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ABSTRACT

HYDRAULIC AND WATER QUALITY MODEL FOR A RIVER NETWORK

A river network system consisting of branches and loops is
sometimes complicated by downstream effects from tides, lakes, and
because of this, management of water quality, sediment control, and
floods, in such rivers is a difficult task. Development of tools to
aid in the management decision-making process is an important area of
research; ultimately resulting in more reliable results. River behav-
ior can be modeled in detail (one-,two-,or three-dimensional models)
with a digital computer using numerical methods. Usually the level of
detail is determined by the size of the system. Large system models
are restricted in size and detail due to the high cost and storage
requirements of the computer.

A ﬁodel was developed to simulate the hydraulic behavior and water
quality of a river network on a one-dimensional representation. The
two complete St. Venant equations and the transport equation were solved
by the finite difference method. The transport equation utilizes the
advection, dispersion, and source and sink terms. The system of equa-
tions resulting from use of an implicit scheme was solved by a modified
Gauss elimination procedure.

The model can simulate biochemical oxygen demand,vdissolved oxygen,
or any other conservative substance. The basic equations are solved;
thus, the simulation of other substances can be added to the model by
including the mathematical description of the reaction processes in the

source and sink terms of the transport equation.
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The hydraulic module of the model was adjusted and verified with
data from the Jacui Delta, Brazil. Good agreement between the calcula-
ted results and the observed data resulted. The water quality model
was tested under hypothetical conditions for the same Delta in order to
demonstrate the utility of the mathematical model in making decisions
at the management level. This model is a mathematical method that can
be used in large systems of variable complexity to help in understand-
ing their processes, controlling data measurements, and reaching sound
management decisions.

Carlos E.M. Tucci
Civil Engineering Department

Colorado State University
Fall 1978
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CHAPTER I

INTRODUCTION

A. Water Quality Modeling

Environmental behavior is complex; consequently, superficial

analysis of a problem may result in inaccurate solutions that reduce
project reliability. A mathematical modeling approach to water quality
analysis is necessary for precise answers to intricate problems.

If a mathematical model is designed to use as a predictive tool it
must accurately reproduce natural processes. Accuracy is determined by
the available data and model formulation. In addition, uncertainty in
recording and processing data, and the quantity of available data are
constraints that can make the model unreliable. The formulation of the
hydrodynamic behavior of rivers or estuaries has been well defined and
has produced good results in many models.

The transport processes of a substance in the water body include
advection, dispersion and the internal reactions. Reaction processes
are not well defined due to their interdisciplinary nature. Iteration
of chemical, biological, and physical factors are highly complex and
difficult to formulate.

Simulation of hydraulic behavior is achieved through two partial
differential equations: the continuity equation, based on mass conser-
vation; and the momentum equation, based on momentum conservation. Sol-
ving these equations requires information on river geomorphology, values
at the boundaries and at the initial time step for all system sections.
The solution gives the discharge, area, velocity, and water surface lev-
el at the sections which provide basic information for water resource

projects such as flood control, hydropower, and water quality.



Distribution of a substance in a river is simulatedfby the
transport equation that represents these phenomena by advection, disper-
sion, source, and sink terms. The solution of this equation requires
knowledge of flow behavior, concentration distribution at the bound-
aries, and at the initial time step.

Some models couple the three governing equations into two and solve
the system of equations. Other models solve the three equations by first
solving the hydraulic equations and then the transport equation for the
required parameters.

Simulation of a specific substance is related to the objectives of
the study and is also a function of a reliable mathematical formulation
for the reaction processes and the available data.

This type of model may include assumptions that minimize
computational cost and inefficient calculations. Steady flow is an as-
sumption widely used in systems where a critical constant discharge can
be assumed in the analysis. In estuaries, rivers near an estuary, or a
river where the pollution source is from runoff, the unsteady flow model
is a better simulator. In order for the mathematical model to bé accu-
rate, it must have a three-dimensional formulation. In practice, this
type of model usually requires much computation, storage, and data gen-
erally not available. Two- and one-dimensional models can be used for
practical purposes. One-dimensional network models are able to accura-
tely simulate a broad, complex system a£ minimal cost. The two-

dimensional models are commonly used to simulate a specific problem in

more detail.



B. Summarz

The purpose of this study was to develop a model for unsteady flow
conditions that simulate the hydraulic and water quality response of a
one-dimensional river netwark. Such a model is useful for simulating
a river near an estuary with a geomorphology system composed of con-
nected branches and loops. It can also be used with rivers that have
islands, tributaries, and meanders connected with the main flow.

The model developed in this study was divided into two parts: the
hydraulic model and the water qualit& model. The hydraulic model solved
the St. Venant equations by a forward implicit numerical scheme. The
confluence condition was defined by use of continuity and momentum
equations in steady condition through three sections positioned near the
confluence. The system of equations that resulted from use of the im-
plicit scheme were solved in each time step. Since the coefficient
matrix is sparse and non-banded, a method was developed to minimize th¢
storage and calculations of the Gauss elimination procedure.

The model utilizes the two complete St. Venant equations, there-
fore, it has applicability when there are downstream effects. In such
a case, the storage and kinematic wave methods are not applicable.
Another advantage of the hydraulic model is that it is closer to the
physical characteristics of the system.

The water quality model uses the solution of the hydraulic model
as input to solve the transport equation in each time step. The one-
dimensional transport equation utilizes advection, dispersion, source
and sink terms. Water quality parameters that can be simulated are:
conservative substance, biochemical oxygen demand, and dissolved

oxygen. The model can be modified without major effort to simulate
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other parameters. A backward implicit finite difference scheme was
used. At the confluence the equations were derived based on conserva-

tion of mass.

The convection term of the transport equation can create a
numerical dispersion. An accuracy analysis was performed based on a
simplified form of this equation. Also, a numerical solution was com-
pared to the analytical solution.

The Jacui Delta, located near Porto Alegre, Brazil was used to
test the model. The Delta has a watershed of approximately 100,000 km2
where four main rivers converge. Two of the rivers are very polluted
and the amount of pollution in the other two is expected to increase
dué to industrial development.

The available data used in the simulation of the hydraulic behavior
showed good agreement between observed and calculated values. Since a
complete set of data was not available for simulating water quality,
tests were performed with a confluence system to demonstrate model
capability.

Application of the model to management decision making was
demonstrated in the Jacui Delta with a hypothetical critical condition
to show how this model could be used in a complex river system. The
advantage of this model is that it has the capability to analyze broad
complex systems without requiring large amounts of data and calculation.
The one-dimensional approach is a limitation for those systems with a

wide section, such as lakes and some estuaries.



CHAPTER IT

LITERATURE REVIEW

A. Review of Hydraulic Models

A.1 Introduction

Ordinarily, flow in a river systemis gradually varied and unsteady.
The continuity and momentum equations, also called St. Venant equations,
are used to express this type of flow. There are many assumptions for
the different uses of the equations, all related to the problems that
must be solved. For example, the steady state condition, where flow
does not vary with time, is used in backwater calculation and steady
state water quality models. .

The one-dimensional equations of flow assume the transverse
and vertical velocities are low compared to the longitudinal one. In
estuaries where the sections are wide, the one-dimensional assumption is
usually invalid. In this case two-dimensional models are used to
simulate velocities in the transverse and longituQinal directions. A
three-dimensional model can be used when vertical stratification is also
important.

There are some estuaries with a complex system of branches, loops,
and confluences. Here the flow division among the confluences and the
tide effect from downstream complicates the problem. A broad river
network system is not only expensive to simulate utilizing two- or
three-dimensional models, but the data required are difficult and expen-
sive to obtain. The one-dimensional assumption is the best choice if it

does not create serious errors in the solution.



Simplifications of the one-dimensional St. Venant equations have
been widely used. When the storage effect is the important phenomenon
only the continuity equation is used. This model is called Storage
Routing. The Kinematic Wave Model considers the storage and
friction effects of flow using the continuity equation and the momentum
equation with the bottom slope equal to the friction slope. The
Diffusion Wave Model uses the continuity equation plus the momentum
equation with the pressure, friction, and bed slope terms. When the two
complete St. Venant equations are uséd it is called the Dynamic Wave
Model. The first two models are usually used when the bottom slope is
much greater than the other terms of the momentum equation (Henderson,
1966). These methods cannot be applied when there are significant back-
water effects or inversion flow, as occurs in some rivers near the sea
or near the confluence of a tributary of the main river. Ponce et al.,
(1978a), discussed the applicability of Kinematic and Diffusion Models by
comparing the propagation characteristics of sinusoidal perturbations
to the steady uniform flow. They concluded that the important physical
characteristics in determining the applicébility of the approximate
models are the bed slope and wave period, and that the Diffusion Model
has a wider range of application than the Kinematic Model.

A.2 Review of one-dimensional models

A century ago, St. Venant developed the equations for gradual
unsteady river flow, based on the conservation of mass and the conser-
vation of momentum. The derivation of the one-dimensional version of
these equations has been described by Chow (1959), Harleman (1971),

Chen (1973), Yen (1973), and Liggett (1975).



Valley Authority (TVA) applied a 'leap-frog'" explicit scheme to problems
of flood control and navigation. Ballofet (1969) applied the explicit
method for estuaries. A generalized computer program was reported by
the U.S. Army Corps of Engineers (1976).°

Characteristic methods are usually utilized in solving problems
through the use of a characteristic grid or a rectangular grid in
explicit or implicit formulation (Wylie, 1970). Amein (1966) tested a
characteristic grid for flood routing on the Neuse river in North
Carolina. Liggett and Woolhiser (1967) applied this method to overland
flow problems. Wylie (1970) used an implicit formulation of a rectan-
gular grid in flood routing. Chen (1973) compared the explicit
rectangular grid formulation with other schemes in a hypothetical
unit-width open channel.

Implicit shemes have nonlinear or linear formulation. They are
also classified by grid distribution. Preissmann (1961), as reported by
Liggett and Cunge (1975), used a linear formulation of a forward impli-
cit scheme. Abbott and Ionescu (1967), and Vreugdenhil (1973) used the
central implicit scheme. Baltzer and Lai (1968), Amein and Fang (1970),
and Freéd (1976) used. a nonlinear implicit formulation.

Miller and Cunge (1975) summarized some of the applications of one-
dimensional models. Liggett and Cunge (1975) also described some
guidelines for the use of those scheﬁes.

Analysis of numerical stability and convergence has been
discussed in the literature by many authors. -Leendertse (1967) intro-
duced the ratios of the damping factor and celerity in examining the
accuracy of the numerical solution. Vreugdenhil (1968) applied those

ratios to three different schemes. The Von Neumann method, applicable



to the stability analysis of linear equations, was used by Abbott and
Ionescu (1967), Leendertse (1967), and others. They concluded the
solution is unconditionally stable for the weighting factor between 0.5
and 1.0. Since the analysi;lused a simplified linear version of the
equations, some oscillations can still persist.

Fread (1973, 1974) studied the variation of the time step in the
implicit schemes and concluded that accuracy decreases as the time in-
crement and the time weighting factor increase. However, when the time
weighting factor increases the solution becomes more stable. Price
(1974), using four numefical schemes for a flood routing problem, con-
cluded that optimum accuracy is obtained when the finite difference
time step is chosen approximately equallto the space step divided by
the kinematic wave speed. The time step is an important factor in the
computational cost. When routing sediments where the variations are
slow in time, the time step can be on the order of days. In the case
of flood waves, the time is usually on the order of hours. In estua-
ries with tidal effects, the time step is usually on the order of
minutes.

The literature on confluence boundary condition can be classified
according to the following descriptions. Vreugdenhil (1973), Feigner
and Harris (1970), and Ballofet (1976) used only the continuity
eQuation at the junctions, which does not consider losses at the
confluences. Cunge (1975) suggested the use of both equations in
steady state condition at the junctions. Yen and Akan (1976) used an
overlapping concept with a four-point implicit scheme for flood routing
through the junctions. This concept accounts for the downstream back-

water effects only for adjacent branches of the confluence.
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* Gunaratnam and Perkins (1970), in a broad analysis of the numerical
methods apﬁlied to the St. Venant equations, described the finite
difference schemes and developed a finite element method for the
governing equations. In the junctions they used the steady conditions.
Dailey and Harleman (1972) used this formulation for the hydrodynamics
equations on a one-dimensional model of transient water quality in an
estuary network. Keuning (1976) applied the finite element method in
combination with Galerkin's principle to the unsteady equations for one-
dimensional flow in a channel connected with the sea. Cooley and Moin
(1976) also developed a finite element solution for those equations and

compared them with other methods. Partridge and Brebbia (1976) used a

six-node finite element in implicit and explicit time integration models
for coastal engineering problems.

B. Review of Water Quality Models

The difference among the mathematical models developed for water
quality are based on the following conditions: dimension of the model,
system characteristics, type of flow, numerical methods, type\of source,
substance, or multiple reaction simulation.

Dimension

To obtaina complete description of the problem, a three-dimensional
representation should be used. Pritchard (1971) described the three-
dimensional equations for mass and ﬁomentum conservation and the trans-
port equation. Leendertse, et al., (1973) described a three-dimensional
model of estuaries, bays, and coastal seas in which nonisotropic density
conditions exist. This type of model is still in a stage of development

due to the basic difficulties of getting large amounts of data, a

restricted amount of computer storage, and a vast amount of computations.
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The two-dimensional models are averaged over a direction either
vertical or transverse. In shallow bays, Leendertse (1971), and Hann and
Young (1972) neglected the variation of the vertical direction. Other
models use the vertical and Iongitudinal directions for stratification
problems.

The one-dimensional transport equation is a reasonable
approximation for the stream which the transverse effect of the non-
uniform velocity can be well described by the mean velocity and the
longitudinal dispersion coefficient. In this model the transverse and
vertical direction are averaged. Harleman (1971) showed that a term
involving the cross product of the longitudinal velocities and concen-
trations deviations about the cross section mean (dispersion) plus the
spatial mean value of the turbulent diffusivity is the longitudinal
dispersion coefficient. Taylor showed that the former is more than two
orders of magnitude larger than the turbulent diffusivity effect.

System Characteristics and Type of Flow

The one-dimensional transport equation for unsteady flow is

0(AC) , 3(qC) _ 3
at ax X

o€, 2.1
(EA 55 + S, (z.1)
where A is the area, Q the discharge, C the concentration, E the

longitudinal dispersion coefficient, x the space, t the time, and Si

is the source and sink term.
When all processes are steady-state and also uniform flow, Equation

(2.1) for a first order decay source and sink term becomes

v—=E—-—~2~KC (2.2)

where K1 is the BOD carbonaceous reaction rate; and v is the mean

velocity.
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Assuming that dispersion is negligible and since the flow is
uniform, dx = v dt, and Equation (2.2) yields

3¢ _
=== - KC (2.3)

which is the first order decay equation used by Streeter and Phelps
(1925). They published the first theoretical model of stream waste
assimilative cépacity using Equation (2.3) for BQD and Equation (2[4)
for DO so that

aC
do _ y ¢ - K, (C

ot 1 bod 2(Cg - Cdo) (2.4

where K2 is the reaeration coefficient; CS is the saturation dis-

solved oxygen concentration; C is the DO concentration; and C is

do bod
the BOD concentration. The assumptions made in this model were steady
state conditions, the removal of BOD by the oxidation of the carbon-
aceous element of the‘waste, and the supply of oxygen by reaeration
through the water surface.

Steady flow models are reported in the literature and are very
useful when this flow condition can be assumed in a river. The QUAL I
model by the Texas Water Development Board (1971) uses Equation (2.1).
However, the partialnderivative of time is changed to A 3C/d3t since
the model assumed steady state, nonuniform flow.

In many rivers the critical condition is the low flow during the
dry season. The steady state flow condition cannot be used for an
accurate solution in estuaries where the flob is continuously changing,
some urban watersheds where the flood carrieé more pollutants, or a
flood that can wash the benthal deposit.

Models for unsteady condition were developed with the improvement

of the solution of the St. Venant equations and the need to solve an
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estuary type of problem. Harleman (1971) classified models for
estuaries as tidal (real time) and non-tidal. The former uses a small
time increment and considers the velocity variation during the

tidal period. The latter uses a At equal to the tide period.

Terms in the transport equation are averaged during this period.
0'Connor (1965) proposed a model that considers the pollutant
distribution only over a long period. Harleman (1971) pointed out
that non-tidal models are forced to exaggerate the effects of dis-
persion in order to simulate the advection upstream from a discharge
point.

The unsteady flow models for water(quality use the two St. Venant
equations and the transport equations (2.1). The solution of this model
in a nonuniform channel has to be obtained by numerical solutions.

When the river can be adequately characterized by constant parameters
such as area, velocity, longitudinal dispersion, and pollutant input,
there are analytical solutions available. Such conditions and solutions

were described by O'Connor and Thomann (1971), and Hann and Young (1972).

Numerical Methods

Numerical methods to solve the system of partial differential
equations are usually classified as the finite difference method and
the finite element method. The finite difference method is the one fre-
quently used. The finite difference methods approximate the functions
and partial derivative by the discrete values in the plant x-t
(unsteady one dimensional). The finite element methods uses a piece-
wise continuous approximation for the function in the solution region.
This approximation is adjusted to the exact continuous solution by the

weight residuals method or other procedures.
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The St. Venant equations constitute a -hyperbolic system of
equations. The transport equation (2.1) is a parabolic type. The
numerical scheme is chosen according to the conditions of stability
and accuracy of the scheme. The schemes are usually classified as
forward, central, and backward in time and space.

Stone and Brian (1963) used weighted coefficients in space to
evaluate the term according to the time of the equation, resulting in
a six-point implicit scheme (Figure 2.1). The stability of a parabolic
partial differential equation was discussed by Keller (1960) using the
maximum principle for a central scheme. Lanna and Moretti (1977)
extended Keller's procedures for a forward and backward scheme.

Dresnack and Dobbins (1968) described some of those schemes and
showed that the numerical solution can create a numerical dispersion
in the convective term. Bella and Dobbins (1968) described a multi-
step procedure in a finite difference calculating first the convective
terms and then the dispersion term, and compared them to the analytical
solu;ion. ‘

Leendertse (1967) described a procedure to calculate the accuracy
of numerical schemes by the ratio of the numerical and analytical solu-
tion of a linear version of the transport equation. The analytical
solution was obtained by a Fourier series expansion and the ratios con-
sidered the numerical dissipation and dispersion. Siemons (1970) used
this procedure in analyzing the weighting of the concentration in time
for the equation in the one- and two-dimensional equations. Holly

(1975) used this procedure to compare nine numerical schemes for the

convection equation. Berhoff (1973), also using those ratios, compared
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the explicit, central implicit, and splitting central implicit and
concluded the last of the three demonstrated the greatest accuracy.

Hann and Young (1972) made numerical tests for simplified systems
and compared them to the analytical solution for an explicit central
scheme. Basaran (1976), using numerical experiments, compared the
backward and central implicit schemes and concluded that use of the
backward scheme was more appropriate.

Lee and Harleman (1971) used the Stone and Brian six-point scheme
for the transport equation and the scheme used by Abbott and Ionescu
(1967) for the hydraulic equations to solve the system of equations.
The FWQA dynamic model described by Feigner and Harris (1971) was de-
Qeloped to handle a complex network of channels, in particular the
Sacramento-San Joaquin Delta in California. This model used the momen-
tum equation in the branches and the continuity equation in the
confluences in an explicit formulation. The transport processes were
simulated by a simplified formulation of the advection and by an eddy
diffusion equation. It did not take into account longitudina& disper-
tion. The reaction processes were assumed to be of the first order.

Berhoff (1973) ‘used the splitting central implicit scheme for the
transport equation. In the confluence formulation he used an explicit
formulation for the node concentration. )

The finite element was used by Holly and Harleman (1972) for a
model of transient water quality estuary networks. The hydraulic

formulation of this model was based on the work of Gunaratnam and

Perkins (1970).
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Type of Source

The external sources in a water quality model can be point and
non-point. A point source is'well identified by the outlet of sewers
and tributaries and it is easier to evaluate the discharge and the
concentrations that enter the river than the non-point sources.

Non-point sources, such as urban runoff, were reported by Weibel
et al. (1964) as a significant source of pollutants. Dornbusch et al.
(1974) analyzed the pollution caused by agriculture runoff. Overton
and Meadows (1976) classified the methods that evaluate the non-point
sources as a concentration-flow rating curve, regression models, and a
pollutant removal model.

Substance or Multiple Reaction Simulation

Substances can be conservative and nonconservative in terms of
internal reactions. The mathematical formulation for conservative
substances uses only the transport equation without the source and sink
term for internal sources. Nonconservative substances may have dif-
ferent formulations based on the type of element.

Many models reported in the literature have the capability of
simulating different types of substances. The basic difficulty is that
chemical, biological, and physical processes that modify the
concentration are difficult to evaluate; :and in some cases the
mathematical formulation is a rough estimate.

In 1925, Streeter and Phelps formulated the source and sink term
for the Biochemical Oxygen Demand and Dissolved Oxygen reactions
(Equations (2.3) and (2. )) assuming only the carbonaceous stage of BOD
and the reaeration on the river surface. Thomas (1948) used a coef-

ficient KLS to account for the loss of BOD for sedimentation in the
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river. Dobbins (1964) used the coefficient La to account for
addition of BOD to the river through scouring of the benthal deposit,
and Db as the net rate of consumption of oxygen by all processes
other than the biological oxidation of the flowing BOD load.

The complete decomposition of waste by oxidation has two stages:
carbonaceous and nitrification. The nitrification process uses oxygen
for oxidation of ammonia to nitrites and the oxidation of nitrites to
nitrate. The multistage reaction process is usually simulated by a
sequential reaction model or a feédback model. Thomman et al. (1970)
used a feedforward multistage reaction for the Delaware estuary.
0'Connor, Thomann, and DiToro (1973) combined a model with C-BOD-DO
‘reactions, nitrogen cycle, total DO model, Phytoplankton Dynamics
Model, and the organic and inorganic forms of phosphorus. It was used
in the Potomac estuary with a hydraulic model in a non-tidal structure.
Najarian and Harleman (1975) developed a model for temperature, salt,
C-BOD, fecal coliform, the nitrogen cycle, and DO. This model used a
unsteady flow hydraulic formulation. Amein and Galler (1978) developed
a model for Water Quality Management for the Lower Chowan River in
North Carolina. This model simulates the unsteady flow equations by
means of a four-point iﬁblicit scheme and the multistage reactions of
C-BOD-DO, nitrogen, and algae.

Gransrud et al. (1976), in an evaluation of the water quality
models, chose 14 models to analyze and classify into six groups:
steady-state stream models (DOSAG-I, SNOSCI, SSM), steady state
estuary models (ESOO1, SEM), quasi-dynamic stream models (QUAL I,
QUALL II), dynamic estuary and stream models (dynamic estuary model,

tidal temperature model, RECEIV, SRMSCI), dynamic lake models (deep
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reservoir model, LKSCI), and near field models (outfall PLUME). The
paper, prepared as a guide for planners, discussed the capabilities,
limitations, cost, and availability of each model.



CHAPTER III

DEVELOPMENT OF THE HYDRAULIC MODEL

a

A. Governing Equations

A.1 Basic equations

The study of the gradually varied unsteady flow in a river is
described by two basic partial differential equations; the continuity
equation that considers the continuity of the mass flow, and
the momentum equation that represents the dynamics effects of the flow.

The one-dimensional continuity and momemtum equations were derived
by many authors. The basic assumptions that are made in the derivation
are:

a) The river is laterally homogeneous, which means the
vertical and transverse velocities are too small and the cross section
surface is assumed horizontal. In addition, the river is uniform

in the reach.

b) The pressure varies hydrostatically in the verticgl.

c¢) The friction slope of the differential equation is represented
by the uniform flow formulas of Chezy or Manning.

The continui%y equation is derived based on the conservation of

mass between two channel sections (Figure 3.1).

9 oA ;
§+R=% (3.1)

where Q is the discharge; A 1is the cross-section area; q, 1is the
inflow or outflow discharge per unit length of the channel, x is the
distance in the longitudinal direction; and t 1is the time. The

lateral flow can be
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A = 991 * 9y (3.2)

where A5 is the lateral contribution from the watershed drainage
area or other sources. The term 99y is the contribution from the
flood plains (Figure 3.2). This contribution per unit length of channel

can be expressed as

- f . dy
Q1 = - T5x T dt (3.3)
where Af is the flood surface area of the reach.
Chen (1973) derived the momentum equation that considers
forces that act in the control volume. The resulting momentum
equation is
3pQ , v3BpQ VOQ _ g2y , gAdpy _
ot * 9x +Be 9Xx Bov T‘ax * X
A 2
- _ y
_pgA(SO Sf + Ag ) + Bpv AX (3.4)

where p 1is the water density; y 1s the water depth; v 1is the
velocity; S0 is the bottom slope; Sf is the friction slope: 7} is
the lateral inflow velocity; B 1is the momentum coefficient; g is the
gravitational acceleration; T 1is the top width defined as

. Yoo i
dA/3y; and AX is dfflned as (aA/ax)y=constant'

-

The friction slope is approximated by the equation:

2

S¢ = R473 2 (3-5)

where n is the Manning coefficient and R is the hydraulic radius. This
equation is taken from the steady state formulation since the friction

slope for unsteady flow was unavailable. However, this equation gives

a good estimate. The above equation is often written as
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s, = U (3.6)

where K is the channel conveyance.

A.2 Specific confluence equations

N The confluence is often treated as an internal boundary. This
study deals mainly with river networks, therefore, the discussion of
confluence equations is presented here.

