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RESUMO

A poluição por plásticos é considerada uma ameaça global para os ecossistemas 

marinhos e para a saúde humana. As técnicas de sensoriamento remoto são 

capazes de mapear grandes áreas em intervalos curtos tempo, o que torna viável a 

análise da poluição plástica em ambientes marinhos. Este estudo teve por objetivo 

principal identificar a presença de plásticos em zonas costeiras através de técnicas 

de sensoriamento remoto. Para isto, foram criadas simulações de ambientes 

aquáticos poluídos no modelo Discrete Anisotropic Radiative Transfer (DART). O 

sensor MultiSpectral Instrument (MSI), a bordo dos satélites Sentinel-2A/2B, foi 

escolhido para este estudo. Através da observação da assinatura espectral dos 

plásticos pelas imagens simuladas, assim como a análise da estrutura molecular dos 

polímeros, foi desenvolvido o Plastic-Water Differentiation Index (PWDI). Este índice 

radiométrico demonstrou separabilidade entre plásticos e água nas imagens 

simuladas. Para testar a eficácia do PWDI e compará-lo a outros índices foram 

empregados o algoritmo de clusterização K-means e o algoritmo de aprendizado de 

máquina Random Forest (RF). Um conjunto de imagens MSI/Sentinel-2 com 

presença confirmada de plásticos foi escolhido para aplicação dos algoritmos. A 

aplicação do K-means, realizada com um valor de k=4, resultou em um cluster 

composto por polipropileno nas imagens simuladas. O algoritmo foi capaz de 

discernir entre água com matéria flutuante e água pura ao incorporar o PWDI no 

método de clusterização. De acordo com os resultados obtidos pelo algoritmo RF, a 

integração de índices radiométricos em conjunto com bandas espectrais melhorou a 

detecção dos plásticos nas imagens MSI/Sentinel-2. O PWDI apresentou o maior 

impacto nas decisões do algoritmo de acordo com o cálculo de importância de 

features.

Palavras-chave: detritos marinhos, aprendizado de máquina, transferência radiativa



ABSTRACT

Plastic pollution is considered a global threat to marine ecosystems and human 

health. Remote sensing techniques are capable of mapping large areas in short time 

intervals, making it feasible to analyze plastic pollution in marine environments. This 

study aimed to identify the presence of plastics in coastal zones through remote 

sensing techniques. For this purpose, simulations of polluted aquatic environments 

were created using the Discrete Anisotropic Radiative Transfer (DART) model. The 

MultiSpectral Instrument (MSI), aboard Sentinel-2A/2B satellites, was chosen for this 

study. By observing the spectral signature of plastics in simulated images, as well as 

analyzing the molecular structure of polymers, the Plastic-Water Differentiation Index 

(PWDI) was developed. This radiometric index demonstrated separability between 

plastics and water in simulated images. To test the efficacy of PWDI and compare it 

to other indices, the K-means clustering algorithm and the Random Forest (RF) 

machine learning algorithm were employed. A set of MSI/Sentinel-2 images with 

confirmed presence of plastics was chosen for algorithm application. The application 

of K-means, performed with a value of k=4, resulted in a cluster composed of 

polypropylene in the simulated images. The algorithm was able to discern between 

water with floating matter and pure water by incorporating PWDI into the clustering 

method. According to the results obtained by the RF algorithm, the integration of 

radiometric indices together with spectral bands improved plastic detection in 

MSI/Sentinel-2 images. PWDI showed the greatest impact on algorithm decisions 

according to feature importance calculations.

Keywords: marine debris, machine learning, radiative transfer
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1 INTRODUÇÃO

Os plásticos são materiais que revolucionaram inúmeras indústrias por sua 

versatilidade e durabilidade. No entanto, a proliferação dos plásticos de uso único e 

seu consumo insustentável acaba por gerar um influxo de resíduos depositados 

ativa ou passivamente no meio ambiente. A poluição por plásticos é um desafio 

global que afeta os ambientes de diversas maneiras. Estes detritos plásticos, 

resistentes, mas propensos à fragmentação sob processos naturais de 

intemperismo, representam uma ameaça pervasiva à vida marinha por meio de 

emaranhamento, ingestão e degradação do habitat (Andrady, 2011; Kuhn et al., 

2015). Além disso, a poluição por plásticos afeta negativamente diversas atividades 

humanas dependentes de recursos marinhos, como navegação, pesca e turismo 

(Aretoulaki et al., 2021).

Em resposta a esta crescente crise ambiental, o uso de técnicas de 

sensoriamento remoto emergiu como uma ferramenta valiosa para complementar 

métodos tradicionais de avaliação e monitoramento da poluição por plásticos. O 

sensoriamento remoto oferece a vantagem de cobertura geográfica ampla, 

custo-efetividade e aquisição rápida de dados, tornando-se uma opção atrativa para 

monitorar detritos plásticos em vastas extensões oceânicas. Estudos recentes têm 

demonstrado a eficácia do sensoriamento remoto na detecção de aglomerados de 

plástico em ambientes costeiros e marinhos, embora com limitações decorrentes 

principalmente das resoluções espaciais e espectrais dos sensores (Garaba & 

Dierssen, 2018; Salgado-Hernanz et al., 2021).

Um dos principais desafios na detecção baseada em sensoriamento remoto da 

poluição por plásticos reside em distinguir entre plásticos e água (Moshtaghi et al., 

2021). O ambiente marinho é fortemente afetado pelo efeito de absorção da luz, 

inerente ao comportamento espectral da água. Este fato acaba por mascarar a 

assinatura espectral do plástico, assim como de outros alvos comuns nos oceanos, 

como espuma marinha, vegetação aquática e madeira (Hu, 2022). Além disso, 

identificar plásticos submersos ou parcialmente cobertos por água representa um 

obstáculo significativo, complicando sua detecção precisa (Moshtaghi et al., 2021). 

Ao desenvolver métodos de detecção de plásticos, é importante considerar as 

diferenças nas assinaturas espectrais de plásticos virgens e de plásticos 
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intemperizados encontrados em ambientes marinhos (Garaba & Dierssen, 2017). 

Além disso, a identificação de diferentes tipos de plásticos requer a análise de suas 

características espectrais distintas. Atualmente, as metodologias principais para lidar 

com esta problemática envolvem: (i) índices radiométricos, (ii) algoritmos de 

aprendizado de máquina e (iii) experimentos controlados (Biermann et al., 2020; 

Basu et al., 2021; Moshtaghi et al., 2021). Há também casos em que múltiplas 

técnicas e tipos de sensores são integrados (Acuña-Ruz et al., 2018; 

Themistocleous et al., 2020). De maneira geral, o sensor MultiSpectral Instrument, a 

bordo dos satélites Sentinel-2A/2B, é o mais frequentemente utilizado por estudos 

de detecção de poluição por plásticos (Hu, 2022). Este sensor tem bandas 

multiespectrais de 10 a 20 m de resolução espacial, cobrindo o espectro do visível 

até o infravermelho de ondas curtas. Por estes meios, é possível a detecção das 

denominadas manchas de plásticos, que são objetos flutuantes com tamanhos 

variando de 0,2 a 10 km de comprimento, geralmente associados com macroalgas, 

madeira e espuma marinha (Biermann et al., 2020; Ciappa, 2021).

Uma abordagem promissora para melhorar a detecção de plásticos é o uso de 

modelos de transferência radiativa para simular condições ambientais complexas e 

gerar dados sintéticos, que tem como propósito: demonstrar o comportamento 

espectral da poluição por plásticos e servir como dados de treinamento para 

algoritmos de detecção. Como exemplo, o modelo Discrete Anisotropic Radiative 

Transfer (DART), escolhido para o presente estudo, permite simular a interação da 

luz com os objetos em cenários tridimensionais. O DART é capaz de simular 

qualquer configuração de sensor dentro do espectro visível até o infravermelho 

termal. É possível também incluir as assinaturas espectrais dos objetos presentes no 

cenário. Isso possibilita examinar como os sensores detectam diferentes tipos de 

plásticos em condições distintas.

Este estudo teve como objetivo principal mapear a presença de plásticos em 

zonas costeiras através de técnicas de sensoriamento remoto. Para tal, foi  simulado 

um ambiente aquático poluído através do modelo DART, no qual foram incluídos 

plásticos, água e espuma marinha; estes alvos são comumente confundidos com 

detritos marinhos quando há o efeito de mistura espectral nas imagens de 

sensoriamento remoto (Biermann et al, 2020; Ciappa, 2021). Foram extraídas as 

informações de plásticos intemperizados da base de dados desenvolvida por 
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Moshtaghi et al. (2021), compostos por polietileno de baixa densidade (LDPE), 

politereftalato de etileno (PET) e polipropileno (PP) para compor as cenas do modelo 

DART. Estes alvos de plásticos foram dispostos a diferentes proporções do pixel do 

sensor MSI/Sentinel-2 (10 m). Os alvos foram adicionados às simulações nas 

condições: seco, úmido e submerso, para testar as diferenças nos valores de 

reflectância devido a estes fatores.

Para esclarecer algumas das decisões em relação às configurações dos 

experimentos do presente trabalho, deve ser levado em conta o estudo prévio 

desenvolvido por De Barros et al. (2021). As simulações construídas no modelo 

DART foram utilizadas para realizar uma análise exploratória do comportamento 

espectral dos plásticos. Os cenários contendo plásticos, água e areia foram 

examinados. A base de dados de polímeros virgens de Garaba & Dierssen (2017) foi 

utilizada para a construção das simulações. Houve a aplicação do algoritmo de 

clusterização K-means com diferentes configurações de cluster (k = 3, 4, 5) em 

imagens reais do sensor MSI/Sentinel-2. A partir das conclusões deste trabalho foi 

possível a análise das características espectrais dos plásticos em ambientes 

costeiros simulados. Foi observado que a utilização de polímeros com certo grau de 

degradação ambiental era necessária para o avanço da detecção de poluição 

plástica por sensores remotos. Ademais, no presente estudo a areia não foi incluída 

para que mais testes em relação à separabilidade dos plásticos e água fossem 

realizados.

A partir dos dados de reflectância gerados pelo modelo DART, assim como a 

análise da estrutura molecular dos polímeros, foi possível a criação do Plastic-Water 

Differentiation Index (PWDI). O PWDI leva em consideração as características 

únicas do comportamento espectral dos plásticos, para que seja possível a sua 

detecção no ambiente aquático, inclusive quando estão totalmente submersos. Para 

avaliar sua eficácia e compará-la a de outros índices que possuem o mesmo 

propósito, foram realizadas as aplicações de um algoritmo de clusterização 

não-supervisionado (K-means) e um algoritmo de aprendizado de máquina (Random 

Forest). A aplicação do algoritmo K-means nas imagens DART e em imagens 

MSI/Sentinel-2 com presença confirmada de plásticos  está detalhada na Seção 2.3. 

Já a técnica de aprendizado de máquina Random Forest, que teve como dados de 
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treinamento as imagens DART para a classificação das imagens MSI/Sentinel-2 teve 

sua descrição aprofundada na Seção 2.4.

1.1 Objetivos

1.1.1 Objetivo geral

Mapear a presença de plásticos em zonas costeiras através de técnicas de 

sensoriamento remoto.

1.1.2 Objetivos específicos

● Desenvolver um índice radiométrico especializado para a detecção de 

plásticos parcialmente ou totalmente submersos em ambientes marinhos;

● Avaliar a eficácia e comparar o índice radiométrico desenvolvido com 

outros índices que possuem propósitos similares;

● Examinar o potencial do modelo de transferência radiativa DART para 

a identificação da assinatura espectral de poluição plástica;

● Investigar a capacidade de detecção de plásticos por um algoritmo de 

clusterização e por uma técnica de aprendizado de máquina.
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2 DESENVOLVIMENTO

O desenvolvimento do presente estudo é apresentado na Seção 2.1 com a 

descrição do estado da arte sobre os trabalhos de sensoriamento remoto aplicados 

à poluição por plásticos. A Seção 2.2 apresenta de maneira resumida todos os 

passos metodológicos para a realização deste trabalho. Todos os materiais 

utilizados, métodos empregados e os resultados detalhados desta pesquisa estão 

descritos pelos artigos científicos localizados nas Seções 2.3 e 2.4. 

2.1 Referencial teórico

A poluição por plásticos é uma complexa problemática ambiental no que diz 

respeito às diferenças entre os materiais depositados no meio ambiente. Cerca de 8 

milhões de toneladas de plásticos chegam aos oceanos todos os anos (Jambeck et 

al., 2015). A maior parte dos plásticos coletados em oceanos e rios é composta por 

polietileno (LDPE, HDPE), enquanto o polipropileno (PP) é o segundo polímero mais 

abundante (Schwarz et al., 2019; Zheng et al., 2020). Estes polímeros são 

comumente empregados para a fabricação de itens como sacolas plásticas, 

embalagens e outros produtos de uso único (Magrini, 2012). Outro fator que impacta 

na expressividade destes polímeros é sua densidade específica.

Tabela 1. Densidade específica de polímeros (adaptada de Campanale et al., 2020).

Polímero Abreviação Densidade específica (g/cm³)

Poliestireno PS 0.01 - 1.06

Polipropileno PP 0.85 - 0.92

Polietileno de baixa densidade LDPE 0.89 - 0.93

High-density polyethylene HDPE 0.94 - 0.98

Poliamida/Nylon 6.6 PA/PA 6.6 1.12 - 1.15

Policarbonato PC 1.20 - 1.22

Poliuretano PU 1.20 - 1.26

Tereftalato de polietileno PET 1.38 - 1.41

Cloreto de polivinila PVC 1.38 - 1.41

Politetrafluoretileno PTFE 2.10 - 2.30
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Tabela 2. Densidade específica da água (adaptada de Campanale et al., 2020).

Fluido Densidade específica (g/cm³)

Água 1.00

Água do mar 1.02

Cerca de 70% dos plásticos acabam por afundar nos oceanos devido aos efeitos de 

bioincrustação e lastro (Pham et al., 2014). A bioincrustação é o processo pelo qual 

organismos marinhos, como algas, bactérias, moluscos e crustáceos, aderem à 

superfície dos plásticos, formando uma camada biológica que os leva a afundar. Já o 

lastro ocorre quando os plásticos flutuantes acumulam sedimentos ou outros 

materiais pesados em sua superfície, aumentando sua densidade e contribuindo 

para seu afundamento nos oceanos. Estes fatores somados às diferentes 

densidades específicas de cada polímero impactam na dispersão dos mesmos em 

ambientes naturais. Como exemplo, redes de pesca perdidas, denominadas como 

redes fantasmas, são materiais geralmente compostos por poliamida (PA), HDPE e 

PET; isto resulta em uma densidade específica neutra com relação a água, fazendo 

com que as redes fantasmas sejam carregadas por correntes marítimas, 

potencialmente causando emaranhamento da biota marinha (Bertelsen & Ottosen, 

2016). Ademais, a detecção de detritos marinhos por sensores remotos e os 

esforços de coleta deste material também podem ser impactados por esta diferença 

na densidade. LDPE, HDPE e PP são polímeros com densidade específica menor 

que a da água (Tabela 1 e 2). Portanto, para os estudos de sensoriamento remoto 

com foco em detectar plásticos na superfície de corpos d’água, estes polímeros são 

de grande relevância.

