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“It’s time to try defying gravity”

— WICKED
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ABSTRACT

As machine learning becomes more popular, it is natural for non-experts to desire to lever-

age machine learning for their tasks. However, selecting an algorithm and fine-tuning it

to work well on a given task is complex and requires technical knowledge, which they

usually lack. This issue is even more evident when ensembles are used, as the number of

algorithms to choose from and hyperparameters to tune grows significantly. Ensembles

are particularly useful in complex tasks that involve challenges such as class imbalance or

high dimensionality, which are often encountered in domain-specific tasks. Thus, devel-

oping mechanisms that help the non-technical user choose and tune an ensemble model to

fit a task is highly relevant in the area of machine learning. In this thesis, a novel frame-

work is presented called Meta-CLEO, which uses meta-learning to create ensembles for

new tasks by relating them to previously learned ones, thus leveraging classifier ensem-

bles that worked well on similar tasks in the past. Ensemble-specific diversity metrics are

also used to provide increased generalization. Experiments with 74 tasks evaluated dif-

ferent ensemble ranking functions based on ensemble performance and diversity metrics

and compared Meta-CLEO’s results with two baselines, Random Forest and AdaBoost.

Results show that Meta-CLEO is equivalent to or outperforms the baselines in more than

75% of the evaluated tasks.

Keywords: Meta-learning. Ensembles. Classification Tasks.



Meta-aprendizado para a otimização de ensembles de classificação

RESUMO

À medida que o aprendizado de máquina se torna mais popular, é natural que profissio-

nais de outras áreas e que não são especialistas queiram aproveitá-lo em suas tarefas. No

entanto, selecionar um algoritmo e ajustá-lo para que funcione bem em uma determinada

tarefa é complexo e requer conhecimento técnico em aprendizado de máquina, que os

profissionais de outros domínios em geral não possuem. Esse problema fica ainda mais

evidente quando são usados ensembles, pois o número de algoritmos a serem escolhidos

e de hiperparâmetros a serem ajustados aumenta significativamente. Os ensembles são

particularmente úteis em tarefas complexas que envolvem desafios como desequilíbrio

de classe ou alta dimensionalidade, que são frequentemente encontrados em tarefas es-

pecíficas de domínio. Assim, o desenvolvimento de mecanismos que ajudem o usuário

não técnico a escolher e ajustar um modelo de ensembles para se resolver uma tarefa é

de grande relevância na área de aprendizado de máquina. Nesta tese, é apresentado um

novo framework chamado Meta-CLEO, que usa o meta-aprendizado para criar ensembles

para novas tarefas relacionando-as com tarefas aprendidas anteriormente, aproveitando

ensembles de classificadores que funcionaram bem em tarefas semelhantes no passado.

Métricas de diversidade específicas de ensembles também são usadas para proporcionar

maior generalização. Os experimentos realizados com 74 tarefas avaliaram diferentes al-

goritmos de ranqueamento de ensembles com base no desempenho do ensemble e nas

métricas de diversidade e compararam os resultados do Meta-CLEO com dois baselines,

Random Forest e AdaBoost. Os resultados mostram que o Meta-CLEO é equivalente ou

tem desempenho superior aos baselines em mais de 75% das tarefas avaliadas.

Palavras-chave: Meta-aprendizado, Ensembles, Tarefas de Classificação.
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1 INTRODUCTION

Machine learning (ML) has never been so popular. With its increasing adoption

and the evolution of hardware resources and cloud computing, more and more research

areas and industries are expanding their technology investments to solve their domain

challenges with ML. Use-cases with ML solutions are rapidly growing within agricul-

ture (Ayoub Shaikh; RASOOL; Rasheed Lone, 2022; SHARMA et al., 2020), industry

4.0 (LASI et al., 2014; DALENOGARE et al., 2018), smart cities (ALANNE; SIERLA,

2022) and civil engineering (KHAMBRA; SHUKLA, 2023; AVCI et al., 2021), to name

a few.

Many tasks can be solved through ML, e.g., regression, classification, and ma-

chine translation. One of the most relevant and the focus of this thesis is classification, i.e.,

the prediction of which group a given instance belongs to. Classification tasks are solved

by classifiers, whose main challenge is identifying what makes samples different from one

category to another and using the acquired knowledge to predict the class of an unknown

instance. Some commonly used classifiers are neural networks (WIDROW; LEHR, 1990),

decision trees (QUINLAN, 1986), and Nearest-Neighbors (COVER; HART, 1967).

The use of a single, isolated classifier may be limited (DIETTERICH, 2000), es-

pecially in complex scenarios (HIRSCH; REIMANN; MITSCHANG, 2019), where the

amount of data is either huge/scarce (POLIKAR, 2006) and/or imbalanced (GALAR et

al., 2011; HE; GARCIA, 2009; SAGI; ROKACH, 2018). By combining classifiers that

complement each other in an ensemble, it is possible to increase the predictive accuracy

and robustness of ML solutions (TUMER; GHOSH, 1996; ROKACH, 2010).

Ensembles achieve state-of-the-art results (SHIFAZ et al., 2020), and their success

depends on how the base classifiers that compose them perform and the diversity between

them (HANSEN; SALAMON, 1990). For base classifiers to be diverse, they must make

correct and incorrect predictions on different data instances. Some common methods to

achieve diversity are to train the base classifiers on different data samples or to use hetero-

geneous sets of base classifiers (SAGI; ROKACH, 2018), i.e., creating a heterogeneous

ensemble. In addition to the base classifiers, the ensemble also requires a decision fusion

mechanism that generates the ensemble’s final prediction based on the prediction of the

base classifiers. The decision fusion mechanism may be as simple as counting the base

classifier predictions for each label and returning the most voted one. Or, it may be an-

other ML algorithm that requires further training and tuning. There is no optimal fusion



11

mechanism for all tasks, and choosing the right one is critical to obtaining the best results

(WILHELM et al., 2023).

Developing a classifier with high predictive performance to solve a given task is

a challenging process. An algorithm must be picked, and its hyper-parameters must be

tuned. For classifier ensembles, the challenge is even more complex, as multiple classi-

fication algorithms must be picked, each with its own hyper-parameters, and a decision

fusion mechanism must be chosen on top, which may additionally need hyperparameter

tuning. Machine learning experts rely on their expertise and past experience with various

tasks to tackle this challenge and develop a solution for a new task. However, for novice

analysts who still lack ML experience, creating a solution that solves the task with high

accuracy can become a challenging process.

An approach that has been successfully used to make ML more accessible to

novice analysts is meta-learning. Meta-learning, also known as learning to learn, is a

subfield of ML that leverages metadata gathered from previously solved tasks and their

ML solutions to learn new tasks more efficiently and accurately (VANSCHOREN, 2019).

With meta-learning, it becomes possible to determine which algorithms performed well

on similar tasks and use this information to produce a solution for a new task that was

previously unknown. Even though meta-learning has been used in the context of classi-

fication tasks and ensemble models in the past (KHAN et al., 2020; SILVA et al., 2021),

no literature was found that explores how heterogeneous classifier ensembles behave on

a set of tasks so that a well-performing classifier ensemble can be created for a new task.

In addition, as the meta-learning-based ensemble solution for the new task is based

on the ensembles that performed well on a similar task previously, it is possible that the

best ensemble for the similar task is not the best one for the new task, i.e., it might not

generalize well. To address this, ensemble ranking can be done, which involves selecting

the best ensembles from a similar task according to a predefined ranking condition and

pruning out the rest. Ranking of ensembles can be done through predictive accuracy but

also diversity metrics. No research was found that explores the use of diversity when

ranking classifier ensembles.

This thesis presents a novel framework that combines the past knowledge from

meta-learning with the proven efficacy of ensembles, called Meta-CLEO (Meta-Learning

for Classifier Ensemble Optimization). By merging ensembles with meta-learning, it is

possible to take advantage of key ensemble qualities, such as diversity, as well as ensem-

ble components, such as the ensemble size, the base classifiers, and the decision fusion
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method, as unique metadata for meta-learning. The contribution of this work includes:

• A novel way of combining meta-learning and heterogeneous ensembles to assist

non-technical ML users in finding a well-performing ensemble solution for their

tasks;

• The proposal and evaluation of a ranking system based on ensemble performance

and diversity metrics that provide well-performing ensembles while reducing run

time complexity; and

• The evaluation of Meta-CLEO against two widely known ensemble techniques

commonly used in ML: Random Forest and AdaBoost;

Experiments with 74 different tasks with various data set sizes and data character-

istics show that more than 70% of the tasks benefit from Meta-CLEO when compared to

Random Forest and 94% when compared to AdaBoost.

The remainder of this thesis is structured as follows: Chapter 2 dives into the

core concepts around meta-learning and ensembles while also discussing related work.

In Chapter 3, a set of requirements for the solution are defined, and three possible ap-

proaches that led to Meta-CLEO are described. Chapter 4 presents Meta-CLEO, describ-

ing its offline and online stages, the blend of ensembles and meta-learning, and classifier

ensembles ranking. The implementation of Meta-CLEO and the conducted experiments

are explained in Chapter 5. Lastly, in Chapter 6, the conclusion and future work are

delineated.
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2 BACKGROUND AND RELATED WORK

In this chapter, the core concepts of the current work, as well as the related work,

are presented. In Section 2.1, classifier ensembles and their components are detailed.

Section 2.2 explains what ensemble diversity is and how to calculate it. Then, in Section

2.3, meta-learning is introduced, and the general architecture of a meta-learning applica-

tion is explained. Streamlining the previous sections, Section 2.4 describes related work

combining ensembles and meta-learning, while in Section 2.4.1, a comparison between

related work is performed, and their distinguishing factors are highlighted. Finally, in

Section 2.5, we streamline the concepts, the related work, and the target of the proposed

framework.

2.1 Ensemble of Classifiers

Machine Learning aims to learn from data (MAHESH, 2020). The outcome of this

learning process can be, however, diverse. One may want to predict a continuous value,

e.g., a stock price, which is considered an ML regression task. Others may want to predict

a group to which a data sample belongs, e.g., whether a stock is worth buying at a point

in time, which is considered a classification task. As this thesis centers on classification

tasks, we will focus on ML algorithms that solve them, known as classifiers.

A classifier is a function D : xj → yj that takes a data instance xj from a labeled

data set Z = {(x1, y1), ..., (xm, ym)} and assigns a label yj ∈ Ω from the set of v labels

Ω = {w1, ..., wv} to it. The main challenge for supervised classifiers is to correctly draw

the classification boundary in the feature space of a data set Zf that delimits the labels

from each other.

To better cope with complex scenarios such as those with many classes or noisy

data, leveraging multiple classifiers is sometimes useful. Combining multiple classi-

fiers into one to generate a prediction is often called multiple classifier systems (MCS)

(HO; HULL; SRIHARI, 1994) or ensembles of classifiers. To build an ensemble of

classifiers ep, in addition to the base classifiers D = {D1, ..., DL}, a decision fusion

mechanism must be selected. The decision fusion mechanism is a function C(x) =

𭟋[D1(x), ..., DL(x)] that combines the outputs of the individual classifiers and defines

the final ensemble prediction. The choice of the best fusion mechanism depends on the

task at hand. Wilhelm et al. (2023) propose three categories of decision fusion, which are:
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• Utility-based Decision Fusion, which directly applies to classifiers’ predictions.