The following formulations are normally used in the confluence
a) The continuity equation is used to consider the storage
in the junction (Feigner and Harris, 1970; and Vreugdenhil, 1973).
It is integrated over all branéhes which converge to the confluence
_(Figure 3.3) resulting in the equation

B(Asz)

—=—= 1 Q *q (3.7)

1

II.MZ

i=1 €

where As is the surface area in the junction; N is the“;;hber of
branches; z 1is the level at the confluence; and Qi is the discharge
that flows in the branch i. The discharge of the reaches has a
positive sign when it enters the junctions and is negative when it
comes out of the jynction. The lateral contribution or losses are
represented by 9 in £he above equation.

This type of formulation only uses the continuity equation at the
junction; and the momentum equation is used in the branches. The
dynamic effects in the junctions were not taken into account. This
implies that the momentum is not conserved through these points.

b) A steady state condition is assumed at the junction by using

three sections near the confluence in each branch (Figure 3.4). The

mass conservation is satisfied by the following equation:
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Figure 3.4 Position of the Section at the Junction for the
Forward Scheme
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Qs = Qo * Qg (3.8)

and the conservation of energy is represented by the equations

2 2
v o A"
A +y .+ kl =2 +y .+ 13 k3 +h
)1 k1l 3g 03 k3 BT f13
and Viz “23 Vis
z +y 4 e—— = 7 + Yy + ———— 4+ h (3.9)
042 k2 = 2g )3 k3 2g £23

where o 1is the correction factor for energy loss and hf is the
energy head loss given by the product of the friction slope and the

distance between sections; the o  and hf index for instance,

13 indicates the energy loss is between sections kl and k3; v

is the velocity; z is the bottom level; and y is the depth.

0

Equation 3.9 can be simplified as follows:

Z
%1

¥/

* Y. = +y
k1 O3 k3

Z

+ y = Z + Y (3.10)
012 k2 o) k3

k3
This simplified equation (Equation 3.10) is used when the velocity
terms and the energy losses are small at the confluence.

B. Numerical Methods

B.1 General formulation

Equations (3.1) and (3.4) form a system of nonlineaf hyéerbOIic
partial differential equations that can be solved by analytical methods
only in special situations. The numerical methods are usually applied
to problems in which the Equations (3.1) and (3.4) are applicable for
considerating practical purposes. The basic numerical techniques are
the finite difference and finite element methods. The governing equa-
tions are the type of partial differential equations that require

initial and boundary conditions. The finite difference methods are
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used to solve those equations and are classified in the explicit scheme,
the implicit scheme, and the characteristic method. The basic dif-
ference is the explicit scheme uses information from the time

t to calculate the variables at the time t + At (Figure 3.5a) and
thus can be solved explicitly. The explicit scheme has the following

numerical stability criterion (Courant condition) :

< Ax
At = m (3.11)
where c¢* 1is the dynamic celerity (c* = VE}) and v 1is the velocity.

The implicit schemes use the information from the time t and
t + At to calculate the variables at t + At by the solution of a
\system of equations (Figure 3.5b). The resulting system is a set
of equations with an equal number of unknowns and must be solved
simultaneously.

The system of partial differential equations can be transformed
into two ordinary differential equations called the characteristics.
The characteristic method solves the équations following theAcharacter-
istic path in the x - t plane.

The general finite-difference approximations of the functions of

the partial differential equations are

£(x,t) = ef§*1 + —e)f§

t+1 t+l t+l t+1
6(af; .y - of;, = + gf; = - gf. )
af | i+l L ) s a- e (3.12)
ax (o + B)Bx .
t t t t
(a?j+l - afj + ij - ij_l)
(o + B)AX
gt gt
of . 7j 7§
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where 6 is the weighting factor of the time integration,and o and B8
determines the space distribution. The basic schemes can be categorized

utilizing weighting factors as shown in Table 3.1.

Table 3.1 Schemes classification utilizing weighting factors

Weighting factor Scheme
6 =0 explicit
6 = 0.5 center, in time, implicit
6 =1.0 full implicit
o=1; B=20 forward
//ZV o=1; B =1 central
a=0; B=1 backward

Chen (1973) and Price (1973) compared some of these numerical
methods for flood routing problems. Liggett and Cunge (1974) suggested
guidelines for the use of each method. The basic disadvantage of
the explicit method is the requirement of a short time interval with
high cost needs for computation. In practical problems the grid is
also dictated by channel geomorphology that make the solution by the
characteristic method more difficult to achieve.

Price (1974) compared four implicit schemes for flood routing
using the analytical solution for the monoclinal wave. He concluded
that optimum accuracy is reached when the time step is chosen
approximately equal to the space step divided by the kinematic wave
speed (¢ = 1.5v when the Chezy equation is used for wide channels) or

AX

at = 1.5v
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This Courant condition for accuracy of implicit schemes is similar
to Equation (3.11) of the explicit schemes. The time step of the impli-
cit scheme can be greater than the explicit scheme without loss of
accuracy because the condition of Equation (3.11) is based on the
celerity of small disturbances. Accuracy of the implicit scheme, how-
ever, is based on the velocity of the flood wave celerity (Simonset al.,
1977).

The numerical schemes should meet the requirements of stability
and convergence. The sources of error in a numerical solution result
from rounding the values and discretization. The discretization error
is the difference between the numerical solution and the exact solution
(Haltiner, 1971). If the discretization error épproaches zerokwhen
Ax ~ 0 and At = 0, the finite difference is cénsistent.

The effect of the numerical errors in the solution of the wave
motion in channels changes the amplitude of the wave which is often
called numerical damping or numerical dissipation. The amplitude of the
wave in the numerical solution can be higher or lower than the real
value. The other effect is in the velocity of propagation of the numer-
ical solution. It can be faster or slower than the real value and is
called the dispersive effect.

Stability of a implicit scheme is related to the round-off errors.
There is no general theory to estimate the numerical stability for a
quasilinear partial differential equation. A simple linear version
of Equations (3.1) and (3.4) was used to investigate the stability
properties of the schemes by the Von Neumann method which uses the

Fourier series (Abbott and Ionescu, 1976; and Liggett and Cunge, 1975).

The conclusion of this analysis is usually transposable to the complete
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equation and shows that the difference scheme is numerically stable for
1/2 <6 <1 and it is unstable for 6 < 1/2. Some oscillations can
appear in the solution as reported by Liggett and Cunge (1975). They
recommend use of 6 in the range 0.6 < 6 < 1.0 in order to avoid
these oscillations. For a greater value of © the solution is less
accurate but more stable.

A complete linear analysis was made by Ponce, et al. (1978b) who
performed a theoretical treatmenﬁbof the convergence of the four-point
implicit scheme. They concluded: 1) for kinematic and diffusion waves
and inertia-pressure waves the simulation is reasonably good if the
‘numerical dispersion is minimized; accuracy is highly dependent on the
value of the weighting factor © for dynamic waves; 2) when 6 < 0.5
there is numerical amplification, 0.5 < 6 < 1 may cause numerical am-
plification or attenuation, and there is numerical attenuation for
8 = 1; 3) accuracy of the simulation is highly dependent on the correct
value of the Qeighting factor 6. In practice an optimum value of
that will assure both stability and convergence may be difficult to
determine.

B.2 Applied numerical scheme

The numerical method used here is (Chen, 1977)

1 .t it
B =7 (B £,
t+1l t+1
Tt e
ax ~ Ax
of 1 t+l t t+1 t
3t = oar L - F) v (B - fiy)] (3.13)
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Using the above numerical scheme in the continuity Equation (3.1) gives

t
T. 1
tel | tely it tel ot gtel = ot
(Q1+1 - Q ) * oAt oy i Y Vi y1+1) q21+% (3.14)

Using Equation (3.3) in Equation (3.14) gives

t
T.
1 t+l t+1 i+ o t+l t t+1 _
Ax; Qi) - ) *zap O =Yg T Y T YD) T
)
_ flivh t 1t t+1 t t+ls
T T Taax, ¥ At Yi Yi ¥ Yie1 T Vi) Y Qo (3.15)
c i+l
Equation (3.15) becomes
t+1 t+ t+1
AiQi * Blyl * G Q1+1 1yi+1 = Ei (3.16)
where . .
ant t .t (Afi ’ Afi+l)
Aj T A 5o By =T+ Tt Ax,
_ant )
Cl = i 5 Di Bl &{
'(Af + A )t
- t+s t t TURE £ ¢
By mabtqp, "+ 0Ty " T ¥ 77ag 1 O *yg,)
i+hs i

and Af is the flood area.
The momentum Equation (3.2) with the numerical approximation

(Equation (3.13)) and Equations (3.19) and (3.20) can be written as

t. t+l t.t t t+1 t 1 t

2At ( Q - 1Qi 1+1Q1+1 - i+1Qi+1) ¥ AX. Vi+1/2
i
t+1 t. t+ 1 t+1
[(Bp )1+1Q1+1 - (Bp);Qy 7] + (BDV)1+/ Q] - Q h -
t+l  t+l t _t+l t t+l
it Jan TV ) e CaaYiag - Py )
e i+ls Ax. g i+ Ax,
i i
(z, -z, )

. 0. S
. t i i+1 1 f t+1 t
goA) 1, 5, ¢ glzlad = (@ - Q) -
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S¢ oK | t+1 t t+1 S
- — o ) + t
AT oy O Sy eS0T -0 e Slaea - @ - QY -
- 20A Ef gg_( t+l t) + pS.T ( t+l t 1 N
PAg o O Y pST Oy -yl
t
t v
t 1 Bedivy Hiay

1 t . t
E{(pASf)i + (pASf)i+1]} - pj+%[- 2 AXi At

t+l t t+1 t t+ls ~ 2, y.t
ry " -yy+vy Vi)l * (Pagove )i, + (BovIAL),

. 3.
i i i+l i x’ i+ (

The friction slope, Sf, is a function of Q and y, and from
Equation (3.5) using Taylor expansion with first order approximation
time t + At, it becomes

BSf aS

t+1 t t t+1 t fit t+1 t
The partial derivative of Sf with respect to Q, assuming n
does not vary with Q, is
asf i ZSf s
3Q Q |
The partial derivative of S. with respect to y is
asf . Zsf 3K 3
dy = K 3y :
or
9S .
£ .5l (ST _2RP lon
dy 28f[A 3 3 y) nay] (3.
where P is the wetted perimeter.
Equation (3.17) results in the following equation
t+1 t+1 t+l 2.0 S,
AJQy T+ Biyy o+ CiQyy * Diys T By (3.
where

t
| - - .
Ai =Py (1+2 CSZi) Cs1;

17)

at

18)

19)

20)

21)

22)



35

A).
ZAt 2 t t t t ( f 1+% t
[(B o TP g(A)i+%] +C83; + oy __KEE_g_.V£i+1

™
[rpis
)

.

t
! =
Ci Di+1 (1 +2 C82i+1) * CSli+1

p oo 20t ot t
Di [pi+1 gAi+%

t (Af)i+% t
Ax. v
i

2.t
R T e I iy vanth )

2At

|- t 2 t .
B} = (pQ); (1 +%CS2,) + (0Q)7,; (1 +2CS2, ) + 2 (o A)
7 1
( t € es Tt O e
z - s 3 . —————————
°3 Zoi+1) iRE CS3i NRETS! iv1 © Pi+y Ax;

t t t t+h 2. y.t
(Yi + yi*l) + 20t pi+% (q22V£2)i+% + 2At(BQV Ax)i+P

where
2At t t
CS1, = [(BPV) Vi, (B0);]
S
B fit
. CSZi = Qrﬂi At
_t f t 9K t
CS3; = p Atg {(sz). -2 ()5 G5 )
and z0 is the bottom level of the cross section.

Confluence Equations

The confluence equations used here are Equations (3.8) and (3.9).

3.f
Equation (3<9) is

t+1 t+1 t+1l

le ka ka =0 (3.23)

Equation (3.9) can be rewritten for time t + At as

2 2
A\
t+l kl,t+1 t+l k3 t+1 t+1
z +y + (=) =z +y (=5 + h (3.24)
k1 k1l 2g O3 k3 %13 fl3
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2 2
Vv
2 . t+1 ( k2 t+1 ; . yi;l + qzs ( gs)t+1 N h:cf+1 (3.25)
%k2 Ok2 g 23

This formulation assumes that the cross section does not change
with time within one time step. The notation used here is shown in
Figure 3.6. It is used in the computer program to give the positive
direction of the flow. The sign in Figure 3.6 indicates the side of
the energy equation where the k3. terms should be placed. Equations

(3.24) and (3.25) illustrate Figure 3.6a.

The term hf is calculated by
Ax
nple s, +s )Y (3.26)
13 kl k3

Using the numerical scheme given by Equation (3.13) in Equations

(3.24),

+ t+1 + 1 [2(V t. t+l Z(XEIJt t+l ( 2yt vay) 1
Zokl Yk1 2g A Y - ) Kkl -

t+l v,t t+l V2T t _t+l 2.t v2T t
= Zok3 + yk3 [Z(K) Q - 2( A ) y - (V ) + ( A ) ]k3
1 .t t TS s
0 1 t

F0s 20 T S - 1Dt @ - Y - @At ot -y

S .
F I @ - - (—f—ﬁ“ SRR (3.27)

Equation (3.27) results in

t+1 t+1 t+l _
Co Qi * Gy Y *C Qs *Cq Yz = Ce (3.28)

In the same way, Equation (3.25) results in the following equation

by the use of the numerical scheme from Equation (3.13)
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a. ks (=) ' b. k3(+)

Figure 3.6 Computer Program Notation for Positive Direction of Flow



38

t+1 t+l t+1 L, t+l
Ca Q2 * Gy Ma G Qs ¥ € Vs = Ce (3.29)
where
t S¢ t
~ (\ - o
€= &GP - i3 @k
S 2
f oK Vv'T.t
= A e
Cp =1+ 3 ¥ 3y - Rk
s
v .t f.t
= - PR, - A iy
€ “3GPk3 - Mz @3
c. = va t fg‘gg t

d~ %307k P s G apdks !

Vzt Vzt t
Co=2, -2, -0 Gt s Gf «yE v ) -
e 0z k1 13 “2g’k3 2g’kl k3 *7d
- %{sf v S, )t Bxyq * yil €, - 1)
k1 k3

The coefficients of the Equation (3.29) are the same as above,

only the index changes and k, is used instead of k1 and 23 instead

2
of 13. When the condition exists like that in Figure 3.6b, the equa-

tions are the same as above but with an interchange of index (where

k, 1is changed to k3 and k

1 changes to kl).

3

B.3 Boundary and initial conditions

External Boundaries

The solution of the momentum and continuity equations by numerical
methods requires the specification of the boundary conditions at the
upstream and downstream sections and the initial conditions for all

sections.
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In a river reach with two boundary sections there is an option to
specify the level or the discharge in each boundary section during the
simulation period. Another type of boundary that can be used is the
relationship between Q and’ y.

When the flow is subcritical (v < c), it is necessary to specify
one variable for the upstream section and another for the downstream
section. In this situation one characteristic of the equation propa-
gates downstream and the other upstream. In the case of supercritical
flow, both characteristics propagate‘downstream, thus, one can specify

the two variables in the upstream boundary. The characteristics

equations are

g_t& = v+e (forward) (3.30)
dx (backward) (3.31)
a—z = V - C

When the flow regimen is supercritical both equations (3.30 and
3.31) are positive on the right hand side and both characteristics are
in the forward direction. In the subcritical situation, Equation (3.30)
has a negative right hand side (Figure 3.7).

Rating Curve as Boundary

The rating curve can be used as a boundary in some situations.

This condition is strictly applicable to kinematic models (Abbott, 1976).
When this relationship is used in a dynamic model the solution in the
boundary is in conflict with the solution near the boundary which may
lead to inaccuracy. This relationship supplies the system of equations
with one more equation.

The discharge in a section is a function of the section level or

Q =£f () (3.32)
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Figure 3.7 Characteristics Lines for a Subcritical Flow
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Using the Taylor expansion with first order approximation ,

= £ty - (§§Jt o™t -y (3.33)

G NP AE S S C IR (3.34)

The use of Equation (3.32) at time t in Equation (3.34) vyields

D@t gt 20
Gy = Q- Gy (3.35)
If the relationship is tabulated, it is possible to find
, t .
(BQ/ay)t using one more point near y . When the function of the

Equation (3.32) is known, such as

Q=ay (3.36)

then one can calculate the partial derivative,

0, 0l
= aby (3.37)

and use Equation (3.37) in Equation (3.35).
When this curve is unknown, it is possible to estimate this

relationship using Manning's equation as

Q = H-A R S (3.38)
_g. SR, 13A _ ldnm
Q(SR 5y * Koy ~ nay) (3.39)
The use of Equation (3.39) in Equation (3.35) results in
t+l 13A lon, t+l _
Q" - (SR ay Ay - noy) V
t 2 OR _ 13A _1l3n
= Q' - Gr 3y * Asy nay)] (3.40)
If n 1is constant in the cross section and %%-: T and Ry y »
% the above equation results in
5 t
o e (3.41)

4 Q
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This type of boundary can be used when the downstream effects are
small and the loop in the relationship of Q and Yy can be
approximated by a straight line or curve.

In flood problems this condition is often used at the downstream
boundary and the hydrograph at the upstream boundary. This boundary
condition cannot be used when there are backwater effects or inversion
flow.

Interior Boundaries

In a river system the physical characteristics are not uniform.
There are uniform changes the basic two equations can determine
without much error. There are sudden changes in the river character-
istics that should be considered in the solution as the
interior boundary condition. Some of these boundaries according to
Cunge (1975) are:

1. Junctions of rivers.

2. Flow over weirs (Figure 3.8b). The equations for this

condition are

Q=0
Q= f(zl, Zys 2o weir type and size) (3.42)

3. Flow through control gates. The equations are

Q = Q,

]

Q 2,

4. Storage basin. In some rivers there are storage basins linked

f(zl, Zys Z,5 gate type and size) (3.43

to the channel as shown in Figure 3.8b. They contribute only to the

storage effect and the continuity equation should account for volume.

then

The volume lost by the river reach in At is g%;
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a. Dam ( after Cunge, 1975)
A

A

b. Storage Basin

" Reference Level Vo

c. Section A—A

T

v |veo

d. Dead End

Figure 3.8 Interior Boundary Conditions for a River System
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dv oV

_F_ __F dz
9z

(3.44)

where VF is the storage basin volume (Figures 3.8b and 3.8c). Using

a numerical approximation

dvy AV, tel ot
& - Gy ) (3.45)
The function V_ = f(z) is obtained from the maps. The above term

F

appears with a negative sign in the continuity equation.

When this storage basin has dynamic effects in the flow, it can be
assumed to be a flood area with more roughness than the normal river
bed. In Equations (3.1) and (3.4) it is included in the term g1 -

5. Dead end. When there is a channel with a dead end, the
section at that end may have the condition of V = 0 at the dead end
(Figure 3.8&d).

Initial Condition

In order to proceed to the calculations it is necessary to
specify the level and discharge at all sections in the initial time
step. Usually these values are not known and Q}e es’zimatéa‘.~ However,
the initial values at the boundaries are known and by using the program
with about 50 or 1;ss time steps, and holding the boundaries constant,
the steady state condition for the initial boundaries is reached. An-
other way is to interpolate the levels making the discharges constant
when there are no confluences. In the case of confluences, adequate
knowledge of the system is required to specify these values by inspec-
tion. A third way is to solve the steady Backwater equation. The first

case needs an initial condition to start the running that can be

obtained by interpolation or inspection.
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Normally in this type of equation after some time steps,
different initial conditions converge to the same solution. Baltzer
and Lai (1968) showed the convergence to the same solution using dif-
ferent values of initial discharge.

C. Systems of Equations

C.1 The equations

Using Equations (3.16) and (3.22) for each reach, and Equations
(3.23), (3.28), and (3.29) for each confluence, there will be 2(N - 1)
equations (if there are only two boundaries), where N is the number

of sections. In matrix notation the system of equations is

FX=E (3.46)
where
A)B1CyDy
] 1 1 ]
A)B1CD;
A,B,C,D,
\ \ ] \
A3ByCoD;
F = 1 1 -1
Cai Cpi Cei Cai
1 ] ]
Cai %bi Cei Cai
Av-1 Byo1 Oy Dy
] ] 1 1
Av-1 Bn-1 O By
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Q E)
t+1 ,
"1 By
X = t+1 ; E=
| gl Qi 0
t+1
i Cei
X o
. el
t+1
N
SLrl
N Ey
1]
Ex

The specification of the boundaries gives two more equations, and
the number of equations and unknowns will be the same, thereby permit-
ting the equ;tions to be solved simultaneously. For instance, in the
system in Figure 3.9b, there are four reaches that give eight
equations, two confluences that give six equations and the boundaries
with two more equations. There are sixteen unknowns (8 sections) and

sixteen equations.

C.2 Solution of the linear system of equations

The linear system of equations (3.46) resulting from the use of
the numerical scheme (3.13) in Equations (3.1), (3.4), (3.8), and (3.9)
for a river network needs to be solved at each time step.

The coefficient matrix F for a rivér without confluences can be
easily transformed into a banded matrix. In this situation the penta-

diagonal method or other method that considers only the
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b. Matrix F for a River with Confluence

* Nonzero Elements
Figure 3.9 Matrix F for a River Reach and for a River with a Confluence
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non-zero coefficients can be used to solve the system of equations.
These methods are more accurate and use less storage and computer time
than methods that utilize the full matrix.

In a river network the matrix F is a sparse non-banded matrix
(Figure 3.9b). In order to solve a system of linear equations when the
coefficient matrix is sparse, Vreugdenhil (1973) recommended an itera-
tive method such as Gauss-Seidel. This method requires only the storage
of non-zero elements of the matrix and their positions in the matrix.
The solution of the time t is used as the initial guess for beginning
the iteration of time step t + At. In this way the initial guess is
usually good and computer time is saved, as fewer iterations are
requested for convergence. The convergence condition for the Gauss-
Seidel iterative method is that the matrix F should be positive defi-
nite. This method was used in some examples and it was found that

convergence did not always occur.

A direct method to solve these equations is the Gauss elimination

procedure. The following system of equations

a0X) FApXy e e R A X Y apXy T by
By1Xp *AgXp t e - e Ag Xyt Xy T By (3.47)
apXp A% oo -t Ao XN-r Y AN T PN

is solved by transforming the matrix of coefficients in a upper triangle

matrix by

(3.48)
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and

e,
- 1
e ot

(3.49)

o]
e ]
Cds

Using backward substitution, the unknown values are calculated by

1i-1
(bi ) mzn Xm ai’m) ”
X, = (3.50)

i a. .
i,i

The matrix F has no more than four non-zero elements
in each row, and has many zero elements. If one stores all
elements, the solution will be less accurate and too expensive. For
instance, 50 sections would use 10,000 words of storage where only about

% are non-zero elements.

The procedure described here tries to minimize the storage of the
Gauss elimination scheme. There is a method called Skyline used in
the finite element method (Bathe and Wilson, 1976). It is'a storage meth-
od for the Gauss elimination procedure in symmetric matrices. Since
the matrix F is not symmetric a modification is required.

This method used four one-dimensional arrays to store the
information contained in matrix F. A numerical example is shown in
Figure 3.10. The coefficients are stored sequentially in a vector.

Each diagonal element is followed by all elements in the column of the
matrix above that element. Then all elements in the row to the left of
the diagonal taking in the inverted L shape (")") shown in Figure 3.1lla
which extends upwards and to the left as far as the last non-zero

element in each direction.
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c. Definition of the Arrays for the Example in b

Figure 3.10 Storage Scheme for the Gauss Elimination Procedure
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In Figure 3.10c vector AA(I) shows the storage sequence of
coefficients for matrix A in Figure 3.10b. Vector IDIAG(I) gives
the positions of each diagonal element in AA(I). Vector IHIGH(I) gives
the number of column elements above each diagonal element including
the diagonal element. Vector IR(I) gives the number of row elements
to the left of each diagonalrelement excluding the diagonal element.
The method uses Equations (3.49) and 23.50), but with a different index
since the coefficients are stored in another way.

The flowchart in Figure 3.11 shows the solution
using this storage scheme. This method is useful when the
matrix is almost banded with a few sparse elements, as in this
case of the river network. For instance, in the Jacui Delta system
with 19 confluences and 64 sections, the full matrix would use 16,384
words for storage. This storage scheme uses 1,587 words and in a Cyber
171 computer it takes 1.0 second of Central Processing (CP) time to
solve the system of 128 equations by 128 unknowns in each time step.

The section numbering procedure should be done to minimize
the storage and calculations. The unknowns are numbered based on the
section number. In the reach or confluence equations the section
numbers are not continuous integer numbers, zero values will appear
among the non-zero values in the coefficient matrix which increases
the matrix band and consequently the storage and calculation. The
minimization can be done by numbering the sections in a crescent (or

decrescent) order and when there are confluences minimize the difference

of the section numbers of the reaches and confluences. Some suggestions
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c = AA,/ AA,
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(continued)
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to execute that procedure include: (i) the number of the sections
should be given in crescent order from upstream towards downstream, and

(ii) for short loops an alternate numbering is a good procedure.



CHAPTER 1V

DEVELOPMENT OF A WATER QUALITY MODEL

A. Governing Equations

A.1 Transport equation

The transport of mass in an environment is due to the advection,
diffusion, and dispersion processes."The advection of a concentration
element is the transport that results from the flow gradient. This

process is described by the equation
5C B(VXC) a(vyC) B(VZC) i

3 T Tox YTy T e

0 (4.1)

where C 1is the element concentration and Vs Vy’ and v, are the
velocities in the direction X,y, and z. The first term in the equation
accounts for the change in time of the concentration and the other term
accounts for the variation in space.

Advection is the main process in the streams where velocities are
high and diffusion is negligible. In estuaries where velocities are
usually low, diffusion and dispersion must be examined.

