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Resumo

Entender as complexidades das relações econômicas é crucial para formuladores de
poĺıticas, pesquisadores e analistas. A agregação temporal, onde a frequência de
geração de dados excede a frequência de coleta de dados, apresenta desafios sig-
nificativos na análise econômica. Essa discrepância pode levar a realizações não
observáveis do processo estocástico original, afetando as propriedades dos dados de
séries temporais. Abordar esses desafios é vital para detectar e interpretar com pre-
cisão as relações causais entre variáveis econômicas. Nossa pesquisa visa identificar
como a agregação temporal pode interferir na detecção de causalidade entre séries
temporais. Também demonstramos como um teste de causalidade Sims modificado
pode ser empregado para detectar causalidade em modelos de frequências mistas.
Nossas simulações de Monte Carlo mostram boas propriedades de tamanho e poder
para amostras finitas. Finalmente, testamos a causalidade entre o PIB dos EUA e
indicadores macroeconômicos mensais.

Palavras-Chave: Séries temporais, Agregação temporal, Causalidade de Granger,
Causalidade de Sims.



Abstract

Temporal aggregation, where the data generation frequency exceeds the data collec-
tion frequency, poses significant challenges in economic analysis. This discrepancy
can lead to unobservable realizations of the original stochastic process, which in turn
affects the properties of time series data. Consequently, addressing these challenges
is crucial for accurately detecting and interpreting causal relationships between eco-
nomic variables. In our research, we aim to identify how temporal aggregation
can interfere with the detection of causality between time series. Furthermore,
we demonstrate the application of a modified Sims causality test to detect causal-
ity in mixed-frequency models. Our Monte Carlo simulations indicate that this
test exhibits good finite sample size and power properties. Finally, we apply our
methodology to test the causality between U.S. GDP and macroeconomic monthly
indicators.

Keywords: Time series, Temporal aggregation, Granger causality, Sims causality.
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1 Introduction

Understanding the intricacies of economic relationships is crucial for policymak-
ers, researchers, and analysts. Temporal aggregation, where the data generation
frequency exceeds the data collection frequency, poses significant challenges in eco-
nomic analysis, as described in Zellner e Montmarquette (1971). This discrepancy
can lead to unobservable realizations of the original stochastic process, affecting
the properties of time series data. Consequently, addressing these challenges is vi-
tal to accurately detecting and interpreting causal relationships between economic
variables.

In this work, our first goal is to understand how temporal aggregation affects
the detection of causality between two time series. Secondly, we aim to propose a
method for correctly testing causality in situations where spurious causality exists.
To achieve this, we demonstrate the existence or absence of spurious causality using
four theoretical models considering a bivariate time series model. We then show that,
with a slight modification, the Sims causality methodology is suitable for detecting
causality when one series is aggregated and the other is not.

As stated in Marcellino (1999), temporal aggregation occurs when the frequency
of data generation is higher than the frequency of data collection, resulting in some
realizations of the original stochastic process being unobservable. The author also
provides a detailed examination of which properties of the disaggregated time series
remain invariant after aggregation and which do not, referring to this discrepancy
as temporal aggregation bias. Further instances of common estimation problems
associated with time aggregations can be found in Weiss (1984) and Swanson e
Granger (1997).

Granger first introduced the causality concepts that became known as Granger
causality in Granger (1963). Although Granger’s concept relates to the ability of
one time series to predict another, conditional on a given information set, Chalak e
White (2012) demonstrates that Granger’s concept is closely linked with the causal
notions of the Pearl Causal Model discussed in Pearl (2009). Later, several empirical
investigations, such as those in Weiss (1984), demonstrated that causality proper-
ties are not invariant to temporal aggregation. This can lead to spurious conclusions
about the relationships between time series, a phenomenon referred to as spurious
causality. To address this issue, McCrorie e Chambers (2006) proposed formulating
models in continuous time to correct the effects of temporal aggregation in observed
discrete data through a discrete-time analog. Similarly, Renault et al. (1998) uti-
lized a continuous-time model to distinguish between true and spurious causality.
Moreover, Breitung e Swanson (2002) observed that causality relationships seem to
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change when moving to a finer sampling interval. For more examples of the effects
of temporal aggregation on causality testing, see Rajaguru e Abeysinghe (2010) and
Xu (1996).

An alternative approach to identifying causality between non-aggregated obser-
vations was introduced in Sims (1972). Sims suggested that in a regression analysis
if causality only moves from current and past values of exogenous variables to an en-
dogenous variable, the coefficients for future values of the exogenous variables should
be zero. This approach, known as the Sims causality test, has been widely applied.
For example, in Macunovich e Easterlin (1988), Granger-Sims causality tests were
applied to monthly age-specific data, demonstrating the technique’s value in pin-
pointing the effective lag between business cycles and fertility in the United States.
Similarly, Chow (1987) explored the causal link between export growth and indus-
trial development in eight Newly Industrializing Countries using Sims’ causality
test to reveal a robust bidirectional causality between export growth and industrial
development in most of them. For further applications of the Sims method, see
Heckman (2000) and Holland (1986).

The paper is organized as follows: Section 2 explores the characteristics of
Granger causality; Section 3 illustrates how aggregation leads to spurious causality;
Section 4 introduces the proposed modified Sims causality test; Section 5 discuss the
technical implementation details; Section 6 reports the finite sample behavior of the
proposed Sims test; Section 7 presents an empirical application with quarterly GDP
and monthly US indicators; Section 8 concludes the paper and the Appendix show-
cases the intermediate results and expands upon the results presented in Section 3
using the same aggregation pattern as presented in the GDP series.
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2 Granger Causality

This section focuses on Granger’s proposed measurement of causality between two
variables, introduced in Granger (1969). Hamilton (1994) definition based on Vec-
tor Autoregression models (VARs) highlights the forecasting effectiveness of certain
variables on others. Under this approach, the researcher aims to determine if lagged
observations of the series {xt}∞

t=0 can contribute to forecasting the series {yt}∞
t=0. If

not, it can be concluded that the past values of xt do not Granger-cause present
values of yt. This concept is denoted as xt not Granger-causing yt if:

MSE[E(yt|yt−1, yt−2, . . .)] = MSE[E((yt|yt−1, yt−2, . . . , xt−1, xt−2, . . .)],

which means, for the linear case, that the past of xt lacks explanatory power for yt

whenever the mean squared error (MSE) of forecasting yt, conditioned exclusively
on its historical values, is statistically equivalent to the MSE of forecasting yt using
both its own and xt’s history.

According to Hamilton (1994), considering past values of yt and xt and assuming
a lag length p, we can define the augmented autoregressive model as:

yt = c+ α1yt−1 + · · · + αpyt−p + β1xt−1 + · · · + βpxt−p + vt (2.1)

where the error term vt is assumed to be independent and identically distributed. In
other words, as stated in Kuersteiner (2010a), testing for Granger causality involves
assessing whether the coefficients associated with lags of xt in the yt series are
statistically equal to zero. If this condition is not rejected, it implies that xt ̸→ yt.

As shown in Marcellino (1999), testing for Granger causality between aggregated
time series variables can lead to spurious conclusions since not all time series proper-
ties are invariant to aggregation. The divergence from the actual causal relationship
between two time series and the false relationship is known as temporal aggregation
bias, commonly referred to as spurious causality. This effect has also been mentioned
in Breitung e Swanson (2002) and Götz et al. (2016).

