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Abstract. This work presents a fully analytic way of determining relevant equilib-
rium quantities of a high-intensity charged particle beam submitted to magnetic
focusing while inside a linear channel. Through the current approach, some inter-
mediate steps of our original hybrid model which had to be solved numerically can
now be eliminated, leading to the obtainment of a fully analytic expression. This
expression relates the initial beam parameters with those at equilibrium, allow-
ing beam macroscopic quantities such as envelope and emittance to be naturally
and analytically determined. For validation, full self-consistent N -particle beam
numerical simulations have been carried out and the results compared with the
predictions supplied by the full analytical model. The agreement is shown to be
good with the simulations and also with the original hybrid numerical-analytical
version of the model.

1. Introduction
As charged beams with mismatched envelopes evolve inside the focusing channel,
a small number of particles are ejected, developing large amplitude orbits in phase
space very different from those plasma-like orbits performed by the remaining
particles. This is a natural consequence of the initial beam mismatch, which works
as an energy source to the gradual excitation of individual particles. Although
small and thus apparently not impacting in the calculations, the contribution of
this rarefied particle population to the calculation of the statistically averaged
beam quantities becomes more important as equilibrium approaches.
At equilibrium, observing the beam configuration space, it is possible to detect

that the initially spatially limited beam particle population is at this time ad-
ditionally surrounded by a tenuous particle population. From inspection of the
beam phase space, it is easy to identify that the previously commented tenuous
population is now dispersed in such a way that its influence over the entire beam
cannot no longer be neglected. Particles pertaining to this population acquire so
much energy that their state variables are very different from those of which the
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Figure 1. Dynamics of the beam potential and kinetic energies during its magnetic
focusing inside the linear channel. Results provided by self-consistent beam numerical
simulations of N = 10 000 particles. Beam initial mismatch r0 = 1.5.

beam is composed. This tenuous population is commonly recognized as the halo in
the beam physics field.
Halo formation is a phenomenon observed in self-consistent N -particle beam

numerical simulations [1] as well as in experiments [2], and it has several implica-
tions affecting beam characteristics at equilibrium. In this way, halo formation has
become a subject that is studied extensively in beam physics, and its effects on the
infrastructure of the accelerator are a problem to be mitigated in its engineering.
Macroscopically, the above-mentioned particle ejection is perceived as the change

of two statistically averaged quantities of the beam distribution during its excursion
inside the focusing channel. One is the beam envelope, which suffers an important
decay, and the other is the beam emittance, which experiences in addition growth
that is not negligible. The beam envelope and emittance have an inverse dynamical
behavior—the first decays and the second grows—not by coincidence, but because
they are concatenated by a constraint: energy conservation.
The beam distribution evolves by assuming that its overall energy remains con-

stant. In this way, if the beam envelope decays (inducing potential energy de-
creases), then the emittance must grow (imposing kinetic energy increases), because
the overall beam energy is inevitably conserved. To illustrate the last point, the
dynamics of the kinetic and potential beam energies are shown in Fig. 1, in which the
results are obtained from self-consistentN -particle beam simulations of an initially
mismatched beam. The way particles are numerically simulated will become clear
in Sec. 2. The striking characteristic observed here, which will be discussed in Sec. 2,
is that almost all the beam kinetic energy is carried by a small number of particles.
Since emittance and kinetic energy are directly connected, the tenuous population
has therefore great importance to the emittance growth during the focusing process.
This progressive increasing of beam kinetic energy is proportioned by the inter-

action of individual particles with the mismatched beam. As the beam propagates
inside the focusing channel, its envelope mismatch induces the formation of large
resonant islands [3] beyond its border in phase space. Individual particles are
captured by these resonances [4], coupling their motion with the mismatched beam.
The resonant coupling—an outcome of the particle–beam interaction—is the way
that energy exchange occurs: the potential energy of the beam oscillatory motion
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(macroscopic energy) is progressively converted into kinetic energy that supplies
the chaotic movement of the individual particles (microscopic energy). Equilibrium
is reached when this energy transfer mechanism ceases. Together, all the other
mentioned statistically averaged quantities also stabilize. At this point, it is of
interest to know the values of the envelope and emittance achieved, not only for
physics purposes but also for engineering aspects, since the halo characteristics are
a factor to be considered in the design of accelerator confinement structures.
The purpose of the current article is to obtain a fully analytic expression for the

