
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

ANDERSON IGNACIO DA SILVA

IPSoCGen platform - Framework for
MP/SoC generation

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Microeletronics

Advisor: Prof. Dr. Altamiro Amadeu Susin

Porto Alegre
April 2024

CIP — CATALOGING-IN-PUBLICATION

Silva, Anderson Ignacio da

IPSoCGen platform - Framework for MP/SoC genera-
tion / Anderson Ignacio da Silva. – Porto Alegre: PGMI-
CRO da UFRGS, 2024.

108 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Microeletrônica, Porto Alegre,
BR–RS, 2024. Advisor: Altamiro Amadeu Susin.

1. Design generation, Network-on-Chip, Parallel processing,
VLSI. I. Susin, Altamiro Amadeu. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Profa. Ione Borcelli Gonçalves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PGMICRO: Prof. Cláudio Radtke
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

ABSTRACT

System-on-Chip (SoC) architectures encompass multiple processing elements and a com-

munication fabric on a single integrated circuit, offering substantial parallelism and a

high communication bandwidth. This arrangement yields significant performance ben-

efits while maintaining low power consumption. Nevertheless, designing and verifying

complex VLSI systems presents challenges and often involves employing pre-defined and

certified functional building blocks referred to as Intellectual Property (IP). The state of

the art in design generation focuses more on high-level abstraction through Scale-based

language, limiting the flexibility of the generated hardware. This work signifies a no-

table advancement by introducing a platform for constructing configurable systems that

streamline the interconnection of pre-designed IPs through a Network on Chip (NoC).

The nodes within this network comprise processors or any self-governing data handling

systems that adhere to industry-standard protocols. This enables the mapping of multi-

ple independent or interconnected processes onto various node clusters, allowing them to

function autonomously. The platform’s user-friendly interface permits the specification of

global parameters, simulation, debugging, RTL generation, synthesis, and the uploading

of FPGA-based application code. Additionally, the communication interface protocol en-

ables the integration of Special Purpose Cores with the internal bus or NoC Interface, thus

enhancing the system’s adaptability and extensibility. The principal application domains

envisioned for this platform include Image Processing/Computer Vision and Artificial

Intelligence engines. To demonstrate the feasibility of the design flow and explore the

performance benefits derived from parallelism, basic image processing algorithms were

implemented as proof of concept applications. Given the platform’s capacity to generate

both SoCs and MPSoCs, both designs were produced and benchmarked using the im-

age processing application. These benchmarks revealed the advantages and limitations of

each system configuration. While this initial implementation provides valuable insights,

further endeavors are necessary to enrich the hardware directory of the nodes and enhance

security and reliability aspects. The final platform presented is capable of generating mul-

tiple design topologies, providing flexibility to test these systems to the emulation and

prototyping stages, where the performance and correctness can be evaluated.

Keywords: Design generation, Network-on-Chip, Parallel processing, VLSI.

Plataforma IPSoCGen - Framework para geração MP/SoC

RESUMO

Arquiteturas System-on-Chip (SoC) abrangem múltiplos elementos de processamento e

um barramento de comunicação em um único circuito integrado, oferecendo substancial

paralelismo e uma alta largura de banda de comunicação. Essa disposição resulta em

significativos benefícios de desempenho ao mesmo tempo em que mantém um baixo con-

sumo de energia. No entanto, projetar e verificar sistemas complexos de VLSI apresenta

desafios e frequentemente envolve a utilização de blocos de construção funcionais pre-

definidos e certificados, referidos como Propriedade Intelectual (IP). O estado da arte na

geração de design foca mais na abstração de alto nível por meio de bibliotecas basea-

das em linguagem Scala, limitando a flexibilidade do hardware gerado. Este trabalho

representa um notável avanço ao introduzir uma plataforma para construir sistemas con-

figuráveis que facilitam a interconexão de IPs pré-projetados por meio de uma Rede em

Chip (NoC). Os nós dentro dessa rede incluem processadores ou qualquer sistema autô-

nomo de manipulação de dados que aderem a protocolos padronizados pela indústria.

Isso possibilita o mapeamento de múltiplos processos independentes ou interconectados

em vários aglomerados de nós, permitindo que eles funcionem autonomamente. A inter-

face amigável dessa plataforma permite a especificação de parâmetros globais, simulação,

depuração, geração de RTL, síntese e o carregamento de código de aplicação baseado em

FPGA. Além disso, o protocolo de interface de comunicação possibilita a integração de

Núcleos de Propósito Especial ao barramento interno ou Interface NoC, aprimorando as-

sim a adaptabilidade e extensibilidade do sistema. Os principais domínios de aplicação

idealizados para essa plataforma incluem Processamento de Imagem/Visão Computacio-

nal e motores de Inteligência Artificial. Para demonstrar a viabilidade do fluxo de design

e explorar os benefícios de desempenho derivados do paralelismo, algoritmos básicos de

processamento de imagem foram implementados como aplicações de prova de conceito.

Dada a capacidade da plataforma de gerar tanto SoCs quanto MPSoCs, ambos os projetos

foram produzidos e avaliados usando a aplicação de processamento de imagem. Essas

avaliações revelaram as vantagens e limitações de cada configuração de sistema. Embora

essa implementação inicial forneça insights valiosos, esforços adicionais são necessários

para enriquecer o diretório de hardware dos nós e aprimorar aspectos de segurança e

confiabilidade. A plataforma final apresentada é capaz de gerar múltiplas topologias de

projeto, proporcionando flexibilidade para testar esses sistemas até as etapas de emulação

e prototipagem, onde o desempenho e a correção podem ser avaliados.

Palavras-chave: Geração de design, Redes-em-Chip, Processamento paralelo, VLSI.

LIST OF FIGURES

Figure 1.1 ASIC Custom flow...16

Figure 2.1 Design data flow ..21
Figure 2.2 The design flow of the LiteX framework...21
Figure 2.3 Chipyard flow ..23

Figure 3.1 NI IRQ logic ..29
Figure 3.2 Network Interface with AXI I/F ..29
Figure 3.3 RaveNoC Mesh 2x2 example ..30
Figure 3.4 NoX CPU diagram...31
Figure 3.5 RISCOF framework diagram...34
Figure 3.6 RISC-V compliance tests (RISCOF)...35
Figure 3.7 AXI DMA diagram..37
Figure 3.8 Ethernet AXI diagram ...39
Figure 3.9 Programmable AXI Machine Timer ..41
Figure 3.10 Programmable AXI Reset Controller ..42
Figure 3.11 AXI Interrupt Controller..43
Figure 3.12 AXI Interface and interconnect ...44
Figure 3.13 Channel architecture of writes/reads ...45

Figure 4.1 IPSoCGen block diagram ..48
Figure 4.2 IPSoCGen general flow ...49
Figure 4.3 QEMU integrated with Noxim simulator ..52
Figure 4.4 IPSoCGen configuration tree diagram...54

Figure 5.1 SoC template diagram ...63
Figure 5.2 Bootloader flowchart ...67
Figure 5.3 SoC architecture with additional slaves (Ethernet)..68
Figure 5.4 SoC Histogram app flowchart..69
Figure 5.5 MPSoC 3x3 architecture..71
Figure 5.6 Master Tile Histogram app flowchart ..72
Figure 5.7 Slave Tile Histogram app flowchart...73
Figure 5.8 Host Histogram app flowchart ...74

Figure 6.1 SoC power breakdown numbers ..78
Figure 6.2 Power setup..79
Figure 6.3 SoC Power comparison chart...79
Figure 6.4 SoC running histogram app ...81
Figure 6.5 SoC Frequency plan...82
Figure 6.6 Timing report issue during FPGA implementation82
Figure 6.7 MPSoC power breakdown numbers ..84
Figure 6.8 MPSoC Power comparison chart...85
Figure 6.9 Dynamic power estimation per FPGA element - Vivado87
Figure 6.10 External measurement (INA219) - Delta using blink design as reference ..88
Figure 6.11 Histogram MPSoC speedup comparison...90
Figure 6.12 MPSoC speedup - Comparison of different amounts of workloads per

number of loops ..92
Figure 6.13 MPSoC design area increase in comparison to the SoC..............................94
Figure 6.14 Mean filter diagram ...95

Figure 6.15 Design used to benchmark the mean filter...95
Figure 6.16 Linear mean filter running on the MPSoC...96
Figure 6.17 Host side application execution ...97

LIST OF TABLES

Table 2.1 Comparison between the different frameworks and their features..................24

Table 3.1 Configurable parameters of the RaveNoC HDL design.28
Table 3.2 NoX breakdown area report. ...32
Table 3.3 AXI DMA parameters ...38

Table 6.1 Nexys Video FPGA total utilization (SoC) ...83
Table 6.2 SoC - Hierarchical area breakdown...83
Table 6.3 Nexys Video FPGA total utilization (MPSoC) ...86
Table 6.4 MPSoC - Hierarchical area breakdown...86
Table 6.5 Linear mean filter average time per frame ..97

LIST OF SOURCE CODES

1 Initial information on configuration file...54

2 SoC base configuration ..55

3 Masters and Slaves configuration ..56

4 MPSoC configuration ..57

5 anchor and alias used in MPSoC configuration ..58

6 Template of the AXI interrupt controller and the output ...61

7 SoC Hello World boot..63

8 ELF loader function in testbench ...64

9 SV function to load Instruction RAM used by the testbench65

10 SV function to set the reset vector used by the testbench ..65

11 DMA embedded C API..75

LIST OF ABBREVIATIONS AND ACRONYMS

3PIP Third-party intellectual property

AI Artificial Intelligence

AMBA Advanced Microcontroller Bus Architecture

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

AXI Advanced eXtensible Interface

AXIL AXI-Lite protocol

AXIS AXI-Stream protocol

BRAM Block RAM

CAD Computer-aided design

CDC Clock Domain Crossing

CSR Control and Status Register

CV Computer Vision

DFT Design for Testability

DMA Direct Memory Access

DSE Design Space Exploration

DUT Device Under Test

DVFS Dynamic Voltage and Frequency Scaling

EDA Electronic Design Automation

ELF Executable and Linkable Format

FIFO First-in First-out

FPS Frames-per-second

FPGA Field Programmable Gate Array

FSM Finite State Machine

GPP General Purpose Processor

HDL Hardware Description Language

HTML HyperText Markup Language

I2C Inter-Integrated Circuit protocol

IO Input and Output

ISA Instruction Set Architecture

KPI Key Performance Indicator

LMA Loaded Memory Address

LSU Load-and-Store Unit

LUT Look-Up Table

MAC Media Access Control

MMCM Mixed-Mode Clock Manager

MISO Master Input Slave Output

MOSI Master Output Slave Input

MPSoC Multi-Processor System-on-Chip

MTU Maximum Transmission Unit

NI Network Interface

NoC Network-on-Chip

OS Operating System

PHY Physical Layer

PLL Phase-locked loop

PMCA Programmable many-core accelerators

PPA Power, Performance and Area

QEMU Quick Emulator

RAM Random Access Memory

RI Random Instruction

RGMII Reduced Gigabit Media Independent Interface

RISC-V Reduced Instruction Set Computer (RISC) Five

RISCOF RISC-V Compatibility Framework

RLNC Random Linear Network Coding

RTOS Real-time operating System

SoC System-on-Chip

SPMD Single Program Multiple Data

TLM Transaction Level Modeling

TEE Trusted Execution Environment

UART Universal Asynchronous Receiver / Transmitter

UVM Universal Verification Methodology

UDP User Datagram Protocol

UEFI Unified Extensible Firmware Interface

VHDL Very High-Speed Integrated Circuit Hardware Description Language

VLSI Very Large Scale Integration

VMA Virtual Memory Address

VC Virtual Channel

WFI Wait for Interrupt

WNS Worst Negative Slack

YAML Yet Another Markup Language

CONTENTS

1 INTRODUCTION...15
1.1 Dissertation Goal...17
1.2 Dissertation Outline ..18
2 BACKGROUND AND RELATED WORK..20
2.1 Bastl - EDA tool...20
2.2 LiteX...20
2.3 Chipyard ..22
2.4 Comparison between frameworks...24
2.5 Conclusion ...25
3 BASE IP SET FOR THE PROPOSED PLATFORM..26
3.1 RaveNoC Network-on-Chip ...26
3.1.1 Parameters to tune..27
3.1.2 Network Architecture...28
3.2 NoX RISC-V core..29
3.2.1 NoX area ..32
3.2.2 RISC-V Compliance tests ..33
3.2.3 FreeRTOS port ...34
3.3 AXI DMA...35
3.3.1 Parameters to tune..37
3.4 Ethernet AXI ...38
3.5 Programmable AXI Machine Timer ...40
3.6 AXI Reset Controller ..41
3.7 AXI Interrupt Controller ...42
3.8 Additional design elements ..44
3.8.1 AXI Crossbar/Interconnect wrapper ..44
3.8.2 AXI UART Slave ...45
3.9 Final considerations ..46
4 IPSOCGEN - SOC GENERATION METHODOLOGY..47
4.1 Proposed flow...47
4.1.1 Phase 1 - Application: specification, requirements, and profiling47
4.1.2 Phase 2.a - Design setup and generation (Hardware) ..50
4.1.3 Phase 2.b - Software/Firmware development ..51
4.1.4 Phase 3 - System’s validation ..52
4.2 Configuration files...53
4.2.1 SoC configuration ..54
4.2.2 MPSoC configuration ..56
4.3 Classes and modules ...58
4.4 Extension and flexibility ...59
4.5 Conclusion ...60
5 SOC AND MPSOC PLATFORM..62
5.1 SoC template..62
5.1.1 Architecture..62
5.1.2 Program loading through testbench ...64
5.1.3 Custom AXI master and slave ...66
5.1.4 Bootloader for FPGA/ASIC testing ...66
5.1.5 Application testing - Histogram...68
5.2 MPSoC template ...70
5.2.1 Architecture..70

5.2.2 Histogram MPSoC flow...71
5.3 Host histogram application ..73
5.4 Software and APIs ..74
5.5 FPGA prototyping ..75
5.6 Conclusion ...76
6 CASE STUDIES..77
6.1 SoC - Single Processor SoC..77
6.1.1 Power ...77
6.1.2 Performance ...80
6.1.3 Area..81
6.2 MPSoC - Multi-Processor System-on-Chip..84
6.2.1 Power ...84
6.2.2 Performance ...85
6.2.3 Area..85
6.3 PPA evaluation ..87
6.3.1 Power ...87
6.3.2 Performance ...89
6.3.2.1 MPSoC performance exploration ...89
6.3.3 Area..93
6.4 Linear mean filter application ...94
6.4.1 Performance comparison ...97
6.5 Conclusion ...98
7 CONCLUSIONS ...99
7.1 Future Works...100
REFERENCES...102
APPENDIX A — RESUMO EXPANDIDO ..107

15

1 INTRODUCTION

Over the past few years, the number of devices integrating Systems-on-Chip (SoCs)

has been massively increasing. From simple networking modems to advanced embedded

AI controllers, the number of different usages aims to grow as much as possible. As ini-

tially mentioned by Lee (2003), the advance of the technology enables the integration of

multiple processing elements, memory cells, and analog macros, which converges to the

SoC era. The versatility of these systems is evident in their capacity to be applied across

multiple domains, including mobile processing (BRIGGS; ZARKESH-HA, 2014), Edge

server (XU; ZHANG; WANG, 2022) or even implant for in-body strain sensing (AB-

DELHAMID et al., 2023). Thus, the number of different requirements is analogous to the

SoC growth, with applications requiring General- Purpose Processor (GPP) and hardware

accelerators.

To meet an extensive array of requirements, Multi-Processor System-on-Chip (MP-

SoC) architectures emerge as a highly suitable solution. These MPSoCs find utility across

a diverse spectrum of applications, spanning from automotive to healthcare. They typi-

cally exhibit a tile-based architectural structure and facilitate intercommunication through

a Network-on-Chip (NoC), as elaborated in (AZAD et al., 2019). Differently from stan-

dard SoCs, MPSoCs are highly influenced by their application programming model, at the

first one the CPU can run fairly independent programming model and in the last it is build

to share workloads considering its application in general (WOLF; JERRAYA; MARTIN,

2008). Henceforth, applications encompassing various forms of data processing, includ-

ing but not limited to image, audio, and video processing, can experience substantial

acceleration when tailored for execution on a MPSoC platform.

When it comes to manufacturing, both SoC and MPSoC are implemented through

the same custom ASIC (Application-Specific Integrated Circuit) flow. The general VLSI

(Very Large Scale Integration) flow, as represented in Figure 1.1, illustrates the various

steps involved in the entire process, starting from product scoping to the foundry where

the chip is built. According to (TARAATE, 2021), the initial step involves product scop-

ing and specification extraction, where the requirements are defined with a focus on the

end product. Subsequently, the design planning phase is primarily characterized by ar-

chitecture and micro-architectural definition. In this phase, high-level models can be

implemented to describe the product at a system level, abstracting the low-level details.

These models can also serve as a reference for parallel software development.

16

Figure 1.1: ASIC Custom flow

Source: Modified from (TARAATE, 2021)

The logic design phase encompasses the conversion of the high-level specifica-

tions into tangible design blocks described in a commercially available Hardware De-

scription Language (HDL). This phase runs in parallel with the verification process. Once

the design achieves a specific level of quality, logic synthesis takes place, initiating the

technology mapping process that transforms the RTL (Register Transfer Level) into a

netlist. Within this stage, various sub-stages occur, including DFT (Design for Testa-

bility) and Scan-chain insertion, which are assessed using logical equivalence checking

tools. Subsequently, the design is transformed into geometric structures using a range of

CAD (Computer-Aided Design) tools during the Physical Design step. This step encom-

passes power planning, clock tree synthesis, and place-and-route, among others.

Throughout each stage of the ASIC development process, multiple checkpoints

are established to evaluate the project’s constraints and the PPA (Power, Performance,

and Area) characteristics. As highlighted by sources such as (LI et al., 2018), (HASSAN

et al., 2021), and (ESMAEILZADEH et al., 2022), metrics related to power consump-

tion, performance, and chip area are invaluable for comprehending the system’s behavior.

These metrics aid in assessing whether the various levels of abstractions are aligned with

17

the ultimate chip target.

Evaluating these metrics throughout the development flow is a complex task that

typically necessitates a flexible methodology. In such a methodology, different teams are

required to support multiple inputs and outputs regarding project planning, result com-

pilation, synchronization barriers, and other factors. For instance, when the system is

modeled using a high-level language like SystemC (commonly used in UVM verifica-

tion environments), bus transactions are executed atomically through TLM (Transaction-

Level Modeling) (XU; POLLITT-SMITH, 2005). However, when aiming to calculate

the throughput of an architectural specification model against an RTL (Register Transfer

Level) design that provides cycle-accurate waveforms, the comparison becomes signifi-

cantly challenging. The lack of a clear method to turn the specification into an emulated

circuit can result in significant differences between the initial proposal and the actual

circuit design throughout various stages.

From an industry standpoint, the general workflow involves multiple levels of

integration with a substantial number of engineers involved at each stage of the chip de-

velopment cycle. Consequently, the comparison of the aforementioned metrics is usually

conducted through sign-off reviews, which progress through each team responsible for

taking the design forward in the flow. Typically, the architectural specification provides

a rough estimate or a "ballpark" idea of the final PPA numbers that will be attained after

the tapeout. Considering the inherent risks involved in the process, the team can evaluate

whether the worst-case scenario is still acceptable from a product perspective.

In conclusion, the implementation of a platform that facilitates rapid and precise

design development serves to bridge the gap existing between the various levels of ab-

straction within the ASIC design flow. This can ultimately contribute to achieving a more

favorable Time-to-Market (TTM) by eliminating the need for iterative exchanges between

architectural and design teams. By providing a snapshot of the final metrics based on a

cycle-accurate approach, such a platform enables a more efficient and streamlined design

process.