In a related study, Renault et al. (1998) investigates another reason for spurious
causality, attributing it to the use of discrete data in causality analysis. The authors
state that using discrete data overlooks events that occur within time intervals,
essentially disregarding valuable information within a series of observations. They
describe significant misleading causal effects in discrete time that do not emerge from
the continuous-time generating process. For further discussions on using continuous
models, see Florens e Fougere (1996) and Comte e Renault (1996).

Ghysels et al. (2016) addresses the problem of spurious causality in a Mixed Fre-
quency Vector Autoregressive (MF-VAR) setting by assuming that the low-frequency
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sampled process is not temporally aggregated but instead sampled at its true fre-
quency. This approach effectively rules out any spurious causality by construction.
The finite sample properties presented in Ghysels et al. (2016) indicate that Granger
testing within the MF-VAR approach exhibits higher asymptotic power for small dif-
ferences in sampling frequencies, such as quarterly/monthly mixtures. Götz et al.
(2016) also proposed a causality test using MF-VAR, demonstrating that a Bayesian
methodology improves the sensitivity of the Granger test when examining causality
from a very high frequency to low frequency. This improvement is shown through
tests of causality from daily to quarterly observations, with adjustments made to
handle parameter proliferation. Tank et al. (2019) conducts an investigation into
Granger causality in mixed-frequency time series models, focusing specifically on
the identifiability of the structural vector.

Following the methodology presented in Ghysels et al. (2016), the series are
stacked, resulting in an MF vector, X(τ), described by equation

X(τ) =
[
xH(τ, 1)′, . . . ,xH(τ, s)′,xL(τ)′

]′
,

where τ ∈ {1, . . . , T} is the low-frequency (LF) time index, xL(τ) represents the LF
variable, and the set {xH(τ, 1)′, . . . , xH(τ, s)′} consists of the high-frequency (HF)
observations, with s being the frequency ratio between the HF and LF variables.
For example, for each quarterly GDP observation, there are three observations of a
monthly indicator. Specifically, if xL(τ) denotes a quarterly variable, then xH(τ, 1)
represents the first month of each quarter, xH(τ, 2) the second month, and so on.

Under some standard assumptions, as discussed in Ghysels et al. (2016), consider
a bivariate case where the structural form for the MF-VAR includes the current low-
frequency variable and three lags of the high-frequency variable, given by

1 0 0 0
−d 1 0 0
0 −d 1 0
0 0 0 1


︸ ︷︷ ︸

≡N


xH(τ, 1)
xH(τ, 2)
xH(τ, 3)
xL(τ)

 =


0 0 d c1
0 0 0 c2
0 0 0 c3
b3 b2 b1 a


︸ ︷︷ ︸

≡M


xH(τ − 1, 1)
xH(τ − 1, 2)
xH(τ − 1, 3)
xL(τ − 1)

+


ξH(τ, 1)
ξH(τ, 2)
ξH(τ, 3)
ξL(τ)


︸ ︷︷ ︸

≡ξ(τ)

or NX(τ) = MX(τ − 1) + ξ(τ). It also assumed that xH follows a AR(1) with
coefficient d. The impact of lagged xL on xH is governed by c1, c2, and c3. xL follows
a AR(1) with coefficient a. The impact of lagged xH on xL is governed by b1, b2,
and b3. Premultiply both sides of the structural form by

N−1 =


1 0 0 0
d 1 0 0
d2 d 1 0
0 0 0 1


to get the reduced form X(τ) = A1X(τ − 1) + ϵ(τ), where

A1 = N−1M =


0 0 d

∑1
i=1 d

1−ici

0 0 d2 ∑2
i=1 d

2−ici

0 0 d3 ∑3
i=1 d

3−ici

b3 b2 b1 a


and ϵ(τ) = N−1ξ(τ).
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We can demonstrate that xH does not cause xL in the mixed frequency setting
if and only if b1 = b2 = b3 = 0. Non-causality from xL to xH involves c1, c2 and c3,
the AR(1) coefficient of xH , as seen in the upper-right block of A1.

Unlike Ghysels et al. (2016) and Götz et al. (2016), we assume that aggregated
series are generated at a higher frequency, resulting in missing information once ag-
gregated. Thus, in the following section, we illustrate how this assumption influences
Granger causality analysis.
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3 Aggregation and Spurious Causality

In this section, we build upon Granger’s concept of causality as introduced in Section
2 for two time series, yt and xt, and their aggregation. By illustrating the spurious
causality effects using simple models, we can better understand its impact on more
complex models. The series xt and yt have a causal relationship described as

yt = θ1yt−1 + θ2xt−1 + v1,t

xt = λ1yt−1 + λ2xt−1 + v2,t
, vj,t ∼ N(0, σ2), for j = {1, 2}. (3.1)

with both yt and xt modeled after one lag of themselves and one of each other. The
errors vj,t, j = {1, 2}, are assumed to be independent and identically distributed. If
the coefficients θ2 ̸= 0 or λ1 ̸= 0, this indicates that we are working with a scenario
where lagged values of xt are influential in present values of yt or lagged values of yt

are influential in present values of xt, respectively. Therefore, we have four possible
cases of Granger causality between xt and yt:

(i) xt doesn’t Granger cause yt and yt doesn’t Granger cause xt,

θ2 = 0 and λ1 = 0, xt ̸→ yt and yt ̸→ xt,

(ii) xt Granger cause yt and yt doesn’t Granger cause xt,

θ2 ̸= 0 and λ1 = 0, xt → yt and yt ̸→ xt

(iii) xt doesn’t Granger cause yt and yt Granger cause xt,

θ2 = 0 and λ1 ̸= 0, xt ̸→ yt and yt → xt

(iv) xt Granger cause yt and yt Granger cause xt,

θ2 ̸= 0 and λ1 ̸= 0, xt → yt and yt → xt

Now, let us focus on the effects of aggregation on the measurement of causality.
For this, let Yτ and Xτ be potentially aggregated time series composed of lagged val-
ues of yt and xt, respectively, where τ = {1, 2, . . . } represents periods corresponding
to t = {s, 2s, . . . }, with s being the frequency ratio between the high-frequency and
the low-frequency variables. We can then analyze the effects of Yτ−1 and Xτ−1 on
Yτ , as expressed by
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Yτ = Θ1Yτ−1 + Θ2Xτ−1 + ut

The coefficients Θ̂1 and Θ̂2 can be retrieved by least squares,[
Θ̂1

Θ̂2

]
= det(M̂)−1

[
(X ′

τ−1Xτ−1)(Y ′
τ−1Yτ ) − (X ′

τ−1Yτ−1)(X ′
τ−1Yτ )

(Y ′
τ−1Yτ−1)(X ′

τ−1Yτ ) − (X ′
τ−1Yτ−1)(Y ′

τ−1Yτ )

]
(3.2)

where det(M̂) = (Y ′
τ−1Yτ−1)(X ′

τ−1Xτ−1) − (X ′
τ−1Yτ−1)2. Furthermore, under usual

time series linear regression assumptions and assuming the errors are i.i.d., we have

E

[
Θ̂1

Θ̂2

]
=

[
Θ1
Θ2

]
= det(M)−1

[
π1
π2

]
, (3.3)

where π1 and π2 are related to the second part of the right-hand side of the equation
(3.2).