One example of a utility-based decision fusion method is Majority Voting, which

combines the predictions of the base classifiers by choosing the class label that most

of the classifiers predict, i.e., the majority vote.

• Evidence-based Decision Fusion requires additional information about the classi-

fiers to provide the final prediction. For example, in Weighted Voting, the output of

the base classifiers is weighted depending on previous knowledge of their perfor-

mance to define the final ensemble prediction.

• Trainable Decision Fusion, as the name indicates, requires the training of an algo-

rithm on top of the base classifiers’ predictions before being able to predict the final

output of the ensemble. Stacked Generalization is a trainable decision fusion mech-

anism in which an ML model is trained to learn how to best combine the outputs of

the base classifiers of the given ensemble (WOLPERT, 1992).

Thus, an ensemble of classifiers ep trained on a data set Zf can be seen as a tuple

ep = (Dp, Cp) composed of the set of trained base classifiers Dp and the decision fusion

mechanism Cp.

2.2 Ensemble Diversity

Assembling the building blocks of an ensemble of classifiers does not necessarily

generate accurate outcomes. When creating accurate ensembles of classifiers, the base

classifiers must perform well and be diverse (HANSEN; SALAMON, 1990). Ensem-

bles are diverse when the ensemble’s base classifiers succeed and fail on different data

instances.

Figure 2.1 illustrates the impact of diverse base classifiers and the influence of the

decision fusion mechanism on ensemble prediction. When classifiers are diverse, they

tend to make complementary errors, which allows the ensemble’s decision fusion mech-

anism to make the correct final prediction by properly fusing the base classifiers predic-

tions. For instance, let’s consider the ensemble E from Figure 2.1. When classifiers D1

and D2 predict Yi,1 = Yi,2 = {incorrect, correct, correct, incorrect, correct}, the final

output of the ensemble after a majority voting fusion is Yi = {incorrect, correct,

correct, incorrect, correct}. This output is heavily influenced by the results of the first
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two classifiers. In contrast, if the base classifiers in an ensemble are diverse and make un-

correlated errors, such as E ′, the decision fusion mechanism can better deal with incorrect

predictions and try to make the correct prediction prevail.

Figure 2.1: Example of the impact diversity has on ensembles. A green square indicates
a correct prediction for a data instance, while a red square indicates a wrong prediction.
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The generation of diversity can be either explicit or implicit (BROWN et al.,

2005). The first occurs when diversity information is used to optimize diversity directly

during ensemble creation. The latter occurs when diversity is expected to emerge with-

out using any explicit measurement to ensure diversity is created, e.g., by influencing the

training process. This is often done using different training data for each classifier, e.g.,

through bootstrapping or using heterogeneous base classifiers.

Explicit diversity can be achieved by optimizing the ensemble through a diversity

metric (VOGGESBERGER; REIMANN; MITSCHANG, 2023). Diversity metrics mea-

sure the diversity within a set of classifiers. They are split into pairwise and non-pairwise

metrics, depending on whether they are calculated between each pair of classifiers and

then aggregated or between the entire set of classifiers at the same time. Examples of stan-

dard pairwise metrics are the disagreement metric, which measures the probability that

the two classifiers diverge on their decisions, and the double fault metric, which measures

the probability of both classifiers predicting wrong outputs simultaneously (KUNCHEVA,
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2004). On the other hand, non-pairwise metrics such as entropy (CUNNINGHAM; CAR-

NEY, 2000) and the Kohavi-Wolpert variance (KOHAVI; WOLPERT, 1996) rely on the

entire ensemble to calculate their measurements.

There are many approaches to achieving diversity when creating an ensemble.

One technique that implicitly achieves diversity by manipulating training data is bagging

(BREIMAN, 1996). In bagging, the base classifiers are trained on bootstrap samples,

which are drawn randomly and with replacements from the training set for each classi-

fier. This makes it harder for classifiers to overfit the training data set. Last, the base

classifiers’ outputs are combined through majority voting to form the overall ensemble

prediction. Random Forests (BREIMAN, 2001) are a sub-type of bagging in which the

base classifiers are trees. The training data can be sampled within random forests on the

instance level, feature level, or both. For example, the Random Subspace Method (HO,

1998) performs feature level sampling by randomly picking identically distributed feature

sets that will be used to train each tree from the forest.

Another well-known algorithm that targets the creation of diverse ensembles is

boosting (FREUND; SCHAPIRE; ABE, 1999). In boosting, each base classifier is trained

in a way that tries to correct the errors made by previous classifiers. The most famous

boosting algorithm is AdaBoost (FREUND; SCHAPIRE, 1997), which explicitly opti-

mizes diversity by re-weighting the training data distribution for each classifier so that

instances that were classified wrongly by a classifier will be weighted more when draw-

ing the training set for the following classifiers. In addition, AdaBoost also weights the

votes from its base classifiers, giving more influence to those with more correct pre-

dictions on more complex instances. XGBoost (CHEN; GUESTRIN, 2016) and Cat-

Boost (PROKHORENKOVA et al., 2018) are two ensemble algorithms based on boosting

that achieve state-of-the-art performance (SHWARTZ-ZIV; ARMON, 2022). The former

doesn’t reweigh data distribution but instead uses Gradient Boosting (FRIEDMAN, 2001)

to optimize the next classifier model based on the residual errors of its predecessor. The

latter also uses gradient boosting, but it is designed to perform better, especially with

categorical and textual data.

In Meta-CLEO, we aim to leverage ensemble diversity when suggesting an en-

semble for a new task. With that in mind, we must have ways of measuring diversity

within ensembles. Therefore, tackling diversity explicitly becomes essential.
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Figure 2.2: General architecture of a meta-learning application. Adapted from Smith-
Miles (2009).
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2.3 Meta-learning

Meta-learning is a machine-learning subfield inspired by how humans learn from

past experiences to solve new problems (THRUN; PRATT, 1998). In meta-learning for

classification, metadata is extracted from previously solved tasks to allow them to be re-

lated to new ones based on similarity (MONTEIRO et al., 2021). The algorithms that

perform best in solving these similar tasks are then used to solve the new ones, accelerat-

ing the process. Meta-learning is a powerful technique that can help improve efficiency

and effectiveness when solving new tasks (VANSCHOREN, 2019).

The typical design of a meta-learning application can be seen in Figure 2.2. It is

composed primarily of a repository and a meta-learner. The repository stores the metadata

from the previously learned tasks, the ML models used, and their evaluation results. As

the repository creation can be time-consuming, it occurs offline in what is sometimes

called the meta-learning training stage.

The repository is then used to train the meta-learner, the algorithm responsible for

learning the relationship between the meta-features and the model’s evaluation results for

a task. The meta-learner can be an ML algorithm such as kNN or a rule-based system

that, given a new task’s meta-features, returns a model based on the repository data. The

meta-learner prediction happens online, i.e., during runtime, and is sometimes called the

meta-learning generalization stage.

The repository data plays a crucial role in the meta-learning application. It serves

as the training data for the meta-learner and comprises many attributes that characterize
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the task and its solution, including metadata about 1) the trained model, such as its perfor-

mance on test data, the algorithm, and hyperparameters used during training, and 2) the

task, such as the data set’s number of instances, number of classes, and the ratio between

them.

The metadata extracted from the tasks are called meta-features. Many meta-

features have been proposed in addition to the most simple ones mentioned above, often

called general or simple meta-features (REIF et al., 2014). In Rivolli et al. (2019), the

authors created a taxonomy for grouping them based on similarity. The most prominent

meta-feature groups are:

• General meta-features, which are fast and cheap to compute and well-known for

data set characterization in ML literature. This category includes the number of

the data set’s binary and categorical features, for example (MICHIE et al., 1995;

ENGELS; THEUSINGER, 1998).

• Statistical meta-features indicate statistical aspects of the data, such as the mean,

median, and variance (ALI; SMITH, 2006) of each feature.

• Information-theoretic meta-features come from the information theory field and are

usually entropy-related, e.g., the features or target entropy (MICHIE et al., 1995)

of the data set.

• Landmarking meta-features apply fast classification algorithms to the data set and

use their performance results as meta-features. For example, the performance of ap-

plying kNN with k = 1 to the data set (BENSUSAN; GIRAUD-CARRIER, 2000).

• Model-based meta-features, in contrast to landmarking, apply classification algo-

rithms to the data set and collect its properties to be used as meta-features. Decision

Trees are commonly used for this purpose and generate meta-features such as the

number of leaf or non-leaf nodes in the induced model (PAVEL; SOARES, 2002).

2.4 Related Work

In this section, work related to Meta-CLEO is presented. As mixing the previously

presented topics, ensembles and meta-learning, has not yet been deeply explored, there

is little literature about it. Therefore, we will highlight the identified tools that integrate
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these two areas from their own perspectives. After, in Subsection 2.4.1, a comparison

between the tools is provided.

In the context of ensembles and meta-learning, Meta-DES (CRUZ et al., 2015)

proposes a framework that uses meta-learning to perform Dynamic Ensemble Selection

(DES) (KO; SABOURIN; JR, 2008), i.e., select, for each new test data instance, the

classifiers from an ensemble that will be predicting on it. Although less common, in

Meta-DES, the repository is built with a single task by extracting the meta-features from

the current task data set during the training phase.

So, for a given task, the framework uses the training data set to train an ensemble

and the meta-learner, which labels the ensemble’s base classifiers as competent or not for

a given instance. Then, in the test phase, given an instance from the test data set, the

meta-learner elects the competent models, and their outputs are fused through majority

voting to form the final ensemble prediction.

Some approaches do not only create classifiers using meta-learning but also con-

tinue to optimize them using automated machine learning (AutoML) (FEURER; HUT-

TER, 2019). AutoML tools select and optimize an algorithm for a given task provided by

a user, with minimal or no human interaction, by automating the time and cost-intensive

optimization process. In general, AutoML tools solve the problem of combined algorithm

selection and hyperparameter optimization (CASH) (THORNTON et al., 2013) by select-

ing an algorithm and optimizing its hyperparameters simultaneously for a task, trying out

many algorithm configurations exhaustively, and providing the most accurate within a

given time or resource budget.

Auto-Sklearn (FEURER et al., 2015) is one of the first AutoML frameworks cre-

ated, which utilizes meta-learning and ensembles. In Auto-Sklearn, the repository con-

tains metadata from different tasks’ data sets and their optimized solutions. Given a new

task, Auto-Sklearn ranks repository entries similar to the new task’s data set metadata

and selects the best algorithm configurations from the top-k similar tasks. Models cre-

ated from these algorithm configurations are then optimized through AutoML for the new

task, and ensemble selection (CARUANA et al., 2004) is performed to select the subset

of models that will take part in the final ensemble.

Similarly, Kordík, Černỳ and Frỳda (2018) utilize meta-learning and AutoML to

construct ensembles. The repository is created by optimizing ensembles for the repository

tasks. The optimization occurs by evolving Meta-learning Templates (MATs) through

genetic programming. MAT is a hierarchical structure representing the architecture of
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Figure 2.3: Example of a MAT as defined in Kordík, Černỳ and Frỳda (2018).
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an ensemble of classifiers defined by the authors. Figure 2.3 shows one example of a

MAT. For a new task, an initial population of MATs is drawn from the repository based

on similar metadata and evolved to create a new, optimized ensemble.