1.1 Dissertation Goal

The primary objective of this dissertation is to develop a framework capable of

effectively addressing the previously mentioned challenge of facilitating rapid and flexi-

ble digital design prototyping, starting from an architecture specification and proceeding

18

to the emulation stage. In addition to the framework, a comprehensive workflow will be

presented to enable the utilization of the platform, encompassing all the necessary steps,

including software development. To accomplish this objective, the following contribu-

tions can be emphasized:

1. Conduct a review of the existing literature on MP/SoC design frameworks, industry

standard protocols, and various IP designs.

2. Define a collection of essential components required for constructing a framework,

which includes pre-verified IPs.

3. Establish a methodology for constructing and generating designs, based on a stan-

dardized file format utilized within the EDA tools domain.

4. Develop and demonstrate the practical application of the auto-generated design, by

comparing different approaches between SoC and MPSoC designs, along with their

respective capabilities.

1.2 Dissertation Outline

The presented work is structured as follows. Chapter 2 provides a comprehen-

sive literature review of various frameworks for design generation, encompassing both

general-purpose and system-specific generation frameworks. This chapter also examines

open-source and industry standards about each individual IP.

Chapter 3 focuses on the base IP set chosen to construct the framework. The

chapter highlights the significance of these IPs within the framework while delving into

their features and limitations in detail.

Chapter 4 presents the proposed methodology flow, elucidating the different stages

involved. Each stage is explained, along with its connection to the overall proposal. Ad-

ditionally, this chapter demonstrates the chosen configuration file and its role in driving

the design generation process. It also provides insight into the background of platform

development, including the various structures implemented within the proposal.

Chapter 5 describes the two template architectures developed using the framework

and outlines the implementation of their respective software stacks. This chapter also

addresses the distinct requirements for each system.

Moving on to Chapter 6, the associated experimental results are presented, con-

sidering the developments described in the previous chapter. A thorough comparison of

19

the systems is conducted, focusing on PPA metrics, with an extended analysis of their

performance.

Finally, the conclusion summarizes the accomplishments of the research and sug-

gests potential avenues for future enhancements to the framework, paving the way for

further work in this field.

20

2 BACKGROUND AND RELATED WORK

The objective of this chapter is to offer an in-depth examination of existing lit-

erature, with a specific emphasis on diverse hardware generators. This review seeks to

provide a broad perspective on this field, outline various problem-solving approaches,

and facilitate comparisons among them. Additionally, each solution will be evaluated

and analyzed, highlighting their respective advantages, drawbacks, and potential areas for

improvement within a comprehensive framework.

The criteria for choosing the following related works were based on their men-

tion in published articles and their attempts to address the common problem of enabling

fast design prototyping. Additionally, among those selected, only works that presented

systems generated using their frameworks were described.

2.1 Bastl - EDA tool

To begin, the work by (BASTL et al., 2022) introduces a register-based configu-

ration tool for ASIC development, coupled with auto-generated pre-verified code. This

research demonstrates the value of auxiliary tools within the EDA domain, as they con-

tribute to error avoidance and enhance repeatability during the synthesis and subsequent

tapeout processes. Using pre-verified RTL in the auto-generated design offers a sub-

stantial assurance of quality; nevertheless, it does not replace the need for system-level

verification scenarios. Its flow is presented in the image 2.1 below.

However, it is important to address several drawbacks associated with this work.

Firstly, the lack of industry support HDL languages is a notable limitation. Additionally,

the absence of support for industry-standard interfaces, such as the AMBA set, raises

compatibility concerns. Moreover, the lack of support for MPSoC generation and the

omission of discussions on the flexibility for custom designs are noteworthy aspects that

require further attention.

2.2 LiteX

In the works by Nguyen-Hoang et al. (2022) and Mosanu et al. (2022), both au-

thors utilize the LiteX framework (KERMARREC et al., 2019) for the generation of their

21

Figure 2.1: Design data flow

Source: (BASTL et al., 2022)

final designs. LiteX is a SoC builder framework developed in Python language aiming

FPGA based systems supporting industry standard protocols and different sets of cores.

Although it lacks support of MPSoC system generation.

Figure 2.2: The design flow of the LiteX framework

Source: (NGUYEN-HOANG et al., 2022)

In the first one previously mentioned, the author develops a prototype SoC for

a Trusted Execution Environment (TEE) (NGUYEN-HOANG et al., 2022). The design

is constructed using Spinal HDL (PAPON, 2023a), which is a domain-specific language

(DSL) implemented as a library atop the Scala programming language, similar to Chisel

(BACHRACH et al., 2012). Once the design is created, Spinal HDL generates a Verilog

output, which is then integrated with the LiteX framework (Figure 2.2).

22

The second work presents an open-source emulation framework for Processing-

in-Memory, implemented in System Verilog (MOSANU et al., 2022). This framework is

integrated with LiteX, enabling communication between various IPs, such as DRAM and

a RISC-V processor. Both works indicate that the framework used is flexible supporting

different types of systems and input languages.

The framework’s commendable flexibility in supporting various applications is

apparent. However, it comes with an implicit requirement of comprehending the under-

lying Python toolbox Migen (SETETEMELA et al., 2019), which can result in a rela-

tively steep learning curve, particularly for newcomers to hardware description languages

(HDLs) and FPGA development. This challenge also extends to the integration of new

IPs into the framework, as clear instructions for this process are lacking. Additionally, the

generated design undergoes post-processing by the tool, even when incorporating a black-

box IP wrapper, thereby limiting the user’s ability to modify the RTL (Register-Transfer

Level) by adding or removing components before commencing the synthesis flow.

2.3 Chipyard

An additional noteworthy framework for consideration is Chipyard (2.3), as pre-

sented by Amid et al. (2020). This framework is characterized by its adaptable and open-

source IP blocks, which are generated through a configurable and composable approach,

making them applicable in various stages of hardware development while ensuring de-

sign intent and integration consistency. Chipyard further distinguishes itself by employ-

ing cloud-hosted FPGA (Firesim) accelerated simulation and rapid ASIC implementation,

enabling seamless validation of custom systems with physical feasibility.

Unlike the previously mentioned works, Chipyard adopts a distinct approach in its

front end, leveraging the Rocket Chip SoC generator (ASANOVIć et al., 2016) Figure 2.3,

entirely developed in Chisel which is a library of Scala language. Its core methodology

follows a hardware generator flow, where the design input is not a Verilog module but a

description in a DSL. As elucidated by SiFive (2017), Chipyard incorporates the "Diplo-

macy" feature, a Scala-based parameter-negotiation framework that allows multiple IPs

to negotiate compatible presets of configurations.

This framework provides a wide range of options for the users to configure and

tweak the final design intention. Such flexibility comes at the cost of increased com-

plexity. Developers who are new to the framework might find it challenging to navigate

23

through the intricate configurations and integration options. Similar to LiteX, the learning

curve associated with Chipyard can be a significant hurdle, especially for individuals with

limited experience in hardware design or those accustomed to more straightforward SoC

development methodologies.

Figure 2.3: Chipyard flow

Source: Adapted from Chipyard online documentation

Chipyard, being a highly configurable framework, offers the significant advantage

of tailoring SoCs to specific requirements. However, this level of flexibility can also result

in the inefficient allocation of hardware resources. In intricate designs, the resulting SoCs

may consume more resources than necessary, thereby impacting performance and area

utilization, and ultimately increasing the implementation costs.

Furthermore, Chipyard’s extensive features and configurability contribute to a ver-

bose and time-consuming generation process. Creating complex SoCs with numerous

customizations may entail prolonged compilation times, impeding the development work-

flow and hindering rapid prototyping.

Additionally, akin to LiteX, the final design generated by Chipyard is obfuscated,

often necessitating its consideration as a black box, comparable to a netlist produced by

the FIRRTL tool (IZRAELEVITZ et al., 2017). This limitation restricts the extensibility

of the final RTL and may require repeated hardware-flow generations when making design

updates. Moreover, it can complicate the user’s description of synthesis constraints, as the

hierarchical path of the design may undergo complete changes with each iteration of the

tool. For instance, if a sub-block needs to be set as a multi-cycle path, the user must delve

into the generated RTL to discern how the tool produced such code, adding complexity to

updating the constraints accordingly.

24

2.4 Comparison between frameworks

Table 2.1 presents a comprehensive comparison of three distinct frameworks dis-

cussed in this chapter, along with the proposed framework and its intended achievements.

Among the frameworks analyzed, only (BASTL et al., 2022) currently demonstrates the

capability to generate documentation, a feature yet to be achieved by the other works.

Table 2.1: Comparison between the different frameworks and their features

Framework (BASTL et al., 2022) LiteX Chipyard This work

Doc.
generation

Yes No No No

HDL
language

VHDL

VHDL/
System/Verilog/

nMigen/
Spinal-HDL

Verilog/Chisel System/Verilog

IP I/F Custom
Industry

+
Open source

Industry
+

Open source
Industry

Base language C++ / Qt Python Scala Python

Custom designs Not mentioned Yes Yes Yes

MPSoC support No No Yes Yes

SW support Yes No Partial Yes

Design model
generation

Not mentioned Yes Yes Yes

Source: The Author

Regarding the hardware description language (HDL) support, three out of the four

works provide compatibility with Verilog, while (BASTL et al., 2022) is limited to VHDL.

Moreover, both the proposed framework and LiteX support System Verilog, are widely

used in the ASIC industry.

Concerning IP interfaces, in this work, LiteX, and Chipyard accommodate industry-

standard interfaces, while the open-source frameworks mentioned, such as LiteX with

Wishbone and Chipyard with TileLink, are limited to specific interfaces. This work pri-

marily focuses on the AXI4 standard, given its prevalence in commercially available IPs,

allowing interchangeability with AHB or APB if needed.

In terms of the base language, only this work and LiteX were developed in Python,

whereas Chipyard employs Scala as its base language. Nearly all frameworks facilitate

custom designs, except for (BASTL et al., 2022), where such support remains undis-

25

closed. Evaluating MPSoC support, both this work and Chipyard provide solutions, with

software support offered through headers, APIs, or libraries also available in (BASTL et

al., 2022), except memory map generation in Chipyard. However, most of its open-source

IPs are widely accessible on the internet for reuse by new developers.

Regarding model generation, the majority of frameworks can produce simulation-

ready models through EDA tools, except (BASTL et al., 2022). The three frameworks

supporting models adopt a similar approach where a C++ output is generated from the

final set of Verilog files using Verilator.

2.5 Conclusion

Throughout this chapter, three distinct frameworks have been introduced and ana-

lyzed, delving into their unique characteristics, advantages, and drawbacks. Each frame-

work’s attributes were examined to gain a comprehensive understanding of their appli-

cability and potential limitations while considering the design generation context. By

conducting a comparative analysis, we aimed to discern how these existing frameworks

stack up against the proposed solution.

26

3 BASE IP SET FOR THE PROPOSED PLATFORM

This chapter constitutes a critical component of this Master’s work, as it details

the fundamental building blocks required for constructing the proposed platform. The

chapter will present each of these building blocks in detail, highlighting their significance

within the overall framework. All of the intellectual properties (IPs) discussed in this

section were designed by the author to achieve a superior level of flexibility, modularity,

and industry compatibility, and to address the common limitations encountered with open-

source IPs found on the internet like non-standard protocols, low integration support, and

domain-specific design languages.

Additionally, the design choices made for each sub-block and its respective micro-

architecture will be thoroughly explained, to provide a comprehensive understanding of

the platform’s underlying structure. Finally, a comprehensive list of all available designs

that comprise the framework will be presented, serving to demonstrate the building blocks

of the system in its entirety.

3.1 RaveNoC Network-on-Chip

Network-on-Chip (NoC) is one of the fundamental blocks of the MPSoC, as it pro-

vides a communication infrastructure that is flexible, extensible, and can be also energy-

efficient (if enabled by DVFS). It can support a variety of communication patterns, in-

cluding multicast, broadcast, and point-to-point communication.

As mentioned by Wolf, Jerraya and Martin (2008), the concept of a Network-

on-Chip (NoC) involves the utilization of a hierarchical network consisting of routers to

enhance the efficiency of packet transfer between initiators and targets. NoC employs a

communication infrastructure that differs from traditional shared-bus systems, by provid-

ing additional resources to enable concurrent communication across multiple channels.

This approach aims to alleviate the energy and performance inefficiencies commonly as-

sociated with shared-medium bus-based communication methodologies.

As a result, the adoption of NoC has become increasingly prevalent in the design

of MPSoC as it provides an efficient and scalable solution for managing the communica-

tion traffic within complex and heterogeneous SoC, the benefits of utilizing an NoC also

includes increased performance, lower energy consumption. Furthermore, it introduces

support for heterogeneous communication architectures, where distinct Network Inter-

27

faces (NIs) can incorporate bus bridges to facilitate communication between high-speed

tiles (AXI) and low-speed ones (APB).

In summary, NoC has emerged as an essential component of MPSoC design due

to its ability to provide efficient and versatile interconnects. Its modular and symmetric

architecture supports a variety of communication patterns, which makes it an attractive

solution for multi-processor systems. Furthermore, NoC offers better performance and

scalability than traditional bus-based interconnects, which suffer from limited bandwidth

and high latency as the number of processing elements increases.

The NoC design presented in this work is called RaveNoC, this is a configurable

HDL for mesh NoC topology that allows the designer to change different parameters and

setup many configurations. The list of features of the RaveNoC are listed down below

here.

• Mesh topology (2D-XY)

• Valid/ready flow control

• Switching: Pipelined wormhole

• Virtual channel flow control

• Slave I/F AMBA AXIv4

• Different IRQs that can be muxed/masked individually

As the chosen language by the author, the RaveNoC design was written using

the System Verilog IEEE 1800 standard (IEEE. . . , 2018b), which is highly adopted in

the ASIC industry for Digital Design and UVM Verification (HOSNY, 2022). Thanks

to its flexibility, it enables the usage of packages, which allows the inclusion of structs

and parameters to easily change the hardware behavior across different modules without

re-written the interfaces between each hierarchy top-down.

3.1.1 Parameters to tune

During the design development, some of the project requirements can change as

part of the DSE, thus having a configurable architecture is likely an advantage to the Dig-

ital RTL engineers who can tune and test different sets of combinations of configurations.

The design of the presented NoC was thought to be used in the same fashion with enough

flexibility to drive different, workloads, hence the list of configurable parameters of the

design is presented in the table 3.1.

28

Table 3.1: Configurable parameters of the RaveNoC HDL design.

Parameter Min Max Default

Flit/AXI data width 32 128 32

Number of buffers in the input module 1 4096 3

Number of virtual channels 1 32 3

Order of priority in the VCs 0H 0L 0H

Dimensions of the NoC (Rows_X_Cols) 1x2 1000x1000 2x2

Routing algorithm XY YX XY

Maximum size of packets 1 256 256

Source: The Author

3.1.2 Network Architecture

The network architecture of RaveNoC follows the classical structure as presented

in Zeferino and Susin (2003) and Micheli et al. (2006), Zhang et al. (2010), with a 2-

dimensional network of tiles. Each network router is composed of an input controller

with different buffers for multiple virtual channels (VC), and a routing algorithm (XY)

design, also we have the output controller with one round-robin arbiter per VC.

Like what was described by Zhang et al. (2010), the switching mechanism imple-

mented by RaveNoC is wormhole, where each packet has a head, body, and tail flit. The

head flit contains information about the X and Y destination router and the packet width

aside from reserved bits for sort messages i.e. smaller than a single flit. As soon as a head

flit reaches a router it blocks its path (through the correspondent VC) till a tail flit crosses

the router.

When the flits arrive at the destination router, they are placed into the correspon-

dent VC channel buffer. As part of the network interface, an AXI4 Slave interface is used

to read and write all packets from and to the network correspondingly, this design module

is shown in Figure 3.2. Besides the previously defined function, the AXI interface is also

used to control the CSRs such as the ones responsible for handling the IRQ of the NI. The

NI module has a single interrupt and we have multiple ways of masking and multiplexing

its source with different options such as the ones presented in Figure 3.1.

In Figure 3.3, we have a 2x2 Mesh 2D RaveNoC example design with the connec-

tions between the routers only. For a single router, there are four input and four output

interfaces with an additional one for the local flits that are transferred to the NI which

29

Figure 3.1: NI IRQ logic

Source: The Author

Figure 3.2: Network Interface with AXI I/F

Source: The Author

has configurable buffers (FIFO) to store and forwards packets that will be further pro-

cessed. The RaveNoC design is available on the internet at the author’s GitHub repository

(SILVA, 2023f).

3.2 NoX RISC-V core

Considering that, in general, all PEs (Processing Elements) of homogeneous MP-

SoCs will share the same design, a compact but fast processor can be an interesting choice

for the tile architecture of the system. Furthermore, the workload usually executed by PEs

30

Figure 3.3: RaveNoC Mesh 2x2 example

Source: The Author

(slave tiles) tends to be small in comparison with the workload running on the master tile,

as the slave tiles do not need to be responsible for splitting or merging the data that is

being processed as mentioned by (AZAD et al., 2019).

Numerous frameworks and platforms in the literature have been using open source

ISAs (Instruction Set Architectures) to build the core tile of their MPSoC, such as Open-

RISC by (CARARA et al., 2009), MIPS by (AGUIAR et al., 2014) and RISC-V by (EL-

MOHR et al., 2018), (KAMALELDIN et al., 2019). Among these, RISC-V has emerged

as the dominant open source ISA, with adoption by a vast majority of the open source

community, whereas there are over hundreds of diverse implementations of this architec-

ture freely available on the internet. The ISAs are open-source, which, as described by

Asanović and Patterson (2014), confers certain benefits:

- Greater innovation via free-market competition from many more designers,
including open vs. proprietary implementations of the ISA.
- Shared open core designs, which would mean shorter time to market, lower
cost from reuse, fewer errors given many more eyeballs3, and transparency
that would make it hard, for example, for government agencies to add secret
trap doors.
- Processors becoming affordable for more devices, which helps expand the
Internet of Things (IoTs), which could cost as little as $1.

31

As noted in (WATERMAN et al., 2014), RISC-V is a versatile open-source in-

struction set architecture (ISA) that supports a range of extensions, including vector pro-

cessing, single/double floating-point precision, atomic instructions, and other features.

According to Kurth et al. (2017), due to its modularity, a RISC-V processor can also

be very small using only the base subset of integer instructions which leads to a good

candidate for a PMCA (programmable many-core accelerators).

Building on the aforementioned features of RISC-V, this study employs the ISA

to develop a compact central processing unit (CPU) that supports the base I (Integer) ex-

tension of the standard. The resulting core is referred to as the NoX RISC-V RV32I CPU

and is characterized by a small area footprint, with industry-standard interfaces such as

AMBA AXI4 on both instruction fetching and load-store unit. The design was written us-

ing the System Verilog IEEE 1800 standard (IEEE. . . , 2018b), with a few set parameters

to configure its design. Basic macros can change the behavior of the design by selecting

between synchronous vs asynchronous and active-low vs active-high reset, also it is pos-

sible to enable a verbose debug log in case the user wants to extract more information of

the different stages of processing within the core.

Figure 3.4: NoX CPU diagram

Source: The Author

The NoX core is a four-stage, single-issue, in-order pipeline with full bypassing,

indicating that any data hazards will not result in penalty-delaying cycles. The only cir-

cumstance in which a stall may occur is if the core experiences back-pressure from the

LSU (Load-and-Store Unit) or Instruction Fetching as a result of an ongoing on-the-fly

operation. This design follows a micro-architecture similar to that of the classic five-stage

pipeline CPU, as described by Patterson and Hennessy (2017), except the last two stages

32

(memory and write-back), which have been consolidated into a single stage, as seen in

Figure 3.4. The NoX CPU design is available on the internet at the author’s GitHub

repository (SILVA, 2023e).