Considering the relationship between the variables xt and yt as depicted in equa-
tion (3.1), our objective is to illustrate how spurious conclusions about the relation-
ship between them can emerge in the aggregate setting, utilizing the series Yτ and
Xτ . The following four examples spotlight instances of what may be deemed spu-
rious causality between these series. These examples help to describe scenarios in
testing for Granger causality that might be prone to the spurious causality problem.

Notice that, for the next examples, the series are not subsampled but only aggre-
gated, as subsampling does not cause spurious causality. To illustrate this, assume
that model (3.1) is sampled every two observations. In this scenario, {yt−1, xt−1}
would not be observable, but {yt−2, xt−2} would be. Consequently, even if θ2 = 0
and λ1 ̸= 0, the projection of yt on {yt−2, xt−2} would result in E[θ̃1] = θ2

1 and
E[Θ̃2] = 0, thus not leading to spurious causality. This simplification allows us to
derive the effects of spurious causality without loss of generality.

Example 1
In this initial example, we assume Case (i), θ2 = 0 and λ1 = 0, i.e., xt ↛ yt and
yt ↛ xt. Thus,

yt = θ1yt−1 + v1,t

xt = λ2xt−1 + v2,t
, vj,t ∼ N(0, σ2), for j = {1, 2} (3.4)

with a simple aggregation pattern defined by

Yτ = yt + yt−1, Yτ−1 = yt−1 + yt−2, Xτ−1 = xt−1 + xt−2. (3.5)

Intuitively, we consider a present value of the yt series and a further lagged value
of the xt series. Solving for Θ1 and Θ2 in equations (3.2) and (3.3), we obtain

det(M) = 4σ2
xσ

2
y + 4θ1σ

2
xσ

2
y + 4λ2σ

2
xσ

2
y + 4θ1λ2σ

2
xσ

2
y,

π1 = 4θ1σ
2
xσ

2
y + 2σ2

xσ
2
y + 2θ2

1σ
2
xσ

2
y + 4θ1λ2σ

2
xσ

2
y + 2λ2σ

2
xσ

2
y + 2θ2

1λ2σ
2
xσ

2
y,

π2 = 0.

The result shows that E[Θ̂2] equals zero, indicating that past values of Xτ have
no influence on current values of Yτ . This is similar to the relationship between
xt and yt. Hence, the non-causality among the non-aggregated series results in no
spurious causality when using the aggregated setting.
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Example 2
Now, we assume Case (iii), θ2 = 0 but λ1 ̸= 0, i.e., yt → xt but xt ̸→ yt, or

yt = θ1yt−1 + v1,t

xt = λ1yt−1 + λ2xt−1 + v2,t
, vj,t ∼ N(0, σ2), for j = {1, 2} (3.6)

with the same aggregation patter defined in the first example, see equation (3.5),
the relation between Yτ given Yτ−1 and Xτ−1 is given by

det(M) = σ2
xσ

2
y(4 + 4θ1 + 4λ2 + 4θ1λ2) − λ2

1σ
4
y

+σxy(−42 − 4θ2
1 − θ2

1 + 2θ1λ1σ
2
y − 4λ2

2 − 2λ2λ1σ
2
y − λ2

2 − 2θ1λ
2
2),

π1 = σ2
xσ

2
y(4θ1 + 2 + 2θ2

1 + 4θ1λ2 + 2λ2 + 2θ2
1λ2)+

σ2
xy(−5θ1 − 4θ2

1 − 2 − θ3
1 − 2θ1λ2 − λ2 − θ2

1λ2)+
σ2

yσxy(+2θ1λ1 + λ1 + θ2
1λ1)

+σ2
xy(−5θ1 − 4θ2

1 − 2 − θ3
1 − 2θ1λ2 − λ2 − θ2

1λ2)
+σxy(2θ1λ1σ

2
y + 1λ1σ

2
y + θ2

1λ1σ
2
y),

π2 = σ2
yσxy(θ1 + 2θ2

1 + θ3
1 − 2θ1λ2 − λ2 − θ2

1λ2).
+σ4

y(−2θ1λ1 − λ1 − θ2
1λ1).

Despite the absence of θ2 in the model, the results indicate that Θ2 is likely
different from zero, demonstrating a spurious causality caused by aggregation. The
aggregated time series reveals an influence of Xτ on the Yτ series, even though such
an influence is non-existent when the time series is non-aggregated.

We calculate potential values for the Θ2 coefficient, assuming all σxy, σy, and
σx as functions of λ1, λ2, and θ1, with σv,j = 1 for j = 1, 2. Setting θ2 = 0 and
varying all other coefficients between -0.95 and 0.95 in increments of 0.01, Figure
3.1 illustrates the frequency of the expected estimator. The chart shows that values
of Θ2 are distinct from zero in several cases, making the spurious causality evident.
It is important to note that although the estimations of Θ2 are evenly distributed
around zero, this does not imply that its true value is expected to be zero. For
instance, with λ1 = λ2 = θ1 = 0.3, the expected value for Θ2 equals -0.068.
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Figure 3.1: Histogram of possible values for Θ2 accordingly to model (3.6), equation
(3.3), and aggregation (3.5). With θ2 = 0 and λ1, λ2, and θ1 between -0.95 and 0.95
in increments of 0.01.
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Example 3
Similarly to previous example, we assume Case (iii), where xt ̸→ yt and yt → xt, as
presented in the model (3.6). However, we now assume that Xτ is non-aggregated,
thus measuring Granger causality from a non-aggregated to an aggregated series,
i.e.,

Yτ = yt + yt−1, Yτ−1 = yt−1 + yt−2, Xτ−1 = xt−2 (3.7)

With this aggregation pattern, our objective is to assess whether there are any
spurious effects when only one of the series is aggregated. In this setup, the furthest
lag of the xt series coincides with the furthest lag of the yt series. The results are
given by

det(M) = 2σ2
xσ

2
y + 2θ1σ

2
xσ

2
y − 3θ1σ

2
xy − σ2

xy,
π1 = 2θ1σ

2
xσ

2
y + σ2

xσ
2
y + θ2

1σ
2
xσ

2
y − θ3

1σ
2
xy − 2θ2

1σ
2
xy − θ1σ

2
xy,

π2 = θ2
1σ

2
yσxy + θ3

1σ
2
yσxy − θ1σ

2
yσxy − σ2

yσxy.

Notice that the expected value of Θ̂2 still deviates from zero, indicating a per-
sistent issue of spurious causality. As shown in Figure 3.2, the distribution of Θ2
appears more concentrated around zero compared to Figure 3.1.
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Figure 3.2: Histogram of possible values for Θ2 accordingly to model (3), equation
(3.3), and aggregation (3.7). With θ2 = 0 and λ1, λ2, and θ1 between -0.95 and 0.95
in increments of 0.01.

One could argue that introducing a higher lag might reduce substantially the
spurious effect. However, although this is true, it will not eliminate the spurious
causality. To test if a higher lag value of xt is sufficient to reduce spurious effects
considerably, we replicate the calculations and simulations mentioned earlier, this
time with Xτ−1 being non-aggregated and equal to xt−5.