Com relação ao atual estado da arte na detecção de poluição plástica em 

ambientes marinhos por sensoriamento remoto, há grande necessidade de (i) 

compreensão sobre a interação da luz com polímeros e (ii) o desenvolvimento de 

dados de verdade de campo. A fim de desenvolver e melhorar as técnicas de 

sensoriamento remoto atuais, que visam detectar plásticos com base em suas 

assinaturas espectrais únicas, é essencial compreender sua estrutura molecular. As 

propriedades dos plásticos dependem de seus respectivos polímeros. Os polímeros 
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são grandes moléculas compostas principalmente ou inteiramente por numerosas 

unidades estruturais semelhantes que estão ligadas por um processo denominado 

polimerização (Jansen, 2016). Como exemplo, o polipropileno é um plástico 

comercialmente popular formado pela polimerização de moléculas de propileno 

(cadeias de carbono-hidrogênio). 

Tasseron et al. (2021) analisaram amostras de plásticos virgens e verificaram 

que as características de absorção mencionadas em estudos anteriores 

originavam-se da absorção de luz pelas cadeias moleculares. Essa absorção 

causava a transição das cadeias de um estado fundamental para um estado 

excitado, ocorrendo em cinco níveis distintos. Os dois primeiros níveis 

correspondiam às faixas de comprimento de onda de 950-1600 nm, correspondentes 

ao infravermelho próximo, do inglês Near Infrared e ao infravermelho de ondas 

curtas, do inglês Shortwave Infrared (NIR e SWIR), os quais apresentavam os 

maiores saltos de energia, resultando em características de absorção mais fortes. 

No entanto, a maioria das assinaturas espectrais de plástico apresentam um pico de 

reflectância em torno do comprimento de onda de 833 nm (Garaba & Dierssen, 

2018; Biermann et al., 2020). Isso se deve às ligações de hidrogênio (como C-H, 

N-H e O-H) que absorvem e dispersam luz na região do NIR, resultando em picos de 

absorção mais amplos e menos intensos (Papini, 1997).

É possível observar através das bibliotecas espectrais desenvolvidas por 

estudos controlados em laboratórios que as estruturas moleculares dos polímeros 

desempenham um papel importante na definição do seu comportamento espectral 

(Garaba & Dierssen, 2017; Acuña-Ruz et al., 2018; Dierssen & Garaba, 2020). O 

estudo desenvolvido por Moshtaghi et al. (2021) ampliou o conhecimento sobre as 

assinaturas espectrais do plástico ao produzir um banco de dados que consiste em 

47 tipos de plásticos marinhos coletados no porto de Antuérpia, Bélgica. Um 

dispositivo analítico hiperespectral foi utilizado em um ambiente de laboratório 

controlado para extrair os espectros dos plásticos imersos em água a diferentes 

profundidades. Entre as descobertas do estudo, foi solidificada ainda mais a 

presença de picos notáveis de absorção de luz especificamente na região NIR-SWIR 

(1070, 1213, 1470 e 1730 nm). O estudo destaca a notável disparidade entre as 

assinaturas espectrais do plástico. Também é demonstrado que os valores de 
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reflectância dos plásticos molhados e submersos são reduzidos devido ao 

coeficiente de absorção de luz da água, que tem um grau variável de eficácia 

dependendo da capacidade do plástico de absorver umidade. Este foi considerado 

como um dos bancos de dados mais abrangentes até o momento, devido às 

diversas situações em que os plásticos foram analisados.

Além das técnicas laboratoriais, os estudos de sensoriamento remoto que 

investigam esta problemática desenvolveram índices radiométricos com o objetivo 

de detectar plásticos no ambiente marinho. Biermann et al. (2020) desenvolveram o 

Floating Debris Index (FDI), que utiliza a banda espectral NIR, do sensor MSI, como 

principal fator para detectar os plásticos. Os resultados demonstraram que o uso do 

FDI em conjunto com o Normalized Difference Vegetation Index (NDVI) e a 

classificação supervisionada do algoritmo Naïve-Bayes tiveram uma acurácia de 

86% na identificação de manchas de plásticos em 6 zonas costeiras diferentes. No 

entanto, como demonstrado por Moshtaghi et. al (2021), a replicação dos resultados 

alterando fatores como a cor, a profundidade e o tipo de polímero impossibilitaram a 

correta detecção pelo índice. Além disso, o trabalho desenvolvido por 

Themistocleous et al. (2020) resultou no Plastics Index, que também utiliza a banda 

espectral NIR. O estudo demonstrou a eficácia do índice em detectar alvos de 

plásticos construídos e ancorados em uma zona costeira do Chipre. Foi utilizado o 

sensor MSI em conjunção com veículos aéreos não-tripulados (VANTs) para a 

obtenção dos resultados. Além do índice, o estudo também produziu dados de 

verdade de campo, através de pixels com a presença confirmada de plástico. Em 

uma linha similar, o Plastic Litter Project (PLP), desenvolvido pela University of 

Aegean, Grécia, vem desde o ano de 2018 construindo diversos alvos retangulares 

compostos por diversos polímeros (Topouzelis et al., 2020; Papageorgiou et al., 

2022). Estes alvos foram ancorados no mar na tentativa de cobrir 100% do pixel do 

sensor MSI (10 m). A elaboração deste tipo de estudo é de suma importância para 

que outros trabalhos possam vir a validar as técnicas de sensoriamento remoto 

empregadas.

Estudos recentes têm mostrado resultados promissores na identificação de 

plásticos utilizando algoritmos de aprendizado de máquina, índices espectrais, 

análise das assinaturas espectrais do plástico, ou uma combinação dessas 
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metodologias (Salgado-Hernanz et al., 2021). Os problemas mais comuns 

encontrados por estudos desta área do conhecimento são: distinguir plásticos de 

tamanho menor, plásticos submersos, falta de dados para validação, limitações de 

resolução espectral, temporal ou espacial dos sensores ópticos (Martínez-Vicente et 

al., 2019; Hu, 2022). O modelo DART tem o potencial para gerar produtos de 

sensoriamento remoto que possam suprir a necessidade de dados de validação ou 

dados de treinamento (Gastellu-Etchegorry et al., 2012; De Barros et al., 2021). 

Ademais, a proposta do índice (PWDI) desenvolvido pelo presente estudo é a 

detecção de plásticos totalmente submersos na coluna d’água.

 Embora técnicas de aprendizado de máquina demonstrem potencial para 

detectar plásticos, alguns estudos destacam certas limitações em seu desempenho 

(Gonçalves et al., 2020; Aleem et al., 2022). Estas limitações estão relacionadas à 

obtenção de altos níveis de precisão, dificuldade em adaptar modelos a ambientes 

ou condições desconhecidas, e problemas com falsos positivos ou falsos negativos. 

Acuña-Ruz et al. (2018) compararam os algoritmos Random Forest (RF), Análise 

Discriminante Linear (LDA) e Máquina de Vetores de Suporte (SVM) para detectar 

resíduos de plástico, mais especificamente caixas de poliestireno em uma praia. 

Eles conseguiram obter uma precisão superior a 75% usando RF e LDA, e a maior 

precisão de 90% usando SVM. Basu et al. (2021) combinaram algoritmos não 

supervisionados (K-means e Fuzzy C-means) e supervisionados (Regressão de 

Vetores de Suporte e Fuzzy C-means Semi-supervisionado) para detectar plásticos 

nas imagens do Sentinel-2 apresentadas nos estudos do PLP e no estudo 

desenvolvido por Topouzelis et al. (2020) e Papageorgiou et al. (2022). A aplicação 

dos algoritmos foi capaz de alcançar precisões muito altas, de até 98,4%, mas 

resultou em problemas com falsos negativos em relação à detecção do plástico.

Com relação à utilização de modelos de transferência radiativa para a análise 

desta problemática, há poucos exemplos a serem analisados. Garaba & Harmel 

(2022) empregaram o modelo 6SV para simular o sinal de plásticos submersos 

detectados a nível de topo de atmosfera pelos sensores dos satélites Worldview-3, 

Sentinel-2 e Sentinel-3. O estudo concluiu que plásticos submersos acima de 1 

metro na coluna d’água podem ser detectados. Já Kuester & Bochow (2019)  

aplicaram o modelo HySimCar para simular um sensor hiperespectral e analisar os 
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efeitos da transparência dos plásticos. Estes trabalhos, embora usem modelos de 

transferência radiativa, tiveram objetivos e técnicas distintas do presente estudo.

2.2 Metodologia

De forma a sumarizar a metodologia empregada no presente estudo, o 

fluxograma apresentado na Figura 1 foi desenvolvido. O primeiro passo consistiu na 

simulação de uma zona costeira com poluição por plásticos através da utilização do 

modelo DART. O sensor MSI/Sentinel-2 teve suas configurações importadas para o 

modelo de transferência radiativa. Foram extraídas e processadas as assinaturas 

espectrais de plásticos da base de dados de Moshtaghi et al. (2021), que continha 

47 assinaturas espectrais de polímeros a diferentes condições. Os polímeros 

selecionados foram LDPE, PET, e PP nas cores laranja e branco. A escolha dos 

polímeros foi devido à abundância dos mesmo quando encontrados em ambientes 

naturais (Schwarz et al., 2019). Por fim, as cores laranja e branco foram devido ao 

valor mais elevado de reflectância próximo à banda do vermelho (B4 - 

MSI/Sentinel-2) e aos valores mais elevados de reflectância em todo o espectro 

visível, respectivamente, sendo um teste inicial para verificar a diferença entre essas 

cores.

Os alvos de plásticos foram construídos no modelo DART e distribuídos nas 

cenas preenchendo 100%, 80%, 60% e 40% dos pixels com presença de água. Já 

nas cenas contendo espuma marinha, foram dispostos a 80%, 60% e 40%. Estas 

porcentagens de pixel foram escolhidas a partir de testes realizados em De Barros 

(2023), onde foi verificado que a inclusão de mais porcentagens acabou por 

aumentar o tempo computacional sem produzir dados expressivos que compensam 

esta aplicação. A partir dos produtos de reflectância do modelo DART e da análise 

das características da estrutura molecular dos polímeros, foi possível o 

desenvolvimento do índice radiométrico Plastic-Water Differentiation Index (PWDI). 

Este índice visa a detecção de plásticos com total submersão na coluna d’água.
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Figura 1 - Fluxograma de todos os processos envolvidos na metodologia do estudo.

Fonte: próprio autor.

Posteriormente, foram adquiridos dados de imagens reais do sensor 

MSI/Sentinel-2 que continham a presença confirmada de plásticos. Para tal, foram 

utilizadas as imagens apresentadas no Plastic Litter Project (PLP), de Topouzelis et 

al. (2020) e Papageorgiou et al. (2022). Este grupo de pesquisas desenvolveu alvos 

quadrangulares preenchidos com diferentes polímeros e ancoraram-nos à deriva em 

duas orlas marítimas na ilha de Lesbos, Grécia (Figura 2). Estes alvos variam desde 

5 até 20 m² de área. No total, 10 produtos nível 1C do sensor MSI/Sentinel-2 foram 

adquiridas de forma gratuita nas plataformas United States Geological Service 

(USGS) e Copernicus Access Hub. As imagens passaram por correção atmosférica 

através do algoritmo Atmospheric Correction for OLI Lite (ACOLITE), o qual foi 

escolhido por ser adequado para aplicação em áreas com presença de corpos 

d’água (Vanhellemont & Ruddick, 2016).
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Figura 2 - Mapa de localização do local de ancoragem dos alvos de plástico do 

projeto PLP.

Fonte: próprio autor.

Em seguida, os produtos do modelo DART e MSI/Sentinel-2 foram 

padronizados através da função Resampling utilizando a linguagem de programação 

Python. Todas as imagens com 20 metros de resolução espacial foram 

reamostradas para 10 metros através do método de interpolação bilinear, o qual 

gerou a menor amplitude em relação aos dados observados de acordo com De 

Barros (2023).

Após a etapa de tratamento de dados, houve a aplicação dos índices 

radiométricos, visando testar seu potencial em detectar plásticos tanto nas imagens 

simuladas quanto reais. Para comparar a eficácia do PWDI em relação a outros 

índices similares, o Floating Debris Index (FDI), de Biermann et al. (2020), e o 

Plastics Index (PI), de Themistocleous et al. (2020), foram aplicados. Índices de 

detecção de corpos d’água e vegetação também foram incluídos para verificar seu 

impacto na detecção dos alvos.
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Por fim, foram implementados os algoritmos K-means e Random Forest. O 

algoritmo de clusterização K-means foi aplicado tanto nas imagens DART quanto 

nas imagens MSI/Sentinel-2. Este método de clusterização foi escolhido por sua 

robustez, facilidade de implementação e potencial para agrupar grandes conjuntos 

de dados. Se comparado com modelos como mistura gaussiana ou clusterização 

hierárquica, o K-means é menos intensivo computacionalmente e, portanto, 

adequado para o objetivo deste estudo. A configuração de k = 4 foi selecionada com 

base nos testes realizados por De Barros (2023), onde foi verificado que este é o 

valor ideal quanto ao balanço entre clusters para as classes presentes nas imagens 

se comparado a k = 3 e k  = 5. A técnica de aprendizado de máquina RF foi 

selecionada por sua robustez em relação à classificação de conjuntos de dados 

desbalanceados, o que é o caso tanto das imagens DART quanto as imagens 

MSI/Sentinel-2 com presença de plásticos. Ademais, o RF fornece gráficos com o 

cálculo de importância de cada feature utilizada para a classificação, o que é de 

suma importância para interpretar o impacto dos índices radiométricos analisados. 

Os dados de treinamento utilizados foram as imagens sintéticas do modelo DART. 

Deste modo, as imagens MSI/Sentinel-2 foram classificadas entre “plástico” e 

“água”.
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2.3 DEVELOPMENT OF A NOVEL PLASTIC-WATER DIFFERENTIATION INDEX FOR
DETECTING PLASTIC DEBRIS IN SENTINEL-2 IMAGERY

Douglas Galimberti Barbosa1∗Bianca Matos de Barros, Cristiano Lima Hackmann
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ABSTRACT:

Plastic pollution is a major concern in marine ecosystems. Plastics are a class of polymers that are widely distributed in marine
environments, and their spectral signatures can be used to distinguish them from water. In this study, we developed a novel Plastic-
Water Differentiation Index (PWDI) based on a comprehensive analysis of plastic spectral signatures. We designed simulations of
a plastic polluted coastal zone by applying the Discrete Anisotropic Radiative Transfer (DART) model. Furthermore, we selected
Sentinel-2 images with confirmed plastic presence in order to test our spectral index. The PWDI revealed separability between
plastic and water pixels in a simulated scenario. The proposed index exhibited a potential to detect submerged polypropylene (PP)
on DART simulations. The K-means unsupervised clustering algorithm was applied to simulated images and was able to create a
plastic cluster composed of White PP. Its application on the remote sensing images resulted in clusters of pure water and water with
floating matter. Based on the data, the PWDI had a positive impact on the detection of water with floating plastic litter on Sentinel-2
images.

