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ABSTRACT 

The growing demands for water, food and energy, in addition to the need to protect ecosystems, 
pose significant challenges to water management and the operation of water systems. In 
hydropower-dominated basins, where reservoirs capture flow variability for energy generation, 
the modification of the natural flow regime disrupts the natural equilibrium of aquatic 
ecosystems. Migratory fish species and the associated ecosystem services are particularly 
vulnerable as the migration and recruitment success relies on the synchronization between the 
hydrologic flow regime and the reproductive cycle. While there is a consensus on the importance 
of restoring impacted ecosystems in balance with multiple uses, the current water governance 
framework lacks a comprehensive understanding of the tradeoffs involved and mechanisms for 
ensuring the equitable distribution of the adaptation costs among users. The present study 
brings a contribution to the field by proposing solutions to improve the water governance of 
river basins, combining the (1) identification of flow-ecological relationships by measuring the 
response of multiple options of flow regime restoration with a clear ecosystem indicator, (2) 
incorporation of the flow-ecological relationships and hydroclimatic conditions into the 
operation decisions of hydropower systems to create dynamic environmental flow solutions 
(termed Dynamic Adaptive Environmental flows – DAE-flows) with better long-term 
performance, (3) calculation of the reoperation trade-offs between alternative levels of 
environmental flow regime restoration and (4) development of mechanisms to share the 
adaptation costs among stakeholders. The electricity market is proposed as an institutional 
arrangement and financing mechanism to support the restoration of flow regimes in 
environmentally sensitive areas.  The Upper Paraná River Basin, in Brazil, where consecutive 
hydropower impoundments have reduced the original floodplain along the last decades, is a 
recurrent example where reservoirs’ operation need to be reconciled with ecosystem 
functionality, which makes the basin an important study area. The findings of this dissertation 
indicate that it is possible to enhance the capacity of water systems to incorporate historically 
suppressed environmental water demands without imposing a hard constraint to economic uses. 
The consideration of the long-term effects of operation when designing operating strategies for 
multiple users leads to improved performance in both hydropower generation and meeting 
ecosystem demands. So, during severe droughts the water can still be reallocated to hydropower 
(as it is currently done) but at a lesser cost to the environment. 

 

Keywords: environmental flows, water resources management, ecosystem restoration, 
hydropower planning, multiobjective optimization, climate change 
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RESUMO 

As demandas crescentes por água, alimentos e energia, além da necessidade de proteger os 
ecossistemas, tornam a gestão dos recursos hídricos, bem como a operação de sistemas hídricos, 
uma tarefa desafiadora. Em bacias com aproveitamento hidrelétrico, a modificação do regime 
de vazões decorrente da operação dos reservatórios altera o equilíbrio natural dos ecossistemas 
aquáticos. Espécies migratórias de peixes e serviços ecossistêmicos associados ficam 
particularmente vulneráveis, uma vez que o sucesso da migração e recrutamento depende da 
sincronização entre o regime de vazão e o ciclo reprodutivo. Embora haja consenso sobre a 
importância de restaurar as demandas ecossistêmicas suprimidas e alcançar um equilíbrio que 
permita múltiplos usos, o atual quadro de governança carece de uma compreensão abrangente 
dos trade-offs envolvidos e dos mecanismos para garantir a distribuição equitativa dos custos 
de adaptação entre os usuários. O presente estudo contribui para o campo, propondo soluções 
para aprimorar a governança de bacias antropizadas, combinando (1) a identificação das 
relações vazão-ecológicas por meio da quantificação da resposta de múltiplas opções de 
restauração do regime de vazão por meio de um indicador de desempenho do ecossistema, (2) 
a incorporação dessas relações vazão-ecológicas juntamente com condições hidroclimáticas nas 
decisões operacionais de sistemas hidrelétricos (denominadas Vazões Ambientais Dinâmicas e 
Adaptativas - DAE-flows) para criar soluções dinâmicas de operação de reservatórios, (3) o 
cálculo dos trade-offs de reoperação de múltiplos níveis de restauração de regime de vazão 
ambiental e (4) o desenvolvimento de mecanismos para compartilhar os custos relacionados 
entre as partes interessadas. Nesse sentido, o mercado de eletricidade é proposto como arranjo 
institucional e mecanismo de financiamento para apoiar a restauração de regimes de vazão em 
áreas ambientalmente sensíveis. A Bacia Hidrográfica do Alto Paraná, Brasil, caracterizada 
como uma das mais represadas da América do Sul, com 65 usinas hidrelétricas integradas ao 
Sistema Integrado Nacional, é um exemplo recorrente da necessidade de reconciliação entre a 
geração de energia e a conservação de serviços ecossistêmicos, sendo utilizada como área de 
estudo. Os resultados indicam que podemos aumentar a capacidade dos sistemas hídricos para 
incorporar demandas ambientais historicamente suprimidas sem impor uma restrição rígida aos 
usos econômicos. Ao considerar os efeitos de longo prazo da operação ao projetar estratégias 
de operação para múltiplos usuários, obtemos um desempenho aprimorado tanto na geração de 
energia hidrelétrica quanto no atendimento às demandas do ecossistema. Assim, durante 
períodos de seca severa, a água ainda pode ser realocada para a produção de energia hidrelétrica 
(como é feito atualmente), porém com menor impacto ambiental. 

 

Palavras-chaves: vazões ambientais, gestão de recursos hídricos, recuperação de ecossistemas, 
planejamento de sistemas hidrelétricos, otimização multiobjetivo, governança de bacias 
antropizadas  
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 Introduction 

Water rights and infrastructure have traditionally been allocated and expanded to meet specific 
water demands at the lowest cost, often disregarding the benefits of environmental services. 
Today, water systems worldwide face the challenge of addressing aging infrastructure, meeting 
growing demands competing for water, and restoring suppressed ecosystems, amidst the 
uncertainties imposed by a changing climate (OECD, 2015b; UNESCO, 2012).  

Reservoir systems, while essential for balancing water (and energy) demand and supply, have 
altered natural flow regime patterns through the manipulation of storage and release (Maskey 
et al., 2022). For many migratory fish species, whose recruitment success depends on the 
synchronization between flow regime and reproductive cycle, the modification of downstream 
flow results in a functional simplification of the ichthyofauna, leading to a considerable 
reduction of habitats and aquatic species (Oliveira et al., 2018; Santana et al., 2016). The 
provision of ecosystem services linked to fish production, such as professional fishing and 
ecological tourism, has been also affected, bringing social and economic impacts to local 
communities (Holmlund e Hammer, 1999). 

Although operational rules have been established to guarantee a minimum flow downstream of 
reservoirs, they often fail to consider the dynamics of the natural flow regime required for 
ecosystem functionality (Basto et al., 2020). Understanding the critical components of the 
environmental flow regime (e.g., magnitude, frequency, duration, timing and rate of change) 
necessary to maintain sensitive ecological functions, as the example of fish migration and 
reproduction, provides a valuable framework for ecosystem restoration plans, surpassing the 
limitations of minimum flow magnitude approaches (Collischonn et al., 2006; Poff et al., 1997; 
Yarnell et al., 2015).  

However, effective implementation of environmental flows in anthropized and regulated water 
systems depends on reservoir operation. Changing the latter requires addressing a broader 
water governance to improve understanding of ecosystem performance, tradeoffs to multiple 
users, and propose mechanisms for implementation (Hannah et al., 2007; Petts et al., 2006). 
As restoring natural flow components is a water allocation problem, it presents technical, 
economic and social-political dimensions (Tonkin et al., 2019). In hydropower-dominated 
basins, the restoration of flow regime components may result in energy generation disturbances 
and economic losses (Brambilla et al., 2017; Marques & Tilmant, 2018).  

In this context, while the impacts to the ecosystem due to reduced variability of natural flows 
have been better understood, far less known is how to address the issue with effective water 
management policies. It remains unclear (a) how environmental flow regimes could be designed 
as operating policies, (b) how to translate different operations into measurable environmental 
performance, (c) which are the tradeoffs to multiple users associated to different operations 
and hydroclimatic conditions, and (d) how to mitigate and fairly distribute those tradeoffs 
among the different users in the systems.         

The present study contributes to the field by addressing the knowledge gaps (a) through (d) 
above by proposing a methodology framework capable of:  

- Creating multiple reservoir operation solutions with known functionality in restoring 
specific components of a natural flow regime and predicting their environmental 
performance; 
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- Evaluating the trade-offs of each solution against multiple system objectives; 
- Sharing the trade-off costs among different users; and 
- Supporting the definition of agreements and water and energy management instruments 

and policies. 

The Upper Paraná River Basin, in Brazil, where consecutive hydropower impoundments have 
reduced and modified the original floodplain dynamics along the last decades, is a recurrent 
example where reservoirs’ operation need to be reconciled with ecosystem functionality 
(Agostinho et al., 2007; Oliveira et al., 2018). The section between the Porto Primavera and 
the Itaipu dam is the last remaining dam-free lotic environment in the Upper Paraná River 
Basin, still preserving natural characteristics for spawning and fish growth. However, the 
inundation dynamics of the floodplain and the success of fish recruitment rely on the decision-
making regarding the operation of upstream hydropower reservoirs, which is primarily driven 
by hydropower objectives. 

Despite research findings emphasizing the importance of this issue, the evaluation of reservoir 
reoperation and financing mechanisms to restore impacted environmental processes is yet to 
be conducted (Agostinho et al., 2007). This makes the basin an important area to implement 
the proposed approach. The availability of data, including river flows, ecosystem data (e.g., 
fish population), reservoir operating rules, and water demands, was another crucial aspect 
considered when selecting this study area. 

 Goal and Objectives 

The main objective of this dissertation is to improve the governance of river basins, exploring 
adaptation pathways to reconcile hydropower production with the restoration of ecosystem 
functions already at risk. To achieve this goal, four specific objectives are proposed. 

1. The first is to improve the quantitative understanding of the ecosystem response to 
different combinations of flow regime components. 

2. The second is to design environmental flow policies capable of improved long-term 
economic and ecosystem performance under multiple hydroclimatic conditions. 

3. The third is to calculate the hydropower trade-offs to meet different levels of 
environmental flow regime restoration. 

4. The fourth is to develop mechanisms to share the adaptation costs among stakeholders, 
capable of delivering the solutions to the field. 

 Study area 

The Upper Paraná River Basin is one of the most impounded of South America with 65 
hydropower plants and a generation installed capacity of 48,381 MW, which corresponds to 
about 40% of the total Brazilian hydropower generation (ANA, 2020; CCEE, 2020). Within 
this basin, the reach of the Paraná River spanning 230 km between the Porto Primavera dam 
and the Itaipu reservoir represents the last remaining dam-free lotic environment of the original 
floodplain (Figure 1) (Oliveira et al., 2015). 

This particular river segment is affected by the operation of 56 hydropower plants upstream 
and 8 hydropower plants downstream from the Itaipu hydropower plant (ANA, 2020). While 
the floodplain still maintains some natural characteristics essential for fish spawning and 
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migration, the restoration and maintenance of related ecosystem services require reoperation 
of the reservoirs, and the associated tradeoffs are not yet well understood. 

 

Figure 1. Upper Paraná River Floodplain, including the fish sampling and flow gauging stations. 

Studies in this area have identified a simplification of the fish functional diversity as a 
consequence of alterations in the natural flow caused by hydropower operations (Oliveira et 
al., 2018; Suzuki et al., 2009). Figure 2 compares the functional richness (FRic), Rao's quadratic 
entropy (FDQ) and functional redundancy (FRed) before (1986-95) and after dam construction 
and operation (2000-2015), indicating a decrease in mean values of functional richness and 
entropy and an increase in the functional redundancy. 

The study in Oliveira et al. (2018) also points out that functional traits associated with the 
pre-intervention period are related to large species that perform long-distance reproductive 
migrations, inhabit pelagic habitats, and possess superior or subterminal mouths. These traits 
are commonly found in rheophilic species that have a strong dependency and synchrony 
between the hydrological cycle and the reproductive cycle. As a result, they are more 
susceptible to the negative impacts of flow regulation caused by dams. Furthermore, these 
species often hold a high commercial value and are significant for human consumption. 

In contrast, the traits that contributed the most to the post-intervention period are typical of 
non-migratory species that usually inhabit lentic environments. These traits include parental 
care, an omnivorous diet, and a benthopelagic habitat. 



 17 

 

Figure 2. Functional biodiversity indexes in the Upper Paraná River floodplain. Adapted from: 
(Oliveira et al., 2018). 

The ecosystem impacts also reflect on people’s livelihood in the region. During a field trip 
conducted as part of the research work, a fishing organization interviewed in the study area 
reported a significant decline in membership. The association had 1200 members in 2010, but 
this number dropped to 384 members in 2019, representing a 68% decrease over the past 10 
years. Many fishermen have reported a reduction in the abundance of high-value migratory 
species, expressing difficulties in sustaining their livelihoods through fishing practices. As a 
result, many have been compelled to either abandon fishing altogether and shift to alternative 
activities. 

Recent severe droughts have also posed operational challenges for hydropower plants in the 
area. During the 2021-2022 drought, the Porto Primavera hydropower plant (part of the Paraná 
cascade) had to adopt emergency measures to maintain sufficient storage levels for hydropower 
production in the basin. As a result, the Porto Primavera minimum releases for the downstream 
floodplain were reduced from 4600 m3/s to 2900 m3/s (ONS, 2022).  

