT images

compared to other available methods that were tested. Our model can help specialists

on COVID-19 diagnosis performing binary classification, returning a quick opinion that

may constitute valuable information, as expressed by the feedback from radiologists of

our partner hospitals, helping to identify typical cases or excluding the possibility of that

diagnosis. We recognize that our ternary classification does not achieve results that may

indicate the option of applying our classifier to segment the incoming patients into three

classes in a real situation; however, we emphasize that our proposed approach gets a

competitive accuracy using only patient-level annotations.

Among the possibilities for future work, we would like to explore additional trans-

fer function generation methods. As discussed in this work, our method was a process of

trial and error until reaching a transfer function that satisfied our requirements. We want to

optimize the generation and selection of a transfer function using Deep Learning methods

to choose the appropriate transfer function.

Another point left open for investigation is whether we could use the generated

lung videos for patient classification models. In this way, having one video per patient

could eliminate the final count part of our pipeline.

The classification of the four classes presented by RSNA is also pending for future

tasks. Finally, the possibility of using volume rendering for classification tasks in other

contexts like classification in other organs with other diseases (for example, tumors).
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Table A.2: Comparison of principal results obtained in this work using the Public Dataset
COVID-CT-MD. All values in table are in percentage, continue from Table A.1 with
Macro values

Mean-Macro
Preci.Sensi.Speci.F-score AUC

TF 1 86.1 86.2 93.1 86.0 94.1
TF 2 89.1 78.5 89.8 81.3 95.2
TF 3 83.9 73.3 87.1 75.2 90.2
TF 4 87.9 86.8 93.5 87.0 94.7
TF 5 85.1 82.7 95.1 83.2 95.2

Transfer
Function

Comparison TF 6 89.6 91.1 95.0 90.1 95.2
VGG16 87.3 87.6 93.5 87.3 94.9
DenseNet121 85.2 88.1 93.7 86.3 95.7
EfficientNetB2 84.2 87.5 93.0 85.6 94.0

Architecture
Comparison

ResNet101 89.6 91.1 95.0 90.1 95.2
DeCoVNet 65.9 65.0 81.4 63.2 76.8
COVNet 75.7 78.9 88.0 76.9 89.3
TheSaviours 75.7 76.7 86.8 75.2 87.7

Method
Comparison

(Train /
Validation) COVID-VR 89.6 91.1 95.0 90.1 95.2

DeCoVNet 58.9 59.0 76.5 50.4 78.7
COVNet 70.6 68.1 83.0 68.6 86.6
TheSaviours 90.0 90.0 94.8 90.0 98.0

Method
Comparison

(Test) COVID-VR 85.9 87.1 93.6 85.8 96.1
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APPENDIX B — PROPOSED DOCKER IMAGE AND SUPPLEMENTARY

REPOSITORIES

This appendix summarizes all the links to our repositories and results. Each repos-

itory contains an example of how to execute the included source code.

B.1 Full Pipeline

Our full pipeline presented and detailed in Chapter 5 with its requirements and

examples of how to run are available in:

• <https://github.com/covid-vr/covid-vr-docker>.

B.2 Independent Repositories

In this Section, we detail the main components of our Full Pipeline, which can be

used independently. Each repository contains an example of how to execute the code.

B.2.1 Lung segmentation

Required packages and minimum versions. For complete detail, see at require-

ments.txt in our adapted P-HNN version:

• Python 3.6

• Pytorch 1.3

• Cudatoolkit 10.1

• Anaconda

Link to repositories:

• Original P-HNN repository: <https://adampharrison.gitlab.io/p-hnn/>

• Our adapted P-HNN version: <https://github.com/covid-vr/p-hnn-lung-segmentation>

• Model Weights: <https://drive.google.com/file/d/1l6yLFScULNw-oVoark0KZ-wnDFX8zwrN/

view?usp=sharing>

https://github.com/covid-vr/covid-vr-docker
https://adampharrison.gitlab.io/p-hnn/
https://github.com/covid-vr/p-hnn-lung-segmentation
https://drive.google.com/file/d/1l6yLFScULNw-oVoark0KZ-wnDFX8zwrN/view?usp=sharing
https://drive.google.com/file/d/1l6yLFScULNw-oVoark0KZ-wnDFX8zwrN/view?usp=sharing
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B.2.2 Visualization Repositories