1. INTRODUCTION

Plastics are artificial materials that are used to manufacture
many different products that are present in our daily lives. How-
ever, with the advent of single-use utensils and other disposable
plastics, a significant fraction of the global yearly production
of plastics is carried by rivers, wastewater, and winds, eventu-
ally reaching coastal and marine environments around the world
[Jambeck et al., 2015]. Plastics are resistant materials, how-
ever, they undergo fragmentation due to natural weathering pro-
cesses, ultimately transforming into what is commonly referred
to as microplastics [Magrini, 2012, Masry et al., 2021]. Marine
species have reportedly been impacted by entanglement in fish-
ing nets, smothering in plastic bags, and also accidental inges-
tion of plastic particles, which causes internal injuries and poi-
soning [Wilcox et al., 2015, Kühn et al., 2015, Andrady, 2011].
Aside from the impacts caused to marine organisms, plastic de-
bris also negatively affects human activities such as shipping,
fishing, aquaculture, tourism and recreation [Aretoulaki et al.,
2021].

In order to assess the plastic pollution issue, remote sensing
techniques are becoming valuable to complement the existing
methods that aim to analyse the current situation of marine de-
bris along coastal zones and oceanic waste patches [Garaba
and Dierssen, 2018, Salgado-Hernanz et al., 2021]. Because
of its potential to cover wide geographical scales, its cost-
effectivenes, and the frequent rate at which data is produced,
it provides many advantages for monitoring plastic pollution.
Recent studies have succesfully detected plastic patches in both
coastal and marine environments [Amézquita Toledo et al.,
2017, Biermann et al., 2020]. However, there are certain lim-
itations regarding mainly the sensors’ spatial and spectral res-
olutions [Hu, 2022]. Even with the latest methods available,
identifying plastics that are wet or submerged remains a chal-
lenging task, as well as distinguishing between the different

∗Corresponding author: galimbertidouglas@gmail.com

types of plastics [Moshtaghi et al., 2021]. Also, commonly
found targets, such as sea foam - also known as whitecaps -
can hinder the correct identification of plastics [Biermann et al.,
2020, Dierssen and Garaba, 2020]. For the purpose of address-
ing these constraints, radiative transfer simulations can be em-
ployed to produce synthetic data for the purpose of evaluating
and validating detection algorithms. This approach also allows
for the examination of the detection limits and differentiation
capabilities of plastic pollution and other targets.

In this study, we embarked on an exploratory examination of
the spectral signatures of marine plastic pollution, aiming to
discern promising features for its detection in coastal zones.
We have chosen a spectral database that covers a range of plas-
tics in different conditions, such as immersion at various depths
and diverse polymer compositions. Plastics that are collected
in aquatic environments have distinct spectral signatures from
virgin plastics, due to suffering natural weathering [Garaba and
Dierssen, 2017, Moshtaghi et al., 2021]. The selected database
more accurately represents the spectral signatures of accumu-
lated plastics in natural settings.

We applied the Discrete Anisotropic Radiative Transfer model
(DART), to craft intricate three-dimensional scenarios. This
model provides a robust framework to simulate light interaction
with any material, being able to portray complex environmental
conditions accurately. It models the anisotropic nature of light
scattering, simulating scene components inside of 3D cubes,
called “voxels” [Gastellu-Etchegorry et al., 2012]. It also al-
lows for the creation and customization of 3D objects. We cre-
ated scenes that simulate a coastal environment with the pres-
ence of floating and submerged plastic litter. Three prominent
commercial plastic polymers were integrated into our simulated
scenes: polypropylene (PP), low-density polyethylene (LDPE),
and polyethylene terephthalate (PET). Calibration of the Mul-
tiSpectral Instrument (MSI) sensor configurations within the
DART model enabled the generation of synthetic reflectance
products. The plastics were set on the DART scenes, cov-
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ering different pixel proportions. By analysing the data pro-
duced by the radiative transfer model, as well as the scien-
tific literature on plastic spectral signatures, we developed a
novel Plastic-Water Differentiation Index (PWDI) to discern
between water and plastic pixels. To evaluate its efficacy, we
used MSI/Sentinel-2 imagery with confirmed instances of plas-
tic pixels. By applying the K-means unsupervised clustering al-
gorithm we were able to demonstrate the potential of the PWDI
as a tool in remote sensing-based plastic pollution monitoring
strategies.

2. PLASTIC SPECTRAL CHARACTERISTICS

There is currently a need to analyse how plastics interact with
light, in order to develop and improve the current remote sens-
ing techniques which aim to detect plastics based on their
unique spectral signatures. Therefore, it is essential to under-
stand their molecular structure. The properties of plastics de-
pend on their respective polymer. Polymers are large molecules
composed primarily or entirely of numerous similar structural
units that are joined together by a process called polymeriza-
tion [Jansen, 2016]. As an example, polypropylene is a com-
mercially popular plastic that is formed by the polymerization
of propylene molecules (Carbon-Hydrogen chains) [Lotz et al.,
1996].

Tasseron et al. (2021) analysed virgin plastic samples and ver-
ified that the absorption characteristics mentioned in previous
studies originated from the absorption of light by the molecular
chains. This absorption caused the chains to transition from a
ground state to an excited state, occurring on five distinct lev-
els. The first and second levels corresponded to the 950-1600
nm (NIR-SWIR) wavelength ranges and had the largest jumps
in energy level, with consequently stronger absorption features.
However, the majority of plastic spectral signatures present a
reflectance peak around the 833 nm wavelength [Garaba and
Dierssen, 2017, Goddijn-Murphy and Dufaur, 2018]. This per-
tains to the hydrogen bonds (such as C-H, N-H, and O-H) that
absorb and scatter light in the NIR region and result in broader
and less intense absorption peaks [Papini, 1997].

It is possible to observe by available spectral libraries that
the polymer molecular structures play a large role in defining
their spectral behavior [Garaba and Dierssen, 2017, Acuña-Ruz
et al., 2018, Dierssen and Garaba, 2020]. The study devel-
oped by Moshtaghi et al. (2021) expanded upon the insights
about plastic spectral signatures by producing a database that
consists of 47 types of marine plastics collected in the port of
Antwerp, Belgium. A hyperspectral analytical device was used
on a controlled laboratory environment to extract the spectra of
plastics at different depths, with distinct polymer compositions,
vegetation, and water with and without sediment concentration.
Among the study’s findings, it further solidified the presence
of notable light absorption peaks specifically in the NIR-SWIR
region (1070, 1213, 1470, and 1730 nm). The study points out
the notable disparity between the plastic spectral signatures, as
can be seen in Figure 1. It is also demonstrated that the re-
flectance values of wet and submerged plastics are lowered due
to the light absorption coefficient of water (ACW), which has
a varying degree of effectiveness depending on the plastic’s ca-
pacity to absorb moisture. This was considered as one of the
most comprehensive databases so far, because of the varied sit-
uations in which plastics were analysed.

A challenge found by researchers to correctly identify plastic in
marine waste patches is the low density of the drifting materials

Figure 1. Plastic spectral signatures [Moshtaghi et al., 2021];
whitecap spectral signature [Dierssen, 2019]; ocean water

spectral signature [Meerdink et al., 2019].

[Magrini, 2012, Dierssen and Garaba, 2020]. Marine floating
debris is generally smaller (< 10%) than the pixel size of the
MSI/Sentinel-2 sensor, which has 10 and 20 m of spatial reso-
lution [Hu, 2022]. For this reason, some pioneering studies de-
cided to focus on washed ashore marine litter, which facilitates
the matter of validation [Aoyama, 2014, Amézquita Toledo
et al., 2017].

Recent studies have shown promising results in the identifica-
tion of plastics by using machine learning algorithms, spec-
tral indices, analysing plastic spectral signatures, or by using a
mixture of these methodologies [Salgado-Hernanz et al., 2021].
However, some of the most notable limitations found are: dis-
tinguishing smaller-sized or submerged plastics from other tar-
gets, lack of ground-truth data, lack of diverse datasets, and
spectral, temporal, or spatial resolution limitations of optical
sensors [Martı́nez-Vicente et al., 2019, Hu, 2022]. Although
supervised and deep learning algorithms exhibit potential for
detecting plastics, a few studies highlight certain drawbacks in
their performance [Gonçalves et al., 2020, Aleem et al., 2022].
These drawbacks are related to attaining high levels of accuracy,
struggling to adapt models to unfamiliar environments or con-
ditions, and problems with false positives or false negatives. To
exemplify this matter, Biermann et al. (2020) have developed
the Floating Debris Index (FDI), which was successful in de-
tecting floating plastic patches along coastal zones in different
areas. However, it was proven difficult to replicate the results
when some factors such as polymer type, color, and depth were
altered [Moshtaghi et al., 2021].

One of the main difficulties of validating the presence of plas-
tics in remote sensing images is the scarcity of high-quality
ground-truth data available in sufficient quantity. The Univer-
sity of Aegean has created the Plastic Litter Project (PLP) to
address this issue [Topouzelis et al., 2019]. In this project, plas-
tic targets of different sizes were constructed to ensure that they
cover 100% of the MSI/Sentinel-2 pixel (10 x 10 m). Also,
targets composed of wooden planks were Projects like the PLP
are crucial for providing standardized testing environments for
evaluating remote sensing methods and algorithms while also
characterizing the types of plastics present in marine environ-
ments.

3. MATERIALS AND METHODS

This study’s methodology is comprised of four main phases:
(i) conducting radiative transfer simulations using the DART
model, (ii) obtaining USGS images with verified plastic pixels,
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(iii) creating a plastic index using the collected data, and (iv) ap-
plying an unsupervised clustering algorithm to identify plastics
on the DART and USGS images. In the following subsections,
each of these steps will be described in detail.

3.1 Radiative transfer simulations

The initial step in this study involved selecting a database con-
taining plastic spectral signatures. To accomplish this, we em-
ployed the data set developed by Moshtaghi et al. (2021),
which provided a comprehensive collection of spectral signa-
tures for various plastic materials under diverse conditions.
This dataset was selected because it allows for the simula-
tion of plastics spectral signatures with natural weathering ef-
fects from being accumulated in the environment. The spec-
tral signatures of three common commercial polymers, namely
low-density polyethylene (LDPE), polyethylene terephthalate
(PET), and polypropylene (PP), were selected and extracted
from the database. PP samples were selected in the colors
white and orange, while LDPE and PET are translucent. Subse-
quently, the selected spectral signature files were converted and
integrated into the spectral database of the Discrete Anisotropic
Radiative Transfer (DART) model.

To construct a simulated natural environment, two additional
spectral signatures were selected. Firstly, a spectral signa-
ture representing oceanic water was chosen from the DART
built-in spectral library to depict water without the presence
of sediments or organic materials. The original source of the
water spectral signature is from the ECOSTRESS spectral li-
brary [Meerdink et al., 2019]. Secondly, a spectral signature
for whitecaps was simulated based on the study conducted by
Dierssen et al. (2019). In this study, a third-degree polynomial
equation, described in Equation (1), was employed to calculate
the mean value of in-situ whitecap spectral signatures, provid-
ing a representative average value for reflectance encountered
in marine environments.

Rf = 0.47x3 − 1.62x2 + 8.66x+ 31.81

x = log(αw)

αw(m
−1) = Absorption coefficient of water.

(1)

The sensor chosen for this study is the MultiSpectral Instrument
(MSI), equipped on the Sentinel-2A and Sentinel-2B satellites,
which are part of the Copernicus program by the European
Space Agency. This sensor contains 13 spectral bands ranging
from VIS to SWIR, with each band ranging from 10 to 60 m
of spatial resolution (Table 1). The radiometric resolution is 12
bits per pixel, providing high-quality imagery suitable for var-
ious applications. These specifications of the MSI sensor were
configured on the DART model simulation settings. The MSI
spectral bands selected for this study ranged from B2 to B12,
excluding B9.

Scenarios with dimensions of 1200 x 600 m were constructed
by incorporating water, square-shaped plastic targets, and
whitecaps. In order to standardize the spatial resolution of the
DART and USGS images from 20 to 10 m, we employed the
Resampling1 function in a Python script. The bilinear interpola-
tion mode was chosen instead of the near and cubic modes due
to its lower amplitude in comparison to the other two modes,
leading to a better alignment with the distribution of the USGS

1Source and more details: http://tinyurl.com/resampling

Table 1. MSI/Sentinel-2 specifications.

Band Name λ central (nm) Spatial res. (m)
B1 Coastal Aerosol 443 60
B2 Blue 492 10
B3 Green 560 10
B4 Red 665 10
B5 Red Edge 1 704 20
B6 Red Edge 2 741 20
B7 Red Edge 3 783 20
B8 NIR 833 10
B8a Narrow NIR 865 20
B9 Water Vapour 945 60

B10 SWIR Cirrus 1374 60
B11 SWIR 1 1614 20
B12 SWIR 2 2202 20

images. Plastic targets were placed on the water surface with
consistent positions across all simulated bands and spatial res-
olutions. The LDPE and PET samples were in a dry state. The
PP samples were the only available wet and submerged plastics
at depths of 2.5 and 5.0 cm. Each sample was placed in sepa-
rate DART scenes. Plastic targets were set to pixel coverages of
40%, 60%, 80% and 100% of the MSI spatial resolution (10 m).
The simulations were, then, comprised of: only water; water
and plastics; only whitecaps; whitecaps and plastics; only plas-
tics. The plastic-to-pixel proportions are demonstrated in Fig-
ure (2). The synthetic images were converted from the DART
file format to a text format to more easily extract the reflectance
information from the pixels of interest.

Figure 2. Plastic-to-pixel proportions on DART simulations: a)
plastics are depicted in the color purple and water is depicted in
the color blue, b) plastics are depicted in the color purple and

whitecaps are depicted in the color yellow.

3.2 Ground-truth plastic pixels

In the subsequent phase of this research, the objective was
to locate images that contained verified plastic pixels to im-
plement the unsupervised clustering algorithm. The MSI im-
ages featured in the studies developed by the Plastic Litter
Project (PLP) were selected since they contain floating plas-
tic targets placed on the water surface of a coastal zone in Les-
bos, Greece [Topouzelis et al., 2019, Papageorgiou et al., 2022].
Thus, the images contain ground-truth plastic pixels in environ-
mental conditions which match the aim of this current study.
MSI/Sentinel-2 products at level 1C were obtained from two
sources: the United States Geological Survey (USGS) portal
and the Copernicus Open Access Hub, ranging from years 2019
up to 2021. We refer to this set of images as “USGS images”
throughout this article. To ensure precise analysis, atmospheric
correction was carried out using the ACOLITE (Atmospheri-
cal Corretion for OLI Lite), applying the DSF (Dark Spectrum
Fitting) algorithm, which leverages dark pixel spectra to esti-
mate the inherent optical properties of water [Vanhellemont and
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Ruddick, 2016]. ACOLITE is tailored for the challenges of re-
moving atmospheric effects of coastal and inland water environ-
ments [Topouzelis et al., 2019]. Following that, specific areas
of interest within each image were cropped using the Sentinel
Application Platform (SNAP - version 8.0) software.

After processing the data, the USGS images were segmented in
the following classes: plastic, coast, water, and wood. There
were three main types of plastic targets present in the images,
which were composed of high-density polyethylene (HDPE),
LDPE, and PET.Percentual coverage of the plastic targets was
estimated through visual inspection, categorized as either 100%
or less than 100% (partial coverage). Geolocation data and
TIFF subsets were then superimposed using QGIS (version
3.22.6) software for precise pixel mapping. A Python script
was employed to integrate spatial and spectral data, labeling
pixels with 100% water coverage, and those containing any
percentage of plastic were designated as “Plastic”. Accord-
ing to Topouzelis et al. (2020) and (2022), a total of 103 pix-
els have been annotated in the published studies conducted to
date. The plastic targets were comprised of three main plas-
tic polymers: low-density polyethylene (LDPE), high-density
polyethylene (HDPE), and polyethylene terephthalate (PET).