ERM-ML (Ensemble Recommendation Method - Using Meta-Learning) and ERM-

3ML (Ensemble Recommendation Method - Using 3 Steps Meta-Learning) (SILVA et al.,

2021) use meta-learning to provide automatic recommendations of ensemble structures,

i.e., the type of the base classifier, ensemble size, and the decision fusion method. In

ERM-ML, the ensemble structure is predicted entirely by a single meta-learner, while

in ERM-3ML, it is sequentially predicted through three different meta-learners. With

this sequential approach, ERM-3ML uses the prediction of the previous meta-learner as

a meta-feature for the following meta-learners, enriching the context and thus providing

better results.

2.4.1 Comparison

Table 2.1 summarizes how the related work integrates with the core concepts pre-

sented in Sections 2.1-2.3. The following aspects were considered: whether the tool 1)

varies ensemble size, heterogeneous base classifiers, and fusion mechanisms while creat-

ing ensembles; 2) tackles diversity, an essential part of successful ensembles, explicitly;

and 3) uses meta-learning to leverage similar tasks’ ensemble solutions when creating a
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classifier for a new task.

Table 2.1: Comparison between the related work.  = fully supported, G# = partly sup-
ported, # = not supported.

Approach
Ensemble
Creation

Explicit
Diversity

Previous
Knowledge

Meta-DES (CRUZ et al., 2015) G# # G#

Auto-Sklearn (FEURER et al., 2015) G# #  
MAT (KORDÍK; ČERNỲ; FRỲDA, 2018)  G#  
ERM-3ML (SILVA et al., 2021) G# #  

Although research exists in the area of DES with meta-learning (CRUZ et al.,

2015; CRUZ; SABOURIN; CAVALCANTI, 2014; CRUZ; SABOURIN; CAVALCANTI,

2017; RIJN et al., 2015; MA et al., 2020), this approach is limited as it often requires a

pre-defined, one-size-fits-all ensemble structure to be trained for each new data set, so

no knowledge from previously learned tasks are leveraged to learn new tasks. Auto-

Sklearn leverages knowledge from previous tasks but only uses meta-learning to optimize

classifiers, not the ensemble, such as warm-starting the AutoML process. It also generates

ensembles but does not vary the decision fusion mechanism or tackle diversity.

In MAT, despite handling ensembles with various base classifiers and decision fu-

sion mechanisms, diversity is only explicitly tackled when the underlying MAT consists

of a method that handles it that way, e.g., when the MAT is composed of a boosting al-

gorithm. Finally, ERM-ML and ERM-3ML do not tackle diversity explicitly. In addition,

they also create homogeneous ensembles, i.e., the algorithm used in the base classifiers is

always the same.

2.5 Final Remarks

Classifier ensembles can provide enhanced results if compared to individual clas-

sifiers, especially when they are diverse. Additionally, leveraging meta-learning, i.e., the

experience gained from solving previously learned tasks, allows the creation of better

models more efficiently. So, by combining diverse ensembles of classifiers with meta-

learning, it is possible to assemble a framework that helps non-technical users of machine

learning to create ensemble models that accurately solve their tasks. No related work was

found that further explores these concepts together. In the upcoming chapter, we will

present three possible approaches for creating the target framework. We will compare

their designs and select the most suitable one to serve as the foundation for Meta-CLEO.
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3 PROPOSED APPROACHES

This thesis aims to combine diverse ensembles with meta-learning to ease the use

of ML by non-technical users. To allow the creation and evaluation of feasible alternatives

toward the defined goal, a set of requirements must be created. These requirements serve

as boundary conditions for the approaches to be proposed. This chapter defines such

requirements, proposes three approaches, and compares them.

The remainder of this chapter is organized as follows: first, in Section 3.1, we de-

fine the set of requirements the selected approach must meet. Then, Section 3.2 describes

a general approach, which serves as the base architecture for the following approaches. In

Sections 3.2-3.5, we propose three potential approaches and provide further details about

them. To conclude, in Section 3.6, the approaches are compared concerning the require-

ments, highlighting the one that fits best and will be used throughout the rest of this work

as the foundation of Meta-CLEO.

3.1 Problem Statement

To achieve the goal of combining diverse ensembles and meta-learning to facili-

tate non-technical users to leverage ML, a new framework is required. This framework

must generate an ensemble solution for a new classification task by utilizing previous

knowledge through meta-learning. In addition, it must allow ensemble creation with het-

erogeneous classifiers and decision fusion mechanisms and explicitly tackle diversity. To

clarify those aspects and precisely define the expectations for the selected approach, we

created a set of requirements that must be met:

(R1): Classifier Performance The first requirement is for the base classifiers that com-

pound the ensemble to be accurate. For a base classifier to be accurate, it must

perform better than random guessing.

(R2): Classifier Diversity The second requirement is for the base classifiers to be diverse.

For base classifiers to be diverse, they must make correct and incorrect predictions

on different data instances. As the generated ensembles should be diverse, there

must be a way to measure diversity within the ensembles. Therefore, the developed

framework must focus on explicit diversity.

(R3): Ensemble Fusion The decision fusion method is substantial in ensemble creation,
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and thus, the framework has to support multiple decision fusion methods.

(R4): Meta-learning The fourth requirement is to leverage knowledge acquired in pre-

viously learned tasks. For this, a set of information from previous tasks and their

solutions is required, composed of the following:

(a) Metadata describing the task. Also known as meta-features.

(b) The algorithm selected to solve the task, as well as its configuration and hyper-

parameters.

(c) The performance measure(s) for the selected algorithm applied to the respec-

tive task.

(R5): Runtime Complexity The goal of the framework is to provide well-performing so-

lutions to non-technical users and not fully optimized ones. Hence, the framework

must execute fast, i.e., the framework must not exhaust possibilities during runtime

to suggest the best one.

(R6): Ease of Use To make the framework accessible and friendly for non-technical users,

the framework must be easy to use. The user must be able to effortlessly define the

task to be handed to the approach. In addition, the resulting suggested ensemble

must allow easy adoption by the user, be it for final use or further optimization.

(R7): Extensibility The framework must be openly extensible. Extensibility can be met by

adding new meta-features to the meta-learning repository, new ensemble configura-

tions, and decision fusion methods without altering the core of the framework. This

is essential as numerous classification algorithms, decision fusion mechanisms, and

performance and diversity measures exist that could be leveraged by extending the

initial approach.

(R8): Feasible Development Scope The last requirement is for the framework to be devel-

oped within the scope of this Master Thesis.

3.2 General Approach

Based on the requirements and the typical architecture of meta-learning applica-

tions, it is possible to create a general framework architecture. Figure 3.1 depicts the

general approach, which comprises of:
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• A framework that takes a classification task as input, which includes an associated

data set, and returns a classifier ensemble as output.

• A way of generating meta-features from the given task. The meta-features must be

the same for the new task as the ones for the tasks available in the repository.

• A metadata repository containing, at least, the repository tasks, their meta-features,

the algorithms and hyper-parameters used to learn them, and performance metrics.

• A meta-learner that is responsible for relating the meta-features from the tasks to

the solution algorithm and its hyper-parameters and, given a new task, returning an

ensemble trained on the data from the new task.

Figure 3.1: General architecture for a concept that fulfills the requirements.

Three extension approaches were developed, complementing the general architec-

ture. The approaches expand the general architecture by specializing it in one or more of

the components. In addition, the derivative approaches may include additional steps to

achieve the desired results. The three approaches are described in the next Sections.

3.3 Approach 1 - Classifiers as Algorithms

This approach creates the repository by training and storing the classifier that per-

forms best on each repository task. Hence, no ensembles are created in the offline stage.

Instead, when a new task is received, the meta-learner creates a rank based on the similar-

ity of the new task to the repository tasks. The top-h classifiers from the rank are selected
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to form the ensemble. Later, the decision fusion method is chosen by exhaustively trying

all available alternatives and returning the one with the highest predictive performance in

the new task. The meta-learner then assembles the selected classifiers and the decision

fusion method and provides the trained ensemble as output.

Figure 3.2 illustrates the classifiers as algorithms approach. This approach is sim-

ilar to what is done in Auto-Sklearn (FEURER et al., 2015). However, multiple decision

fusion mechanisms are considered here.

Figure 3.2: Approach 1 - Classifiers as Algorithms

3.4 Approach 2 - Ensembles as Algorithms

This approach creates the repository by training and storing all learned ensembles

for each repository task. The ensembles are composed of heterogeneous base classifiers

and a decision fusion method.

When a new task is received, the meta-learner identifies the most similar task and

ranks its ensemble solutions based on performance and diversity measures. Then, top-h

ensembles from the rank are trained in the train data set of the new task and evaluated in

the respective test data set. The best-performing ensemble is selected as the output of the

meta-learner.

Figure 3.3 illustrates the ensembles as algorithms approach. Explicit diversity is

included during ensemble ranking, aiming at solutions that are good at their original task

and that also generalize well. The balance between predictive performance and general-
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ization can be tuned by adjusting the ranking function of the meta-learner.

Figure 3.3: Approach 2 - Ensembles as Algorithms

3.5 Approach 3 - Ensembles and Base-classifiers as Algorithms

This approach combines the first two, including two meta-learners. The repository

is created by training and storing all learned ensembles for each repository task, as done

in Approach 2. However, unlike Approach 2, every ensemble combination must be tested

and stored, including all classifiers and decision fusion methods. This ensures that every

combination of classifiers and decision fusion methods will have many evaluations stored

in the repository, one for each task. In addition, metrics from the ensembles and their base

classifiers are stored in the repository.

Figure 3.5 illustrates Approach 3. When given a new task, the first meta-learner

ranks the individual base classifiers from the most similar task and selects the top-h that

will form a new ensemble. Then, the second meta-learner defines the decision fusion

method by searching in the repository which method works best for the set of selected

algorithms over all available repository solutions from all tasks. After selecting the deci-

sion fusion mechanism, the second meta-learner assembles the new ensemble, re-trains it

with the training data from the new task, and returns it as the suggested ensemble.
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Figure 3.4: Approach 3 - Ensembles and Base-classifiers as Algorithms

3.6 Comparison

Table 3.1 compares the three approaches concerning the requirements defined in

Section 3.1. All approaches handle R1 - Classifier Performance. Approaches 1 and 3

tackle performance individually for each base classifier, while Approach 2 evaluates it

on an ensemble level. Approaches 1 and 3 do not meet the R2 - Classifier Diversity

requirement since the base classifier selection step happens independently for each base

classifier and does not consider their composition. This occurs due to the exploding cost

of considering all combinations of base classifiers and their diversity. Approach 2 fulfills

the diversity requirement by including diversity measures in its ranking system, explicitly

including diversity in the meta-learning process.

R3 - Classifier Combination is achieved in Approach 1 with the extra effort of

extensively trying out different fusion mechanisms for the selected top-h base classifiers,

which has a negative influence in R5 - Complexity as well. In approaches 2 and 3, many

decision fusion mechanisms are already available in the repository solutions that are used

to define the resulting ensemble, avoiding the need to try all decision fusion mechanisms

in the new task before providing the final result.

All approaches leverage experience from previously learned tasks, required by R4

- Meta-learning. However, Approach 3 requires many more solutions in the repository,

if compared to the other two approaches, so that the second meta-learner works as ex-

pected. This leads to a higher development scope, as generating enough repository data

would take more computing hours of task learning. In terms of R5 - Runtime Complexity,
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as already delineated, Approach 1 includes an optimization step that tries out all possible

decision fusion mechanisms before deciding on a final one, increasing runtime complex-

ity. Approaches 2 and 3 overcome this by restricting the alternatives that will be tried or

picking the one with the highest predictive performance in previous tasks.