The current version of this CPU does not provide caches. This decision is based

on the class of applications foreseen. The application program will fit in the available

program memory while the data are transferred through the communication channel over

the NoC. Another rationale for not implementing caches is to restrict the scope of devel-

opment to reduce its complexity and to fit on the prototyping platform.

3.2.1 NoX area

In the context of MPSoC design, having a small CPU design can provide sig-

nificant benefits. Firstly, a smaller CPU design typically has lower complexity, which

translates to reduced design time and lower development costs. Additionally, smaller dig-

ital designs generally consume less power, which is a crucial factor in embedded systems

where power consumption is a significant concern. This can lead to reduced heat dis-

sipation requirements and longer battery life in portable devices. A breakdown of the

core’s size is presented in Table 3.2 while synthesized for the FPGA XC7K325TFFG676-

1@100MHz using Vivado 2022.1.

Table 3.2: NoX breakdown area report.

Name Slice LUTs Slice Registers

u_nox (nox) 2517 1873

u_wb (wb) 32 33

u_reset_sync (reset_sync) 1 2

u_lsu (lsu) 538 105

u_fetch (fetch) 276 134

u_fifo_l0 (fifo) 259 68

u_execute (execute) 229 359

u_csr (csr) 187 255

u_decode (decode) 1445 1240

u_register_file (register_file) 615 1056

Source: The Author

As for comparison, the VeX RISC-V processor (PAPON, 2023b) area in FPGA is

33

around 1935 LUTs and 1216 FFs while the Ibex (KREMER et al., 2023) base design the

base Ibex architecture uses 4645 LUTs and 3138 FFs.

Moreover, the utilization of multiple small CPU designs within an MPSoC can

provide a significant degree of flexibility and scalability in system design. Employing

different core designs for distinct processing tasks allows for more efficient resource allo-

cation and improved performance. Furthermore, the integration of a compact CPU design

can facilitate the creation of specialized tiles, where the majority of the tile’s area size is

attributed to the set of accelerators embedded within it. This approach enables optimiza-

tion for specific applications, resulting in improved system performance and efficiency.

The rationale behind incorporating a RISC-V compliant core into this work was

also driven by the author’s appreciation of the benefits derived from the author’s knowl-

edge of the subject. This familiarity empowers the author to meticulously refine the core’s

design by selectively incorporating or omitting additional features in alignment with the

specific requisites of the platform. For instance, the inclusion of supplementary Control

and Status Registers (CSRs) can be undertaken, the pre-fetch buffer size can be modu-

lated based on benchmarking outcomes, and provisions can be made for the integration of

custom opcodes available within the ISA. This degree of adaptability ensures the core’s

capacity to be tailored to accommodate a spectrum of demands and to optimize its perfor-

mance by divergent requirements.

3.2.2 RISC-V Compliance tests

To attain RISC-V CPU compliance, each core must complete a suite of tests doc-

umented in Gala (2023a), one of the official RISC-V repositories. The RISC-V Archi-

tectural Tests constitute a dynamic set of tests that aim to ensure that software developed

for a specific RISC-V Profile/Specification is compatible with all implementations that

comply with that profile. Moreover, these tests serve to verify that the implementer has

comprehended and executed the specification accurately. It is noteworthy that the RISC-V

Architectural Test suite serves as a basic filter, and obtaining approval by RISC-V Inter-

national for the test results is a prerequisite for licensing the RISC-V trademarks related

to the design.

Beneath the scope of the compliance tests, lies the RISC-V Compatibility Frame-

work, referred to as RISCOF. It is a Python-based software framework designed to stream-

line the testing process for RISC-V targets, comprising different types of implementa-

34

Figure 3.5: RISCOF framework diagram

Source: (GALA, 2023b)

tions, using a standard RISC-V golden reference model, utilizing a comprehensive suite

of RISC-V architectural assembly tests. As illustrated in Diagram 3.5, the framework

necessitates two specific inputs from the user: a RISC-V-CONFIG based YAML specifi-

cation of the ISA choices made by the user, and a Python plugin that can be employed by

the framework to compile, simulate and extract the signature of each test.

In the case of the NoX CPU, both sets of files were supplied, and all compliance

tests were completed. After the compliance run, a report in HTML format was generated.

The report depicting all successful tests for the NoX CPU can be observed in Figure 3.6.

3.2.3 FreeRTOS port

FreeRTOS recognized as one of the most widely used open-source Real-Time

Operating Systems (RTOS), is specifically tailored for embedded systems. Its real-time

kernel incorporates task scheduling, intertask communication, and resource management

functionalities, rendering it an optimal choice for applications that demand precise timing

and efficient resource allocation.

Acknowledging the existence of numerous applications and APIs already devel-

oped for FreeRTOS, a strategic decision was made to generate the essential set of files

required for porting the NoX CPU to support FreeRTOS (GCC_RISC_V). Consequently,

a repository was established, encompassing NoX running FreeRTOS with multiple tasks,

35

Figure 3.6: RISC-V compliance tests (RISCOF)

Source: The Author

serving as the foundational template for subsequent firmware development on this plat-

form. The repository is conveniently accessible on the GitHub website (SILVA, 2023d).

3.3 AXI DMA

DMA (Direct Memory Access) is an essential component presented in different

MPSoC designs. DMA provides a mechanism for high-speed data transfer between mem-

ory and peripheral devices without requiring CPU intervention (MA; HE, 2009). DMA

allows for efficient data transfer between peripherals and memory, freeing up CPU re-

sources for other processing tasks. This is particularly important for multi-processor sys-

tems, where each tile needs to move data through the NoC and such a task can be deployed

to the engine.

In addition to offloading data transfer tasks from the CPU, DMA can also improve

system performance by reducing latency and improving data throughput. By allowing

peripheral devices to directly access memory, such design can enable faster data transfers

compared to traditional CPU-mediated data transfer methods. Likewise, DMA can play

a key role in reducing power consumption in MPSoC designs. By reducing the number

of CPU cycles required to perform data transfer operations, it can reduce overall system

power consumption, which is a significant concern in embedded systems where power

https://github.com/aignacio/nox_freertos

36

consumption is a critical factor.

A crucial aspect of incorporating DMA within the MPSoC relates to its ability

to facilitate the transfer of data from NoC through the network interface (NI) to local

memory for processing. This requirement is particularly common in streaming applica-

tions which are often processed by MPSoCs. A dedicated DMA design can be utilized

to perform this data transfer task, relieving the tile CPU from the responsibility of data

movement. This results in improved efficiency as the Tile CPU can focus on perform-

ing tasks related to image processing while the DMA engine is responsible for managing

data transfer. Ultimately, by programming the DMA descriptors, the CPU can delegate

the responsibility of all master access to the DMA engine, thereby streamlining the data

transfer process.

Building upon the prior discussion, the design developed for this platform exhibits

the following characteristics:

• AXI4-Lite Slave interface to program the CSRs (Control and Status registers).

• AXI4 Master interface to fetch/read and write data.

• Support for unaligned xfers.

• Configurable number of descriptors (default to 2).

• Abort processing available.

• Transfers up to 4GB of data per descriptor.

• Two modes of data access, Fixed [FIFO] and Incremental.

• Programmable number of bursts, to support simpler slaves.

• Status of error during DMA operation.

• Configurable bus width option between 32-bit / 64-bit.

The micro-architecture of the AXI DMA is founded on conventional engines, de-

void of superfluous features that would lead to increased area without benefit. The design

is separated into two primary data flow paths: the read and write data paths.

The DMA FSM is responsible for managing the processing of all descriptors by

the streamers and dispatching new ones as soon as each descriptor finishes the transfer.

The streamers are tasked with breaking transactions into multiple AXI transfers, adhering

to the protocol, such as the 4KB address boundary or the number of bursts per burst type

(i.e., 16-FIFO/256-INCR). On the Master AXI I/F, the DMA waits for requests from the

streamers and, if available, dispatches them through the corresponding address channel

until the maximum of outstanding transfers, defined in the configuration files (read/write),

37

Figure 3.7: AXI DMA diagram

Source: The Author

is reached.

The FIFO serves as the primary buffer for the data that is read and written through

the DMA and can be configured to any size in depth with a width equal to the AXI data

bus width.

Regarding unaligned access, the DMA can be programmed with unaligned source

and/or destination addresses. However, the support for unaligned access is limited to the

bus width. The smallest transfer through the rd/wr channel must match the defined AXI

bus width, and internal masking will be applied to match the source/destination addresses.

Therefore, it is the user’s responsibility to program the descriptors correctly considering

symmetric alignment in the source/destination address. This design decision simplifies

the interface between the modules, and fine-grained memory moving is typically per-

formed by CPU instead of a DMA. The AXI DMA design is available on the internet at

the author’s GitHub repository (SILVA, 2023a).

3.3.1 Parameters to tune

Table 3.3 summarizes the parameters available for this engine.

38

Table 3.3: AXI DMA parameters

Parameter Min Max Default

DMA_NUM_DESC 2 4096 2

DMA_ADDR_WIDTH 32 64 32

DMA_DATA_WIDTH 32 64 32

DMA_BYTES_WIDTH 32 64 32

DMA_RD_TXN_BUFF 2 64 8

DMA_WR_TXN_BUFF 2 64 8

DMA_FIFO_DEPTH 2 128 16

DMA_ID_WIDTH 1 256 1

DMA_MAX_BEAT_BURST 1 256 256

DMA_EN_UNALIGNED 0 1 1

DMA_MAX_BURST_EN 0 1 1

Source: The Author

3.4 Ethernet AXI

Ethernet has become a crucial communication standard in contemporary elec-

tronic systems due to its high-speed and reliability capabilities, which can reach up to

100 Gigabit Ethernet (100 GbE). Incorporating Ethernet as a gateway in MPSoC archi-

tectures has proven advantageous in terms of cost-effectiveness, scalability, and perfor-

mance. The integration of it provides the MPSoC with the ability to interact with other

systems and devices, allowing seamless communication and data transfer. Its use also

offers flexibility to connect with multiple devices through local area networks (LANs),

providing the capability to operate in a diverse range of applications, including remote

processing, and audio and video streaming, among others. In the study conducted Hasler

et al. (2022), the authors introduced an MPSoC that was tailored and optimized to oper-

ate as an RLNC (Random Linear Network Coding) accelerator. The specific design of

the MPSoC was customized to meet the unique requirements of an Ethernet router appli-

cation, which serves as evidence that an MPSoC can be utilized to enhance networking

processing tasks as well.

Given the context of the current study, incorporating an Ethernet accelerator serves

as a proficient approach to facilitate communication with the MPSoC and to transmit data

through the network for further processing. The block diagram depicted in Figure 3.8

39

illustrates all sub-blocks of the Ethernet AXI slave responsible for executing the lower

portion of the Data Link layer, commonly known as the Media Access Control (MAC)

((IEEE. . . , 2018a)). This implementation enables the design to communicate with an

external PHY physical layer Integrated Circuit usually available in development boards

and connected to FPGA IOs such as Nexys Video from Digilent.

Figure 3.8: Ethernet AXI diagram

Source: The Author

The present design leveraged the Ethernet MAC RGMII FIFO, Ethernet AXIS

RX/TX, and UDP complete designs from an open source project named verilog-ethernet,

which is available on the GitHub repository website (FORENCICH, 2023a). While these

blocks constitute a significant portion of the design, they cannot be directly connected to

an AXI interconnect to be accessed as a slave by a tile CPU. To be controlled by a proces-

sor, the author implemented a configurable sub-block called pkt_fifo that can communi-

cate through the standard AXI4 and handle the CDC (Clock Domain Crossing) between

the interconnect and the UDP Complete that runs on different clock speeds. The two

instances of pkt_fifo (InFIFO and OutFIFO) communicate through AXIS (AXI-Stream

protocol) with the UDP Complete module to either send or receive UDP (User Datagram

Protocol) packets over the Ethernet. The same sub-block acts as a local temporary buffer

to store the packets as they are being sent or received through configurable BRAM (Block

RAM) memories. As a design choice, the UDP transport protocol was chosen due to

its lack of a handshake process and error checking that allows it to transmit data more

quickly, making it a better choice for applications that prioritize speed over reliability.

https://github.com/alexforencich/verilog-ethernet

40

Also, the design has three signals that can be used as interrupts by a processor that indi-

cates when a packet has been received, a packet has been sent and when the FIFOs are full.

As the user interface, a set of CSRs are available through an AXIL [AXI-Lite] connection,

where different features of the Ethernet IP can be configured, such list includes:

• Source and Destination Ethernet MAC Address (6-bytes)

• Source and Destination IPv4 and gateway address (4-bytes)

• Sub-net mask (4 bytes)

• UDP packet length

• Source and Destination UDP port

• Read individual FIFOs pointers and its flags

• Clear and read interrupts

• Clear ARP table

• Filter for UDP port and IPv4 address

The previously mentioned features were achieved through the implementation of

the Ethernet AXI design. The original design files did not provide the desired level of flex-

ibility or include an AXI4 slave interface, nor did they incorporate the two sets of FIFOs.

It is worth noting that the availability of open-source Ethernet IP is limited, with the ma-

jority of options being proprietary offerings from vendors such as Xilinx or Intel/Altera,

which often require licensing for full access. Hence, the presented design emerges as

a favorable choice owing to its extensive range of features and lack of dependency on

proprietary licenses. Additionally, its open-source nature further strengthens its appeal,

ensuring accessibility and fostering collaboration among developers. The Ethernet AXI

design is available on the internet at the author’s GitHub repository (SILVA, 2023b).

3.5 Programmable AXI Machine Timer

As part of the RISC-V privileged specification (Andrew Waterman; Krste Asanović;

John Hauser, 2021), a platform has to provide a memory-mapped real-time counter de-

noted as mtimer that wraparound behavior in the event of count overflow. This counter is

accessible through a memory-mapped machine-mode read-write register. It is noteworthy

that the mtimer register must increment at a constant frequency, and the platform must

incorporate a mechanism to determine the duration of an mtimer tick.

41

The significance of this counter is fundamental in the context of operating-system

execution, as demonstrated by its utilization in FreeRTOS. Specifically, the standard

RISC-V port implemented by FreeRTOS employs the aforementioned counter to facilitate

the operation of the OS (Operating System) tick timer. The following block diagram pre-

sented in Figure 3.9 represents the design implemented by the author. An AXI4 Interface

allows the RISC-V core to access the mtimer to read its value and to set the comparison

CSR.

Figure 3.9: Programmable AXI Machine Timer

Source: The Author

The design behavior is characterized by its simplicity, as it entails the continuous

incrementation of a real-time counter, which is subsequently compared against a compar-

ison timer CSR. Upon the mtimer counter value equating to that of the comparison CSR,

an interrupt is activated, and subsequently linked to the RISC-V core as the machine timer

interrupt. This AXI programmable timer design is part of the SoC components used in

the IPSoCGen platform available on the author’s GitHub repository (SILVA, 2023g).

3.6 AXI Reset Controller

To facilitate the transfer of different programs to the RISC-V CPU, it is a widely

adopted practice to incorporate a bootloader program within a ROM image. Once the

program is successfully loaded into local memory, there is a need to modify the CPU’s

reset vector to initiate execution from the loaded program rather than the original boot

ROM. Additionally, it is imperative to have control over the reset of the entire System-

on-Chip (SoC) in the event of a detected hang, which may be triggered by a WatchDog

or any other monitoring mechanism. In this section, it is presented a designed AXI Reset

42

Controller aimed at enabling the aforementioned functionalities.

Figure 3.10: Programmable AXI Reset Controller

Source: The Author

As illustrated in Figure 3.10, the presented design comprises a reset master input

responsible for resetting the internal registers of the controller. Moreover, it incorporates

a bootloader input that configures the reset address register to its default value, which

is determined by a parameter specified during its instantiation. Regarding the outputs,

the design includes the reset address, which is routed to the RISC-V CPU, and the reset

output, which is utilized for resetting the connected designs. The write buffer mentioned

in the diagram is a simulation-only register added to the design to serve as a temporary

buffer for printing characters into the terminal while simulating the RTL. The AXI reset

controller design is part of the SoC components used in the IPSoCGen platform available

on the author’s GitHub repository (SILVA, 2023g).

3.7 AXI Interrupt Controller

Another essential design in SoCs is the interrupt controller, due to its significance

in managing and prioritizing interrupt signals from different accelerators within complex

integrated systems. By providing a centralized mechanism for interrupt management,

IRQ controllers facilitate the timely and accurate processing of critical events, thereby

enhancing the overall functionality, responsiveness, and real-time performance of SoCs as

mentioned by Bargholz, Dietrich and Lohmann (2022). The design, implementation, and

optimization of IRQ controllers are crucial research areas in modern SoCs development,

as they directly impact the system’s ability to handle interrupts effectively and meet the

stringent requirements of diverse applications and industries.

43

Figure 3.11: AXI Interrupt Controller

Source: The Author

Given that a majority of the IRQ controllers accessible on the internet are typically

designed for specific platforms, lacking the necessary generic compatibility to cater to

different architectures and their implementations, the decision was made to undertake the

implementation of an IRQ controller that could effectively address this demand.

The design presented in Figure 3.11 shows the micro-architecture in a simplified

version of the proposal. Such a design is composed of a configurable IRQ trigger module

(defined at instance level as a parameter) that pre-processes the interrupts (level vs edge

type). The output of all pre-processed interrupts is then filtered by a register mask, mask-

ing unwanted interrupts. Once masked, the interrupts are stored into a configurable depth

FIFO to be then read by the CPU later. The FIFO stores the interrupt ID corresponding

to the interrupt input vector position, with priorities fixed such that the first entry has the

highest priority.

At its output, this FIFO exposes the latest unprocessed interrupt ID and provides

a summary trigger output when it is not empty (usually connected to the CPU), indicating

the presence of external interrupts that need to be processed by the CPU. When the CPU

or any other bus master reads the ID from the Interrupt Controller, the FIFO increments its

read pointer, thereby pointing to the subsequent ID for processing, if applicable. The AXI

Interrupt controller design is part of the SoC components used in the IPSoCGen platform

available on the author’s GitHub repository (SILVA, 2023g).

44

3.8 Additional design elements

Up to this juncture of Chapter 3, the presented work was based on specific designs

that were created entirely by the author (with an expectation on 3.4). Nonetheless, to

construct the ultimate platform, further design components are necessary and some of

them are not entirely developed by the author, with the design being integrated from a

different open-source contributor. Instead, the core of such designs is a 3PIP (third-party

intellectual property) and a wrapper is employed to ensure complete compatibility of the

design with the platform. All the following designs are part of the SoC components used

in the IPSoCGen platform available on the author’s GitHub repository (SILVA, 2023g).

3.8.1 AXI Crossbar/Interconnect wrapper

The AXI4 crossbar/interconnect is responsible for handling AXI transactions from

different masters (managers) and slaves (subordinates) within the SoC. AXI4 was chosen

because it is widely used in the industry for high-speed data transfer protocol as well as

in various academic research areas, such as high-speed memory interface in (NOAMI et

al., 2021), QoS for NoCs in (WANG; LU, 2020), and low-power firewall in (LIUBAVIN

et al., 2022).

Figure 3.12: AXI Interface and interconnect

Source: (ARM, 2023)

For this work, it was implemented a wrapper using System Verilog constructions

on top of the open-source AXI4 Crossbar design verilog-axi, which is available on the

GitHub repository website (FORENCICH, 2023b). This design implements the architec-

ture described in the Figure 3.12. Such AXI crossbar interconnect is characterized by its

https://github.com/alexforencich/verilog-axi

45

configurable data and address interface widths with support for all burst types. It oper-

ates in a fully nonblocking manner with separate read and write paths. The interconnect

includes transaction ordering protection logic based on ID, along with per-port address

decode, admission control, and decode error handling mechanisms.