3.3 Plastic-water differentiation index (PWDI)

A novel spectral index was developed based upon the analy-
sis of spectral signatures derived from both DART simulations
and USGS images, supplemented by a review of existing lit-
erature on the molecular structure and resulting spectral char-
acteristics of plastics. Specifically, our investigation focused
on identifying distinctive features within the spectral curve of
plastics, namely the NIR (B8 - 833nm) peak and the RedEdge
(B5, 6, 7 - 704 − 783nm) absorption line (Figure 1). These
features were consistently observed across various sources, in-
dicating their significance in the spectral signature of plastics
[Garaba and Dierssen, 2017, Tasseron et al., 2021, Moshtaghi
et al., 2021]. Motivated by this observation, we hypothesized
that an index that leverages the contrast between the reflectance
values at the NIR (B8) and the RedEdge3 (B7) MSI optical
bands could effectively discriminate plastic targets from water,
which exhibits a slight NIR absorption characteristic. The fol-
lowing band arithmetic function (Equation 2) was then applied
to both the simulated and real images:

PWDI =
B8−B7

B8 +B7
(2)

This approach takes into consideration the inherent spectral
properties of plastics to develop a robust differentiation index
tailored to the unique challenges posed by plastic detection in
coastal environments.

We also employed additional spectral indices to our images to
examine their characteristics and evaluate their effectiveness
in identifying and distinguishing plastics from other objects.
These indices are commonly used for tasks such as detecting
water, vegetation, and plastics (Table 2). All indices with de-
tailed descriptions can be found in Appendix (Section 6).

3.4 Unsupervised clustering algorithm

The K-means algorithm is an unsupervised clustering method
widely employed in remote sensing image analysis for its abil-
ity to automatically partition data points into distinct clusters

Table 2. Spectral indices applied in the current study.

Applications Spectral Index

Detecting water bodies
AWEI
WRI

NDWI
MNDWI

Detecting and monitoring
vegetation

NDVI
RNDVI

SR

Detecting floating plastics FDI
PI

based on their similarities. In the present study, this algorithm
was implemented using the open-source machine learning li-
brary scikit-learn. Firstly, we chose k = 4, based on empiri-
cal data from the study developed by De Barros et al. (2023),
which demonstrated that it was the best balance between the
number of clusters to classes from the datasets. De Barros et
al. (2023) tested the configurations of k = 3, 4, 5. Then, we
randomly picked k starting points as cluster centroids. Subse-
quently, the centroids are recalculated by determining the aver-
age of the data points allocated to each cluster (Equation 3).

n∑
i=0

min
µj∈C

(
∥xi − µj∥2

)
(3)

This process of updating assignments continues until conver-
gence is reached, which is signaled by minimal variations in
centroids or consistent cluster allocations. The algorithm was
implemented on both the simulated and USGS images. The
data points encompassed: (i) only optical bands; (ii) only spec-
tral indices; (iii) both optical bands and spectral indices. These
approaches will be respectively referred to as: optical band
clustering (OBC), spectral index clustering (SIC), and inte-
grated spectral clustering (ISC).

4. RESULTS AND DISCUSSION

4.1 Exploratory analysis

In total, 570 reflectance images spanning from the VIS to the
SWIR spectral regions were generated by the DART model.
Our analysis of the obtained data highlights both similarities
and notable distinctions in the spectral characteristics between
the simulated and the USGS images. Firstly, we observed that
the simulated plastic spectral signatures exhibited shared Red-
Edge (B5, B6, B7 absorption lines and NIR (B8) reflectance
peak (Figure 3). The submerged plastics exhibited the same
patterns, but their reflectance values were lowered due to the
ACW. This effect is also demonstrated by the pixels with pro-
gresively lower plastic coverage. Furthermore, our analysis of
water spectral signatures in the DART scenes revealed slight
NIR absorption and generally low reflectance values (ranging
from 1 to 3%). Whitecaps, on the other hand, displayed spec-
tral signatures similar to plastics, sharing common absorption
and peak lines, albeit with slight discrepancies in the VIS and
SWIR spectra.

These features were also present, to varying degrees, in the
plastics identified in the USGS images. However, it’s note-
worthy that the reflectance values in the USGS 2019 images
were notably lower (ranging from 3 to 7%) compared to the
DART scenes (ranging from 10 to 60%), posing challenges in
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identifying these spectral patterns (Figure 4). Interestingly, the
USGS 2021 images displayed spectral signatures more akin to
the DART plastics (Figure 5). While B5 exhibited a prominent
absorption line, B6 and B7 did not. This discrepancy in the
spectral shape can be attributed to the fact the USGS 2021 im-
ages contained high-density polyethylene (HDPE) targets [Pa-
pageorgiou et al., 2022]. HDPE is a slightly opaque plastic
which has a specific permeability of about one-third to one-
sixth that of LDPE, meaning it is less affected by the ACW
[Hamilton, 1967].

Figure 3. Class quartiles spectral signatures of DART
simulations.

Figure 4. Class quartiles spectral signatures of USGS 2019
images.

Figure 5. Class quartiles spectral signatures of USGS 2021
images.

An initial examination of the application of spectral indices in
the simulated and USGS images reveals the separability be-
tween the classes in both datasets. The Floating Debris Index
(FDI) had values between 0 and 0.5 in the simulated images,
but grouped water, whitecaps and plastics relatively close to
each other (Figure 6). As for the USGS images, the FDI had
higher values, between 0.6 and 1, which were outside the range
of plastics as proposed by Biermann et al. (2020). The ”coast”
and ”wood” classes from the USGS images were also grouped
relatively close to the other classes in the histograms.

The Plastics Index (PI) showed values between 0.3 and 0.55
on the simulated images, and it grouped water and white-
caps around 0.45 (Figure 7). However, plastic was distributed
along this range, demonstrating a low separability between the
classes. Regarding the USGS images, in the case of the 2019
images, all classes were grouped near the -0.5 values. The
USGS 2021 images showed values of -0.6 to -0.4, but the
classes were unevenly distributed along the entire range. Fur-
thermore, by verifying the scatter plot graphics, there was no
notable class separation between the PI and the FDI or other
spectral bands or indices.

The proposed Plastic-Water Differentiation Index (PWDI) was
developed based on the unique spectral features inherent to the
molecular structure of plastics. The PWDI employed on the
simulated images showed values between -0.6 and 0.6. All val-
ues for water were below 0 and plastic was above 0.5, demon-
strating potential for separability between these two classes
(Figure 8). However, whitecap was grouped near plastic in this
case. Additionally, when we observed the PWDI scatter plot
graphics, we encountered distribution patterns associated with
the potential to separate between water and plastic pixels. As
an example, on the PWDI vs RedEdge 3 scatter plot graphic,
the water pixels are predominantly on the negative values of the
X-axis, reflecting their characterstic spectral signatures in this
band (Figure 9).

Conversely, the plastic pixels are distributed across positive val-
ues on the X-axis, indicating their distinct spectral responses.
The upward slope of the plastic pixels on the graph suggests
that as the PWDI values increase, the likelihood of plastic pres-
ence in the pixel also increases. The graphs’s parabolic-shaped
distribution pattern emphasizes the index’s potential to differ-
ente between water and plastic pixels. The curvature of the
parabola signifies a gradual transition between water-dominated
and plastic-dominated regions, with the index’s values reaching
a valley at the center of the parabola, representing the optimal
discrimination between the two materials. This pattern seems to
be less pronounced, but still present when we observe the PET
and LDPE polymers. The PWDI applied to the USGS 2019 and
2021 images showed values between 0.5 and 0.7, grouping all
classes together and showing no discernible separation patterns
between them.

In the simulated images, where hundreds of samples of plastic
pixels were evenly distributed across different pixel coverages,
the PWDI had ample data to discern the spectral signatures of
plastics under various conditions. On the other hand, the lim-
ited number of plastic pixels (103 total) in the USGS images
imposes constraints on the spectral analysis. With fewer sam-
ples available for analysis, the plastic spectral indices may lack
the necessary data to accurately represent the spectral charac-
teristics of plastics in real-world scenarios. The whitecap sig-
natures, according to Moshtaghi et al. (2021), can exhibit sim-
ilar spectral behavior to plastics when both are floating on the
water surface. This was also the case when we looked at the
simulated whitecap spectral signatures. Further investigation
regarding whitecap-to-plastic pixel proportions might be nec-
essary to be able to discern between these targets.

The USGS images are more complex and heterogeneous com-
pared to the simulated images. They contain more land cover
types, natural features, and atmospheric effects that can mask
the spectral signatures of plastics. Atmospheric interference, in
the form of scattering, absorption, and haze are present in real-
world remote sensing images, even with the application of at-
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Figure 6. PWDI values distribution across classes: DART Simulations vs. 2019 & 2021 USGS imagery.

Figure 7. PI values distribution across classes: DART Simulations vs. 2019 & 2021 USGS imagery.

Figure 8. FDI values distribution across classes: DART Simulations vs. 2019 & 2021 USGS imagery.

mospheric correction algorithms. This causes a reduction in the
contrast and brightness. This effect can be visualized in Figure
4, where the plastic spectral shape is flatter, and more similar
to water. Nevertheless, the visible separability of dry, wet and
submerged plastics from water in the simulated images by the
PWDI is crucial, since plastics will be partially or fully sub-
merged in marine pollution scenarios in many occasions. Thus,
the PWDI has the potential to complement the existing indices,
such as the FDI and PI, in a multi-index approach.

4.2 K-means clustering algorithm

The application of the K-means unsupervised algorithm in
this study facilitated the clustering of pixels into four distinct
groups, or clusters, representing different spectral characteris-
tics. To achieve this, the initial data points were split in the three

aforementioned configurations: (i) optical band clustering, (ii)
spectral index clustering (the PWDI and the ones mentioned in
Table 2), and (iii) integral spectral clustering. The outcomes of
each configuration will be elaborated upon in the next subsec-
tions, providing a comprehensive analysis of the clustering re-
sults and the effectiveness of the applied methodology. The im-
ages in section 6.1 visually depict all polymers types assigned
to each cluster in each specific approach.

4.2.1 Optical band clustering (OBC): the four resulting
K-means clusters of the BC approach were able to group the
DART simulated images in the following way:

Here, Cluster 0 corresponds to water located on the scene edges
and right outside the close vicinity of plastics. This cluster
ended up grouping some plastic pixels together with water,
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Figure 9. Class quartiles spectral signatures of USGS 2021
images.

Table 3. Simulated images OBC approach

Cluster Water Plastic Whitecaps
0 376,480 512 0
1 0 2,048 0
2 0 3,968 128
3 26,240 640 0

based in their similarity. Cluster 3 is a similar case, but it cor-
responds to water pixels that were close to plastic or had par-
tial plastic coverages. Cluster 1 was able to group only plas-
tics, which is the more desired outcome. Cluster 2 grouped
some polymer types together with whitecaps, since they are also
somewhat similar spectral signatures.

Based on our findings, we were able to point that most polymer
types were grouped in Cluster 2. Orange PP was the most preva-
lent polymer type in this cluster. The 60 to 80% plastic cover-
age range in general seems to be the one that is most confused
with whitecaps by the algorithm. Cluster 0 grouped only plas-
tic coverages of 40%, which corresponds to the least amount of
pixel-to-water proportion. This might indicate a threshold for
plastic detection, but it requires further experiments. Cluster 1
grouped only White PP and the 80% plastic coverage was the
most numerous in this cluster. Finally, Cluster 3 mixed some
Orange PP and PET pixels with water.

In the case of the USGS images, the OBC approach designated
the following clusters:

Table 4. USGS images OBC approach

Cluster Water Plastic Wood Coast
0 1,519 54 6 0
1 0 0 0 440
2 1 0 6 629
3 423 49 50 0

Cluster 0 and 3 were the main water clusters, with the presence
of plastics and wood. Cluster 1 and 2 contained coast pixels
and a few wood and water pixels. In 5 out of 11 images, the
algorithm grouped plastics on a cluster separated from water.
The algorithm seems to struggle more to separate plastics from
water on the 2019 images. As an example, the images from
04/18/2019 and 05/28/2019 were respectively assigned to Clus-
ter 0 and 3 only.

The inclusion of HDPE targets on the USGS 2021 images
seems to make the only bands approach somewhat better, as
more plastic pixels were grouped separately from water in the
images (Figure 10). Opaque plastics are generally easier to
identify on remote sensing imagery, since they can stand out

Figure 10. 2019 and 2021 USGS images clustered by K-means
algorithm.

from the highly light-absorbing water, even if they are sub-
merged. Still, the plastic’s color and and specific permeability
are to be taken into consideration [Moshtaghi et al., 2021].

4.2.2 Spectral index clustering (SIC): this application of
the K-means algorithm used only the spectral indices from Ta-
ble 2 as initial data points. It resulted in this clusterization of
the simulated images:

Table 5. Simulated images SIC approach

Cluster Water Plastic Whitecaps
0 18,688 0 0
1 335,520 1,280 0
2 0 5,888 128
3 48,512 0 0

Compared to the first clusterization, this one reveals notable
differences. Clusters 0 and 3 contain only water. Plastics are
mostly grouped on Cluster 2, but there was some mixing with
water in Cluster 1. Again, whitecaps were grouped with plastics
due to their similarity.

Cluster 2 contains most polymer types and all plastic coverages.
White PP and LDPE pixels were entirely grouped in this clus-
ter. Some Orange PP and PET pixels were grouped on Cluster
1. Here, the use of the spectral indices as initial data points sug-
gests that the detection of what we refer to as “secondary water
pixels”, represented by clusters 1 and 3 is facilitated in this case.
This can be attributed to the PWDI, FDI, and PI which were
able to detect water pixels mixed with plastics and whitecaps.
Whereas, the “primary water pixels” refer to pure water.

Regarding the USGS images, the SIC approach clusters were
computed by the algorithm in the following manner:

Table 6. USGS images SIC approach

Cluster Water Plastic Wood Coast
0 0 0 0 397
1 1,359 64 49 0
2 1 0 0 671
3 583 39 13 1

By analysing the results of the K-means application using only
indices for the USGS images, we observed that there are a few
differences in the distribution of water, plastic, and wood, when
comparing to the OBC approach. Plastics were slightly more
concentrated on Cluster 1. Less coast pixels were grouped in
Cluster 0 and 2, indicating more difficulty to separate this class.
Only 1 of the images presented plastics on a separate cluster
from water.
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4.2.3 Integrated spectral clustering (ISC): the final step
of the K-means application involved the use of all spectral
bands and indices mentioned as initial data points. Following
that, these were the resulting cluster in the simulated images:

Table 7. Simulated images ISC approach

Cluster Water Plastic Whitecap
0 335,392 1,408 0
1 0 5,760 128
2 18,688 0 0
3 48,640 0 0

By looking at these clusterings, it is possible to notice that the
values are very similar to the SIC approach. The main differ-
ence is, there are more plastic pixels being mixed with water on
cluster 0. Submerged Orange PP is more numerous on Cluster
0 when compared to the previous approach. This indicates that
these submerged plastics are being more confused with water
in this scenario.