All approaches are similar w.r.t. R6 - Ease of Use, as the input and output are kept

similar and allow further optimization. Regarding R7 - Extensibility, approaches 2 and

3 allow new classifiers and decision fusion mechanisms to be added by simply including

solutions with the new techniques for the repository tasks. However, in Approach 3, the

amount of samples to be added to the repository is significantly larger, as there must be

a new solution with, e.g., the new decision fusion method for each combination of base

classifiers. Approach 1 can be extended similarly for its base classifiers. The extensibility

of the decision fusion mechanism from Approach 1 would require adding the new method

to the list of methods to be tried out for each new task. All approaches allow meta-feature

extensibility by enriching the repository data and parameterizing the meta-learner(s). R8 -

Feasible Development Scope is not achievable for Approach 3 as the combinations of base

classifiers and decision fusion methods quickly explode when every combination must be

available in the repository. In contrast, approaches 1 and 2 have a feasible development

scope for a Master Thesis as their repositories are more flexible regarding the number of

algorithm configurations and thus require fewer computing hours to build.

Table 3.1: Comparison of the proposed approaches w.r.t. requirements presented in Sec-
tion 3.1.  = fully supported, G# = partly supported, # = not supported.

Requirement Approach 1 Approach 2 Approach 3

R1 - Classifier Performance    
R2 - Classifier Diversity #  #
R3 - Classifier Combination    
R4 - Meta-Learning    
R5 - Complexity #   
R6 - Ease of Use    
R7 - Extensibility   #
R8 - Development Scope   #

After considering the limitations of approaches 1 and 3, approach number 2 was

selected as the foundation of Meta-CLEO. This approach not only meets all the require-

ments outlined in Section 3.1 but also allows for a new perspective on meta-learning in

algorithm selection, specifically by focusing on heterogeneous ensembles of classifiers.
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4 META-LEARNING FOR CLASSIFIER ENSEMBLE OPTIMIZATION

In this Chapter, Meta-CLEO is presented. Meta-CLEO is a meta-learning-based

framework that creates ensemble solutions for classification tasks. It uses metadata col-

lected across different tasks and their ML solutions, composed of heterogeneous ensem-

bles with a wide range of base classifiers, ensemble sizes, and fusion mechanisms. In

Meta-CLEO, diversity is achieved explicitly by including diversity metrics as metadata in

the repository and leveraging them in the meta-learner.

4.1 Overview

Figure 4.1 provides an overview from the workflow of Meta-CLEO. The numbers

represent the order in which the flow is executed. Steps 1-3 are executed in the offline

phase, while steps 4 and 5 occur in the online phase (cf. Section 2.3). The new task, in

blue, is the classification task received as input. A task contains the train and test data

sets, as well as a task identifier. In steps 1 and 2, the ensembles for the repository tasks

are generated, their metadata is extracted, and their meta-features are calculated. Then, in

step 3, the repository data is used to train the meta-learner. During the online phase, the

user inputs a new task, which has its meta-features extracted in step 4, normalized, and

handed to the meta-learner in step 5. The meta-learner identifies the most similar task,

ranks its classifier ensembles, re-trains the top-h ensembles on the training data of the new

task, and returns the most accurate one.

To allow a better understanding of how Meta-CLEO works internally, the follow-

ing sections describe the two stages of Meta-CLEO. The first stage, described in Section

4.2, is the offline stage, which includes creating the repository and training the meta-

learner. The second is the online stage, which is described in Section 4.3 and involves

receiving a new task, extracting its meta-features, and using the meta-learner to create a

classifier ensemble solution.

4.2 Offline Stage

In the offline stage, the repository is created, and the meta-learner is trained. The

repository is required to train the meta-learner, which, during the online stage, is respon-
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Figure 4.1: High-level architecture overview of Meta-CLEO. The dashed lines represent
the offline stage, while the solid lines represent the online stage.

sible for providing the classifier ensemble solution.

The first step towards creating the meta-learner is to build the repository. The

repository is a set M = {m1,1,m1,2, ...,mp,s} containing the metadata mt,r from a task t

and a classifier ensemble solution r. A repository entry mt,r is defined as follows:

mt,r = {tmt, emr} (4.1)

tmt = {idt,mtft} (4.2)

emr = {ecr, perfr, divr} (4.3)

As stated in Equation 4.1, metadata mt,r contains the metadata tmt of a task t and

ensemble solution metadata emr from an ensemble r. The subset tmt (Equation 4.2) is

the data set metadata from a task t and is composed of the data set identifier idt and the

meta-features mtft that characterize the data set of the task.

The meta-features that are most suitable for Meta-CLEO are the ones that can

be computed quickly. As explained in Section 2.3, model-oriented meta-features, like

landmarking, need to train an ML model for each data set to extract metadata from it.

This process can take a long time and slow down the framework during the online stage

when it needs to quickly extract meta-features for the data set of a new task, which is

essential for R5 - Runtime Complexity. Therefore, the simple, statistical, and information

theory meta-feature groups best fit.

A single meta-feature can yield multiple measures for a given data set, depending
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on whether it is computed on all data set features at once or a subset of them. For example,

when using the correlation meta-feature, which calculates the correlation between the

features and the target of a data set, the extraction must happen for each feature, thus

yielding multiple values. Applying summarization techniques to reduce these measures to

a single dimension is essential, making it a data set measure instead of a feature measure.

Mean and standard deviation are two standard summarization functions commonly used

in the literature.

The subset emr (Equation 4.3) contains metadata about the classifier ensemble r

from a repository entry mt,r. The classifier ensemble metadata includes the ensemble con-

figuration ecr, with its algorithm and hyperparameters, as well as the performance perfr

and diversity divr metrics from the ensemble r on the task t. Multiple ensembles can be

generated for a task t, each with its own repository entry. Ensuring the ensembles from a

task t have a fundamentally different structure is crucial for Meta-CLEO to succeed. This

includes ensembles of different sizes, types of classifiers, and decision fusion methods.

Nearly identical ensembles in the repository would add more processing but less value to

the meta-learner result. The ensemble generation process for the tasks to form the repos-

itory can be made manually by an ML expert or automatically through AutoML tools.

An example of a repository with three tasks and eight ensembles is available in Table 4.1.

The repository entries for tasks 1 and 3 contain three ensemble solutions, while the entries

for task 2 contain two. Ensuring that the task identifier is fixed for all repository entries

containing ensemble solutions for the same task is key, as only ensemble solutions for the

most similar task are evaluated in the online stage.

Table 4.1: Example of a repository in Meta-CLEO. The meta-features are the same for all
classifier ensembles that solve the same task.

mt,r tmt emr

m1,1 {id1,mtf1} {ec1, perf1, div1}
m1,2 {id1,mtf1} {ec2, perf2, div2}
m1,3 {id1,mtf1} {ec3, perf3, div3}
m2,4 {id2,mtf2} {ec4, perf4, div4}
m2,5 {id2,mtf2} {ec5, perf5, div5}
m3,6 {id3,mtf3} {ec6, perf6, div6}
m3,7 {id3,mtf3} {ec7, perf7, div7}
m3,8 {id3,mtf3} {ec8, perf8, div8}

After the repository is built, normalization of the repository data is required as

they contain values in different ranges. This is done to avoid having the meta-learner give

more influence to a feature with a bigger range. So, the features passed to the meta-learner
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are first re-scaled to the interval [0, 1] using the MinMax method described by Equation

4.4.

xscaled =
x− xmin

xmax − xmin
(4.4)

where:

xscaled is the re-scaled value of x

x is the original value

xmin is the minimum value for that feature in the data set

xmax is the maximum value for that feature in the data set

The meta-learner training in Meta-CLEO involves training an algorithm to identify

the repository task that resembles the most with a new task. This can be done through ML

algorithms or association rules that take the meta-features from the new task and try to

find the most similar instance available in the training data, i.e., the repository. In Meta-

CLEO, the algorithm used within the meta-learner to predict the most similar task is the

k-Nearest-Neighbors (kNN). kNN allows using simple and intuitive distance measures to

calculate the similarity between instances. Leveraging kNN simplifies Meta-CLEO and

makes it easier to explain the selection of the most similar task.

As the objective is to identify the single closest task from the new one, the kNN

parameter is set to one. Later, in the online stage, one or more ensembles from the most

similar task will be evaluated on the new task. The offline stage is completed when the

repository is filled and the meta-learner is trained.

4.3 Online Stage

Once the user provides a new task, the online stage begins the ensemble creation

process. As identified by the numbers in Figure 4.1, two major steps are required for the

framework to return the new ensemble in the online stage: extracting meta-features from

the new task in step 4 and the meta-learner execution in step 5.

Meta-feature extraction works the same way as in the offline stage, ensuring the

same meta-features and summarization functions are used. The meta-features extracted

from the train data set of the new task are then normalized before being prompted to
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the meta-learner using the same normalizer from the meta-learner training process in the

offline stage.

Figure 4.2: Meta-learner execution flow in Meta-CLEO. In the example, h = 3.
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The normalized meta-features from the new task are the input to the meta-learner.

An overview of the meta-learner execution can be seen in Figure 4.2. First, the meta-

learner identifies the most similar task in the repository based on the meta-features of

the new task. Then, it takes the ensembles of this task from the repository and ranks

them based on their performance and diversity metrics on their original task. The balance

between performance and diversity metrics used for ranking can vary, and experiments in

Chapter 5 dive deeper into possible functions of these metrics and their impact on Meta-

CLEO’s final result. The top-h best-ranked ensembles are then re-trained on the new task.

During re-training, the ensembles are trained on the train data set of the new task.

After re-training, the ensembles are evaluated on the test data set of the new task, and the

most accurate ensemble is returned as the online stage final result.

One of the most distinguishing factors of Meta-CLEO is that it ranks the ensem-

bles based on their predictive performance and diversity in original task and evaluates

the top-h ensembles, instead of only the one with the highest rank. By doing so, Meta-

CLEO avoids limiting the final result to the single best ensemble from the original task,

which may not be the top performer on the new task. Instead, the best ensemble for the

new task may be the one with a level of diversity that leads to better generalization. The

next Chapter details the impact of different ensemble ranking functions and h values in

Meta-CLEO.
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5 EXPERIMENTAL EVALUATION

In this chapter, we evaluate the predictive performance of Meta-CLEO for new

classification tasks based on the knowledge obtained from previously learned tasks. To

perform this evaluation, tuning experiments were first carried out, and then the best Meta-

CLEO configuration was compared with baselines. Meta-CLEO is a framework that uses

meta-learning to create ensembles for new, unforeseen Machine Learning tasks while

leveraging essential aspects of successful ensembles, such as diversity. The following

sections describe the implementation developed in the scope of this thesis and three ex-

periments built on top of it.

5.1 Implementation

Implementing the Meta-CLEO framework was required to evaluate the framework

and its effectiveness through experiments. Figure 5.1 illustrates the architecture, includ-

ing technology-specific decisions taken for this implementation, which will be discussed

throughout this section. The dotted lines indicate the offline stage, where the reposi-

tory is built with metadata from various classification tasks and their ensemble solutions.

The solid lines indicate the online stage, where a new task is received, and an ensemble

solution is created by the meta-learner. In yellow, the technical decisions made during de-

velopment are highlighted. The implementation was split into the two main components

of meta-learning applications as listed in Section 2.3: the repository and the meta-learner.