Such management approaches tend to prioritize meeting high-priority (economic) demands at 
the expense of the environment, which is often the first to be sacrificed. The dam operational 
adjustment during the last drought indicates that there is still a need to further explore 
alternative solutions to reconcile economic demands and the environment, their tradeoffs and 
the strategies to implement the solutions. This will contribute to better preparedness of the 
water system to face the incoming droughts, reducing the impacts for both the ecosystem and 
the hydropower system. 
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 Chapters organization 

This doctoral dissertation is divided in seven main chapters, with each contributing to address 
the knowledge gaps and objectives outlined. Figure 3 presents the general flowchart of the 
dissertation. 

Chapter 2 introduces the framework proposal for establishing flow-ecological relationships. It 
involves constructing an ensemble of flow regime options by considering the variability of the 
naturalized flow regime range. The framework then quantifies the ecosystem response of each 
flow regime option in terms of migratory fish abundance using an artificial neural network 
model. 

Chapter 3 outlines the modeling framework employed to simulate the hydropower system 
operation in the study area. This framework utilizes the explicit stochastic dual dynamic 
programming method. A performance analysis is conducted to evaluate the simulation results 
in comparison to observed data. 

Chapter 4 introduces hydroclimatic scenarios for the purpose of measuring the operational 
adaptive capacity of the system to mitigate climate change impacts. It further evaluates 
independent and combined impacts of climate change and system operation on the aquatic 
ecosystem, while also examining optimized operating policies in response to a changing climate. 

Chapter 5 explores the design of environmental flows (e-flows) as dynamic operating policies. 
It investigates how multiple flow regime options can be combined throughout a planning 
horizon to strike a balance between immediate and future water use benefits and produce 
different levels of ecosystem performance. The resulting trade-offs between different levels of 
ecosystem performance and hydropower production is examined. 

Chapter 6 outlines a cost-sharing mechanism, which considers the electricity market as an 
institutional and financing arrangement for restoring flow regimes in environmentally sensitive 
areas. 

Chapter 7 explores a supporting work developed during the doctorate period as part of a CNPq 
project and to study the influence of hydro-meteorological forecasts on the production and 
economic revenue of hydropower systems. While this chapter does not directly relate to the 
primary objectives of the dissertation or its methodological structure, it incorporates several 
methodological approaches derived from this dissertation that identified valuable insights for 
future studies on how hydropower systems can benefit from improved hydrometeorological data 
and forecasts. In future studies, such improvement can support further refinement on the 
proposed environmental flow solutions. 

Chapter 8 presents a conclusive summary of the findings and learnings of this dissertation. 
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Figure 3. General flowchart of the proposed methodology framework. 
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 Introduction 

Flow regulation through dams represent the most prevalent form of hydrological alteration of 
rivers with projections to expand in the following decades (Grill et al., 2015; Tharme, 2003). 
While such alteration is desirable to increase water, food and energy security for society 
(Tilmant et al., 2014), the consequent disruption of flow regime patterns and reduction of 
aquatic and wetland habitats contribute to dramatic population declines of aquatic species 
(Howard et al., 2018; Palmer & Ruhi, 2019). Moyle et al. (2011) estimate more than 80% of 
California’s native fishes are likely to be lost in the next 100 years if changes in water 
management are not made and negative effects of climate change are not averted or reversed. 

Because maintaining or restoring full natural flow regimes to mitigate impacts is usually 
unfeasible or undesirable, the concept of environmental flows has emerged to strike a balance 
between economic uses of water and ecosystem preservation (Poff et al., 2017). This idea 
explores the wide range of flow regime options that can be preserved or restored to some society 
preferred condition, both in already altered rivers or where new water infrastructures are 
planned (Arthington et al., 2018). 

Choosing between flow regime options, however, requires capacity to predict ecological, 
technical, social, and economic outcomes (Arthington et al., 2018). Hydropower reservoir 
reoperation incorporating environmental water needs often reduces generation capacity, leading 
to reliability and economic losses to the power sector, while water supplies may also be reduced, 
forcing municipalities and irrigation districts to seek out more expensive sources (Adams et al., 
2017; Crespo et al., 2019). Managing such implications is still a challenge to implement 
environmental flows in a holistic perspective (Poff et al., 2017), resulting in few examples that 
go beyond a minimum flow requirement (Harwood et al., 2017; Quesne et al., 2010). 

Therefore, obtaining a better quantitative understanding of ecological responses to different 
levels of flow regime restoration is critical for evaluating the range of economic losses and 
engaging stakeholders in decision-making. This process starts with characterizing the natural 
flow variability through its critical components, such as magnitude, timing, duration, 
frequency, and rate of change (Poff et al., 1997; Olden & Poff, 2003), followed by understanding 
the ecological response to the natural variability and degrees of alteration (Arthington et al., 
2006), to finally calculate the trade-offs to other uses (Chen & Olden, 2017; Li et al., 2020; 
Suen & Eheart, 2006; Wild et al., 2019) and propose adaptation costs distribution among users 
(Marques & Tilmant, 2018a). 

Focusing on flow regime components that trigger significant geomorphological and ecological 
processes (also termed functional flow regimes) provides a strategic frame of reference to 
develop ecological-flow relationships and more successful restoration plans (Grantham et al., 
2020; Yarnell et al., 2015). Fish are part of food web dynamics and nutrient cycling, serving as 
an effective indicator of ecosystem health with the advantage of being sensitive to flow dynamic 
changes (Whitfield & Elliott, 2005). Many studies evaluating the modification of downstream 
flow regimes by reservoirs’ regulation highlight a simplification of the ichthyofauna diversity, 
with a marked reduction in migratory species (Cooper et al., 2017; Loures & Pompeu, 2018; 
Pringle et al., 2000). Fisheries also represent a traditional ecosystem service provision (e.g., 
food and ecotourism), contributing to social and economic activities (Holmlund & Hammer, 
1999). 
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Statistical approaches have been applied as means to quantify and interpret meaningful flow 
regime components that drive ecological processes to sustain fish populations and communities. 
Studies as Freeman et al. (2001), Oliveira et al. (2015), Piffady et al. (2010), Tonkin et al. 
(2021) and Wang et al. (2019) statistically analyzed the degree of fish response to flow regime 
indices, showing that the intensity, timing and duration of flood pulses when synchronized with 
the life stages during the spawning and recruitment processes are highly correlated with 
juveniles’ abundances. Floods trigger fish migration for spawning and connect longitudinally 
and laterally different habitats across the floodplain, providing feeding and refuge conditions 
for initial growth. By retaining high flows during the rainy season to make it available during 
the dry season, reservoir regulation reduces or eliminates flood peaks, while higher flow periods 
are artificially created in the dry season. Fish recruitment is then affected. 

With the advancements of machine learning techniques, data-driven models have also been 
applied to empirically model complex systems by extracting fish patterns from historical 
datasets. A set of environmental variables, including flow regime components, is used to 
predict, as examples, spatial fish occurrence (Joy & Death, 2004), fish biodiversity (Hu et al., 
2020) and fish recruitment probability (Fernandes et al., 2010). 

Despite recent innovation, water managers still face a knowledge gap to translate the set of 
components of a flow regime to restore key ecological functions into objectives (McKay et al., 
2012) and reservoir operating practices, as the latter need to accommodate other multi-
objective demands (e.g., hydropower, irrigation, and urban supply). Fish are adapted to a 
certain level of flow variability and, given the wide range of flow regime options when dealing 
with flow regime restoration, choosing which ones to address with reservoir operation can yield 
different impacts on the water system reliability and expenses. Although such impacts can be 
measured between tangible economic uses, the ecosystem response performance is still largely 
unknown.  

This chapter addresses this knowledge gap with a methodology framework that explicitly 
quantifies the response of different flow regime options towards a key ecosystem function to 
guide the formulation of environmental flows. In the case of the study area, this function is the 
recruitment success of migratory fish species. The framework combines three main parts. In 
the first subroutine, an ensemble of flow regime options is produced based on the naturalized 
flow regime range variability. The second subroutine derives a set of flow metrics (indices) to 
quantify the five main components (magnitude, timing, duration, frequency, and rate of 
change) of each flow regime option. The third subroutine contains an Artificial Neural Network 
(ANN) predictive model that calculates the response of migratory young-of-the-year (YoY) fish 
abundance of each flow regime option using the corresponding flow regime indices as predictors. 
The options with positive non-zero responses were termed functional flow regimes (or functional 
flows) as they provide conditions to support the recruitment success of migratory fish species. 

2.1.1 Study area: Flooding dynamics and ichthyofauna behavior 

The daily level of the Paraná River is registered by the Porto São José gauging station (id 
64575003) (ANA, 2020). Flood events exclusively influenced by the Paraná River can fully 
submerge the floodplain, creating connections between various habitats, such as lagoons and 
secondary channels (Comunello et al., 2003). Other two tributaries influence the floodplain 
inundation dynamic, the Baía and Ivinhema tributaries, although reaching narrower floodplain 
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coverage. Combined events, when Paraná River flooding is concomitant with tributaries 
flooding, are also observed. 

The ichthyofauna of Upper Paraná River is composed of 211 cataloged species, which can be 
categorized into two major groups: sedentary/short-distance migratory and long-distance 
migratory (Ota et al., 2018). Long-distance migratory species are characterized by having larger 
size and longer lifespan, requiring different habitats during their life cycle for spawning, early 
development and feeding (Agostinho et al., 2007). Three main movements characterize the 
relation between the long-distance migratory fish reproduction cycle and the flow regime in the 
study area (Agostinho et al., 2007; Oliveira et al., 2015).  

At the beginning of the rainy season, a combined increase in the photoperiod and temperature 
triggers gonadal development and schools’ formation. This is followed by an upstream 
migration (from October to November) when fish schools move to upstream reaches and 
tributaries, where eggs are laid and can develop in well oxygenated waters with lower predation 
risk. High water levels (from January to March) promote the connectivity between different 
habitats (lagoons, channels, etc.), which enables the lateral movement of the larvae along the 
floodplain area for feeding and refuge. The last movement occurs during decreasing water levels 
(from March to May) and allows the backward movement towards the main river channel. 

The period of low waters occurs during winter (June to September). During this phase, 
floodplain habitats are less connected with rivers and subject to local processes like wind 
turbulence, thermal mixing, and inputs from small tributaries, which influence variations of 
physicochemical parameters and vegetation growth (Agostinho et al., 2000). 

2.1.2 Fish sampling data 

Fish sampling data spans quarterly from March to December from 2000 to 2019 at nine 
sampling sites within the floodplain (Figure 1), including three rivers (Paraná River and 
Ivinhema and Baía tributaries) and two adjacent lagoons for each river, as reported in Oliveira 
et al. (2015) and Oliveira et al. (2020). The grouping of each river and its corresponding lagoons 
was termed a sub-system. Data from previous years are reported in Suzuki et al. (2009) with 
intermittent periods from 1987 to 1988 and 1992 to 1994. To construct the complete dataset, 
we selected the years 1992 to 1994, combined with the years 2000 to 2019, as both periods 
provide available data for the same species in all fish campaigns. 

Five long-distance migratory fish species were considered: Brycon orbignyanus (Valenciennes 
1850), Pseudoplatystoma corruscans (Spix & Agassiz 1829), Pterodoras granulosus 
(Valenciennes 1821), Prochilodus lineatus (Valenciennes 1837), Salminus brasiliensis (Cuvier 
1816), which are the most abundant among the long-distance migratory fishes, representing 
almost 25% of the total number of migratory species in the Paraná River Basin. The abundance 
of young-of-the-year (YoY) fish individuals, which represents the recruitment success of the 
last flood season (Figure 4), was determined by counting the number of individuals within 
specific length ranges up to one year of age (Oliveira et al., 2020) and indexed as Catch Per 
Unit Effort (CPUE; individuals/1000 m2 of gillnets during 24h). 

The annual YoY fish abundance of each sub-system was represented as the average between 
the corresponding sampling sites. To represent the annual YoY fish abundance of the floodplain 
related to the Paraná river flow regime (Porto São José Gauging Station), the fish abundance 
average between sub-systems was considered when combined flood events occurred during the 
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rainy season. To avoid overestimating fish abundance due to tributaries’ flooding, floodplain 
fish abundances were set to zero when flood events were registered only in the tributaries. 
Finally, for years when flood events were registered exclusively at the Paraná River, the average 
between sub-systems considered the tributaries’ abundances as zero.  Figure 9 presents the 
total annual YoY fish abundance for the floodplain. 

Year Y-1 Y 
Month J F M A M J J A S O N D J F M A M J J A S O N D 
Hydro     Dry season Rainy season         
Fish               Fish sampling 

Figure 4. Representation of the flooding and fish sampling period. 

 Methodology 

The methodology framework includes three main subroutines (Figure 5). In the first subroutine, 
an ensemble of flow regimes options is produced based on the naturalized flow regime range 
variability of the study area. The flow regime options consist of annual hydrologic time-series 
of daily level (covering the dry and rainy seasons that occur in an annual period). The second 
subroutine derives a set of flow metrics (indices) to quantify the five main components 
(magnitude, timing, duration, frequency, and rate of change) of each flow regime option. The 
third subroutine contains an Artificial Neural Network (ANN) predictive model that calculates 
the response of migratory young-of-the-year (YoY) fish abundance of each flow regime option 
using the set of flow regime indices as predictors. The flow regime options with positive non-
zero responses were nominated functional flow regimes. 