model introduced and described in [5], which has many steps that unconditionally
have to be solved numerically. In this way, not only can the beam envelope be
evaluated as an analytical function of the only one free parameter in the model,
the beam initial mismatch, but so can the beam emittance. Further discussion
about the current subject is also provided. For simplification of the calculations, the
beam has been considered to be azimuthally symmetric and initially homogeneous.
For validation, the results provided by the full analytical expression have been
compared with the ones provided by the numeric version of the model and the full
self-consistent N -particle beam numerical simulations, considering several values
of initial beam mismatch.
This article is arranged in the following form: in Sec. 2, important points of

the model are formally presented. To simplify the calculation, the beam has been
considered initially without emittance, i.e. a cold beam. In Sec. 3, the strategy de-
veloped to solve the model analytically is shown and the expression that relates the
beam equilibrium state quantities with those at the beam initial state is presented.
In Sec. 4, the results for beam envelope and emittance at equilibrium calculated
through the full analytical approach are compared with the previous numeric
version of the model and with the full self-consistent N -particle simulations. This
comparison has been carried out for several values of initial beam mismatch. Fi-
nally, also in this section, the conclusions of this article and the perspectives for
future works are discussed.

2. The model
The system of interest considered here is a high-intensity beam of charged particles,
focused by a constant magnetic field during its evolution inside a linear propagation
channel, encapsulated by a circular conducting pipe. Beam centroid oscillations
are negligible, since perfect alignment with the symmetry axis of the confinement
channel is conferred to the beam. Also, the beam is considered to be infinitely long
in the longitudinal dimension front of the transversal dimension (the thin beam
approximation).
For simplicity of the calculations, the initial beam density is considered to be

homogeneous in the configuration space. Azimuthal symmetry is also assigned to
the beam for convenience. Additionally, beam particles are initially halted, which
means that a cold approximation is adequate for the beam initial state description.
The initial representation of the beam in phase space is then irrelevant, it being
sufficient just to define its spatial charge distribution. In this way, a step-function
profile can be employed to model the beam initial state

n(r, s = 0) =

{
N/πr2

0 for 0 � r � r0 ,

0 for r0 < r � rw,
(1)
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Figure 2. Snapshots of the beam transverse phase space at its equilibrium for an initial
envelope mismatch of r0 = 1.5 obtained with self-consistent N -particle beam numerical
simulations. Phase-space topology invariance is attained. Phase-space portraits captured
at (a) s = 547.8, (b) s = 599.7, (c) s = 798.7 and (d) s = 997.6.

where N is the total number of particles of which the beam is composed, r0 desig-
nates the initial beam mismatch and rw is the conducting pipe location. The radial
coordinate r explores the beam transversal section and is in the Larmor frame,
while the coordinate s refers to the longitudinal beam path. Coordinate s can also be
recognized as time since both are trivially related by the expression s = s0 + vbt in
which vb is the beam axial velocity, which is a constant. All transverse coordinates
are rescaled in units of the beam equilibrium radius, defined a req =

√
K/κ, and the

longitudinal coordinates are rescaled in units of 1/
√

κ. This is exactly equivalent
to setting

K → 1 and κ → 1 (2)

in all equations in which these parameters appear. The quantity K is the beam
perveance and κ is the coefficient of magnetic confinement. Both are constant in
the context of this work.
In Fig. 2, several snapshots of the beam transverse phase space after equilibrium

is attained are shown. Here, self-consistent N -particle beam simulations using
Gauss’s Law have been performed. A simulation method through Gauss’s Law is
suitable here once collective effects only are accounted for, since particle binary
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Figure 3. The population classifications and their kinetic energy at any instant s of the
beam dynamics inside the linear focusing channel. Results provided by self-consistent beam
numerical simulations of N = 10 000 particles. Beam initial mismatch r0 = 1.5.