The repository creation includes the generation of the ensembles for the various tasks and

their meta-feature extraction, while the meta-learner identifies the most similar task, ranks

the ensembles, and re-trains them.

5.1.1 Setup

Meta-CLEO’s implementation was built in an OpenStack m1.large virtual ma-

chine with four vCPUs and 8192 MB of RAM. The virtual machine was running Ubuntu

Bionic 18.04 as the operating system and was not running anything besides the Meta-

CLEO-related programs.

Python 3.8 was used for the implementation. The AutoML tool from Vogges-
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Figure 5.1: Meta-CLEO high-level architecture including implementation decisions.

berger (2023) was used to generate the ensembles from the repository, leveraging hetero-

geneous base classifiers, various decision fusion mechanisms, and optimizing diversity.

In addition, the following Python libraries were used: OpenML version 0.14.1 was used

to download OpenML tasks and their datasets, PyMFE (ALCOBACA et al., 2020) version

0.4.2 was used to extract meta-features from the data sets, Pandas (MCKINNEY, 2010)

version 1.4.0 was used to manipulate the data sets, and Scikit-learn (PEDREGOSA et al.,

2011) version 1.0.2 was used as the backing ML library for the meta-learner. The exact

same setup was used later during the experiments.

5.1.2 Repository

Building the metadata repository is one of the main challenges of creating a meta-

learning framework. The quality of the data in the repository is essential as it directly

impacts the efficacy of the meta-learner. This is known as the garbage in, garbage out

concept in ML. Hence, it is relevant to build a metadata repository that contains many

different tasks and ensemble solutions.

In the implementation of Meta-CLEO, 74 classification tasks were chosen from

the OpenML1 repository. These tasks include both real-world and synthetic data. The

OpenML repository provides the data set as well as a pre-defined train and test split for

each task. The same tasks have been used in similar literature, such as Auto-Sklearn.

The selection of a large number of tasks aims to increase the likelihood of finding a

1Available at <https://openml.org/>. Last access on 31/05/2024.

https://openml.org/
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Table 5.1: Algorithms supported by Voggesberger (2023).
Usage Algorithms

Base
Classifiers

Adaboost, Bernoulli Naive Bayes, Decision Tree,
Extremely Randomized Trees, Gaussian Naive Bayes,

Gradient Boosting, KNN, Linear Discriminant Analysis,
Linear Support Vector Machine, Multinomial Naive Bayes,

Passive Aggressive, Quadratic Discriminant Analysis,
Random Forest, Stochastic Gradient Descent

Decision
Fusion

Simple Average, Behaviour Knowledge Space,
Borda Count, Cosine Similarity, Decision Template,

Dempster Shafer, KNN, Macro Majority Vote,
Micro Majority Vote, Maximum Likelihood Estimator,

Naive Bayes and Weighted Voting

similar task to the one provided by the user, leading to more accurate results and a better

experience for the framework users. The full list of selected tasks, as well as some of their

characteristics, can be found in Appendix C.

With so many tasks and the desire to generate multiple ensemble solutions for

each one of them, the automation of the ensemble creation process was required. To

achieve this, an AutoML system was used, which reduced the overall time consumed in

this step. The chosen tool for this was the one from Voggesberger (2023), as it empowers

the generation of ensembles with high variability, including heterogeneous base classifiers

and a myriad of decision fusion mechanisms. The full list of supported base classifiers

and decision fusion mechanisms is available in Table 5.1. In addition to the data set, the

AutoML system requires further input, such as time limits for the base classifiers and the

decision fusion mechanism optimizations, and the desired ensemble size.

For Meta-CLEO’s implementation, the optimization time was fixed to three hours

for the base classifier plus three hours for the decision fusion optimization. These values

were selected primarily due to the time constraints of a Master’s Thesis. This means that,

for each repository entry, 6 hours were dedicated to finding the corresponding ensemble

solution. To allow for reproducibility and keep it feasible to execute within the scope of

this thesis, four different ensemble sizes were used, those being 5, 10, 15, and 20. In

addition, to provide variability to the results, each AutoML parameter combination of

task and ensemble size was executed three times with randomly generated seeds. In the

end, for each task from the repository, 12 executions of the AutoML system were run to

generate the classifier ensembles. This means a total of 74∗12∗6 = 5.328 hours dedicated

to building the repository content.
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Furthermore, the AutoML tool also calculates performance and diversity metrics.

The performance metrics that compose Meta-CLEO’s repository were accuracy and bal-

anced accuracy. The diversity metrics used were disagreement and double fault. The

experiments discuss the use of these metrics and their impact on the meta-learner.

Lastly, for the extraction of the meta-features (cf. Section 4.2), the library PyMFE

was used. PyMFE offers more than 90 measures, including all the meta-feature groups

discussed in Section 2.3. In Meta-CLEO, all but the ones that require model generation,

such as landmarking or clustering, were used. This decision allowed the framework to

fasten its online stage run time when meta-features must be extracted from the new, in-

coming task. Table 5.2 shows a fraction of the meta-features available in Meta-CLEO’s

implemented repository and their respective meta-feature groups. The exhaustive list of

meta-features utilized in the implementation is available in Appendix B.

Table 5.2: Some meta-features used by Meta-CLEO. The

complete table is available in Appendix B.

Category Meta-Feature

Simple

Number of classes (MICHIE et al., 1995)

Frequency of each class (LINDNER; STUDER, 1999)

Number of instances (MICHIE et al., 1995)

Number of features (MICHIE et al., 1995)

Ratio of number of instances to features (KUBA et al., 2002)

Statistical

Canonical correlation between the features

and the target (KALOUSIS, 2002)

Absolute correlation for each feature pair

(CASTIELLO; CASTELLANO; FANELLI, 2005)

Absolute covariance for each feature pair

(CASTIELLO; CASTELLANO; FANELLI, 2005)

Variance for each feature

(CASTIELLO; CASTELLANO; FANELLI, 2005)
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Info

Theoretic

Noisiness of the features (MICHIE et al., 1995)

Mutual information between feature

and target (MICHIE et al., 1995)

Joint entropy between feature and class (MICHIE et al., 1995)

Equivalent attributes (MICHIE et al., 1995)

Target’s Shannon entropy (MICHIE et al., 1995)

Features’ Shannon entropy (MICHIE et al., 1995)

Table 5.3 shows a fraction of the repository built for the experiments. The repos-

itory is a CSV file that contains, for each generated ensemble of each task, the metadata

for the task and the ensemble solution. The first column is the task identifier, followed by

the meta-features in columns 2-8. Column 9 contains the name of the ensemble configu-

ration file, followed by the performance metrics of the ensemble on the respective task in

columns 10-13 and the diversity metrics in columns 14-15. The ensemble configuration

file contains what is required to re-create the ensemble, including the hyper-parameter

values. As the meta-features characterize the data set of the task, and many ensembles are

generated for each task, the rows with ensembles from the same task will have the same

task ID and meta-feature values, as can be seen in rows 1-5, 6-14, 15-19. This repository

is then used to train the meta-learner, detailed in the next subsection.

5.1.3 Meta-learner

The meta-learner is used to identify the most similar task available in the reposi-

tory compared to the new one given by the user, perform ensemble ranking, re-train the

top-h ensembles, and return the most accurate ensemble configuration for a new task. The

algorithm used for the meta-learner to implement Meta-CLEO is the Nearest Neighbors,

from the Python library Scikit-learn. The parameter k, which represents the number of

neighbors, is set to one as we want to find the most similar task available in the repository.

Additionally, as the number of instances in the data set is rather small, brute force can be

used to calculate the distance between all instances in the data set and the new one. This
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Table 5.3: Excerpt from Meta-CLEO’s repository. Some columns were omitted due to the overall table size.
Task
ID

Class
Entr.

Cov.
Mean

Kurtosis
Mean

#
Attr.

#
Bin.

#
Cat.

#
Class

Ensemble
Config. File

Acc.
Balanced

Acc.
Prec.
Micro

Prec.
Macro

Disag. Doublef.

279 0.931 0.031 -1.742 9 0 9 2 279_ens-size-15_seed-853 0.975 0.972 0.975 0.975 0.017 0.966
279 0.931 0.031 -1.742 9 0 9 2 279_ens-size-5_seed-358 0.997 0.997 0.997 0.664 0.075 0.992
279 0.931 0.031 -1.742 9 0 9 2 279_ens-size-15_seed-464 0.975 0.970 0.975 0.651 0.040 0.973
279 0.931 0.031 -1.742 9 0 9 2 279_ens-size-10_seed-155 0.997 0.997 0.997 0.996 0.015 0.994
279 0.931 0.031 -1.742 9 0 9 2 279_ens-size-20_seed-496 0.975 0.975 0.975 0.972 0.111 0.991
288 1.585 0.227 -0.199 40 0 0 3 288_ens-size-5_seed-991 0.858 0.858 0.858 0.858 0.128 0.906
288 1.585 0.227 -0.199 40 0 0 3 288_ens-size-10_seed-848 0.873 0.873 0.873 0.656 0.095 0.901
288 1.585 0.227 -0.199 40 0 0 3 288_ens-size-15_seed-2 0.875 0.875 0.875 0.657 0.115 0.904
288 1.585 0.227 -0.199 40 0 0 3 288_ens-size-5_seed-101 0.873 0.873 0.873 0.873 0.091 0.900
288 1.585 0.227 -0.199 40 0 0 3 288_ens-size-20_seed-66 0.872 0.872 0.872 0.872 0.124 0.903
288 1.585 0.227 -0.199 40 0 0 3 288_ens-size-5_seed-451 0.868 0.868 0.868 0.868 0.122 0.905
288 1.585 0.227 -0.199 40 0 0 3 288_ens-size-15_seed-892 0.862 0.863 0.862 0.862 0.131 0.901
288 1.585 0.227 -0.199 40 0 0 3 288_ens-size-10_seed-997 0.867 0.867 0.867 0.651 0.139 0.905
288 1.585 0.227 -0.199 40 0 0 3 288_ens-size-15_seed-36 0.865 0.865 0.865 0.865 0.134 0.903

2122 3.504 0.004 2.916 6 0 6 18 2122_ens-size-15_seed-64 0.771 0.791 0.771 0.800 0.109 0.808
2122 3.504 0.004 2.916 6 0 6 18 2122_ens-size-20_seed-690 0.840 0.818 0.840 0.814 0.193 0.870
2122 3.504 0.004 2.916 6 0 6 18 2122_ens-size-5_seed-278 0.795 0.792 0.795 0.806 0.139 0.838
2122 3.504 0.004 2.916 6 0 6 18 2122_ens-size-10_seed-494 0.822 0.819 0.822 0.829 0.231 0.859
2122 3.504 0.004 2.916 6 0 6 18 2122_ens-size-5_seed-532 0.833 0.798 0.833 0.797 0.142 0.873



40

is exactly the behavior of the library when the algorithm parameter is set to auto, in which

the library decides the most appropriate algorithm based on the data set values.

In the online stage, the trained meta-learner first identifies the most similar repos-

itory task to the current input and then retrieves the ensembles and their performance and

diversity metrics available for the closest task. These metrics are then used to rank the

ensembles. After ranking, the top-h best-ranked ensemble configurations are selected and

then trained and evaluated on the train and test data sets of the input task, respectively. The

most accurate one is selected and returned as the final result of the framework execution.