 

Figure 5. Methodology framework. 

2.2.1 Flow Regime Options Model 

To generate an ensemble of flow regimes options, the naturalized flow regime was first 
estimated by reverting the flow regulation effects and evaporation losses from the reservoirs 
part of the hydropower system. The resulting range of the long-term naturalized flow regime 
variability appears in Figure 6. The procedure details for its estimation are described in 
Appendix I. 

Output:
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Figure 6. Comparison between the observed and the naturalized flow regime at Porto São José station.  

From the naturalized flow time-series, the subroutine adopts a three-step procedure: (1) the 
daily time-series is converted to a specific time-step (e.g., biweekly or monthly) average time-
series and the long-term variability of the given time-step is calculated (Figure 7 - left chart); 
(2) the range between the minimum and maximum values is divided in discrete states (Figure 
7 - middle chart), and (3) combinations between the sequential states are then computed 
(Figure 7 - right chart). The daily values between the monthly or biweekly time steps are then 
built by linear interpolation. As a result, an ensemble of annual hydrologic time-series of daily 
level is generated representing multiple flow regime options. For example, considering a 
monthly time-step and 5 discrete flow/level states results in the composition of 512 different 
flow regime options. 

 

Figure 7. Representation of the generation of flow regime options. 

2.2.2 Flow Regime Indices Model 

This subroutine calculates flow regime indices (metrics) from the flow regime options generated 
in subroutine 1. The model represents each component of a flow regime (duration, magnitude, 
timing, frequency, and rate of change) by indices that must be chosen according to the 
ecological function modeled. For the study area, nine indices were selected, at least one index 
for each component (Table 1), to represent the dry and rainy seasons and conditions historically 
linked to fish migration and initial growth of migratory species. 
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Table 1. Flow regime indices used to represent the Paraná River reach flow regime. 

The previous studies of Suzuki et al. (2009), Oliveira et al. (2015) and Oliveira et al. (2020) 
supported the specification of the indices’ thresholds. The indices representing the flood season 
duration (FSD) were divided in three main magnitude ranges in order to represent different 
floodplain connections during the flood season: (a) the index FSD Low magnitude considers 
the level between 450 and 540 cm as the minimum range to allow lateral and longitudinal 
connectivity in the floodplain during the rainy season, (b) the index FSD Mid magnitude 
considers the level between 540 cm and 610 cm as the intermediary connectivity, and (c) the 
index FSD High magnitude contemplates the level 610 cm as the threshold level that allows 
high connectivity along the floodplain. 

The dry season duration is represented by the index DSD, which considers the level of 250 cm 
as the water threshold level governed by the baseflow (historical Q80 flow duration). The flow 
regime timing component is represented by the flood delay index and the rate of change 
(variability) is represented by the uninterrupted flood duration and the number of flood pulses 
indices. The uninterrupted flood duration index indicates how spaced the flood pulses are 
distributed in time (e.g., long uninterrupted flood duration is produced by time distant pulses). 
The inter-annual flood occurrence index represents the frequency component. The relevance of 
each index is analyzed in Appendix IV. 

2.2.3 Fish-Flow Model 

Artificial Neural Networks (ANN) are data-driven computational networks able to establish 
empirical relationships between independent (input) and dependent (output) variables (Sadiq 
et al., 2019) with the advantage of not being limited by a pre-specified functional form 
(Adamowski & Karapataki, 2010). The ANN model developed to predict the YOY fish 

Flow regime 
component 

Indices Thresholds 

Duration and 
Magnitude 

FSD High magnitude 
number of days with “water level >= 610cm” during the 
rainy season from 01/October to 30/April 

FSD Mid magnitude  
number of days with “540cm <= water level < 610cm” 
during the rainy season from 01/October to 30/April 

FSD Low magnitude  
number of days with “450cm <= water level < 540cm” 
during the rainy season from 01/October to 30/April 

DSD 
number of days with “water level <= 250cm” during the 
dry season from 01/June to 30/September 

Magnitude Maximum magnitude 
highest water level (cm) record during the rainy season 
from 01/October to 30/April 

Timing Flood delay 
number of days from 01/October the first flood (water 
level >=450cm) was recorded 

Variability 
(rate of 
change) 

Flood pulses 
number of complete cycles of high (>= 450cm) and low 
water level during the rainy season from 01/October to 
30/April 

Uninterrupted flood 
duration 

longer number of sequential days with “level >= 450cm” 
during the rainy season 01/October to 30/April 

Frequency  
Inter-annual flood 
occurrence 

number of previous years without flood (level>=450cm) 
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abundance from different flow regime options consists of three layers: an input layer, a hidden 
layer, and an output layer (Figure 8).  

 

Figure 8. Representation of ANN model architecture. 

The input layer has 9 nodes representing the set of annual flow regime indices calculated by 
the flow regime indices model (subroutine 2). The input layer distributes the input signals via 
connections to each hidden neuron. Each connection has a weight (w) adjusted via training, 
and each neuron has an activation function (f). Neurons process the sum of impinging signals 
from previous layers and independent terms (b), with the activation function, and each output 
neuron sends its output signal to the respective output node. The output node is represented 
by the annual YoY fish abundance of the floodplain. 

The input and output data are linearly scaled to fit the domain range [0,1] whose scaling 
parameters are the respective global maximum and minimum of each variable in the dataset. 
Table 2 summarizes the main parameters used to configure the ANN model. We investigated 
the number of hidden neurons (hn) necessary to present a performance similar to an oversized 
ANN by testing different numbers of hidden neurons and evaluating the final overall 
performance. 

Table 2. ANN parameters. 

 

To predict the YoY fish abundance from different flow regime options, the ANN model required 
to be firstly trained and validated based on the historical data. The registers (individual input-
output pairs) from 1991 to 1993 and 1999 to 2018 composed the dataset (the year number 
corresponds to the year the flood season begins - see Appendix II).  

Parameter Description 
Architecture 9 - hn - 1 
Input variables Flow regime indices 
Output variable YoY Fish Abundance 
Number of hidden neurons (hn) 3 (choosen according to the complexity analysis) 

Activation function sigmoid unipolar; !(#) = !
!"#!";  

Input data scaling linear (amplitude); [0,1] 
Data time step Annual 
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To prevent overfitting and to overcome the challenge of working with a small dataset, we 
applied a Nested Leave-One-Out Cross-Validation (NLCV) training approach (Wong, 2015). 
This approach (see Appendix III) consisted in using the dataset with different configurations 
of registers divided between training (TS) and verification (VS) sets and training each 
configuration separately to check the consistency of the model to produce similar results 
between configurations, which corroborates its generalization capability to new data. The final 
dataset was arranged in 3 configurations, each with 6 registers for the verification set and 17 
registers for the training set (Figure 9). Years with unique features (Appendix II) were included 
in the training set to improve model’s ability to recognize such behavior. 

 

Figure 9. Training and verification registers for each dataset configuration. 

The trained ANN model integrated the model subroutine 3 with the objective of calculating 
the corresponding YOY fish abundance of each flow regime option designed in subroutine 1. 
To reduce the number of combinations assessed in this study, we discarded flow regime options 
with very close characteristics in terms of fish abundance and reservoir operation decisions. 
The final options were termed functional flow regimes, arranged in hydrographs. 

 Results and Discussion 

2.3.1 Performance Analysis of the Fish Abundance Model 

Figure 10 presents the comparison between observed and predicted results for the training and 
verification sets of the three dataset configurations. Four years of the dataset present unique 
features, which required them to be included in the training set during the ANN model training 
and validation to improve model’s ability to recognize such behavior. However, it is worth 
noting that the absence of similar features in the verification set limits our ability to assess the 
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model's prediction performance in those cases. While the metrics indicate good results, the 
model's generalizability to new data relies on obtaining more future information and monitoring 
data. 

 

Figure 10. Comparison between predicted and fish abundance for each dataset configuration. 

Despite the majority of training data representing YoY fish abundances below 4 CPUE, the 
ANN model successfully replicated the peak abundance patterns observed in the verification 
sets. This indicates the model's robustness in defining clear objectives for ecosystem 
management, specifically by focusing on key flow regime components. 

The negative verification mean error (ME) of the performance analysis indicates the model 
overall underestimates the fish abundance (Table 3). The maximum absolute verification error 
(Emax = 0.688 CPUE) indicates the model presents good performance in predicting high fish 
abundances values. This error represents less than 2% of the fish abundance peak of this dataset 
configuration (41.8 CPUE). The NS and r2 performance indices also indicate the model can 
reproduce low and high fish abundances variation with good performance. 
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Table 3. Model performance analysis. 

 

2.3.2 Functional Flow Regimes Analysis 

We chose 6 functional flow regimes for analysis (Figure 11), which allow us to identify distinct 
fish abundance performances (orange bar) comparing the different functional flow regimes (blue 
line) and analyze the implications from the perspective of reservoirs’ release decisions. The 
corresponding flow regime indices of each functional flow regime are detailed in Table 4. 

 

Figure 11. Functional flow regimes and the corresponding YoY fish abundance. 

Dataset 
Configuration 

Set Nash-Sutcliffe 
coefficient 

NS 

Mean 
error 
ME 

Root mean 
square 
error 

RMSE 

Coefficient of 
determination 

r2 

Maximu
m error 
Emax 

1 Training 0.9999 0.0023 0.4328 0.9999 0.487 
Verification 0.9948 -1.3781 3.2898 0.9996 0.688 

2 Training 0.9997 0.1281 0.8618 0.9997 0.773 
Verification 0.9794 -0.0465 0.5626 0.9800 0.277 

3 Training 0.9997 0.0123 0.6837 0.9997 0.602 
Verification 0.9965 -1.4490 3.0455 0.9999 0.130 
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FH1 represents a scenario in which upstream reservoirs’ release decisions are made to get close 
to the natural flow regime upper bound (favoring high flood magnitudes and duration, and low 
flood variability and delay). The longer the period of high-water levels, the higher is the 
possibility of juveniles to remain in the floodplain for feeding and be less susceptible to 
predation, improving conditions for the recruitment success. The result is a high YoY fish 
abundance response. 

However, in terms of hydropower operation, high reservoir outflow releases in the rainy season 
to sustain fish recruitment may delay reservoir refilling, increasing the risk of future storage 
deficit and hydropower production. By utilizing the rating curve to convert water level into 
streamflow and comparing the other functional flows (FH2 to FH6) with FH1, it becomes 
possible to estimate the annual storage change upstream and assess how altering the 
characteristics of the released flow can mitigate the energy trade-off while still ensuring YoY 
fish abundance. The lower the water levels of a given FH compared to FH1, the lower the flow 
release and the more storage can be maintained upstream to either meet other water uses or 
improve drought protection in the next year. 

In FH5, the reservoir release is reduced mostly in Jan-Feb to produce lower flood level 
magnitudes compared to FH1, while maintaining the flood duration, variability and delay. It 
shows that a high performance (YoY fish abundance) can still be obtained without outflow 
releases as significant as FH1. Once a minimum flood threshold level is reached, the floodplain 
connections already provide sufficient access to food and shelter for juvenile fish development, 
which warrants good results in fish abundance. From this magnitude on, there are diminishing 
returns to further change reservoir operation and recover the magnitude of the flow regime, 
considering fish abundance.   

For upstream reservoir operation, this result is very important, as it means significant 
ecosystem restoration can still be obtained without necessarily using as much storage from 
upstream reservoirs as in FH1. The annual surplus of 24,782 hm3 can be kept in upstream 
storage to maintain power generation later in the year and also help meeting other demands. 
Part of the Upper Paraná River Basin approximately 460,000 ha of irrigated crops could benefit 
from higher storage, especially during drought years. 

In FH2, releases are still capable of reaching a similar high flood level magnitude as FH1, but 
with shorter durations, maintaining similar flood delay and variability. With less time to 
develop and access shelter and food in the floodplain, the juveniles return to the main channels 
more susceptible to predators, affecting recruitment. The YoY fish abundance response is then 
reduced by 78%, a significant performance loss. Despite this, the resulting fish abundance is 
above 10 CPUE, which is still relevant, considering that in 23 years of sampling collection just 
5 years had YoY fish abundances above 10 CPUE. The 62,533 hm3 in increased annual water 
storage upstream may be useful in drought years, when system storage is severely limited, and 
risk of near future energy and water deficits are high. 

In FH3, the releases produce a flood magnitude slightly lower than FH2, but with similar total 
duration above the FSD Low magnitude. Although YoY fish abundance is further reduced 
from FH2, it may be another intermediate option, adequate for scenarios whose reservoir 
storage must be guaranteed to reduce future hydropower deficit risk (increase in 52,064 hm3 

upstream storage) but still producing relevant YoY fish abundance (above 6 CPUE). 
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FH4 represents a scenario with similar flood magnitude but higher variability and delay than 
FH3. Release decisions that produce such behavior in the floodplain should be avoided since 
the YoY fish abundance response is very low and the trade-offs for reservoir operation may be 
less beneficial than other scenarios. High water level variabilities increase the risk of predation 
and induce resorption of gonads, affecting spawning. The 44,384 hm3 in increased annual water 
storage upstream is close to the FH3 result; however, the YoY fish abundance response is 
reduced, which indicates that similar water storage can be obtained managing timing and 
variability and with better YoY fish abundance response than the one showed in FH4.  