Figure 3.13: Channel architecture of writes/reads

Source: (ARM, 2023)

The inclusion of the wrapper aims to simplify the integration of the crossbar with

the aforementioned set of masters and slaves, particularly due to the AXI’s complex na-

ture with multiple channels and numerous interconnecting wires between the masters and

slaves (3.13). By utilizing a System Verilog wrapper, a notable benefit is the ability to

condense the multiple channels and their corresponding sets of wires into two simplified

interfaces, namely MOSI (Master Output Slave Input) and MISO (Master Input Slave

Output). This abstraction provides a more streamlined and manageable code perspective

and it is less error-prone while editing the design.

3.8.2 AXI UART Slave

To enable debugging and program transfer to the RISC-V CPU, the addition of

the AXI UART Slave serves as a significant accelerator within the SoC for the context

46

of the platform discussed in this work. Building upon the wbuart32 design available on

the GitHub repository website (GISSELQUIST, 2023), a System Verilog wrapper was

implemented. Since the design follows the AXIL (AXI Lite) protocol instead of AXI4,

a bus-bridge design was also added to ensure protocol compatibility with the rest of the

Interconnect.

3.9 Final considerations

In Chapter 3, a comprehensive overview of various designs was provided to fa-

cilitate a thorough comprehension of each element’s functionality and their integration

to assemble the proposed platform. Notably, the majority of these intricate designs were

exclusively developed by the author, rendering them highly valuable assets for the plat-

form. The author meticulously tailored each design element to seamlessly integrate and

collaborate with the other components, further enhancing the overall cohesiveness and

effectiveness of the proposed platform.

https://github.com/ZipCPU/wbuart32

47

4 IPSOCGEN - SOC GENERATION METHODOLOGY

Given the objective of this research, which is to develop a platform capable of

generating System-on-Chip (SoC) and Multi-Processor System-on-Chip (MPSoC) archi-

tectures generic for different application scenarios, the forthcoming chapter will provide

a comprehensive overview of the construction process. Furthermore, it will elucidate

the platform’s inherent capabilities in terms of flexibility and extensibility, ensuring its

adaptability to diverse requirements and potential future expansions.

4.1 Proposed flow

This work focuses specifically on a defined scope, encompassing the flow from

system specification to the completion of RTL (Register Transfer Level) generation and its

synthesis into a digital circuit. The presented IPSoCGen outlines a flow that is organized

into three distinct phases, which are presented as follows:

1. Phase 1 (P1) - Application: specification, requirements, and profiling

2. Phase 2 (P2.a) - Design setup and generation (Hardware)

3. Phase 2 (P2.b) - Software/Firmware development

4. Phase 3 (P3) - System’s validation

The diagram depicted in Figure 4.1 demonstrates the general idea of the flow while

Figure 4.2 provides a comprehensive visual and detailed representation of the previously

mentioned phases.

4.1.1 Phase 1 - Application: specification, requirements, and profiling

In the first phase (Phase 1), a thorough analysis of the application is conducted.

This phase encompasses the definition of the application’s specifications, requirements,

and profiling. Its primary goal is to extract all the necessary information that will shape

the completeness of the system.

Following the diagram, the "Application Specification" refers to a detailed de-

scription or set of requirements that outlines the specific functionality, behavior, and per-

formance expectations of a software application or system. It serves as a blueprint or

48

Figure 4.1: IPSoCGen block diagram

Source: The Author

guide for developers, designers, and stakeholders involved in the development process,

for instance, it can be proposed as a flowchart with inputs and outputs in terms of what

needs to be processed and distributed between different tiles (each unit of the MPSoC).

By the application specification, a "High-Level algorithm description" is required.

This description can be defined in any high-level abstraction language, such as Python or

Go, for instance. It serves as an initial modeling of the data flow, processing the inputs and

generating the expected output after being processed by the MPSoC. The same algorithm

can be employed to evaluate the alignment of key performance indicators (KPIs) with the

application specification through the profiling of various inputs.

Taking into consideration the aforementioned example, during the "Algorithm

profiling" phase, it would be utilized to assess the flow of splitting and merging image

segments via a Python script, examining the potential impact of processing overhead on

the desired final throughput.

49

Figure 4.2: IPSoCGen general flow

Source: The Author

50

Finally, after the application has been thoroughly scoped, the hardware and soft-

ware partitioning process determines what should be offloaded to hardware as an acceler-

ator and what should be processed in software, aligning with the initial specification and

requirements.

Phase 1 (P1) forms the basis for the concurrent hardware phase (P2.a) and software

development (P2.b). In the hardware domain, it molds design aspects like memory size,

the count of master/slave components, bus width, and more. Meanwhile, in the software

domain, P1 serves as the benchmark for defining the expected system behavior, input and

output formats, and the software’s responsibilities in processing the application.

4.1.2 Phase 2.a - Design setup and generation (Hardware)

Phase 2.a (P2) constitutes the core of this project, focusing on the conversion

of specifications into a tangible design. In Phase 1, users were tasked with delineating

which tasks would be executed on hardware (HW) and which would be designated for

software (SW). Having established the hardware obligations, the next step involves trans-

lating these hardware requirements into a configuration file in YAML format. This trans-

lation process must consider the array of available IPs provided by IPSoCGen, along with

their associated configuration options. Since most of these IPs offer a range of configu-

rations, users must carefully evaluate the requirements to select the most suitable combi-

nation. This selection should aim to optimize the resulting hardware design in terms of

performance, area, and power efficiency.

The hardware generation process offers significant flexibility, enabling the cre-

ation of diverse configurations through the use of multiple YAML files that cater to various

development requirements. As an illustration, in the early stages of system development,

debug flags are activated when compiling all firmwares, leading to increased memory de-

mands. Hence, the ability to tweak a parameter or two or multiple YAMLs for obtaining

a fresh design proves to be exceptionally advantageous.

After the user creates the configuration file in YAML format, the subsequent step,

referred to as the "IPSoCGen tool run," involves the tool’s operation to generate the hard-

ware design. In conjunction with this process, the "IPSoCGen template repository" serves

as a crucial component. It provides the necessary templates and resources essential for

the tool to create the design based on the IPs outlined in Chapter 3.

In case a new IP that is not part of the library set is required, the user has the

51

flexibility to indicate through the configuration file, a custom IP master or slave, that later

will be translated into a wrapper. This wrapper will be the starting point for the user to

start designing its new IP or to copy or adapt from the ones available on the internet.

As the last step in this phase, the "Hardware Design Generated" defines the outputs

that are created by the IPSoCGen tool. The output generated by the tool encompasses

System Verilog Register Transfer Level (RTL) designs and header files (.h) utilized by

software components. The RTL files provide a comprehensive hardware description of

the entire design in a format that is easily understandable to humans. This facilitates

the ability of users to make edits to the files if desired, including the addition of custom

modules or integration of new intellectual properties (IPs) within another wrapper, should

the need arise. In the end, all these newly generated files will be transferred to the user’s

development repository, which can either be a fork or a copy of the template repository

provided by IPSoCGen.

4.1.3 Phase 2.b - Software/Firmware development

For the Phase P2.b (P2), it is presented the software flow. In this phase, we have

the development of the different binaries either SoC or MPSoC depending on the user’s

project.

In both project types, whether it’s a System-on-Chip (SoC) or a Multi-Processor

System-on-Chip (MPSoC), this phase comprises two distinct steps. The first step involves

software design, typically implemented in C, C++, or Rust, depending on the chosen

framework. The output of this step is an executable binary, often in the format .ELF file.

Following the software design, the second step involves emulation through the use of

QEMU.

To test the firmware, it is typically built and evaluated on the QEMU platform.

QEMU is known for its dynamic binary translation capabilities and its support for vari-

ous architectures, including RISC-V. Furthermore, it holds wide-ranging utility in both

industry and academia, serving as a tool for fault effect analysis on RISC-V targets (as

demonstrated in (ADELT et al., 2020)) and as a platform for debugging UEFI bootup

issues in the context of RISC-V (as illustrated in (ZHANG, 2022)).

Although not covered in this work, the described SW flow can be extended to a

multi-core platform by integrating QEMU with different simulators such as presented in

the work (KURIMOTO et al., 2013) through a TCP socket as shown in the Figure 4.3.

52

After tested, the application binary can be ready for validation in phase (P3).

Figure 4.3: QEMU integrated with Noxim simulator

Source: (KURIMOTO et al., 2013)

While QEMU cannot achieve cycle-accurate precision, the primary objective of

this step is to ensure that the algorithm, described at a lower level of abstraction, executes

its operations as intended. This readiness serves as a precursor for testing the algorithm

on real hardware, as suggested in Phase 3.

If the application is prepared for Phase P3 of validation and simulation, no further

actions are necessary. However, if the application is not yet ready, as indicated by arrow

connector D, there is an option to revisit the hardware/software partitioning. This allows

for the possibility of transferring some tasks back to the hardware or vice versa if needed.

4.1.4 Phase 3 - System’s validation

In Phase 3 (P3), two essential inputs are required: the hardware design files gen-

erated by IPSoCGen and the software binaries. These inputs will be utilized by the open-

source Verilator tool to generate a cycle-accurate executable file representing the entire

platform. Such a step requires the user to follow a template repository with the required

files like Makefiles, Docker images and the source code of the IPSoCGen IPs.

The RTL files will initially undergo conversion by the tool into C++ classes, which

will be instantiated in a testbench. Within this testbench, a function will facilitate the

loading of software binaries (.ELF) into the cycle-accurate simulator of the platform. This

simulator possesses the capability to generate waveforms, demonstrating the execution of

various applications within the entire design. This setup gives high visibility to the inner

structures of the design and can be used to benchmark the achieved results in terms of

clock cycles.

By examining the waveform dump, the user can verify if the performance spec-

53

ifications are met and subsequently proceed with the workflow. If the specifications are

not satisfied, the user has the option to iterate through Phase 1 or Phase 2, allowing for

modifications to the application specification or hardware configuration as necessary.

Provided that the design performance aligns with the application specification, the

subsequent stage of Phase 3 entails circuit synthesis. This involves following an emulation

route through either the FPGA or ASIC flow (as mentioned in Section 1). Upon successful

synthesis of the final design, the flow is deemed complete, allowing for the acquisition of

results through circuit testing.

4.2 Configuration files

In terms of file format for the configuration file, IPSoCGen makes usage of YAML

(Yet Another Markup Language). The YAML format is regarded as a highly suitable for-

mat for configuration files due to several compelling reasons. Firstly, YAML offers a

human-readable and intuitive syntax, making it easier for users to understand and mod-

ify configuration settings. The format utilizes indentation and whitespace conventions,

facilitating clear organization and visual hierarchy. Secondly, YAML supports a wide

range of data types, including scalar values, lists, and associative arrays, enabling com-

plex and structured configurations, also the anchor and the alias features allow the user to

define tags and replicate designs that were previously defined, simplifying the effort while

creating the MPSoC configuration file. This flexibility allows for the representation of di-

verse configuration parameters and their relationships. Overall, the readability, versatility,

and widespread adoption of YAML by the EDA industry make it an excellent choice for

configuration files in various software applications. Through the following Section 4.2,

an example of the configurable parameters in the configuration file will be demonstrated

along with the available options.

To elucidate the configuration file, a diagram denoted as Figure 4.4 has been in-

cluded. This diagram serves as an illustrative representation of the configuration input

file employed by IPSoCGen. Positioned at the far left of the aforementioned figure, there

exists an initial configuration section where the user is required to specify essential details

such as the project’s name, description, and the designated design type, which can either

be a System-on-Chip (SoC) or a Multi-Processor System-on-Chip (MPSoC) as shown in

Listing 1.

54

Figure 4.4: IPSoCGen configuration tree diagram

Source: The Author

Listing 1: Initial information on configuration file
1 proj_name: #Project Name Example
2 desc: #Short description of this project
3 type: #System type (soc or mpsoc)

Source: The Author

4.2.1 SoC configuration

The diagram is partitioned into two branches to accommodate the distinct input

requirements associated with each design type. When selecting the SoC branch, it is

essential to provide various parameters (as exemplified in Listing 2), including bus pa-

rameters such as width and addressing type. In the subsequent section, the definition of

clock and reset is presented, affording the user the option to include a PLL if deemed

necessary. Furthermore, the reset mechanism can assume the form of a simple direct con-

nection or a reset controller (which, in turn, necessitates a reset controller AXI slave at a

later stage). Lastly, the CPU core configuration allows the user to specify the reset type

and value, as well as the interrupt mapping.

Following the same branch, the next set refers to the number of slaves and masters

55

Listing 2: SoC base configuration
1 soc_desc:
2 bus_name: #Name for the bus Interconnect
3 bus_type: #Type of the bus
4 addr_width: #Bus address width
5 data_width: #Bus data width
6 txn_id_width: #Bus transaction ID width
7 num_masters: #Number of master in the bus (min == 1)
8 num_slaves: #Number of slave in the bus (min == 1)
9 proc_required: #Set if a processor is required (y or n)

10 mmap_type: #Memory map type (manual or auto)
11 clk:
12 name: #Clock name
13 clk_int: #Internal signal name for the clock
14 io_in_clk: #Wrapper input pin for the clock
15 type: #Type of clock (pll or direct)
16 pll: #Only applicable if type == pll
17 divclk_divide: #PLL parameters
18 clkfbout_mult: #PLL parameters
19 clkout_divide: #PLL parameters
20 io_rst_pin: #Wrapper input pin for the PLL reset
21 rst_in_type: #Type of reset for the PLL (act_l or act_h)
22 clkin_period: #PLL parameters
23 rst:
24 name: #Reset name
25 rst_int: #Internal signal name for the reset
26 io_in_rst: #Wrapper input pin for the reset
27 rst_in_type: #Type of reset for the PLL (act_l or act_h)
28 type: #Type of reset (acc_rst or direct)
29 proc:
30 name: #Name of the main CPU that will be used
31 type: #Type of processor (nox, vex...)
32 clk: #Describe the clock of the processor
33 rst: #Describe the reset of the processor
34 boot: #Describe the boot for this processor
35 type: #Type of boot (slave, value or signal)
36 signal: #Only applicable if type == signal
37 slave: #Only applicable if type == slave
38 value: #Only applicable if type == value
39 irq_mapping:
40 timer: #Internal signal name for RV timer interrupts
41 software: #Internal signal name for RV software interrupts
42 external: #Internal signal name for RV external interrupts

Source: The Author

in the interconnect. A detailed list of all masters and slaves needs to be described, detail-

ing their types, with the required specific inputs depending on the selected master or slave

(Listing 3).

56

Listing 3: Masters and Slaves configuration
1 masters: #Describe all masters within the system
2 x: #Master ID, start always from 0
3 name: #Unique name for the instance
4 desc: #Brief description of the master I/F
5 type: #Master type
6 if: #Interface name (must be a valid one supported)
7 ...
8 slaves:
9 x: #Slave ID, start always from 0

10 name: #Unique name for the instance
11 desc: #Brief description of the slave
12 type: #Slave type
13 base_addr: #Base address if mmap_type == manual
14 addr_width: #Base address if mmap_type == manual
15 [Multiple different tags depending on the slave]
16 ...

Source: The Author

4.2.2 MPSoC configuration

For the MPSoC design (Listing 4), a distinct set of inputs is necessary. These

inputs include the clock and reset parameters (as mentioned in Section 4.2.1), the NoC

(Network-on-Chip) parameters such as size and number of buffers, and finally, the config-

uration for each tile within the design. By default, IPSoCGen mandates the description of

each tile, even if the configuration precisely matches a previously defined one. To address

this requirement, the YAML file format offers the anchor and alias features as mentioned

earlier. These features simplify the design description process, making it more concise

and efficient. The description of each tile follows the same format as the SoC configura-

tion which gives enough flexibility for each tile the assemble the MPSoC. One limitation

of the MPSoC configuration is the fact that the NI (AXI slave in the SoC) of the NoC

needs to have the same local address within the tile memory map, this exist to reduce the

complexity of the final design.

Once the configuration file is defined, the tool parses the YAML file to verify its

syntax correctness and ensure that all the required inputs are provided. Additionally, it

checks for parameter consistency before proceeding to the generation stage using internal

scripts. For instance, if the user specifies the parameter num_slaves as five, but only four

slaves are detailed in the configuration, the tool identifies this inconsistency and reports

an error stopping the continuation of the flow. Also, the tool will check that the range of

parameters (width, size, ...) are valid for each of the sub-components that are provided.

One of the significant advantages of employing the YAML file format, as previ-

57

Listing 4: MPSoC configuration
1 mpsoc_desc:
2 clk:
3 name: #Clock name
4 clk_int: #Internal signal name for the clock
5 io_in_clk: #Wrapper input pin for the clock
6 type: #Type of clock (pll or direct)
7 pll: #Only applicable if type == pll
8 divclk_divide: #PLL parameters
9 clkfbout_mult: #PLL parameters

10 clkout_divide: #PLL parameters
11 io_rst_pin: #Wrapper input pin for the PLL reset
12 rst_in_type: #Type of reset for the PLL (act_l or act_h)
13 clkin_period: #PLL parameters
14 rst:
15 name: #Reset name
16 rst_int: #Internal signal name for the reset
17 io_in_rst: #Wrapper input pin for the reset
18 rst_in_type: #Type of reset for the PLL (act_l or act_h)
19 type: #Type of reset (acc_rst or direct)
20 noc:
21 type: #Type of the noc (currently only ravenoc is available)
22 name: #Unique name for the NoC instance
23 size_x: #Num. of rows
24 size_y: #Num. of columns
25 flit_data_width: #Data width of the flit
26 flit_buff: #Num. of flit buffers
27 h_priority: #Priority of the virtual channels
28 n_virt_chn: #Num. of virtual channels
29 routing_alg: #Routing algorithm (XYAlg or YXAlg)
30 max_sz_pkt: #Max. size of packet in flits (usually 256)
31 base_addr: #NoC common base address across all Tiles
32 tiles:
33 x: #Tile ID, always start from zero
34 ... #Same description pattern as soc_desc

Source: The Author

ously mentioned, is the inclusion of the anchor and alias features. This usage benefit can

be effectively demonstrated in the subsequent Listing 5. In this snippet, an example of

an MPSoC configuration with nine tiles (such as an NoC 3x3) is provided. Since eight

out of the nine tiles require the same design configuration, instead of repetitively writing

the same tags, the user can create an alias, denoted as std_tile, and use the anchor link to

replicate the fields. The YAML parser will interpret this as a copy, reducing the number

of lines and making the final configuration file less verbose.

58

Listing 5: anchor and alias used in MPSoC configuration
1 ...
2 #Start definition of standard Tile
3 1: &std_tile #Alias to the Tile 1 config.
4 bus_name: axi4_crossbar
5 bus_type: axi4
6 addr_width: 32
7 data_width: 32
8 txn_id_width: 8
9 num_masters: 3

10 num_slaves: 9
11 mmap_type: manual
12 proc_required: yes
13 clk:
14 name: clk
15 clk_int: clk_int
16 ... #Several other tags
17 2: *std_tile #Anchor to the Tile 1 config.
18 3: *std_tile
19 4: *std_tile
20 5: *std_tile
21 6: *std_tile
22 7: *std_tile
23 8: *std_tile

Source: The Author

4.3 Classes and modules

IPSoCGen was developed using Python as the primary programming language

and is packaged for ease of installation and maintenance using pip, a package manager

for Python packages. This packaging approach facilitates straightforward installation and

updating of the platform, with automatic management of any required dependencies. Con-

sequently, users can effortlessly install and utilize the platform without the burden of

complex installation procedures or manual management of dependencies.

The architecture of the IPSoCGen framework was structured around classes rep-

resenting various types of masters and slaves within the overall design. Each class serves

as a blueprint for instantiating objects that represent specific components of the design.