5.2 Experiments

The Meta-CLEO meta-learner allows tuning of key configurations, such as the

ranking function and the number of ensembles to be re-trained, in order to achieve im-

proved results. In this section, we discuss two experiments that evaluate the impact of

altering the above-mentioned configurations and another one comparing Meta-CLEO to

two baselines. The experiments are defined as follows:

• Experiment 1 evaluates the impact of varying the h-value, which defines how many

of the best ensembles from the most similar task will be considered by the meta-

learner when creating the ensemble for a new task.

• Experiment 2 analyzes the impact of different functions of performance and diver-

sity that can be used for ranking the ensembles from the most similar task.

• Experiment 3 compares the best Meta-CLEO configuration identified in the pre-

vious experiments with two widely used ensemble creation techniques, Random

Forest and Adaboost.

In all experiments, all tasks from the repository were used for evaluation. So,

for each repository task, the task was removed from the repository, the framework was

executed, and the evaluation results were collected. By doing so, we avoid requiring new

tasks only for evaluation purposes.
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5.2.1 Experiment 1: Re-training Multiple Ensembles

In this experiment, we evaluate the trade-off between expanding the re-training

from only the best ensemble to the top-h best ensembles from the most similar task, and

the runtime complexity of the framework. The more ensembles are re-trained, the more

training sessions are required, thus increasing runtime complexity. Due to the ranking of

the ensembles, we believe there is no need to re-train all the available ensembles from the

most similar task, as that would be costly for the framework, but rather a smaller amount

of them while still achieving the best results. By evaluating the balance between these two

factors, i.e., the number of ensembles to be re-trained and the predictive performance, we

expect to identify a reasonable number of ensembles to be re-trained that balances the

predictive accuracy and runtime complexity of Meta-CLEO.

To evaluate and find the balance between the number of ensembles to be re-trained

and the predictive performance achieved, we executed Meta-CLEO with five different

configurations, each with an increasing amount of ensembles from the most similar task

being re-trained. The values selected for the number of ensembles to be re-trained were:

• One, indicating the result if only the best ensemble, i.e., the top 1 ranked ensemble

from the most similar task, was re-trained.

• Three, indicating the result if the top 3 higher ranked ensembles based on their

predictive accuracy on their original task were re-trained.

• Six, indicating the result if the top 6 higher ranked ensembles based on their predic-

tive accuracy on their original task were re-trained.

• Nine, indicating the result if the top 9 higher ranked ensembles based on their pre-

dictive accuracy on their original task were re-trained.

• Twelve, indicating the result if all ensembles generated for the most similar task

were re-trained. This configuration will always lead to the best possible result Meta-

CLEO can provide, as all ensembles from the most similar task are considered.

These values were selected as they provide a reasonable level of granularity while not

exhausting all possible alternatives, i.e., all values from 1 to 12, which would take longer

to execute and evaluate. The results from the execution of Meta-CLEO with the config-

uration where all ensembles from the most similar task are considered, i.e., with twelve

ensembles being re-trained, will be the baseline for this experiment as they always lead to
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the best results Meta-CLEO can provide. These results are referenced as the best possible

Meta-CLEO results.

Figure 5.2: Percentage of tasks evaluated that achieve the best accuracy possible by re-
training top 1, 3, 6, 9, and 12 most accurate ensembles from the most similar task.
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Figure 5.2 illustrates the percentage of tasks that achieve the best result Meta-

CLEO can provide when re-training the top 1, 3, 6, 9, and 12 most accurate ensembles

from the most similar task. The most accurate ensemble from the most similar task was

the most accurate one for the new task 25.68% of the time. This means that, after ranking

the ensembles from the most similar task based on predictive accuracy, re-training only

the best one to create the ensemble for the new task has provided the best results Meta-

CLEO could provide for 1 in every 4 tasks evaluated. From this information, we can infer

that, for around 3 in every 4 tasks evaluated, the best possible result Meta-CLEO could

provide was not the one with the highest predictive accuracy in the most similar task.

So, to include the best possible ensemble that Meta-CLEO can provide in the results, the

number of ensembles from the most similar task being re-trained was expanded from the

single highest to the top-h highest-ranked ensembles. In 43.24% of the cases, re-training

the top 3 ensembles from the most similar task provided the best results. If expanded to

the top 6 and 9, the percentage grows to 67.56% and 85.13%, respectively. In Figure 5.2,
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Table 5.4: Average accuracy improvement gained by expanding the re-training to the top-
h highest-ranked ensembles, compared to the result obtained from re-training only the
highest-ranked ensemble from the most similar task.

h = 3 h = 6 h = 9 h = 12

+2.51pp +3.31pp +3.79pp +4.39pp

we can see an elbow that indicates where the increment of ensembles to be re-trained starts

to have a smaller gain of accuracy. This happens after the top 6 mark and makes it visual

that re-training the top 6 highest-ranked ensembles in the similar task is the configuration

that provides the best trade-off between predictive accuracy and runtime complexity.

Table 5.4 shows the improved accuracy on average when the number of re-trained

ensembles was increased. Expanding the re-training from the top 1 to the top 3 and 6

increased the accuracy by an average of 2.51 and 3.31 pp, as seen in the first and second

columns, respectively. Expanding to re-train all ensembles, represented by the last column

of the table, brings the best improvements. This is expected as it will always include the

ensemble from the most similar task that provides the best results for the new task. So,

taking into consideration that we desire to keep the number of training sessions as low

as possible, leveraging the top 6 ensembles from the most similar task is prominent as

the average accuracy improvement decreases for the top 9 and 12, i.e., if the average

accuracy improvement grows 0.8 pp between the top 3 and 6, it stays lower than this

value between top 6 and 9, and top 9 and 12. In addition, the T-test (ANDERSON; FINN,

2012) shows that the gain from expanding the re-training from the top 1 to the top 6

is statistically significant because the two-tailed p-value (p = 0.008) is lower than the

significance coefficient adopted (α = 0.05).

Table 5.5: Predictive accuracy of the Meta-CLEO results for some of the evaluated tasks
in all configurations. The best result for each task is highlighted in bold.

OpenML Task ID h = 1 h = 3 h = 6 h = 9 h = 12

279 0.8354 0.8354 0.8671 0.9399 0.9462
288 0.8564 0.8618 0.8618 0.8630 0.8630

75131 0.9182 0.9303 0.9303 0.9303 0.9303
75180 0.9182 0.9182 0.9182 0.9182 0.9182
75187 0.9762 0.9771 0.9820 0.9820 0.9820
75235 0.9467 0.9467 0.9567 0.9567 0.9567

146596 0.9465 0.9465 0.9519 0.9519 0.9679
166950 0.8364 0.9152 0.9152 0.9152 0.9152
166958 0.9946 0.9946 0.9946 0.9946 0.9946
189863 0.8571 0.8571 0.8668 0.8668 0.8707
189881 0.9102 0.9102 0.9102 0.9122 0.9122
189902 0.9683 0.9689 0.9689 0.9689 0.9689



44

Table 5.5 displays the predictive accuracy from running Meta-CLEO with the 5

different configurations. For tasks 75180, 166958, and 189902, the best ensemble for the

task is the best ensemble from the most similar task in the repository. This is because the

distance to their nearest neighbor is small, i.e., lower than 0.15. As the most similar task

and the new task are relatively alike, meta-learning prevails, and the best ensemble from

the original task performs best in the new task. On the other hand, for tasks 279, 146596,

and 189863, which required all ensembles from the most similar task to be re-trained in

order to find the most accurate one, the distances to their nearest neighbor are above 0.35.

Having a higher distance to the original task worsens the meta-learning process, as the

ensemble was built originally for a task that is not so similar to the new one. Hence,

ranking makes little difference, and the best ensemble for the new task could be ranked

anywhere. This scenario would likely benefit more from an optimization step built on top

of the resulting ensemble, fine-tuning the created ensemble to the new task.

5.2.2 Experiment 2: Leveraging Diversity Within the Meta-learner

Diversity has a key influence on building a successful ensemble. In this experi-

ment, we explore the use of ensemble diversity metrics to rank classifier ensembles from

the most similar task to accelerate finding the best result Meta-CLEO can provide for

a task. As seen in Experiment 1, the best ensemble on the new task, i.e., the ensemble

from the most similar task that generalized best on the new task, is not always the highest-

ranked based on accuracy. Hence, we expect that, by including ensemble diversity metrics

in the ranking function, Meta-CLEO will be able to provide the best result for new tasks

with fewer ensembles being re-trained.

To assess this, we used the same configurations from Experiment 1, i.e., re-training

the top 1, 3, 6, 9, and 12 highest-ranked ensembles from the most similar task, but now

including an ensemble diversity metric in the ranking function. The diversity metric used

to rank the classifier ensembles was double fault. Double fault was selected as it is simple

and easy to understand and interpret. Additionally, the AutoML system of choice opti-

mizes the ensembles with respect to double fault. Double fault is a pairwise ensemble

diversity metric that measures the probability of the classifiers making wrong predictions

for the same instance. Since double fault is a pairwise metric, to compute the double fault

metric for the entire ensemble, the combination of all pairs of classifiers was generated,

their double fault metric was calculated, and the average double fault from all combina-
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tions was defined as the overall ensemble double fault metric. The higher the diversity,

the lower the double fault measure. In this experiment, 1 − doublefault was used in

all calculations to standardize it to interpret the higher, the better. The ranking functions

utilized were: only the value of accuracy, only the value of double fault, and the average

between accuracy and 1− doublefault, formulated in Equation 5.1.

accuracy + (1− doublefault)

2
(5.1)

Figure 5.3: Percentage of tasks evaluated that achieve the best accuracy possible by re-
training top 1, 3, 6, 9, and 12 highest ranked ensembles from the most similar task based
on three different ranking functions.
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Figure 5.3 depicts how the ensemble that achieved the highest predictive perfor-

mance for the new task was ranked in the original task based on the three different ranking

functions. If only the top 1 highest ranked ensemble on the original task was re-trained,

ranking on the accuracy value only provides the best possible ensemble Meta-CLEO can

provide most of the time, if compared to ranking by double fault only and the average

between accuracy and double fault. However, when re-training multiple ensembles, rank-

ing by double fault yields better results than accuracy alone, and often better results than
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Table 5.6: Distribution of the best ensemble from each task among the various rankings.
The best result for each value of h is highlighted in bold.

Ranking Function h = 1 h = 3 h = 6 h = 9 h = 12

Accuracy
Number of tasks 19 32 50 63 74

% 25.68 43.24 67.56 85.13 100
Doublefault

Number of tasks 14 33 51 65 74
% 18.92 44.59 68.91 87.83 100

Average
Number of tasks 13 33 49 64 74

% 17.57 44.59 66.21 86.48 100

the average between accuracy and double fault. Table 5.6 lists the values from Figure

5.3, allowing for a more detailed analysis. When re-training the top 3 highest ranked

ensembles, using only double fault or the average between accuracy and double fault as

the ranking function provides the best result Meta-CLEO can provide 44.59% of the time,

1.35pp more than if only accuracy was used for ranking. Expanding to the top 6 and top

9, ranking by double fault only yields results better than ranking by accuracy only or the

average between accuracy and double fault. Hence, when re-training multiple ensembles,

using a diversity metric to rank the ensembles from the most similar task provides the best

result more frequently than the other ranking functions that include the accuracy of the

ensemble on the original task.