Yτ = yt + yt−1, Yτ−1 = yt−1 + yt−2, Xτ−1 = xt−5 (3.8)

with results given by

det(M) = 2σ2
xσ

2
y + 2θ1σ

2
xσ

2
y − 3θ1σ

2
xy − σ2

xy,
π1 = 2θ1σ

2
xσ

2
y + σ2

xσ
2
y + θ2

1σ
2
xσ

2
y − θ3

1σ
2
xy − 2θ2

1σ
2
xy − θ1σ

2
xy,

π2 = θ5
1σ

2
yσxy + θ6

1σ
2
yσxy − θ4

1σ
2
yσxy − θ3

1σ
2
yσxy.
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The distribution of Θ2 seen in Figure 3.3 is now closer to zero than in the previous
example, but it is not exactly zero. Since it differs from zero, the rejection rate of
H0 : Θ̂2 = 0 will tend to 1 as n → ∞.
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Figure 3.3: Histogram of possible values for Θ2 accordingly to model (3), equation
(3.3), and aggregation (3.8). With θ2 = 0 and λ1, λ2, and θ1 between -0.95 and 0.95
in increments of 0.01.

Example 4
Finally, we examine the same scenario, Case (iii), xt ̸→ yt, yt → xt, model (3.6), but
this time, we reverse the aggregation, with Yτ and Yτ−1 being non-aggregated and
Xτ being aggregated, i.e.,

Yτ = yt, Yτ−1 = yt−1, Xτ−1 = xt−1 + xt−2. (3.9)

This allows us to investigate the causality direction from an aggregated series to
a non-aggregated one. The results are given by

det(M) = 2σ2
xσ

2
y − σ2

xy − 2θ1σ
2
xy − θ2

1σ
2
xy + 2λ1σ

2
yσxy + 2λ2σ

2
xσ

2
y,

π1 = 2θ1σ
2
xσ

2
y − θ1σ

2
xy − 2θ2

1σ
2
xy − θ3

1σ
2
xy + 2θ1λ1σ

2
yσxy + 2θ1λ2σ

2
xσ

2
y,

π2 = 0.

Notice that the result for Θ2 is now zero, indicating that there are no issues
related to spurious causality when the xt series is not aggregated, contrary to Ex-
ample 3. In summary, testing Granger causality with an aggregated series, such
as Yτ = yt + yt−1, and a non-aggregated series, such as xt, allows for the correct
measurement of causality from yt to xt.

REMARK: We derived the above results by implementing an algorithm tailored
to this purpose. Written in R and adjusted to model (3.1), the algorithm efficiently
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solves the symbolic expressions. In the Appendix, we present the results for the
GDP aggregation, which are explained in Section 6.



18

4 Sims-causality for Mixed-Frequencies

According to Chamberlain (1982), Granger causality is defined such that if xt does
not cause yt then

(G) yt is independent of xt−1, xt−2, . . . , conditional on yt−1, yt−2, . . . ,∀t (4.1)

in contrast, Sims (1972) proposed a distinct measure of causality, or more precisely,
the measurement of strict exogeneity, where if xt does not cause yt, then the re-
gression of xt against leads and lags of yt will result in null coefficients for the lead
variables. The Sims’s causality definition by Chamberlain (1982) is

(S) xt is independent of yt+1, yt+1, . . . , conditional on yt, yt−1, . . . ,∀t (4.2)

Chamberlain (1982) argue that non-causality is a more stringent criterion than
strict exogeneity, suggesting that equation (4.1) implies equation (4.2) while the
inverse is not necessarily true. This result is similar to the one presented in Florens
e Mouchart (1982), where is also pointed that both conditions, equations (4.1) and
(4.2), became equivalent when xt and yt are Gaussian processes. Kuersteiner (2010b)
shows that the equivalence between Sims and Granger causality no longer holds
when additional covariates are included in the analysis. The author demonstrates
that when considering three time series zt, yt, and xt in a causality relation where
zt → xt, zt → yt, and xt is not directly causing yt, using the Granger approach we
will conclude that xt ̸→ yt. However, using the Sims approach, we would wrongly
conclude that xt → yt, demonstrating that the Sims approach is not suited for
multivariate systems.

We know from Example 4, Section 3, that temporal aggregation does not compro-
mise the measurement of causality between the aggregated variable and the regular
variable. The same holds for Sims causality, which can be measured using

Yτ =
p∑

j=−p

γt−jxt−j + vt (4.3)

where τ = {1, 2, . . . } represents periods corresponding to t = {s, 2s, . . . }, with s
been the frequency ratio between the high-frequency and the low-frequency vari-
ables. If any coefficients of {xt+1, . . . , xt+p}, or the conjunction of all coefficients,
are significant then we say that Yτ Sims-cause xt.

To test if xt causes Yτ , we propose a modification to the Sims test that avoids
any possible overlap between future values of Yτ and the present value of xt. This
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modified Sims test can be described by

xt =
∞∑

j=0
γt−jYτ−j +

p∑
j=1

γt+jYτ+jI(j) + vt (4.4)

where I(j) is a indicator function that is equal to zero when the aggregated variable
Yτ+j = y(τ+j)·s + y(τ+j)·s−1 + · · · + y(τ+j)·s−k contains any element that occurred at
same time or before xt.

Theorem 1. Given the conditions of Sims (1972) and equations (4.3)-(4.4), if
Yτ → xt or Yτ ̸→ xt, then yt → xt or yt ̸→ xt, respectively. Also if xt → Yτ or
xt ̸→ Yτ then xt → yt or xt ̸→ yt, respectively.

Sketch. The proof of equation (4.3) is straightforward and is therefore omitted. For
equation (4.4), the proof is also straightforward when both xt ̸→ yt and yt ̸→ xt.
However, when xt ̸→ yt but yt → xt, we have the system

yt = θ1yt−1 + v1,t,
xt = λ1yt−1 + λ2xt−1 + v2,t.

Note that xt can be expressed as a function solely of past values of yt, specifically
as

xt =
∞∑

j=1
λ1λ

j−1
2 yt−j + v2,t +

∞∑
j=1

λj
2v2,t−j,

or, more simply, as
xt =

∞∑
j=1

λ̃jyt−j + ṽ2,t.

Substituting this into equation (4.4), we obtain ∞∑
j=1

λ̃1yt−j + ṽ2,t

 =
∞∑

j=0
γt−jYτ−j +

p∑
j=1

γt+jYτ+jI(j) + vt,

which simplifies to

(1 + λ̃jL+ · · · + λ̃jL
k)yt =

∞∑
j=0

γt−jYτ−j +
p∑

j=1
γt+jYτ+jI(j) + ṽt.

Given that Yτ = (1+a1L+ · · ·+akL
k)yt, where the ai, i = 1, . . . , k, terms are the

temporal aggregation weights and the fact that yt can be also be written in terms of
its past, the infinite summation on the right-hand side of (4.4) can fully explain the
left-hand side. Thus leading to the γt+j, j = 1, . . . , p, coefficients to be zero.

The theorem above states that, assuming Yτ to be a potentially aggregated time
series composed of lagged values of yt, any conclusion made regarding the causality
relationship between Yτ and xt will also be drawn between the non-aggregated yt and
xt. In other words, any causality conclusion made when considering an aggregated
quarterly variable, such as GDP, and any other monthly indicator can be extended to
the relationship between the same monthly variable and GDP in its non-aggregated
state. In Section 6, we will present, by simulation, how the implementation of the
proposed Sims test reflects the behavior presented by the theorem.
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5 Technical Procedures

Considering two time series xt and yt and their aggregated versions, Xτ and Yτ ,
composed of lagged values of xt and yt, respectively, we will assess the causality
cases described as xt → Yτ , Yτ → xt, Xτ → Yτ , and Yτ → Xτ . In these cases,
we will evaluate the performance of the tests mentioned in previous sections by
implementing each test and comparing their sensitivity to spurious effects.