These classes are derived from a base class that encompasses a range of methods. These

methods are utilized by scripts to assemble the final HDL and its associated artifacts. Af-

ter the script has traversed all the tags specified in the configuration file, a compilation

of objects will be employed to extract signals, inputs, and outputs, as well as the neces-

sary System Verilog packages. Additionally, the memory map and other options will be

checked across different requirements.

One crucial feature of the tool is its utilization of templates for efficient design

59

generation. Within the framework of IPSoCGen, templates are text files that depict the fi-

nal hardware description language, including variables or expressions that are substituted

with values during rendering. For instance, in Listing 6, the provided code serves as the

template for the AXI Interrupt Controller, while the bottom section illustrates the output

in System Verilog after being processed by the tool.

4.4 Extension and flexibility

Following what was described at the end of Section 4.3, the inclusion of new

modules (masters or slaves) can be achieved through the creation of new templates and

their corresponding classes that would represent a new design. Due to its simplicity, it

does not require an extensive modification of the framework to support new additions. As

the tool is part of a Python package, the open-source repository can be forked to add or

change new tags and include new design plugins.

Moreover, the tool also offers support for customized AXI masters and slaves.

A standardized template is available that facilitates the connection of inputs and outputs

related to the bus, as well as the allocation of space within the SoC memory map. Within

this custom module description, users can specify the allocated size using a dedicated

tag (mem_size_kib) through the configuration file. This feature allows for the seamless

integration of various accelerators, as the provided wrapper can be easily extended based

on the user’s requirements.

Different types of parameters and options can be configured within the framework,

the following list enumerates each of them and provides an overview of its capabilities.

1. Project type: SoC vs MPSoC

2. Network-on-chip and its parameters

3. Number of masters and slaves

4. Type of memory map and its parameters (width)

5. If a processor is required

6. Type of processor and its boot/IRQs

7. Type of clock: PLL or direct

8. Type of reset: Through a reset controller or direct

9. Configuration of masters

60

1. cpu_nox: CPU NoX

2. cpu_vex: CPU Vex

3. acc_dma: DMA master

4. acc_custom_master: Custom AXI master wrapper

5. Configuration of slaves

1. ram_mem: RAM memory

2. rom_mem: ROM memory

3. acc_uart: Configurable UART

4. acc_timer: Configurable TIMER

5. acc_dma: Configurable DMA

6. acc_irq: Configurable IRQ

7. acc_rst: Programmable Reset Controller

8. acc_custom_slave: Custom AXI slave wrapper

9. acc_noc: Configurable Network-on-chip

10. acc_eth: Configurable Ethernet Controller

11. Configuration of tiles

4.5 Conclusion

Chapter 4 introduced the IPSoCGen flow, outlining its phases and providing a

comprehensive description of each step until the final hardware testing stage. The re-

quired input for each phase and the corresponding expected outputs during the design

exploration development were also presented. The following sections explain the con-

figuration file, detailing its development process to achieve a balance between flexibility

and configurability. Finally, the tool’s inner workings were explored, including the ratio-

nale behind its class-based organization and how the final design is constructed using the

objects generated during the process.

61

Listing 6: Template of the AXI interrupt controller and the output
1 ####### IRQ template #######
2 logic [31:0] irq_vector_mapping;
3

4 {%- for irq in tmpl.vec_mapping %}
5 assign irq_vector_mapping[{{ loop.index0 }}] = {{ irq }};
6 {%- endfor %}
7 {% if tmpl.all_irq_filled == 0 %}
8 assign irq_vector_mapping[31:{{ tmpl.max_irq }}] = '0;
9 {% endif %}

10

11 //
12 // {{ tmpl.desc }}
13 //
14 axi_irq_ctrl #(
15 .BASE_ADDR ({{ tmpl.base_addr }}),
16 .TYPE_OF_IRQ ({{ tmpl.irq_type }})
17) u_{{ tmpl.name }} (
18 .clk ({{ tmpl.clk }}),
19 .rst ({{ tmpl.rst }}),
20 .irq_i (irq_vector_mapping),
21 .irq_summary_o ({{ tmpl.irq_summary }}),
22 .axi_mosi (slaves_axi_mosi[{{ tmpl.slv_id }}]),
23 .axi_miso (slaves_axi_miso[{{ tmpl.slv_id }}])
24);
25 ####### Rendered output #######
26 logic [31:0] irq_vector_mapping;
27 assign irq_vector_mapping[0] = irq_ravenoc.irq_trig;
28 assign irq_vector_mapping[1] = dma_error;
29 assign irq_vector_mapping[2] = dma_done;
30 assign irq_vector_mapping[3] = 1'b0;
31

32 assign irq_vector_mapping[31:4] = '0; // TIE-L not used IRQs
33

34 //
35 // IRQ Controller
36 //
37 axi_irq_ctrl #(
38 .BASE_ADDR ('h72000),
39 .TYPE_OF_IRQ ('hffffffff)
40) u_irq_ctrl (
41 .clk (clk_int),
42 .rst (rst_int),
43 .irq_i (irq_vector_mapping),
44 .irq_summary_o (irq_ctrl_ext),
45 .axi_mosi (slaves_axi_mosi[8]),
46 .axi_miso (slaves_axi_miso[8])
47);

Source: The Author

62

5 SOC AND MPSOC PLATFORM

Chapter 5 will provide an exposition of the outcomes achieved by the developed

platform, IPSoCGen, as described in Chapter 4. In the pursuit of testing and demon-

strating its applicability, two distinct types of Systems-on-Chip (SoC) were formulated

and evaluated. The first one encompasses a straightforward SoC, while the second one

embodies a more complex Multi-Processor System-on-Chip (MPSoC). A comprehensive

analysis of both will be presented, encompassing intricate aspects such as firmware de-

velopment, hardware development, and testing.

5.1 SoC template

5.1.1 Architecture

In Figure 5.1, a block diagram is presented, illustrating the various masters and

slaves along with their corresponding identifiers (IDs) and types. The main CPU, denoted

as NoX type 3.2, is depicted with two master interfaces: LSU and Fetch. The reset

controller and interrupt controller, indicated by the gray background color, are closely

associated with the core. The former provides the reset vector, while the latter handles

the mapping of interrupt vectors. To enable the execution of a basic program on the CPU,

three memories with distinct types were included: an Instruction and a Data RAM, as well

as a Boot ROM. These memories store the program instructions, variables, and a UART

bootloader for testing the initial boot code sequence. Furthermore, additional slaves were

incorporated, including a DMA, MTIMER, and UART peripheral. To evaluate the custom

AXI wrappers, a custom slave and master were added, both featuring simple designs

aimed at testing their integration within the SoC.

The design was entirely compiled using Verilator, which converts all RTL design

files into C++ classes. Once the design is converted, it is instantiated into a testbench

responsible for loading the ELF files into the RAM memories mentioned earlier. The

primary objective of this SoC was to test the infrastructure and the complete firmware

development flow, including simulation testing and hardware behavior debugging using

waveforms. After loading the program, it was possible to observe that once completed the

boot flow, the RISC-V processor prints some information in the output terminal as can be

seen in the Listing 7.

63

Figure 5.1: SoC template diagram

Source: The Author

To emulate and test this SoC generated using IPSoCGen, additional files such as

the firmware and the set of Makefiles and IP database were merged into a single repository

called IPSoCGen template, available on author’s GitHub website (SILVA, 2023c). Due to

that, IPSoCGen outputs are limited to the design generation and the header files consumed

by the firmware.

Listing 7: SoC Hello World boot
1 _ _ __ __
2 | \ | | ___ \ \/ /
3 | \| | / _ \ \ /
4 | |\ || (_) |/ \
5 |_| _| ___//_/_\
6 NoX RISC-V Core RV32I
7

8 CSRs:
9 mstatus 0x1880

10 misa 0x40000100
11 mhartid 0x0
12 mie 0x0
13 mip 0x0
14 mtvec 0x101
15 mepc 0x0
16 mscratch 0x0
17 mtval 0x0
18 mcause 0x0
19 cycle 358
20 ...

Source: The Author

https://github.com/aignacio/ipsocgen_template

64

5.1.2 Program loading through testbench

As previously mentioned, the testbench implemented in C++ plays a crucial role

in managing the Device Under Test (DUT), which in this case is the SoC. The testbench

provides the necessary functionality to interpret ELF files and correctly load each program

segment into the appropriate memory location, while also verifying their corresponding

hardware physical addresses. Additionally, the testbench enables emulation of various pe-

ripherals such as the UART and different interrupts within the IRQ controller. In Listing

8, it is possible to observe the function that implements the loading of the ELF program

into the memories using the ELFIO C++ library. Through the same listing, several im-

portant aspects of this loading are represented. Firstly, the program is parsed (line 7) with

the path received by command line arguments (argc/argv), then it gets split into different

segments, each with its particular Virtual Memory Address (VMA) and Loaded Memory

Address (LMA) (from line 10 to 14).

Listing 8: ELF loader function in testbench
1 bool loadELF(testbench<Vtest> *sim,
2 string program_path,
3 s_tile_t tile,
4 const bool en_print){
5 ELFIO::elfio program;
6

7 program.load(program_path);
8 ...
9 for (uint8_t i = 0; i<seg_num; i++){

10 const ELFIO::segment *p_seg = program.segments[i];
11 const ELFIO::Elf64_Addr lma_addr =
12 (uint32_t)p_seg->get_physical_address();
13 const ELFIO::Elf64_Addr vma_addr =
14 (uint32_t)p_seg->get_virtual_address();
15 const uint32_t mem_size = (uint32_t)p_seg->get_memory_size();
16 const uint32_t file_size = (uint32_t)p_seg->get_file_size();
17 ...
18 // IRAM Address
19 for (uint32_t p = 0; p < file_size; p+=4){
20 uint32_t word_line =
21 ((uint8_t)p_seg->get_data()[p+3]<<24)+
22 ((uint8_t)p_seg->get_data()[p+2]<<16)+
23 ((uint8_t)p_seg->get_data()[p+1]<<8)+
24 (uint8_t)p_seg->get_data()[p];
25 if (!(word_line == 0x00)) {
26 sim->core->test->writeWordRAM___05Firam(
27 (p+init_addr)/4,word_line);
28 }
29 ...

Source: The Author

https://github.com/serge1/ELFIO

65

The VMA is the memory address of the program while in execution, whereas the

LMA is the location when it is loaded into the memory. Typically, this means that some

segments that contain initialized (.data) and uninitialized variables (.bss) used during the

program execution will have their VMA addresses differing from the LMA, as the usual

initialization code (crt0.S) will be responsible for moving the data before the program

jumping to the main function. The link between host emulation and the RTL occurs

through the write xRAM reference (line 26), where the testbench calls a method that

is part of the DUT class (converted by Verilator previously). This converted method is

a System Verilog function (Listing 9) in the original design, which performs the inner

loading of the memory. It should be noted that this function should not be translated into

hardware during synthesis.

Listing 9: SV function to load Instruction RAM used by the testbench
1 // synthesis translate_off
2 function automatic void writeWordRAM__iram(addr_val, word_val);
3 /*verilator public*/
4 logic [31:0] addr_val;
5 logic [31:0] word_val;
6 u_dram.mem_loading[addr_val] = word_val;
7 endfunction
8 // synthesis translate_on

Source: The Author

Given that the ELF header provides access to the entry point address, it is feasible

to extract this information utilizing the aforementioned library. By utilizing the obtained

entry point, it becomes possible to configure the reset vector of the CPU or the reset

controller, which is also a component within the design (Listing 10). Consequently, if

desired, the user has the option to commence the simulation with the loaded program at

the initial timestamp.

Listing 10: SV function to set the reset vector used by the testbench
1 // synthesis translate_off
2 function automatic void writeRstAddr__rst_ctrl(rst_addr);
3 /*verilator public*/
4 logic [31:0] rst_addr;
5 u_rst_ctrl.rst_loading = rst_addr;
6 endfunction
7 // synthesis translate_on

Source: The Author

In embedded platforms, the loading of a program into RAMs or manipulation of

the reset vector among other tasks is commonly managed by a bootloader program. With

66

the developed testbench, all these tasks can be easily integrated without requiring any real

hardware. This advantage stems from the flexibility offered by C++, which is not limited

to the final target binary but rather by the system where it is emulated. Once the program

is loaded, the same testbench will simulate as many clock cycles as specified through

command line arguments. Additionally, the simulation has the option to enable or disable

waveform dumping based on the user’s choice.

5.1.3 Custom AXI master and slave

As depicted in Figure 5.1, a Custom AXI master and slave components were in-

corporated to evaluate their integration with the remaining parts of the SoC. The aim was

to verify the accuracy of the address mapping allocation and to assess the feasibility of

seamlessly integrating custom accelerators. On the slave side, twenty different CSRs were

integrated into the wrapper to test if the protocol communication was working properly

which was then read by the CPU. These CSRs could be part of a memory-mapped accel-

erator that runs a particular task such as matrix multiplication. Regarding the AXI master,

a straightforward FSM was implemented to perform polling on a fixed address within the

SoC. Despite its low complexity, the task executed by this master represents a typical

design scenario such as DMA.

5.1.4 Bootloader for FPGA/ASIC testing

Another motivation behind creating this SoC template was to develop and test

bootloader code capable of receiving read and write commands from a peripheral device

(in this case, the UART) and executing them within the SoC. The importance of this

bootloader is fundamental for FPGA prototyping and ASIC development, as it provides

an easy way to update the content of the memories that contain programs or data used by

the different entities within the design.

In Figure 5.2, the bootloader program flow developed using this design is pre-

sented. The program first configures the interrupts and the UART peripheral, and then it

stalls its execution by entering wfi mode. The UART peripheral is configured to generate

an IRQ to the main core (NoX) whenever the received buffer reaches a certain threshold of

characters in its internal FIFO. Once the processor receives an interrupt due to a received

67

character, it jumps to the interrupt handler, where it checks the type of character.

Figure 5.2: Bootloader flowchart

Source: The Author

A simple protocol was defined between the firmware and the user who sends char-

acters over the UART. This protocol includes the type of operation (read or write), an

address, and optional data (in the case of a write operation followed by the "enter" char-

acter). Through this protocol, users can potentially read from and write to all peripherals

within the SoC. An additional option called burst has been added. In this mode, the user

sends a single address followed by a burst of data. The processor automatically performs

write operations and increments the address. This mode is particularly useful when load-

ing programs through the terminal, as it allows for updating the entire memory at once.

Subsequently, the bootloader was converted into a Boot ROM image, as depicted

in Figure 5.1. To simplify its usage, a Python script was developed. The script expects

a single input, which is the ELF file. It automatically transfers the entire program to the

design, parsing the file to filter the type of segment before sending the commands over

the UART. Additionally, the script can update the reset vector to match the entry point

address. If the user has integrated the reset controller provided by IPSoCGen in their

design configuration, the script can also perform a local reset through the bootloader.

68

The complete development of this bootloader was carried out through simulation,

as the waveforms proved to be valuable for debugging various scenarios based on different

user input. To emulate the UART reception (rx), the input keyboard captured the charac-

ters and sent them through the testbench. For the transmission (tx), a specific register in

the reset controller was utilized to capture characters written by the program. Whenever

the register was updated, the 8-bit character was captured and forwarded to the standard

output in the terminal. Ultimately, the design was tested initially in the Xilinx Arty A7-

35T FPGA to confirm its correct execution with real FPGA hardware.

5.1.5 Application testing - Histogram

To facilitate the development of an application for testing the System-on-Chip

(SoC) and conducting a comparative analysis with the Multi-Processor System-on-Chip

(MPSoC), three supplementary AXI slaves have been incorporated into the existing de-

sign configuration, with the removal of the custom AXI slaves (as there was no need to

test anymore). These additional AXI slaves correspond to the Ethernet AXI slave (CSRs,

Input FIFO [InFIFO] and Output FIFO [OutFIFO]). Figure 5.3 represents the final design

with all masters and slaves considering the changes to run an application.

Figure 5.3: SoC architecture with additional slaves (Ethernet)

Source: The Author

The selected benchmark application for evaluating the two template designs, namely

the System-on-Chip (SoC) and Multi-Processor System-on-Chip (MPSoC), involves the

69

computation of image histograms. The fundamental concept entails a program running

on a host computer, transmitting images via Ethernet to the SoC deployed on an FPGA.

Considering the design previously mentioned, a firmware was developed to enable the

communication between the host PC and the target design, using the operational system

for embedded platforms FreeRTOS version v10.4.4+ with a tick timer of 500 Hz. Figure

5.4, it is presented the program execution flow while running the histogram application.

Figure 5.4: SoC Histogram app flowchart

Source: The Author

For the program execution flow depicted in Figure 5.4, the flowchart employs

three distinct colors to represent different meanings. The leftmost section, highlighted

in green, represents the initialization routine, which is executed each time the System

on Chip (SoC) restarts. Following the "start" step, the initial setup involves configuring

various peripherals, such as the Universal Asynchronous Receiver-Transmitter (UART),

interrupts, the "tick" timer, Ethernet, and Direct Memory Access (DMA) peripherals.

Upon completing this initial setup, two tasks are created: ProcCmd and ProcImg.

The ProcCmd task is responsible for parsing commands transmitted from the host com-

puter to the FPGA. Once a command is received, a specific action is executed accordingly.

In the case of a histogram command, the program waits for all image segments to be trans-

ferred from the host. Each segment is then sent to the ProcImg task for processing, which

accumulates the final histogram result. After all segments are processed, the ProcCmd

70

task sends the histogram to the host computer and returns to a waiting state. At this point,

it can receive other commands, such as a test command that sends a heartbeat signal to

the host.

5.2 MPSoC template

As one of the primary objectives of the IPSoCGen framework, the generation of

MPSoCs represents one of the most intricate tasks within design generation frameworks.

This section will provide a comprehensive overview and explanation of the MPSoC tem-

plate that has been constructed utilizing the IPSoCGen framework. It will delve into

the intricacies of both the hardware and firmware aspects, with a particular focus on the

integration for the final histogram application testing.

5.2.1 Architecture

Figure 5.5 illustrates the structure of the MPSoC, which encompasses two distinct

designs: a single master tile and a set of eight slave tiles. This segregation into two tile

types was implemented to streamline the firmware development process, necessitating

only two distinct firmware implementations. The master tile serves as the communication

hub with the host PC and dispatches instructions to the slave tiles through the NoC. In

contrast, the slave tiles predominantly undertake the computational workload, receiving

commands and transmitting results back to the master tile.

The master tile consists of several components, including a DMA unit, a NoX

RISC-V Core, a boot ROM with a UART bootloader, a peripheral UART interface, 16 KiB

of data RAM memory, an Ethernet AXI interface, a reset controller, a 30 KiB instruction

RAM memory, the NoC NI (Network Interface), an Interrupt Controller, and a timer

utilized by the FreeRTOS running on the core. On the other hand, the slave tile exhibits a

similar configuration but lacks the Ethernet controller and possesses a smaller instruction

RAM memory. Notably, the NoC is configured as a 3x3 grid, consisting of nine PE

(Processing Elements).

In addition to the MPSoC wrapper, a manual inclusion was made in the final gener-

ated RTL design. This inclusion comprises a multiplexer controlled by an external switch,

which allows for the selection of the serial FTDI interface to establish a connection with

71

Figure 5.5: MPSoC 3x3 architecture

Source: The Author

either the master tile or all the slave tiles for the UART peripheral. This enhancement

facilitates the simultaneous download of the firmware to all slave tiles at the same time.

5.2.2 Histogram MPSoC flow

Following a similar approach as the one described for the SoC, a FreeRTOS ap-

plication was developed for the MPSoC with the difference that two distinct apps are

necessary, one for the master tile and another one for the slave. Figure 5.6 details the pro-

gram flow developed by the master tile which is responsible for receiving image segments

and forwarding them to the slave tiles.