Through the diffusion process, the concentration of a substance
changes due to the element's cencentration gradient. Fick's first law

states that the rate of mass transport in the i direction is propor-

tional to the concentration gradient in this direction or
M. = -D = 4.2)

where Dm is the molecular diffusion coefficient.
Using this equation to account for the mass variation in a
volumetric element, the diffusion process through this element is

represented by the resulting equation:
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2

5 2

a%c , 2
2
ox oy oz

4

N O

oC _ C
‘B—t"' D ( 2) (4'3)

m

The processes are additive and since the velocities used in
Equation (4.1) are time-averaged and associated with turbulent flow,
the turbulent diffusion coefficients are used. The three dimensional

transport equation for a stream then becomes

ac 3(v.0) . 2(v,C) . Bv, 0 4 (ixé_C_) 2 Syac, s (ezac)
ot 3x oy 9z 03X dx 3y ay 9z dz
4.4)

where e s ey, and e, are the turbulent diffusion coefficients.
The one-dimensional form of this equation for a stream has been
developed by Holley and Harleman (1965). The longitudinal velocity,
concentfation, and the turbulent diffusity coefficient were averaged
over the cross-section. The unsteady state one-dimensional mass

transport equation for a non-conservative substance is

3(AC) . 3(QC) _ 3 ,,3C.
3t *oax - ax ARt i (-5

where E 1is the longitudinal dispersion coefficient that examines
the non-uniform velocity distribution (dispersion) and the
spatial-mean value of the turbulent diffusity. Figure 4.1 shows
the spatial variation of the advection and dispersion terms in a isola-
ted channel reach. The term‘ Si was added to account for the losses
and gains of the system. The terms on the left side of the equation
are from the advective process and the first term on the right side is
the dispersion term.

The basic assumptions made in the derivation of Equation (4.5) are:

1. A mean value may represent the variation of the concentration
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and velocity over the cross-section; consequently, the problem becomes
one dimensional in the longitudinal direction.

2. The longitudinal dispersion coefficient represents the cross
product of the longitudinal velocities and concentrations about the
cross section mean plus the spatial mean value of the turbulent diffu-
sity.

A.2 Source and sink term

A river system can have internal and external sources of pollution.
The internal sources result from physical, chemical, and biological
reactions of the substances within the water body itself. External
sources are inputs into a river system from external sources such as
waste disposal, tributaries, and urban runoff.

External sources of pollution are usually ciassified as point and
non-point. Examples of point sources include outlets of industrial
and domestic waste, water treatment plant intake, artificial channels,
and tributaries. Non-point sources include urban runoff, groundwater
flow, and agricultural land runoff.

Velz (1970) classified the type of waste in streams as organic,
microbial, radioactive, inorganic,and thermal. Stream water quality
is determined through the analysis of substances selected to indicate‘
the level of water quality. The substances to be analyzed are chosen
on the basis of the study objectives and the source of pollution.
These parameters include temperature, salinity, chlorides, dissolved
oxygen, biochemical oxygen demand, nitrogen forms, and coliform
concentration.

A conservative substance is defined as one with toncentration

unchanged by chemical or biological reactions. Salt and other



59

chlorides are examples of conservative substances. The source and sink
term for a conservative substance has only the external source term
which means that discharge entering or leaving the river has the
concentration of the substance.

The nonconservative substance in the water body can react by
chemical or biological process thus m6difying its concentration.
Usually some of these substances such as the Biochemical Oxygen Demand
are simulated by first order decay.

The model described here was developed primarily to simulate any
conservative substance and the two stage reactions BOD -DO. However, it
can be used for any substance in which the first order decay is a good
simulator. The model can be modified without major difficulties to
simulate other decay processes or consecutive reactions such as
nitrification.

Conservative

The source and sink term is
Sy = g Cg (4.6)

where q is the input or output discharge per unit of length
(mS/m-s). The concentration of the substance in this flow
(mg/1) 1is Cy-

Biochemical oxygen demand and dissolved oxygen

The waste discharge may have carbonaceous and nitrogenous
components. These components are oxided biochemically at different
rates and times. The carbonaceous process is usually represented by the
first order decay. The nitrogeneous demand is the oxidation of the

amonia into nitrates by nitrifying bacteria.

VPH - pOCUNMINTACAD E EBIBLIOTECA
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Some of the processes which affect the BOD - DO stage in the
river are:

-Oxidation of the carbonaceous component

-Oxidation of the nitrogeneous component

-Sedimentation or adsorption of the substances

~Addition of the substances through the scour of the

river bottom increasing the BOD rate.

-Reaeration processes through the water surface

-The increase and loss of oxygen from the phytosynthetic action of

plénkton and fixed plants.

The following source and sink term is used for the biochemical
oxygen demand:

S; = - (K + K;) AC + AL, + q/C, (4.7)

where K1 is the BOD carbonaceous reaction rate (per day), K3 is
the rate coefficient for the removal of BOD by sedimentation and
adsorption (per day), La is the rate of addition of BOD along the
reach (ppm per day), q, is the lateral discharge (mz/s), A 1is the
cross section area (mz), and Cz is the concentration of the BOD in

the lateral flow (ppm).

The partial differential equation for the BOD is

9 (AC) 3(QC) _ 3 3Cy _
5t ¢ T oax - ax A5 7 (K + KJAC + AL, + ) poqy
(4.8)
The source and sink term for the dissolved oxygen used is
Si = - KlACbod + KZA(CS -0 - DbA + qgcz(do) (4.9)
where Cbod is the BOD concentration (ppm), K2 is the reaeration

coefficient (per day), Cs is the saturation dissolved oxygen
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concentration (ppm), and D, is the removal of oxygen by benthal

deposits, plant respiration and the increase in oxygen through photo-

synthesis (ppm/day).

The partial differential equation for dissolved oxygen is

9(AC) 3(323 =2 ¥y _xac o+ KA(C, - C) - D

3t 5% 5% 1"%bod b * 0 (bod)

»”

(4.10)

A3 Equation coefficients

Longitudinal dispersion coefficient

The longitudinal dispersion coefficient is the result of the
effect of the nonuniform distribution of the velocity and concentration
over the cross-section and the effect of the turbulent diffusity. The
former is usually more important.

In general, when a pollutant enters the river the convective
process is initially dominant and the pollutant cloud shows’a shape
similar to the velocity profile. The concentration curve in the space
coordinate has a skewed shape. After this convective period, the cloud
disperses due to turbulence and the concentration curve converges to a
Gaussian shape. The spreading of the cloud in the convective period is
defined by the one-dimensional dispersion coefficient and the mean flow
velocity (Fischer, 1967).

Ordinarily, the longitudinal dispersion coefficient. depends on the
water depth, cross section shape, roughness, and the mean velocity,
Taylor (1954) studies the longitudinal dispersion coefficient
assuming a steady state version of Equation (4.5) in a long straight
pipe. He arrived at the following equation:

E=10.1 a U* (4.11)
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where a 1is the pipe radius, U* is the shear velocity, and E 1is the
dispersion coefficient.

Elder (1959) assumed a logarithmic water velocity distribution in
the vertical direction and applied the concept of longitudinal disper-
sion presented by Taylor (1954) to steady flow in an infinitely wide
two dimensional channel. He also assumed the vertical velocity
gradient was more important in the dispersion process and arrived at
the resulting equation:

E =5.93 y U* (4.12)
where y is the depth of the flow.

Harleman (1971) also developed a modified Taylor's equation for
channel flow using the relationship between the shear stress and the
resistance parameter giving

>/6 (4.13)

E=77nvR
where E 1is in square feet per second, n is the Manning roughness
coefficient, v the velocity,and R the hydraulic radius in feet.

Fischer (1967, 1968) using a steady flow equation and assuming

the lateral velocity distribution has more effect in the longitu-

dinal disperson, presented the equation

1 b yA 1 z
E = - K-f q[[ — J q dz) dzldz (4.14)
o

o %2V o
where q 1is the flow rate per'unit of width, b is the width, A the
cross section area, and eZ is the’coefficient of lateral turbulent
diffusion where e, = 0.23 yU*.
Fischer (1969) studied the dispersion coefficient for oscillating
flow in the constant density region of an estuary and concluded that the

time of transverse mixing was many times greater than for vertical
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mixing. In this situation the velocity distribution in the vertical
direction is more important and the modified Taylor's equation applies
(Harleman, 1971).

McQuivey and Keefer (1974) presented a method based on an analogy
to the linear version of the momentum equation and a linear dispersion
equation. The momentum equation was linearized using a reference steady
flow discharge (Qo) and the related physical characteristics; width,
slope of the energy gradient, and Froude number. This analogy resulted
in the following linear relationship between the diépersion coefficients
and those parameters:

Qo

E = 0.058 g (4.15)
[e e

This equation can be used when F < 0.5 and has an estimated
standard error of about 30% according to the results of a comparative
study of different conditions in eighteen streams.

Reaeration coefficient

Reaeration is one source of oxygen in water. The reaeration
process is mainly a function of water temperature flow velocity and
depth.

The reaeration process is represented by the term KZ(CS -0).

The saturation concentration Cs is mainly a function of water tempera-
ture and atmospheric pressure. The American Public Health Association
(1965) presented the equation

2 5.3

C, = 14.652 - 0.41022T + 7.991.107° T - 7.774.107° T (4.16)

where T is the water temperature in °C. This equation is for a

standard atmospheric pressure.
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The reaeration coefficient K2 is related to water depth and
velocity. Many researchers have developed empirical equations for
this coefficient based on the Streeter and Phelps relation,

n

Vv
K, = C5 (4.17)

~

where C and n are constraints, v is the velocity, and y is the
depth. The relationship between K2 and the temperature is generally
expressed by

= K* (T"ZO) ]
K,(T) = K3 6 (4.18)

where 6 1is 1.0238, a constant defined experimentally, and K; is the
reaeration coefficient when T = 20°C.

Some of the equations developed for the reaeration coefficient
are:

1. Churchill, Elmore and Buckingham (1962) developed an empirical
equation using data of shallow rivers with high velocity to get

0.969

K, = 11.60 ¥

2 1673 (4.19)

where K, is in 1/day, the velocity v is in m/s, and the depth y is
in m.

2. 0'Connor and Dobbins (1958) developed two equations, one for
values of the Chezy coefficient less than 17 and the other for values
greater than 17. The following equation is the most applicable:
) (Dmv)l/2

/2

K B e——
2.303 y3

’ (4.20)

where Dm is the molecular diffusion coefficient calculated by

D = 0.00192 [1.04(T'20)]
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where T is the temperature in °C, Dm in feet/day and K2 1/day.
3. Owens, Edwards and Gibbs (1964) developed an empirical equation
for rivers where the velocity is in the range of 0.1 to 5.0 feet and the

depths are from 0.4 to 11.0 feet or

9.4 v
Ky = 353
y

(4.21)

Kramer (1974) analyzed a number of reaeration formulas and
concluded that none could be used to accurately predict this coefficient
in the Houston ship channel. Morel-Seytoux and Lau (1975) compared
seven formulas and concluded the equations were poor for predicting
the reaeration coefficient.

Rathbun (1977) reviewed techniques for measuring and
predicting reaeration coefficients in streams and classified the measur-
ing techniques as the DO balance and the disturbed equilibrium
and tracer techniques. From the predicting formulas he also con-
cluded that no one equation is best for all streams.

*In the model used here the coefficient is either calculated by a
subroutine REARE or can be estimated by the user in the input. The
0'Connor and Dobbins formula is programmed into REARE but the user can

easily exchange it for another equation.

Coefficients K1 and K3

The rate of biochemical oxidation of the carbonaceous matter is
defined as being proportional to its remaining concentration.
The rate at which the oxidation occurs is a constant Kl'
This coefficient depends on the type of organic matter,

temperature, and river condition. Calculation of this coefficient is

most commonly based on field data. Some of the methods are:
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1) least-squares, 2) the slope method, 3) moment method, and

4) logarithm method. For further references see Nemerow (1974).

In 1literature a coefficient KR is used to designate the rate

of removal of organic material that is the sum of K., the removal

1,
rate by oxidation of the carbonaceous matter, and K3 designates the
rate of sedimentation or resuspension. The coefficient K3 can be

positive or negative. McKee and Wolf (1963) suggested factors that can
make K3 positive. These include sedimentation, volatilization of the
organic material, adsorption, flocculation, and biological growths on
the stream bed. The factors that can make it negative are the addi-
tion of BOD from sludge banks, scour longitudinal mixing, and short-
circuiting across meanders. Table 4.1 shows a sample of the values of
those coefficients from Bell (1973).

B. Numerical Method

B.1 Introduction

The solution of Equation (4.5) by analytical methods can be done
only in special situations. O'Connor and Thomann (1971) described some
of those conditions. When the river geometry does not allow those
simplifications and the flow is unsteady the transport equation should
be solved by a numerical method.

Equation (4.5) is a parabolic partial differential equation.
Solution of this equation requires §pecification of initial and
boundary conditions.

Stability and accuracy are the criteria for deciding on a specific

numerical scheme. The backward implicit scheme was used in this study.

B.2 Applied numerical scheme

The backward implicit scheme is stable, accurate, -and convenient
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Table 4.1 Sample of K, and K3 coefficients, according Bell (1973)
Stream or Estuary K1 KR K3 Comments
Elk, Holston, Wabash, 0.15 0.75
& Willamette Rivers to to
3.0 3.0
Not Indicated 0.092 Rivers with low
to pollution
0.118
Clinten River 0.138
to 2.53 -
0.274
Tittabaussee River 0.035
to 0.46
0.100
Not Indicated 0.138 -0.83
to to
0.83 +0.83
Herrisack River 0.046
0.138 to
0.62
Not Indicated 0.207
to | Summer values
0.53
Not Indicated 0.046
to Winter values
0.161
Kanauha River 0.041
to
0.296
Hillstone and 0.028
Passaic Rivers to
1.012
Hillstone River 0.440 Average KR value
Passaic River 0.293 Average KR value
Il1linois River 0.0701 Navigational pool
East River 0.25
Ohio River 0.23
to
0.161
Towa River 0.23
Truckee River 0.288
Delaware Estuary 0.30 ,
Grand River 0.80 1 - KR
Clinton River 3.50 Kl - KR
Truckee River 0.49 and K. - K
1.30 1 R
Flint River 0.76 and
0.95
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as it is possible to use the same configuration of sections used for

solutions of the hydraulic equations. This scheme is

£ox,t) 2 0f 4 (1 - 0)EL
1 1
t+1 t+1 t t
of . e(fi -~ 5 L (- 0) (£ - )
9X Ax Ax
t+1 t+1 t+1 t+1
2%f = 1__{6[(fi+1 i ) ) ;= - fi—l)] R
ax2 Ax Ax Ax
GIEE 3 N CHEEE R
(1-8) [ i+1 i7 1 i-1 ]}
Ax Ax
of 1 t+1 t
Erall vl G 3 (4.22)

where 0 < 6 < 1. Applying the above scheme to Equation (4.5) and

t+0 t+

using the notation f = 0f ! + (1 - e)ft yields

[(QC); - (Q); ,1%*°

1 t+1 t i 1-1 2
At [(Ac)i S (AC)i] * AX. = Bx. + AX.
i-1 i-1 i

[(AE), + (AE),,,] [(AB), + (AB),,,] t+0

20X, (Ci+1 - Ci) - 2hX. (Ci - Ci—l)}
i i-1

(4.23)
Equation (4.23) yields

t+l t+1 t+l
L,Ci] + M + N.Ciio =0, (4.24)

where

~
>
m
~—
+

L, = —2 [ . (Aﬁ)i-l]t+1
i Axi Qi—l AX. + Axi

- Al ot [(AE)i + (AB); . (AE); + (AE),,,

AX. + AX. Ax. ’ Ax,
i-1 i i-1 1
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(AB); + (AB)j4y a1

Ni - 6[Axi(Axi + Axi_l)
t.t
A_C. (AE). + (AE).
171 1 1 1+1]
e OOt s e, P Civg -G -
X. 1 i-1 Ax.
i-1 1-1

The source and sink term was not included in Equation (4.24)
because each substance may have its own term. The numerical source and
sink term is discussed in B.5.

B.3 Mass conservation

Equation (4.24) is applied to each section resulting in a system
of equations to be solved at each time step. Assuming a river without
confluences and with constant Ax, the mass conservation of the system,
using this numerical scheme, is performed by summing the equations of

one time step as

N-1

N
Lol - woll s Il - o, 1%%
i=1 i=2
. N-1 N
T a2 {izl [CAE); + (AB);,q) (Cypp - €y - iz2 LCAB); + (AB); 4]
oyt
t+6 o
GRSV [7 Si] (4.25)
i=1
Assuming 6 = 1/2 the above equation yields
N-1 N-1 ,
ax Y (AC)§+1 = ax (AC)E - %E-[(QC)§+1 r QY +
i=1 1=1 N
(@@ + @f1 N1 B
At 1 . 1 + 2‘ S§+1+ Z S:}.A_t_z‘;x (4.26)
i=1 i=1
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This equation shows that the scheme is conserving mass where the

terms have the following meaning:

N-1
Ax Z (AC)'iC+1 is the mass in the channel at the time t+l
i=1
N-1 t
Ax Y (AC); is the mass in the channel at time t
i=1
At t+1 t A -
— Q7+ QY is the mass that leaves the downstream

boundary at At

t+l t
(@] + @0

At 3 is the mass which enter in the upstream

boundary at At

N-1 t+1 N-1
MAax [ ) S ) SF] is the variation of the source and sink
i=1 i=] *
term at At

B.4 Numerical equation at a junction

The n&merical scheme at a junction requires some modifications in
the representation of mass conservation. The advection term is modi-
fied in the section where the equation is applied downstream of
the confluence. The dispersion term is modified when the section is
downstream or upstream of the confluence. When the section is upstream
of the confluence the modification is in term i + 1. When the section
is downstream, the modification is in the term i - 1.

Advection term

In Figure 4.2b, for section i, the differential of the advection

term of the transport equation over both branches is

1c! - Q.C rc! - Q.C. | t*®
2cq0) -« | &%k~ %%, 44 T 4G (4.27)
8x Axy i M54
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a. Division

i+l

Qi+

Y

i+l

b. Convergence

Figure 4.2 Confluence Conditions for the
Numerical Scheme
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The one-dimensional equation assumes one concentration in each
section or a well-mixed pollutant distribution over the cross section
that results in Cé = C} = Ci’ Since the hydraulic model assumes a

steady flow condition among the confluence sections, then Qk = Qk =

Qi, and Qj + Qk = Qi' The advection results in

t+6
2(Q0) - {Qk(ci - CJ QG - Cp) ]

+
Ay 4 bxs 5

Using the same procedure, the advection term in the equation for

(4.28)

section k or j in Figure 4.2a is

t+6
Q (€, -C.)
3(QC) . | &‘“x " ti
_?Egl— = [ —"—TGQIT{——_' J (4.29)

Dispersion term

In Figure 4.2b for section i, the differential of the dispersion

term over both branches and the reach i, i + 1, yields

5 3C (EA) . * (BA);  (Cyyy - Cy) €; - GJ
ax BA 50 =|U 7 1 —x; - BA)y A
i k,1
(C. - C.) t+6
i J 2
- (EA). } . (4.30)
j ij,i Axi4-(Axk,i + ij,ﬁ
2
Using the same procedure for section i in Figure 4.2a the
dispersion term is
5= (EA 52) | {(EA) + (EA) -
b aXx k Axi,k i ij,i 2
(sz‘ Ci—l)} - i (Ai _ j t+0 .51
i-1 i-1 i,k i,j
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There are four equations that can be used to describe the
situation at junctions, assuming that not more than three branches are
flowing to the junction. The equations are:

1. For the section upstream of the junction in Figure 4.2a, the
numerical equation is

t+1 t+]1 t+l t+1

Lici-l + Mici + Nick + Oicj = Pi (4.32)
where
Q.
_ 1-1 t+1
L1 -7 e[Ax. +Q -1 CS1 1]
1i-1
A§+1 Qi t+1
M, = e+ 0[C3, | (Cl, , + €2 + C3,) + Axi—l]
t+1
N, = - [6C2, C3, ]
_ t+1
0; = - [6C2; C3; 1]
ao)*
P, =g+ (1 -0) {3, _, [czj(cj - C;) *+ €2, (C - C,) -
[(QC): - (QC). ,]
1 1-17,t
Clip (€ - ¢ - Ax. }
1-1
and
Clig = A
X1
2 (AE) .
C2 = -A—x———l
) i,]
c3. . = 2

i-1 Axi_l + (Axi,ji'Axi,k)
2
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2. For the section downstream of the confluence in Figure 4.2a,

the equation is

L et s Mo+ NRCEIi = 0, (4.33)
where
by = - e[Azk Ax CZE Ax i

,k k+1 i,k
- A§+1 1 k  qt+l
Me=a G[Axk+1 T (Clyyq * 020 + Kizjii
Ny = - 6[Axmk+41~ AX. ]t+1
k+1 i,k

o 1

O =3¢+ -9 {Axk+1 TIx, [Cliy Cpaq - G -

[(Qc)k - chi] t
k = Ci)}' Axi’k }

3. For the section downstream of the confluence in Figure 4.2b,

- €2, (C

the equation is

t+l t+l t+1 t+1

LG+ et e NG v 0,Ci = Py (4.34)
where
Q
- k t+l
Ly =~ e[Ax -+ €2y €345 ,]
K,i
Q.
M, = - 0[—— + C2, €3, 1%t
i Ax. . j i+l
Js1
t+1
N S 8[C3. . (Cl. . + C2, + C2.) + % % jeet
i At i+l i+l k j Axk . Ax. .
»1 J,1
t+l
0i = - G[Cli+1 C31+1]
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(AC);
Po= —r—+ (1 -0) {c3, , [CL, ,(C,,, ~C) -C2(C; - c) -
QCL; - (@), Q:C; - (QO).
) ) ji jqit
czj(ci cj)] [ X + X 1}

k,1 j,i
4. For the section upstream of the confluence in Figure 4.2b, the

equation is

t+l t+l t+l -
LG * MG + NG =0 (4.35)
where
L, = - 6] k-1 . Clk-l ]t+1
i Axk_l Axk_1 + Axk,
t+l
A Q
k 1 k t+1
M, = + 8] (C2, + C1, .) ]
i At Axk—l + Axk,i k k-1 Axk_1
eCZk t+1
N, = - g1
k,1 k-1
vy 1
0 7w O O e OG- 6 - O G- G ) -

Axk—l
Using these equations it is possible to demonstrate that they

conserve mass through the junctions.

B.5 Numerical source and sink

For a conservative substance without an intake or outlet from the
river, there is no change in the numerical equations. The numerical
source and sink term is

t+1 t
Si = eSi + (1 -8) Si - (4.36)
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A conservative substance is added to the right hand side of the
equation by the term

t+1 t
S, =800, "+ (1 - 90) (q0), (4.37)

For a first order decay equation such as BOD, the term is

_ t+l t+1 t+1 .
Si = - e(K1 + K3) Ai Ci - B(ALa + qzcz)i + (1 - 8)
t
[- (K1 + K3) ACi + ALa + qzcﬁ] (4.38)
The oxygen demand term is
t+1.t+1
S. = - ) _ _ t+1
i K, ALTCTT o[ (K1 AC )i * (X, Acs)i (ADb)i + (qC)Q’]
i
t
+ (1 -8) [- K1 ACbOd + K2 A(CS - C) - ADb + (qC)R]i (4.39)

Those terms are added to the numerical equations developed in each
section and for each substance simulated.

B.6 Stability and accuracy

When a numerical scheme conserves mass there is no guarantee
the solution will be stable and accurate. The analysis of accuracy and
stability of the complete one-dimensional transport equation is complex,
if not impossible to evaluate. The following analysis of stability and
accuracy was carried out with a simplified version of the transport
equation.
Stability

Keller (1960) used the maximum pripciple to discuss the stability
of the central scheme. Lanna and Moretti (1977), using Keller's work,
also presented the conditions for the backward ‘and forward scheme. The

transport equation used in those schemes was
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2
3C 3C _ 8°C
30t Vt) 5= E(xt) 2 K(x,t)C (4.40)

where E(x,t) > 0. The stability condition for the backward scheme is

sz
At < (4.41)

T (1 - 8) (2F + bxev+ AXOK)

For the fully implicit scheme (6 = 1), the scheme is unconditionally
stable. When the velocity is negative there is one more condition that

should be met for this scheme,
E
B STHT (4.42)

in which the term Ax*v/E 1is the cell Reynolds number (RC)
(Roache, 1972). The stability conditions when v < 0 in the backward
scheme are the same conditions for the forward scheme when v > 0.

The condition of Equation (4.42) is more difficult to meet when the
dispersion coefficient is small. Stability then only occurs for small
values of Ax. Those conditions were obtained using a simplified
equation, then used as a suggestion in the definition of those numerical
variables.

Accuracy

The errors in the numerical computation can create dissipative and
dispersive effects on the solution. Leendertse (1970) used the Von
Neumann method to compute the ratios of the numerical and analytical
solution for a linear version of this equation in order to evaluate
these effects.

The general analytical solution of the partial differential
Equation (4.40) with constant coefficients expanded following the

Fourier series or
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m=c

C(x,t) _m=§mcm EXP[i(o x - B t)] (4.43)
where Cm is the constant coefficient for the mth component of the
series, o is the wave number (om = Zn/Lm), Lm is the wave length,
and i = /-1.