Finally, in FH6 release decisions produce a moderate flood duration with a long delay. Delaying 
the flood in more than 140 days causes it to miss a critical time window for gonadal maturation 
and upstream migration. A too late flood resulted in the worst performance in fish abundance, 
and it should also be avoided. Instead, anticipating the same flow release in one or two months 
would produce better YoY fish response, as shown in FH2 and FH3. 

Table 4. Flow regime indices of each functional flow regime. 

 Conclusion 

The proposed methodology framework investigated how functional flow regimes can be 
generated, organized according to specific flow components, and have its performance measured 
in terms of fish response. Some specific conclusions are possible: 

1. Different combinations of flow regime components bring different ecological response 
performance. While flow magnitude and duration are key contributors to performance 
for the ecological function modeled, there is a clear threshold above which performance 
gains are smaller; 

2. The conclusion at (1) indicate the presence of diminishing marginal performance gains 
when designing an environmental flow, which are important when the tradeoffs between 
options are brought into flow allocation discussion among competing uses; 

3. Although not always reaching the best response level, relevant YoY fish abundance can 
still be obtained when combining different flow regime components. This indicates that 
there is some flexibility in system operation. This flexibility should be explored, with 
the help of the results provided by the methods proposed here, in the preparation of 
more robust ecosystem restoration plans. 

4. Some options should clearly be avoided, as their performance in terms of fish abundance 
is very low.  
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1 32 35 43 610 1 110 71 96 0 46.7 
2 1 12 17 610 1 30 76 96 0 10.3 
3 0 2 30 550 1 32 75 96 0 6.5 
4 0 3 45 550 4 18 81 96 0 2.6 
5 0 0 100 480 1 100 58 96 0 46.0 
6 0 2 23 550 1 25 140 96 0 1.2 
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All the conclusions highlight that restoring flow regimes to improve ecosystem services is a 
water allocation exercise. Once several functional flows are designed, users will know how much 
water, when and under which variation pattern, is necessary to attain different levels of 
performance. This is the starting point to support water managers in exploring alternative 
reservoir operating schemes that perform well in releasing water towards YoY fish abundance 
relative to other system objectives. The proposed framework is flexible, which allows its 
application to other areas and ecological functions by changing the input hydrological time-
series and adjusting the flow regime indices. 

 Appendix I. Naturalized flow regime estimation 

A three-step procedure was adopted to generate the naturalized flow regime at the study area. 
First, the altered time-series of daily flow upstream (Porto Primavera and Rosana powerplants) 
were correlated with the respective altered time-series of daily level downstream (at Porto São 
Jose gauging station) with a Multiple Linear Regression (1). The resulting coefficient of 
determination (r2) of 0.923 indicated that both independent variables can satisfactorily explain 
the level at Porto São José station (Eq. 1).  

 !!"# = 0.03709. (!$ + 0.03217. (%&" − 6.9733 (Eq. 1) 

Where, !!"# is the level at Porto São José station (cm); (!$ is the flow at Porto Primavera 
(m3/s); and (%&" is the flow at Rosana (m3/s).  

Second, the relationship (1) was used to estimate the naturalized time-series of daily level 
downstream (at Porto São Jose gauging station), using as input the naturalized flow time-
series upstream (Porto Primavera and Rosana powerplants) obtained from the Brazilian 
Independent System Operator – ONS (Agência Nacional de Águas (ANA), 2020), which  reverts 
the flow regulation effects and evaporation losses of the reservoirs part of the hydropower 
system. As the relationship (1) includes levels at a maintained stage-discharge station, it is 
transferable across different naturalized flow input data. Finally, the estimated naturalized 
time-series of daily level downstream (at Porto São Jose station) was used to identify the range 
of the regime variability in an annual period (outliers were removed).  

 Appendix II. Flow regime indices analysis 

Table 5 presents the resulting flow regime indices for each year of the observed level time-series 
at Porto São José Station with the corresponding observed floodplain YoY fish abundance. 

Table 5. Flow regime indices calculated for the Paraná River target reach. 
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1985 0 0 0 365 0 0 365 0 0 NA 
1986 0 0 0 430 0 0 365 19 1 NA 
1987 0 7 37 584 6 15 103 11 2 NA 
1988 0 10 32 602 3 23 105 4 0 NA 
1989 24 6 10 790 2 35 84 0 0 NA 
1990 19 23 16 696 2 37 125 24 0 NA 
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1991 3 16 31 613 4 29 117 0 0 20.15 
1992 16 6 71 664 6 44 42 0 0 41.82 
1993 0 9 20 606 2 24 109 2 0 4.52 
1994 14 8 13 652 2 26 104 1 0 NA 
1995 0 0 2 476 1 2 161 6 0 NA 
1996 28 10 8 853 1 46 103 12 0 NA 
1997 2 9 41 618 4 22 151 0 0 NA 
1998 0 7 39 598 12 13 0 0 0 NA 
1999 0 0 4 508 1 4 175 3 0 0.00 
2000 0 0 0 414 0 0 365 11 0 0.00 
2001 0 0 12 530 3 9 138 92 1 1.00 
2002 0 0 11 502 3 7 121 82 0 0.15 
2003 0 0 3 481 1 3 199 48 0 0.20 
2004 14 6 13 726 2 30 105 42 0 3.62 
2005 0 0 20 512 7 8 81 37 0 0.41 
2006 46 5 6 679 1 57 103 5 0 40.31 
2007 0 0 10 497 2 9 178 20 0 0.91 
2008 0 0 5 506 2 4 149 2 0 0.38 
2009 40 32 31 741 5 75 16 28 0 46.42 
2010 18 8 17 726 5 29 113 10 0 2.05 
2011 0 0 4 487 1 4 120 6 0 0.08 
2012 0 0 0 428 0 0 365 2 0 0.00 
2013 0 0 0 402 0 0 365 23 1 0.00 
2014 0 0 0 328 0 0 365 93 2 0.00 
2015 2 6 18 637 3 12 91 92 3 18.80 
2016 0 0 0 402 0 0 365 31 0 0.00 
2017 0 0 4 473 1 4 110 76 1 0.08 
2018 0 0 0 348 0 0 365 93 0 0.00 

(1) the year number corresponds to the year the flood season begins; (2) NA = not available 

Four years with unique features were observed in the dataset (2006, 2015, 2010, 1991). The 
year 2006 presented long duration for magnitude levels above 610 cm (FSD High magnitude) 
and small duration for low and intermediate flood magnitudes (FSD Low magnitude and FSD 
Mid magnitude). The other years presented the opposite behavior (higher low and intermediate 
magnitude durations). 

The year 2015 showed high YoY fish abundance (above 15 CPUE) although not presenting 
significant flood durations in the three magnitude ranges (total of 26 days above the 450cm 
level). Two main aspects may have contributed to this particular result: (a) the number of 
previous years without flood (highest record), and (b) the flood duration in the Ivinhema 
tributary. The flood duration in the Ivinhema lasted 190 days during the 2015 flood season 
(the highest dataset record), from which 26 days were combined with a flood in the Paraná 
River. As it is difficult to separate the YoY fish abundance related just to the specific sub-
system (fish tend to disperse through floodplain), the result may have suffered a predominant 
influence of the Ivinhema great flood in that year. 

On the opposite side, the year 2010, although presenting considerable flood duration (43 days 
above the 450cm level), resulted in low YoY fish abundance (2.05 CPUE). The previous year’s 
great flood (highest dataset register) may have influenced this result (the opposite case of the 
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year 2015) through factors and conditions not studied here. Finally, the year 1991 presented a 
high fish abundance although having a high flood delay. 

 Appendix III. Artificial Neural Network training procedure 

Figure 12 depicts the Nested Leave-One-Out Cross-Validation procedure used for training and 
verifying the performance of the Fish-Flow Model. The dataset configurations between training 
(TS) and verification set (VS) composed an outer loop, and for each iteration n, the VS(n) set 
was saved, while TS(n) was trained in an inner loop by applying the leave-one-out (LOO) 
technique, which consisted in leaving one non-zero register (j) out for checking the error 
(validation set) and using the remaining ones for the training process. For each iteration j of 
the inner loop, training was ceased, and the weights recorded when the validation error stopped 
improving to prevent overfitting. Finally, the weights and biases (w and b) that resulted in the 
best performance among the inner loop iterations were applied to the correspondent verification 
set VS(n) in order to evaluate the performance of each configuration of the outer loop. 

The ANN training procedure was based on feedforward backpropagating the error (Rumelhart 
et al., 1986) and subsequently adjusting the weights based on the delta rule (Widrow & Hoff, 
1960). The momentum factor and dynamic learning rate were applied as accelerating methods 
(Vogl et al., 1988). The flowchart in Figure 13 depicts the training, validation and verification 
processes applied. To minimize the ANNs limitation in extrapolating the domain of the training 
set, registers with unique features were assigned to the training set (see Appendix II for further 
details). 

 

Figure 12. Nested Leave-One-Out Cross-Validation procedure. 
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Figure 13. Flowchart of the Training, Validation and Verification Processes. 

 

Data initialization
Observed input data [P]
Observed output data [T]

Initialize weights 
Hidden layer: [wh] and [bh]
Output layer: [wn] and [bn]

Calculate error
e = [tt] – [st]

Update error (backpropagation)
[wh] = f(wh,e,!,m,∆,f’(h),pt)
[wn] = f(wh,e,!,m,∆,f’(h),dt)
[bh] = f(wh,e,!,m,∆,f’(h),pt)
[bn] = f(wh,e,!,m,∆,f’(h),dt)
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Data division into 3 sets
Training set: [Pt] and [Tt]
Validation set: [Pa] and [Ta]
Verification set: [Pe] and [Te]

2 - Training process

Data Padronization
[Pi] à linear scaling à [pi]
[Ti] à linear scaling à [ti]

∴ i = t, a, e
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j < J
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Rate: !
Momentum: m
Delta: ∆
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Delta: ∆ = f(∆)∣ e
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Hidden layer: [dt] = [wh].[pt]+[bh]
Apply activate function: [ht] = f(dt)

Recalculate error
e = [tt] – [st]

Recalculate dependent values
Output layer: [nt] = [wn].[ht]+[bn]
Apply activate function: [st]  = f(nt)

Calculate dependent values
Hidden layer: [da] = [wh].[pa]+[bh]
Apply activate function: [ha] = f(da)

Calculate dependent values 
Output layer: [na] = [wn].[ha]+[bn]
Apply activate function: [sa] = f(na)

Calculate error
ea = [ta] – [sa]

j = j+1

Verify error
ea < ex

yes

Save values
ex = ea
[wx]= [wn]
[bx]= [bn]
[wz]= [wh]
[bz]= [bh]

Result
Final error: ex
Final hidden weights: [wz] and [bz]
Final output weights:[wx] and [bx]

no

4 - Stop

5 - Verification process

Result
Verification error 

Apply weights to 
[pe] and [te]

Scale recovery
[se] à linear recovery à [Se]

Calculate dependent values
Hidden layer: [dt] = [wh].[pt]+[bh]
Apply activate function: [ht] = f(dt)

Calculate dependent values
Output layer: [nt] = [wn].[ht]+[bn]
Apply activate function: [st] = f(nt)
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 Appendix IV. Flow regime indices relevance 

We checked the performance response of the model to each flow regime index as an indicative 
of its contribution to explain the observed fish abundance (Lek et al., 1996). The ANN model 
dataset was retrained leaving one input variable out at each simulation (Table 6). 

Table 6. Average performance reduction analysis for each input variable removed. 

Input variable removed r2 
Performance 
reduction (%) 

NS 
Performance 
reduction (%) 

none 0.993 - 0.990 - 
FSD High magnitude 0.992 -0.1 0.941 -5.0 
FSD Mid magnitude 0.843 -15.2 0.754 -23.9 
FSD Low magnitude 0.913 -8.1 0.540 -45.5 
Max Magnitude 0.992 -0.1 0.941 -5.0 
Flood Pulses 0.712 -28.3 0.690 -30.3 
Uninterrupted Flood Duration 0.992 -0.1 0.980 -1.0 
Flood Delay 0.993 -0.1 0.906 -8.5 
DSD 0.993 0.0 0.944 -4.6 
Inter-annual Flood Occurrence 0.990 -0.3 -5.096 -614.7 

 

The indices FSD Low magnitude, FSD Mid magnitude, and Flood pulses had high influence 
on the performance, indicating that the flood duration and its variability play an important 
role on the migratory fish recruitment. The inter-annual flood occurrence index must be 
analyzed with caution. Just one dataset register (year 2016) is characterized by having 3 
previous years without flood, which may not be generalized for other events alike.  

The high abundance of this year can have been influenced by other conditions not analyzed 
here that triggered high rates of fish reproduction despite not having the best flooding indices’ 
conditions. The low performance reduction of the DSD index may indicate that low water level 
season may influence fish recruitment indirectly. One example is by allowing more vegetation 
growth during the dry season which provides increased food and shelter in the next flood season 
(Agostinho et al., 2000). However, the results do not allow a clear relationship to be defined. 