To analyze the Granger non-causality testing behavior, we follow the structure
shown in equation (2.1). By defining the order as one, we choose to consider a single
lag for each series. This corresponds to using the same equation structure presented
in equation (3.1) for each xt and yt series. We refer to this implementation as Gyx(1).
Note that this test will be only used to test the aggregation explained in Example
4, equation (3.9).

Two tests were implemented considering the Sims causality testing methodology
presented in Chapter 4. The first test is the Sims test with a fixed order, represented
as Sxy(1), where we consider the number of lags and leads to be equal to one. For
the xt → Yτ scenario, we follow equation (4.3), and for the Yτ → xt scenario, we
follow equation (4.4). In the second test, we determine the maximum number of lags
for each series using the function 0.5 · (n/s)(1/3). We refer to this test as Sxy(k), with
k being the test order represented by the lag function. In both tests, the number
of lead observations is determined by the direction of causality being tested. For
the xt → Yτ scenario, we consider the lead to be 1. For the Yτ → xt scenario, we
consider the lead to be 2, skipping the first lead of Yτ .

Another causality test is conducted on both yt and xt in their original frequen-
cies and without aggregation. This test uses the Granger methodology to serve as
the benchmark scenario for causality testing between the two series. We refer to
this implementation as the Non-Agg testing approach. In contrast, the Agg im-
plementation involves aggregating the higher frequency series to match the lower
frequency series before performing the Granger test in both directions: Xτ → Yτ

and Yτ → Xτ . However, as discussed in Section 3, this method introduces spurious
causality effects. The objective of this implementation is to investigate these effects
further and compare them with the results obtained using the proposed tests.
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6 Finite sample properties

In this chapter, we aim to simulate a fundamental relationship in Economics: the
interaction between GDP and monthly indicators. GDP observations are reported
quarterly, without overlap months, and are obtained by summing the GDP val-
ues of the preceding three months, i.e., Yτ = ȳt + ȳt−1 + ȳt−2 where m denotes
monthly observations. As shown in Taufemback (2023), the difference between the
current quarter’s GDP, Yτ , and the previous quarter, Yτ−1, reflects changes or in-
novations within that quarter. Equation (6.1) illustrates how monthly GDP inno-
vations are structured following a quarterly difference, under the assumption that
ȳt = ∑∞

j=0 yt−j, where yt−j are the monthly innovations and ȳt ∼ I(1), with ∆q

denoting the difference between consecutive quarters.

∆qYτ = ȳt + ȳt−1 + ȳt−2 − (ȳt−3 + ȳt−4 + ȳt−5)

=
∞∑

j=0
yt−j +

∞∑
j=1

yt−j +
∞∑

j=2
yt−j −

∞∑
j=3

yt−j −
∞∑

j=4
yt−j −

∞∑
j=5

yt−j

= yt + 2yt−1 + 3yt−2 + 2yt−3 + yt−4.

(6.1)

Now, let the following models be defined by

Model 1: yt = 0.6yt−1 + u1t,
xt = 0.5xt−1 − 0.2xt−2 + u2t,

Model 2: yt = 0.25yt−1 + 0.5xt−1 + u2t,
xt = 0.65xt−1 + u1t,

Model 3: yt = 0.65yt−1 + u1t,
xt = 0.25yt−1 + 0.5xt−1 + u2t,

Model 4: yt = 0.65yt−1 + 0.15xt−1 + u1t,
xt = −0.25xt−1 + 0.55yt−1 + u2t,

Model 5: yt = 0.5yt−1 − 0.2yt−2 + 0.4xt−1 − 0.1xt−2 + 0.15xt−3 − 0.05xt−4 + u1t,
xt = 0.65xt−1 + u2t,

Model 6: yt = 0.65yt−1 + u1t,
xt = 0.5xt−1 − 0.2xt−2 + 0.4yt−1 − 0.1yt−2 + 0.15yt−3 − 0.05yt−4 + u2t.

The six models presented above were designed to illustrate the different causality
effects discussed in Section 3. For each series, the errors u1 and u2 were generated by
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sampling from a i.i.d. normal distribution, and the aggregation of series yt follows
Equation (6.1). In Model 1, both xt and yt consist solely of their lags, indicating the
absence of a causal relationship between the series. Model 2 introduces a scenario
where yt includes one lag of xt, while xt depends only on its past values, suggesting
xt causes yt but not vice versa. Conversely, Model 3 demonstrates yt causing xt

while xt does not cause yt. Model 4 incorporates lagged values from both series,
indicating a bidirectional causality scenario. In Model 5, yt includes lags from xt

lags up to t − 4 and contains only one lag of itself. Finally, Model 6 mirrors the
structure of Model 5 but with the roles of xt and yt reversed.

Our findings, as shown in Tables 6.1 and 6.2, indicate that both the Sxy(k)
and Sxy(1) tests maintain rejection rates closer to the Non-Agg test, demonstrating
correct sensitivity in detecting causal relationships between variables. Conversely,
the Agg test results suggest spurious causality, as expected. The rejection rate of
the Gyx(1) test gradually increases to one when the alternative hypothesis is true,
particularly for models 3, 4, and 6 in Table 6.2. However, this increase is consistently
slower than that observed for the Sxy(k) and Sxy(1) tests. Notably, in cases where
the Agg tests diverge, both the Sxy(k) and Sxy(1) tests maintain rejection rates
around 0.05.

Analyzing each model individually, for Model 1 in Table 6.1, the Non-Agg test
rejection rate presents values around 0.05. The Agg test rejection rate is slightly
over-sized for n ∈ {80, 120} but stabilizes around 0.05 for n ∈ {160, 400}. Both Sims
tests, Sxy(1) and Sxy(k), are slightly under-sized. In Table 6.2, the Non-Agg test is
under-sized for all sample sizes of n, while the Agg test maintains a rejection rate
around 0.05. The Gyx(1) test is also under-sized but remains close to 0.05. Both
Sxy(1) and Sxy(k) tests consistently vary around 0.05, which is desirable.

For Model 2, as shown in Table 6.1, the Non-Agg test consistently exhibits a
100% rejection rate across all sample sizes of n. Similarly, the rejection rate for the
Agg test approaches 100% as n increases. Both the Sxy(1) and Sxy(k) tests also
converge to 100% rejection rates, with Sxy(1) showing a higher rejection rate than
Sxy(k). Table 6.2 shows that the Non-Agg test consistently maintains rejection rates
around 0.05 across different sample sizes. However, the rejection rate of the Agg test
diverges. The Gyx(1) test, along with the Sxy(1) and Sxy(k) tests, shows rejection
rates close to 0.05.