The discrete form of Equation (4.43) for one component of the

series is

c? (jAx, nAt) = C EXP[i(ojAx - BnAt)] (4.44)
Using the numerical scheme (4.22) in the transport Equation (4.40)
with constant coefficients yields

t+l ot t+0

bl o (C. -C. )

j o, g3 j-1 - _E " t+6 _ t+6
L v = — (cj+1 2 + cj_l) K

(4.45)

Using (4.44) in (4.45) yields

igar (1- Q- e)a( - e 1OBXy | pelOBX | 5 gmROBXy c 1}
e = : - -
1+ e[a(l - e-1oAx) _ b(elOAx -2 e-lUAX) + Ck]
(4.46)
where
a = VAt
Ax
b = EA;
Ax
Ck = KAt
Using Euler's identities and t}igonometric relations,
i - e-IOAx) = 1 - cosoAx + isinoAx = Zsin2 2%5 + isingAx

and

(eto8x e—1oAx) = 2cosoAx - 2 = - 4sin2(oAx/2)
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By substitution into Equation (4.46),

1 - (1 - 6)[25in2(ch/2)(2b + a) + iasin(oAx) + Ck]
= = A

e-iBAt
1 + e[ZSinz(oAx/Z)(Zb + a) + iasin(oAx) + Ck]

(4.47)

The frequency B can be a complex number B8 = Br + iBi, where
Br is the real part and Bi the imaginary part.

The dissipative effect is usually evaluated by the following ratio

s

_ Numerical wave damping

Ry = Analytical wave damping

(4.48)

The physical damping is due to the diffusion and decay which is
EXP[—(UZE + k)At]. The computed wave damping is given by the modulus

of A, then the ratio is

. 2 ..
- - Ax/2)(2b
. l1 (1 - 6)[2sin"(0Ax/2)(2b + a) + iasinoAx + Cklle(02E+K)At
1 1 + e[ZsinZ(ch/Z)(Zb + a) + iasin(oAx) + ck
(4.49)
Calculating the modulus of the above complex number for 6= 1/2,
yields (x2 . y2) 2 2.1/2
{1 - =—1"+y"} 2
R. = 4 o (0 E+K)AL .50)
1 X, 2 2 .
a+«P°+ &
where
X = %%E-sinz(oAx/ZJ(ZE/Ax + v) + KAt
y = %éz-sin(ch)
and R is the dampiﬁg ratio after one time step.

The dispersive ratio is defined by

_ Numerical wave velocity
2 ~ Analytical wave velocity (4.51)

If the velocity of one component in the numerical solution is

given by Br/c, then
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To find Br the following relation is used:

. B.At
elBAt =+ [cos(- BrAt) + isin (- BrAt)] (4.53)

Equating the real and imaginary parts of Equation (4.47) with

those of Equation (4.53) and dividing the equations, yields

_ 1 Y
B, = 3¢ arc tan 7 2
] - XX+ y)
2
then
. y
R, = zfo5 arc tan 5 5 (4.54)
] - X+ y
2

The’dissipative effect is described by the ratio Rl that indicates
that the numerical damping is smaller than the physical damping for R1
> 1, and the numerical damping is greater than the physical damping

for R1 < 1. The ratio R2 that describes the dispersive

effect due to the velocity of the numerical solution indicates that
velocity of the numerical wave is slower than the physical velocity for
R2 < 1. For R2 > 1 the numerical velocity is faster than the
physical velocity.
The term oAx used in Figures 4.3 and 4.4 can be modified to
L/Ax (o = 27/L) as used by Leendertse (1967) where L 1is the wave
length. This last term is the number of discrete points per wave length.
In Figure 4.3, a constant value of b, Rl’ and R2 were plotted
for some values of a assuming Ax = 200 m and At = 200s. This test

shows that with the increase of the ratio vAt/Ax, the solution is less

accurate. The greater the number of sections per wave length,
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the more accurate are the solutions. Figure 4.4 shows the R1 and R2

values based on the variation of b and oAx. The increase of the
ratio EAt/sz shows that the curve inflexion that creates sudden
changes in accuracy moves in the direction of small values of o0Ax.

Conclusions about the accuracy of analysis include the following:

1) The damping and velocity ratios described here were developed
based on a linear transport equation. Tﬁerefore, these ratios give
only a qualitative idea about the accuracy of a difference scheme.

2) Leendertse (1967) computes the modulus of the propagation
factor (damping ratio Rl) by the equation

R* = R (4.55)

where n 1is the number of operations performed for the time that the

physical wave propagates over its wave length. Then

_ L 2m
= JAt T VAt (4.56)

The ratio RI measures the damping after n time steps.
Ponce, et al. (1978b) computed the damping effect based on the

logarithmic decrement,

Rf = exp(6n - §) (4.57)

where Gn is the logarithmic decrement of the numerical solution and
§ 1is the logarithmic decrement of the analytical solution. The
logarithmic decrement is defined as

§ = Qn(al) - zn(ao) (4.58)

1

the wave period, respectively. The logarithmic decrement can be

in which a and a, = the wave amplitude at the beginning and end of

calculated by



84

§ = 21\‘TB—]— (4.59)

3) The accuracy analysis of the complete equation can be performed
only by numerical experiments. The equations derived here can be used
to design the numerical experiments.

Numerical Test

Accuracy can be tested b; comparing the numerical solution with
the analytical solutions in a simplified system. The analytical
solution for a steady-state profile for a nonconservative substance
which is continuously released in a river or estuary with a constant

cross section at the rate of W pounds per day is the

following:
- yx
Chod = Co EXPlzp (1 £ my)] (4.60)
cho 1 VX 1 VX
COd = C§ - W ;n—i- EXP[?}__:: (1 iml)] - -Iil—z_ EXP[E‘E‘ (1 j_-_mz)]
(4.61)
where
o , 4KlE
1 2
v
A 4K2E
2 2
v
W
C = —
o] le

where CS is the oxygen concentration saturation, Q is the flow, x is
the distance (when the section is upstreamof the point of releast, Xx is

negative and the sign of m,  is positive), t. is the time, Co is the

1
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concentration at x = 0, K. 1is the decay coefficient, K, the

1 2
reaeration coefficient, E is the dispersion coefficient and v is the
velocity.

An auxiliary program that solves the transport equation for
constant coefficients (described in Appendix C) was used for comparing
analytical solutions.

The test was performed by assuming a concentration of 10 ppm of

BOD at x = 0, K1 = 0.25/day, K, = 0.5/day, E = 1.5 kmz/day, v =

2
5.0 km/day, 95 = 9 ppm, and 6 = 0.5.

The stability condition was calculated using Equation (4.41),

assuming Ax = 0.5 km then

At < 0.045 day
The value used was At = 0.01/day. The boundary condition used
downstream was Equation (4.67).

The boundary condition for DO at x = 0 was calculated by
Equation (4.61). The initial condition for BOD in the numerical
solution was C(x,0) = 0 for all sections and C(x,0) = Cs for DO.
After six days of simulation the numerical solution reached the
analytical solution with an error on the order of 10_3. Figure 4.5

shows the solutions.

B.7 1Initial and boundary condition

The transport equation with advection and dispersion terms is a
parabolic partial differential equation. This type of equation re-
quires the specification of the values in all sections at the beginning
of the calculation (t = 0) as

C(x,0) = Ci i=1,2,...n (4.62)
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and the two boundary conditions for all time steps. The boundary
conditions can be specified in different ways. Some of the more usual
procedures are:

1. Whén the concentration function of time at the boundaries is
known,

c(0,t) = Cu(t) . (upstream) (4.63)
C(nAx,t) = Cd(t) {(downstream) (4.64)

2. Assuming the concentration does not change with x at the

downstream boundary,
oC _
Eri 0 (4.65)

It is implied that Cn =C or Cn = r where r is a constant.

n-1
This condition can be used when the downstream section is far from a
source point because the gradient is steep close to the source.

3. Assuming the second partial derivative of the concentration

is equal to zero, which means the concentration has a linear relation-

ship with x at the downstream boundary,

BZC
— = 0 (4.66)
9X
then
Cn = 2Cn_1 - Cn-2 (4.67)

This condition should also be carefully used when the gradient is
steep near the boundary.

Condition 2 can be used upstream and condition 3 can be used
downstream. The only data required would be the initial condition.
This procedure can be used when the boundaries are not sources of

pollutants.
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The initial condition is usually unknown. When the steady-state
solution can be applied as the initial condition, it can be set by
running the program for constant boundaries in time.

C. System of Equations

After use of the numerical equation (4.24) fog a reach section,
and Equations (4.32), (4.33), (4.34), and (4.35) for a confluence
section and the boundary conditions, the result is a system of equations
to be solved at each time step. The system of equations is

FC=E (4.68)

where Ei is the coefficient matrix, C is the concentration at time
t + 1 matrix, and E is the right hand side matrix.

The solution to this system of equations when the system does not
have a confluence can easily be performed by the Thomas algorithm
(Appendix C). When the system has confluences, the coefficient matrix
results in a sparse matrix that is solved by the procedure described in
Chapter III, section C.2. When more than one pollutant should be
simulated, the program UNSWQ stores the coefficient matrix in another

array since they are the same for all pollutants, changes occur only

in the diagonal term and in the right hand side term.



CHAPTER V

TESTING OF THE MODELS

A. Case Study

Al DescriEtion

~

The system tested in this study was the Jacui Delta, a small delta
located in the south of Brazil in the sgéte of Rio Grande do Sul. Four
rivers flow into this delta.including the Gravatai, the Sinos, the
Cai and the Jacui. The total watershed area at section F (Figure 5.1)
is about 100,000 kmz, which represents one third of the state.

The Jacui River is the main stream; its watershed at section M makes up
about 80% of the total watershed. The Jacui Delta is a complex system
of branches, confluences, and storage basins, with an area of only 42 ka
(Figure 5.1). The distance between the confluences is small (small
islands), the widths are large (about 1000 m) in the main channels, and
the slope is small. Below the downstream section the rivers form a
series of large lakes that are linked together until they reach the
Atlantic Ocean. The delta is about 250 km away from the ocean. On the
eastern side of the delta there is a harbor and Porto Alegre which is
the capital of the State, a city of about 1.2 million people.

The water level in this delta shows a cyclic variation with an
amplitude of about 30 cm within a 24-hour time period. This cyclic
variation is sometimes altered by wind effects and floods (Figure 5.2).
In the dry season when the flow is low, a flow inversion can occur due
to the backwater effects from the lakes. The flow variation in section

F that bounds the delta downstream is illustrated in Figure 5.3. The

flow variation for section D, concurrent with section F, is shown in
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Figure 5.4. These data were not used to test the model since at this
point in time only these two sections had recorded values,

The Gravatai and Sinos rivers carry domestic and industrial
pollution to the delta. In the near future the Jacui will bring pol-
lution from a petrochemical complex. The Jacui River has a low level
of pollution, most of it coming from agricultural sources.

The water from this Delta was used for water supply, waste
dillution, navigation, and recreation. Upstream in the Gravatai and
Sinos Rivers, the waste is dumped directly into the rivers without
treatment; and downstream near the harbor, water is collected for
domestic water supply. Water quality is poor during the summer when
the flow is low. Due to the complex behavior of this Delta with its
flow inversion, it is difficult to decide where the water supply
intake should be located.

A.2 Available data

The Institute of Hydraulic Research of the Federal University of
Rio Grande do Sul installed six measuring stations to provide continu-
ous records of stage (Figure 5.1) and others for discontinuous readings.
In these stations, levels are recorded five times daily (8am, 10am, 12
noon, 3pm, and 6pm). The reference level used was sea level but the
reference elevation of some of these stations has not yet been
determined.

The discharges were recorded in seven sections (Figure 5.1). The
record of discharge available in those sections is for 24 hours (12noon
April 27, 1977 to 1Z2noon of April 28, 1977). The discharges were

recorded at time intervals of 3 hours, but conditions were bad and errors
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resulted. Only four or five verticals were used in each section. The
important sections were between 800 and 1200 meters wide. Periodically,
the vertical position of measurement was difficult to hold since the
velocity was high for this size of river. Some records are missing

at sections M, J, and R.

The data available from the stages is for April and May of 1977.
Section F has a continuous record beginning in February 1976. Sections
R, J, and G have only relative levels.

A map with a batimetry measured thirty years ago was available.

It was used as a reference to locate the sections for a new batimetry
measured in 1977. 1In most of the sections used by the model a new
batimetry was available. In the event that a new batimetry did not
exist, the old batimetry was used. Figure 5.5 shows the configuration
of the system taking into account the sections. Appendix A contains a
table describing each section, giving the physical characteristics
used by the model including area, hydraulic radius, width, level, and
bottom level. These values were calculated using the coordinates
obtained from the maps in a small program that printed and punched the
tables in the format used by the simulation program.

B. Hydraulic Simulation

B.1 Systems configuration for the model

Figure 5.5 shows that 64 sections were used in the model to
represent the river system. These sections were selected to consider
the cross section changes and confluence criteria. However, the
distance between the confluences is often short which implies
the distance between the sections is small. The distance of sub-

reaches Ax are from 460 to 4160 meters long. Table A.1 in
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Appendix A gives the geometry for all 64 sections. The sections that
use the old batimetry are 15, 27, 37,and 46. Section 37 may have been
dredged during this time but this information was not available. The
sections near the harbor are often dredged.

Tables 5.1 and 5.2 give the sections at the reaches and confluences,
the spacing, and the code. The batimetry of the storage areas was not
available and these internal boundaries ;ould not be used. The small
island downstream of sections A and D was examined since the
water supply intake could be close to these sections. This calls for a
more detailed analysis.

The discharges were recorded at section G' instead of G which
would be the best location for the boundary. Since the flow is low
compared to sections M and F, estimated discharges were used at
section G.

The notation used in the program consider the positive flow in the
reaches 1is always from the upstream specified section to the downstrean
section. There are two ways to specify the confluences sections (see
Figure 3.6 or Table 5.2). Figure 5.5 gives the positive direction used
in the program for this system.

The boundaries would be specified at sections M(1), J(10), R(14),
G(24), and F(64). The main sections are M and F.

B.2 Model adjustment

Data used for the parameter adjustment was from 12 noon of April
27, 1977 to 12 noon of April 28, 1977.

The levels recorded at the sections in the Jacui Delta are
illustrated in Figure 5.6. During this period, variations in the levels

were small, almost 10 cm in section M and about 7 cm in the other
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Table 5.1. Distance between the sections in the

reaches
Reach Number of Sections X
Number Upstream Downstream . (m)

1 1 2 1200
2 3 42 1420
3 4 5 2800
4 6 47 4160
5 8 11 2880
6 10 9 1160
7 12 15 800
8 14 13 1250
9 16 26 2600
10 17 18 3660
11 19 27 840
12 21 20 780
13 24 23 470
14 22 25 1040
15 25 33 940
16 28 29 1040
17 30 36 2600
18 31 32 920
19 34 35 1940
20 35 40 720
21 38 39 500
22 41 60 1000
23 43 45 1100
24 44 53 2800
25 45 46 2860
26 48 49 2440
27 49 50 1140
28 52 57 460
29 53 54 2060
30 55 51 1920
31 56 63 1900
32 58 59 1120

33 61 62 1080
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Table 5.2. Confluence sections and the distance between each two
sections.
Confluence sections at Ax confluence loss
confluence e
Number
kl kz k3 kl - k3 kZ - k3 kl—ks kz—ks
1 3 4 2 440 420 1.10 1.20
2 6 7 5 360 300 1.10 1.10
3 7 9 -8 140 140 1.00 1.00
4 11 13 -12 280 300 1.00 1.00
5 16 17 15 270 “ 280 1.00 1.05
6 18 20 -19 220 260 1.00 1.30
7 21 22 23 260 280 1.30 1.00
8 26 27 =28 700 680 1.10 1.00
9 30 31 29 540 320 1.00 1.30
10 32 33 -34 540 640 1.30 1.10
11 37 38 36 480 520 1.10 1.00
12 39 40 -41 180 320 1.00 1.00
13 43 44 42 440 340 1.10 1.00
14 46 47 -48 320 380 1.00 1.00
15 50 51 -52 920 660 1.00 1.00
16 55 56 54 460 900 1.05 1.00
17 37 57 -58 120 240 1.00 1.00
18 59 60 -61 340 360 1.00 1.00
19 62 63 -64 1040 1000 1.10 1.10
*confluence code for kg is
k2
k2 . T \‘i \\\
k —+ :“)—_——\L k
3 /“'1'”/ N 3
kq ky
kz (+) kz (-)
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sections. The flows recorded during the same period were checked to
see whether the volume coming into the system was approximately equal
to the volume that came out of section F during this period. The

following integration was used:

. A
oQy * Qp + Qp + Q) dt = | Qg dt (5.1)

where tl = 24 hours. ”

The measured discharges of sections J, R, and G' are shown in
Figure 5.7. The discharges from sections M and F are shown in Figure
5.8 and 5.10. The boundary conditions used in this adjustment were the
discharges at sections M, J, R, and G and the level was used at section F.

The initial conditions for all sections were calculated by
assuming an arbitrary initial condition for all sections and running the
program, holding the boundary values constant. After about 30 time
steps the steady state condition was reached. These values are given
in Table 5.3.

The parameters of the model that are important in the flow
division at the confluences and in the adjustment of the discharges and
levels at the sections are the cross-section area, hydraulic radius,
Manning's roughness coefficient (n),and the loss coefficient at the
confluences (o).

Normally the area and hydraulic radius are defined by the daéa
from the maps. The Manning's roughness coefficient has to be estimated
for each cross section or, in some situations, for each level in these
cross sections. A practical procedure is to record the discharge in a
section and also record the level of the section and of another nearby

section in order to calculate the water surface slope. Using
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Table 5.3. 1Initial condition in the sections.

Level Discharge Level Discharge

Section {meter, Section (meter,

Number sea level) (ms/s) Number sea level) (ms/s)
1 1.124 3297 33 0.890 90
2 1.000 3297 34 0.885 610
3 1.000 1797 35 0.88 610
4 1.000 1500 36 0.90 1000
5 0.930 1500 37 0.924 200
6 0.915 100 38 0.90 800
7 0.915 1400 39 0.90 800
8 0.91 1450 40 0.88 610
9 0.94 50 41 0.879 1410
10 1.00 43 42 0.993 1800
11 0.91 1450 43 0.98 200

12 0.905 1490 44 0.98 1600
13 0.93 40 45 0.978 200
14 1.00 32 46 0.94 200
15 0.91 1500 47 0.915 100
16 0.91 1400 48 0.90 300
17 0.90 100 49 0.90 300
18 0.89 100 50 0.90 300
19 0.89 80 51 0.894 150
20 0.89 20 52 0.88 450
21 0.885 20 53 0.893 1620
22 0.90 90 54 0.951 1650
23 0.94 70 55 0.894 150
24 0.885 70 56 0.92 1500
25 0.91 90 57 0.876 450
26 0.89 1420 58 0.876 650
27 0.89 80 59 0.876 650
28 0.89 1500 60 0.876 1410
29 0.89 1520 61 0.875 2060
30 0.89 1000 62 0.877 2060
31 0.89 520 63 0.877 1530
32 0.89 520 64 0.877 3590
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Equation (3.5) it is possible to estimate n. In the Jacui Delta
there are limited data available to estimate these values. The pro-
cedure used here adjusted the calculated levels and discharges to
the recorded ones.

The roughness coefficient has a large effect on the water surface
levels. In a river without a confluence, for the same input hydrograph,
when n increases, the level increases for the same discharge. When the
river system is similar to that of the Jacui Delta with confluences, the
relationship among the variables and this parameter is more complex.
When n increases'in confluence section and in the respective branch,
less flow comes through this branch, and instead of increasing the
level it can decrease. The adjustment is more complex when
there are many junctions, as is the case in the Jacui Delta.

The procedure here was to adjust the levels and discharges of
the main branches using data from sections L(54), D(57), A(35), and
K(29). The main division is among sections 2, 3, and 4. The secondary
branches could not be adjusted since there was no data and the n
values were estimated. '

The values of a were used in the adjustment. The variables are
not sensitive to these parameters. It has a direct effect on the flow
division. Increasing o decreases the flow. These values are listed
in Table 5.2.

The values of n were adjusted in the 24 hour period and are
listed in Table 5.4. Recorded and calculated values for all sections
are shown in Figures 5.8 to 5.12. The differeﬁces in the levels were

on the order of 1.0 cm in most of the sections. The difference in the

discharges was on the order of 8%. Since the errors assumed in the
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Table 5.4. Manning's roughness coefficient '"n" for each section number.

Section Section
n . n
Number Number

1 0.025 33 0.022
2 0.025 34 0.020
3 0.020 35 0.020
4 0.028 36 0.020
5 0.025 37 0.040
6 0.022 ~ 38 0.028
7 0.022 39 0.028
8 0.020 40 0.020
9 0.025 41 0.022
10 0.025 42 0.020
11 0.020 43 0.022
12 0.020 44 0.022
13 0.025 45 0.022
14 0.025 46 0.022
15 0.020 47 0.022
16 0.020 48 0.020
17 0.028 49 0.020
18 0.028 50 0.020
19 0.022 51 0.022
20 0.035 52 0.020
21 0.035 53 0.025
22 0.022 54 0.025
23 0.022 55 0.022
24 0.022 56 0.025
25 0.022 57 0.020
26 0.020 58 0.022
27 0.022 59 0.022
28 0.020 60 0.022
29 0.020 61 0.022
30 0.018 62 0.020
31 0.025 63 0.022
32 0.022 64 0.020
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record of these discharges are greater than that, greater refinement
would be a waste of time.

The time step in the adjustment was 20 minutes., When there was a
big time step such as 30 minutes or one hour, the loop of the island
downstream of sections D and A started to invert the flow direction
showing an unstable solution. This also”happens when the roughness
coefficient is decreased, since the roughness term is dissipative. It
can also be due to the great value of the ratio cAt/Ax.

Unfortunately, the period of recorded discharge did not show a
critical situation with inversion flow and great variation in level.
The levels during this period were above the seasonal normal. More
information needs to be obtained in the secondary branches as most of
the pollution is carried by small streams. A period in the dry season
must be chosen to record the discharges and levels.

B.3 Verification

After the parameters were found by adjustment using a period of
24 hours, model verification was required to determine whether the
parameters were sufficiently reliable for use in another simulation
period other than adjustment. A 48-hour period was chosen for veri-
fication, April 8 and 9 when the level variation is of about 0.65 m.
In this case it was only possible to verify the levels because the
discharges were not available.

The configuration, geometry data, parameters, and time step are the
same as those used in the model adjustment. The boundaries used were
the levels at the sections F and M (Figure 5.13). 1In the sections J,
R, and G, only relative levels were available and to adjust these

references would be expensive because a small error in the reference can
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create unstable results in the discharges. In these sections a constant
discharge arriving in the Delta was assumed, and the value used was

30.0 ms/s. The effect of those boundaries in the downstream section in
which one can verify the model are very small.

The initial condition was calculated using the procedure described
above in Chapter 4, section B.3. Recorded stages used in the verifica-
tion were only from sections L and D. Results of section D are shown in
Figure 5.13; and the results of section L are shown in Figure 5.14. The
recorded stages of April 9, 1977 for section L were considered unrelia-
ble and were not used in the verification. The solution of the
mathematical model shows good agreement with the recorded values.

C. Water Quality Simulation

C.1 Upstream inflow test

A complete set of data is not available to adjust and verify the
concentratién distribution in the Jacui Delta. Some tests were designed
in order to test the capability of the water quality model. The channel
configuration shown in Figure 5.15 was used. The sections in the main
channel have a width of 30.0 m; the sections in the branches in between
the confluences have a width of 15.0 m. The channel slope is 0.00005
m/m, the Manning coefficient is 0.03, Ax = 1000 m in the main channel,
and Ax = 500 m between the confluence sections.

The first test examined an’ upstream input ‘of stormwater runoff with
a BOD concentration. The upstream boundary condition for the hydraulic
equations is the flow hydrograph shown in Figure 5.16 (section 1). The
downstream condition is the rating curve given by Manning's equation.
The initial condition used was Q = 20 m3/s and y = 2.0 m in the

main channel and Q = 10 m>/s and y = 2.0 m in the branches. The
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upstream condition for BOD is shown in Figure 5.17 (section 1). The
downstream condition was given by Equation (4.67). The initial condi-
tion assumed a concentration of 1 mg/l for all sections. The water

quality coefficients are Cs = 7.8 mg/l, K, = 0.25/day, K, = 0, K

3 2 "
2.0/day, and E = 5 mz/s. The parameter of the numerical scheme is
® = 0.5 and the maximum velocity is about v = 0.7 m/s.
The stability condition for the time step, using Equation (4.51) is
At < 1430 s
The time step used was 20 minutes or 1200 s.

In Figure 5.16 there are flow hydrographs of sections 1, 6, and 13.
The values plotted included those up to time step 40, showing the reces-
sion part of the hydrograph did not reach the initial flow of Q =
20 mg/s. Figure 5.17 shows the BOD concentration in mg/1l and the
function of time for sections 1, 6, and 13. The peak concentration
damps from section 1 to 13, was 8-km downstream from 10.5 mg/l to 8.1
mg/1 with a lag of 6 hours. Also, the damp of the curve at section 6
was from 10.5 mg/1 to 8.9 mg/1 with a 3.0 hour lag.

This test shows the formulation used in the model can well
represent the hydraulic flood routing and substance transport processes
through a channel system with a confluence. A simple system was used
to better understand the processes.

C.2 Lateral inflow test

The assumption is to use the same river system as that of Figure
5.15, but with a lateral input between sections 4 and 6. The upstream
condition has a constant discharge of 20 m3/s and the downstream

condition has the rating curve given by Manning's equation. The
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initial conditions are the same as in the upstream inflow test. The
lateral flow is given in Figure 5.18. The upstream and downstream
boundary conditions are assumed by a linear relationship between the
concentration and the space given by Equation (4.67). Again, the
initial condition for BOD is the same as in the previous test;
dissolved oxygen is assumed to be 7.5 mg/l for all sections. The con-
centration of BOD and DO for the lateral flow are plotted in Figure 5.18.
The water quality coefficients are the same as in the previous test.