Finally, the clusterization of the USGS images that applied both
bands and indices approach resulted in the following values:

Table 8. USGS images ISC approach

Cluster Water Plastic Wood Coast
0 0 0 0 410
1 1,359 64 49 0
2 1 0 0 659
3 583 39 13 0

The differences between the ISC and SIC approaches are negli-
gible. Some coast pixels shifted from Cluster 2 to 0. The visual
inspection of the USGS images also revelead that they are very
visually similar between the two approaches. This suggests that
employing both methods could produce highly comparable out-
comes; however, further investigation is necessary.

The inclusion of the spectral indices, particulartly the PWDI,
in the clustering approach revelead noticeable impacts. There
were variations in cluster compositions on both the simulated
and USGS images. In the simulated images, this led to plas-
tics being assigned to only two clusters, in comparison to four
cluster in the only bands approach. This is an indication that
the PWDI can effectively distinguish between water and dry,
wet, and submerged plastics, although there was more mixing
between plastics and whitecaps in this context.

In the USGS images, plastics were slightly more concentrated
in specific clusters. Firstly, the previously mentioned primary
and secondary water pixels can be respectively interpreted as
“pure water” and “water with floating matter”. The spectral
indices facilitated this detection of floating matter, by assigning
more plastic pixels to specific clusters in conjunction with water
and wood. This was most noticeable when looking at the USGS
2021 images, when HDPE-mesh was included in the study’s
targets [Papageorgiou et al., 2022].

The fact that the K-means algorithm groups plastics with other
materials like wood and water in the USGS images, while it sep-
arates plastics from water in the simulations, suggests that the
algorithm can partially detect plastics in this context. However,
the inconsistency in the results indicates that there are limita-
tions in the algorithm’s ability to accurately distinguish plastics
from other floating matter. Further refinement of the algorithm
or consideration of additional features may be necessary to im-
prove its performance in detecting plastics with greater reliabil-
ity.

5. CONCLUSION

The comprehensive analysis of the spectral characteristics of
plastics and other targets commonly appearing in coastal en-
vironments, both in simulated and real-world remote sensing
images, provides valuable insights into the effectiveness and
limitations of current detection methodologies. The analysis
of plastic spectral signatures generated by the DART scenarios,
further emphasizes that this model is a valuable tool for aiding
in the detection of plastic pollution, being able to provide accu-
rate data of distinct polymers in simulated coastal zones. Other
aspects not included in the current study, such as including veg-
etation in the simulations, can also increase the realism created
by the scenarios.

The observed similarities in spectral signatures between the
simulated and USGS images underscore the potential for re-
mote sensing techniques to detect plastics in marine environ-
ments. However, notable differences in reflectance values and
clustering patterns between the two datasets highlight the chal-
lenges posed by the effects of atmospheric interference and
heterogeneous surface compositions. The application of spec-
tral indices, particularly the Plastic-Water Differentiation Index
(PWDI), shows promise in distinguishing plastics from water in
simulated scenarios. Nevertheless, its application in the USGS
images seemed to be hindered by factors like limited sample
size and the effects caused by water light absorption. The PWDI
exhibited a potential to detect PP submerged at 5 cm depth ac-
cording to the data. PET and LDPE are harder to detect, based
on both the spectral index and clustering results. This is due to
the fact that they are generally translucent plastics with lower
reflectance values.

The K-means application results demonstrate the algorithm’s
ability to partially detect plastics. It was able to cluster White
PP into a single group on simulated images, further solidify-
ing the importance of this polymer. The threshold of 40% pixel
coverage in MSI/Sentinel-2 simulated images (10 m of spatial
resolution) may represent the limit beyond which plastics can-
not be reliably detected, but further experiments are needed to
confirm this hypothesis.

Regarding the data from the USGS images, the algorithm was
effective at grouping the coast class into two distinct clusters on
all the applied approaches. The separation of water and floating
matter into distinct clusters indicate that the algorithm was able
to distinguish between pure water and water mixed with plas-
tics and wood. This separation was clearer both when applying
the PWDI, as well as in the images that contained high-density
polyethylene (HDPE). The clustering algorithm was not able to
create a single cluster for plastics in the USGS images. This
fact reinforces the need for refinement and additional features
to enhance its effectiveness. Moreover, our data implies white-
caps are ostensibly clustered with plastics across all scenarios.
In the future, we expect to refine the PWDI in order to facilitate
the discrimination between whitecaps and plastics.

Overall, while remote sensing techniques hold great potential
for plastic pollution detection, addressing the complexities of
real-world conditions remains a crucial avenue for future re-
search and development in this field.
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6. APPENDIX

6.1 Clustering results of simulated images

Figure 11. Number of plastic pixels allocated to each cluster
using the OBC approach for the data points.

Figure 12. Number of plastic pixels allocated to each cluster
using the SIC approach for the data points.

Figure 13. Number of plastic pixels allocated to each cluster
using the ISC approach the data points.

6.2 Band equations of spectral indices applied in this study
(expressed in terms of the MSI/Sentinel-2 bands):

Automated Water Extraction Index [Feyisa et al., 2014]

AWEI = 4 ∗ (B3−B12)− (0.25 ∗B8 + 2.75 ∗B11)

Water Ratio Index [Shen and Li, 2010]

WRI = B3+B4
B8+B12

Normalized Difference Water Index [McFeeters, 1996]

NDWI = B3−B8
B3+B8

Modified Normalized Difference Water Index [Xu, 2006]

MNDWI = B3−B12
B4+B12

Normalized Difference Vegetation Index [Rouse et al.,
1974]

NDV I = B8−B4
B8+B4

Reversed Normalized Difference Vegetation Index
[Themistocleous et al., 2020]

RNDV I = B4−B8
B4+B8

Simple Ratio [Jordan, 1969]

SR = B8
B4

Floating Debris Index [Biermann et al., 2020]

FDI = Rrs,B8 −R′
rs,B8

R′
rs,B8 = Rrs,B6 + (Rrs,B11 −Rrs,B6)

× (λB8−λB4)
(λB11−λB4)

× 10

Plastic Index [Themistocleous et al., 2020]

PI = B8
B8+B4

References

T. Acuña-Ruz, D. Uribe, R. Taylor, L. Amézquita, M. C.
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G. Gonçalves, U. Andriolo, L. Gonçalves, P. Sobral, and
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S. Kühn, E. L. B. Rebolledo, and J. A. van Franeker. Deleteri-
ous effects of litter on marine life. In Marine anthropogenic
litter, pages 75–116. Springer, Cham, 2015.

B. Lotz, J. Wittmann, and A. Lovinger. Structure and morphol-
ogy of poly (propylenes): a molecular analysis. Polymer, 37
(22):4979–4992, 1996.

A. Magrini. Impactos ambientais causados pelos plásticos:
uma discussão abrangente sobre os mitos e os dados
cientı́ficos. Editora E-papers, 2012.

V. Martı́nez-Vicente, J. R. Clark, P. Corradi, S. Aliani, M. Arias,
M. Bochow, G. Bonnery, M. Cole, A. Cózar, R. Donnelly,
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Abstract
There is a need to monitor plastic pollution on a larger scale. Remote sensing techniques are capable of providing
large amounts of data at regular intervals, which enables the analysis of the fate of accumulated plastics in coastal
zones. In the present study we investigated the efficacy of different classification approaches of the Random For-
est (RF) machine-learning technique for detecting plastic pollution in coastal zones using remote sensing imagery.
We applied the Discrete Anisotropic Radiative Transfer (DART) model, generating synthetic images that simulated
real-world scenarios of plastic polluted coastal zones to train the RF classifier. Results indicate that integrating spec-
tral indices with multispectral bands significantly enhances plastic detection accuracy, particularly in distinguishing
between plastic and water pixels. The Plastic-Water Differentiation Index (PWDI) was the most impactful feature
among the spectral bands and indices applied, highlighting the importance of specialized indices tailored to plastics’
unique spectral characteristics. PWDI had a feature importance score of over 0.2, followed by the optical bands
Green (0.19) and NIR (0.13). Despite challenges posed by imbalanced datasets, approaches combining bands and
indices exhibit superior performance in identifying plastic pixels across various polymer types and pixel coverages.
This study underscores the advantages of integrating advanced radiative transfer models like DART with machine
learning algorithms for accurate plastic pollution monitoring.

Descriptors: waste patches; machine learning; marine ecosystems; macroplastics

INTRODUCTION

Plastic is a flexible material used to produce a wide
range of items found in society, ranging from basic
containers to electronic parts. It is generally a durable
and lightweight material. However, the unsustainable
use of plastic results in its direct and passive depo-
sition in natural environments, including the oceans
(Jambeck et al. 2015, Meijer et al. 2021). Plastic
pollution is considered ubiquitous and negatively af-
fects ecosystems, human health, and economic activ-
ities (Andrady 2011, Rahman et al. 2021, Aretoulaki
et al. 2021).

Studies that aim to analyse the plastic pollution
problem generally apply a combination of visual anal-
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ysis and in-situ material collection, but the data pro-
duced might underestimate the actual amount of waste
present in the environment (Maximenko et al. 2019). In
this context, remote sensing techniques can be a use-
ful complementary tool to monitor plastic pollution on
a larger scale (Amézquita Toledo et al. 2017, Garaba
& Dierssen 2018, Biermann et al. 2020). But there
are limitations concerning the sensors employed, the
extensive variety of materials found in marine litter
patches, and the aquatic environment itself (Salgado-
Hernanz et al. 2021). In addition, raw plastic spec-
tral signatures are different when virgin plastics and
plastic litter have their features compared (Garaba &
Dierssen 2017, Moshtaghi et al. 2021). Furthermore,
current methods struggle to detect wet or submerged
plastics (Moshtaghi et al. 2021). For these reasons, it
is crucial to produce ground-truth and training data for
both the analysis of plastics in different conditions and
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for the improvement of current detection methods.
Currently, the main methodologies of detecting plas-

tic pollution are the employment of (i) spectral indices,
(ii) machine learning algorithms, and (iii) controlled lab-
oratory experiments (Biermann et al. 2020, Themis-
tocleous et al. 2020, Wolf et al. 2020, Garaba &
Dierssen 2017, Moshtaghi et al. 2021). There are
also cases of an integration of multiple methods and
also the employment of orbital and aerial sensors
to detect plastics (Acuña-Ruz et al. 2018, Garaba &
Dierssen 2018, Basu et al. 2021). These approaches
employ different sensors, but generally, the Sentinel-
2A/2B satellites, equipped with the MultiSpectral In-
strument (MSI), are among the most frequently used
(Hu 2022). The MSI sensor has 10 to 20 m of spatial
resolution and contains spectral bands from the visi-
ble (VIS), near infrared (NIR), and short-wave infrared
(SWIR), which are adequate to detect floating plastics
(Martínez-Vicente et al. 2019, Kikaki et al. 2022, Hu
2022).

The first challenge to detect marine plastic pollu-
tion is to distinguish between the spectral shapes of
water and plastics. Exposed plastic waste suffers
natural weathering effects and gets fragmented into
smaller particles overtime, being classified according
to its size (Magrini 2012). Current remote sensing
techniques only enable the detection of macroplas-
tics (> 5mm) (Hu 2022). Waste patches found in
coastal waters by Biermann et al. (2020) and Ciappa
(2021) were elongated aggregations of floating mate-
rials with sizes ranging from 0,2 to 10 km. Therefore,
it is crucial to distinguish between plastics and other
common targets found in marine waste patches, such
as whitecaps, sea weed, algae, driftwood, and timber.
Whitecaps are foamy white crests that form when wind
blows across the water surface, causing turbulence
and wave crashes. Whitecaps are generally bright and
are a frequent cause of false positives in plastic detec-
tion (Biermann et al. 2020, Dierssen & Garaba 2020).

Another matter is distinguishing between different
plastics. Synthetic polymers are created by chemical
reactions and are used as the building blocks of plas-
tics. Each plastic has a different polymer composi-
tion and exhibits distinct spectral shapes (Garaba &
Dierssen 2017, Tasseron et al. 2021). Some plastics,
such as polypropylene (PP) and high-density polyethy-
lene (HDPE) are slightly opaque and have higher re-
flectance values, which facilite the identification of
their distinct spectral signatures. PP and HDPE are
commonly applied for packaging, textiles, piping, and
other consumer goods. Other plastics, like low-density
polyethylene (LDPE, plastic bags) and polyethylene
terephthalate (PET, plastic bottles), are transparent,
thus having lower reflectance values and a more uni-
form spectral shape.

Within this framework, radiative transfer models can
create complex scenery that simulate environmental
conditions. The Discrete Anisotropic Radiative Trans-
fer (DART) model was chosen for this study due to
its potential to generate remote sensing products with
an array of different configurations. It is capable of
simulating the electromagnetic spectrum from visible
to thermal infrared, as well as including the spectral
signatures of objects on the DART scenes (Gastellu-
Etchegorry et al. 2012). Consequently, it is possible to
examine the spectral signatures of floating matter and
the potential to detect plastic litter.

This study’s objective is to identify the presence of
plastics in coastal zones using remote sensing tech-
niques. We simulated a polluted coastal zone using
DART scenes that contained water, plastics, and white-
caps. Plastic targets, composed of LDPE, PET, and
PP, were set on the scenes DART scenes. These poly-
mers were chosen due to their abundance when found
in natural environments (Schwarz et al. 2019). A series
of spectral indices were applied to the DART simula-
tions. Finally, the machine learning algorithm Random
Forest was employed to MSI/Sentinel-2 images with
confirmed plastic pixels in order to identify the pres-
ence of plastics. The input data points, used to train
the algorithm were the DART simulated images.

METHODS

Polluted coastal zone simulations

To simulate coastal zones that were polluted by
plastics, we constructed scenarios on the Discrete
Anisotropic Radiative Transfer (DART) model. This
model offers a comprehensive framework for under-
standing how light interacts with various components
such as water, aerosols, and pollutants like plastics.
Unlike traditional models, DART’s main advantage lies
in its capacity to handle anisotropic scattering, mak-
ing it particularly suitable for scenarios where irregular
surface features, such as whitecaps or plastic debris,
play a significant role in light interactions (Gastellu-
Etchegorry 2008).

Each scene had an area of 1200 x 600 m and fea-
tured a combination of water, whitecaps, and square-
shaped plastic targets positioned consistently across
generated images. To accurately represent the spec-
tral properties of plastic litter, we selected the spec-
tral database produced by Moshtaghi et al. (2021),
comprising plastics collected in-situ, which depicts the
weathering experienced in natural environments. This
study measured the spectra of plastics with a spec-
troradiometer in controlled laboratory experiments.
The chosen polymers included Low-Density Polyethy-
lene (LDPE), Polyethylene Terephthalate (PET), and
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Polypropylene (PP). LDPE and PET were simulated
in dry conditions. PP was represented in white and
orange colors, each exhibiting wet and submerged
states at depths of 2 cm and 5 cm. The water’s
spectral signature, already present in the DART spec-
tral library, represented clean oceanic water (Meerdink
et al. 2019).

The spectral signature of whitecaps were simulated
using a third-degree polynomial (Equation 1) that ac-
counts for the water absorption coefficient:

Rf = 0.47x
3 − 1.62x2 + 8.66x + 31.81

x = log(αw )

αw (m
−1) = Absorption coefficient of water.

(1)

This spectral signature is a result of the study con-
ducted by Dierssen (2019), which stated that this spec-
tral signature is an adequate representation of the
mean value of whitecaps measured in aquatic environ-
ments.

For our simulations, we selected the MultiSpectral
Instrument (MSI) aboard the Sentinel-2A and 2B satel-
lite constellation. We included the optical bands spec-
ified on table 1. The Coastal (B1), Water Vapor (B9),
and SWIR Cirrus (B10) bands were not considered in
this study.