Figure 5.4: Correlation between accuracy and double fault from the ensemble in the origi-
nal task and accuracy on the new task. The red line illustrates a perfect positive correlation
(for reference).
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This outcome aligns with the idea that diversity measures provide better indica-

tions with respect to the generalization capacity of the ensembles for a new task than the
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predictive performance they had on the original task. Figures 5.4a and 5.4b display the

correlation between the accuracy and the double fault metrics on the original task versus

the accuracy of the re-trained ensemble on the new task, respectively. Accuracy in the

original task and accuracy in the new task have a Pearson correlation coefficient of 0.29,

which does not account for any correlation. On the other hand,1−doublefault and accu-

racy on the new task have a Pearson correlation of 0.35, which is 0.06 higher and indicates

a weak correlation between the metrics. By having a stronger correlation, the diversity

metric demonstrates its superiority for ranking the ensembles before re-training.

5.2.3 Experiment 3: Comparison With Other Tools

In this experiment, we compare Meta-CLEO with two well-known ensemble algo-

rithms that a novice user could use to solve a classification task. We expect Meta-CLEO

to perform significantly best, as it creates ensembles for new tasks based on previous

knowledge obtained in training similar tasks, i.e., by leveraging meta-learning.

The ensemble algorithms selected for comparison were Random Forest2 and Ad-

aBoost3, as they are very common, well-established, and still widely used to solve ML

tasks. All ensembles were trained using the default algorithm parameters provided by the

library, as an inexperienced user would do. For Meta-CLEO, the configuration selected

was h = 6 due to the best trade-off between runtime complexity and predictive accuracy,

discussed in Experiment 1. The ranking function was set to the double fault metric, as

it provided the best results in Experiment 2. In addition, re-training all the ensembles

available from the most similar task was also evaluated. By doing so, we can explore

Meta-CLEO in a scenario where the user is willing to spend more time on training to

achieve better results.

Table 5.7 shows the percentage of tasks evaluated in which Meta-CLEO config-

urations performed better, worse, or equal to Random Forest and AdaBoost. When re-

training only the top 6 highest-ranked ensembles from the most similar task, i.e., when

h = 6, Meta-CLEO provides better results than Random Forest and AdaBoost for 70.27%

and 94.59% of the tasks, respectively. If we expand to re-train all ensembles from the

most similar task, i.e., when h = 12, Meta-CLEO performs better than Random For-

2<https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#
sklearn.ensemble.RandomForestClassifier>

3<https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.
ensemble.AdaBoostClassifier>

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier
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Table 5.7: Percentage of tasks in which Meta-CLEO configurations perform better, worse,
or equal the baselines.

Algorithm h = 6 h = 12

Random Forest
Meta-CLEO performs best 70.27% 75.67%

Meta-CLEO performs worst 24.32% 18.91%
Meta-CLEO performs equal 5.4% 5.4%

AdaBoost
Meta-CLEO performs best 94.59% 95.94%

Meta-CLEO performs worst 4.05% 2.7%
Meta-CLEO performs equal 1.35% 1.35%

est and Adaboost for 75.67% and 95.94% of the tasks, respectively. By re-training all

ensembles from the most similar task, the resulting ensembles provide better results for

tasks that were previously worse than the baselines. This is visible as the number of

tasks in which Meta-CLEO performed worse than the baseline decreased from 24.32%

to 18.91% for Random Forest and from 4.05% to 2.7% for AdaBoost. Considering that

we are adding twice the runtime complexity to the execution of Meta-CLEO, having an

improvement for only 75.67% − 70.27% = 5.4% of the tasks for Random Forest and

95.94%− 94.59% = 1.35% of the tasks for AdaBoost may be considered not worth it by

the end user, thus making the Meta-CLEO h = 6 configuration the one to choose.

Figure 5.5: Accuracy results for the Meta-CLEO configurations and the baselines.
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The boxplot from Figure 5.5 shows the improvements in accuracy when compar-

ing the Meta-CLEO solutions to the baselines. AdaBoost is the worst performer overall,

considering baselines and Meta-CLEO configurations. The interquartile range (IQR) for

Random Forest was 0.165, while Meta-CLEO configurations h = 6 and h = 12 had

an IQR of 0.122 and 0.11, respectively. The lower IQR in Meta-CLEO configurations
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Table 5.8: Mean and median of the number of instances in tasks where Meta-CLEO and
Random Forest performed best.

Metric Random Forest Meta-CLEO

Mean 19626 5258
Median 7708 1545

depicts the lower variability among their results.

On average, when the Meta-CLEO ensembles performed best than Random For-

est, the improvements in accuracy provided by the Meta-CLEO implementations with

h = 6 and h = 12 were of 3 pp and 3.3 pp. On the other hand, when Random Forests per-

formed best, they were 6 pp and 4.1 pp more accurate than their Meta-CLEO counterparts

with h = 6 and h = 12, respectively. This happens since Random Forests are known to

work well under some circumstances, such as when the amount of data is bigger. This

is the case for the tasks where Random Forest outperformed the best results Meta-CLEO

could provide, i.e., when h = 12. Table 5.8 indicates this by showing that the mean num-

ber of instances from the tasks where Random Forest performed best is 19626, versus

5258 for tasks where Meta-CLEO performed best. The median values of 7708 and 1545

for Random Forest and Meta-CLEO, respectively, also reinforce this understanding.

The statistical test was made to check for statistical significance between the re-

sults obtained from the two Meta-CLEO configurations and the baselines. Statistical sig-

nificance was identified between Meta-CLEO with h = 6 and h = 12 and AdaBoost.

For Random Forest, however, statistical significance was only found when h = 12, where

p = 0.04. Even though there is no statistical significance when comparing the results

from Meta-CLEO with h = 6 and Random Forests, it is important to mention that the

ensemble provided by Meta-CLEO can be later optimized. This can be done by, e.g., hav-

ing Meta-CLEO as a first step in an AutoML tool that would further optimize the result

provided by Meta-CLEO, thus yielding better results.

5.3 General Analysis of the Results

This chapter presented three experiments held on top of an implementation of

Meta-CLEO. The first experiment evaluated the impact that re-training multiple ensem-

bles has on finding the best result Meta-CLEO can provide for a task. From this experi-

ment, we highlighted that Meta-CLEO configuration where h = 6 provided the best bal-

ance between the runtime complexity added by re-training more ensembles and the best
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result Meta-CLEO can provide. In Experiment 2, we included diversity in the ranking

function so that we can achieve the best result Meta-CLEO can provide in more scenarios

than by ranking based on accuracy. The results from this second experiment confirmed the

positive impact that diversity measures can have on indicating the generalization potential

of an ensemble solution.

To wind up, we compared the most prominent Meta-CLEO configuration previ-

ously identified, i.e., the one with h = 6 and double fault as the ranking function, with two

baselines. Furthermore, the baselines were compared to the best result Meta-CLEO could

provide, i.e., when all ensembles from the most similar task were re-trained. Both Meta-

CLEO configurations proved to be statistically significantly better than AdaBoost, one

of the baselines. For the second baseline, Random Forest, Meta-CLEO was able to pro-

vide better results overall, providing improved results for more than 70% of the evaluated

tasks. However, only the configuration where h = 12 was proved statistically signifi-

cantly better than Random Forest. This is the case as Random Forest shines in scenarios

where the data set is larger. Nevertheless, the configuration of Meta-CLEO where h = 6

can be further leveraged in future work as an alternative to warm-start AutoML, which

would later optimize the ensemble created by Meta-CLEO, leading to better results.
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6 CONCLUSION

In this Thesis, a new framework called Meta-CLEO was presented, which lever-

ages knowledge from previously trained ensembles and their associated tasks to solve

new classification tasks more accurately for non-technical ML users. Meta-CLEO com-

bines meta-learning with heterogeneous ensembles to achieve its goal. It identifies the

most similar task in its repository, ranks the associated ensembles, and re-trains one or

more to find the one that fits best with the new task. Furthermore, Meta-CLEO leverages

ensemble diversity explicitly to obtain better results while re-training fewer models.

Experiments conducted compared Meta-CLEO with two widely adopted ensem-

ble techniques, namely Random Forest and AdaBoost, and concluded that Meta-CLEO

provides better or equal results more than 75% of the time. The impact of including ex-

plicit diversity for ranking classifier ensembles and re-training multiple ensembles was

also analyzed. Results indicate that using diversity metrics to rank the ensembles to be

re-trained on the new task improves performance for some tasks when multiple ensembles

are evaluated.

Much potential has been identified for the next steps of this work. First, meta-

feature selection can take place to identify the meta-features that better suit the meta-

learner. In the meta-learner, leveraging materialized data of the predictions from the base

classifiers in the original task can allow variations of the proposed approaches when creat-

ing the ensembles for the new task during the online stage, especially considering ensem-

ble diversity. Also, evaluating ensembles from more tasks, and not just the most similar

one, may lead to improved results.

Regarding extensibility, Meta-CLEO can be integrated and used as a first step in an

AutoML pipeline, warm-starting the AutoML process and thus giving more time for the

optimizer to work on more promising results by reducing the search space. As the current

implementation had its repository generated through an AutoML tool, it is reasonable

to think that adding an optimization layer on top of the result provided by Meta-CLEO

can also increase efficacy. If the Meta-CLEO framework is used in isolation, having the

repository generated by a group of ML experts could also provide better results.

Last, regarding the experiments and the implementation, memory optimizations

can be performed when de-serializing and loading the available models into memory,

allowing for faster re-training and evaluation. More time can also be given as a budget

to the AutoML tool used to populate the repository, leading to even better ensembles and
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possibly better overall experiment results. Additionally, the related work can be used as

baselines for comparison. If they include optimization, it could be turned off to evaluate

solely the warm-starting phase, keeping the comparison fair. Including ensemble creation

time as a dimension in the evaluation can also provide a better indication of the trade-

off between time and accuracy when comparing optimized with non-optimized ensemble

creation.
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APPENDIX A — RESUMO EXPANDIDO

O aprendizado de máquina (Machine Learning - ML) nunca foi tão popular. Com

sua crescente adoção e a evolução dos recursos de hardware e da computação em nuvem,

cada vez mais áreas de pesquisa e indústrias estão expandindo seus investimentos em tec-

nologia para resolver seus desafios de domínio com ML. Porém, o desenvolvimento de

um modelo com alto desempenho preditivo para resolver uma determinada tarefa é um

processo complexo. Um algoritmo deve ser escolhido e seus hiperparâmetros devem ser

ajustados. Para ensembles, o desafio é ainda maior, pois vários algoritmos devem ser es-

colhidos, cada um com seus próprios hiperparâmetros, e, adicionalmente, um mecanismo

de fusão deve ser escolhido, que também pode precisar de ajuste de hiperparâmetros.

Especialistas em aprendizado de máquina contam com seu conhecimento e experiência

anterior na resoloução de várias tarefas para enfrentar esse desafio e desenvolver uma

solução para uma nova tarefa. No entanto, para analistas novatos que ainda não têm ex-

periência em ML, criar uma solução que resolva a tarefa com alta precisão pode se tornar

um processo desafiador.