 Appendix V. Code and Programs Information 

The codes in this study were designed by the author using the MATLAB (version R2021a) 
language. 
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 Introduction 

While energy generation and prices are more predictable in energy matrices composed mainly 
of thermopower plants, in hydropower-dominant matrices, future hydrological uncertainties 
impose greater complexity and risk on energy generation, resulting in more variable energy 
prices. Although hydropower plants have no direct operating costs related to fuel expenses, the 
decision to release water today affects the availability of resources for the future (reservoir 
storage) and, consequently, the benefits and costs of the system (e.g., deficit costs, thermal 
complementation costs) (Pereira & Pinto, 1985).  

Planning hydropower generation under hydrological uncertainties requires the implementation 
of optimization approaches. The objective is to determine release decisions that minimize 
operating costs (or maximize the benefits) throughout the planning horizon, while constrained 
by operational constraints. The Direct Policy Search (DPS) and the Stochastic Dual Dynamic 
Programming (SDDP) are two policy formulations that have the advantage of handling large-
scale multi-reservoir systems. While the former operates in the policy space by parameterizing 
the operating policy within a family of functions (e.g., radial basis functions), the Stochastic 
Dual Dynamic Programming (SDDP) operates in the value space by providing piecewise 
benefit-to-go functions (Giuliani et al., 2021). 

In countries like Brazil and the Nordic countries, where hydroelectricity represents the main 
energy source, the stochastic dual dynamic programming (SDDP) technique is implemented to 
address the time dependency and the stochasticity of the inflows (CEPEL, 2012; Gjelsvik et 
al., 2010). More specifically, in the case of Brazil, various studies have also proposed 
alternatives, adaptations, and simplifications in modeling the hydropower operation, with the 
majority utilizing non-linear optimization techniques. For example, Barros et al. (2003) 
developed a non-linear model to support the management and operation of the Brazilian 
hydrothermal system.  Zambon et al. (2012) presented a non-linear model capable of handling 
different types of constraints, such as interbasin water transfers, water supply, and 
environmental requirements. 

Hydrolab is another decision support software developed for planning and programming the 
operation of the National Interconnected System (Cicogna, 2003; Cicogna & Filho, 2006). It 
uses deterministic non-linear programming to determine the operation of individual 
hydrothermal plants, while the inflow forecast is generated stochastically by combining 
artificial neural network and fuzzy models. Non-linear algorithms have also been applied to 
include other constraints/conditions in the system planning operation. For example, Pereira 
(2006) incorporated temporal hydropower plant shutdowns for preventive maintenance, Santos 
(2015) focused on planning short-term operations constrained by security conditions of 
transmission lines, transformers, and generators, and Hidalgo et al. (2020) assessed the impact 
of future climate scenarios.  

Despite the availability of different alternatives, the Stochastic Dual Dynamic Programming 
(SDDP) approach was chosen to model the operation of the hydropower system of the study 
area. This approach was selected due to its ability to optimize large-scale water resource 
systems while explicitly considering uncertainty. Stochastic approaches can capture the 
uncertain nature of the reservoir operating problem without resorting to certainty equivalence 
assumptions, i.e., when a decision policy is defined by putting the uncertainty equal to its 
expected value given the observation (Van de Water & Willems, 1981). 
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Additionally, this method enables the assessment of marginal water values at each stage (e.g., 
the value of water storage), providing valuable insights for hydroeconomic analysis (Rougé & 
Tilmant, 2016). The approach is also not dependent on specific predefined functions classes 
and policy architecture (Giuliani et al., 2021), allowing a broad operation range to be explored. 
The model framework followed the structure presented in Tilmant & Kelman (2007), Tilmant 
et al. (2008a) and latter in Goor et al. (2011) and it was adapted to fit the local conditions and 
to model the individual reservoirs’ release decisions of the Paraná River Basin for long-term 
planning.  

This chapter is organized by first providing an overview of the Brazilian Integrated Power 
System and explaining the concepts of the SDP (Stochastic Dynamic Programming) and SDDP 
(Stochastic Dual Dynamic Programming) approaches. It then applies the SDDP approach to 
the Paraná River Basin, demonstrating the input data and configuration assumptions. Finally, 
the simulation results are presented by comparing them to the observed data to assess the 
model's performance and its suitability in representing the operation of the national power 
system. Further inclusion of other objectives in the optimization approach is described in the 
following chapters of this dissertation (chapter 5). 

 An overview of the Brazilian Integrated Power System 

The Brazilian power system is organized in 4 interconnected submarkets: North (N), Northeast 
(NE), South (S) and Southeast/Midwest (SE/CO), Figure 14. The interconnected system 
enables the submarkets to exchange energy within the limits imposed by the transmission grid, 
exploring the hydrological complementarity from the diverse hydrological regimes across the 
country to reduce energy production cost (ONS, 2020). In 2021, about 60.2% of the installed 
power generation was derived from hydropower plants, 16% from non-renewable fossil fuel 
based thermal plants (gas, coal, oil), 8.8% biomass 11.4% from wind power, 2.6% solar sources 
and 1.1% nuclear (EPE, 2022). 

 

Figure 14. Interconnect submarkets of the Brazilian power system. Source: (ONS, 2023). 

The operation planning of the Brazilian Integrated System is divided in three main horizons - 
long-term, short-term and daily schedule - each applying models representing the system with 
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different degrees of detail. In the long-term planning, the system is represented by subsystems 
(or submarkets) of aggregated power plants (reservoirs of equivalent energy). The monthly 
thermal and hydro energy generation cost (composed mainly of fuel costs for thermopower 
generation and penalties for energy deficit) is minimized for a five-year planning horizon using 
an optimization approach based on Stochastic Dual Dynamic Programming (Eletrobras, 2020). 

Hydrological conditions and energy demand derive the optimum point between the current 
water use and the future storage in order to minimize the use of very expensive thermopower 
generation or even fail the load supply. As a result, the model builds a cost function over time, 
while the constraints’ multipliers (lambdas) represent the Marginal Operating Costs (CMO) 
for each stage, load level and subsystem (Eletrobras, 2020). 

In the sequence, the short-term planning discretizes the one-year planning in weekly time steps 
for the first month and monthly time steps for the remaining ones with the objective of 
determining the individual hydro and thermal power plants generation. By discretizing the 
subsystems’ individual power plants, the release decisions are again optimized  in order to 
minimize the costs against the necessity of switching on thermopower plants (Eletrobras, 2020). 
The last stage considers the cost function obtained in the long-term planning as input to 
calculate the cost function for the weekly stages. Daily and hourly schedules are calculated in 
sequence. 

The NEWAVE model (for the long-term planning) and the DECOMP (for the short-term 
planning) are the official tools applied by the ONS for launching the monthly releases policies 
of the system and by the CCEE for determining the energy price practiced in the spot market. 
The stochastic inflows are produced by the GEVAZP model (Generation of Synthetic Series of 
Energies and Periodic Flow). Finally, the DESSEM model determines the daily schedule of the 
operation and has being validated by ONS and CCEE for official use as of January 2020, to 
establish the hourly price of energy in Brazil (Eletrobras, 2020).  

 Methodology 

3.3.1 Stochastic Dynamic Programming 

To solve the hydropower operation problem with the Stochastic Dynamic Programming (SDP) 
method, the total planning horizon T is divided in stages t, and release decisions .' are made 
at each stage to maximize current benefits /' (or minimize the costs) in addition to the expected 
benefits from future operation (from t to the end of the planning period T). The expected 
benefits are represented by the recursive benefit-to-go function 1'() [Eq. (1)]. 

1'(3' , 5') = 7*(')[9:;{/'(3' , 5' , .') +	1'()(3'(), 5'())}] (1) 

constrained by: 

.' = 3' + 5' − @' − 3'()	          (2) 

3'() ≤ 3'() ≤ 3'() (3) 

.' ≤ .' ≤ .' (4) 

where t is the time index; B' is the storage for the stage t; 5' is the inflow for the stage t; and 
.' is the release for the stage t, E is the expectation operator to observe hydrological condition 
given the previous hydrological states.  
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The correlation between successive inflows is usually assumed to be governed by a Markov 
chain, which represents the hydrologic uncertainty by encoding the temporal persistence 
between successive flows into flow transition probabilities. Assuming that the continuous 
random variables 5'-) can be approximated by a discrete random variable 5'-) [Eq. (5)], the 
expectation operator E of equation (1) can be substituted by the conditional probabilities 
C(5'|5'-)) [Eq. (6)].  

C(5'|5'-), 5'-., … , 5)) ≅ C(5'|5'-)) (5) 

1'(3' , 5'-)) = 9:;
/!

	{/'(3' , 5'-), .') + G C(5'|5'-)).
0!"#

1'()(3'(), 5')} (6) 

In the Stochastic Dynamic Programming method, solutions at each grid point are obtained by 
discretizing the state variables, such as reservoir storage and inflow (Figure 15). The 
disadvantage of the discrete approach is that the computational effort increases exponentially 
with the number of reservoirs. For example, by assuming k state variables, both discretized in 
N values, and J reservoirs, the number of possible combinations for each grid point is 
represented by (H1)#. For two state variables (inflow and storage), both discretized in 20 levels 
and 3 reservoirs, it results in 64 million combinations.  

To address the dimensionality issue, Pereira & Pinto (1985) proposed the Stochastic Dual 
Dynamic Programming (SDDP) as an extension of the traditional stochastic dynamic 
programming (SDP) that is not affected by the curse of dimensionality, making it suitable for 
solving larger problems while considering stochastic state variables. 

 

Figure 15. Representation of the state-domain discretization and recursive equation application. 

3.3.2 Stochastic Dual Dynamic Programming (SDDP) 

The stochastic dual dynamic programming (SDDP) method assumes that the operation of 
reservoirs typically does not span the entire state-space domain. Instead, the variation in 
reservoir storage is usually confined to a smaller range, which is the typical/historical 
operational variability (Figure 16). 
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Figure 16. Entire domain (orange) versus operational domain (gray). 

Hence, the SDDP method does not aim to calculate 1'() for the entire discrete state domain. 
Instead, it builds a locally accurate approximation of 1'()	using piecewise linear segments 
(Figure 17). The linear segments are built as a function of the storage 3' and the inflow 5' 
utilizing domain sample points [Eq. (7)], through the application of decomposition techniques 
such as Benders and lagrangian decomposition, as described in Boschetti & Maniezzo (2009). 
The resulting hyperplane provides an outer approximation of the benefit-to-go function, while 
the computational effort is reduced since a limited number of values for the state variables 
(points) are now sufficient to provide an approximation of 1'(). 

F2() ≤	J'()
3 . 3'() + K'()

3 . 5' + L'()
3 										M = 1,… , ! (7) 

where the index l represents the cut segments.  

 

Figure 17. Representation of the benefit-to-go function Ft+1 hyperplane creation. 

The reformulation of the problem as a linear function allows for implementation of linear 
optimization methods to find the optimal release decision at each stage of the planning horizon. 
While the SDP method requires to calculate the combination of the current 3' and the future 
storages 3'()for each grid point of the space-domain before moving to the next stage, the SDDP 
method obtains the optimal combination [3',	3'()] by linear optimization. At each stage, storage 
values 3' are sampled and the optimal future storage 3'() for the corresponding sample point 
3' is obtained by linear optimization. In the next stage, the process repeats, by sampling new 



 51 

storage values 3' and obtaining the optimal 3'()	as the result of the linear optimization (Figure 
18). 

 

Figure 18. Representation of the result of the one stage linear optimization. 

Since the accuracy of the approximation increases with the increasing number of linear 
segments, the SDDP method primes to gradually increase the number of linear segments until 
the accuracy reaches an accepted tolerance. This process iterates between two phases: forward 
simulation and backward optimization. The backward optimization phase focuses on 
constructing the cuts (linear segments) at each stage t, initially using a certain number of 
sample points. The generated cuts are then evaluated to determine if the approximation they 
provide is statistically acceptable. If the approximation is not acceptable, a new iteration 
begins, and a new backward optimization phase is implemented with a larger sample size, 
which includes the points from the last simulation. 

3.3.3 Hydro-System Representation 

Figure 19 depicts an example of a Hydro-System composed by multi reservoirs connected in 
series and/or in parallel. The connectivity matrix N% represents the interactions between 
reservoirs, indicating whether water is being received (+1) or released (-1). The size of the 
matrix corresponds to the number of modeled reservoirs (J x J).  The mass balance equation 
that integrates all reservoirs is them represented by [Eq. (8)], while the variables are 
represented by vectors of size J. 

3'() = 3' + 5' − N%(.' + M') − @' (8) 
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Figure 19. Hydro-system representation. 

3.3.4 Hydrologic state variable 

To implement linear optimization methods for solving each stage of the SDDP problem, all 
portions of equation (1), including the immediate benefit equation (/') and the inflows 
generation (5'), must be analytically represented by a linear and differentiable equation. 

To avoid the discretization of the hydrologic state variable, and to further reduce the 
computational effort required to solve the recursive equation (6), the natural reservoirs inflows 
5' are estimated at each node of the hydro-system by an analytical build-in multi-site periodic 
autoregressive model of order p (MPAR(p)), which is linear and differentiable (Quentin Goor, 
2010). 

The hydrologic state variable is typically a vector of p previous flows 5'-), 5'-., 5'-4, which 
are then used to generate 5' using a built-in periodic autoregressive model MPAR(p) with 
cross-correlated residuals. Equation (9) represents the periodic process modelled by an 
autoregressive model of order 1. See appendix I for further information. 