Table 1. MSI/Sentinel-2 specifications. Bands in the color grey were not
included in the DART simulations.

Band Name Central λ
(nm)

Spatial res.
(m)

B1 Coastal 443 60

B2 Blue 492 10

B3 Green 560 10

B4 Red 665 10

B5 RedEdge1 704 20

B6 RedEdge2 741 20

B7 RedEdge3 783 20

B8 NIR 833 10

B8a Narrow NIR 865 20

B9 Water
Vapor

945 60

B10 SWIR
Cirrus

1374 60

B11 SWIR1 1614 20

B12 SWIR2 2202 20

These sensor configurations were integrated into
the DART model to ensure accurate representation

and analysis of the simulated scenes. The DART sim-
ulations comprised two main groups. The first group
focused on varying the plastic-to-pixel proportions rel-
ative to the Sentinel-2 pixel. Plastic targets were set
at different proportions, including 40%, 60%, 80%,
and 100% of the pixel area. The second group ex-
plored different whitecap-to-plastic proportions within
the scenes. Whitecaps were varied from 100%, 60%,
40% to 20%, allowing for analysis of how whitecaps
influence the detection and characterization of plastic
pollution in coastal zones.

Sentinel-2 images

In order to acquire MSI/Sentinel-2 images with con-
firmed presence of plastic pixels, we employed the
products of the studies developed by Topouzelis et al.
(2020) and Papageorgiou et al. (2022), which are re-
sults of the Plastic Litter Project (PLP), developed in
Greece. In this project, targets filled with different plas-
tic polymers were built and anchored at sea in order to
fill 100% of the MSI pixel (10 m). There were targets
composed on LDPE and PET on PLP 2019. Finally,
there were LDPE, PET, HDPE-mesh, and wooden tar-
gets on PLP 2021. In total, 10 level-1C images span-
ning from 2019 to 2021 were freely acquired from
the United States Geological Service (USGS) and the
Copernicus Access Hub. Throughout this work, we re-
fer to this set of images as “USGS images”. After vi-
sual inspection and cross-referencing with geolocation
data, 103 plastic pixels were annotated.

Image processing

We standardized the spatial resolution of the DART
and the USGS images to 10m by applying the Resam-
pling1 function in a Python script. We opted for the bilin-
ear interpolation mode over the near and cubic modes
because of its reduced amplitude when compared to
the other two. This choice resulted in a more accurate
alignment with the distribution of the USGS images.

Afterwards, the USGS level-1C products underwent
atmospheric correction by using the Atmospherical
Correction for OLI Lite (ACOLITE) algorithm, using the
Dark Spectrum Fitting (DSF) mode. This mode lever-
ages dark pixel spectra to estimate the inherent optical
properties of water, being considered adequate to the
application in aquatic environments (Vanhellemont &
Ruddick 2016).

Then, the USGS images were cropped, using the
Sentinel Application Platform (SNAP - version 8.0), so
that we could focus only on the specific areas of inter-
est for this study.

1Source and more details: http://tinyurl.com/resampling
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The DART and USGS images had their spatial and
spectral data integrated into a Python script to facilitate
their analysis and classification. The simulated image
pixels were labeled with a rule of 100% water cover-
age being considered “Water” and any percentage of
plastics was considered “Plastic”. The USGS images,
however, were classed according to partial (less than
100%) and full (100%) of plastic coverage; there was
also the labeling of the “Coast” and “Wood” pixels.

Spectral indices

A series of spectral indices were applied to the DART
and USGS images, aiming to test their potential to de-
tect plastics (Table 2). All details regarding band math
and original sources can be verified in the Appendix
(Page 8). The Floating Debris Index (FDI), developed
by Biermann et al. (2020), was succesfully applied to
detect floating plastic pixels on waste patches along
different coastal zones. The FDI is applied in conjunc-
tion with the Normalized Difference Vegetation Index
(NDVI) to detect floating matter and separate the veg-
etation from plastics (Biermann et al. 2020).

The Plastic Index (PI) and the Reversed Normal-
ized Difference Vegetation Index (RNDVI), were both
developed by Themistocleous et al. (2020). Accord-
ing to their findings, it was shown that the combined
use of PI and RNDVI was able to detect plastic bottle
(PET) targets constructed in the study and set at sea
in MSI/Sentinel-2 images. The study also tested the
effectiveness of water extraction (AWEI, WRI, NDWI,
MNDWI) and vegetation detection (NDVI, SR) indices
for the identification of plastic litter.

Table 2. Spectral indices applied in this study.

Spectral Index Application

AWEI

Water detection
WRI

NDWI

MNDWI

NDVI

Vegetation detectionRNDVI

SR

PWDI

Plastic detectionFDI

PI

The Plastic-Water Differentiation Index (PWDI) was
developed by Barbosa et al. (2024). It leverages
the unique features of plastics in the NIR (B8) and
RedEdge3 (B6) spectra, enabling the differentiation

between pure water and water with the presence of
floating matter according to the study’s findings. This
spectral index was created based on the characteristic
absorption lines and overall spectral behavior of plas-
tics, which is a result of their molecular composition.
Furthermore, the PWDI had the most prominent sep-
aration between water and plastic pixels in the DART
simulated images.

Supervised classification algorithm

In order to detect plastics in the USGS images, we
selected the Random Forest (RF) algorithm. This
is a popular machine learning algorithm widely used
in remote sensing applications for image classifica-
tion tasks. It is known for its ability to handle high-
dimensional data, deal with noisy data, and provide
estimates of feature importance (Ghose et al. 2010).
This algorithm operates by constructing a multitude of
decision trees during the training phase. During predic-
tion, each tree votes for a class, and the class with the
most votes (mode) is assigned as the final prediction.
It was chosen for this study because it generates an
importance score for every feature utilized in the clas-
sification, indicating which one was more impactful for
the decision trees.

We employed the RF algorithm by training it on sim-
ulated data generated using the DART model. This
training data included LDPE, PET, and PP plastic pix-
els at different pixel covereages, allowing the algorithm
to learn the spectral signatures associated with plas-
tic pollution. The selected maximum depth for trees
was set to 3 levels. This value yielded the highest
accuracy in classifying the simulated data according
to de Barros et al. (2023). Feature importance cal-
culations for each dataset were visually represented
through graphical means. By leveraging the capabil-
ities of the MSI/Sentinel-2 optical bands, we tested
if the algorithm could effectively distinguish between
the “Plastic” and “Water” classes. Three distinct ap-
proaches were explored to check for their effective-
ness: only MSI/Sentinel-2 bands (Table 1), only spec-
tral indices (Table 2), both bands and indices. They will
be referred to in this study as Classification Approach
(CA) 1, 2, and 3. There were 100 iterations of the algo-
rithm in order to test its consistency across all metrics.

RESULTS AND DISCUSSION
The labeling of the DART and USGS images revealed
an imbalance between all classes when compared
with plastics, which is to be expected when observing
coastal zones with floating matter and possible plastic
pixels. As seen in Figure 1, plastic makes up 1.75%
of the total pixels in the DART images, whereas in the
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USGS images it represents 2.59% and 4.21% for the
years of 2019 and 2021 respectively.

Figure 1. Class distribution of all pixels from the DART and USGS images.

The evaluation metrics generated by the Random
Forest algorithm are detailed in table 3 in order to see
how it performed on the three employed approaches.

Regarding the overall accuracy (OA), the Classifi-
cation Approach (CA) 1 and CA3 had similar perfor-
mances (0.95 and 0.88). This means that they were
able to correctly label an overall majority of pixels
across all images. However, this metric does not ad-
dress the imbalances on the dataset. Comparatively,
CA2 only managed to achieve a value of 0.05, which
indicates it only classified a very small percentage of
pixels correctly. In a case-by-case analysis of the gen-
erated classification maps, a majority of pixels were
classified as “Plastic” by CA2.

Table 3. Evaluation metrics attributed to each classification approach that
was employed.

Metric CA1 CA2 CA3

Overall accuracy 0.953 0.053 0.884

Balanced accuracy 0.536 0.501 0.599

F1 macro 0.555 0.05 0.595

F1 weighted 0.933 0.009 0.893

Fbeta macro 0.615 0.037 0.638

Fbeta weighted 0.927 0.014 0.91

Precision macro 0.909 0.525 0.701

Precision weighted 0.949 0.951 0.934

Recall macro 0.536 0.501 0.599

Recall weighted 0.953 0.053 0.884

The balanced accuracy (BA) is a crucial metric for
the analysing this dataset. It calculates the average
accuracy across all classes, ensuring that each class
contributes equally to the final score regardless of its
size. It is particularly useful when dealing with imbal-

anced datasets where one class dominates the others.
When observing CA1 and CA3, they are similar, but
there is a noticeable improvement on the latter (0.53
compared to 0.59). This suggests that CA3 is better at
correctly classifying pixels across different classes, not
just the majority class. Interestingly, CA2, which had
a very low OA, had a similar value to the previous two
(0.5). This demonstrates a fair performance of this ap-
proach across all classes. Nevertheless, CA2 shows
more overall false positives and negatives.

The increase in the F1 macro score for CA3 sug-
gests improved performance across all classes. How-
ever, the slight decrease in the F1 weighted score in-
dicates that CA3 prioritizes performance on minority
classes at the expense of the majority class. The two
F1 scores of CA2 are drastically lower compared to the
other two. This suggests that it is not effectively bal-
ancing precision and recall. In other words, it is evenly
misclassifying across classes at a high rate (as sug-
gested by the BA metric).

The macro precision for CA1 is substantially higher
than the other approaches, indicating that when it pre-
dicts a class, it’s more likely correct. However, it has a
lower macro recall score than CA3, suggesting that it
may be too conservative, missing a lot of actual posi-
tives. CA3 is better at identifying all classes of plastic
pixels (Table 4. This is important in the case of missing
an actual positive (a plastic pixel) which could be more
detrimental than incorrectly labeling a non-plastic pixel.
The weighted recall follows the trend of OA.

CA1 is more accurate overall and the best at pre-
dicting the majority class. However, due to the high
precision and lower recall, it misses many actual pos-
itives. When observing Table 4, it only managed to
correctly detect 13.9% of the total HDPE pixels and
missed all LDPE and PET pixels. CA3, while less ac-
curate overall, has a better BA, macro F1, and macro
recall, demonstrating that it is more effective at detect-
ing plastic pixels across all polymer types. It was able
to detect 47% of HDPE pixels. This comes at the cost
of precision, meaning that it may incorrectly label more
non-plastic pixels as Plastic. Finally, CA2 seems to
be ineffective for this task, since it has very poor accu-
racy in general. Despite it having a reasonably high BA
(0.5) and consistently detecting plastic pixels, the ap-
proach’s utility is questionable since it incorrectly clas-
sified the vast majority of the Water class as Plastic.

The plastic-to-pixel coverages in the USGS images
revealed that it was easier to detect plastics at higher
values. At 100% plastic coverage, the CA3 approach
was able to correctly detect 81% of pixels, while CA1
was able to detect 40.9%. Whereas, in the <25%
range, CA3 was able to detect 6.4% of pixels correctly,
while CA1 detected 0%.

In relation to polymers, identifying LDPE and PET
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Table 4. Plastic pixels that were correctly labeled in the USGS images by the CA1 and CA3 approaches.

Polymer Pixels
Bands Both

Mean hits (%) StD hits Min hits (%) Max hits (%) Mean hits (%) StD hits Min hits (%) Max hits (%)

LDPE 20 0.0 (0.0 %) 0 0 (0.0 %) 0 (0.0 %) 1.16 (5.8 %) 2.784 0 (0.0 %) 19 (95.0 %)

PET 25 0.0 (0.0 %) 0 0 (0.0 %) 0 (0.0 %) 1.91 (7.6 %) 3.72 0 (0.0 %) 23 (92.0 %)

LDPE and PET 4 0.0 (0.0 %) 0 0 (0.0 %) 0 (0.0 %) 0.61 (15.2 %) 1.043 0 (0.0 %) 4 (100.0 %)

HDPE 54 7.51 (13.9 %) 2.721 1 (1.9 %) 15 (27.8 %) 25.4 (47.0 %) 9.294 17 (31.5 %) 54 (100.0 %)

targets seems to be more challenging than detecting
HDPE. This is because of the semi-transparent qual-
ity of these polymers, which results in an overall de-
crease in their measure reflectance, as well as spectral
shapes with less distinct peaks and valleys. They are
also more prone to absorbing water than HDPE, which
increases the strong light absorption effect caused by
this (Hamilton 1967). On the other hand, HDPE is a
more opaque polymer, which increases the intensity of
the scattered and reflected light (Papini 1997). Incor-
porating HDPE targets in the DART simulations might
have a positive impact in the detection ratio of this poly-
mer in the USGS images.

Overall, the inclusion of spectral indices alongside
optical MSI/Sentinel-2 bands in the CA3 approach of-
fers a more equitable classification across different
classes, at the cost of some OA and precision. If the
goal is to minimize false negatives (missing plastic pix-
els), CA3 is better. If the goal is to ensure a high
confidence in the positive predictions made (precision),
CA1 might be preferred.

Cross-study comparison

Comparing studies on plastic detection in coastal
zones using remote sensing and machine learning en-
tails considering various factors like sensor types, clas-
sification algorithms, feature sets, and environmental
conditions. In the case of the study developed by Bier-
mann et al. (2020), it reportedly had 86% accuracy rate
by using the FDI, NDVI, and the Naïve-Bayes classi-
fier to detect plastics across different coastal zones. It
dealt with a more complex and heterogenous environ-
ment, in which sargassum and driftwood was associ-
ated with plastic litter. But, it was proven that the FDI
was not capable of detecting submerged plastic debris,
according to Moshtaghi et al. (2021).

Themistocleous et al. (2020) developed the PI and
RNDVI to detect targets constructed with PET bottles
and polyvinyl chloride (PVC) frames. It was succesful
in the detection of both the PET targets and plastic lit-
ter in a coastal zone with the presence of floating fish
farms. It was able to detect plastic fishing collars of 0.5-
1.10 m in diamater. It combined both MSI/Sentinel-2
imagery with unmanned aerial vehicles (UAVs) to de-
tect plastics. This is an example of a study that used
more than one kind of sensor to detect plastics.

Barbosa et al. (2024) made use of experiments with
the application of the K-means algorithm with differ-
ent data points. Nevertheless, gauging the extent of
the PWDI’s impact on the algorithm proved challeng-
ing. With the application of RF, which assigns distinct
scores to each feature, this task was made much sim-
pler. Our updated dataset exhibits a marked advance-
ment from prior research, unequivocally demonstrat-
ing the positive impact of PWDI.

The work developed by Garaba & Harmel (2022)
employed the 6SV radiative transfer model to simu-
late the top-of-atmosphere spectral signature of plas-
tics. It’s findings revealed that plastics submerged in
the top 1m of the water column were detectable by the
sensors of the WorldView-3, Sentinel-2, and Sentinel-
3 satellites. Both this study and the results presented
by Garaba & Harmel (2022) also employed a radia-
tive transfer model and the detection of plastic litter.
However, in the latter there was a focus on the spec-
tral signatures of plastics under different water clarity
and depth conditions. Our study demonstrated the
performance of the Random Forest algorithm, which
was trained applying the data generated by the DART
model, in correctly identifying plastics on Sentinel-2 im-
ages.