The maximum velocity is about 0.5 m/s, and the stability condition
requires that

At < 1950 s
The time step used in the calculation was twenty minutes.

Figure 5.19 shows the flow hydrograph of some sections. The flow
in section 4 decreases with the lateral flow input between 4 and 6.
This flow shortage goes to the other branch, increasing the flow at
section 7, The flow hydrograph of sections 10 and 16 also are
plotted in Figure 5.19. The concentration distribution of BOD and DO
in sections 6 and 10 are shown in Figure 5.20 illustrating that time
step 5 is critical for BOD at section 6. The damping in the concen-
tration of the substances from sections 6 and 13 is due mainly to the
transport in branch 6-8, the mixture with clean water of branch 5-7-9,
and transport in the main channel until section 13.

The concentiation profile for specific time steps is plotted in
Figure 5.21. Time step 5 is critical, showing a high concentration
of BOD at section 6 and decreasing suddenly at section 10 due to the
mixture with clean water from branch 5-7-9. At time step 8 the maximum

concentration is at section 8 and the polluted flow is moving downstream.
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After 15 time steps the BOD is low and the DO is high, as the lateral
flow does not have more pollution and the river tends to improve its
water quality. In branch 5-7-9 the quality remains high without major
modification during this lateral inflow of polluted water because the
longitudinal dispersion coefficient is small and the velocities are
high.

This test shows the important effect of lateral flow input in the
flow division in the river concentration downstream of the intake.
The objective of both tests were to simulate practical situations in

order to show the model capability and check its performance.



CHAPTER VI

MANAGEMENT USE OF THE MODEL

A. General

The model can be used in management analysis to evaluate
alternative solutions in river systems. It also can be used to test
hydraulic structures and control data measurement.

The hydraulic model can be used for such purposes as the
forecasting of flood stages and the suitability of navigation in rivers
with islands and tributaries. The water quality model is useful in
measuring the impacts of dumping wastes into different sections of the
river. The basic requirement of the models is the data. A model can-
not be reliable if the data are insufficient or if there are
uncertainties in the data.

The Jacui Delfa was used in this study to show the utility of the
model in management studies. Assuming the purpose of the study was the
evaluation of the water quality level, then the biochemical oxygen
demand (BOD) and dissolved oxygen (DO) parameters would be used in
performing the analysis.

The river geometry data and the roughness coefficient are the same
as those discussed in Chapter V. The water quality parameters include:

Longitudinal dispersion coefficient. There is no data concerning

this coefficient in the Jacui Delta. Dailey and Harleman (1972) used
the modified Taylor equation to predict this coefficient for the hydrau-
lic model of the James River. They used a dye test to verify the
longitudinal dispersion coefficient predicted by the modified Taylor
equation. They multiplied this predicted coefficient by three to

account for channel irregularities. This resulted in a good prediction
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during high-water slack values, but not as good for low-water slack
values. Amein and Galler (1978) determined the dispersion coefficient
for the lower Chowan River. They obtained values in the range of
25,000 £t2/hr (0.65 m>/s) to 130,000 £t2/hr (3.36 m’/s) for no current
and no wind. They showed that because of dispersion due to wind and
reversed flow, a coefficient of 300,000 ftz/hr (7.8 mz/s) is typical of
most estuary flow. The Jacui Delta is most irregular. It has wind and
reverse flow effects. Therefore, the longitudinal dispersion coef-
ficient used in this management test was 10 mz/s.

Saturated oxygen concentration. This concentration was calculated

by Equation (4.16) with a temperature of 27°C with C, = 7.8 mg/s.
Decay rate. The decay rate was assumed as 0.1/day based on data
collected in the Sinos River.

Reaeration coefficient. The reaeration coefficient predicted by

the equations developed for rivers (e.g., O'Connor and Dobbins, 1958)
estimated small values due to the small velocities (Amein and Galler,
1978). They used an equation given by Kanishwer (1963) applicable to
estuaries based on depth and wind velocity. The wind velocity is not
available for the Jacui Delta and this coefficient was assumed as
0.5/day.

Some options were tested with a set of generated boundary
conditions. The upstream conditions were assumed constant during the
simulation period. The downstream condition at section F was defined
by two second-order polynomial equations; one for the positive flow
period, and the other for the negative flow period. The positive
period was assumed to be 16 hours and the negative period to be

8 hours.
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The flow equations are

G -9 (t - 4)

4 <t<20-Q-= 7 R T
Q.4 -1t) _
ted -Q=—5— - i£_§~£lq 6.1)
Q (t - 20)
tizo_Q-_:_.__o_..é...____[l_(Lél._)_]

where t 1is in hours, Q1 is the maximum positive discharge, and QO is
the maximum negative discharge in absolute value.
The water volume entering the Delta through sections M, J, R,
and G should approximately equal the volume leaving the Delta at
section F within a 24 hour period, assuming the same storage. The
area given by the second order polynomial equation (Figure 6.1) is
Qt

S = 5 (6.2)
6(t1 - tztl)

where Q is the maximum discharge, t1 is the time of maximum
discharge, and t, the time of zero discharge as defined in Figure 6.1.

The continuity equation is
S1 - S0 = (QM + QJ + QR + QG)24 (6.3)

where S1 and SO are the volume of positive and negative water flow

at section F and QM’ QJ, QR’ and QG are the flow at sections M, J,
R, and G.

Using a total input of 150 ms/s and QO = - 105 ms/s,xthe positive
flow calculated by Equation (6.3) is Q1 = 390 m3/s. The flow calcula-

ted by Equation (6.1) is plotted in Figure 6.2.
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ta

Figure 6.1 Flow Curve for the Positive
and Negative Period

B. Options
Option 1

The rivers with the highest levels of pollution were the Gravatai
and the Sinos. Based on BOD and DO records, the maximum concentration
of BOD in the boundary at the Gravatai River was about 11 mg/l1 and the
minimum DO was about 1 mg/l1. In the Sinos River these values were
9 mg/l and 1.5 mg/l, respectively. The concentration at sections M
and J was assumed to be 0.5 mg/1l for BOD and 7.5 mg/1 for DO.

Flow conditions at the boundaries are QM = 100 ms/s; QJ = 10 mS/S;
QR = 20 ms/s; and QG = 20 ms/s. Figure 6.2 shows the flow hydrograph
at section F.

Those values were held constant during a simulation period of 27
hours. The results showed that the concentration of BOD was high near
the river source and decreased after mixing with Jacui and Cai water.
Figure 6.3 shows the profile of concentration along the harbor up to
section F. Curve a shows the profile when the flow at section F was
equal to Qo which is the maximum negative flow absolute value. Curve
b shows the profile for a discharge Q1 at section F where Q1 is

the maximum positive discharge. It can be seen from the figure that
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between sections 33 and 34 there was a sudden decrease in BOD
concentration caused by dilution from the confluent river branches.
Condition a, as compared to condition b, increases BOD concentration
in the sections near the boundary and decreases it downstream. A
profile of BOD concentration from section R (14) in the Sinos River
toward section 41 downstream, was plotted for the same tested option in
Figure 6.4. Again here, the sudden decrease of BOD concentration be-
tween sections 13 and 12 was due to a mixing of Sinos water with less
polluted water coming from the Jacui and Cai Rivers. At section 28
there was a slight increase of BOD caused by more polluted water
coming from the Gravatai River through the loop 21-20-19-27.

Also, the small increase in sections 30 and 29 were due to the disper-
sion effect at junction 32-33-34. The same phenomena occurred

again at sections 38 and 39 near the confluence 39-40-41. Figure

6.5 shows those profiles for the DO concentration having a similar
pattern.

Option 2

An alternative option was to test for an increase in flow of the
polluted rivers (the Gravatai and the Sinos) and a decrease in flow of
the Jacui River, assuming the same concentration values. The flow was
QM = 70 ms/s; QJ = 10 mS/S; QR = 35 m3/s; and QG = 35 ms/s.

Figure 6.6 shows the profiles according to options 1 and 2. The
increase in the profiles of option 2 corresponds to the upstream sec-
tions G(24) to (34), while the downstream sections caused very little
change in the concentration. The sections of branch 48 through 57 were

not affected by this pollution and stayed at low levels (0.5 to 0.9).
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OEtion 3

The third option tested for a change in BOD concentration of the
Cai River to 9 mg/l and flow conditions at the boundaries to: QM =
90 ms/s; QJ = 20 ms/s; QR = 20 ms/s; and QG = 20 m3/s. This condition
primarily affected the branch between sections 8 to 29. There was an
increase in BOD concentration before section 28, after which the changes
were not significant.

Option 4

This final option tested for a BOD concentration of 4 mg/1 for the
Jacui River, maintaining the same flow conditions at the boundary as
Option 3. The flow of the Jacui River was the largest, and its effects
were important in most downstream sections. The concentration profile
from section J(10) to section (41) for all four options tested here is
illustrated in Figure 6.7.

C. Discussion

The following discussion is based on two assumptions; that the
sources of pollution are restricted to those previously defined and
secondly, the generated data are reliable.

The concentration of the rivers entering the Delta mainly affects
the concentration of the branches nearby, and usually these values for
BOD are high during the period of negative flow. During positive flows
or low tide at the downstream boundary there is more flow for dillution
of the waste, making it the most convenient period for waste disposal.
Table 6.1 lists the maximum concentration value for sections in these
options. For instance, the maximum concentration for section 25 was in
Option 2 where the polluted discharge from the Gravatai was greater,

which had a direct effect in this section. Section 57 had the greatest
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value in option 4 when the Jacui River had the highest concentration.
There was not much change in the other tests. For sections near

section F and branches 42-53-56 and 48-50-57, there was no significant
change in the concentration when the pollution in the Cai, Sinos, and
Gravatai Rivers increased. The Cai River had a major effect on the
concentrations of sections between 8 to 28. The Sinos River primarily
affected the sections between 12 to 28, and the Gravatai River primarily
affected the sections between 22 to 35. The Jacui River is the main
source of water in this Delta and if its water quality level decreases,
most of the sections of the Delta will also decrease the water quality

level.

Table 6.1 Maximum BOD concentration at the sections in each option

Section Option 1 Option 2 Option 3 Option 4
25 8.38 9.53 8.46 8.58
29 1.55 2.04 - 2.03 4.00
36 1.38 1.40 1.44 3.05
61 1.72 1.80 1.75 2.33
57 0.92 0.95 0.94 2.00
C* 2.67 4,67 3.27 5.67

C* is the mean concentration of the flow that enters the Jacui
Delta.



CHAPTER VII

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

A hydraulic and water quality mathematical model for a river
network under unsteady flow conditions was developed. A summary of the
main features of the model and conclusions related to the study are
presented in this chapter.

A. Summary and Conclusions

The following summary conclusions are related to the hydraulic
module of the model.

1) The description of the flow behavior was mathematically
explained by two one-dimensional partial differential equations called
St. Venant equations that were derived from mass-and momentum con-
servation. These equations assumed a uniform variation of the cross-
section reach. The sections should be positioned so as to promote as
much uniformity in the reach as possible.

2) The continuity and momentum equations under steady flow
condition were used at the confluence. A section was defined in each
branch near the river confluence. Those equations were used only be-
tween those sections at the confluence. The distance from one section
to another should be short enough to allow a steady flow condition.
The positive flow direction assumed by the model refers to: (i) the
upstream section toward the downstream section in the reach, and (ii
the notation given by Figure 3.6 at the confluence.

3) A finite difference implicit scheme was developed to solve
those equations. The scheme linearized the equations using a Taylor

series with first order approximation. The linearization of the flow
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equations was valid when changes in the flow variables were
small.

4) Boundary conditions should be specified in terms of the type
of flow regime. For a subcritical regime one boundary must be specified
upstream and another downstream. When ;he regime is supercritical both
cénditions can be specified upstream.

Usually, the rating curve was used as a downstream boundary
condition in flood problems or where the major effect was from upstream
to downstream. This condition can not be used when there are effects
from downstream in the boundary section such as in the case of a river
sections near the sea or lakes. In this case, a stage hydrograph can
be used as the downstream boundary condition.

5) The initial condition can be satisfied by the steady state
solution by running about 50 time steps in the computer keeping
boundary values constant. These are the boundary values for the
initial time step.

6) The criteria used by Price (1974), who approximately chose
the time step by the ratio of the space step divided by the kinematic
wave speed, is a guide used to get good accuracy in the numerical
solution.

7) The method used in solving the system of equations attempted
to minimize the computer storage and calculation for the Gauss elimina-
tion procedure. Some of the guidelines that proved useful in reducing
computer time for the numbering procedure include: (a) The increase in
the difference between the section number in the reaches and confluences

increased the storage and calculations, (b) the number of the sections

should be given in crescent order from upstream towards downstream, and



140

(c) the best procedure for short loops, such as that of Figure 5.15,
is the alternate numbering.procedure.

This method used 1584 storage values and used 1.0 second of
central processor time to solve the system of 128 by 128 equations for
each time step at the Jacui Delta using a Cyber 172 computer. The
total number of sections used was 64.

8) The geometrical data required for the model are: (a) 1In
each section: a table with area, hydraulic radius and top width for
each level, the roughness coefficient, and the bottom level of the
section; (b) in each reach: the space step, and the upstream and
downstream section numbers; (c¢) in the confluence: the space
step, the section numbers, and the positive flow direction; and
(d) related to the time variation: time step, number of time steps,
boundary values in each time step, and initial conditions.

9) The roughness coefficient of Manning's equation (n) is
necessary for each section. The stages are very sensitive to the
value of n, given a river reach with a flow hydrograph as boundary
input. When one increases the n value the stages also increase. On
the other hand, when the boundary is a stage hydrograph, an increase
in n will decrease the flow. When the river has confluences and a
hydrograph flow as boundary, the effect in the stages due to variation
of the roughness coefficients iﬁ the branches may not be the same as
before. An increase of roughness in ; branch decreases its flow,
that may result in a stage decrease instead of .an increase.

The major parameters in the flow division are the cross-sectional
area, the hydraulic radius, and the Manning roughness coefficient.

The greater the area and the hydraulic radius, the greater is the flow
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that goes through the section. Conversely, the greater the n the
smaller the flow that goes through the section.

10) The hydraulic model was applied to the Jacui Delta in
Brazil. This Delta has the contribution of four rivers with a total
watershed of about 100,000 kmz. There‘?re many confluences and storage
basins, and there is a harbor located on the eastern side where there
is also a large city, Porto Alegre.

Actual data were used to make the adjustment of the roughness of
the main branches. The agreement between the recorded and the calcula-
ted stages was good; the difference was about 1.0 cm, and the discharge
discrepancies were on the order of 8%. Verification of the model was
performed using stages for a period of only two days with the stage at
section F varying 0.65 m. Two sections could be verified showing good
agreement between the observed and the calculated values.

The following summary and conclusions are related to the compound
model for water quality.:

1) The description of the variation of a substance in a river at
a one-dimensional level was accomplished with the transport equation.
It is based on the conservation of mass through a channel reach and
utilizes the advection, dispersion, and source and sink terms. The
solution of this equation requires knowledge of the hydraulic variables
of the river. The model used here was an uncoupled one that first
solved the hydraulic equations and then the transport equation for a
time step.

2) The source and sink terms for a conservative substance,
biochemical oxygen demand, and dissolved oxygen were defined. The

longitudinal dispersion coefficient can be estimated by many different
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formulas, that are usually a function of the velocity and depth, or it

can be determined by a dye test. The reaeration coefficient does not
have an equation that always yields a good estimation, but the user may
choose between the equation or a constant value during the computer
program execution. The decay rate of BOD is usually obtained from
laboratory measurements of water samples.

The model was set to simulate a substance that had a first order
decay reaction formulation. Other substances can be simulated by
defining the proper formulation for the reaction processes in the
program.

3) The numerical method used to solve the transport equation
was a backward implicit scheme. At the confluences, the equations were
defined based on the mass conservation of the transport process. The
concentration was defined at the same section as the stage and discharge
which was tAe most convenient procedure.

4) The conservation of mass does not guarantee the accuracy and
stability of the numerical scheme. The stability of a backward implicit
scheme is given by Equation (4.41). When there was inversion flow, an
additional restriction was given by Equation (4.42). This restriction
may create problems when the dispersion is not great enough, and the
procedure to solve it requires the use of a forward scheme for a nega-
tive flow. The accuracy analysis was performed on a linear version of
the transport equation by using the Fourier series.

5) Usually two boundary conditions (or more if there are more
boundaries) should be specified for the transport equation. The up-
stream condition can be the concentration as a function of time. The

more commonly used boundary condition is the assumption of a linear



143

relationship between concentration and space. This condition can be
used when the concentration gradient is not steep near the boundary.
When the source of pollution is a lateral flow this condition can be
used in both boundaries. The initial condition also can be determined,
as in the hydraulic equations.

6) The model was tested in a chan;el system with confluences.

The two conditions tested were an upstream flow hydrograph and a
lateral inflow hydrograph entering within two confluences. Both hydro-
graphs had a degree of pollution described by the concentration of
biochemical oxygen demand and dissolved oxygen. The results showed
that the processes were well-described.

7) The limitation of the model was in the one-dimensional
assumption. The advantages of the model were in handling a broad and
complex river system with minimal computer cost, and in using complete
partial differential equations in a one-dimensional level, therefore,

minimizing the empirical formulations.

B. Recommendations

1) With the development of the bases of the model and its
application for specific substances, the major effort in the mathema-
tical solution was made. Further application of this model might
include additional substances by defining the mathematical formulation
of the reaction processes in order to make the model useful for other
purposes. For instance, the nitrification phase of waste oxidation
could be added to the model and used in rivers and estuaries where this

type of process is important.
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2) Utilization of this model in management analysis could be
improved by using optimization techniques in the selection of alterna-
tives and decisions.

3) The hydraulic model can be improved to take into account the
wind effects on the stage and flow. These effects can be important in
some wide branches of a estuary.

4) Management analysis of the Jacuil Delta was conducted here to
demonstrate the applicability of the model in a specific condition.
The main concern with this Delta is the actual determination of the
most suitable site for water supply intake for Porto Alegre. Accurate
analysis of this purpose would require the use of the coliform para-
meter for water quality along with more information on the following:
(a) location, amount, and distribution in time of the waste inflow
in the Delta, (b) concentration of coliforms during the day in the
Gravatai and Sinos Rivers at sections R and G, the concentration at
sections 35, 38, 37, and 57, which are the alternative sections for
the intake, and (c) the longitudinal dispersion coefficient in the
important branches. The collection of samples to determine the decay
rate of this parameter is also important, and (d) hydraulic data from
a critical period for water quality in order to verify the model
adjustment and better define the roughness coefficient in some

secondary branches.



145

REFERENCES

Abbott, M.B. and F. Ionescu, 1967, On the Numerical Computation of
Nearly Horizontal Flows, Journal of Hydraulic Research, volume 5,
number 2, pp. 98-117.

Abbott, M.B, 1967, Computational Hydraulics, A Short Pathology, Journal
of Hydraulic Research, volume 14, number 4.

Amein, M. and C.S. Fang, 1970, Implicit Flood Routing in Natural
Channels, Journal of the Hydraulics Division, ASCE volume 96,
number HY12, pp. 2481-2500.

Amein, M. and W.S. Galler, 1978, Water Quality Management Model for
the Lower Chowan River, Department of Civil Engineering, project
number B-077-NC, North Carolina State University, Raleigh.

American Public Health Association, 1965, Standard Methods for the
Examination of Water and Wastewater, American Public Health
Association.

Arons, A.B. and H. Stommel, 1951, A Mixing Length Theory of Tidal
Flushing, Transactions American Geophysical Union, volume 32,
number 3, pp. 419-421.

Balloffet, A., 1969, One Dimensional Analysis of Floods and Tides in

Open Channels, Journal of Hydraulics Division, ASCE, volume 96,
number HY4, pp. 1429-1451.

Baltzer, R.A. and C. Lai, 1968, Computer Simulation of Unsteady Flow
in Waterways, Journal of Hydraulics Division, ASCE, volume 95,
number HY4, pp. 1559-1575.

Basaran, A.K.T., 1976, A Mathematical Model for Simulationg Water
Quality Under Ngn—Steady State Conditions, Ph.D. dissertation,
Department of Civil Engineering, North Carolina State University.

Bathe, K. and E.L. w%lson, 1976, Numerical Methods in Finite Element
Analysis, Prentice-Hall, Inc., Englewood Cl1iffs, New Jersey.

Bell, J.M., 1973, Water Quality Simulation Model for the Upper Wabash
River, Purdue University, Water Resource Research Center, Technical
Report number 34, Lafayette, Indiana.

Bella, D.A. and W.A. Dobbins, 1968, Difference Modeling of Stream
Pollution, Journal of Sanitary Engineering Division, volume 94,
number SAS, pp. 995-1016.

Berkhoff, J.C.W., 1973, Transport of Pollutants or Heat in a System of
Channels, chapter IV, Hydraulic Research for Water Management,
publication number 100, Delft Hydraulics Laboratory.



146

Chen, Y.H, 1973, Mathematical Modeling of Water and Sediment Routing
in Natural Channels, Ph.D. dissertation, Department of Civil
Engineering, Colorado State University, Fort Collins, Colorado.

Chen, Y.H., 1977, Water and Sediment Routing in Rivers, chapter 10,
Institute of River Modeling, Colorado State University, Fort
Collins, Colorado.

Chow, V.T., 1959, Open Channel Hydraulics, McGraw-Hill Book Co.,
New York.

Churchill, M.A., H.L. Elmore and R.A. Buckingham, 1961, The Prediction
of Stream Reaeration Rates, ASCE Journal of Sanitary Engineering
Division, volume 86, number SA4, pp. 1-46.

Cooley, Richard and S.A. Moin, Finite Element Solution of St. Venant
Equations, ASCE Journal of Hydraulics Division, volume 102, number
HY6, pp. 759-775.

Cunge, J.A., 1975, Applied Mathematical Modeling of Open Channel Flow,
chapter 10 of Unsteady Flow in Open Channels, K. Mahmood and
V. Yevjevich, eds., Water Resources Publications, Fort Collins,
Colorado.

Dailey, J. and D. Harleman, 1972, Numerical Model for the Prediction
of Transient Water Quality in Estuary Network, Ralph Parsons
Laboratory, Department of Civil Engineering, Massachusetts Institute
of Technology.

Dobbins, W.E., 1964, BOD and Oxygen Relationship in Streams, Journal
s of Sanitary Engineering Division, ASCE, volume 90, number SA3,
pp. 63-78.

Dornbusch, J.N., J.R. Anderson and L.L. Harms, 1974, Quantification of
Pollutants in Agricultural Runoff, Office of Research and
Development, U.S. Environmental Protection Agency report 660-12-74-
005.

Dresnack, R., and W.E. Dobbins, 1968, Numerical Analysis of BOD and DO
/ Profiles, ASCE Journal of Sanitary Enginqering Division, volume
94, number SAS.

Elder, J.W., 1958, The Dispersién of .Marked Fluid in Turbulent Shear
Flow, Fluid Mechanics 5, part 4, pp. 544-560.

Feigner, K.D., and H. Harris, 1970, FWQA Dynamic Estuary Model, Federal
Water Quality Administration.

Fischer, H.B., 1967, Mechanics of Dispersion in Natural Streams, ASCE
Journal of Hydraulics Division, volume 93, number HY6, pp. 187-216.



147

Fischer, H.B., 1968, Dispersion Predictions in Natural Streams, ASCE
Journal of Sanitary Engineering Division, volume 94, number SAS,
pp. 927-943.

Fischer, H.B., 1969, Cross-Sectional Time Scales and Dispersion in
Estuaries, Proceedings 13th Congress IAHR3, pp. 173-180, Kyoto.

Fread, D.L., 1973, Effects of Time Step in Implicit Dynamic Routing,
Water Resources Bulletin, volume 9, number 2, pp. 338-351.

Fread, D.L., 1974, Numerical Properties of Implicit Four-Point Finite
Difference Equations of Unsteady Flow, NOAA Technical Memo NWS
Hydro-18, U.S. National Weather Service, Silver Spring, Maryland.

Fread, D.K., 1976, Flood Routing in Meandering Rivers with Flood Plains,
Rivers 76.

Grimsrud, G.P., E.J. Finnemore and H.J. Owen, 1976, Evaluation of Water
Quality Models; A Management Guide for Planners, U.S. Environmental
Protection Agency, EPA-600/5-76-004.

Gunaratnam, D.J. and F.E. Perkins, 1970, Numerical Solution of Unsteady
Flows in Open Channels, Hydrodynamic Laboratory Report, number 127,
Department of Civil Engineering, Massachusetts Institute of
Technology.

Haltiner, G.J., 1971, Numerical Weather Prediction, John Wiley § Sons,
Inc. a

Hann, R.W., Jr. and P.J. Young, 1972, Mathematical Models of Water
Quality Parameters for Rivers and Estuaries, Technical Report number
45, Water Resources Institute, Texas AEM University.

/Harleman, D.R.F., 1971, One Dimensional Models, chapter III of Estuarine
Modeling; An Assessment, Environmental Protection Agency.

Henderson, F.A., 1966, Open Channel Flow, MacMillan Co., New York.

Holley, E.R., Jr. and D.F. Harleman, 1965, Dispersion of Pollutant
in Estuary Type Flow, Technical Report number 74, Hydrodynamics
Laboratory, Department of Civil Engineering, Massachusetts
Institute of Technology.

Holly, F., Jr., 19753 Two-Dimensional Mass Dispersion in Rivers,
Ph.D. dissertation, Department of Civil Engineering, Colorado State
University, Fort Collins, Colorado.

IPH, 1977, Estudo do Comportamento Hidraulico do Rio Guaiba e do
Delta do Jacui, relatério n. 5, Inst. de Pesquisas Hidriulicas,

Porto Alegre, Brasil.