Minimum required libraries:

• CMake 3.17

• QT 5.12

• MITK: <https://github.com/MITK/MITK>

• ffmpeg (For video-generator repository)

Link to repositories:

• Repository to capture view images, for step in Chapter 5.4: <https://github.com/

covid-vr/camera-shots-generator>

• Repository for video generation from CT Image: <https://github.com/covid-vr/

video-generator>

Both repositories need as input an image in NIfTI format and a XML for the

transfer functions, samples of both were added to each repository. We highly recommend

using a Desktop environment (with UI); however, it could be used in a server environment

like our Full Pipeline, using VGLRUN command along with the steps described in B.1.

B.2.3 COVID-VR Proposed Network

Required minimum versions (the complete requirements are in the repository link):

• Python 3.6

• TensorFlow 2.0

Link to repositories:

• Repository for train and validation: <https://github.com/covid-vr/covid-vr-network>

• Model weights (For the two views):

<https://drive.google.com/drive/ folders/1OXTliIhm7yGuBDIL7qZhQrjCoaxmGx0l>

B.3 Supplementary Material

Link to repositories:

https://github.com/MITK/MITK
https://github.com/covid-vr/camera-shots-generator
https://github.com/covid-vr/camera-shots-generator
https://github.com/covid-vr/video-generator
https://github.com/covid-vr/video-generator
https://github.com/covid-vr/covid-vr-network
https://drive.google.com/drive/folders/1OXTliIhm7yGuBDIL7qZhQrjCoaxmGx0l
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• Repository for get metrics (accuracy, precision, f1-measure, etc) and generate graph-

ics used in this work: <https://github.com/covid-vr/model-evaluation-metrics>

• Repository to generate Grad-CAM visualizations: <https://github.com/covid-vr/

covid-vr-grad-cam>

• Complete result by patients and images used in this work: <https://covid-vr.github.

io/>

https://github.com/covid-vr/model-evaluation-metrics
https://github.com/covid-vr/covid-vr-grad-cam
https://github.com/covid-vr/covid-vr-grad-cam
https://covid-vr.github.io/
https://covid-vr.github.io/
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APPENDIX C — RESUMO EXPANDIDO

Título da Dissertação de Mestrado: COVID-VR um modelo de classificação de apren-

dizado profundo usando Renderização de Volumes de Tomografias Computarizadas.

Resumo expandido:

O contexto de COVID-19 apresentou uma série de desafios aos sistemas de saúde

globais. Como a maioria dos pacientes com COVID-19 tem infecções pulmonares, as

tomografias computadorizadas (TC) do tórax foram frequentemente utilizadas para diag-

nosticar infecções por COVID-19, bem como outras doenças pulmonares. Arquiteturas

de aprendizado profundo foram desenvolvidas para identificar automaticamente classes de

doenças pulmonares usando fatias de TC como entradas para algoritmos de classificação.

Neste trabalho apresentamos o COVID-VR, um modelo de classificação de tomo-

grafias computarizadas (TC) baseado em visualizações volumétricas para a identificação

de pacientes com a presença de COVID-19, outras pneumonias ou ausência de infecções

pulmonares. Comparamos nosso modelo com outros trabalhos, DeCoVNet (WANG et al.,

2020), COVNet (LI et al., 2020b) e TheSaviours (CHAUDHARY et al., 2021) que tam-

bém oferecem classificação em nível de paciente. Publicamos nossos resultados avaliando

as métricas em um conjunto de dados público para comparações justas com as outras abor-

dagens.

COVID-VR possui duas etapas principais, a parte de pré-processamento e a parte

de treinamento de nossas redes e obtenção de resultados.

1. PRÉ-PROCESSAMENTO. Para esta etapa recebemos como entrada o TC no for-

mato DICOM que transformamos para o formato NIfTI. Em seguida, segmentamos

o TC para obter apenas a região de interesse (pulmão) em nossa imagem NIfTI.

Posteriormente, usando scripts baseados em MITK, realizamos várias capturas do

eixo axial superior e frontal coronal do volume renderizado.