Certain intricate details, such as mutex control, task synchronization, and interrupt

handling, have been intentionally omitted to simplify the understanding of the program

flow. However, it is crucial to acknowledge that these aspects were indeed implemented

to ensure the accurate execution of the program.

The master tile program flow, as depicted in Figure 5.6, follows a similar approach

to the SoC diagram, with different stages denoted by distinct colors representing the exe-

cution context. On the leftmost side (green), the initialization of APIs, mutexes, queues,

and task creation is illustrated, along with the array responsible for tracking the availabil-

ity of slave tiles. On the right side (yellow), the CopyImg task is described, which receives

72

Figure 5.6: Master Tile Histogram app flowchart

Source: The Author

Ethernet packets, parses them, and forwards the image segments through the NoC to the

respective slave tiles as they are received. Once all segments have been processed and

returned by the slave tiles, the final histogram vector is sent to the host. On the rightmost

side (blue) of the diagram, the parallel RecvData task responsible for receiving the partial

histogram results from each slave tile is shown.

Figure 5.7 illustrates the program flow for the slave tile, which is comparatively

simpler than that of the master tile. The slave tile program follows a sequence of tasks.

Initially, in the ProcessNoCPkts task, the slave tile awaits NoC packets. Upon receiving a

packet, it initiates a DMA operation to locally copy the image segment and subsequently

signals the ImgSeg task. The ImgSeg task receives the image segment, processes it to

compute the histogram, and then utilizes a DMA operation to send the resulting histogram

back to the slave tile.

73

Figure 5.7: Slave Tile Histogram app flowchart

Source: The Author

5.3 Host histogram application

Considering that both designs have to communicate with the host (PC) application

for the histogram benchmark, an application was developed to capture images from a

webcam, split and send through the local Ethernet network to the FPGA. Figure 5.8 shows

the program flow for the final application that runs on the host machine.

Beginning with the leftmost (purple) region, the program initiates two threads:

one dedicated to video streaming/image capturing, and another responsible for histogram

processing. The thread handling video streaming captures a frame and adds it to a dy-

namic thread-safe queue. If the queue reaches its maximum capacity, the oldest element

is removed to prevent memory overflow. The thread assigned to histogram processing re-

trieves a frame from the queue, converts it to grayscale, and utilizes OpenCV to compute

the histogram. Subsequently, the frame is divided into multiple 1 KiB segments, which

are then transmitted to the FPGA. The FPGA performs the final histogram computation in

74

Figure 5.8: Host Histogram app flowchart

Source: The Author

the SoC or MPSoC and returns the hardware computed result. Once the final histogram is

received from the FPGA, it is normalized, and both results—computed by OpenCV and

the hardware implementation—are displayed.

5.4 Software and APIs

Multiple C APIs were developed to facilitate the utilization of peripherals in both

SoC and MPSoC, considering the presence of various types of slave devices. These li-

braries make use of the set of header files, which are among the outputs generated by

IPSoCGen. The coding style employed adheres to the guidelines followed by FreeR-

TOS, including conventions for type names such as prefixing uint32_t with "ul" (unsigned

long) and using "us" or "uc" for unsigned short/char (uint16_t and uint8_t). Additionally,

a CamelCase naming convention is adopted, among other conventions. For instance, a

small excerpt of the DMA API is presented in Listing 11.

The development of APIs was carried out for various components, including DMA,

UART, IRQ controller, NoC, and Ethernet. Since most of the designs were primarily de-

veloped by the author, it became necessary to establish this layer of abstraction to ensure

system usability. The majority of the API development was executed within the C++

75

Listing 11: DMA embedded C API
1 ...
2 #include "dma.h"
3 ...
4 static volatile uint32_t* const pulDMADesc1DstAddr = (uint32_t*)dmaDESC_1_DST_ADDR;
5 static volatile uint32_t* const pulDMADesc1NumBytes = (uint32_t*)dmaDESC_1_NUM_BYTES;
6 static volatile uint32_t* const pulDMADesc1Cfg = (uint32_t*)dmaDESC_1_DESC_CFG;
7

8 void vDMAInit (void) {
9 DMAStatus_t xDMAStatus = xDMAGetStatus();

10

11 dbg("\n\r");
12 dbg("\n\rDMA init:");
13 dbg("\n\rVersion: %x", xDMAStatus.Version);
14 dbg("\n\r");
15 }
16

17 void vDMASetDescCfg (uint8_t ucDescID, DMADesc_t xDesc) {
18 switch (ucDescID) {
19 case 0:
20 *pulDMADesc0SrcAddr = (uint32_t)xDesc.SrcAddr;
21 *pulDMADesc0DstAddr = (uint32_t)xDesc.DstAddr;
22 *pulDMADesc0NumBytes = xDesc.NumBytes;
23 *pulDMADesc0Cfg = (((uint8_t)xDesc.Cfg.WrMode & 0x1) << dmaCFG_WRITE_MODE) |
24 (((uint8_t)xDesc.Cfg.RdMode & 0x1) << dmaCFG_READ_MODE) |
25 (((uint8_t)xDesc.Cfg.Enable & 0x1) << dmaCFG_ENABLE);
26 break;
27 ...
28 break;
29 default:
30 masterCRASH_DBG_INFO("Unexpected DMA Descriptor ID");
31 break;
32 }
33 }

Source: The Author

model generated from the two designs (SoC and MPSoC) throughout Verilator tool.

5.5 FPGA prototyping

The FPGA platform selected to facilitate the implementation of both the SoC and

MPSoC designs was the Digilent Nexys Video, which can be found at Digilent’s website.

This board encompasses a Xilinx/AMD FPGA boasting a high number of logic slices,

exceeding 200,000 (specifically, 215,360), as well as a substantial amount of block RAM,

surpassing 13 million bits (equivalent to 13,140 kilobits). Notably, this FPGA belongs to

the Artix 7 family, and it represents the largest member of this family in terms of resource

capacity.

To facilitate rapid FPGA prototyping, a configuration file in the required format

for the tool FuseSoC was authored and integrated. The core objective of FuseSoC is to

enhance the reusability of IP cores and provide support for the creation, building, and

simulation of diverse designs. Typically, generating a bitstream file for the target de-

https://digilent.com/reference/programmable-logic/nexys-video/start

76

vice involves creating a project and configuring the vendor-specific toolchain to facilitate

the final compilation and bitstream generation. However, with FuseSoC, these steps are

abstracted, thereby rendering the RTL project nearly vendor-independent. One of the

features utilized in this work is the capability of FuseSoC to generate FPGA images.

5.6 Conclusion

Within this chapter, two systems generated using the IPSoCGen tool were intro-

duced. Furthermore, an extensive examination of the histogram hardware, firmware, and

software host applications was provided. Additionally, key aspects of the implemented

set of APIs and the FPGA prototyping process were elucidated, thereby offering a com-

prehensive overview of the entire workflow.

77

6 CASE STUDIES

This chapter presents examples of the utilization of the IPSoCGen framework.

The primary aim is to elucidate the complete process of generating a System-on-Chip,

starting from a high-level plan to the generation of a digital system. Specifically chosen

applications are not overly intricate, serving to demonstrate that the process engenders

functional and efficient systems. The examples highlight that the process yields oper-

ational hardware with outcomes akin to reliable implementations found in open-source

IPs (developed by the author). Despite inherent measurement imprecision, the obtained

results fall within the expected range.

While not the central focus of this study, it becomes apparent that the performance

of the synthesized system is heavily contingent on the initial algorithm. The selection of

a suitable algorithm and intelligent task specification and management, particularly con-

cerning the exploration of parallelism, stands out as fundamental for enhancing perfor-

mance.

Given the widespread interest in systems with multiple processors, attempts were

made to ascertain whether this architecture genuinely manifests a performance increase in

line with the augmented available resources. To achieve this, some experiments involved

repeating the processing to demand more computational effort.

Additionally, it compares the power, performance, and area (PPA) of different

systems, elucidating the design choices, bottlenecks encountered, and potential avenues

for future improvements.

6.1 SoC - Single Processor SoC

The next section will detail each of the three metrics (power, performance, and

area) for the SoC running the histogram application.

6.1.1 Power

Starting with the power numbers, the results obtained from the implementation

on Vivado (2022.2) demonstrate a total power number estimation of 436mW between

dynamic and static, with its breakdown demonstrated in Figure 6.1. It is relevant to high-

78

light that both PLL and the Mixed-Mode Clock Manager (MMCM) together represent

69% of the total estimated power value as no simulation activity file (.saif) was supplied

to the tool and it is executed in vectorless mode. According to Xilinx/AMD, vectorless

mode analysis is done based on default switching activity (usually low) specification on

the primary ports and the design clocks.

Figure 6.1: SoC power breakdown numbers

Source: The Author

To obtain a more accurate estimation of the power consumed by the SoC in con-

junction with the running application on the target device, the setup shown in Figure 6.2

was assembled. This setup consists of an Arduino Uno and the I2C sensor INA219. The

sensor functions by measuring the voltage at its input terminal using a precision amplifier

across a 0.1-ohm shunt resistor (1% sense resistor), as well as the bus supply voltage.

It then converts both measurements into values that are stored in its internal registers,

allowing it to provide voltage, current, and consequently, the instantaneous power value.

A simple firmware was developed for the Arduino Uno to read the sensor and

print through its serial port, an average value of the last 10 samples of instant power.

An average of 300 hundred measurements was captured and presented in Figure 6.3 for

different modes: Running the histogram application, in idle mode waiting to start, and

with the reset asserted. The total number of instantaneous power measurements is 3000,

as each of the 300 samples represents the average of the last 10 instantaneous power

samples.

Since the power values are measured at the supply of the FPGA board, several

other components (USB-UART, DDR memory, etc) including the efficiency of the DC-

DC converters on the board contribute to a total of more than two watts. Based on the

obtained power measurements, it is possible to observe that the total power consumption

of the design is approximately 2192 milliwatts when reset. Subtracting the idle power

79

Figure 6.2: Power setup

Source: The Author

Figure 6.3: SoC Power comparison chart

Source: The Author

consumption, which occurs when there is no histogram being processed, it is obtained

a delta value of around 594 milliwatts. Lastly, the difference between idle power and

80

the power consumed during the execution of the histogram application is 12 milliwatts,

indicating that the execution of the application does not significantly increase power con-

sumption.

6.1.2 Performance

An application written in C++ was used to capture frames from an HD webcam

at a resolution of 640x480 (VGA), following the program flow proposed in section 5.3.

The frames were captured using the OpenCV library and then converted from a 3-channel

(RGB) format to a single grayscale channel ranging from 0 to 255. All the 256 bins of

the histogram are normalized from values between 0 to 479 (higher frequency). The total

memory size for each frame was 300 KiB (1 byte x 640 x 480 pixels).

Each 1 KiB segment was then sent to the FPGA, which accumulated the total

histogram data. Once all segments were completed, the SoC returned the histogram in

the format of 4 bytes per bin, totaling 1024 bytes (4 bytes x 256 bins). The choice of a 1

KiB segment was made by the author due to a limitation of an internal design within the

Ethernet AXI, which does not support UDP packet fragmentation. Fragmentation occurs

when the packet size exceeds 1500 bytes (the maximum MTU size), and the frames are

sent separately.

The performance analysis starts by measuring the total time taken to process each

frame of the 300 KiB sent from the Webcam Stream to the FPGA. It was observed that,

on average of 300 frames, it took 590.30 ms per frame. This time is measured from the

moment the host program sends the histogram command, through the image being split

into 300 UDP packets, to the return of the histogram vector (1 KiB).

On an AMD Ryzen 9 5900X with 64 GiB DDR4 RAM, OpenCV computed the

histogram in an average time of 0.35 ms, this time taken is not used for comparison

with the MPSoC but to indicate that the host computation does not affect the time taken

to transmit the frames to the FPGA in the host application. As it can be observed in

Figure 6.4, the histogram reference computed by OpenCV (black bars) is similar to the

one computed by the FPGA (red bars), with a correlation of 99.94% (average of 300

frames). The correlation was computed using the cv::compareHist function from the

OpenCV library that follows the math expression 6.1/6.2.

81

Figure 6.4: SoC running histogram app

Source: The Author

d(H1, H2) =

∑
I(H1(I) − H̄1)(H2(I) − H̄2)√∑

I(H1(I) − H̄1)2
∑

I(H2(I) − H̄2)2
(6.1)

where

H1/H2 = Histograms, H̄k =
1

N

∑
J

Hk(J) (6.2)

6.1.3 Area

The design was implemented with a frequency plan consisting of four distinct

clock domains. Figure 6.5 illustrates the mapping of these clocks within the design mod-

ules. The majority of the design operates at a frequency of 50 MHz, which is generated

by a Phase-Locked Loop (PLL) (not depicted in Figure 6.5). This PLL is responsible for

deriving the 50 MHz clock from the main clock input source of 100 MHz, provided by

the Nexys Video board.

Due to the utilization of the RGMII interface in the Ethernet AXI design for com-

munication with the on-board PHY IC, a minimum of three distinct clock frequencies is

necessary. These frequencies are specifically set at 200 MHz, 125 MHz, and 90 MHz

82

Figure 6.5: SoC Frequency plan

Source: The Author

Figure 6.6: Timing report issue during FPGA implementation

(a) Setup violation on phy_if (b) Positive WNS after the fix

Source: The Author

generated by the Clock Mgmt Eth block (MMCM). The primary purpose of these clock

frequencies is to effectively meet the timing requirements of the RGMII interface while

guaranteeing reliable communication between the Ethernet PHY (Physical Layer) and

MAC (Media Access Control) layers.

A problem that arose during the synthesis process for the FPGA in question in-

volved the identification of two setup violations (refer to WNS in the Figure 6.6a) noted in

the final report. It is worth mentioning that the author of the open-source project known as

verilog-ethernet has acknowledged this known issue specifically for this particular board,

attributing it to the stringent timing requirements inherent in the Ethernet design. How-

ever, a resolution was provided by an external individual via the Internet, which effec-

tively addressed the timing concerns and facilitated the attainment of the desired timing

closure (refer to 6.6b). Apart from this particular issue, no additional timing violations

were detected during the design synthesis phase.

Upon completion of the implementation stage, the comprehensive FPGA area uti-

83

lization has been summarized in Table 6.1. The employment of Look-Up Tables (LUTs)

by the System-on-Chip (SoC) amounts to 10452, accounting for 7.81% of the overall

resources. In terms of flip-flops, a total of 10012 units have been utilized, representing

3.72% of the available resources. Regarding Block RAM (BRAM), there are 27 instances

employed, consisting of two instances of RAMB18 (18 Kbits) and twenty-five instances

of RAMB36 (36 Kbits).

Table 6.1: Nexys Video FPGA total utilization (SoC)

Resource Utilization Available Utilization %

LUT 10452 133800 7.81
LUTRAM 116 46200 0.25

FF 10012 269200 3.72
BRAM 27 365 7.40

IO 19 285 6.67
BUFG 5 32 15.63

MMCM 1 10 10.00
PLL 1 10 10.00

Source: The Author

Furthermore, a hierarchical report of the design was generated, providing a break-

down of resources per module, as detailed in Table 6.2. Notably, the Ethernet AXI de-

sign occupies the largest area, accounting for 29.45% of the total. Following closely is

the NoX RISC-V core, which utilizes 2685 LUTs, representing 25.68% of the overall

resources. Additionally, the AXI4 Crossbar contributes significantly to the design, occu-

pying 20.83% of the total area in terms of LUTs.

Table 6.2: SoC - Hierarchical area breakdown

Name Slice LUTs Slice Registers Block RAM

SoC 10452 10012 27
u_eth (ethernet_wrapper) 3078 3895 7
u_nox (nox_wrapper) 2685 1888 0
u_axi4_crossbar (axi_crossbar_wrapper) 2177 1681 0
u_dma_0 (dma_axi_wrapper) 1590 1688 0
u_uart (axi_uart_wrapper) 452 351 0
u_timer (axi_timer) 183 169 0
u_dram (axi_mem_wrapper) 100 84 4
u_iram (axi_mem_wrapper) 78 87 8
u_irq_ctrl (axi_irq_ctrl) 69 103 0
u_rst_ctrl (axi_rst_ctrl) 44 49 0
u_boot_rom (axi_rom_wrapper) 12 8 8

Source: The Author

84

6.2 MPSoC - Multi-Processor System-on-Chip

In the following section, we will elaborate on each of the three fundamental met-

rics, namely power, performance, and area, in relation to the Multi-Processor System-on-

Chip (MPSoC) employed for executing the histogram application.

6.2.1 Power

Starting by power, two types of results were compared, the initial estimation vec-

torless from Vivado and the measurement captured by the sensor INA219 (same setup as

6.1.1). The initial estimation from Vivado is presented in Figure 6.7, where 545 mW is

the dynamic and 163 mW is the static power.

Figure 6.7: MPSoC power breakdown numbers

Source: The Author

While measuring the MPSoC using the previous setup, three distinct measure-

ments were conducted using 300 samples (each sample is the average of the last 10 in-

stantaneous power measurements). These measurements encompassed the execution of

the histogram, the idle mode, and the reset being asserted. Figure 6.8 demonstrates that

the disparity between idle mode and the running histogram application amounts to 34

mW. Additionally, the variance between idle mode and the reset being asserted is 594

mW.

85

Figure 6.8: MPSoC Power comparison chart

Source: The Author

6.2.2 Performance

The execution of the histogram application on the MPSoC, using the same C++

program mentioned in section 6.1.2, demonstrates an average time measurement of 339.49

ms per frame, where each frame size is 300 KiB (300 samples, same as the SoC). Addi-

tionally, the achieved average histogram correlation is 99.94%, matching that of the SoC.

It is important to note that the FreeRTOS version used was v10.4.4+ with a tick timer con-

figured at 500 Hz to handle task context switching for both SoC and MPSoC applications.

It is essential to emphasize the challenges involved in accurately measuring indi-

vidual events during program execution, such as the transmission time for a 1 KiB image

segment to the slave tiles for example. This complexity arises due to context switching

during RTOS execution and the potential latency between each step, which may introduce

deviations from the true values.

6.2.3 Area

In regards to the area utilization, the MPSoC exhibits a total LUT utilization of

approximately 57.52% of the Nexys Video FPGA, which is around 7.4 times larger than

the previously described SoC, according to the Table 6.3. The number of flip-flops in

86

the MPSoC amounts to 63,289, significantly exceeding that of the reference design due

to its higher complexity. A similar trend is observed for the BRAM, where the MPSoC

comprises almost seven times more instances of both RAMB36 and RAMB18 compared

to the reference design. As this design follows a similar frequency plan to the SoC, the

clock distribution is the same for the master tile (tile_0), while the remaining slave tiles

operate at 50 MHz.

Table 6.3: Nexys Video FPGA total utilization (MPSoC)

Resource Utilization Available Utilization %

LUT 77428 134600 57.52
LUTRAM 212 46200 0.46

FF 63307 269200 23.52
BRAM 187 365 51.23

IO 20 285 7.02
MMCM 1 10 10.00

PLL 1 10 10.00

Source: The Author

Table 6.4 provides a comprehensive breakdown of each tile within the design.

The majority of tiles exhibit similar area sizes, excluding the first tile (tile_0), which

serves as the master tile responsible for managing communication with the host. This

includes Ethernet AXI and larger memory components. Additionally, the NoC contributes

significantly to the total area, surpassing the average size of the slave tile. Adjusting the

parameters of the NoC can potentially reduce its size.