Uma abordagem que tem sido usada com sucesso para tornar ML mais acessível

aos analistas iniciantes é o meta-aprendizado. O meta-aprendizado, também conhecido

como aprender a aprender, é um subcampo de ML que aproveita os metadados coleta-

dos de tarefas resolvidas anteriormente e suas soluções de ML para aprender novas tare-

fas com mais eficiência e precisão (VANSCHOREN, 2019). Com o meta-aprendizado,

é possível determinar quais algoritmos tiveram um bom desempenho em tarefas semel-

hantes e usar essas informações para produzir uma solução para uma nova tarefa que

antes era desconhecida. Embora o meta-aprendizado tenha sido usado no contexto de

tarefas de classificação e ensembles no passado (KHAN et al., 2020; SILVA et al., 2021),

não foi encontrada nenhuma literatura que explorasse como ensembles de classificadores

heterogêneos se comportam em um conjunto de tarefas para que um ensemble de classifi-

cadores com bom desempenho possa ser criado para uma nova tarefa.

Esta dissertação apresenta uma nova estrutura que combina o conhecimento pas-

sado do meta-aprendizado com a eficácia comprovada dos ensembles de classificadores,

denominada Meta-CLEO (Meta-Learning for Classifier Ensemble Optimization). Ao

mesclar ensembles com o meta-aprendizado, é possível aproveitar os aspectos que tor-

nam um ensemble eficaz, como a diversidade, bem como os componentes do ensemble,

como o tamanho, os classificadores base e o método de fusão, como metadados exclusivos
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para o meta-aprendizado. A contribuição deste trabalho inclui:

• Uma nova maneira de combinar meta-aprendizado e ensembles heterogêneos para

auxiliar usuários não técnicos de ML a encontrar uma solução de ensembles com

bom desempenho para suas tarefas;

• A proposta e a avaliação de um sistema de classificação baseado no desempenho

do ensemble e em métricas de diversidade que compõem ensembles de bom desem-

penho e reduzem a complexidade do tempo de execução; e

• A avaliação do Meta-CLEO em relação a duas técnicas de ensembles amplamente

conhecidas e comumente usadas em ML: Random Forest e AdaBoost;

A arquitetura típica de uma aplicação de meta-aprendizado é composta, principal-

mente, por um repositório e um meta-aprendiz. O repositório armazena os metadados das

tarefas aprendidas anteriormente, entituladas meta-features, os modelos de ML usados e

seus resultados de avaliação. Como a criação do repositório pode ser demorada, ela ocorre

offline. O repositório é então usado para treinar o meta-aprendiz, o algoritmo responsável

por aprender a relação entre as meta-features e os resultados da avaliação do modelo para

uma tarefa. O meta-aprendiz pode ser um algoritmo de ML, como o kNN, ou um sistema

baseado em regras que, com base nas meta-features de uma nova tarefa, retorna um mod-

elo com base nos dados do repositório. A predição do meta-aprendiz ocorre online, ou

seja, durante o tempo de execução.

No Meta-CLEO, o repositório é criado treinando e armazenando diferentes en-

sembles aprendidos para cada tarefa do repositório na etapa offline. Os ensembles são

compostos por classificadores de base heterogêneos e um método de fusão. Quando uma

nova tarefa é recebida, o meta-aprendiz identifica a tarefa mais similar e classifica seus

ensembles com base nas medidas de desempenho e diversidade. Em seguida, os ensem-

bles melhor ranqueados na tarefa mais similar são treinados no conjunto de dados de

treinamento da nova tarefa e avaliados no respectivo conjunto de dados de teste. Por

fim, o ensemble com melhor desempenho na nova tarefa é selecionado como a saída do

meta-prendiz.

O meta-aprendiz do Meta-CLEO permite o ajuste das principais configurações,

como a função de ranqueamento e o número de ensembles a serem re-treinados, o valor-

h, a fim de obter melhores resultados. Dois experimentos foram realizados para avaliar

o impacto da variação dessas configurações e outro para comparar o Meta-CLEO a dois
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baselines. A partir dos experimentos, destacamos que a configuração do Meta-CLEO em

que h = 6 forneceu o melhor equilíbrio entre a complexidade da execução adicionada pelo

re-treino de múltiplos ensembles e o melhor resultado que o Meta-CLEO pode fornecer.

No Experimento 2, incluímos a diversidade na função de ranqueamento para que pos-

samos obter o melhor resultado que o Meta-CLEO pode oferecer em mais cenários do

que com o ranqueamento baseado somente em precisão. No último experimento, com-

paramos a configuração mais proeminente do Meta-CLEO identificada anteriormente, ou

seja, aquela com h = 6 e diversidade considerada na função de ranqueamento, com dois

baselines. Além disso, os baselines foram comparados com o melhor resultado que o

Meta-CLEO poderia fornecer, ou seja, quando todos os ensembles da tarefa mais similar

foram re-treinados. Ambas as configurações do Meta-CLEO demonstraram ser estatis-

ticamente melhores do que o AdaBoost, um dos baselines. Para o segundo baseline, o

Random Forest, o Meta-CLEO foi capaz de fornecer melhores resultados em geral, pro-

porcionando melhores resultados para mais de 70% das tarefas avaliadas. No entanto,

somente a configuração em que h = 12 se mostrou estatisticamente melhor do que o

Random Forest. Isso acontece pois o Random Forest se destaca em cenários em que o

conjunto de dados é maior.

Por fim, foi identificado um grande potencial para trabalhos futuros a partir deste

trabalho. Primeiramente, pode ser concedido mais tempo como orçamento para a ferra-

menta AutoML utilizada para preencher o repositório criado para os experimentos, o que

pode resultar em ensembles ainda melhores e, possivelmente, em uma melhor avaliação

nos experimentos. Além disso, a seleção de meta-features pode ser feita para identificar

as que melhor se adequam ao meta-aprendiz. Em segundo lugar, com relação à extensi-

bilidade, o Meta-CLEO pode ser integrado e usado como primeira etapa em um pipeline

de AutoML, inicializando o processo de AutoML e, assim, dando mais tempo para que o

otimizador trabalhe em resultados mais promissores, reduzindo o espaço de pesquisa.
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APPENDIX B — COMPLETE TABLE OF META-FEATURES USED IN THE

IMPLEMENTATION OF META-CLEO

Table B.1: Meta-features used by Meta-CLEO.

Category Meta-Feature

Simple

Number of classes (MICHIE et al., 1995)

Frequency of each class (LINDNER; STUDER, 1999)

Number of instances (MICHIE et al., 1995)

Number of features (MICHIE et al., 1995)

Ratio of number of instances to features (KUBA et al., 2002)

Ratio of number of features to instances

(KALOUSIS; THEOHARIS, 1999)

Number of binary features (MICHIE et al., 1995)

Number of categorical features (ENGELS; THEUSINGER, 1998)

Number of numerical features (ENGELS; THEUSINGER, 1998)

Ratio of numerical to categorical features

(FEURER; SPRINGENBERG; HUTTER, 2014)

Ratio of categorical to numerical features

(FEURER; SPRINGENBERG; HUTTER, 2014)

Statistical

Canonical correlation between the features

and the target (KALOUSIS, 2002)

Absolute correlation for each feature pair

(CASTIELLO; CASTELLANO; FANELLI, 2005)

Absolute covariance for each feature pair

(CASTIELLO; CASTELLANO; FANELLI, 2005)

Variance for each feature

(CASTIELLO; CASTELLANO; FANELLI, 2005)

Eigenvalues of the covariance matrix (ALI; SMITH, 2006)

Data set target gravity (ALI; SMITH, 2006)
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Median Absolute Deviation (ALI; SMITH, 2006)

Geometric mean for each feature (ALI; SMITH-MILES, 2006)

Harmonic mean for each feature (ALI; SMITH-MILES, 2006)

Range of each feature (ALI; SMITH-MILES, 2006)

Interquartile range for each feature (ALI; SMITH-MILES, 2006)

Kurtosis for each feature (MICHIE et al., 1995)

Homogeneity of covariances statistical test (MICHIE et al., 1995)

Skewness of each feature (MICHIE et al., 1995)

Lawley-Hotelling trace (HOTELLING, 1951)

Maximum / Minimum value for each feature

(ENGELS; THEUSINGER, 1998)

Mean value for each feature (ENGELS; THEUSINGER, 1998)

Median value for each feature (ENGELS; THEUSINGER, 1998)

Standard deviation for each feature (ENGELS; THEUSINGER, 1998)

Trimmed mean for each feature (ENGELS; THEUSINGER, 1998)

Number of highly correlated feature pairs

(SALAMA; HASSANIEN; REVETT, 2013)

Sparsity measure for each feature

(SALAMA; HASSANIEN; REVETT, 2013)

Number of canonical correlations between each

feature and target (LINDNER; STUDER, 1999)

Wilks’ lambda value (LINDNER; STUDER, 1999)

Number of normally distributed features

(KÖPF; TAYLOR; KELLER, 2000)

Number of features with at least one outlier

(KÖPF; IGLEZAKIS, 2002)

Pillai’s trace (PILLAI, 1955)

Roy’s largest root (ROY, 1953)

Info

Theoretic

Noisiness of the features (MICHIE et al., 1995)
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Mutual information between feature

and target (MICHIE et al., 1995)

Joint entropy between feature and class (MICHIE et al., 1995)

Equivalent attributes (MICHIE et al., 1995)

Target’s Shannon entropy (MICHIE et al., 1995)

Features’ Shannon entropy (MICHIE et al., 1995)

Concentration coefficient between each

feature and class (KALOUSIS; HILARIO, 2000)

Concentration coefficient for each feature pair

(KALOUSIS; HILARIO, 2000)



65

APPENDIX C — TASKS USED IN THE IMPLEMENTATION AND

EVALUATION OF META-CLEO

Table C.1: All tasks used in Meta-CLEO and their key as-

pects.

OpenML Task ID Number of Features Number of Instances Number of Classes

279 9 958 2

288 40 5000 3

2122 6 28056 18

3048 6 11183 2

3049 49 937 2

3053 6 556 2

75089 20 1000 2

75108 167 6598 2

75112 10 19020 2

75115 10935 1545 2

75121 10935 1545 2

75125 10935 1545 2

75126 10935 1545 2

75131 5 1000 2

75134 7 164860 11

75139 48 15000 2

75141 8 8192 2

75142 10 40768 2

75146 40 13750 2

75147 12 8192 2

75148 6 3107 2

75149 10 1000 2

75154 64 1600 100

75156 1776 3751 2

75171 8 8192 2
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75176 8 20640 2

75180 50 1000 2

75185 14 6574 2

75187 20 7400 2

75199 25 1000 2

75210 4 8641 2

75219 14 14980 2

75223 6 28056 18

75233 21 8192 2

75235 24 5456 4

75236 256 1593 10

126021 14 9961 9

126024 5 15545 2

126030 561 10299 6

126031 40 5500 11

146574 60 600 6

146576 70 841 4

146586 4 1372 2

146592 100 1212 2

146593 10 583 2

146594 500 2600 2

146596 30 569 2

146597 1300 571 20

166866 100 500 2

166872 7 500 2

166905 20 506 2

166915 9 950 2

166931 5 500 2

166932 7 500 2

166950 10 500 2

166951 50 500 2

166956 4 559 2
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166958 4 559 2

167085 1000 1600 2

167086 20 1600 2

167089 20 1600 2

189859 10304 575 20

189863 259 3140 2

189864 308 5832 2

189875 20 20000 5

189881 3 1521 5

189882 3 1515 5

189887 3 9989 5

189890 3 8753 5

189894 3 1183 5

189899 40 750 8

189902 3 10130 5

211720 220 9144 8

211721 13 5278 2
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