5' = O0,' + P' .
Q0,'
Q0,'-)

. R5'-) − O0,'-)S + Q0,' . T' 	 (9) 

where: 

O0,' is the vector of the periodic mean of the current period reservoir inflows 5' 
Q0,' is the vector of the standard deviation of the current period reservoir inflows 5' 
P' is the vector of periodic autoregressive parameter of order 1 
T' is a time independent (but spatially correlated) stochastic noise of zero mean and variance 
Q6,'
.  

 
3.3.5 Hydropower Production 

The power generated by a hydropower plant depends on the product of the turbined outflow 
.' and the net head ℎ on the turbine [Eq. (10)]. 
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C' = .' . ℎ(3' , 3'()). K. V(3' , 3'(), .') (10) 

where C'	is the power generated [W], the net head ℎ on turbines [m] is a function of the average 
storage (3' , 3'()) during time period t; V is the turbines/generators efficiency as a function of 
the average head and the turbining during period t; and the K is the specific weight of water 
[N/m3]. 

As the production of hydroelectricity is a nonlinear function of the head (storage) and release 
variables, Quentin Goor (2010) presented a methodology that removes the nonconvexity by 
constructing a piecewise linear approximation of the true hydropower production function 
through convex hulls [Eq. (11)], allowing to be implemented in the one-stage optimization 
problem. 

C'	W ≤ X* .
3'() + 3'

2
+ Y* . .' + Z*						∀				ℎ = 1,… ,\ (11) 

where H is the number of linear approximations of the true hydropower functions, that provide 
upper bounds to the true functions; C'	W is the approximated hydropower generated during 
period t and X* , Y* , Z* are the parameters of the hyperplanes ℎ. 

To calculate the hyperplanes parameters X* , Y* , Z*, the feasible domain of the storage 3' and 
the release .' of each hydropower station is first discretized and the true hydropower function  
C(3' , .') is calculated at each grid point. Then, C'] (3' , .') is estimated through a convex hull 
approximation by piecewise linear functions of the storage and turbining. The power production 
is limited by the installed capacity C789 of the hydropower plant [Eq. (12)]. 

C'	W ≤ C789 (12) 

3.3.6 Benefit equation 

When dealing with hydropower multi-reservoirs’ operation, a typical benefit function 
/'	includes the benefits of energy production minus the operation and maintenance costs (net 
revenue) [Eq. (13)]. 

\C' = ^'G(_' (`)

#

:;)

− a (`)). b(`). C'] (`) 
(13) 

where ^' is the number of hours in period t; _' 	is the energy price [$/Wh]; a  is the operation 
and maintenance cost of hydropower plants [$/Wh]; b. C']  is the power generated by the 
hydropower plants during period c, and ` is the reservoir index. 

Penalties for not meeting operational and/or institutional constraints are usually included, 
resulting in the final benefit function /'	[Eq. (14)]. 

/'(3' , 5' , .') = 	\C' − d' . e'  (14) 

where d' is the penalty cost [$/unit of deficit or surplus]; and e'	is the slack variables with the 
violations of operational constraints (e.g, energy deficit, environmental flows, etc). 
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3.3.7 One-stage optimization 

3.3.7.1 Lagrange Multiplier method 

The Lagrange Multiplier method is a calculus-based approach used to find optimal solutions of 
constrained optimization problems. It allows to translate the original constrained optimization 
problem into an ordinary system of simultaneous equations by introducing an extra variable f. 
By applying partial derivatives, we can then determine the optimal solutions. Considering an 
example where we want to maximize g [Eq. (15)], which is constraint by h [Eq. (16)]. 

g = /(;), ;., … , ;<) (15) 

h(;), ;., … , ;<) = i (16) 

The lagrangian function combines the constraints equations with the objective function [Eq. 
(17)]. When constraints are not binding (f = 0), so constraints can be ignored, or constraints 
are biding (f ≠ 0) and the constraint (h(k) − i = 0) is satisfied, l and g are equivalent. 

l(;), ;., … , ;<, f) = /(;), ;., … , ;<) + f. [h(;), ;., … , ;<) − i] (17) 

The objective function is maximized (or minimized) when each of its partial derivatives with 
respect to each unknown variable is equal to zero [Eq. (18)]. Setting the partial derivative with 
respect to λ equal to zero gives us the original constraint back [Eq. (19)]. Thus, the optimal 
condition is obtained by ml(;= , f) = 0. 

ml

m;=
=
m/

m;=
+ f

mh

m;=
= 0								i = 1,2, . . . , n (18) 

 

ml

mf
= h(;), ;., … , ;<) − i = 0 (19) 

By manipulating equation (18), we can find the constraint multiplier f, which represents the 
marginal value (additional benefit) from relaxing the constraint h(k). 

f = −
m/

mh
 (20) 

In the case of inequality constraints [Eq. (21)], the simple condition ml(;= , f) = 0 is not 
anymore sufficient to guarantee a solution. However, the optimum might occur at a boundary. 
If the constraints are biding, besides Eq. (19), we must include the constraint multiplier f with 
the opposite condition [Eq. (22)]. 

h(;), ;., … , ;<) ≥ i (21) 

f ≤ 0 (22) 

3.3.7.2 One stage decomposition representation 

By representing the components /' and 1'() of Eq. (6) by their linear functions: [Eq. (14)] for 
/'	and [Eq. (7)] for 1'(); and introducing the constraints of both components /' and 1'() and 
their corresponding Lagrange multipliers in the same equation, the one-stage function becomes 
equation (23). 
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lR3' , 5'-), f>,',f?!,'S
= 	 (\C' − d' . e') + (J'(). 3'() + K'(). 5' + L'()) +	f>,' . (3'() − 3' − 5'

+ N%(.' + M') + @') + f?!,'
* . (	C'	W − X* .

3'() + 3'
2

− Y* . .' − Z*) 

(23) 

Table 7. Constraints and lagrange multipliers of the functional equation in the analytical form. 

Constraints Lagrange multipliers 
&$"! = &$ + ($ − *%(+$ + ,$) − -$ .&,$ [$/m3/s] 
&$"! ≤ &$"! ≤ &$"! * 

+$ ≤ +$ ≤ +$ * 

0$	2 ≤ 3(. )#$%")#* +5(. +$ + 6(    ∀		ℎ = 1,… ,< .+,,$(  [$/W] 
*we considered that the maximum and minimum storage and release variables as a physical constraint that cannot 

be manipulated. 

The lagrange multipliers f>,' and f?!,'*  (Table 7) indicate the added benefit if a marginal unit 
of inflow or power production could be increased. The optimal one-stage solution is found when 
its partial derivates with respect to each unknown variable is equated to zero, allowing to find 
the corresponding decision variables B'(), .' and the constraints multipliers f>,'	:qr	f?!,'*  [Eq. 
(24) to Eq. (28)]. 

ml

m3'
= f>,' +Gf?!,'

* .
X*

2

?

*;)

= 0 
(24) 

ml

m5'-)
=	

ml

m5'
.
m5'
m5'-)

= RK'() + f>,'S. sP' .
Q0,'
Q0,'-)

t = 0 
(25) 

ml

mf>,'
=	3'() − 3' − 5' + N%(.' + M') + @' = 0 (26) 

ml

mf?!,'
* 	

= 	C'	W − X* .
3'() + 3'

2
− Y* . .' − Z* = 	0 (27) 

f?!,'
* ≥ 0 (28) 

Considering a finite planning horizon T and assuming that the benefit-to-go function at the 
last stage (1@())	is zero (J@() =	K@() =	L@() = 0), the parameters J@, K@, and L@ can be 
calculated in the backward movement before transitioning to the next stage. These calculated 
parameters serve as input for the subsequent linear optimization. Consequently, the benefit 
function calculated in the current stage represents the future benefit function of the next stage 
in the backward movement [Eq. (29) to Eq. (31)]. 

Z = F2(s2, q2-)) ≤ 	J' . 3' + K' . 5'-) + L' (29) 

ml

m3'
=	J' 

(30) 

ml

m5'-)
=	K' 

(31) 

Substituting [Eq. (24)] and [Eq. (25)] in [Eq. (30)] and [Eq. (31)], and  knowing the lagrangean 
multipliers f>,'	:qr	f?!,'* 	and the benefit-to-go function F2, it is possible to find the new 
parameters J' , K' , L' [Eq. (32) to Eq.(34)]. 
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J' =	f>,' +Gf?!,'
* .

X*

2

?

*;)

 
(32) 

K' = RK'() + f>,'S. sP' .
Q0,'
Q0,'-)

t 
(33) 

L' = F2(s2, q2-)) − J' . 3' − K' . 5'-) (34) 

3.3.7.3 Inflow’s stochasticity representation 

To account for the stochasticity of reservoirs inflows 5', the one-stage SDDP subproblem [Eq. 
(23)] is solved for K inflow branches/scenarios 5'A 	(backward openings). Given a set of sampled 
hydrologic state variable 5'-)B 	these K openings are estimated from the analytical built-in multi-
site and multi-period autoregressive model of order p (MPAR(p)). The expected benefit-to-go 
function 1'() is the expected value of the K benefit-to-go function 1'()A  calculated for each 
inflow branch (Tilmant & Kelman, 2007).		

Equation (35) represents the final benefit equation including k inflow scenarios, where the 
variables in bold represent vectors (of size J reservoirs) and the symbol ′	represents the 
transpose vector. To calculate the vectors of parameters J'3 , K'3 , L'3 	of the lth cut that approximate 
the true benefit-to-go function 1'(), at each stage, storages B'3 are sampled for each lth cut and 
the corresponding 1'

3,A probabilities for each inflow scenario must be summed. As the inflow 
scenarios were generated by a probabilistic model (MPAR), the average of the k results is 
assumed as final value [Eq. (36) to Eq.(38)]. 

l = 	 (\C' − y′' . z') + ({'()
3 . |′'()

3,A + }'()
3 . ~′'
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3 ) +	 

Ä>,'
3,A . (|'() − |'

3 − ~'
A + ÅC(Ç' + É') + Ñ') + Ä?!,'

3,*,A . (	Ö'	W − Ü* .
|′'()
3,A + |′'

3

2
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1
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3,A1
A;) −{'

3 . |'
3 − }'

3 . ~'-)
B   (38) 

 

3.3.8 Preprocessing phase 

Figure 20 and Figure 21 present the pseudocode used to generate the synthetics inflows for the 
backward and forward phases, respectively. The index t represents the stage of the time horizon 
and the index k represent the inflow scenario. 
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Figure 20. Preprocessing inflows’ generation scenarios pseudo code for backward movement. 

 

Figure 21. preprocessing inflows’ generation scenarios pseudo code for forward movement. 

3.3.9 Backward phase 

During the backward optimization, an upper bound to the true benefit-to-go function 1@()	is 
calculated at the sampled points. We assume that the benefit-to-go 1@() at the last stage T is 
nonexistent (zero) [Eq. (39)]. 

J@()
3 =	K@()

3 =	L@()
3 = 0     (39) 

Figure 22 presents the pseudo code used in the backward optimization phase. At each stage t, 
|'
3 	and	~'-)

B  are sampled and 1'
3,A is calculated. The resulting benefit-to-go functions at the 

initial stage 1)3(|)3 , 5DB) represents the immediate benefits plus the expected benefits from the 
beginning to the end of the planning period (1 to T) for each storage sampled |)3 . It is therefore 
an upper bound to the “true” function (40). The accuracy of this approximation is evaluated 
by the forward simulation phase.  

l ≤ l (40) 

Sample 5'-)B  for  c = 1, 	 … , ë 
For c = 1, 	 … , ë  
 For í = 1, 	 … , â 
  Calculate 5'A = O0,' + P' .

E$,!
E$,!"#

. R5'-)
D − O0,'-)S + Q0,' . T'  

 End 
End 

Sample	5D7 for 9 = 1, 	 … ,ó 
Generate M synthetic inflow sequences 5'7  
For c = 1, 	 … , ë  

For 9 = 1, 	 … ,ó 
  Calculate 5'7 = O0,' + P' .

E$,!
E$,!"#

. R5'-)
7 − O0,'-)S + Q0,' . T'  

 End  
End 
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Figure 22. Backward optimization phase pseudo-code (adapted from Quentin Goor (2010)). 

3.3.10 Forward phase 

Simulating the system forward gives a lower bound l to the solution of the multistage decision-
making problem. Selecting an initial storage |) (e.g., |)) of the backward phase), the forward 
simulation procedure applies the mass balance equation (8) to find the storage |'(), and the 
cuts generated in the backwards procedure [Eq. (36) to (38)] to calculate the 1' at each stage. 
The sum of the immediate benefits found at each stage gives the optimal result, and considering 
a tolerance a, it is equivalent to the 1))(|)), 5DB) value found in the backward phase [Eq. (41)].  

l = l + 	a	 (41) 

The forward phase sets several hydrologic sequences in order to estimate the expected benefit 
as the mean benefit over all simulation scenarios [Eq. (43) to (45)]. 

1'
7 =	/'

7(3' , 5'
7, .') +	{'()

3 . |′'() + }'()
3 . ~′'

7 + �'()
3  (42) 

l7 =G/'
7(3' , 5'

7, .')

@

';)

 
(43) 

The mean benefit over all simulation scenarios is given by [Eq. (44)] and the standard deviation 
of the estimated lower bound can also be calculated by [Eq. (45)]. 

lF =
l7

ó
 (44) 

lE = ò
1

ó − 1
G(l7 − lF).
$

7;)

 

(45) 

J = number of reservoirs of the hydro-system 
K = number of inflow scenarios 
L = number of cuts that approximate the benefit to go function 
T = length of the planning horizon 
  
Initialize J@()3 = 0; 	K@()

3 = 0; 	L@()
3 = 0 for M = 1, 	 … , 	! 