Table 6.4: MPSoC - Hierarchical area breakdown

Name Slice LUTs Slice Registers Block RAM

MPSoC 77428 63307 187
u_tile_8 (tile_8) 7355 5996 20
u_tile_7 (tile_7) 7361 5996 20
u_tile_6 (tile_6) 7350 5996 20
u_tile_5 (tile_5) 7351 5996 20
u_tile_4 (tile_4) 7349 5996 20
u_tile_3 (tile_3) 7347 5996 20
u_tile_2 (tile_2) 7347 5996 20
u_tile_1 (tile_1) 7349 5996 20
u_tile_0 (tile_0) 10719 10181 27
u_ravenoc (ravenoc) 7902 5149 0

Source: The Author

87

6.3 PPA evaluation

In the following section, an analysis will be conducted to compare various metrics,

including power consumption, performance, and area, for the two presented systems. Fur-

thermore, supplementary performance tests will be presented to enhance the benchmark

of these systems.

6.3.1 Power

Upon examination of the two preceding power charts (Figure 6.7 and Figure 6.1),

it becomes evident that the projected power consumption of the MPSoC (Multi-Processor

System-on-Chip) is significantly greater when compared to the SoC (System-on-Chip), as

reported by Vivado. The comparison of total power consumption estimates provided by

the tool reveals a noteworthy finding: the MPSoC displays a 62.38% higher total power

consumption in contrast to the SoC.

Figure 6.9: Dynamic power estimation per FPGA element - Vivado

Source: The Author

Further scrutiny of the factors contributing to this power escalation, as depicted in

Figure 6.9, elucidates that clocks, signals, and logic constitute the primary drivers, result-

88

ing in a respective increase of 369%, 613%, and 575% in dynamic power consumption

relative to the SoC. The estimation of static power also exhibits a substantial increment,

with an approximate rise of 19%.

To conduct a more thorough analysis of the measurements obtained from the

INA219 sensor, a basic LED blink design was synthesized and measured on the Nexys

Video FPGA using the FuseSoC tool’s reference design. This design, being minimal,

serves the purpose of providing insights into the underlying power consumption of the

baseboard. It is challenging to accurately estimate the contribution of the entire set of

chips comprising the circuitry to the previously measured power values.

Figure 6.10: External measurement (INA219) - Delta using blink design as reference

Source: The Author

Through this particular test, the power consumption recorded was 2093.24 mW.

This value was subsequently subtracted from the aforementioned diagrams (Figure 6.3

and Figure 6.8), and the results are presented in Figure 6.10. The aforementioned fig-

ure reveals that the power difference between the two systems is relatively insignificant

during idle or when the histogram is in operation, but becomes more noteworthy when

the system’s reset is asserted. This observation suggests that not all the tiles within the

MPSoC may be operating concurrently, with a significant portion of them being in an idle

state considering the histogram application.

89

6.3.2 Performance

When assessing the performance of the two systems, it is apparent that the MP-

SoC achieves a speedup of 73.88% over the SoC. This gain can be attributed to parallel

processing facilitated by distributing image processing across multiple tiles via the NoC.

However, this advantage does not exhibit a direct proportionality to the number of tiles

(8). This can be attributed to the following possibilities:

1. The duration required for the master tile to delegate a certain workload to the slave

tiles is highly comparable to the time taken by a slave tile to handle the image

segment, perform the necessary processing, and return to the master tile.

2. The algorithm utilized by the MPSoC for load allocation inadvertently favors the

first and second tiles. Additionally, thanks to the minimal processing time required

for payload processing, these slave tiles promptly generate the histogram and be-

come ready for the subsequent processing iteration. This occurs even before the

master tile completes its iteration through a new slave tile.

To evaluate the aforementioned hypothesis, the histogram application was modi-

fied to compute the histogram segment multiple times, specifically ten times, to increase

the payload processing time. In Figure 6.11a on the leftmost side, the average time per

frame for a single processing iteration is shown, while Figure 6.11b on the rightmost side

represents the average time per frame when the computation of the histogram is requested

ten times within each frame. As illustrated in Figure 6.11c, the speedup experiences a sig-

nificant increase from 73.88% to 504.47% as the processing time per frame is extended.

This observation further supports the hypothesis made earlier.

6.3.2.1 MPSoC performance exploration

To conduct a comprehensive evaluation of the performance gain offered by the

MPSoC in comparison to the SoC, three distinct firmware implementations were devel-

oped for the aforementioned systems. One firmware was specifically designed for the

SoC, while two separate firmware versions were created for the MPSoC, targeting its

master and slave tiles.

The purpose of this firmware is to receive a scalar value S and a number N through

Ethernet communication. Subsequently, the system executes the multiplication of 8 KiB

array (initialized with ones) by this scalar S value N times, accumulating the results and

90

Figure 6.11: Histogram MPSoC speedup comparison

(a) Time per frame (b) Time per frame - 10x histogram

(c) Histogram performance comparison

Source: The Author

91

returning the total sum to the host through Ethernet as well (Equation 6.3). The primary

objective behind this design is to compare the performance gain achievable by serially

contrasting the execution using the SoC, versus the parallel execution facilitated by the

MPSoC. Although this firmware does not represent a specific algorithm, it emulates a

general processing task that could be executed by both platforms during the processing of

large blobs such as image, audio, or cipher blocks.

Total =
i=N−1∑
i=0

S ∗ array_8KiB[i] (6.3)

The algorithm under consideration is not excessively intricate but does entail a

substantial computational load. Nonetheless, it effectively harnesses the parallel advan-

tage of the MPSoC. The rationale behind selecting this algorithm lies in the potential im-

pact that a more complex alternative could have on the measured throughput. Conversely,

the proposed solution minimizes the significance of processing time consumed by factors

such as OS context switching, Ethernet operations by the master tile, and master-slave

NoC communication. These components are inherently challenging to measure accu-

rately and are subject to considerable variation due to various factors.

Both iterations of the firmware were recorded, with approximately 100 samples

collected for each run. The scalar factor S remained constant at a value of 123, while the

number of loops N varied between 100 and 100,000. In the case of parallel execution,

the evaluation also encompassed different quantities of loops processed by each slave

tile, namely 5, 10, 25, and 100 loops per tile. The routing algorithm employed for task

distribution among multiple slave tiles followed a round-robin approach based on loop

granularity. The performance comparison between the two systems, specifically in terms

of the speedup achieved through parallel execution, is graphically depicted in Figure 6.12.

Figure 6.12 illustrates the observed speedup, ranging from 1.35% (with a task size

of 100 loops per tile) to 708% (with a task size of 100,000 loops and 100 loops per tile).

Beginning with the smallest gain mentioned previously, a marginal speedup of 1.35%

is notable in parallel execution. In this specific scenario, a single processor handles the

execution of 100x loops, and the slight advantage of the MPSoC arises from the dedicated

execution of interrupts and Ethernet packet handling by the master tile. In contrast, the

SoC performs all tasks within a single context, and the communication overhead in the

NoC is relatively low compared to the processing time.

Furthermore, when the parallel execution distributes 5x loops per tile, the speedup

gain appears to be more evenly distributed across the various workloads. This is because

92

Figure 6.12: MPSoC speedup - Comparison of different amounts of workloads per num-
ber of loops

Source: The Author

the processing time for 5x loops (5x 123*8KiB array) is equivalent to the time taken by

the master to dispatch one task (5x) to all the slave tiles through the NoC. As a result, both

the master and the slaves remain occupied processing data simultaneously at any given

time.

Regarding the highest speedup gain (708.07%), it is notable that it closely ap-

proaches the theoretical limit proposed by Amdahl’s Law (AMDAHL, 1967) (Equation

6.4). Considering the proposed MPSoC system, where 99% of the code can be executed

in parallel and a nine-slave-tile speedup factor, the enhanced speedup limit is calculated

as 8.33 times, which is remarkably close to the observed experimental results (8,08 or

708,7%).

Speedupenhanced(f, S) =
1

(1 − f) + f
S

(6.4)

where:

f = Proportion of overall execution time spent by the part of the task that benefits

from parallel processing.

S = Performance improvement, or speedup.

In terms of performance when considering a more complex algorithm, several

93

features were incorporated into the framework to facilitate the acceleration of parallel

processing through the MPSoC. For example, the framework allows for the configura-

tion of a variable number of DMAs, enabling the final design to encompass multiple data

movers capable of relieving the processor from the task of data movement within the sys-

tem. Additionally, the system offers the flexibility to incorporate custom accelerators,

which can be tailored to deploy highly specialized tasks within specific processing do-

mains. Furthermore, the NoC design was specifically engineered to facilitate low-latency

intercommunication and support AXI bursts, effectively complementing the enhancement

of throughput. Rigorous tests conducted on the RaveNoC design have demonstrated a

throughput of 1415.31 MiB/s (1484.06 MB/s or 1.48 GB/s) while operating at a clock

frequency of 200 MHz and configured with data length of 64 bits, which is more than

92% of the theoretical limit (8 Bytes / 5 ns clock period).

6.3.3 Area

In terms of area, the multi-processor system-on-a-chip design occupies a signif-

icant area size of the Nexys Video FPGA while compared to the SoC. As demonstrated

in the Figure 6.13, the LUT, FF and BRAM increase is 640.80%, 532.31% and 592.59%

respectively.

This increase primarily stems from the additional tiles and the inclusion of the

network-on-chip design, which accounts for approximately 10% of the MPSoC’s LUT

usage. The NoC design could be further optimized by reducing the number of flit buffers.

Additionally, the size of the instruction and data RAM used by the various tiles could

be optimized, as even in debug mode compilation, the overall usage does not exceed an

average of 70% of its nominal value.

94

Figure 6.13: MPSoC design area increase in comparison to the SoC

Source: The Author

6.4 Linear mean filter application

Another application implemented for benchmarking the proposed framework in-

volves the execution of the image linear mean filtering algorithm. The mean filter tech-

nique is fundamentally a process for noise reduction while retaining significant features

within images, as described in (VALLEPALLI; RAJENDRAN, 2012). The most basic

form of spatial averaging involves aggregating pixel brightness values within small re-

gions of the image. This aggregation is achieved by summing the pixel values, dividing

by the number of pixels in the neighborhood, and utilizing the resultant value to generate

a new image.

The implemented application uses a box filter, achieved by applying the kernel

shown in Figure 6.14 to the noisy image. This is a straightforward algorithm that provides

insights into how applications can benefit from hardware parallelism. Next, we plan to

implement Motion Estimation, commonly used in video compression. This is expected to

demonstrate even more clearly how the algorithm can be tailored to fit the capabilities of

the hardware.

To reduce the complexity of the application and the different firmware/software

95

Figure 6.14: Mean filter diagram

Source: The Author

development, a set of constraints has been delineated. These constraints encompass the

utilization of a 3x3 kernel and a grayscale image with dimensions of 320x240 pixels.

Also, for this development, the application is compared running on a single core against

a 2x2 MPSoC design as shown in the image below.

Figure 6.15: Design used to benchmark the mean filter

Source: The Author

The same design built for the MPSoC (Figure 6.15) was also the one used to

run the single core application, this avoids re-flashing the bitstream into the FPGA and

96

simplifies the general flow. While running the single-core app, the NoC AXI slave is

not used and all the processing is managed locally at the core level. Also, the same host

software is shared between the single core vs the MPSoC design app, which is responsible

for capturing and displaying the results.

Figure 6.16: Linear mean filter running on the MPSoC

Source: The Author

In Figure 6.16, the sequential execution flow of the system is illustrated, delin-

eating the distinct stages that each frame undergoes. Commencing on the host side, an

image is captured via a webcam and subsequently converted into grayscale format (sin-

gle channel). This grayscale image undergoes zero-padding and is then partitioned into

rows within an array structure. Each entry within this array encapsulates the current row,

its predecessor, and its successor (comprising a total of 3x rows). This simplifies the

embedded software and each entry can be individually processed.

Following this arrangement, each array entry, accompanied by a small header (4

bytes) denoting its index, is transmitted via Ethernet to the FPGA. Upon reception of

the array, the FPGA ascertains the availability of slave processing units and if available,

dispatches the row through the Network-on-Chip (NoC) to the designated slave for mean

filter processing. If no rows are currently prepared for return to the host, the master tile

issues a request for additional array entries.

Upon the completion of processing by the slave tile, the processed row is trans-

mitted back to the master tile, where it is locally stored and subsequently forwarded to

the host via Ethernet. Once all rows are received by the host software, the filtered image

97

is displayed, and the process recommences by capturing a new frame.

Figure 6.17: Host side application execution

Source: The Author

6.4.1 Performance comparison

During the execution of the identical software on the host machine and subsequent

comparison of the two distinct embedded applications, the ensuing results were acquired

concerning the execution of the linear mean filter.

Table 6.5: Linear mean filter average time per frame

Design Average time per frame (ms)

Single core 3138.14
MPSoC 2x2 995.86

Source: The Author

The presented results illustrate that the MPSoC processing exhibits a speedup fac-

tor of 3.15 times when compared to the single-core version. Notably, while the MPSoC

design encompasses 4 cores, only 3 cores are actively engaged in the mean filter process-

ing. The master tile (0,0) specifically assumes the responsibility of task dispatching and

98

data flow management within the MPSoC design. Further enhancements could be imple-

mented at the FreeRTOS embedded firmware to speed up the processing on both designs,

single and multi-core, however, as author’s decision such improvement is not required to

demonstrate the comparison purpose between multi-task vs single-task.

6.5 Conclusion

In Chapter 6, the focus was on presenting the outcomes of executing the histogram,

MAC, and mean filter applications. This involved a detailed examination of two distinct

designs: SoC and MPSoC. The presentation included a thorough description and demon-

stration of each PPA metric, followed by a comprehensive comparison between the two

designs. Additionally, an in-depth performance analysis was carried out to justify the final

numerical values obtained for each metric.

It is important to note that the results presented are approximate evaluations of

the framework. For a more precise measurement, implementation with the appropriate

setup and specific use case is necessary. Despite this, the results presented are sufficient

to validate the initial hypothesis outlined in the first Chapter, which involves starting from

an architecture specification and progressing to the emulation stage of different systems

(SoC and MPSoCs).

99

7 CONCLUSIONS

The preliminary investigation of the design space confers substantial advantages in

the conversion of architectural abstraction diagrams into tangible digital circuitry. A plat-

form enabling designers to effortlessly generate diverse hardware configurations, while

simultaneously affording sufficient flexibility for incorporating various adjustments in the

final code, presents a promising solution to address the aforementioned gap.

The presented work aims to establish a connection between two domains, facili-

tating collaborative efforts between architectural and design teams to expeditiously assess

critical trade-offs within the Very Large Scale Integration (VLSI) domain, specifically

Power, Performance, and Area (PPA). By the diverse array of Intellectual Properties (IPs)

designed and evaluated throughout this study, the final framework offers a substantial

toolset for generating and evaluating a wide spectrum of System-on-Chips (SoCs) and

Multi-Processor Systems-on-Chip (MPSoCs). Furthermore, owing to its modular nature,

the framework’s extensibility extends beyond the scope of the current presentation, per-

mitting the inclusion of additional cores or IPs based on the specific preferences and

requirements of different users, thereby enhancing its overall potential.

The progress of VLSI is contingent upon a collaborative effort between high-

performance application designers and intellectual property (IP) developers to enrich a

repository of hardware functions (accelerators, data structures, etc.). The examples pre-

sented serve as a proof of concept and can be further optimized with more efficient IPs,

particularly through a more nuanced exploration of parallelism. Additional examples fea-

turing diverse characteristics can unveil solutions for application mapping onto the Multi-

Processor System-on-Chip (MPSoC), thereby optimizing performance for designers.

Regarding the methodology, this study has comprehensively presented a step-by-

step approach, commencing from architectural specification and culminating in hardware

testing, to elucidate the seamless integration of the framework. Furthermore, concerning

the results, the investigation entailed the specification and construction of two distinct

systems employing the framework, each accommodating diverse software applications.

A comparative analysis of these systems was conducted, delving into their respective ca-

pabilities and limitations, with particular emphasis on the identification of bottlenecks

within the Multi-Processor System-on-Chip (MPSoC). Ultimately, the findings demon-

strated that the framework possesses the capability to generate the model (for simulation)

and RTL (Register Transfer Level) files that are synthesizable with various configurations,

100

while also facilitating the execution of FreeRTOS applications.

In addition to design generation and software development, the framework was

implemented in the Python language, adhering to a template pattern that facilitates seam-

less integration of custom designs and extends the framework’s life cycle. This concept

exhibits scalability, as multiple YAML files and Python classes can be effectively com-

bined to create diverse hierarchical instances of designs, thereby enhancing its adaptabil-

ity and versatility.

Finally, the IPSoCgen framework, showcased throughout Chapter 6, has demon-

strated its capability to quickly generate designs from architectural specifications and

smoothly advance to the emulation stage, where multiple systems were created and tested.

7.1 Future Works

Throughout its development, the project has revealed numerous promising av-

enues for future research, encompassing both ongoing endeavors and potential opportu-

nities.

• The enhancement of processor capabilities entails enabling cache configuration

through the different master ports. This extension is expected to yield improve-

ments in core metrics, particularly in terms of performance, while addressing sys-

tems with less stringent power or area requirements.

• The augmentation of open-source supported protocols can be achieved by incorpo-

rating conversion bridges like Wishbone or Tile-link.

• The development of a tool/script to import open-source IPs, which generates design

templates and Python classes, would streamline the integration process.

• The expansion of software APIs should include support for state-of-the-art libraries

in neural networks and computer vision.

• A proposed initiative involves constructing an open-source IP accelerator library

that caters to various applications, such as cryptography, image/video processing,

audio processing, and others.

• A new wrapper design for the NoX processor with tightly coupled memories fol-

lowing industry common pattern designs.

• An enhanced NoC version that converts its network interface from passive to con-

figurable active version, this simplifies data handling within the tiles and aligns with

101

the industry-standard solutions.

• Improve the framework to generate documentation of the SoC / MPSoC once the

design is generated. Such documentation includes a memory map in a web page of

the system with the representation of the registers and their meaning.

102

REFERENCES

ABDELHAMID, M. R. et al. Batteryless, wireless, and secure soc for implantable strain
sensing. IEEE Open Journal of the Solid-State Circuits Society, v. 3, p. 41–51, 2023.

ADELT, P. et al. A scalable platform for qemu based fault effect analysis for risc-v
hardware architectures. In: MBMV 2020 - Methods and Description Languages for
Modelling and Verification of Circuits and Systems; GMM/ITG/GI-Workshop. [S.l.:
s.n.], 2020. p. 1–8.

AGUIAR, A. et al. Adding virtualization support in mips 4kc-based mpsocs. In:
Fifteenth International Symposium on Quality Electronic Design. [S.l.: s.n.], 2014.
p. 84–90.

AMDAHL, G. M. Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference. New York, NY, USA: Association for Computing Machinery,
1967. (AFIPS ’67 (Spring)), p. 483–485. ISBN 9781450378956. Available from Internet:
<https://doi.org/10.1145/1465482.1465560>.

AMID, A. et al. Chipyard: Integrated design, simulation, and implementation framework
for custom socs. IEEE Micro, v. 40, n. 4, p. 10–21, 2020.

Andrew Waterman; Krste Asanović; John Hauser. The RISC-V Instruction Set
Manual, Volume II: Privileged Architecture, Document Version 20211203. [S.l.],
2021. Available from Internet: <https://github.com/riscv/riscv-isa-manual/releases/
download/Priv-v1.12/riscv-privileged-20211203.pdf>.

ARM, A. Axi protocol specification (rev 5.0 - arm ihi 0022). 2023. Accessed on May
15th, 2023. Available from Internet: <https://developer.arm.com/documentation/ihi0022/
latest/>.

ASANOVIĆ, K.; PATTERSON, D. A. Instruction sets should be free: The case
for risc-v. EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2014-146, 2014.

ASANOVIć, K. et al. The Rocket Chip Generator. [S.l.], 2016. Available from Internet:
<http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html>.

AZAD, S. P. et al. Caesar-mpsoc: Dynamic and efficient mpsoc security zones. In: 2019
IEEE Computer Society Annual Symposium on VLSI (ISVLSI). [S.l.: s.n.], 2019. p.
477–482.