For Model 3, as shown in Table 6.1, the Non-Agg test maintains a stable rejection
rate around 0.05 across all sample sizes. In contrast, the Agg test exhibits rejection
rates that diverge from 0.05 as n increases. The Sxy(k) test also maintains rejection
rates close to 0.05, although they are slightly elevated for n ∈ {120, 160}. Conversely,
Sxy(1) shows values closer to the expected 0.05. In Table 6.2, the Non-Agg test
exhibits a 100% rejection rate. Similarly, the Agg test approaches a 100% rejection
rate as n increases. The Gyx(1) test shows a gradual increase in rejection rates
with increasing n. Both Sims tests, Sxy(k) and Sxy(1), also demonstrate increasing
rejection rates as n grows, converging towards 100

For Model 4, as shown in Table 6.1, both the Non-Agg and Agg tests exhibit
rejection rates approaching 100% as n increases. Similarly, both Sims tests show in-
creasing rejection rates with increasing n, approaching 100%. In Table 6.2, the Non-
Agg test consistently shows a 100% rejection rate across all sample sizes. Likewise,
the Agg test demonstrates a rejection rate that converges to 100% as n increases.
The Granger Gyx(1) test exhibits a very low rejection rate, with values increasing
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slowly as n grows. Both Sims tests, Sxy(k) and Sxy(1), also show increasing rejection
rates as n increases, nearing 100% for n = 400.

For Model 5, as presented in Table 6.1, both the Non-Agg and Agg tests exhibit
a 100% rejection rate. Similarly, both Sims tests show rejection rates that converge
to 100% as n increases. In Table 6.2, the Non-Agg test maintains a rejection rate
close to 0.05 across different sample sizes. Conversely, the Agg test demonstrates
high rejection rates that increase significantly as n grows. The Granger Gyx(1) test
initially shows a slightly inflated rejection rate for n = 80, which converges towards
0.05 as n increases. Both Sims tests, Sxy(k) and Sxy(1), exhibit rejection rates close
to 0.05 across sample sizes.

For Model 6, as shown in Table 6.1, the rejection rate of the Non-Agg test is
slightly elevated for n = 80, but remains around 0.05 for other values of n. The Agg
test exhibits consistently high rejection rates that increase with n. Both the Sxy(k)
and Sxy(1) tests show rejection rates slightly below 0.05, but close to the expected
level. In Table 6.2, the Non-Agg test demonstrates a 100% rejection rate across
all sample sizes. Similarly, the Agg test shows rejection rates close to 100%. The
Granger Gyx(1) test exhibits a rejection rate that increases slowly as n increases.
Both Sims tests, Sxy(k) and Sxy(1), initially show low rejection rates for n = 80,
but these rates converge towards 100% as n increases.
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Table 6.1: Average simulated rejections for H0 : xt ̸−→ yt with α = 0.05.
Model 1 - xt ̸−→ yt,yt ̸−→ xt

nagg Non-Agg Agg Sxy(k) Sxy(1)
80 0.055 0.060 0.037 0.043
120 0.041 0.063 0.036 0.035
160 0.050 0.059 0.046 0.044
400 0.060 0.049 0.038 0.035

Model 2 - xt −→ yt,yt ̸−→ xt

nagg Non-Agg Agg Sxy(k) Sxy(1)
80 0.998 0.825 0.685 0.694
120 1.000 0.955 0.861 0.868
160 1.000 0.982 0.925 0.937
400 1.000 1.000 1.000 1.000

Model 3 - xt ̸−→ yt,yt −→ xt

nagg Non-Agg Agg Sxy(k) Sxy(1)
80 0.049 0.210 0.065 0.067
120 0.043 0.211 0.087 0.083
160 0.047 0.266 0.072 0.069
400 0.053 0.498 0.063 0.069

Model 4 - xt −→ yt,yt −→ xt

nagg Non-Agg Agg Sxy(k) Sxy(1)
80 0.859 0.765 0.294 0.307
120 0.941 0.856 0.361 0.370
160 0.981 0.947 0.461 0.473
400 1.000 1.000 0.832 0.839

Model 5 - xt −→ yt,yt ̸−→ xt

nagg Non-Agg Agg Sxy(k) Sxy(1)
80 1.000 0.987 0.762 0.775
120 1.000 0.999 0.911 0.910
160 1.000 1.000 0.966 0.967
400 1.000 1.000 1.000 1.000

Model 6 - xt ̸−→ yt,yt −→ xt

nagg Non-Agg Agg Sxy(k) Sxy(1)
80 0.065 0.264 0.048 0.052
120 0.052 0.356 0.042 0.044
160 0.058 0.407 0.036 0.037
400 0.039 0.800 0.038 0.039

Note: Results are obtained considering the aggregation presented in equation (6.1),
models from Section 6, and the procedures presented in Section 5.
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Table 6.2: Average simulated rejections for H0 : yt ̸−→ xt with α = 0.05.
Model 1 - xt ̸−→ yt,yt ̸−→ xt

nagg Non-Agg Agg Gyx(1) Syx(k) Syx(f)
80 0.049 0.051 0.052 0.052 0.049
120 0.042 0.051 0.037 0.060 0.058
160 0.046 0.049 0.043 0.055 0.051
400 0.036 0.043 0.039 0.041 0.042

Model 2 - xt −→ yt,yt ̸−→ xt

nagg Non-Agg Agg Gyx(1) Syx(k) Syx(f)
80 0.055 0.154 0.052 0.047 0.044
120 0.053 0.212 0.045 0.043 0.049
160 0.048 0.266 0.046 0.058 0.048
400 0.067 0.515 0.046 0.042 0.037

Model 3 - xt ̸−→ yt,yt −→ xt

nagg Non-Agg Agg Gyx(1) Syx(k) Syx(f)
80 0.998 0.834 0.092 0.341 0.345
120 1.000 0.946 0.086 0.456 0.464
160 1.000 0.985 0.106 0.624 0.624
400 1.000 1.000 0.213 0.949 0.947

Model 4 - xt −→ yt,yt −→ xt

nagg Non-Agg Agg Gyx(1) Syx(k) Syx(f)
80 0.999 0.947 0.067 0.344 0.353
120 1.000 0.983 0.061 0.481 0.496
160 1.000 0.998 0.069 0.589 0.599
400 1.000 1.000 0.116 0.938 0.943

Model 5 - xt −→ yt,yt ̸−→ xt

nagg Non-Agg Agg Gyx(1) Syx(k) Syx(f)
80 0.050 0.254 0.063 0.047 0.052
120 0.062 0.342 0.055 0.047 0.069
160 0.048 0.432 0.058 0.052 0.058
400 0.041 0.818 0.055 0.054 0.041

Model 6 - xt ̸−→ yt,yt −→ xt

nagg Non-Agg Agg Gyx(1) Syx(k) Syx(f)
80 1.000 0.982 0.045 0.636 0.621
120 1.000 0.999 0.057 0.831 0.809
160 1.000 1.000 0.066 0.910 0.899
400 1.000 1.000 0.098 1.000 1.000

Note: Results are obtained considering the aggregation presented in equation (6.1),
models from Section 6, and the procedures presented in Section 5.



26

7 Empirical analysis

In this section, we apply the tests described in Section 5 to U.S. macroeconomic
series data within a bivariate framework. We consider the same set of variables as
in Ghysels et al. (2016), specifically U.S. inflation (CPI), monthly crude oil price
fluctuations (OIL), and quarterly real GDP growth. Additionally, we include other
U.S. indicators utilized in Stock e Watson (1989) and Mariano e Murasawa (2003),
such as income per person (INC), industrial production (IP), industries sales (IS),
and total employment (EMP). The dataset spans from January 1959 to December
2019, with all data publicly available and sourced from research.stlouisfed.org. Each
series was made stationary following the guidelines outlined in McCracken e Ng
(2016). Table 7.1 presents the p-values for each test, along with the tested causality
direction.