encounters are nonexistent: beam individual particles just interact with the other
particles by self-consistent and self-generated electromagnetic fields resulting from
the dynamics of the beam charge density [1]. A total of N = 10 000 particles have
been employed for convergence. The initial beam mismatch is r0 = 1.5.
It is possible to observe in Fig. 2 that the equilibrium is directly associated to

the invariance of the phase-space topology. Particle orbits are defined in such a
way that they occupy a well-defined and limited region in phase space. In each
of these regions, the number of particles remains almost constant. This is the
means by which statistically averaged quantities of the beam distribution stabilize
at equilibrium. On average, the microscopic states (composed of the coordinates
of each particle in phase space) do not considerably change. Since macroscopic
quantities are just averages over the microscopic states, these quantities do not
experience any alteration in their values. In this case the beam quantities such as
envelope and emittance are included.
The regular aspect of the beam phase space at equilibrium allows its structure

to be decomposed into three distinct regions: a horizontal thin branch, composed
of very cold particles; a cloud around the horizontal branch, made up of warm
particles; and a curve branch, populated by extremely hot particles. In Fig. 2(a),
the cold, warm and hot particles are shown. Although warm particles have a
fundamental role in halo formation, thus important for the description of the
beam transient behavior [6], their contribution at equilibrium can be neglected.
In fact, warm particles store much less than 10% of the total beam kinetic energy
at equilibrium. This can be seen in Fig. 3, in which the dynamical behavior of
the beam kinetic energy is decomposed in each of the classifications above and
accounted for in units of the total beam transverse energy E⊥. Observe that the
kinetic energy curve of the hot particles in Fig. 3 is almost equal to the curve of
the total kinetic energy in Fig. 1. In this sense, as an approximation, the velocity of
warm particles can be assumed to be unimportant at equilibrium, being considered
as cold particles [6]. For the current mismatch, the total transversal beam energy
is assumed to be E⊥(r0 = 1.5) = 0.4843. Note that the particular kinetic energy of
each particle is unimportant here. Discrimination just occurs for populations, since
every beam macroscopic quantity is obtained from averages over its distribution.



834 R. P. Nunes and F. B. Rizzato

This approximation allows reclassification of particles in a dichotomic way: it is
possible to associate the cold particles to the beam core as well as the hot particles
to those that make up the beam halo.
The regular geometry of each previously mentioned region of the beam phase

space can be directly converted to an analytical expression. At equilibrium, the
beam density can be segmented in the form [5]

n(r, s � τ) =

⎧⎪⎨
⎪⎩

nc(r) + nh(r) for 0 � r � rc,

nh(r) for rc < r � rh,

0 for rh < r � rw,

(3)

where nc and nh are, respectively, the particle density of the beam core and the beam
halo. The quantity rc is the core size and rh is associated with the size projected by
the curve branch over the r-axis. The variable τ represents the time scale in which
equilibrium is reached.
Since the core particles at equilibrium have characteristics that are remnant of

the initial state, this population can still be represented as a step-function profile [5]

nc(r) = (1 − f)N/πr2
c , (4)

but now only with rc < r0 and a smaller number of particles given by Nc, expressed
formally by the fraction of halo particles f ≡ Nh/N through the particle conser-
vation relation N = Nc + Nh.
The halo population pertaining to the curve branch in a semicircular approxim-

ation follows [7]

nh(r) =
fN

π2r
√

r2
h − r2

. (5)

Note that the halo population is not homogeneous, as it is described by an
irrational function with a clear divergence at r = rh. This is a natural consequence
of the geometry of the resonance, whose formation is naturally induced by the
initial beam mismatch.
Both (4) and (5) completely define (3). Since (3) contains all the spatial inform-

ation about the beam at equilibrium, one thus becomes able to evaluate at this
state any of its macroscopic quantities as a function of the fraction of the halo
particles f , which remains undetermined. Nevertheless, observe that this quantity
can be directly determined, because the overall beam energy stored at equilibrium
must be the same as that calculated at the initial state.
With the beam density resolved at the initial state and at equilibrium, it is

possible to determine its self-consistent generated electric field E by means of the
following Maxwell equation [8]:

∇ · E = −2πK

N
n(r, s). (6)

Solving this Maxwell equation with the aid of (1) and (3), one respectively obtains
the expressions for E at the initial beam state,

Er (r, s = 0) =

{
r/r2

0 for r � r0 ,

1/r for r0 < r � rw,
(7)
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and the expression for E at equilibrium,

Er (r, s � τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− (1 − f)r
r2
c

− 2f

πr
arctan

(
r√

r2
h − r2

)
for r � rc,

−2f

πr
arctan

(
r√

r2
h − r2

)
− (1 − f)

r
for rc < r � rh,

−1
r

for rh < r � rw.