For c	 = 	ë, 	ë − 1, 	… ,1 
For M = 1, 	 … , ! 

  Sample 3'3 
  Retrieve J'()3 ; 	K'()

3 ; 	L'()
3  

For í = 1, 	… , â 
   Retrieve synthetic inflow 5'A	 
   Calculate one-stage problem	f>,'

3,A ; 	f?!,'
3,*,A ; B'()

3,A ; 1'
3,A	 

  End 
  Calculate J'3 , 	K'3 , 	L'3 
 End 
End 
Calculate the upper bound l̅ 
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The tolerance a is given by 95% confidence interval around the estimated value of l. 

a ∈ úlF − 1.96
lE
√ó

	, lF + 1.96
lE
√ó

û (46) 

Figure 23 presents the pseudo code used in the forward simulation phase. 

 
Figure 23. Forward simulation phase pseudo-code (adapted from Quentin Goor (2010)). 

3.3.11 Convergence check 

If l is within the confidence interval [Eq. (46)], then the approximation is statistically 
acceptable. Otherwise, a new iteration is executed with an additional set of storage samples. 
This backward phase is then followed by a new forward simulation, which will exploit the cuts 
that have been generated during the previous backward recursions. The process is repeated 
until convergence. 

 Application 

3.4.1 The Paraná River Basin hydropower system 

The study area includes the upper Paraná River Basin, which encompasses a total of 65 
hydropower plants connected to the National Integrated System (SIN). Specifically, 56 of these 
hydropower plants are situated upstream of the Itaipu dam, as depicted in Figure 24. For the 
purpose of this study, the system operation boundary was defined to encompass the hydropower 
plants and their respective reservoirs located upstream and including the Itaipu hydropower 
plant. This boundary delineation allows for directly influence on the target environmental site. 

M = number of inflow scenarios 
L = number of cuts that approximate the benefit to go function 
T = length of the planning horizon 
Select an initial storage 3) 
 
For 9 = 1, 	 … ,ó  

For c = 1, 	 … , ë 
  Retrieve J'3 , 	K'3 , 	L'3 for all M = 1,… , L (from backward move) 
  Retrieve synthetic inflow 5'7  
  For M = 1, 	 … , ! 
   Solve the one stage problem 1'7 
   Save /'7(3' , 5'7, .') 
  End 
 End 
 Calculate l7 
End 
Calculate the lower bound l 
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Figure 24. Hydropower plant’s location in the Upper Paraná River Basin. 

3.4.2 Modeling representation 

In Brazil, the concept of firm energy refers to the maximum continuous energy production 
achievable by a hydropower plant, considering the occurrence of the driest sequence ever 
recorded in the river's flow history at the plant's location (Aneel, 2005). This firm energy value 
is further adjusted to account for a long-term non-attendance risk of 5% and serves as the basis 
for establishing power purchase agreements (Barros et al., 2003). Any energy generated above 
the firm energy level is referred to as secondary energy. 

The model takes into account the hydropower generation of individual hydropower plants, 
considering both firm power and secondary power categories [Eq. (47)]. The optimization of 
generation is performed throughout the planning period with the following considerations: (a) 
Prioritizing the fulfillment of firm power generation, which is associated with higher benefits 
and (b) Generating secondary energy when feasible. 

C'] = 	C†G=/7,' + C†HIJ,'	 (47) 

In a current and future wet scenario, where the generation of secondary energy does not impact 
future firm power generation, both energy types can be generated concurrently throughout the 
planning period. This allows for the utilization of available water resources to generate both 
firm and secondary energy. 

In a current dry and future wet scenario, the model can choose to generate both firm and 
secondary energy in the present (if feasible) to avoid potential spillage losses in the future. 
However, if it is not possible to generate both energies, the model prioritizes the generation of 
firm energy to meet the demand. 
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In a current wet and future dry scenario, the model focuses on generating only the firm energy 
and storing the surplus water to ensure the availability of firm energy generation in the future 
when water resources are expected to be scarce. 

In dry current and future scenarios, both firm and secondary energy generation can be affected. 
In such situations, the deficit in energy generation may need to be supplemented by 
thermopower generation or hydropower transfer from regions with higher storage levels. It is 
important to note that this study does not include the modeling of thermopower 
complementation or hydropower transfer between different basins. 

3.4.3 Input variables 

Table 8 summarizes the input variables and the corresponding references used to configurate 
the SDDP model.  

Table 8. SDDP optimization model Input data. 

Input data Data Type Variable Equation Reference 

Reservoir natural inflows(1) 
[m3/s] 

Monthly time-series 
(1994 – 2019) 

($, ($-! (9) (ANA), 2020) 

Net reservoir evaporation 
[mm/month] 

Monthly average time 
series 

-$ (8) (CCEE, 2020) 

Reservoir head [m] Level x Area x Volume 
Curves 

ℎ (10) (CCEE, 2020) 

Reservoir max and minimum 
storage [hm3]  

Level x Area x Volume 
Curves 

=$	>?@	=$ (3) (CCEE, 2020) 

Reservoir initial storage [hm3] Historical daily time 
series 

=$. (35) (ANA), 2020) 

Maximum and minimum 
turbined outflow [m3/s] 

Hydropower plant 
Technical data 

+$ and +$ (4) (ANA), 2020) 
(CCEE, 2020) 

Hydropower plants’ capacity 
[MW] 

Hydropower plant 
Technical data 

0/01 (12) (ONS, 2020) 

Hydropower plants’ firm energy 
[MW] 

Hydropower plant 
Operational data 

0A234/,$ (47) (Aneel, 2005) 
(MME, 2017) 

Energy price(2) [R$/MWh] Average price of 
hydraulic energy 

B$ (13) (MME, 2020) 

Operation and maintenance 
costs 

Not used C (13) - 

Penalty costs Calibration variable D$ (14) - 
Turbine efficiency(3) Technical data and 

operational time series 
E (10) (ANA), 2020) 

(CCEE, 2020) 
Number of inflow scenarios 
(simulation phase) 

20 M (42) - 

Number of inflow scenarios 
(backward phase) 

30 K (35)-(38) - 

Time step month t - - 
(1) The natural incremental (lateral) inflows of each reservoir of the Parana hydro-system were calculated 
based on the natural inflows, which disregard the operational effects of the upstream reservoirs’ cascade 
and the reservoir evaporation. The historical daily time series were converted to monthly average time 
series. 



 62 

(2) It was used a fixed energy price for all hydropower plants and months based on the average price of 
hydraulic energy. 

(3) The turbine efficiency of each hydropower plant was calculated as the monthly average of the quotient 
between the observed energy generated and the theoretical energy that would be generated by the same 
observed inputs with 100% of efficiency (see equation (10)). It was used a fixed turbine efficiency for 
each hydropower plant (i.e., head effect on the efficiency were not considered). 

Table 9 provides an overview of the key technical and operational characteristics of the 
hydropower plants included in the simulation. The highlighted hydropower plants in the table 
represent the ten facilities with the highest installed capacity. These ten plants collectively 
account for 73% of the total installed capacity and 67% of the total reservoir storage capacity 
within the system. 

Table 9. Technical data of modeling hydropower plants. Source: CCEE (2020). 

Id Name 
Min 

Storage 
[hm3] 

Max 
Storage 
[hm3] 

Max 
Release 
[m3/s] 

Capacity 
[MW] 

1 Serra do facão 1,752.0 5,199.0 324.0 212.6 
2 Emborcação 4,669.0 17,725.0 1,048.0 1,192.0 
3 Nova Ponte 2,412.0 12,792.0 576.0 510.0 
4 Miranda 974.0 1,120.0 675.0 408.0 
5 Capim Branco I (Amador Aguiar I) 228.3 241.1 495.0 240.0 
6 Capim Branco II (Amador Aguiar II) 878.0 879.0 537.0 210.0 
7 Corumbá IV 2,936.6 3,708.0 208.0 127.0 
8 Corumbá III 709.0 972.0 278.0 96.4 
9 Corumbá I 470.0 1,500.0 570.0 375.0 
10 Itumbiara 4,573.0 17,027.0 2,940.0 2,082.0 
11 Cachoeira Dourada 460.0 460.0 2,513.0 658.0 
12 São Simão 7,000.0 12,540.0 2,670.0 1,710.0 
13 Caçu 195.8 227.5 268.0 65.0 
14 Barra dos coqueiros 300.0 347.8 278.0 90.0 
15 Foz do Rio Claro (Eng. J.L.M Godoy) 95.3 95.3 298.0 68.4 
16 Salto 826.1 826.1 260.0 116.0 
17 Salto do Rio Verdinho 264.5 264.5 254.0 93.0 
18 Espora 71.0 209.0 72.0 32.1 
19 Camargos 120.0 792.0 220.0 46.0 
20 Itutinga 11.0 11.0 236.0 52.0 
21 Funil 304.0 304.0 585.0 180.0 
22 Furnas 5,733.0 22,950.0 1,692.0 1,312.0 
23 Mascarenhas de Moraes (Peixoto) 1,540.0 4,040.0 1,328.0 478.0 
24 Luiz Carlos Barreto (Estreito) 1,423.0 1,423.0 2,028.0 1,104.0 
25 Jaguara 450.0 450.0 1,076.0 424.0 
26 Igarapava 480.0 480.0 1,480.0 210.0 
27 Volta Grande 2,244.0 2,244.0 1,584.0 380.0 
28 Porto Colômbia 1,524.0 1,524.0 1,988.0 328.0 
29 Caconde 51.0 555.0 94.0 80.4 
30 Euclides da cunha 14.0 14.0 148.0 108.8 
31 Armando Salles de Oliveira (Limoeiro) 25.0 25.0 178.0 32.0 
32 Marimbondo 890.0 6,150.0 2,944.0 1,488.0 
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33 Água vermelha (J. Ermirio de Moraes) 5,856.0 11,025.0 2,958.0 1,396.2 
34 Ilha Solteira 8,232.0 21,060.0 9,399.0 3,444.0 
35 Barra Bonita 569.0 3,135.0 756.0 140.0 
36 Bariri (Álvaro de Souza Lima) 544.0 544.0 771.0 144.0 
37 Ibitinga 985.0 985.0 702.0 131.4 
38 Promissão (Mário Lopes Leão) 5,280.0 7,408.0 1,293.0 264.0 
39 Nova Avanhandava (Rui Barbosa) 2,720.0 2,720.0 1,431.0 347.4 
40 Três Irmãos 9,923.0 13,372.0 2,180.0 807.5 
41 Jupiá (Eng. Souza Dias) 3,354.0 3,354.0 8,344.0 1,551.2 
42 Porto Primavera (Eng. Sérgio Motta) 14,400.0 14,400.0 8,904.0 1,540.0 
43 Jurumirim (A. Avellanal Layder) 3,843.0 7,008.0 364.0 101.0 
44 Piraju 84.0 84.0 362.0 80.0 
45 Chavantes 5,754.0 8,795.0 626.0 414.0 
46 Ourinhos 20.8 20.8 486.0 44.1 
47 L.N. Garcez (Salto Grande) 45.0 45.0 580.0 74.0 
48 Canoas II 151.0 151.0 561.0 72.0 
49 Canoas I 212.0 212.0 567.0 82.5 
50 Capivara (E. Engenharia Mackenzie) 4,816.0 10,540.0 1,520.0 643.0 
51 Taquaruçu (Escola Politécnica) 677.0 677.0 2,550.0 525.0 
52 Rosana 1,918.0 1,918.0 2,468.0 354.0 
53 Itaipu 23,337.5 29,403.9 13,260.0 14,000.0 

 

3.4.4 Optimization procedure: finding the benefit-to-go functions 

To determine the benefits-to-go functions, the SDDP model was executed in monthly time 
steps over a 10-year period (T = 120 stages), utilizing k=30 backward openings and M=20 
simulation sequences. A ten-year period was chosen since it provides enough room to avoid the 
influence of initial conditions and allows the system to find a near steady-state operating 
function, as detailed in 3.3.6. Backward openings and simulation sequences were chosen based 
on pre-processing analysis, which aimed to find improved computational performance without 
interfering with the results performance. 

It is important to note that the cuts assumed at the final stage (T+1) can significantly impact 
the reservoirs' release decisions. For example, if zero future benefits are assumed for the final 
stage, the model might prioritize utilizing all storage volume in previous stages to generate 
electricity and maximize benefits instead of reserving a surplus for future needs (Rougé & 
Tilmant, 2016). To address this issue, we conducted the model in two consecutive runs. In the 
second run, we applied the cuts obtained from the first run at the final period.  
3.4.5 Reoptimization procedure: simulating the hydropower system operation 

For SDP models, Tejada-Guibert et al. (1993) proposed finding a steady-state operating 
condition of the system through iterative runs. This condition is then utilized to simulate 
optimal operating policies (releases) over longer periods. In the context of SDDP modeling, 
Rougé & Tilmant (2016) introduced the year-periodic reoptimization (YPRE) procedure. This 
procedure utilizes year-specific cuts (benefit-to-go functions) obtained from a near steady-state 
condition during the optimization process and applies these cuts to each year of the simulation 
horizon to find the optimal operating policies (releases). 
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In our study, we selected the cuts from the fourth year of the 10-year optimization period 
(artificially extended by considering the cuts of the first run at the final period of the second 
run) as the near steady-state condition. We chose this year after verifying that it was not 
biased by neither the initial conditions or end of period (Figure 25). 