Table 7.1: Empirical results
Test direction Agg Gyx(1) Sxy(k) Sxy(1)
OIL ̸−→ GDP 0.0586 - 0.2771 0.3455
GDP ̸−→ OIL 0.7002 0.3215 0.1483 0.3986

CPI ̸−→ GDP 0.0000 - 0.5358 0.4368
GDP ̸−→ CPI 0.0163 0.6380 0.1009 0.5459

INC ̸−→ GDP 0.0000 - 0.0256 0.0132
GDP ̸−→ INC 0.0000 0.0002 0.0000 0.0000

IP ̸−→ GDP 0.0000 - 0.4341 0.9833
GDP ̸−→ IP 0.1321 0.0081 0.0013 0.0156

EMP ̸−→ GDP 0.0000 - 0.3490 0.2431
GDP ̸−→ EMP 0.07609 0.0000 0.0269 0.0001

IS ̸−→ GDP 0.0000 - 0.0077 0.0128
GDP ̸−→ IS 0.0136 0.0000 0.0936 0.0001

Note: All p-values highlighted in bold are inferior to the 5% rejection level.

The Sxy(k) test and the Sxy(1) test both fail to detect causality from OIL, CPI,
IP, and EMP towards GDP. However, they do identify causality from GDP to INC,
IP, EMP, and IS. The only discrepancy between the tests occurs in detecting causal-

https://research.stlouisfed.org/econ/mccracken/fred-databases/
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ity from GDP to IS, where the Sxy(k) test only rejects at 10%. Neither test rejects
the hypothesis of non-causality in either direction when examining GDP with OIL
and CPI. The findings of Ghysels et al. (2016) indeed indicate no causality between
GDP and OIL, but they detect causality to and from GDP with respect to CPI.

The Gyx(1) test consistently detects causality from GDP to the monthly indi-
cators in most scenarios despite its lower rejection power. However, similar to the
Sxy(k) and Sxy(1) tests, it does not reject the hypothesis of non-causality when
testing with CPI and OIL. This reinforces our findings and contrasts with those of
Ghysels et al. (2016) regarding CPI.

As previously discussed, temporal aggregation can lead to spurious causality
effects, which might explain why the Agg testing sometimes detects causality when
other tests do not.
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8 Conclusion

Aggregating high-frequency variables can result in missing information and poten-
tially misleading conclusions when testing causality between time series. In this
study, we propose a modification to the Sims causality test designed to address this
issue. Specifically, the modification allows for detecting causality when one series
is aggregated while the other remains not aggregated, thereby avoiding spurious
conclusions.

In practice, it is challenging to draw conclusions about the causal relationship
between economic variables solely based on a bivariate time series model. The
structure of the relationship can only be accurately derived by including all rele-
vant variables in the model. Consequently, since many economic variables interact
and are important, high-dimensional time series model-building is necessary. As
discussed in Lütkepohl (1982), a low-dimensional sub-process may not fully capture
the dynamics of a higher-dimensional system. Thus, even if xt does not cause Yτ

in the bivariate context, Yτ could still respond to changes in xt within a broader,
multivariate framework.
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Appendix

The set of equations bellow represent the covariance between values of the yt and xt

series considering a different lag h, for any h ∈ [1, 10], for model (3.1). We use γy(h)
to represent a covariance between a present value yt and yt−h. We utilize ψyx(h)
to represent a covariance between a present value yt and xt−h. We use ϕxy(h) to
represent a covariance between a present value xt and yt−h. Lastly, υx(h) represents
a covariance between a present value xt and xt−h, for all cases we assume h > 0.

γy(0) = σ2
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2
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Consider Yτ , Yτ−1, and Xτ to be potentially aggregated time series composed
of lagged values of the series yt and xt, both having a structure represented by
Equation (3.1). Here, Yτ−1 represents an aggregation function of lagged values of yt.
The following results expand upon the estimations presented for simple models in
Section 3, now utilizing the same aggregation pattern observed in the GDP series.
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Example 1
In this initial example, we assume Case (i), θ2 = 0 and λ1 = 0, i.e., xt ↛ yt and
yt ↛ xt. Thus,

yt = θ1yt−1 + v1,t

xt = λ2xt−1 + v2,t
, vj,t ∼ N(0, σ2), for j = {1, 2} (8.1)

which the aggregation pattern defined by

Yτ = yt + 2yt−1 + 3yt−2 + 2yt−3 + yt−4,
Yτ−1 = yt−3 + 2yt−4 + 3yt−5 + 2yt−6 + yt−7,
Xτ = xt−3 + 2xt−4 + 3xt−5 + 2xt−6 + xt−7.

(8.2)

Solving for Θ1 and Θ2, see equation (3.3), we obtain
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Example 2
Now, we assume Case (iii), θ2 = 0 but λ1 ̸= 0, i.e., yt → xt but xt ̸→ yt, or

yt = θ1yt−1 + v1,t

xt = λ1yt−1 + λ2xt−1 + v2,t
, vj,t ∼ N(0, σ2), for j = {1, 2} (8.3)

with the same aggregation patter defined in the first example, see equation (3.5).
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1λ

2
2λ1σ

4
y − 19θ3

1λ
3
2λ1σ

4
y − 19θ3

1λ
4
2σ

2
yσxy − 208θ2

1λ2λ1σ
4
y

−160θ2
1λ

2
2σ

2
yσxy − 75θ2

1λ
2
2λ1σ

4
y − 64θ2

1λ
3
2σ

2
yσxy − 16θ2

1λ
3
2λ1σ

4
y

−16θ2
1λ

4
2σ

2
yσxy − 126θ1λ2λ1σ

4
y − 110θ1λ

2
2σ

2
yσxy − 48θ1λ

2
2λ1σ

4
y

−44θ1λ
3
2σ

2
yσxy − 11θ1λ

3
2λ1σ

4
y − 11θ1λ

4
2σ

2
yσxy − 40λ2λ1σ

4
y

−40λ2
2σ

2
yσxy − 16λ2

2λ1σ
4
y − 16λ3

2σ
2
yσxy − 4λ3

2λ1σ
4
y

−4λ4
2σ

2
yσxy − 160θ4

1λ
2
2σ

2
yσxy − 64θ4

1λ
3
2σ

2
yσxy − 112θ7

1λ1σ
4
y − 96θ6

1λ2λ1σ
4
y

−56θ5
1λ

2
2λ1σ

4
y − 16θ4

1λ
3
2λ1σ

4
y − 16θ4

1λ
4
2σ

2
yσxy − 160θ5

1λ2σ
2
yσxy − 100θ5

1λ
2
2σ

2
yσxy

−40θ5
1λ

3
2σ

2
yσxy − 36θ8

1λ1σ
4
y − 36θ7

1λ2λ1σ
4
y − 26θ6

1λ
2
2λ1σ

4
y

−10θ5
1λ

3
2λ1σ

4
y − 10θ5

1λ
4
2σ

2
yσxy − 64θ6

1λ2σ
2
yσxy − 40θ6

1λ
2
2σ

2
yσxy

−16θ6
1λ

3
2σ

2
yσxy − 8θ9

1λ1σ
4
y − 8θ8

1λ2λ1σ
4
y − 8θ7

1λ
2
2λ1σ

4
y − 4θ6

1λ
3
2λ1σ

4
y

−4θ6
1λ

4
2σ

2
yσxy − 16θ7

1λ2σ
2
yσxy − 10θ7

1λ
2
2σ

2
yσxy − 4θ7

1λ
3
2σ

2
yσxy − θ10λ1σ

4
y

−θ9
1λ2λ1σ

4
y − θ8

1λ
2
2λ1σ

4
y − θ7

1λ
3
2λ1σ

4
y − θ7

1λ
4
2σ

2
yσxy

Example 3
Again, in Case (iii), xt ̸→ yt, yt → xt, model (3.6). However, we assume that Xτ is
non-aggregated, so we are now measuring Granger causality from a non-aggregated
to an aggregated series, i.e., which the aggregation pattern defined by

Yτ = yt + 2yt−1 + 3yt−2 + 2yt−3 + yt−4,
Yτ−1 = yt−6 + 2yt−7 + 3yt−8 + 2yt−9 + yt−10,
Xτ = xt−2.