Performance wise, our results are comparable to
some other studies. Acuña-Ruz et al. (2018) employed
RF, Linear Discriminant Analysis (LDA), and Support
Vector Machine (SVM) algorithms to detect plastic lit-
ter, more specifically polystyrene boxes on a seashore.
They managed to achieve >75% accuracy using RF
and LDA, and a highest accuracy score of 90% us-
ing SVM. Basu et al. (2021) combined unsupervised
(K-means and Fuzzy C-means) and supervised (Sup-
port Vector Regression and Semi-supervised Fuzzy C-
means) algorithms to detect plastics in the Sentinel-2
images featured in the PLP and the study developed
by Themistocleous et al. (2020). It achieved very high
accuracies, up to 98.4%, but did not manage to detect
plastic pixels efficiently, similar to the Bands approach
applied in our study.

Feature importance

The RF algorithm provides a measure of the contribu-
tion of each feature to the model’s predictive perfor-
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Figure 2. Feature importance scores generated by the Random Forest algorithm.

mance. The Gini impurity2 is used to measure the
quality of a split in the decision trees. It calculates
how much each feature reduces the weighted impurity
across all trees in the forest. The feature importances
pertaining to the Bands and Both approaches can be
observed in Figure 2.

The most impactful feature in the Bands approach
was NIR (B8), while the least impactful was SWIR1
(B11). Reportedly, B8 is a very important optical band
for plastic detection (Tasseron et al. 2021, Moshtaghi
et al. 2021). According to Biermann et al. (2020), plas-
tics have reflectance peak in this spectral range and
water has a distinct absorption line. This band is also
extensively used in factorial settings to identify plastic
particles for recycling (Huth-Fehre et al. 1995). As for
B11, Hu (2022) has stated that around this spectral
range, the already low reflectance values can be re-
duced by 1 million times if the floating matter is just 1
cm below the water surface. So, it is justified that both
B11 and B12 did not have a good performance.

The feature importances for the approach that ap-
plied both bands and indices demonstrated that the

2Description and details about the Random Forest algorithm:
https://tinyurl.com/rndmforest

PWDI had the most impact across all features. The
PWDI leverages the contrast between the NIR (B8)
reflectance peak and RedEdge3 (B7) absorption line,
which was also demonstrated by the DART simula-
tions. This agrees with the findings from Barbosa et al.
(2024), which demonstrated the greater separability
of water and plastic pixels by the PWDI when com-
pared to the other spectral indices. The second and
third most impactful spectral indices were the AWEI
and MNDWI. This underscores the importance of wa-
ter extraction indices for plastic detection. On the other
hand, the vegetation monitoring indices did not have
much impact in this case. Testing on environments
that contain floating vegetation, as well as the inclusion
of vegetation on the DART simulations, are necessary
to further test their capabilities.

Concerning the bands from the VIS spectra
(B2,B3,B4), they were, overall, some of the most im-
portant features as well. They are very important
bands for detecting water pixels (Nguyen 2012). All
the water spectral indices applied in the present study
contain at least one VIS band. Moshtaghi et al. (2021)
stated that, depending on the plastic’s color, each band
from VIS can be a defining factor in order to detect it
correctly.
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CONCLUSION

We demonstrated in our study that the Discrete
Anisotropic Radiative Transfer (DART) model ad-
vanced our understanding of plastic pollution in coastal
zones. By simulating the interaction of light with vari-
ous types of plastics and environmental conditions, the
DART model provides crucial insights into the spec-
tral signatures of plastics, enabling the development of
the Plastic-Water Differentiation Index (PWDI). In this
study, we leveraged the capabilities of the DART model
to generate synthetic images that simulate real-world
scenarios, allowing us to assess the performance of
different classification approaches in identifying plas-
tic pixels in satellite imagery. In the future, we expect
to enhance the realism portrayed by the DART simu-
lations by adding vegetation and wood spectral signa-
tures, in order to represent the recurring association of
sargassum and driftwood with plastic litter.

Our findings highlight the importance of adopting
a comprehensive approach that combines both opti-
cal bands and spectral indices for plastic detection.
The inclusion of spectral indices alongside traditional
multispectral bands significantly enhances the classi-
fication performance, particularly in distinguishing be-
tween plastic and water pixels. The feature importance
analysis conducted as part of our study provides valu-
able insights into the key factors influencing the clas-
sification of plastic pixels. Among the spectral indices
evaluated, the PWDI stood out as the most impactful
feature, demonstrating its effectiveness in differentiat-
ing between plastic and water pixels. This underscores
the significance of developing specialized indices tai-
lored to the unique spectral characteristics of plastic
litter. NIR (B8), emerged as a crucial feature for plas-
tic detection, owing to the distinct reflectance peak ex-
hibited by plastics in this spectral range. Additionally,
water extraction indices such as the AWEI and MNDWI
showed significant impact, highlighting the importance
of leveraging spectral contrast between plastics and
surrounding water bodies for accurate classification.

Furthermore, our study emphasizes the challenges
associated with imbalanced datasets, where the pres-
ence of plastics constitutes only a small fraction of the
total pixels. While traditional classification approaches
based solely on optical bands achieve high overall ac-
curacy, they may struggle to accurately detect plastic
pixels, especially those belonging to minority classes
such as LDPE and PET. Our testing of the approach
that integrates spectral indices exhibited better perfor-
mance in correctly detecting plastic pixels across dif-
ferent polymer types and pixel coverages, albeit at the
cost of slightly lower overall accuracy and precision.

In conclusion, our study demonstrates that the in-
tegration of radiative transfer models, such as DART,

with machine learning algorithms enhances plastic de-
tection in coastal zones. By harnessing the spectral
signatures of plastics and developing specialized in-
dices tailored to their unique characteristics, we can im-
prove the accuracy and effectiveness of remote sens-
ing plastic pollution monitoring techniques.

APPENDIX
Band equations of spectral indices applied
in this study (expressed in terms of the
MSI/Sentinel-2 bands)

Automated Water Extraction Index (Feyisa
et al. 2014)

AWEI = 4 ∗ (B3− B12)− (0.25 ∗ B8 + 2.75 ∗ B11)

Water Ratio Index (Shen & Li 2010)
WRI = B3+B4

B8+B12

Normalized Difference Water Index
(McFeeters 1996)
NDWI = B3−B8

B3+B8

Modified Normalized Difference Water Index
(Xu 2006)

MNDWI = B3−B12
B4+B12

Normalized Difference Vegetation Index (Rouse
et al. 1974)
NDV I = B8−B4

B8+B4

Reversed Normalized Difference Vegetation Index
(Themistocleous et al. 2020)

RNDV I = B4−B8
B4+B8

Simple Ratio (Jordan 1969)
SR = B8

B4

Plastic Water Differentation Index
PWDI = B8−B6

B8+B6

Floating Debris Index (Biermann et al. 2020)
FDI = Rrs,B8 − R′rs,B8

R′rs,B8 = Rrs,B6 + (Rrs,B11 − Rrs,B6)
× (λB8−λB4)(λB11−λB4) × 10

Plastic Index (Themistocleous et al. 2020)
P I = B8

B8+B4

REFERENCES
ACUÑA-RUZ, T., URIBE, D., TAYLOR, R.,

AMÉZQUITA, L., GUZMÁN, M. C., MERRILL, J.,
MARTÍNEZ, P., VOISIN, L. & MATTAR, C. 2018.
Anthropogenic marine debris over beaches:
Spectral characterization for remote sensing
applications, Remote Sensing of Environment
217: 309–322.

2024, v 0:e 0

43



Barbosa et al.

AMÉZQUITA TOLEDO, L. P. ET AL. 2017. Elaboración
de una propuesta para la gestión integral de resid-
uos antropogénicos costeros en el archipiélado
de chiloé, chile.

ANDRADY, A. L. 2011. Microplastics in the marine en-
vironment, Marine pollution bulletin 62(8): 1596–
1605.

ARETOULAKI, E., PONIS, S., PLAKAS, G.,
AGALIANOS, K. ET AL. 2021. Marine plas-
tic littering: A review of socio economic impacts,
J. Sustain. Sci. Manag 16(3): 277–301.

BARBOSA, D. G., DE BARROS, B. M. & HACKMANN,
C. L. 2024. Development of a novel plastic-water
differentiation index for detecting plastic debris in
sentinel-2 imagery, Unpublished manuscript .

BASU, B., SANNIGRAHI, S., SARKAR BASU, A. &
PILLA, F. 2021. Development of novel classifi-
cation algorithms for detection of floating plastic
debris in coastal waterbodies using multispectral
sentinel-2 remote sensing imagery, Remote Sens-
ing 13(8): 1598.

BIERMANN, L., CLEWLEY, D., MARTINEZ-VICENTE,
V. & TOPOUZELIS, K. 2020. Finding plastic
patches in coastal waters using optical satellite
data, Scientific reports 10(1): 1–10.

CIAPPA, A. C. 2021. Marine plastic litter detection off-
shore hawai’i by sentinel-2, Marine Pollution Bul-
letin 168: 112457.

DE BARROS, B. M., BARBOSA, D. G. & HACKMANN,
C. L. 2023. Spectral analysis of marine debris
in simulated and observed sentinel-2/msi images
using unsupervised classification, arXiv preprint
arXiv:2306.15008 .

DIERSSEN, H. M. 2019. Hyperspectral measure-
ments, parameterizations, and atmospheric cor-
rection of whitecaps and foam from visible to
shortwave infrared for ocean color remote sens-
ing, Frontiers in Earth Science 7: 14.

DIERSSEN, H. M. & GARABA, S. P. 2020. Bright
oceans: Spectral differentiation of whitecaps, sea
ice, plastics, and other flotsam, Recent Advances
in the Study of Oceanic Whitecaps, Springer,
pp. 197–208.

FEYISA, G. L., MEILBY, H., FENSHOLT, R. & PROUD,
S. R. 2014. Automated water extraction index: A
new technique for surface water mapping using
landsat imagery, Remote sensing of environment
140: 23–35.

GARABA, S. & DIERSSEN, H. 2017. Spectral refer-
ence library of 11 types of virgin plastic pellets
common in marine plastic debris, Data set avail-
able on-line [http://ecosis. org] from the Ecological
Spectral Information System (EcoSIS). http://dx.
doi. org/10 21232: C27H34.

GARABA, S. P. & DIERSSEN, H. M. 2018. An airborne
remote sensing case study of synthetic hydrocar-
bon detection using short wave infrared absorp-
tion features identified from marine-harvested
macro-and microplastics, Remote sensing of en-
vironment 205: 224–235.

GARABA, S. P. & HARMEL, T. 2022. Top-of-
atmosphere hyper and multispectral signatures
of submerged plastic litter with changing water
clarity and depth, Optics Express 30(10): 16553–
16571.

GASTELLU-ETCHEGORRY, J.-P. 2008. 3d modeling
of satellite spectral images, radiation budget and
energy budget of urban landscapes, Meteorology
and atmospheric physics 102(3): 187–207.

GASTELLU-ETCHEGORRY, J.-P., GRAU, E. & LAU-
RET, N. 2012. Dart: A 3d model for remote
sensing images and radiative budget of earth sur-
faces, Modeling and simulation in Engineering
pp. ISBN–978.

GHOSE, M., PRADHAN, R. & GHOSE, S. S. 2010. De-
cision tree classification of remotely sensed satel-
lite data using spectral separability matrix, Inter-
national Journal of Advanced Computer Science
and Applications 1(5).

HAMILTON, R. 1967. Water vapor permeability of
polyethylene and other plastic materials, Bell Sys-
tem Technical Journal 46(2): 391–415.

HU, C. 2022. Remote detection of marine debris
using sentinel-2 imagery: A cautious note on
spectral interpretations, Marine Pollution Bulletin
183: 114082.

HUTH-FEHRE, T., FELDHOFF, R., KANTIMM,
T., QUICK, L., WINTER, F., CAMMANN, K.,
VAN DEN BROEK, W., WIENKE, D., MELSSEN,
W. & BUYDENS, L. 1995. Nir-remote sensing and
artificial neural networks for rapid identification
of post consumer plastics, Journal of Molecular
Structure 348: 143–146.

JAMBECK, J. R., GEYER, R., WILCOX, C., SIEGLER,
T. R., PERRYMAN, M., ANDRADY, A., NARAYAN,
R. & LAW, K. L. 2015. Plastic waste inputs from
land into the ocean, Science 347(6223): 768–771.

2024, v 0:e 0

44



Barbosa et al.

JORDAN, C. F. 1969. Derivation of leaf-area index
from quality of light on the forest floor, Ecology
50(4): 663–666.

KIKAKI, K., KAKOGEORGIOU, I., MIKELI, P., RAIT-
SOS, D. E. & KARANTZALOS, K. 2022. Marida:
A benchmark for marine debris detection from
sentinel-2 remote sensing data, PloS one
17(1): e0262247.

MAGRINI, A. 2012. Impactos ambientais causados pe-
los plásticos: uma discussão abrangente sobre
os mitos e os dados científicos, Editora E-papers.

MARTÍNEZ-VICENTE, V., CLARK, J. R., CORRADI,
P., ALIANI, S., ARIAS, M., BOCHOW, M., BON-
NERY, G., COLE, M., CÓZAR, A., DONNELLY,
R. ET AL. 2019. Measuring marine plastic debris
from space: Initial assessment of observation re-
quirements, Remote Sensing 11(20): 2443.

MAXIMENKO, N., CORRADI, P., LAW, K. L., VAN SE-
BILLE, E., GARABA, S. P., LAMPITT, R. S., GAL-
GANI, F., MARTINEZ-VICENTE, V., GODDIJN-
MURPHY, L., VEIGA, J. M. ET AL. 2019. To-
ward the integrated marine debris observing sys-
tem, Frontiers in marine science 6.

MCFEETERS, S. K. 1996. The use of the normalized
difference water index (ndwi) in the delineation of
open water features, International journal of re-
mote sensing 17(7): 1425–1432.

MEERDINK, S. K., HOOK, S. J., ROBERTS, D. A.
& ABBOTT, E. A. 2019. The ecostress spectral
library version 1.0, Remote Sensing of Environ-
ment 230: 111196.

MEIJER, L. J., VAN EMMERIK, T., VAN DER ENT, R.,
SCHMIDT, C. & LEBRETON, L. 2021. More than
1000 rivers account for 80% of global riverine plas-
tic emissions into the ocean, Science Advances
7(18): eaaz5803.

MOSHTAGHI, M., KNAEPS, E., STERCKX, S.,
GARABA, S. & MEIRE, D. 2021. Spectral re-
flectance of marine macroplastics in the vnir and
swir measured in a controlled environment, Sci-
entific Reports 11(1): 1–12.

NGUYEN, D. 2012. Water body extraction from multi
spectral image by spectral pattern analysis, The
International Archives of the Photogrammetry, Re-
mote Sensing and Spatial Information Sciences
39: 181–186.

PAPAGEORGIOU, D., TOPOUZELIS, K., SUARIA, G.,
ALIANI, S. & CORRADI, P. 2022. Sentinel-2 de-
tection of floating marine litter targets with partial

spectral unmixing and spectral comparison with
other floating materials (plastic litter project 2021),
Remote Sensing 14(23): 5997.

PAPINI, M. 1997. Analysis of the reflectance of poly-
mers in the near-and mid-infrared regions, Jour-
nal of Quantitative Spectroscopy and Radiative
Transfer 57(2): 265–274.