148

Issacson, E., J.J. Stoker and B.A. Troesch, 1956, Numerical Solution
of Flood Prediction and River Regulation Problems, IHSFltut? of
Mathematics Science Report number IMM-235, New York University.

Kanisher, J., 1963, On the Exchange of Gases Between the Atmosphere
and Sea, Deep Sea Research, volume 10, pp. 195-207.

Keller, H., 1960, The Numerical Solution of Parabolic Differential
Equations, in Ralston A. and Wilf H. Mathematical Methods for
Digital Computers, volume 1, John Wiley and Sons, New York,
pp. 135-143. ’

Keuning, D.H., 1976, Application of Finite Element Method to Open
Channel Flow, ASCE Journal of Hydraulics Division, volume 102,
number HY4, pp. 459-467,

Kramer, Gary R., 1974, Predicting Reaeration Coefficients for Polluter
Estuary, ASCE Journal Environmental Engineering Division, volume
100, number EE1l, pp. 77-92.

Lanna, A.E. and L. Moretti, 1977, Estabilidade da Solucao Numérica
pelo Método das Diferencas Finitas das Equacdes de Poluicao
Fluvial, 9° Congresso Brasileiro de Engenharia Sanitédria,
Belo Horizonte.

Lee, C.H. and D.R.F. Harleman, 1971, One Dimensional Real-Time Model
for Estuarine Water Quality Prediction, Report 16070 DGW, Water
Quality Office, Environmental Protection Agency, Washington, D.C.

Leendertse, J.J., 1967, Aspects of Computational Model for Long
Period Water-Waves Propagation, Memo RM-5294-PR, The Rand Corp.,
Santa Monica, California.

Leendertse, J.J., 1970, A Water Quality Simulation Model for Well
Mixed Estuaries and Coastal Seas, volume I, Principles of
Computation, The Rand Corp., RM-6230-RC.

Leendertse, J.J. and E.C. Gritton, 1971, A Water Quality Simulation
Model for Well Mixed Estuaries and Coastal Seas,. New York Rand
Corp., R-708-NYC.

Leendertse, J.J., R.C. Alexander and S. Liu, 1973, Three Dimensional
Model for Estuaries and Coastal Seas, volume I, Principles of
Computation, the Rand Corp., R-1417-OWRR.

Liggett, J.A., 1975, Basic Equations of Unsteady Flow, chapter 2 of
Unsteady Flow in Open Channels, K. Mahmood and V. Yeevjevich, eds.,
volume 1, Water Resources Publication, Fort Collins, Colorado.

McQuivey, R.A. and T. Keefer, 1974, Simple Method for Prediction
Dispersion in Streams, ASCE Journal Environmental Engineering
Division, volume 100, number EE4, pp. 997-1011.



149

McKee, J.E. and H.W. Wolf, 1963, Water Quality Criteria, State Water
Quality Control Board Publication, Sacramento, California.

Miller, W.A. and J.A. Cunge, 1975, Examples of One Dimensional Flow
Modeling, chapter 11 of Unsteady Flow in Open Channels, K. Mahmood
and V. Yevjevich, eds., volume 1, Water Resources Publication,
Fort Collins, Colorado.

Morel-Seytoux, H.J. and D.H. Lau, 1976, A Comparison of Seven Formulas
for Prediction of Reaeration Coeffiecient, CEP74-75HJM-DHL46,
Engineering Research Center, Colorado State University, Fort
Collins, Colorado.

Najarian, T.0. and D.R.F. Harleman, 1975, A Real Time Model of
Nitrogen-Cycle Dynamics in an Estuarine System, Report 204,
Ralph Parsons Laboratory, Massachusetts Institute of Technology.

Nemerow, N.L., 1974, Scientific Stream Pollution Analysis, McGraw-Hill
Book Co.

0'Connor, D.J., 1965, Estuarine Distribution of Non-Conservative
Substance, Proceedings ASCE, volume 91, number SAl, pp. 23-42.

O'Connor, D.J. and W.E. Dobbins, 1958, Mechanism of Reaeration in
Natural Streams, Transaction ASCE, volume 123, number 2934.

O0'Connor, D.J. and R.V. Thomann, 1971, Water Quality Models; Chemical,
Physical and Biological onstituents, chapter III of Estuarine
Modeling: An Assessment, Environmental Protection Agency.

0'Connor, D.J., R.V. Thomann and D.M. Ditoro, 1973, Dynamic Water
Quality Forecasting and Management, U.S. Environmental Protection
Agency, Project Number R800369, EPA 660/3-73-009.

Overton, D.E. and M.E. Meadows, 1976, Mathematical Modeling for Water
Quality Management in Streams under Unsteady Hydraulic Conditions,
Water Resources Research Center, University of Tennessee, Research
Report Number 55.

Owens, M., R.W. Edwards and J.W. Gibbs, 1964, Some Reaeration Studies
in Streams, International Journal of Air and Water Pollution, Oxford,
England, volume B, number 819, pp. 469.

Partridge, P.W. and C.A. Brebbia, 1976, Quadratic Finite Elements in
Shallow Problems, ASCE Journal of Hydraulics Division, volume 102,
number HY9, pp. 1299-1313.

Ponce, V.M. and D.B. Simons, 1977, Shallow Wave Propagation in Open
Channel Flow, ASCE Journal of Hydraulics Division, volume 103,
number HY12, pp. 1461-1476.



150

Ponce, V.M., R.M. Li and D.B. Simons, 1978, Applicability of Kinematic
and Diffusion Models, ASCE Journal of Hydraulics Division, volume
104, number HY3, pp. 353-360.

Ponce, V.M., H. Indlekofer and D.B. Simons, 1978, Convergence of Four
Point Implicit Water Wave Models, ASCE Journal of Hydraulics
Division, volume, 104, number HY7, pp. 947-958.

Price, R.K., 1974, Comparison of Four Numerical Methods of Flood Routing,
ASCE Journal of Hydraulics Division, volume 100, number HY7,
pp. 879-899.

Rathbun, R., 1977, Reaeration Coefficients of Streams State-of-the-Art,
ASCE Journal of Hydraulics Division, volume 103, number HY4.

Roache, P.J., 1972, Computational Fluid Dynamics, Hermosa Publishers,
Albequerque, New Mexico.

Siemons, J., 1970, Numerical Methods for the Solution of Diffusion
Advection Equations, Delft Hydraulic Laboratory, publication
number 88.

Simons, D.B., R.M. Li, V.M. Ponce, and J.A. Gessler, 1977, Flood Flows,
Stages and Damages, Department of Civil Engineering, Colorado
State University, Fort Collins, Colorado.

Stommel, H., 1953, Computation of Pollution in a Vertically Mixed
Estuary, Sewage and Industrial Wastes, volume 25, number 9,
pp. 1065-1071,

Taylor, G.I., 1954, The Dispersion of Matter in Turbulent Flow Through
a Pipe, Proceedings Royal Society, London.

Texas Water Development Board, 1971, Simulation of Water Quality in
Streams and Canals, Report 128.

Thomas, H.A., Jr., 1948, Pollution Load Capacity of Streams, Water and
Sewage Works, volume 95, number 11, pp. 409-413.

Thomann, R.V., 1963, Mathematical Model for Dissolved Oxygen, ASCE
Journal of Sanitary Division, volume 89, number SA5, pp. 1-30.

U.S. Army Corps of Engineers, 1976, Gradually Varied Unsteady Flow
Profiles, Computer Program 723-62-17450, Hydrologic Engineering
Center, U.S. Army Corps of Engineers, Davis, California.

Veeningen, C., 1973, Practical Applications of Computations for Channel
Networks, chapter V of Hydraulic Research for Water Management,
Delft Laboratory, publication 100.

Velz, C.J., 1970, Applied Stream Sanitation, John Wiley and Sons.




151

Vreugdenhill, C.B., 1973, Computational Methods for Channel Flow,
chapter II, Hydraulic Research for Water Management, Delft Hydraulic
Laboratory, publication 100.

Yen, B.C., 1973, Open Channel Flow Equations Revisited, ASCE Journal
of Engineering Mechanics Division, volume 99, number EM5,
pp. 979-1009.

Yen, B.C. and A.0. Akan, 1976, Flood Routing Through River Junctions,
Rivers 76. “ )

Weibel, S.R., R.J. Anderson -and R.L. Woodward, 1964, Urban Land Runoff
as a Factor in Stream Pollution, Journal Water Pollution Control
Federation, volume 36, number 7, p. 914.

Wylie, E.B., 1970, Unsteady Free-Surface Flow Computation, ASCE Journal
Hydraulics Division, volume 96, number HY1l, Process Paper 7683,
PpP. 2241-2251.



APPENDIX A

GEOMETRICAL PROPERTIES OF EACH SECTION IN JACUI DELTA



153

APPENDIX A

Table A.1. Geometrical properties of each section in Jacui Delta.

section 1; z,=-8.38m section 2; z,=-8.30m
stage area top width hyd.rad. arga top width hyd.rad.
m m? n m m m m
1.00 4877.5 687.8 7.079 6201.1 1020.0 6.164
0.00 4198.6 666.6 6.288 52586.8 968.5 5.466
-1.00 3549.0 635.5 5.576 4357.3 916.1 4.764
-2.00 2924.8 613.0 4.765 3461.9 874.8 3.955
-3.00 2322.3 593.1 3.912 2605.6 839.6 3.102
-4.00 1742.0 562.9 3.092 1782.3 806.9 2.208
-5.00 1195.3 530.9 2.250 1004.4 723.6 1.308
seétion 3; 25=-12.50m section 4; 25=-4.00m
stage area top width hyd.rad. area top width hyd.rad.
m m? m m m2 m m
1.00 2562.7 319.4 7.914 2556.3 722.5 3.535
0.00 2249.1 306.8 7.238 1845.4 699.3 2.637
-1.00 1958.5 272.1 7.099 1164.1 666.7 1.745
-2.00 1695.4 255.1 6.555 500.9 543.6 0.921
-3.00 1447.9 239.8 5.961 101.3 263.5 0.384
-4.00 1215.4 226.2 5.310 0 0 0
-5.00 994.4 215.9 4.599 0 0 0
section 5; Z,=-6.65m section 6; zy=-4.40m
stage area top width hyd.rad. area top width hyd.rad.
m m? m m m2 m m
1.00 2633.4 620.0 4.234 207.7 59.0 3.300
0.00 2035.8 575.3 3.527 149.8 57.1 2.494
-1.00 1483.7 521.4 2.837 93.4 55.6 1.627
-2.00 1003.2 439.5 2.277 44.9 38.9 1.127
-3.00 604.7 357.6 1.688 12.0 17.9 0.568
-4.00 302.8 232.2 1.302 0.9 4.6 0.197
-5.00 126.0 155.3 0.802 0 0 0

*2o 1s the bottom level.
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Table A.1 (continued)

section 7; z,=-6.00m section 8; z5=-6.40m
stage area top width hyd.rad. area top width hyd.rad.
m m?2 m m m2 m m
1.00 - - - 3265.7 980.0 3.327
0.00 1870.0 620.0 3.011 2297.0 957.8 2.304
-1.00 1260.0 540.0 2.329 1489.9 625.7 2.376
-2.00 772.0 436.0 1.768 926.1 502.0 1.841
-3.00 393.0 182.0 2.153 647.7 509.7 1.269
-4.00 218.0 168.0 1.295 280.8 244.1 1.148
-5.00 57.0 114.0 0.499 91.4 134.8 0.678
section 9; z,=-3.60m section 10; z,=-8.70m
stage area top width hyd.rad. area top width  hyd.rad.
m m?2 m m m? m m
1.00 722.3 233.8 3.084 619.8 148.0 4.141
0.00 498.4 213.9 2.326 478.9 135.5 3.499
-1.00 302.8 182.7 1.656 348.0 127.8 2.700
-2.00 138.1 140.0 0.986 222.8 122.6 1.806
-3.00 27.2 81.9 0.332 107.3 99.4 1.075
-4.00 0 0 0 50.8 97.0 0.523
-5.00 - - - 2.2 11.8 0.188
section 11; z,=-8.70m section 12; zo=-8.80m
stage area top width hyd.rad. area top width hyd.rad.
m m? m m m m m
1.00 3184.1 504.0 6.306 3163.0 616.0 5.123
0.00 2700.0 464.1 5.808 2577.6 554.9 4,634
-1.00 2256.0 424.2 5.309 2061.9 458.3 4,486
-2.00 1845.0 404.4 4,555 1652.1 379.7 4.337
-3.00 1451.5 381.8 3.797 1286.5 351.5 3.647
-4.00 1081.0 359.2 3.007 950.4 317.9 2.978
-5.00 746.6 309.6 2.410 654.6 268.3 2.431
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Table A.1 (continued)

section 13; z,=-2.80m section 14; zy=-6.05m
stage arga top width hyd.rad. arga top width hyd.rad.
m m m m m m m
1.00 487.7 163.0 2.981 486.7 93.0 5.113
0.00 332.5 147.4 2.250 396.1 88.2 4.404
-1.00 192.9 131.8 1.462 310.4 83.4 3.663
-2.00 66.4 120.8 0.550 229.4 78.5 2.886
-3.00 0 0 0 153.3 73.5 2.070
-4.00 - - - 86.5 58.3 1.476
-5.00 - - - 34.6 45.9 0.751
section 15; z,=-8.00m section 16; z5=-9.00m
stage area top width hyd.rad. area top width hyd.rad.
m m? m m m2 m m
1.00 - - - 3095.4 520.0 5.941
0.00 2666.0 640.0 4.162 2592.3 486.0 5.324
-1.00 2100.0 490.0 4.283 2123.3 452.1 4.688
-2.00 1625.0 460.0 3.531 1686.0 422.1 3.990
-3.00 1185.0 420.0 2.820 1281.0 386.0 3.316
-4.00 785.0 380.0 2.065 919.5 336.7 2.726
-5.00 422.5 305.0 1.450 613.3 279.3 2,193
section 17; z,=-3.30m section 18; z4=-5.95m
stage area top width hyd.rad. area top width hyd.rad.
m m? m m m? m m
1.00 398.3 166.5 2.385 246.8 55.8 4.212
0.00 241.3 145.0 1.660 193.3 51.3 3.605
-1.00 111.4 114.7 0.969 144 .4 46.1 3.008
-2.00 24.9 44.9 0.553 101.6 39.4 2.487
-3.00 1.3 8.8 0.149 65.6 32.7 1.944
-4.00 0 0 0 36.2 25.9 1.368
-5.00 - - - 13.9 18.7 0.736
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Table A.1 (continued)

section 19; zy=-3.40m section 20; z4=-4.68m
stage area top width hyd.rad. area top width hyd.rad.
m m? m m m? m m
1.00 281.4 96.8 2.889 172.1 60.5 2.773
0.00 191.4 83.2 2.288 119.5 44.7 2.596
-1.00 114.6 71.1 1.604 78.2 39.0 1.958
-2.00 48.9 59.6 0.820 41.9 31.6 1.304
-3.00 5.0 21.4 0.235 15.4 21.4 0.710
-4.00 0 0 0 1.2 7.0 0.172
section 21; z,=-4.68m section 22; 25=-9.90m
stage arga top width hyd.rad. ar%a top width hyd.rad.
m m m m m m m
1.00 172.1 60.5 2.773 1325.3 172.0 7.534
0.00 119.5 44.7 2.596 1157.5 163.7 6.917
-1.00 78.2 39.0 1.958 997.1 ' 157.1 6.217
-2.00 41.9 31.6 1.304 843.2 150.8 5.485
-3.00 15.4 21.4 0.710 695.5 144.9 4.716
-4.00 1.2 7.0 0.172 553.3 139.6 3.901
-5.00 0 0 0 416.3 134.4 3.057
section 23; z,=-6.90m section 24; zo=-4.30m
stage area top width hyd.rad. area top width hyd.rad.
m m2 m m m2 m m
1.00 575.4 117.0 4.851 524.6 141.8 3.680
0.00 463.7 106.3 4.306 388.4 130.5 2.963
-1.00 362.8 95.6 3.749 263.3 120.7 2.175
-2.00 272.2 86.4 3.115 147.5 108.6 1.357
-3.00 190.0 76.7 2.453 50.3 80.7 0.629
-4.00 119.7 63.9 1.860 2.5 16.5 0.150
-5.00 62.3 51.0 1.215 0 0 0
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Table A.1 (continued)

section 25; z,=-5.50m section 26; z,=-4.00m
stage arga top width hyd.rad. arga top width hyd.rad.
m m m m m m m
1.00 830.7 291.3 2.844 ' - - -
0.00 559.0 248.5 2.243 2220.0 700.0 3.170
-1.00 372.7 143.3 2.590 1550.0 640.0 2.421
-2.00 253.1 99.0 2.542 940.0 580.0 1.621
-3.00 161.2 86.2 1.862 385.0 530.0 0.726
-4.00 79.2 77.2 1.029 - - -
-5.00 12.3 49.1 0.250 - - -
section 27; z,=-2.00m section 28; z,=-5.50m
stage area top width hyd.rad. area top width hyd.rad.
m m2 m m m2 m m
1.00  145.0 100.0 1.448 4004.5 1130.0 3.541
0.00 57.5 75.0 0.766 2917.9 1043.3 2.794
-1.00 0 0 0 1961.1 1021.9 1.918
-2.00 - - - 1046.6 628.1 1.338
-3.00 - - - 461.3 409.6 1.125
-4.00 - - - 175.8 187.3 0.938
-5.00 - - - 35.2 99.0 0.355
section 29; z,=-5.90m section 30; z,=-6.30m
stage area top width hyd.rad. area top width hyd.rad.
m m? m m m2 m m
1.00 4100.0 968.0 4,232 1524.3 271.3 5.577
0.00 3165.2 901.3 3.509 1256.9 263.5 4.741
-1.00 2284.7 870.6 2.623 997.3 255.7 3.882
-2.00 1418.9 361.1 1.647 745.5 247.9 2.998
-3.00 687.4 606.9 1.132 501.5 240.1 2.085
-4.00 267.1 293.6 0.899 272.5 200.3 1.247
-5.00 68.3 133.9 0.510 91.0 143.3 0.635
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Table A.1 (continued)

section 31; z,=-7.10m section 32; z5=-10.40m
stage arga top width hyd.rad. area top width hyd.rad.
m m m m m? m m
1.00 2715.0 712.5 3.797 3555.8 559.0 6.341
0.00 2027.9 661.6 3.054 3025.6 501.4 6.014
-1.00 1395.6 554.6 2.506 2545.6 464.8 5.457
-2.00 1009.6 342.8 2.933 2097.4 424 .4 4,925
-3.00 685.1 285.8 2.392 1679.2 412.0 4.064
-4.00 438.3 186.5 2.346 1274.7 394.7 3.221
-5.00 258.2 173.8 1.484 823.2 308.2 2.662
section 33; 25=-5.20m section 34; z,5=-5.20m
stage area top width hyd.rad. area top width hyd.rad.
m m?2 m m m? m m
1.00 1076.5 347.5 3.088 1308.3 280.0 4.600
0.00 745.3 314.9 2.359 1033.0 270.5 3.768
-1.00 451.4 258.3 1.741 777.8 236.6 3.247
-2.00 242.8 113.3 2.127 550.3 218.2 2.297
-3.00 149.6 87.3 1.703 341.4 199.8 1.697
-4.00 65.8 80.3 0.818 150.8 181.3 0.828
-5.00 2.5 24.7 0.100 6.8 49.9 0.136
section 35; z,=-11.5%m section 36; z0=—7.30m
stage arsa top width hyd.rad. arga top width hyd.rad.
m m m m m m m
1.00 3189.9 r402.0 7.750 1396.5 230.0 6.030
0.00 2788.8 400.2 6.825 1177.2 208.7 5.604
-1.00 2389.4 398.4 5.891 974 .4 197.6 4,904
-2.00 2023.1 '338.8 5.864 781.4 189.2 4.110
-3.00 1690.9 327.1 5.089 596.4 180.7 3.287
-4.00 1365.8 323.2 4.173 419.9 172.3 2.431
-5.00 1044.6 319.3 3.240 251.9 163.8 1.535
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Table A.1 (continued)

section 37; 25=-2.00m section 38; zo=—5.70m
stage area top width hyd.rad. area top width hyd.rad.
m m2 m m m2 m m
1.00 - - - 1446.3 441.0 3.275
0.00 390.0 260.0 1.500 1014.8 422.1 2.401
-1.00 152.5 215.0 0.709 603.6 382.6 1.576
-2.00 0 0 0 324.6 141.8 2.285
-3.00 - - - 195.6 116.1 1.682
-4.00 - - - 91.3 93.0 0.981
-5.00 - - - 17.2 42.3 0.407
section 39; z,=-5.70m section 40; z5=-10.40m
stage area top width hyd.rad. area top width hyd.rad.
m m?2 m m mé m m
1.00 1446.3 441.0 3.275 3195.4 414.8 7.601
0.00 1014.8 422.1 2.401 2784.2 408.5 6.732
-1.00 603.6 382.6 1.576 2378.3 403.4 5.832
-2.00 324.6 141.8 2.285 1980.9 391.3 5.014
-3.00 195.6 116.1 1.682 1594.6 383.7 4.123
-4.00 91.3 93.0 0.981 1212.5 380.6 3.166
-5.00 17.2 42.3 0.407 833.5 377.5 2.199
section 41; z5=-6.40m section 42; z45=-10.80m
stage area top width hyd.rad. arga top width hyd.rad.
m *m? m m m m m
1.00 3581.7 755.0 4.711 3149.6 516.0 6.080
0.00 2828.0 752.3 3.738 2644.7 475.7 5.537
-1.00 2077.1 749.5 2.758 2196.9 438.4 4,991
-2.00 1308.7 736.9 1.769 1797.9 322.7 4,708
-3.00 690.3 337.3 1.938 1455.4 310.4 4.668
-4.00 382.2 284.3 1.340 1156.2 292.7 3.933
-5.00 125.9 224.1 0.561 869.2 281.5 3.076
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Table A.1 (continued)

section 43; zo=-4.40m section 44; zp=-9.00m
stage area top width hyd.rad. area top width hyd.rad.
m m2 m m m2 m m
1.00 568.3 162.8 3.446 2565.6 464.3 5.504
0.00 407.5 158.8 2.542 2108.3 450.2 4.666
-1.00 254.6 130.7 1.932 1673.6 391.6 4.259
-2.00 139.0 101.8 1.357 1290.0 373.9 3.437
-3.00 53.7 70.6 0.757 955.9 278.1 3.424
-4.00 4.4 21.9 0.200 696.7 241.5 2.875
-5.00 0 0 0 468.1 215.7 2.163
section 45; Z2o=-4.30m section 46; zy=-2.00m
stage arga top width hyd.rad. area top width hyd.rad.
m m m m m? m m
1.00 816.1 211.0 3.855 - - -
0.00 609.8 201.2 3.023 310.0 220.0 1.408
-1.00 414.1 190.3 2.172 58.9 78.5 0.247
-2.00 230.8 175.5 1.314 0 0 0
-3.00 93.3 97.6 0.955 - - -
-4.00 10.5 59.3 0.178 - - -
section 47; z5=-4.10m section 48; z,=-8.0m
stage area top width hyd.rad. area top width hyd.rad.
m m? m m m2 m m
1.00 256.5 62.4 3.961 986.1 182.0 ,5.377
0.00 195.5 59.5 3.196 814.9 160.5 5.037
-1.00 137.4 56.7 2.386 663.7 144.7 4.553
-2.00 83.2 51.8 1.591 524.2 134.5 3.872
-3.00 35.4 43.8 0.803 394.7 124.3 3.159
-4.00 0.7 14.2 0.050 276.0 112.1 2.452
-5.00 0 0 0 171.4 93.9 1.819
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Table A.1 (continued)

section 49; z,=-2.95m section 50; z,=-8.50m
stage arga top width hyd.rad. area top width hyd.rad.
m m m m m2 m m
1.00 1700.0 630.0 2.750 1645.7 410.0 4.006
0.00 1150.0 515.0 2.220 1276.8 327.9 3.885
-1.00 650.0 450.0 1.460 976.9 282.1 3.455
-2.00 220.0 410.0 0.550 708.2 255.4 2.767
-3.00 0 0 0 485.4 188.9 2.563
-4.00 - - - 327.9 126.2 2.587
-5.00 - - - 220.3 95.4 2.299
section 51; z5=-3.90m section 52; z,=-9.80m
stage area top width hyd.rad. arsa top width hyd.rad.
m m2 m m m m m
1.00 259.4 90.5 2.843 3077.1 828.0 3.711
0.00 176.6 75.0 2.338 2284.9 756.6 3.015
-1.00 108.6 63.0 1.727 1623.6 573.6 2.825
-2.00 51.9 48.6 1.063 1252.6 307.4 4.061
-3.00 12.8 28.4 0.449 974.6 248.6 3.904
-4.00 0 0 0 750.4 201.7 3.702
-5.00 - - - 566.2 173.7 3.244
section 53; z,=-6.50m section 54; z,=-6.40m
stage area top width hyd.rad. area top width hyd.rad.
m m? m m m? m m
1.00 2391.1 420.8 5.661 2391.1 420.8 5.904
0.00 1974.5 412.5 4.772 1974.5 412.5 5.134
-1.00 1578.8 380.8 4.135 1578.8 380.9 4,417
-2.00 1205.7 367.1 3.279 1205.8 367.1 3.512
-3.00 813.2 306.7 2.647 813.2 306.7 2.587
-4.00 535.9 278.0 1.925 535.9 278.0 1.640
-5.00 278.5 244.5 0.886 278.5 244.5 0.886
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Table A.1 (continued)

section 55; zo=-2.55m section 56; zo=—7.40m
stage area top width hyd.rad. area top width hyd.rad.
m m? m m m?2 m m
1.00 233.9 102.5 2.266 2079.9 375.0 5.521
0.00 137.5 83.3 1.643 1712.0 360.0 4,726
~-1.00 64.4 65.3 0.982 1357.9 348.4 3.882
-2.00 6.9 37.6 0.183 1015.5 332.4 3.044
-3.00 0 0 0 701.1 296.6 2.355
-4.00 - - -~ 438.2 236.5 1.846
-5.00 - - - 212.6 217.3 0.976
section 57; zo=-8.91m section 58; z,=-10.70m
stage area top width hyd.rad. area top width hyd.rad.
m m?2 m m m2 m m
1.00 2920.6 633.0 2.557 3584.2 831.0 4.291
0.00 2552.6 542.1 4.705 2780.9 775.6 3.566
-1.00 2039.6 480.9 4,237 2078.8 549.9 3.179
-2.00 1594.7 408.2 3.904 1455.0 583.7 2.478
-3.00 1207.9 367.7 3.283 991.9 339.2 2.898
-4.00 855.3 336.4 2.541 683.8 275.4 2.460
-5.00 555.6 261.6 2.123 438.5 218.7 1.987
secciou 59; z,=-8.00m section 60; zy=-6.20m
stage arsa top width hyd.rad. area top width hyd.rad.
m m m m m?2 m m
1.00 2920.7 680.0 4.290 2971.3 930.0 3.186
0.00 2271.8 617.7 3.674 2065.3 882.1 2.335
-1.00 1681.0 572.4 2.934 1473.4 490.9 2.990
-2.00 1138.6 473.3 2.403 990.6 474.5 2.081
-3.00 743.0 304.4 2.439 524.3 458.2 1.142
-4.00 474.9 231.9 2.046 263.9 341.5 0.772
-5.00 264.9 185.9 1.425 67.9 73.6 0.919
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Table A.1 (continued)

section 61; z,=-5.90m section 62; z5=-5.90m
stage area top width hyd.rad. arga top width hyd.rad.
m m2 m m m m m
1.00 5582.5 1140.0 4.884 5582.5 1140.0 4.884
0.00 4450.0 1124.9 3.946 4450.0 1124.9 3.946
-1.00 3332.6 1109.9 2.997 3332.6 1109.9 2.997
-2.00 2277.9 945.8 2.404 2277.9 945.8 2.404
-3.00 1417.9 782.8 1.809 1417.9 782.8 1.809
-4.00 693.2 666.5 1.039 693.2 666.5 1.039
section 63; z5=-8.20m section 64; z,=-12.92m
stage area top width hyd.rad. arga top width hyd.rad.
m m2 m m m m m
1.00 2255.4 331.0 6.771 7699.3 1113.0 6.915
0.00 1926.4 326.9 5.863 6648.6 974.7 6.818
-1.00 1601.5 322.9 4.942 5733.4 862.3 6.646
-2.00 1280.6 318.9 4,008 4910.9 790.6 6.209
-3.00 969.8 299.8 3.230 4150.3 731.6 5.670
-4.00 682.7 269.3 2,533 3447.7 673.7 5.115
-5.00 438.9 218.8 2.004 2802.9 613.7 4.565
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APPENDIX B

WATER QUALITY COMPUTER PROGRAM

B.1 Program Capabilities

The model can be used to simulate the hydraulic and water quality
of a river with islands, tributaries, & confluence, and where there
are sea or lake effects river flow. The model simulates the following
water quality parameters: conservative substance, biochemical oxygen
demand, and dissolved oxygen.