2. TREINAMENTO E OBTENÇÃO DE RESULTADOS. Nesta etapa, treinamos duas

redes convolucionais baseadas no ResNet101, uma para as imagens axiais e outra

para as imagens coronais obtidas na etapa anterior. Na saída dessas redes nós obte-

mos uma classificação em nível de imagem e performamos uma voto majoritário

para obter a classificação final no nível de TC.

No decorrer do desenvolvimento desta dissertação utilizamos dois tipos de dados

e três modelos principais de classificação. O primeiro conjunto de dados COVID-CT-
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MD (AFSHAR et al., 2020) são dados públicos compostos por dois subconjuntos, treina-

mento/validação e teste, divulgados pela competição ICASSP 2021. O segundo conjunto

de dados é um conjunto de dados privado obtido de dois hospitais locais, Hospital Moin-

hos de Vento e Hospital de Clínicas de Porto Alegre. Pela natureza dos dados, o conjunto

COVID-CT-MD consiste em três classes, COVID-19, CAP (pneumonias adquiridas na

comunidade) e Normal (indica a ausência de infecções pulmonares); enquanto em nosso

Dataset Privado possui as quatro classificações dadas pela RSNA no contexto da pan-

demia; Positivo (COVID-19), Indeterminado, Atípico e Negativo (ausência de doença).

Dada a diversidade de nossos conjuntos de dados, os estudos de caso a seguir

foram orientados para classificação binária e ternária.

• CLASSIFICAÇÃO BINÁRIA. Para esta classificação, usamos nosso Dataset Pri-

vado e os agrupamos em dois experimentos principais usando a abordagem de val-

idação cruzada de 5 folds. O primeiro caso consiste na classificação de COVID-19

vs. Negativo (Normal) onde nosso método consegue superar os resultados obtidos

usando DeCoVNet e obter métricas semelhantes a COVNet. O segundo caso con-

siste na classificação de COVID-19 vs. Outros (agrupamento das classes Negativo,

Indeterminado e Atípico), onde nosso método COVID-VR foi capaz de superar os

resultados obtidos por DeCoVNet e COVNet em todas as métricas apresentadas.

• CLASSIFICAÇÃO TERNÁRIA. Nesta classificação usamos o conjunto COVID-

CT-MD. Treinamos as abordagens usando o subconjunto de treinamento/validação

com as divisões oferecidas para COVID-VR, DeCoVNet e COVNet; e seguindo

os passos descritos na abordagem de treinamento porposto por TheSaviours. Deste

primeiro subconjunto, COVID-VR consegue superar as outras abordagens em métri-

cas (acurácia, micro F1-score) de classe e geral em vários pontos percentuais.

Posteriormente, esses modelos treinados por COVID-VR, DeCoVNet e COVNet,

foram testados com o conjunto de testes da competição, para abordagem The-

Saviours usamos o modelo que eles divulgaram com o qual venceram a competição.

A partir desses resultados, podemos mostrar que nossa abordagem superou DeCoV-

Net e COVNet, mas na métrica geral perdeu para TheSaviours em alguns pontos

percentuais. No entanto, deve-se notar que nosso método obteve uma sensibilidade

maior para a classe COVID-19 do que as outras abordagens e também que nossa

abordagem é um modelo que trabalha apenas com anotações em nível de paciente

enquanto TheSaviours precisa de anotações em nível de fatias. Demonstrando que

o COVID-VR possui resultados de nível competitivo para esta tarefa.
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Além dos experimentos citados, realizamos um teste de generalização do nosso

modelo que consiste em treinar nossas redes com os dados do nosso Dataset Privado

e testá-los no conjunto público COVID-CT-MD. Para este experimento utilizamos ape-

nas as classes Positiva e Normal, pois são os dados que temos em comum entre os dois

conjuntos. Obtemos 91,5% de acurácia, destacando assim a alta generalização do nosso

método para esses conjuntos.

Por fim, apresentamos visualizações usando o Grad-CAM para mostrar as regiões

ativadas em nossas imagens de entrada por classe e validar assim quais caracteristicas são

as principais para cada classificação.
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