

XIII FINOVA

6 a 10 de novembro

Evento	Salão UFRGS 2023: FEIRA DE INOVAÇÃO TECNOLÓGICA DA
	UFRGS - FINOVA
Ano	2023
Local	Campus Centro - UFRGS
Título	Filmes biodegradáveis de alginato de sódio com nanoesferas
	de bixina
Autor	JÉSSICA DE SOUZA RIBEIRO
Orientador	ALESSANDRO DE OLIVEIRA RIOS

PROGRAMA DE BOLSAS DE INICIAÇÃO TECNOLÓGICA DA UFRGS

RESUMO

TÍTULO DO PROJETO: FILMES BIODEGRADÁVEIS DE ALGINATO DE SÓDIO COM NANOESFERAS DE BIXINA

Aluno: Jéssica de Souza Ribeiro Orientador: Alessandro Rios

RESUMO DAS ATIVIDADES DESENVOLVIDAS PELO BOLSISTA

Devido ao impacto ambiental causado pelas embalagens derivadas de petróleo, aumenta o interesse pelo desenvolvimento embalagens biodegradáveis; além disso a adição de compostos bioativos, como o carotenoide bixina, presentes nas sementes de urucum (Bixa orellana L.) podem fornecer propriedades antioxidantes, o que pode proporcionar efeitos positivos na preservação dos alimentos. Porém, esses compostos podem sofrer degradação por agentes externos e para minimizar esses efeitos pode ser aplicada a técnica de nanoencapsulamento pelo método de emulsificação/gelificação interna. Na elaboração dos filmes foi utilizado o alginato de sódio como biopolímero, o agente de reticulação cloreto de cálcio e o como agente plastificante a glicerina. Os filmes foram elaborados em diferentes concentrações de nanoesferas de bixina, com variações de 1%, 5% e 10% em sua composição. Os filmes biodegradáveis com 10% de nanoesferas de bixina apresentaram melhores resultados nos requisitos de cor e luminosidade, indicando maior presença de cor entre o vermelho e amarelo; maior barreira a luz, assim como menor valor de solubilidade em água (21,11%). Todos os filmes com adição de nanoesferas apresentaram umidade estatisticamente menor do que o filme controle, indicando que as nanoesferas foram capazes de reduzir a umidade dos filmes. Portanto, o filme de alginato de sódio com adição de 10% (g/g de biopolímero) de nanoesferas de bixina mostrou os melhores resultados para o desenvolvimento de uma embalagem biodegradável ativa.