

6 a 10 de novembro

Evento	Salão UFRGS 2023: SIC - XXXV SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2023
Local	Campus Centro - UFRGS
Título	Síntese e caracterização de perovskitas de Cs3Sb2Cl9
Autor	DOUGLAS MELO GAVLINSKI
Orientador	MARCOS JOSE LEITE SANTOS

Perovskitas híbridas orgânicas-inorgânicas e de chumbo dominaram as aplicações optoeletrônicas desde a descoberta de CH₃NH₃PbX₃ (X = Cl, Br, I) que tem propriedades fotovoltaicas excepcionais. No entanto, nos últimos anos o trabalho em perovskitas inorgânicas de halogênio, livres de chumbo, tem se intensificado para se contornar problemas relacionados a toxicidade do chumbo e a baixa estabilidade dos componentes orgânicos na presença de ar atmosférico e umidade. Nesse contexto, esse trabalho tem como objetivo a obtenção de perovskitas de halogênio Cs₃Sb₂X₉, por ser um material com potencial para alcançar eficiências comparáveis às das perovskitas híbridas de chumbo, mas com maior estabilidade e com menos danos ao meio ambiente. Dentre as perovskitas de haleto de césio, a perovskita de cloro é a mais dificilmente obtida devido a baixa solubilidade dos precursores e a alta entalpia de formação. Neste trabalho, visando contribuir para elucidação dos mecanismos de nucleação e crescimento de nanopartículas, buscamos uma rota para obter perovskita de Cs₃Sb₂Cl₉ pelo método de dissolução em meio ácido. Os materiais foram caracterizados por difração de raio-X. Resultados preliminares indicam que a formação de nanopartículas não ocorre de forma controlada. Com o objetivo de controlar o mecanismo de formação e obter partículas com tamanho desejado e pequena distribuição de tamanho, foi realizado um planejamento fatorial 2^k com três fatores: temperatura; concentração do precursor de antimônio e método de injeção do haleto de césio. A partir dos resultados, a síntese das perovskitas Cs₃Sb₂Br₉ e Cs₃Sb₂I₉ serão igualmente estudadas.