(8)

The overall beam energy can be computed at any instant of time s through

κ
r2
b(s)
4

+
〈V2

⊥〉(s)
2

+ ε(s) = E⊥ = constant, (9)

in which the average self-field beam energy [8] is formally given by

ε(s) =
1

4πK

∫
|E|2 dr, (10)

the average kinetic energy has the form, for any s,

〈V2
⊥〉(s) ≈

⎧⎨
⎩

0 for 0 � s � τ,
r2
b(s � τ) − 1

2
for s � τ,

(11)

and finally the beam envelope rb assumes at the initial state and equilibrium the
simple expression [5]

r2
b(s) ≈

{
r2
0 for 0 � s � τ,

(1 − f)r2
c + fr2h for s � τ.

(12)

As a result of energy conservation, the beam emittance can also be characterized
by the following expression [5]:

ε2(s) ≈
{

0 for 0 � s � τ,

r2
b(r

2
b − 1) for s � τ.

(13)

Equations (11), (12) and (13) in fact are an approximation. The envelope decay
observed during the excursion of the beam inside the focusing channel is not really
a discontinuous function of axial coordinate s. Yet, this approximation becomes
better as initial beam mismatch r0 increases. However, this is not a problem in this
work, since our interest resides on just two specific times for the beam dynamics,
s = 0 and s � τ .
Inserting (7), (11) and (12) into (9), the beam energy at the initial state is

obtained. Proceeding in the same way, just considering (8) for the self-consistent
electric field, the expression for the beam transversal energy E⊥ at equilibrium is
obtained. Making use of energy conservation, equating

E⊥(s = 0) = E⊥(s � τ), (14)

it becomes possible to generate a closed expression for the fraction of halo particles f .
This equation is a second-order polynomial [5] with the form

Af2 + Bf + C = 0, (15)
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Figure 4. Comparison between the inverse sine function and its approximation adopted
to solve analytically the integrals involving complicated electric field expressions at
equilibrium.

in which A, B and C are integral functions of the beam phase-space parameters
r0 , rc and rh. In principle these coefficients have to be solved numerically. Physical
meaning imposes that the desired solution resides between 0 � f � 1.

3. The analytical solution
As (9) shows, the average self-field beam energy at any instant of time s depends on
the square value of the electric field. For this reason, due to the complexity of the
electric field expressions shown in (8), at equilibrium an exact analytical solution
to the coefficients, principally for A and B, of the polynomial in (15) is difficult if
not impossible. Nevertheless, recognizing that

arctan
(

r√
r2
h − r2

)
= arcsin

(
r

rh

)
, (16)

the following approximation for the arc sine can be adopted [9]:

arcsin
(

r

rh

)
≈ 3(r/rh)

2 +
√

1 − (r/rh)2
, (17)

that is, the original arc tangent function has been converted to an irrational one
that can now be integrated analytically. Comparison between the arc sine function
and its approximation in (17) is shown in Fig. 4. There is a visible discrepancy
between both expressions as r/rh → 1.
Inserting (17) into (8) gives the following approximation to the self-consistent

electric field E at equilibrium:

Er (r, s � τ) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− (1 − f)r
r2
c

− 6f/π

2/rh +
√

r2
h − r2

for r � rc,

− 6f/π

2/rh +
√

r2
h − r2

− (1 − f)
r

for rc < r � rh,

−1
r

for rh < r � rw.

(18)
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After exhaustive algebra the coefficients A, B and C of the polynomial in (15)
can be obtained [6] providing through (18) the following expressions:

A(rc, rh) ≈ ς + ln(r2
c /r2

h) − [72 ln(2/3) + 24]/π2 − 1/2,

B(rc, rh) ≈ −ς + 2 ln(r2
c /r2

h) + 1 + 2(r2
c − r2

h), (19)

C(r0 , rc) ≈ 1 − 2r2
c + r2

0 + ln(r2
c /r2

0 ).

Here ς is the auxiliary equation

ς(rc, rh) = −
(

48r2
h

√
3

πr2
c

+
16

√
3

π

)
arctan

[√
3rh

3rc

(
1 + 2

√
1 − r2

c

r2
h

)]

+
(

84r2
h

r2
c

+
24
π

)
arcsin

(√
1 − r2

c

r2
h

)
− 48 − 12

√
1 − (r2

c /r2
h)

πrc/rh

+
24

√
3 − 42

r2
c /r2

h
+

8
√

3
2

. (20)

However, the quantities of interest here are the beam envelope rb and the beam
emittance ε at equilibrium. In this way, it is possible to implement a change
of variables in (15), expressing the fraction of halo particles f through rb or ε.
From (12), isolating fraction f one obtains

f =
r2
c − r2

b

r2
c − r2

h
. (21)