Finally, the simulation was then run for a planning horizon T=108 months, from 2011 to 2019 
using the historical hydrological data. This period encompasses the full construction and 
operation of the modeled hydropower plants in the basin. The initial reservoirs’ storage was 
set according to the reservoirs’ storage in the first day of 2011 and the natural hydropower 
plants inflows spanning from 2011 to 2019. The results were compared with the historical 
operation for the same period. 

 

Figure 25. System-wide benefits over the 8 simulation years using the YPRE procedure. 

 Results 

3.5.1 Convergence: forward and backward movement 

The model runs converged after 15 iterations (Figure 26). 

 

Figure 26. Convergence of the SDDP run. 
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3.5.2 Observed energy versus Simulated energy 

Table 10 compares the total observed energy and the total simulated energy produced by each 
hydropower plant during the simulated period (2011-2019). The mean error (2.85%) indicates 
the consistency of the model in reproducing the operation, despite the modeled region including 
a part of the whole SIN. A higher value was anticipated since real operating decisions involve 
additional factors not considered in this study (e.g., shutdowns for maintenance or political 
decisions), which can reduce or alter the generation distribution. 

Table 10. Individual observed energy versus simulated energy produced from 2011 to 2019. 

Id Name 

Total energy 
produced 
[GWh] - 
Observed  

(2011 - 2019) 

Total energy 
produced 
[GWh] - 

Simulated  
(2011 - 2019) 

Error (%) 

1 Serra do facão 5,572.3 6,195.6 11.18 
2 Emborcação 25,170.0 26,053.8 3.51 
3 Nova Ponte 15,017.6 16,153.1 7.56 
4 Miranda 12,711.7 10,057.9 -20.88 
5 Capim Branco I (Amador Aguiar I) 10,530.3 8,112.8 -22.96 
6 Capim Branco II (Amador Aguiar II) 9,095.8 6,592.8 -27.52 
7 Corumbá IV 3,742.8 4,056.9 8.39 
8 Corumbá III 2,578.9 2,833.2 9.86 
9 Corumbá I 14,086.3 15,124.1 7.37 
10 Itumbiara 50,532.9 52,265.4 3.43 
11 Cachoeira Dourada 23,474.8 22,139.4 -5.69 
12 São Simão 88,638.5 89,937.8 1.47 
13 Caçu 3,043.6 3,059.6 0.52 
14 Barra dos coqueiros 4,212.3 4,414.4 4.80 
15 Foz do Rio Claro (Eng. J.L.M Godoy) 3,329.7 3,301.2 -0.85 
16 Salto 5,616.6 5,496.0 -2.15 
17 Salto do Rio Verdinho 4,886.7 4,839.2 -0.97 
18 Espora 2,125.8 2,050.7 -3.54 
19 Camargos 1,124.2 1,437.3 27.85 
20 Itutinga 1,583.3 1,571.2 -0.76 
21 Funil 7,041.3 4,336.9 -38.41 
22 Furnas 32,854.9 31,209.5 -5.01 
23 Mascarenhas de Moraes (Peixoto) 17,262.2 17,288.0 0.15 
24 Luiz Carlos Barreto (Estreito) 28,095.0 30,105.0 7.15 
25 Jaguara 19,404.1 20,862.9 7.52 
26 Igarapava 8,388.3 8,024.1 -4.34 
27 Volta Grande 14,219.3 14,444.5 1.58 
28 Porto Colômbia 13,731.3 11,441.8 -16.67 
29 Caconde 2,286.5 2,730.3 19.41 
30 Euclides da cunha 3,304.5 3,770.6 14.10 
31 Armando Salles de Oliveira (Limoeiro) 959.9 948.2 -1.22 
32 Marimbondo 46,511.4 50,013.0 7.53 
33 Água vermelha (José Ermirio de Moraes) 53,380.9 58,512.1 9.61 
34 Ilha Solteira 123,693.8 127,758.8 3.29 
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35 Barra Bonita 4,854.9 5,792.2 19.31 
36 Bariri (Álvaro de Souza Lima) 5,817.2 6,473.3 11.28 
37 Ibitinga 6,096.9 7,500.3 23.02 
38 Promissão (Mário Lopes Leão) 9,929.0 11,267.0 13.48 
39 Nova Avanhandava (Rui Barbosa) 12,605.1 13,480.7 6.95 
40 Três Irmãos 21,052.2 23,866.3 13.37 
41 Jupiá (Eng. Souza Dias) 71,464.3 77,756.3 8.80 
42 Porto Primavera (Eng. Sérgio Motta) 83,263.5 85,172.0 2.29 
43 Jurumirim (A. Avellanal Layder) 4,960.6 5,069.4 2.19 
44 Piraju 3,876.1 3,809.1 -1.73 
45 Chavantes 16,822.4 16,874.2 0.31 
46 Ourinhos 1,937.3 2,309.1 19.19 
47 L.N. Garcez (Salto Grande) 4,378.7 4,340.2 -0.88 
48 Canoas II 4,282.4 4,390.1 2.52 
49 Canoas I 5,006.4 5,148.8 2.84 
50 Capivara (E. Engenharia Mackenzie) 31,887.4 36,930.4 15.82 
51 Taquaruçu (Escola Politécnica) 21,401.0 21,395.8 -0.02 
52 Rosana 19,337.5 16,157.6 -16.44 
53 Itaipu 734,548.6 755,931.9 2.91 

TOTAL 1,721,729.2 1,770,803.2 2.85 
 

3.5.3 Annual and monthly energy production behavior 

Figure 27 illustrates the comparison between the annual observed energy and the annual 
simulated energy from 2011 to 2019 in the cascade hydropower system of the study area, along 
with the monthly energy production variability. Following that, Figure 28 presents the annual 
energy production of the ten hydropower plants with the highest installed capacity. 

 

Figure 27. Comparison between simulated x observed monthly energy produced. 
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Figure 28. Comparison between simulated x observed annual energy produced. 

Table 11 shows the performance results based on two evaluation metrics: the Nash-Sutcliffe 
coefficient (NS) and the coefficient of determination (r2) (Krause et al., 2005). Most hydropower 
plants presented coefficients (r2 and NS) above 0.9, which indicates the consistency of the 
model to represent the individual hydropower plants’ operation. 

Table 11. Performance coefficients of Annual Energy Production. 

Id Hydropower Plant r2 (1) NS (2) 

2 Emborcação 0.396 0.151 
10 Itumbiara 0.941 0.935 
12 São Simão 0.992 0.985 
22 Furnas 0.681 0.669 
32 Marimbondo 0.934 0.907 
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33 Água vermelha (José Ermirio de Moraes) 0.966 0.921 
34 Ilha Solteira 0.989 0.981 
41 Jupiá (Eng. Souza Dias) 0.992 0.945 
42 Porto Primavera (Eng. Sérgio Motta) 0.993 0.984 
53 Itaipu 0.997 0.994 

(1)	+* = F
∑ (7&-78)(,&-,8)'
&(%

:∑ (7&-78))'
&(% :∑ (,&-,8))'

&(%
G

*

				(2)	H= = 	1 −
∑ (7&-,&))'
&(%
∑ (7&-78))'
&(%

  

where i represents the register number, O; is the observed output at i; P; is the predicted output at i; KL 
is the mean of the observed output; 0L is the mean of the predicted output; I is the total number of 
samples. 	
 

 Conclusion 

In this chapter we investigated the applicability of a hydro-economic model based on the 
Stochastic Dual Dynamic Programming (SDDP) method to simulate the energy production of 
the individual hydropower plants of the Paraná River Basin, which is part of the Brazilian 
country large-scale power system. We conclude that the model replicated and captured the 
primary patterns of historical reservoir operation, yielding accurate results for a significant 
portion of the observed operational range even though only a part of the whole Brazilian power 
system (SIN) is modeled. The model overall overestimated the energy production (by 2.85% in 
total), which suggests that intervening factors driving the operation of the whole integrated 
system may produce decisions that cannot be totally explained by the input variables applied 
in this study. 

Despite the limitations, the model shows potential to be applied under different hydroclimatic 
scenarios and water user demands to enhance our understanding of water use trade-offs. The 
improved understanding and identification of trade-offs can contribute to the development of 
more effective strategies for managing future water use. This is particularly crucial in the study 
area where the operation of reservoirs has posed challenges to the natural equilibrium of the 
river basin, thereby rendering ecosystems and communities vulnerable. 

 Appendix I. MPAR autoregressive model 

A Periodic Autoregressive (PAR) model is a type of time series model that incorporates both 
autoregressive components and periodic patterns. It's specifically designed to capture periodic 
fluctuations or seasonality in time series data. In a PAR(p) model, the autoregressive part 
captures the dependencies of the current value on its past values, similar to traditional AR 
models. The term "order" refers to the number of lagged values of the variable being predicted 
that are used as predictors in the model. For order °	equal to one, the model uses only the 
most recent lagged value (t-1) of the variable to predict its current value. 

In addition to this autoregressive component, a multi periodic MPAR model includes terms 
that account for the periodic patterns inherent in the data. By including both autoregressive 
and periodic terms, PAR models can effectively capture both short-term dependencies and 
longer-term periodic patterns in the data. 

Equation (48) shows the general form a MPAR model of order 1. 
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s
5'(`) − O0,'(`)	

Q0,'(`)
t = P'(`). s

5'-)(`) − O0,'-)(`)

Q0,'-)(`)
t + T'(`) 

(48) 

where: 

The indexes ` and c represent the reservoir and time-step; P' is the autoregressive coefficient 
of order 1; O0,'(`) and Q0,'(`) represent the periodic mean and standard deviation for each time-
step. For example, for monthly time-steps, they represent the mean and standard deviation of 
the given month of the year; T'(`) represents the stochastic noise. 

A stochastic noise of zero mean and with constant variance describes random variations in data 
that, on average, do not introduce any systematic bias (since the mean is zero), but they do 
exhibit a level of variability or dispersion around that mean. The constant noise indicates that 
the model is not making larger errors in predicting prices for higher flow values compared to 
lower-flow ones. 

Implementing this model requires estimating the autoregressive coefficient P' and the mean 
and standard deviation parameters for each time-step. It is possible to use techniques like least 
squares estimation, maximum likelihood estimation, or other suitable optimization methods to 
fit the model to data. 

 Appendix II. Code and Programs Information 

The code adaptations in this study were designed by the author using the MATLAB (version 
R2021a) language. 
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The development of this work has allowed several insights that lead to some key policy 
implications, as well as technical and specific learnings. 

The findings indicate that we can enhance the capacity of water systems to incorporate 
historically suppressed environmental water demands without imposing a hard constraint to 
economic uses. Defining the ecosystem functions to be restored and developing ecological-flow 
relationships enables the quantification of environmental performance and trade-offs. 

Improving reservoir operating strategies is particularly crucial when facing drier conditions. 
Reoperation can work as an adaptive measure not only to mitigate energy losses under a 
changing climate but also to provide flexibility to adjust flow releases and reduce the gap 
between drought conditions, which is crucial to allow ecosystem recovery and functioning over 
time. 

It is necessary to shift the perception of system reoperation impacts from a short-term 'crisis 
response' to a long-term 'risk response.' The findings of this doctoral dissertation demonstrate 
that considering the long-term effects of operation when designing operating strategies for 
multiple users leads to improved performance in both hydropower generation and meeting 
ecosystem demands. 

Instead of fixed (static) environmental water needs, implementing dynamic flow regimes (DAE-
flows) that combine different flow patterns throughout the planning horizon based on 
hydrological conditions and long-term functionality enhances the flexibility and resilience of 
ecosystems. Such an approach conserves water in some periods, at the expense of some 
environment (e.g., fish recruitment) or hydropower losses, to improve success in the long-term. 

Even under a significant dryer climate scenario, a long-term approach to adaptation can allow 
maintenance and improvement of environmental performance in most years, so during severe 
droughts the water can still be reallocated to hydropower (as it is currently done) but at a 
lesser cost to the environment. In this context, water storage becomes increasingly important 
to meet future energy and environmental needs, given it provides much needed system 
flexibility.  

Reconciling environmental demands and other economic objectives such as hydropower is a 
water allocation exercise, which bear tradeoffs that need to be evaluated and fairly shared 
among society who will benefit from both economic outcomes and environmental quality. 

By quantifying the tradeoffs across various levels of ecosystem and hydropower performance, 
it becomes possible to identify points of optimal compromise, facilitating the negotiation process 
of solutions. Such points indicate that significant environmental restoration can be achieved 
without overly compromising energy production. Quantifying the trade-offs between ecosystem 
performance and hydropower objectives facilitates negotiations with electricity and water 
agencies, enabling a balance between multiple interests. 

Finally, successful pathways leading to adaptation to future scenarios when both climate and 
competing water demands are changing can only be found by constantly exploring new 
solutions with integrated water and energy policies and mechanisms to avoid the recurring 
conflict between energy and the environment during droughts. The better the water allocation 
to ecosystem needs during normal years, the healthier, more resilient it will become, and the 
better it can withstand incoming droughts and share water with other human demands. 