BACHRACH, J. et al. Chisel: Constructing hardware in a scala embedded language. In:
DAC Design Automation Conference 2012. [S.l.: s.n.], 2012. p. 1212–1221.

BARGHOLZ, M.; DIETRICH, C.; LOHMANN, D. Psic: Priority-strict multi-core irq
processing. In: 2022 IEEE 25th International Symposium On Real-Time Distributed
Computing (ISORC). [S.l.: s.n.], 2022. p. 1–9.

https://doi.org/10.1145/1465482.1465560
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://developer.arm.com/documentation/ihi0022/latest/
https://developer.arm.com/documentation/ihi0022/latest/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

103

BASTL, J. et al. A design flow and eda-tool for an automated implementation of
asic configuration interfaces. In: 2022 18th International Conference on Synthesis,
Modeling, Analysis and Simulation Methods and Applications to Circuit Design
(SMACD). [S.l.: s.n.], 2022. p. 1–4.

BRIGGS, M.; ZARKESH-HA, P. Evaluating mobile socs as an energy efficient dsp
platform. In: 2014 27th IEEE International System-on-Chip Conference (SOCC).
[S.l.: s.n.], 2014. p. 293–298.

CARARA, E. A. et al. Hemps - a framework for noc-based mpsoc generation. In:
2009 IEEE International Symposium on Circuits and Systems. [S.l.: s.n.], 2009. p.
1345–1348.

ELMOHR, M. A. et al. Rvnoc: A framework for generating risc-v noc-based mpsoc.
In: 2018 26th Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP). [S.l.: s.n.], 2018. p. 617–621.

ESMAEILZADEH, H. et al. Physically accurate learning-based performance prediction
of hardware-accelerated ml algorithms. In: 2022 ACM/IEEE 4th Workshop on
Machine Learning for CAD (MLCAD). [S.l.: s.n.], 2022. p. 119–126.

FORENCICH, A. Verilog AXI components. 2023. Accessed on May 7th, 2023.
Available from Internet: <https://github.com/alexforencich/verilog-axi>.

FORENCICH, A. Verilog Ethernet components. 2023. Accessed on May 7th, 2023.
Available from Internet: <https://github.com/alexforencich/verilog-ethernet>.

GALA, M. K. N. RISC-V Architecture Test SIG. 2023. Accessed on May 7th, 2023.
Available from Internet: <https://github.com/riscv-non-isa/riscv-arch-test>.

GALA, M. K. N. RISCOF Framework. 2023. Accessed on May 7th, 2023. Available
from Internet: <https://riscof.readthedocs.io/en/latest/overview.html>.

GISSELQUIST, D. Another Wishbone (or even AXI-lite) Controlled UART. 2023.
Accessed on May 7th, 2023. Available from Internet: <https://github.com/ZipCPU/
wbuart32>.

HASLER, M. et al. A random linear network coding platform mpsoc designed in 22nm
fdsoi. In: 2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). [S.l.:
s.n.], 2022. p. 217–222.

HASSAN, E. et al. Asic implementation of associative memory and hamming distance
for hdc application. In: 2021 28th IEEE International Conference on Electronics,
Circuits, and Systems (ICECS). [S.l.: s.n.], 2021. p. 1–5.

HOSNY, S. A unified uvm methodology for mpsoc hardware/software functional
verification. In: 2022 11th International Conference on Modern Circuits and Systems
Technologies (MOCAST). [S.l.: s.n.], 2022. p. 1–5.

IEEE Standard for Ethernet. IEEE Std 802.3-2018 (Revision of IEEE Std 802.3-2015),
p. 1–5600, 2018.

https://github.com/alexforencich/verilog-axi
https://github.com/alexforencich/verilog-ethernet
https://github.com/riscv-non-isa/riscv-arch-test
https://riscof.readthedocs.io/en/latest/overview.html
https://github.com/ZipCPU/wbuart32
https://github.com/ZipCPU/wbuart32

104

IEEE Standard for SystemVerilog–Unified Hardware Design, Specification, and
Verification Language. IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012), p.
1–1315, 2018.

IZRAELEVITZ, A. et al. Reusability is firrtl ground: Hardware construction languages,
compiler frameworks, and transformations. In: 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). [S.l.: s.n.], 2017. p. 209–216.

KAMALELDIN, A. et al. Modular memory system for risc-v based mpsocs on
xilinx fpgas. In: 2019 IEEE 13th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC). [S.l.: s.n.], 2019. p. 68–73.

KERMARREC, F. et al. Litex: An open-source soc builder and library based on migen
python dsl. In: OSDA 2019, Co-located with DATE 2019 Design Automation and
Test in Europe. [S.l.: s.n.], 2019.

KREMER, M. D. et al. Resource-constrained encryption: Extending ibex with a
qarma hardware accelerator. In: 2023 IEEE 34th International Conference on
Application-specific Systems, Architectures and Processors (ASAP). [S.l.: s.n.],
2023. p. 147–155.

KURIMOTO, Y. et al. A hardware/software cosimulator for network-on-chip. In: 2013
International SoC Design Conference (ISOCC). [S.l.: s.n.], 2013. p. 172–175.

KURTH, A. et al. HERO: Heterogeneous Embedded Research Platform for
Exploring RISC-V Manycore Accelerators on FPGA. arXiv, 2017. Available from
Internet: <https://arxiv.org/abs/1712.06497>.

LEE, Y.-T. Low power soc in deep-submicron era. In: IEEE International
[Systems-on-Chip] SOC Conference, 2003. Proceedings. [S.l.: s.n.], 2003. p. 421–.

LI, C. et al. Heterogeneous routing: A methodology for ppa tradeoff in network-on-
chips. In: 2018 IEEE 3rd International Conference on Integrated Circuits and
Microsystems (ICICM). [S.l.: s.n.], 2018. p. 357–361.

LIUBAVIN, K. D. et al. Design of a fully-autonomous low-power axi4 firewall for
pci-express nvme ssd. In: 2022 Conference of Russian Young Researchers in
Electrical and Electronic Engineering (ElConRus). [S.l.: s.n.], 2022. p. 166–169.

MA, G.; HE, H. Design and implementation of an advanced dma controller on
amba-based soc. In: 2009 IEEE 8th International Conference on ASIC. [S.l.: s.n.],
2009. p. 419–422.

MICHELI, G. D. et al. Networks on Chips: Technology and Tools. Elsevier
Science, 2006. (ISSN). ISBN 9780080473567. Available from Internet: <https:
//books.google.ie/books?id=IHHTmSBcoGIC>.

MOSANU, S. et al. Pimulator: a fast and flexible processing-in-memory emulation
platform. In: 2022 Design, Automation and Test in Europe Conference and
Exhibition (DATE). [S.l.: s.n.], 2022. p. 1473–1478.

https://arxiv.org/abs/1712.06497
https://books.google.ie/books?id=IHHTmSBcoGIC
https://books.google.ie/books?id=IHHTmSBcoGIC

105

NGUYEN-HOANG, D.-T. et al. Implementation of a 32-bit risc-v processor with
cryptography accelerators on fpga and asic. In: 2022 IEEE Ninth International
Conference on Communications and Electronics (ICCE). [S.l.: s.n.], 2022. p.
219–224.

NOAMI, A. et al. High speed data transactions for memory controller based on axi4
interface protocol soc. In: 2021 International Conference on Advances in Electrical,
Computing, Communication and Sustainable Technologies (ICAECT). [S.l.: s.n.],
2021. p. 1–7.

PAPON, C. SpinalHDL: Scala based HDL. 2023. Accessed on Jul 16th, 2023.
Available from Internet: <https://github.com/SpinalHDL/SpinalHDL>.

PAPON, C. VexRiscv: RISC-V processor. 2023. Accessed on Mar 10th, 2024.
Available from Internet: <https://github.com/SpinalHDL/VexRiscv>.

PATTERSON, D. A.; HENNESSY, J. L. Computer Organization and Design RISC-V
Edition: The Hardware Software Interface. 1st. ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2017. ISBN 0128122757.

SETETEMELA, K. O. et al. Python-based fpga implementation of aes using migen
for internet of things security. In: 2019 IEEE 10th International Conference on
Mechanical and Intelligent Manufacturing Technologies (ICMIMT). [S.l.: s.n.],
2019. p. 194–198.

SIFIVE, H. C. Diplomatic design patterns : A tilelink case study. In: . [s.n.], 2017.
Available from Internet: <https://api.semanticscholar.org/CorpusID:44937251>.

SILVA, A. I. da. Configurable AXI DMA design. 2023. Accessed on May 7th, 2023.
Available from Internet: <https://github.com/aignacio/axi_dma>.

SILVA, A. I. da. Ethernet AXI. 2023. Accessed on May 7th, 2023. Available from
Internet: <https://github.com/aignacio/ethernet_axi>.

SILVA, A. I. da. IPSoCGen template. 2023. Accessed on May 7th, 2023. Available
from Internet: <https://github.com/aignacio/ipsocgen_template>.

SILVA, A. I. da. NoX FreeRTOS example port. 2023. Accessed on May 8th, 2023.
Available from Internet: <https://github.com/aignacio/nox_freertos>.

SILVA, A. I. da. NoX RISC-V CPU RV32I. 2023. Accessed on May 7th, 2023.
Available from Internet: <https://github.com/aignacio/nox>.

SILVA, A. I. da. RaveNoC - Configurable Network-on-Chip design. 2023. Accessed
on May 7th, 2023. Available from Internet: <https://github.com/aignacio/ravenoc>.

SILVA, A. I. da. SoC Components. 2023. Accessed on May 7th, 2023. Available from
Internet: <https://github.com/aignacio/soc_components>.

TARAATE, V. ASIC Design and Synthesis: RTL Design Using Verilog.
Springer Nature Singapore, 2021. ISBN 9789813346420. Available from Internet:
<https://books.google.ie/books?id=qK0SEAAAQBAJ>.

https://github.com/SpinalHDL/SpinalHDL
https://github.com/SpinalHDL/VexRiscv
https://api.semanticscholar.org/CorpusID:44937251
https://github.com/aignacio/axi_dma
https://github.com/aignacio/ethernet_axi
https://github.com/aignacio/ipsocgen_template
https://github.com/aignacio/nox_freertos
https://github.com/aignacio/nox
https://github.com/aignacio/ravenoc
https://github.com/aignacio/soc_components
https://books.google.ie/books?id=qK0SEAAAQBAJ

106

VALLEPALLI, S. S.; RAJENDRAN, M. M. Image de-noising using mean pixel
algorithms corrupted with photocopier noise. In: 2012 19th International Conference
on Systems, Signals and Image Processing (IWSSIP). [S.l.: s.n.], 2012. p. 530–535.

WANG, B.; LU, Z. Supporting qos in axi4 based communication architecture. In: 2020
IEEE Computer Society Annual Symposium on VLSI (ISVLSI). [S.l.: s.n.], 2020. p.
548–553.

WATERMAN, A. et al. The RISC-V Instruction Set Manual, Volume I:
User-Level ISA, Version 2.0. [S.l.], 2014. Available from Internet: <http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html>.

WOLF, W.; JERRAYA, A. A.; MARTIN, G. Multiprocessor system-on-chip (mpsoc)
technology. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, v. 27, n. 10, p. 1701–1713, 2008.

XU, M.; ZHANG, L.; WANG, S. Position paper: Renovating edge servers with arm socs.
In: 2022 IEEE/ACM 7th Symposium on Edge Computing (SEC). [S.l.: s.n.], 2022. p.
216–223.

XU, S.; POLLITT-SMITH, H. A tlm platform for system-on-chip simulation and
verification. In: 2005 IEEE VLSI-TSA International Symposium on VLSI Design,
Automation and Test, 2005. (VLSI-TSA-DAT). [S.l.: s.n.], 2005. p. 220–221.

ZEFERINO, C.; SUSIN, A. Socin: a parametric and scalable network-on-chip. In:
16th Symposium on Integrated Circuits and Systems Design, 2003. SBCCI 2003.
Proceedings. [S.l.: s.n.], 2003. p. 169–174.

ZHANG, L. The porting and optimization of risc-v uefi boot. In: 2022 7th International
Conference on Intelligent Computing and Signal Processing (ICSP). [S.l.: s.n.],
2022. p. 840–843.

ZHANG, W. et al. A network on chip architecture and performance evaluation. In: 2010
Second International Conference on Networks Security, Wireless Communications
and Trusted Computing. [S.l.: s.n.], 2010. v. 1, p. 370–373.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

107

APPENDIX A — RESUMO EXPANDIDO

Plataforma IPSoCGen - Framework para geração MP/SoC
Título em inglês: IPSoCGen platform - Framework for MP/SoC generation

Palavas-chave: Geração de design, Redes-em-Chip, Processamento paralelo, VLSI

O número de dispositivos que integram Sistemas-em-Chip (SoCs) tem aumentado

continuamente. Como mencionado por Lee (2003), o avanço da tecnologia possibilita

a integração de múltiplos elementos de processamento, blocos de memória e módulos

analógicos, convergindo para a era dos SoCs. A versatilidade desses sistemas é evidente

em sua capacidade de serem aplicados em diversos domínios, incluindo processamento

móvel (BRIGGS; ZARKESH-HA, 2014), servidores de borda (XU; ZHANG; WANG,

2022) ou até mesmo implantes no corpo humano (ABDELHAMID et al., 2023). As-

sim, o número de requisitos cresce proporcionalmente com as diferentes aplicações que

requerem Processadores de Propósito Geral (GPP), aceleradores de hardware, sensores

diversos incluindo circuitos de interface, etc.

O fluxo de projeto destes SoCs, além de complexo, envolve diferentes etapas

(TARAATE, 2021). Módulos complexos podem ser reutilizados em aplicações futuras

se projetados dentro de um padrão de reúso, criando uma biblioteca de funções (também

chamadas "Intelectual Property" ou IP) a serem gerenciadas na plataforma de desenvolvi-

mento. Durante todo o processo, diferentes pontos de observação são adicionados para

garantir que projeto esteja alinhado às métricas inicialmente propostas de potência, de-

sempenho e área. Como tal fluxo é complexo, uma plataforma que possibilite o rápido e

preciso desenvolvimento de sistemas serve como uma solução para minimizar o número

de iterações entre times de arquitetura e projeto, reduzindo o Time-to-Market (TTM).

Além disso, esta plataforma, com ferramentas de avaliação com precisão de ciclo de clock,

conseguiria também melhorar a eficiência dos sistemas desenvolvidos.

O objetivo principal desta dissertação é o desenvolvimento de uma plataforma ca-

paz de abordar eficazmente o desafio mencionado anteriormente, que consiste em facilitar

a prototipagem de projetos de forma rápida e flexível, partindo de uma especificação de

arquitetura e avançando para a etapa de emulação. Além da plataforma, é apresentado um

fluxo de projeto para permitir a utilizá-la, incluindo as etapas necessárias, assim como o

desenvolvimento de software.

A plataforma desenvolvida é denominada IPSoCGen e é composta por um con-

108

junto de IPs comuns em SoCs, além de uma metodologia para a geração do sistema onde

se detalham a forma de interconectar os módulos e os parâmetros aplicáveis de acordo

com os requisitos do projeto. Inicialmente, essa plataforma é comparada ao estado da

arte em termos de geração de sistemas, e suas vantagens e desvantagens são analisadas

em relação ao que é apresentado na literatura. Os componentes IPs dessa plataforma são

detalhados neste trabalho, destacando suas características e explicando-as ao longo do

Capítulo 3. Para cada um dos diferentes IPs, são apresentadas suas opções de configu-

ração e como se integram à proposta da plataforma final. No Capítulo 4, a metodologia

do fluxo de projeto de SoCs é apresentada, bem como a descrição de como a plataforma

opera. A avaliação dessa plataforma ocorre nos Capítulos 5 e 6, onde dois sistemas dis-

tintos foram gerados utilizando o IPSoCGen, e diferentes aplicações foram construídas

para avaliar os aspectos de potência, desempenho e área.

Este trabalho culmina com a apresentação das métricas obtidas a partir dos dois

sistemas prototipados utilizando o IPSoCGen. Conclui-se que a plataforma desenvolvida

é capaz de gerar sistemas com um nível específico de flexibilidade e agilidade por meio

do método baseado em arquivos de configuração. Além disso, o IPSoCGen viabiliza a

geração de modelos executáveis em nível de circuito RTL (Register-Transfer Level), per-

mitindo a configuração de circuitos de prototipação e a geração de leiaute de ASICs. Nos

casos estudados neste trabalho, para o desenvolvimento e a execução das aplicações foi

feito o porte do FreeRTOS para o kit de prototipação. Por fim, ressalta-se que o progresso

da VLSI (Very Large Scale Integration) depende de um esforço colaborativo entre pro-

jetistas de aplicativos de alto desempenho e desenvolvedores de propriedade intelectual

(IP) para enriquecer o repositório de funções de hardware, como aceleradores de hardware

para aplicações que exigem alto desempenho como multimídia, IA, mineração de dados

e criptografia. Este trabalho apresentou um conjunto reduzido de IPs suficiente para as

demonstrações e deverá crescer à medida que novos projetos aportem contribuições.

	Abstract
	Resumo
	List of Figures
	List of Tables
	List of source codes
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Dissertation Goal
	1.2 Dissertation Outline

	2 Background and Related Work
	2.1 Bastl - EDA tool
	2.2 LiteX
	2.3 Chipyard
	2.4 Comparison between frameworks
	2.5 Conclusion

	3 Base IP set for the proposed platform
	3.1 RaveNoC Network-on-Chip
	3.1.1 Parameters to tune
	3.1.2 Network Architecture

	3.2 NoX RISC-V core
	3.2.1 NoX area
	3.2.2 RISC-V Compliance tests
	3.2.3 FreeRTOS port

	3.3 AXI DMA
	3.3.1 Parameters to tune

	3.4 Ethernet AXI
	3.5 Programmable AXI Machine Timer
	3.6 AXI Reset Controller
	3.7 AXI Interrupt Controller
	3.8 Additional design elements
	3.8.1 AXI Crossbar/Interconnect wrapper
	3.8.2 AXI UART Slave

	3.9 Final considerations

	4 IPSoCGen - SoC Generation Methodology
	4.1 Proposed flow
	4.1.1 Phase 1 - Application: specification, requirements, and profiling
	4.1.2 Phase 2.a - Design setup and generation (Hardware)
	4.1.3 Phase 2.b - Software/Firmware development
	4.1.4 Phase 3 - System's validation

	4.2 Configuration files
	4.2.1 SoC configuration
	4.2.2 MPSoC configuration

	4.3 Classes and modules
	4.4 Extension and flexibility
	4.5 Conclusion

	5 SoC and MPSoC platform
	5.1 SoC template
	5.1.1 Architecture
	5.1.2 Program loading through testbench
	5.1.3 Custom AXI master and slave
	5.1.4 Bootloader for FPGA/ASIC testing
	5.1.5 Application testing - Histogram

	5.2 MPSoC template
	5.2.1 Architecture
	5.2.2 Histogram MPSoC flow

	5.3 Host histogram application
	5.4 Software and APIs
	5.5 FPGA prototyping
	5.6 Conclusion

	6 Case studies
	6.1 SoC - Single Processor SoC
	6.1.1 Power
	6.1.2 Performance
	6.1.3 Area

	6.2 MPSoC - Multi-Processor System-on-Chip
	6.2.1 Power
	6.2.2 Performance
	6.2.3 Area

	6.3 PPA evaluation
	6.3.1 Power
	6.3.2 Performance
	6.3.2.1 MPSoC performance exploration

	6.3.3 Area

	6.4 Linear mean filter application
	6.4.1 Performance comparison

	6.5 Conclusion

	7 Conclusions
	7.1 Future Works

	References
	Appendix A — Resumo Expandido