RAHMAN, A., SARKAR, A., YADAV, O. P., ACHARI,
G. & SLOBODNIK, J. 2021. Potential human
health risks due to environmental exposure to
nano-and microplastics and knowledge gaps: A
scoping review, Science of the Total Environment
757: 143872.

ROUSE, J. W., HAAS, R. H., SCHELL, J. A., DEER-
ING, D. W. ET AL. 1974. Monitoring vegetation
systems in the great plains with erts, NASA Spec.
Publ 351(1): 309.

SALGADO-HERNANZ, P. M., BAUZÀ, J., ALOMAR,
C., COMPA, M., ROMERO, L. & DEUDERO, S.
2021. Assessment of marine litter through remote
sensing: recent approaches and future goals, Ma-
rine Pollution Bulletin 168: 112347.

SCHWARZ, A. E., LIGTHART, T. N., BOUKRIS, E. &
VAN HARMELEN, T. 2019. Sources, transport,
and accumulation of different types of plastic litter
in aquatic environments: a review study, Marine
pollution bulletin 143: 92–100.

SHEN, L. & LI, C. 2010. Water body extraction from
landsat etm+ imagery using adaboost algorithm,
2010 18th International Conference on Geoinfor-
matics, IEEE, pp. 1–4.

TASSERON, P., VAN EMMERIK, T., PELLER, J.,
SCHREYERS, L. & BIERMANN, L. 2021. Advanc-
ing floating macroplastic detection from space us-
ing experimental hyperspectral imagery, Remote
Sensing 13(12): 2335.

THEMISTOCLEOUS, K., PAPOUTSA, C.,
MICHAELIDES, S. & HADJIMITSIS, D. 2020.
Investigating detection of floating plastic litter
from space using sentinel-2 imagery, Remote
Sensing 12(16): 2648.

TOPOUZELIS, K., PAPAGEORGIOU, D., KARA-
GAITANAKIS, A., PAPAKONSTANTINOU, A. &
ARIAS BALLESTEROS, M. 2020. Remote sens-
ing of sea surface artificial floating plastic tar-
gets with sentinel-2 and unmanned aerial sys-
tems (plastic litter project 2019), Remote Sensing
12(12): 2013.

2024, v 0:e 0

45



Barbosa et al.

VANHELLEMONT, Q. & RUDDICK, K. 2016. Acol-
ite for sentinel-2: Aquatic applications of msi im-
agery, Proceedings of the 2016 ESA Living Planet
Symposium, Prague, Czech Republic, pp. 9–13.

WOLF, M., VAN DEN BERG, K., GARABA, S. P.,
GNANN, N., SATTLER, K., STAHL, F. & ZIELIN-
SKI, O. 2020. Machine learning for aquatic plas-
tic litter detection, classification and quantifica-
tion (aplastic-q), Environmental Research Letters
15(11): 114042.

XU, H. 2006. Modification of normalised difference wa-
ter index (ndwi) to enhance open water features in
remotely sensed imagery, International journal of
remote sensing 27(14): 3025–3033.

2024, v 0:e 0

46



3 CONCLUSÕES

A análise das características espectrais dos plásticos e outros alvos comuns 

aos ambientes marinhos, em imagens de sensoriamento remoto reais e simuladas, 

forneceu conhecimentos indispensáveis sobre a efetividade e as limitações das 

técnicas de detecção atuais. Foi demonstrado que o modelo DART é capaz de gerar 

assinaturas espectrais que são de grande valia para entender o comportamento dos 

polímeros em zonas costeiras, assim como treinar algoritmos de aprendizado de 

máquina para classificação de imagens. O controle da composição das cenas, onde 

é possível mudar os tipos de polímeros, seus tamanhos e adicionar outros alvos é 

um grande diferencial para estudos desta problemática. Em trabalhos futuros, a 

incorporação de vegetação e madeira pode aumentar o realismo das cenas 

construídas no modelo DART. 

Através da análise das imagens geradas pelo modelo DART e da estrutura 

molecular dos polímeros foi possível desenvolver o Plastic-Water Differentiation 

Index (PWDI). O índice radiométrico PWDI demonstrou a separação entre plástico e 

água nas imagens simuladas pelo modelo DART. Sua incorporação no método de 

clusterização K-means demonstrou aspectos positivos relacionados à utilização de 

índices em conjunto com bandas espectrais para a detecção dos plásticos. O 

algoritmo foi capaz de agrupar polipropileno nas imagens simuladas, denotando a 

importância deste polímero. Os resultados provenientes da aplicação nas imagens 

MSI/Sentinel-2 com presença confirmada de plásticos demonstraram que, com a 

incorporação do PWDI, foi possível a diferenciação entre água pura e água com 

presença de matéria flutuante (plásticos e madeira). Esta diferenciação ficou mais 

clara também nas imagens de 2021, devido aos alvos de polietileno de alta 

densidade (HDPE). Por fim, há uma hipótese de que 40% de cobertura do pixel MSI 

por plásticos seja um limite para sua detecção.

Os resultados da aplicação da técnica de aprendizado de máquina Random 

Forest (RF) revelaram a importância de integrar índices radiométricos em conjunto 

com bandas espectrais para detectar plásticos em ambientes marinhos. A distinção 

entre pixels de água e plásticos foi aumentada significativamente através desta 

conjunção. A utilização da abordagem com uso exclusivo de bandas espectrais 

revelou uma alta acurácia geral, porém, com altas taxas de falsos negativos. 
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Ademais, a abordagem com aplicação apenas de índices radiométricos se mostrou 

ineficiente de modo geral. De acordo com o cálculo de importância de todas as 

features empregadas pelo algoritmo RF, o PWDI possuiu a pontuação mais alta, e 

portanto foi o índice radiométrico mais impactante para as decisões do classificador. 

Outras features consideravelmente impactantes foram a banda espectral NIR e o 

Automated Water-Extraction Index (AWEI).

Comparativamente, os resultados obtidos com o algoritmo RF destacam-se em 

relação ao método K-means aplicado nos dois estudos. Enquanto o K-means foi 

eficaz na clusterização das imagens, sua capacidade de fornecer uma avaliação 

quantitativa do impacto de diferentes abordagens e características foi limitada. Por 

outro lado, o RF permitiu uma análise mais detalhada e precisa. Foram geradas 

pontuações para cada abordagem, assim como para a importância de todas as 

bandas espectrais e índices utilizados. Essa abordagem quantitativa do RF 

proporcionou uma compreensão mais profunda do desempenho das diferentes 

estratégias de detecção de plástico, permitindo uma avaliação mais robusta do 

impacto do PWDI e de outros índices radiométricos na precisão da detecção. Assim, 

o RF emergiu como uma ferramenta superior para a classificação de imagens de 

sensoriamento remoto em relação ao K-means, oferecendo insights mais claros e 

precisos para o monitoramento da poluição por plásticos em zonas costeiras.

Este trabalho foi realizado junto ao grupo de pesquisa Remote Sensing of 

Coastal and Urban Environments (RESCUE). Previamente, o estudo desenvolvido 

por De Barros (2023) também demonstrou a utilização do modelo DART e da técnica 

de clusterização K-means para analisar a assinatura espectral de polímeros e 

detectar plásticos em imagens MSI/Sentinel-2. As maiores coberturas de plásticos 

no pixel também foram associadas a uma maior taxa de detecção correta da 

poluição. No entanto, comparativamente, os principais avanços delineados no 

presente estudo são: (i) o desenvolvimento do PWDI, que é baseado nas 

características espectrais advindas da estrutura molecular dos polímeros; (ii) a 

identificação de plásticos submersos pelo PWDI nas imagens sintéticas do modelo 

DART. A aplicação desta metodologia tornou possível que plásticos submersos de 2 

até 5 cm na coluna d’água pudessem ser detectados. De acordo com Moshtaghi et 

al. (2021), uma das principais ocorrências de falsos negativos com a aplicação do 
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FDI (Biermann et al., 2020) foi a qualquer nível de submersão dos plásticos abaixo 

da coluna d’água.

Deste modo, o presente estudo demonstra o potencial da integração entre 

modelos de transferência radiativa com técnicas de clusterização e aprendizado de 

máquina para detecção de plásticos em zonas costeiras. Ao empregar a análise das 

assinaturas espectrais dos plásticos e desenvolver índices radiométricos adaptados 

às suas características únicas, é possível melhorar a precisão e eficácia das 

técnicas de monitoramento de poluição por plásticos por sensoriamento remoto.

FINANCIAMENTO

Este trabalho teve por órgão financiador a CAPES através da bolsa de estudos 

de Mestrado.

REFERÊNCIAS

ACUÑA-RUZ, T. et al. Anthropogenic marine debris over beaches: Spectral 
characterization for remote sensing applications. Remote Sensing of Environment, v. 
217, p. 309-322, 2018.

ALEEM, A. et al. Target Classification of Marine Debris Using Deep Learning. 
Intelligent Automation & Soft Computing, v. 32, n. 1, 2022.

ANDRADY, A. L. Microplastics in the marine environment. Marine pollution bulletin, v. 
62, n. 8, p. 1596-1605, 2011.

ARETOULAKI, E. et al. Marine plastic littering: A review of socio economic impacts. 
J. Sustain. Sci. Manag, v. 16, n. 3, p. 277-301, 2021.

BALLESTEROS, L. V.; MATTHEWS, J. L.; HOEKSEMA, B. W. Pollution and coral 
damage caused by derelict fishing gear on coral reefs around Koh Tao, Gulf of 
Thailand. Marine pollution bulletin, v. 135, p. 1107-1116, 2018.

BERTELSEN, I. M. G.; OTTOSEN, L. M. Engineering properties of fibres from waste 
fishing nets. In: International RILEM Conference on Materials, Systems and 
Structures in Civil Engineering. Technical University of Denmark, Department of Civil 
Engineering, 2016. p. 7-16.

49



BIERMANN, L. et al. Finding plastic patches in coastal waters using optical satellite 
data. Scientific reports, v. 10, n. 1, p. 5364, 2020.

CAMPANALE, C. et al. A practical overview of methodologies for sampling and 
analysis of microplastics in riverine environments. Sustainability, v. 12, n. 17, p. 6755, 
2020.

CIAPPA, A. C. Marine plastic litter detection offshore Hawai'i by Sentinel-2. Marine 
Pollution Bulletin, v. 168, p. 112457, 2021.

DE BARROS, B. M.; BARBOSA, D. G.; HACKMANN, C. L. Spectral Analysis of 
Marine Debris in Simulated and Observed Sentinel-2/MSI Images using 
Unsupervised Classification. arXiv preprint arXiv:2306.15008, 2023.

DIERSSEN, H. M.; GARABA, S. P. Bright oceans: Spectral differentiation of 
whitecaps, sea ice, plastics, and other flotsam. Recent Advances in the Study of 
Oceanic Whitecaps: Twixt Wind and Waves, p. 197-208, 2020.

GARABA, S. P.; DIERSSEN, H. M. Spectral reference library of 11 types of virgin 
plastic pellets common in marine plastic debris. Data Set, 2017.

GARABA, S. P.; DIERSSEN, H. M. An airborne remote sensing case study of 
synthetic hydrocarbon detection using short wave infrared absorption features 
identified from marine-harvested macro-and microplastics. Remote Sensing of 
Environment, v. 205, p. 224-235, 2018.

GARABA, S. P. et al. Concentration, anisotropic and apparent colour effects on 
optical reflectance properties of virgin and ocean-harvested plastics. Journal of 
Hazardous Materials, v. 406, p. 124290, 2021.

GASTELLU-ETCHEGORRY, J.; GRAU, E.; LAURET, N. DART: A 3D model for 
remote sensing images and radiative budget of earth surfaces. Modeling and 
simulation in engineering, n. 2, 2012.

GONÇALVES, G. et al. Quantifying marine macro litter abundance on a sandy beach 
using unmanned aerial systems and object-oriented machine learning methods. 
Remote Sensing, v. 12, n. 16, p. 2599, 2020.

HU, C. Remote detection of marine debris using Sentinel-2 imagery: A cautious note 
on spectral interpretations. Marine Pollution Bulletin, v. 183, p. 114082, 2022.

JANSEN, J. A. Plastics–It’s All About Molecular Structure. Plast. Eng, 2016.

KUESTER, T.; BOCHOW, M. Spectral Modeling of Plastic Litter in Terrestrial 
Environments-Use of 3D Hyperspectral Ray Tracing Models to Analyze the Spectral 
Influence of Different Natural Ground Surfaces on Remote Sensing Based Plastic 
Mapping. In: 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: 
Evolution in Remote Sensing (WHISPERS). IEEE, 2019. p. 1-7.

KÜHN, S.; BRAVO REBOLLEDO, E. L.; VAN FRANEKER, J. A. Deleterious effects of 
litter on marine life. Marine anthropogenic litter, p. 75-116, 2015.

50



MAGRINI, A. Impactos ambientais causados pelos plásticos: uma discussão 
abrangente sobre os mitos e os dados científicos. Editora E-papers, 2012.

MARTÍNEZ-VICENTE, V. et al. Measuring marine plastic debris from space: Initial 
assessment of observation requirements. Remote Sensing, v. 11, n. 20, p. 2443, 
2019.

MOSHTAGHI, M. et al. Spectral reflectance of marine macroplastics in the VNIR and 
SWIR measured in a controlled environment. Scientific Reports, v. 11, n. 1, p. 5436, 
2021.

PAPAGEORGIOU, D. et al. Sentinel-2 detection of floating marine litter targets with 
partial spectral unmixing and spectral comparison with other floating materials 
(plastic litter project 2021). Remote Sensing, v. 14, n. 23, p. 5997, 2022.

PAPINI, M. Analysis of the reflectance of polymers in the near-and mid-infrared 
regions. Journal of Quantitative Spectroscopy and Radiative Transfer, v. 57, n. 2, p. 
265-274, 1997.

PHAM, C. K. et al. Marine litter distribution and density in European seas, from the 
shelves to deep basins. PloS one, v. 9, n. 4, p. e95839, 2014.

SALGADO-HERNANZ, P. M. et al. Assessment of marine litter through remote 
sensing: recent approaches and future goals. Marine Pollution Bulletin, v. 168, p. 
112347, 2021.

SCHWARZ, A. E. et al. Sources, transport, and accumulation of different types of 
plastic litter in aquatic environments: a review study. Marine pollution bulletin, v. 143, 
p. 92-100, 2019.

TASSERON, P. et al. Advancing floating macroplastic detection from space using 
experimental hyperspectral imagery. Remote Sensing, v. 13, n. 12, p. 2335, 2021.

THEMISTOCLEOUS, K. et al. Investigating detection of floating plastic litter from 
space using sentinel-2 imagery. Remote Sensing, v. 12, n. 16, p. 2648, 2020.

TOPOUZELIS, K. et al. Remote sensing of sea surface artificial floating plastic 
targets with Sentinel-2 and unmanned aerial systems (plastic litter project 2019). 
Remote Sensing, v. 12, n. 12, p. 2013, 2020.

VANHELLEMONT, Q.; RUDDICK, K. Acolite for Sentinel-2: Aquatic applications of 
MSI imagery. In: Proceedings of the 2016 ESA Living Planet Symposium, Prague, 
Czech Republic. 2016. p. 9-13.

ZHANG, F. et al. Composition, spatial distribution and sources of plastic litter on the 
East China Sea floor. Science of The Total Environment, v. 742, p. 140525, 2020.

51