(8.4)

The results are given by

det(M) = 19σ2
xσ

2
y + 32θ1σ

2
xσ

2
y + 20θ2

1σ
2
xσ

2
y + 8θ3

1σ
2
xσ

2
y + 2θ4

1σ
2
xσ

2
y

−θ8
1σ

2
xy − 4θ7

1σ
2
xy − 10θ6

1σ
2
xy − 16θ5

1σ
2
xy − 19θ4

1σ
2
xy − 16θ3

1σ
2
xy

−10θ2
1σ

2
xy − 4θ1σ

2
xy − σ2

xyh
π1 = 19θ3

1σ
2
xσ

2
y + 16θ2

1σ
2
xσ

2
y + 11θ1σ

2
xσ

2
y + 4σ2

xσ
2
y + 16θ4

1σ
2
xσ

2
y + 10θ5

1σ
2
xσ

2
y

+4θ6
1σ

2
xσ

2
y + θ7

1σ
2
xσ

2
y − θ11σ2

xy − 4θ10σ2
xy − 10θ9

1σ
2
xy − 16θ8

1σ
2
xy

−19θ7
1σ

2
xy − 16θ6

1σ
2
xy − 10θ5

1σ
2
xy − 4θ4

1σ
2
xy − θ3

1σ
2
xy

π2 = 71θ7
1σ

2
yσxy + 50θ8

1σ
2
yσxy + 21θ9

1σ
2
yσxy + 6θ10σ2

yσxy + θ11σ2
yσxy

+56θ6
1σ

2
yσxy − θ5

1σ
2
yσxy − 58θ4

1σ
2
yσxy − 73θ3

1σ
2
yσxy

−50θ2
1σ

2
yσxy − 19θ1σ

2
yσxy − 4σ2

yσxy

As example, testing if further lag values of xt are sufficient to reduce considerable
spurious effects, we replicate the calculations and simulations mentioned earlier, with
Xτ being non-aggregated and equal to xt−3, representing one lag further than the
previous simulations.
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which the aggregation pattern defined by

Yτ = yt + 2yt−1 + 3yt−2 + 2yt−3 + yt−4,
Yτ−1 = yt−6 + 2yt−7 + 3yt−8 + 2yt−9 + yt−10,
Xτ = xt−3.

(8.5)

with results given by

det(M) = 19σ2
xσ

2
y + 32θ1σ

2
xσ

2
y + 20θ2

1σ
2
xσ

2
y + 8θ3

1σ
2
xσ

2
y + 2θ4

1σ
2
xσ

2
y − θ10σ2

xy

−4θ9
1σ

2
xy − 10θ8

1σ
2
xy − 16θ7

1σ
2
xy − 19θ6

1σ
2
xy − 16θ5

1σ
2
xy − 10θ4

1σ
2
xy

−4θ3
1σ

2
xy − θ2

1σ
2
xy

π1 = 19θ3
1σ

2
xσ

2
y + 16θ2

1σ
2
xσ

2
y + 11θ1σ

2
xσ

2
y + 4σ2

xσ
2
y + 16θ4

1σ
2
xσ

2
y + 10θ5

1σ
2
xσ

2
y

+4θ6
1σ

2
xσ

2
y + θ7

1σ
2
xσ

2
y − θ13σ2

xy − 4θ12σ2
xy − 10θ11σ2

xy − 16θ10σ2
xy

−19θ9
1σ

2
xy − 16θ8

1σ
2
xy − 10θ7

1σ
2
xy − 4θ6

1σ
2
xy − θ5

1σ
2
xy

π2 = 71θ8
1σ

2
yσxy + 50θ9

1σ
2
yσxy + 21θ10σ2

yσxy + 6θ11σ2
yσxy + θ12σ2

yσxy

+56θ7
1σ

2
yσxy − θ6

1σ
2
yσxy − 58θ5

1σ
2
yσxy − 73θ4

1σ
2
yσxy − 50θ3

1σ
2
yσxy

−19θ2
1σ

2
yσxy − 4θ1σ

2
yσxy

Example 4
Finally, we examine the same causality, Case (iii), xt ̸→ yt, yt → xt, model (3.6),
but this time, we reverse the aggregation, with Yτ and Yτ−1 being non-aggregated
and Xτ being aggregated, i.e.,

Yτ = yt

Yτ−1 = yt−1,
Xτ = xt−6 + 2xt−7 + 3xt−8 + 2xt−9 + xt−10.

(8.6)

This allows us to investigate the causality direction from an aggregated series to
a non-aggregated one. The results are given by

det(M) = 19σ2
xσ

2
y − θ4

1σ
2
xy − 4θ5

1σ
2
xy − 10θ6

1σ
2
xy − 16θ7

1σ
2
xy − 19θ8

1σ
2
xy − 16θ9

1σ
2
xy

−10θ10σ2
xy − 4θ11σ2

xy − θ12σ2
xy + 32λ1σ

2
yσxy + 32λ2σ

2
xσ

2
y

+20θ1λ1σ
2
yσxy + 20λ2λ1σ

2
yσxy + 20λ2

2σ
2
xσ

2
y + 8θ2

1λ1σ
2
yσxy

+8θ1λ2λ1σ
2
yσxy + 8λ2

2λ1σ
2
yσxy + 8λ3

2σ
2
xσ

2
y

+2θ3
1λ1σ

2
yσxy + 2θ2

1λ2λ1σ
2
yσxy + 2θ1λ

2
2λ1σ

2
yσxy + 2λ3

2λ1σ
2
yσxy + 2λ4

2σ
2
xσ

2
y

π1 = 19θ1σ
2
xσ

2
y − θ5

1σ
2
xy − 4θ6

1σ
2
xy − 10θ7

1σ
2
xy − 16θ8

1σ
2
xy − 19θ9

1σ
2
xy − 16θ10σ2

xy

−10θ11σ2
xy − 4θ12σ2

xy − θ13σ2
xy + 32θ1λ1σ

2
yσxy + 32θ1λ2σ

2
xσ

2
y

+20θ2
1λ1σ

2
yσxy + 20θ1λ2λ1σ

2
yσxy + 20θ1λ

2
2σ

2
xσ

2
y + 8θ3

1λ1σ
2
yσxy

+8θ2
1λ2λ1σ

2
yσxy + 8θ1λ

2
2λ1σ

2
yσxy + 8θ1λ

3
2σ

2
xσ

2
y + 2θ4

1λ1σ
2
yσxy

+2θ3
1λ2λ1σ

2
yσxy + 2θ2

1λ
2
2λ1σ

2
yσxy + 2θ1λ

3
2λ1σ

2
yσxy + 2θ1λ

4
2σ

2
xσ

2
y

π2 = 0
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