Inserting (21) above into (15) and collecting terms for powers of rb,

A′r4
b + B′r2

b + C ′ = 0, (22)

in which the coefficients of the above polynomial are now described by

A′ =
A

(r2
c − r2

h)2 ,

B′ = − B

r2
c − r2

h
− 2Ar2c

(r2
c − r2

h)2 and (23)

C ′ = C +
Br2c

r2
c − r2

h
+

Ar4c
(r2
c − r2

h)2 ,

that is, coefficients A′, B′ and C ′ can be readily obtained since they are just func-
tions of the coefficients A, B and C properly defined in (19) and known quantities
of the beam phase space at the initial state and at equilibrium.
In summary, to obtain the beam envelope rb and the beam emittance ε at

equilibrium the following steps are needed.

(1) Once rc and rh are known parameters, compute the coefficients A, B and C
with the aid of (19) and (20).

(2) Employ (23) to determine coefficients A′, B′ and C ′ using the results of step 1.
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Table 1. The results obtained through the developed model (numerical and quasi-exact
analytical solutions) and their comparison with those calculated from the full self-consistent
N -particle beam numerical simulations.

r0 = 1.0 r0 = 1.2 r0 = 1.4 r0 = 1.6 r0 = 1.8 r0 = 2.0

rc = 1 ∼= 1.05 ∼= 1.10 ∼= 1.10 ∼= 1.20 ∼= 1.20
rn = 0 ∼= 1.68 ∼= 1.88 ∼= 2.00 ∼= 2.13 ∼= 2.25

Semicircular approximation – numerical solution
rb = 1 ∼= 1.03474 ∼= 1.11179 ∼= 1.21944 ∼= 1.33770 ∼= 1.46636
ε = 0 ∼= 0.27512 ∼= 0.54021 ∼= 0.85104 ∼= 1.18855 ∼= 1.57264

Semicircular approximation – analytical solution
rb = 1 ∼= 1.03475 ∼= 1.11194 ∼= 1.21967 ∼= 1.33801 ∼= 1.46672
ε = 0 ∼= 0.27515 ∼= 0.54067 ∼= 0.85168 ∼= 1.18946 ∼= 1.573773

Self-consistent numerical simulations
rb = 1 ∼= 1.02893 ∼= 1.08063 ∼= 1.16717 ∼= 1.28389 ∼= 1.40507
ε = 0 ∼= 0.23535 ∼= 0.45312 ∼= 0.76491 ∼= 1.12057 ∼= 1.50450

(3) Make use of the coefficients A′, B′ and C ′ to solve the polynomial in (22). Look
for only one positive root.

(4) Use (13) to compute the emittance ε at equilibrium, by recovering the previous
result for the beam envelope rb as calculated in step 3.

4. Results, discussions and future works
The results obtained with the model through both the numerical and the analytical
solutions presented in Sec. 3 are shown in Table 1. The results in the table have
been calculated by employing the algorithm presented at the end of Sec. 3. Also, the
results provided by the full self-consistent N -particle beam numerical simulations
are shown. Comparison of the results occurs for the beam envelope rb and the
beam emittance ε at equilibrium. The rows show the results for beam quantities at
equilibrium while the columns show each analyzed mismatch r0 , which comprises
the cases of r0 = {1, 1.2, 1.4, 1.6, 1.8, 2.0}. The first two rows show the beam phase-
space parameters at equilibrium, which are necessary to evaluate the previously
mentioned beam quantities. They are input into the algorithm described at the end
of Sec. 3.
Analyzing Table 1, it can be perceived that the results obtained from the full

analytical model are almost the same as those computed by the direct numerical
solution of (22). Also, the results provided by the model are very similar to those ob-
tained from the self-consistent N -particle beam numerical simulations. This occurs
for all the mismatch cases analyzed in this work.
Note that as a matter of fact the analytical solution presented in Sec. 3 is not

completely exact. Approximations to the electric fields at equilibrium had to be
adopted to ensure that energy stored in these fields could be analytically evaluated.
Due to the good agreement with previous results, the expression found is therefore
a quasi-exact solution to the problem.
In future publications, results involving an initial non-homogeneous beam will

be presented. To this end, all methodology developed in this and in previous works
will be extended to a beam that is spatially parabolic at the initial state. The results
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partially show that a nice description of this kind of beam at equilibrium can also
be acquired.
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