The program is based on the St. Venant equations of continuity
and momentum conservation and on the transport equation of a substance.
These equations assume one-dimensional flow; their solution obtainable
through an implicit numerical scheme.

Data required by the program includes:

1) For each cross section: (a) a table for each level with
values for area, top width, and hydraulic radius, (b) the beta, rough-
ness, decay, reaeration, and longitudinal dispersion coefficients.
Some coefficients can be estimated in the program.

2) For each reach: the space between the sections, section
number, and positive flow direction.

3) For each confluence: the distance between the sections,
section number, and positive flow direction.

4) Boundary conditions should be specified for the period the
calculations are required. The initial level, discharge and concen-

tration for all sections is also required.
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The output, for the specified time step and sections gives the
depth at time t, the depth at time t + At, the depth variation, level
discharge at time t, and the discharge at time t + At. The output
also gives the concentration of a substance in each cross-section.

The program requires about 15,000 words for the
arrays. The dimension is setvup in 65 sections, 40 reaches, 20 con-
fluences, 5 Loundaries, 100 time steps, 10 points per section in the
tables, 2 lateral contributions, and 3 substances.

The central processor time spent by the program in each time step
for the Jacui Delta is about 2 seconds, which includes the simulation
of the hydraulic equations and the transport equation for two sub-
stances. This system has 64 sections, 33 reaches, and 19 confluences.

B.2 Routine Description

This computer program has 21 subprograms including 19 subroutines
and 2 functions. The general flowchart of the main program is shown
in Figure B.1.

Main Program - At the start of the program, input values are read

by calling the subroutines INPUT and INPUT1. The subroutines MATRIX
and MATRIX1 are called to organize the coefficient matrix. The time
step loop solves the hydraulic partial differential equations using
COEF1 which calculates the coefficients, SKYLINE which solves

the solution of the hydraulic équations, and program WQSIM which
solves the transport equation.

Subroutine ARRAY

MATRIX and MATRIX1 are called in this subroutine that computes the

position of the matrix coefficients in the one-dimensional array AA(I)
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‘ START ’

Call A Call Call
INPUT i IDT1 FINT
No Yes
Y
Call | .1 Call
IDTI1 INPUT 1
CALL .
MATRIX 1 "
Call
MATR IX
Initialize
Some Arrays
Call
OUTPUT
Call
GEOME

}

Dispersion and Reaeration
Coefficients for the

Initial Time Step

Figure B.1 Flowchart for the Main Computer Program
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Figure B.1 Flow chart for the Main Computer Program
(continued)
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used in the solution of the system of equations. It also calculates

the arrays IR(I), IHIGH(I), and IDIAG(I) used in SKYLINE.
Subroutine BODOD

This subroutine is called in WQSIM and computes the source and
sink term for the biochemical oxygen demand (BOD) and dissolved
oxygen (DO). -

Subroutine COEF1

This subroutine computes the coefficients for the reach equations
and boundary condition. If there are confluences this subroutine calls
COEF2. It is called at each time step in the main program.

Subroutine COEF2

. This subroutine called in COEF1 computes the coefficients of the
confluence equations.

Subroutine DISPER

This subroutine computes the longitudinal dispersion coefficient
for all sections by a modified Taylor equation at each time step. It
is called in WQSIM and in the main program.

Function FINT

This function is called in IDT1 and COEF1 and is used to
interpolate a value in a table.

Subroutine GEOME

For all sections this subroutine computes area, hydraulic
radius, top width, friction slope, conveyance, and derivative of the
conveyance with respect to depth by interpolation in the tables. It

is called in the main program.
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Subroutine IDT1

When the boundaries and lateral contribution values are not given
in the same time spacing as that of the calculations, it can be inter-
polated linearly by using'an option. This subroutine is called
in INPUT and INPUT1.

Subroutine INPUT

This subroutine reads such system parameters as the cross-section
tables, number of sections, and the roughness coefficients. It
also reads the boundary and initial conditions and lateral contribu-
tion, and prints the input values as an option. This subroutine is
called in the main program.

- Subroutine INPUT1

This subroutine reads the water quality coefficients and the
initial and the boundary conditions of the transport equation that
will be simulated for each parameter. This subroutine is called in
the main program.

Subroutine MATRIX

This subroutine is called in the main program and is used at the
beginning of the execution to organize the coefficient matrix of the
hydraulic equations. In this way it minimizes the number of sparse
elements outside of a main diagonal band.

Subroutine MATRIX1 °

This subroutine performs the same function as MATRIX but for the
coefficient matrix of the transport equation. - It is called in the

main program.
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Subroutine OUT

This subroutine prints the concentration for all sections at each
time step and is called in WQSIM.

Subroutine OUTPUT

This subroutine prints depth, depth variation in the time
step, level, discharge, and discharge variation at each time step.
This subroutine gives the option of printing only some specified
sections and time steps. This subroutine is called in the main program.

Subroutine REARE

This subroutine computes the reaeration coefficient by the O'Connor
and Dobbins equations for all sections in each time step. It is called
in BODOD and in the main program.

Subroutine RHS

This subroutine computes the right hand side matrix of the

transport equation and it is used when there is more than one parameter

to be simulated. It is called in WQSIM.

Subroutine SKYLINE

This subroutine solves the system of equations by the Gauss
elimination procedure by a storage scheme described in
Section C.2 in Chapter III. This subroutine is called at each time
step in the main program and in WQSIM.

Subroutine SUB

This is an auxiliary subroutine used by subroutine MATRIX to give
the column position of the coefficients in the matrix. This subroutine

is called in MATRIX.
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Subroutine SUB2

This is an auxiliary subroutine used by the subroutine MATRIX to
give the non-zero coefficients of a specified row of the matrix.

Subroutine TRANSP

This subroutine computes the coefficient matrix and right hand
side matrix. It is called in WQSIM.

Subroutine WQSIM

This subroutine is used at each time step to solve the transport
equation for as many parameters as required. The flowchart of this
subroutine is shown in Figure B.2. It is called at each time step in
the main program.

B.3 List of FORTRAN Symbols

A 1ist of the most important variables in the computer program is

given in this section.

FORTRAN Variable Description

A(D) Area of the cross section I at time t

AA(T) One-dimensional array that stores the coefficient
matrix

ALFA(I) Coefficient of losses in the confluence

AR(J,I) Cross-sectional area, table at section I

AT1(I) Area of cross section I at time t + At

BB(I) Right hand.side matrix of the system of equations

C(1,J) Concentration at section I of the substance J

CABE(I) Stores the title that is printed with the input

cards of the hydraulic data.
CABE1 (1) Stores the title that is printed with the input

cards of the water quality data.
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Figure B.2 Flowchart for Subroutine WQSIM




Fortran Variable

CB(I,J,K)

CKX(I)

CKY (1)

CKT1(I)

CKYT1 (1)

DB(I)
DT
DT1

DX (I)

DXC (1)

E(I)
ET1(I)

F(I,J)

FAF (I,J)
G
HA(I,J)
HEF (1)

HO (1)

174

Description
Concentration at boundary J in time step I
for the substance K
Conveyance at section I in time t
Partial derivative of the conveyance with respect
to y atsection I in time t
Conveyance at section I in time t + At
Partial derivative of the conveyance with respect
to y atsection I in time t + At

The rate D for section I

b
Time step of the boundary and lateral inflow data
Calculation 0 of time step
Distance between two sections where I is the
upstream section of the reach
Distance between two sections in the confluence
First the distance between J = 1 and J = 3 in NCC
(1,J) and after J = 2 and J = 3

Longitudinal dispersion coefficient at time t

Longitudinal dispersion coefficient at time

Manning roughness coefficient, table at the section-

J

Table of flood area values for section J
Gravitational acceleration

Depth, table at section J

Depth, table of flood depth at section I

Depth at section I in time step t

t + At
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FORTRAN Variable Description
HQB(1,J) Variable value (depth or discharge) at boundary J
in time step I
HT (I) Depth values from the rating curve table
ICONF Confluence option
ICONF = -1, the brggram uses Equation (3.9) at the
confluence
ICONF = 0, the program uses Equation (3.10) at the
confluence
10E Longitudinal dispersion coefficient option IOE = O,
the program computes E by the subroutine DISPER
IOE > 0, the coefficient is given in the input data
I10K2 Reaeration coefficient option
I0K2 = 0, the program computes the coefficient by
the subroutine REARE.
I0K2 > 0, the coefficient is given in the input data
10P1 Print option

I0P1

1, the program prints the input data

I0P1

1]

0, the program does not print the input data
I0P2 Time step option
I0P2 = 0, the data time step is equal to the
calculation time step.
IOP2 = 1, the time steps are not equal
ITRS The number of water quality parameters that will

be simulated

KC1(I) The constant rate of first order decay at section I



FORTRAN Variable
KC3(I)

KTO(I)

KT1(I)

LD

LDT2

LOT

~1Q(1)

LRO

LUNI

NB(I)

NBOUN

NBS(I)
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Description

The coefficient K3

Reaeration coefficient at section I in time t

for each section I
Reaeration coefficient at section I in time t + At
Input data opfion

Specifies the spacing of the time step to be printed
Prints sections option

LOT = 0, prints the values 0f all sections in each
time step

LOT = N, prints only N sections

The section number where there is a lateral
contribution

Roughness option

LRO

. . ) )
0, one roughness coefficient per section

LRO

i

1, table per section
Unit option

LUNI 1, metric system

1

LUNI = 0, English system

The section number of boundary I. If the number

is positive the boundary is the level, negative is
the discharge, and when it is zero the condition is
a rating curve

Number of boundaries

Boundary option

NBS > 0, reads the boundary value in each time step

NBS < 0, linear relationship between C and X



FORTRAN Variable

NCC(I,J)

NCONF

NP (1)

NPE (I)

NPS(I)

NPX

NQS

NREAC

NSUBS (I)

NST(I,J)

NT

NTRS(I)

NUD(I)
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Description
The section number of the confluence I(K1 = NCC(I,1)
K, = NCC(1,2), K3 = NCC(I,3)
Number of confluences
Number of points>of the table for section I
Number of points of the table in section I for
the flood area )
The sections number in which the variables should
be printed
Number of points of the rating curve
Number of sections with lateral contribution
Number of reaches
Specifies the type of section

NSUBS (1)

0, boundary section

1)

NSUBS (1) N, confluence section where N is the
confluence number

NSUBS(I) = -N, reach section where N is the reach
number

Upstream (J = 1) and downstream (J = 2) sections
of the reach I

Number of time steps

The code of each substance I that will be simulated
1 - Conservative

2 - First order decay (BOD)

3 - DO

The number of the section upstream of the boundary

I



FORTRAN Variable
NX

Q0(1)

QT (1)

QWL(I,J)

R(I)
RR(J,T)
RT1 ()
SF(I)
SFT1 (1)
SUBS (I)
TA(J,T)
TE

TET
XLAY(I)

Z0(I)
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Description
Number of sections
Discharge at section I at time t
Discharge values from the rating curve table
The lateral flow for section LQ(I) in the
time step J
Hydraulic radius at time step t
Hydraulic radius, table in section I
Hydraulic radius at time step t + At
Friction slope at section I at time step I
Friction slope at section I at time step t + At
The name of each substance I that will be simulated
Top width, table at section I
Temperature
Weighting factor 9
The rate La for each section

The bottom level of the cross section
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FROGRAH UN3HQ{INFUT,OUTPUT)
PEAL KC1,KC3yKT1,KTO

COMMON /PARL/NX,NREAC,NCONF,NBOUNNST(4Q4+2),NCC(20,3),NB(S),2Z0(ES)
1.DX165) o CXC(65) yNF(65) sAR(10465) yRR (10+65) HA(10,65) oF £F (65,50 yHF(
165,50 2LO(30)sNPFIE5) s TAC10465) yALFA (65) AFI(65) yBETAL6S) o THETA (E5)
1+NQSy ICONF,LOyLRC4CONST,F {10,65),10PL, LTRS

COMMON ZMAT/ICOL (130+5), JCX(65,5) yTHIGH(L130) » IRC130) 4 I0IAG(130),
LINICHL (65) 3 TR1 (651 s TOTAGL (65)  NUMaJLIN (1301, ICAUX (130450 yXT (13004
2AA(2000) +BB (1300 »AK(1000) 5BK(65)

COMMON /TIME/HQ(65),00(65),HAE (100, 5) 4 OWL (L0023, 0L2 (6552} 40T+
1gtx.oro.c$o.c,hr,oréggv'nr(so).Nv.xr JCB(100,5,3) o NPXoCL (100,3,3)

OMMYON /PRINT/CABE(20) ,CABEL(20) ,SUBS (
coron /¢ ySUBS (3) JNPS(65) yLOT,LCT2,1OP2 s
COHMON /PP/V3sPS,PBsP124PL3,P1P,J2, T(65),A(65),R(65) »CK
1),SF(65).A11(65),RT1(85)yCKT1|66)-CKYTinS).SF;i!65):g(;g§:E$§:;§?
2 KT1(65) sKTO(65) JKC1LH5) yKCI(65) 4CS XL AT65),0B(65)

COMMON /CONC/C (65,3) s CL65) yC1 (65)  NTRS (31 4 1OE

COMMON /TRSP/NSUBS (65) \NSUC (65),NBS

DATA G/9.81/,CONST/1.4867 PNBS (61, HUDLE) +TET,TE, 151, 1CK2

CALL INPUT, READS THE RIVER GEOMETRY AND THE HYDRAULIC CCNDITICNS

CALL INPUT
IF(ITRS.LE.0)GO TQ 140

CALL IHPUTYL ANO MATRIX1 WHEN A WATER QUALITY SIMULATICN IS REQUIRED

CALL INPUT1
CALL MATRIX1

CALL MATRIX TO ORGANIZE THE COEFFICIENT MATRIX
CALL MATRIX ’
INITIALIZATION

€s0=6*0T

0 00 160 I=1,MX
00 160 J=1,2

0 oL2(I,J}=0,
IFI(NQS.EQ.2)GO TO 171
00 170 I=1,NAS
L=La(I

¢ QLZIL 11=0HLI1. D)
D0 175 I=1, NX
IF(DX(I).EQ.0)G0 TO 175
THETA (1) =0T/DX (D)

5 AFI(IN=0,
17=1
CALL OUTPUT(ILIN,IFOL)
CALL GEOME
IF(ITRS.E0.0)1G0 TO 184
IF(I0E.GT.0)G0 TO 181
CALL DISPER(XI)
GO TO 179

1 00 182 I=1,NX

2 ETL(II=E(I)
1F(I0K2.GT.01GC T0 178
CALL FEARE(Q0,HOsXT,NX,20,1T)
6o TO 176

8 00 177 I=1yNX
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177 KT1(I)=KT0(I)
176 IS1=0
00 183 J=1,NX
183 IS1=IS1+IR1{(J)+IHIGH1(J)
184 I1S=0
D0 185 J=1,NUM
185 IS=IS+IR(J)+IHIGH(J)
DO 230 IT=2,NT

c-

c
C

[ X2X2d (e XsNeXy]

(s NeNel [+ XzX3]

(¢ N2Xe] OO0

TIME STEP LOGP

00 186 J=1,IS
186 AA(Y)=0.

IF(IT.LE.2)GO TO 195
DO 1380 J=1,NX
ACJ)=ATLLY)
R(J)=RTLLN)
CKUJ)=CKT1L (D)
SF{J)=SFT1(J)

190 CKY(J)=CKYT1(J)

135 IF(NQS.EQ.0)G0 TO 210
00 200 I=1,NQS
J=LQ(I)

200 QL2(J,2)=0HLILIT,I)

CALL COEF1 TO CALCULATE THE COEFFICIENT MATRIX AND THE RIGFT HANOD
SIDE MATRIX

210 CALL COEF1
CALL SKYLINE TO SOLVE THE SYSTEM OF EQUATIONS

CALL SKYLINEU(AA,BB,NUMXI,IHIGH,IR,I0IAG)
IF{(LOT2.E0.0160 TO 212
IFCLIT~1)/7L0DT2%LDT2 L NELIT=1)GO TO 213

CALL OUTPUT TGO PRINT THE HYORAULIC RESULTS

212 CALL OQUTPUTI(ILIN,IFOL)
213 IV=0

CALL GEOME TO CALCULATE THE GEOMETRIC ELEMENTS FOR THE TIME T ¢ AT
CALL GEOME

IF ITRS.GT.0 CALL WQSIM TO SIMULATE THE WATER QUALITY
IF(ITRS.GT.0)CALL WOSIM

TRANSFER THE SOLUTICN FCR THE ARRAYS KO AND ~0

D0 220 I=1,NX
IV=IV+l
HO(I)=XT(IV)
IV=IVel

220 QO(I)=XI(IV)
IF(NQS.€0.07G0 70 230
D0 225 I=1.NOS
J=Ln(1)

225 QL2(J,1)=0L2(J,2)

230 CONTINUE

sToP
END

61¢
€zl
620
€40
€SQ
(331]
€70
€t0
€<0
7C0
710
120
720
740
7¢0
T€0
770
T&0
7¢0
800
810
8z0
820
aeg
8c0
el
e70
8¢0
8¢o
200
910
ge0
920
940
S0
g€Q
370
9en
990
1000
1013
1020
1030
1040
10¢€0
10€0
1070
1080
1063
1100
110
10
110
10
1cC
160
aan
t180
11¢6¢C
tell
1210
1220
12120
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SUTROUTINE INPUT 1200
I D atale bt Bl bt L Ll e m———— alad 1 1240
I SUBROUTINE INFUT ==~ READ THE SYSTEM PARAMETERS, I 12€0
I BOUNDARY CONOITIONS, INITIAL COHDITIONS. PRINT THE 1 12170
I INPUT AS AN OPTION. THIS SUBROUTINE IS CALLED IN THE MAINI 1280
I PROGRAM I 1290
Jor oo - - i e e e e e e -1 1200
COMMON /PARI/NX,NREACvNCCNF'NBOUNcHST(hﬂ..Z)'NCC(ZOySDphB(‘)’),lO(éS) 1210
1,0X(65) sDXC(AS) yNPI6SI AR(10+165) yPRILD 4E5) ,HA(L0,65) ,FAF (65,50 4HE( 1220
i65v5)vLQ(SO).NFF(éS).TA(tiGS).ALFA(65),AFI(GS).EE]A(ss),Y&ETA(GS) 1330
1,H0S, ICONF,LD,LRO,CONST,F(10,65),I0P1, ITKS 13L0
COMMGON /TIME/HC(€5),000(65),HAB(100,5),0HL(100,2),0L2(65,2) ,0T, 1240
107T1,070+CS0O+GyNT4QT (3014 HT(30) 4NV, ITT,CBL100,5¢3) JAPX,CLL100,3,2) 13€0
COMMON /PRINT/CABE(ZO)»CABEl(ZC)'SUBS(3)‘NPS(65),LCT,LETZ.IOPZ. 127¢0
1QAUX (200) ) 1280
DIMENSION REF (S5} 1390
1400
READ THE SYSTEM INFCRMATION 1410
1420
READ 1,CABE 1430
PEAD 2yNX:NQEACINCONF ,NBOUN,NOS,TOPL,ICONF,L0,LUNI,LRO,LCT,ITRS 1440
IF(LOT.NEL.OIREAD 2, (NPS(I),I=4,L0T) 14EC
NPS(LOT+1)=0 1460
READ 2, L(NST(I,J),J=1,2),1I=1,NREAC) 1470
IF(LUNI.EQ, DI CENST=1, : 1480
NCA=NCONF*2 1493
IF(NCONF GT.0)READ 2, ((NCCUI(J),J=1,31,I=1,NCONF} 1500
READ 2+ (NB(I),I=1,ABCUN) 1€10
READ 3, (REF(I),I=1,NBOUN) 150
IF(NQS.GT.0IREAD 2,(LQ(I),I=1,NOS) 1€z
READ B4 (PETA(I),I=1,NX) . 1549
READ 9, (ZO(I), I=1,NX) 1e¢cg
IF(LRO.EQ.DIREAD by (F‘I'I’v1=1,Nx) 15€¢
READ 34, (0OX(I)yI=1,NX) 1570
IFINCONF.GT . G)READ 3, (CXC(I),I=1,NCA) 1580
IF(NCONF,GT.0YREAD 34 (ALFA(I) +I=1,NCA) 1€90
READ 2+ (NP(I), I=1,NX) 1600
D0 100 I=1,NX 1610
L=HP{I} 1620
IF(L.EQ.0)GO TO 90 1€10
READ 2sNS 1640
READ &» (HACJLI},J=1,0) 16€0
READ & (AR(J 1Dy U=1,0) 1660
READ &, (RR{Jy IV yJd=1,L) 1670
READ 4y (TACGJ,I),U=1,01) 1680
IF(LRONELDIREAD 4, (FUJsyI)yd=1,L) 1660
G0 Yo 100 1700
90 NP(I)=NP(1) 1710
L=NP(1) 1720
00 95 J=1.,L 1720
AR(Js I)=AR(Jy 1) 1740
TAGJ,I)=TA(J,L1) 17¢0
RR(Jy IV =RR(Js 1) ‘ 17¢€0
HA(Jo I =HA LI, 1) 1770
95 CONTINUE 17 €0
100 CONTINUE :7¢0
READ 24 (NPF(I) 4I=1,NX) 1800
00 110 I=1,NX 1810
IF(NPF(I).LE.O)GO TO 110 1820
L=NPF (1) 18130

READ &y (FAFUJI)sJd=1,L) laeg
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READ Ly (HF(J,I),J=1,01)
110 CONTINUE

PRINT SYSTEM INFCRMATION

IF(IOPL.EQ.O0) GO TO 140
PRINT S
PRINT 2+NX,NREACsNCONF ,NBOUN,NQS,I0P1,ICONF,LOsLUNI,LRCyLOT,ITRS
IF(LOT.NELQIPRINT 2,4 (NPS(I),I=1,L0T)
PRINT 2, ((NST{I,J),J=1,2),1=1,NREAC)
IF(NCONF.GY.0) PRINT 2, ((NCC(IysJ}sJ=1+3)41=1,NCONF)
PRINT 2, (NB(I),I=1,NBOUN)
PRINT 3, (REF(I),I=1,NBOUN)
IF(NQS.GT.0)PRINT 2, (LO(I},I=1,NQS)
PRINT 8, (BETA(I),I=1,NKX)
PRINT 9, (Z0(L),I=14NX)
IF(LROLEQ.O)PRINT Ly {F(L,1),I=1,NX})
PRINT 3, (0OX(L),I=1,NX}
IF(NCONF.GT.0) PRINT 3,(DXC(I),I=1,NCA)
IF (NCONF.GT.0) PRINT 3,(ALFA(I),XI=1,NCA)
IF(LUNI.EQ.0)GO TO 117
00 115 I=1,NX

115 OX{I)=DX(1)*5280,
IF{(NCONF.EQ,0)G0O T0 117
DO 116 I=1,NCA

116 DXC(I)=DXCU(I)*c280,

117 PRINT 2, (NP (I),I=1,NX)
D0 120 I=1,NX
PRINT 2,1
L=NPL{I)
PRINT Uy (AR(J,I),J=1,L)
PRINT &, (TA(J,I),Jd=1,L)
PRINT 4y (RR{J4I),d=1,L)
PRINT G4y (HA(J,I),J=1,L)
IF(LRO.NELOIPRINT 4y (FUJyI),Jd=1,L)

120 CONTINUE
PRINT 24 INPF(I),1=1,NX)
DO 130 I=1,NX
IF(NPF(I).LE.Q0)GO TO 130
L=NPF(I)
PRINT 4, (FAF(JyIV,J=1,L)
PRINT &4, (HF (JyI)sJ=1,L)

130 CONTINUE

140 READ 6,0T,NT,10P2,0T1,L0T2

READ THE INFORMATICN ABOUT TIME VARIATION

0T0=07
READ INITIAL CONDITION

READ 3, (HO(I),I=1,NX}

READ 3, (Q0(I),I=1,NX}

IF(IOP1.€Q.01GO0 FO 145

PRINT 6,40T,NT, I0P2,D0T1,L0T2

PRINT 34 (HO(I)4I=14NX)

PRINT 3,0Q0(I),I=1,NX)

IFILD.EQ.0)GO TO 145 .

D0 142 I=1,NX R
142 HOUI)=HO(I}=Z0(I)

18¢0
18€0
18170
1880
18%0
1900
1910
igzo
1930
1940
19¢0
13€0
1970
1¢8¢
1930
000
2010
2020
2020
200
20%0
20€0
20170
2080
2100
2110
2120
2130
2140
21¢40
21€0
2170
2180
2190
2e00
2210
22210
22120
2240
220
22€0
2210
2280
2290
2300
2310
2220
2320
2340
23¢0
23€0
2370
2380
2390
2400
2410
2420
2420
2440
2450
24€D
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REAO THE DOUNDARY CONDITIONS

145 00 150 J=1,NBOUN
IFNB(J).EQ.0)GO YO 148
READ 3, (HQB (I, JYI=14NT)
IF(IOPLL.EN.Q0IGO TO 148
PRINT 34 (HQB(IyJ),I=1,NT}

149 IF(NB(J)LLT.0)GO TO 150
KJ=NB(J)

DO 146 I=1,NT
IF(LD.NELO)HAB (I, JI=HAB(I+J)=Z0(KJ)

146 HOB(I,J)=HAB(I;J) +REF(J)
GO TO 150

148 READ 2,NV.NPX
IF(NV.LT.0)GO TO 150
READ 3, (QT(I), I=1,NPX)
READ 3, (HT(I),1I=1,NPX)

150 CONTINUE
IF(NQS.EQ.0)GO TO 170

READ LATERAL FLOW CONTRIBUTION

00 160 J=1,NQS
READ 3y (QRLIT4JY,I=4,NT)
IF (IOP1.EQ.0) GO TO 160
PRINT 3,(QHL(IyJ)yI=1,NT)
160 CONTINUE
170 IF(IOP2.EQ.D)GC TO 249
IFIN=DT*NT/0T1
QAUX(1)=0.
00 180 IK=2,NTY
180 QAUX(IK)=QAUX(IK=1)+DT
00 200 J=1,NBOUN
IF(NB ()Y «NELOICALL IDT1(HAB(1,4),QAUXyNT,OTLIFIN)
200 CONTINUE
IF(NQS.EQ.0) GO TO 230
D0 220 J=1.NQS
220 CALL IDTL(QWL(L+4J),QAUX,NT,DT1,IFIN)
230 NT=IFIN
or=0T%
RETURN
240 0v1=0T
RETURN
1 FORMAT(20A4)
2 FORMAT(16I5)
3 FORMAT(8F1042)
4 FORMATI8F10.3)
S FORMAT(£1%,/,10X,2PRINTING INPUT z
6 FORMAT(F10.0,2I10,F1040,110) CARDS#0177)
8 FORMAT(16F5.2)
9 FORMAT(10F8.2)
END

SUBROUTINE IDT1(Q,QAUX,NT,0T1,IFIN)

I-
I SUBROUTINE I0TL IS USED TO CALL FINT TO INTERFCLATE

I THE BOUNOARY AND LATERAL VALUES WHEN THE TIME STEP OF THE
I DATA IS DIFFERENT FRCHM THE TIME STEP OF CALCULATION, IT

I IS CALLED IN INPUY AND INPUTL

I
DIMENSION Q€1),QAUX(1),QAUX2(200)
ACON=0.
00 210 K=14NT
210 QAUX2 (K) =0 (K)
DD 220 IA=2,IFIN
ACON=ACON+DTL
220 Q(IA)=FINT(QAUX,QAUX2,NT,ACON)
RETURN
END

ol o R o NN

2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
25170
2580
25¢90
2€00
2610
2€20
26120
2640
2650
26790
26680
26¢0
700
2710
2720
2730
2740
2750
27€0
27170
27 €0
2790
2800
2810
2820
2830
2840
28°%0
28¢€0
2870
2880
28930
2900
2910
2920
€920
2940
29¢Q
2960
29740
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I
I

I COEFFICIENTS,

SUBROUTINE INPUT1 IS USED TO READ THE WATER QUALITY

THE INITIAL ANO BOUNDARY CONDITIONS FOR THE
I TRANSPORT EQUATION ANO EACH PARAMETER WHICH WILL BE

I SIMULATEOD

I
REAL

COMHMON /PARL/NX,NREAC yNCONF yNBOUN NST(40,2),NCC(20,3),NB(5)+20(65)
1,0X(65),DXC(65) ,NP(65) JAR(10,65) s RR(10465),HA(10,65),FAF (65,5) HF(
165+5) +LQ(3I0) ,NPF(65) 4 TA(10,65) yALFA(B5),AFL(65) 4BETA(E5)yTHETA(ES)
14NQS, ICONF, LDy LRO,CONST,F(10,65),1I0P1, ITRS

COMMON /PP/V3,P5,P8,P12,P13,P1P,J2,T(65),A(65)sR(65),CKI(65),CKY(65
£ ,SFU65),AT1(65) RT1(65),CKTL(65) yCKYTL(65)4SFTL(65) 4E(65),ET1(ES5)
24KTL(B5) yKT0(65) 4KCL(65) ,KC3(65),CS,XLA(6S),0B(65)

COMMON /TIME/HO(65),Q0(65),HQB{100,5),QHL(100,2),QL2(65+2) 40T,
10T1,070,CS0sGyNT,QT(30), HT(30) NV, ITT4CBl100+5+3)NPX,CL(100,3,3)

COMMON /TRSP/NSUBS(65) 4NSUC (65) 4NBS (6) 4NUD(6) ,TET,TE,IS1,I0K2

COMMON /PRINT/CABE(20),CABE1(20),SUBS(3),NPS(65),L0T,LLT2,10P2,

KCLyKC3+KTL,KTO |

1QAUX(200)

COMMON /CONC/C (65,31 ,XC(65),C1(65),NTRS(3)+I0E

PEAD THE WATER QUALITY COEFFICIENTS

READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ

1,CABEL

2, TET,TE,IOE,IOK2,CS
3, (SURS(I),I=1,ITRS)
Ly INTRS(I),I=24ITRS)
4,y (NBS(I),I=1,NBOUN)
4y (HUDCI) 4 I=1,NBOUN)
4y (NSUBS(I) ,I=14NX)
4y (NSUC(I) 4yI=14NX)
7y (KCL(I)yI=1,NX)

75 (KC3(I),I=1,NX)
To{XLALT) »I=1,NX)

T+ (DBUIV, I=14NX)

IF(IO0K24G6GT0IREAD 74 (KTOUI)I=1,NX)
IF(IOELGTLO0IREAD 7, (E(I),I=1,NX)

READ INITIAL CONDITION FOR EACH PARAMETER

DO 90 J=1,ITRS
30 READ 7,(C(I4J)sI=44NX)
NTA=DTL{*NT/DTO

REAOC BOUNDARY CONDITION FOR EACH PARAMETER

00 100 I=1,NBOUN
IFINBSUI).LE.0)GO TO 100
00 95 J=1,ITRS

95 READ 7,(CB(IT,I,J),IT=1,NTA)

100 CONTINUE

READ LATERAL INPUT FOR EACH PARAMETER

IF(NQS.EQ.0)GO TO 109
00 105 J=1,ITRS
00 105 I=1,NQS

105 READ 7, (CL(KyI+J)yK=1,NTA)

109 IF(IOP1.EQ.0)GO TO 140
PRINT 1,CABE1L

Bl lalakal
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PRINT 2,TET,TE,ICE,IOK2,CS

PRINT 3,(SUBS(I1,I=1,ITRS)

PRINT 44 (NTRS(T),I=1,ITRS)

PRINT 4,4 {NBS(I),1=1,NBOUN)

PRINT 4, (MUD(I),I=1,HB0UN)

PRINT 4, (NSUBS (I)I=1,NX)

PRINT 4, (NSUC(I},I=1,NX)

PRINT 74 (KC1(I),I=1,NX)

PRINT 7,4 (KC3(X),I=1,NX}

PRINY 7, (XLA(I),I=1,NX)

PRINT 7,108(I),I=1,NX)
IFC(IOK2.GY.0)PRINT 7, (KTO(I)sI=1,NX)
IF(IOE.GTLO0IPRINT 74 {E(I),I=1,NX)

PRINT INITIAL CONDITION FOR EACH PARAMETER

[2 Xy XN'e}

00 110 J=1,1ITRS
110 PRINT 7,(CUlIsJ)+I=1sNX)

PRINT BOUNDARY CCNDITIONS FOR EACH PARAMETER

00 120 I=1,NBOUN

(2] OO0

IF(NBS(I).LE.0)GO0 TO 120

DO 115 J=1,ITRS
115 PRINT 7,(CBC(IT,I,J),IT=1,NTA)
120 CONTINUE

IF(NQS.EQ.0)GO TO 140

c PRINT LATERAL INPUT FOR EACH PARAMETER

DO 130 J=1,ITRS
D0 130 I=1,NQS
130 PRINT 74 (CL(KyT,J),K=1,NTA)
140 IF(IOP2.EQ.O)RETURN
c
C  INTERPOLATION WHEN THE TIME STEPS ARE NOT EQUAL
c
00 150 K=1,ITRS
00 150 J=1,NBOUN
IFINBS(JI.GT.0ICALL IDTL1(CBAL,J,K), QAUX,NTALDTL o NT)
150 CONTINUE
IF(HQS.EQ.0)RETURN
DO 160 J=1,ITRS
00 160 I=1,NQS
160 CALL IOTL1(CL(L4T,J),QAUX,NTA+OTL,NT)
1 FORMAT(20A4)
2  FORHAT(2F10.242I10,F10.2)
3 FORMAT(10A8)
& FORMAT(16I5)
7  FORMAT(8F10.2)
RETURN
END

FUNCTION FINT(X,Y,N,ABC})

1 -

I COEF1

[z R RN s Ne)

cmemmaa]

I FUNCTION FINT =~ USED TO INTERPOLATE A VA
LUE IN A TABEL
I IT IS CALLEO IN THE MAIN PROGRAM AND IN THE SUBROUTINEE II

I

I
OIMENSION X(1),Y(1)
NMi=N=1
00 10 I=2,NM1
IF(ABC=X(I2)20,20.10
10 CORTINUE
J=h=1
I=N
GO 1O 30
20 J=1I=~1
30 FINT=Y LI+ (VII)=Y(J)) *(ABC=X(J))/ (X (I)=X(J))
RETURN
END

0

1

39¢0
39¢0
3970
3380
33990
4000
4010
4020
40230
4040
%050
LOEQD
40179
L0880
4090
4100
bigo
120
4130
4140
41€90
41€0
417¢
4180
5190
4200
4210
4220
4z3p
4240
4250
L2EQ
«210
4280
4299
4200
4310
4320
4320
4340
4350
L2€Q
4370
4389
4390
4400
44140
4420
4420
G440
W40
LUED
4470

31¢€0
3170
31¢0
3190
3260
3210
3220
3220
3240
32¢0
3260
3270
3280
3290
3300
3310
3320
3330



OO0 0

c
[
c

c
[
c

[s KNl

186

SUBROUTINE OQUTPUTI(ILIN,IFOL)

B T T —— J
I SUBROUTINE OQUTPUT = PRINT THE LEVEL, LEVEL VARIATION INI
I TIME, DISCHARGE, AND DISCHARGE VARIATION, IN EACH TIHE I
I STEP. THIS SUBROUTINE IS CALLED IN THE HAIN PROGRAH I

[t e e e I
COMMON /PAR1/NX,NREAC {NCONF, NBOUN.NST(&O,Z).NCC(20.3),N8(5) 2O (ES)
1,DX{65),DXC{65) NP(65),AR(10,65),RR(10,65),HA(L10,65),FAF (65,5),HF(
5+5)sLQAC30) 4 NPF (65, +TA(10,65) ,ALFALBES),AFI(65) ,BETA(6S)yTHETA(6S)
1,NQS, ICONF4LD,LRO,CONST,F (10,65),J0PL,ITRS
COMMON /MAT/ICCL(130,5),JCX (65,5) 4IHIGH(130),IR(130) ,IDIAG(130),
1THIGHL (65), IR1 (6501 ,IDIAGL{65), NUM,JLIN(130),ICAUX(130,5),XI(130),
2AA(2000),8B1130),AK(1000),BK(65)
COMHON /TIME/HO(65),Q0(65),HAB{10045),QNL(100,2),QL2(65,2),DTy
1DT1,0TOCSOsGyNToQT(30) 4 HT (300 NV, IT 4CB(100,5,3) sAPX,CLUL00,343)
COMMON /PRINT/CABE(20),CABEL1(20), SUBS(3),NPS(B5),L0T,LOT2,10P2,QAUX
1CAUX(200)
IF(IT.GT.1)G0 TO 100
IFOL=1
ILIN=0
100 Iv=0
NPP=1

LOOP FOR SECTION VARIATICN

00 150 I=1,NX
HZ=HO(I)+Z0(I)
IF(IT.EQ.1)G0 YO 105
Iv=IVel

HV=XI(IV )=HO(I)
HZ=HZ +HV

IV=IV+l

Qv=x1(Iv 1=QO (I}

105 IF(LOT,.EQ.C)GO TO 10%
IF(NPS(NPP) «NE.I)GO TO 150
NPP=NPP#1

101 IFC(ILINCGT.0)GO TO 110

PRINT TITLE IN THE BEGINING OF EACH PAGE

IFOL=IFOL«1
ILIN=S52
PRINT 300,IFOL
PRINT 301,CABE
PRINT 302,070,071
PRINT 303
PRINT 30%
PRINT 303
110 IF(ILINCLT.52.AND.I.NE.1)GO TO 120
PRINT 310,IT
ILIN=ILIN=2
120 IF(IT.EQ.1)GO TO 130

PRINTY LEVEL, DEPTH VARIATIONs DISCHARGE AND DISCHARGE VARIATION

PRINT 311 4I4HO (I} 4HV4XIC(IV=1)4HZ41,Q0(I),QV,XI(IV)
GO TOo 140

130 PRINT 314,I,HO(I),HZ,I, QO(I’

140 ILIN=ILIN=1

150 CONTINUE -
RETURN

300 FORMAT(#1#,2X,2IMPLICLT SCHEME OF UNCOUPLED EQUATIONS#?,40X,#PAGE®,
114)

301 FORHAT(4{0Xs20A4)

302 FORMAT(L10X,2DT =#,F5.0,2 SEC DTL =#,F5.0,% SECZ4/)

303 FORMAT(L1X,902%2) 2K, 2%, 7 (2=2) , 4 (242, 10(7=2)) o 22,7 (#=2) ,302%2, 114
12m=2)) 4 2%%)

304 FORMAT(1X,#I TIME I ISECTIONI INITIAL I ay I FINAL I
1LEVEL  ISECTICNI INITIAL I AQ T FINAL  I#,/+1X,2I STEP
2 1 I DEPTH I I DEPTH I 1 1o
3ISCHARGE I I DISCHARGE I#) .

311 FORMAT(L15X, 13, 2X,4(4XsF1044)23Xs1352%y 3(1XsFL1.41)

310 FORMAT(/43X,15)

314 FORMAT(15XsI3¢3XoF10s 4923%X,F10.4,3X,13,2X,F11.4)

END

Lbuso
4490
4500
4510
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LSEQ
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4530
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SUBROUTINE MATRIX 5240

I Stnladelel = o o e e | 5250

I SUBROUTINE MATRIX =~ THIS SUBROUTINE IS USED IN THE I 52¢€0

I BEGINING OF THE EXECUTION TO ORGANIZE JHE COEFFICIENTS I 52170

I MATRIX IN THE WAY THAT THE MAIN DIAGONAL HAS NON=-ZEROS I 5280

I VALUES., IT IS NEEOED TO SOLYE THE SYSTEM OF EQUATICNS 1 52930

I THIS SUBROUTINE IS CALLED IN THE MAIN PROGRAM 1 5300

1 ———— I 5310
COMMON /PARL/NX,NREAC,NCONF ,NBOUNJNST(40,2)sNCC(20,3),NB(5),Z0(6S) 5320
1,0%Xt65) ,0XCL65) 1 NPLES)AR(10,65),RR(10,65)+HA(L0,65) FAF(65,5),HF( 5330
16545) ,LQ(30 )4 NPF (65) 4 TA(10,65) ,ALFA(65),AFI(65) ,BETA(65),THETA (65) 5340
1,NQS, ICONF,LO,LRC,CONST,F(10,65),10P1,ITRS 5350
COMMON /MAT/ICOL1130,5),JCX{65,5) yIHIGH(130),IR(130),I0IAG(L30), 53€0
1IHIGH1(65) 4 IR (65)-101AGI(65)1NUH|JLIN(130”ICAUX(13U'5),XI(130)' 5370
284 (20001 .88 (13014 AK(1000) 48K(65) 5180
COMMON /TIME/HO(65),Q0(65),HQB(100,5),QHL(100,2),QL2(65,2),0T, 5390
1DV1,DT0+CSOsGaNT,QT (30}, HT(30),NV,IT ,CBL100,5,3) ,NPX,CL(100+3,43) 5400
DIMENSION INC(5) 5410

. 5420

STORE IN THE ARRAY ICOL(I,J) THE NUMBER OF THE VARIABLES OF THE 5430
BOUNDARY EQUATIONS 5440
5450

00 60 J=1,NBOUN 5460
JUINtIY = S410
IF(NB(J).EQ.0)GO TO SO €430
Isu=4 €490
IFI(NB(JU)LTL.0)ISU=2 €500
K=(TABSINB(JU))I=1) *2+1ISY €510
ICOL (J,1)=2 €520
ICOL(J,2) =X £5290

GO TO 60 540
K=(TABS(NV]I=1)*2 €SEQ
ICOL(J,y2)=K¢L £570
ICOL (Jy 3V =K+2 580

60 CONTINUE €590
J=NBOUN ‘600
£610

STORE IN THE ARRAY ICOL(I,J) THE NUMBER OF THE VARIABLES OF THE €620
REACH EQUATIONS €610
SELD

- D0 80 I=1,NREAC ‘650
CALL SUB(NST(IQi,'NSY(IvZ)v\“ te60
80 CALL SUBINSTII 411 4NST(I,2),J) 670
IF(NCONF.EQ.0)GO TO 76 £630
£6<0

STORE IN THE ARRAY ICOL(I,J) THE NUMBER OF THE VARIABLES OF €700
CONFLUENCE EQUATIONS €740
€720

00 75 I=1,NCONF €730
J=J+1 €740
JLINGJI =J 760
DO 70 H=1,3 770
K=(IABS(NCC (I sH))=1)22¢2 c7eQ

70 ICOL (JyHe1)=K €790
N1=NCC(I, 1) €800
N2=NCC(I,2) €810
N3=IABS(NCC(I+3)) €820
IF(NCC(T43).LT.0)G0 TO 71 <810

CALL SUB(N3,N1,J) a0
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71

75

188

CALL SUB(N3,N2,J)
GO T0 75
CALL SUB(N1,N3,J)
CALL SUB(INZ2,N3,J)
CONTINUE

ORGANIZE THE ROWS IN ORDER TO HAVE A NON=ZERO ELEMENT IN THE MAIN
OIAGONAL

76
399

100

105

115

118
120

150

160
170

00 399 I=1,J

ICAUX(I,41)=1

NUM=J

00 120 J=1,NBOUN
K=ICOL(J,2)

JLINGJYI=K

MH=ICOL(J,1)

00 100 M=1,MH

ICAUX (KyM)=ICOL (JyM)
KX=TABS(INE(J))

NC=1

IF(NCONF.EQ.0)GO TO 120

00 118 I=1,NCONF

KT=0

K1=(HCCII,L)=1)"%2¢2
K2={NCCtI,2)=1)*2¢1
K3=(IABS (NCC(I,3))~1)*2¢1
IF(KXNEJNCC(I,1))G0 TO 105
IF(NCC(Is3)4GT.0)KI=K3+41
IFINB(J)eGT.0) K1=K1e8

CALL SUB2(K2+1,K1,K3,1)
KT=1

IF (KX <NEJNCC(I,2))GO TO 110
IFINCC(I43).GTa0)K3=KI*L
IFINDB(J) GT.0)K2=K2¢1

CALL SUB2(K14¢1,K2,K3,1)
KT=1
IF(KX.NE.IABS{NCC(I,3)))G60 TO 115
IF(NB(J) «GT.0)K3I=KIe¢d

CALL SUB2(K2+¢1,K1+414K3,X)
KT=1

IF(KT.NE.1)G0 TO 118
INC(NC)=I

NC=NC+¢1

CONTINUE

CONTINUE

INCINC) =D
J=NBOUN

DO 170 I=1,NREAC
KLE=(NST(I,1)=1)%2+2
K2=(NST(I,2)=1)*2¢1
J=J+1

IF(ICAUX(KL+41) oGTo1)K1=Kim1
JLIN(J) =K1
00 150 M=1,5
ICAUX(K14M) =ICCL(J,M)
J=Jel -
IF(ICAUX(K241) «GTo1)K2:=K241
JUIN(Y) =K2
00 160 M=1,5
ICAUX(K2,M)=ICCLIJ,M)
CONTINUE

58¢50
5860
54870
5880
€890
€30Q
€910
£920
€930
€940
€950
€9¢€0
970
€980
€990
€000
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€020
€020
040
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€080
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€110
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€120
€140
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190
195

209
205

210

220

230
240
250
260

270
280
290

300
310

189

HC=1
IF(NCONF.EQ.0YGO TO 205

DO 200 I=1,NCONF
IF{INCINC),EQ.I)GO TO 195
KL=(NCC(Iy1)=1)%2¢}
K2={NCC(I,2)=1)%2¢1
KI={IABS (NCCII 3))=1)%2¢1
IF(NCC(I,3),LT.0)G0O TO 190
CALL SUB2({K3¢1,K1,K2,1)

GO TO 200 :
CALL SUB2(K1+1,K3,K2+1,I) .
GO 70 200

MC=NC+1

CONTINUE

00 210 I=%1,NUM
Li=ICAUXII,1)

DO 210 M=1,L1
ICOLCI,MI=ICAUXII M)

CALL ARRAY(IRyIHIGH,IDIAG,NUM)}
RETURN

END

SUBROUTINE ARRAY (IR, IHIGH, IDIAG,NUN)

I
I SUBROUTINE ARRAY COMPUTES THE POSIT

I ELEMENT IN THE ONE=DIMENSIONAL ARRAY §2712F453c2723£F;515 f
I POSITION IN THE ARRAY IGOL(I,Jle THIS SUBROUTINE COMPUTESI
I ALSO THE VALUES FOR THE ARRAYS IR(J), IHIGH(J)IDIAG(J), I
§ IOIAG(J) USED IN SKYLINE, IT IS CALLED IN MATRIX I
COMMON /HAr/ICCL(130'5),ch(65,5,,IHH(130,'IRR(130,,100(13°)fIHIGH
11(65).IRUBS).IDHGUSS)'NXH,JL1~(130,'ICAUXH_SO 51 XIC130),A4(
220001 ,88(130),AK(1000) ,8K(65) v '
DIMENSION IR(1),IHIGH(1),I0IAG (1)

I0IAG(1) =g

00 220 K=1,NUH

IR(K) =0

THIGH(K) =1

N1=0

00 260 K=1,NUM

M=ICOL (Ky1)

NL=NL ¢4

LM=0

IOIAG(K)=N1

DO 250 L=24M

K1=ICOL (KoL)

L1=K1=K

IF(L11230,250,240

IFLM. GTaL1ILM=L1

IR(K)=IABS (LM)

GO TO 250

IF(IHIGH(KL 1oL ToL1e2) IHIGH(KL) =L 1 ey

CONTINUE

NL=NL+IHIGH(K) =1+ IR(K)

CONTINUE

00 310 K=1,NUM

L=ICOL (K, 1)

00 300 JJ=2,L

JOIF=ICOL (K, JJ) =K

IF(JDIF) 270,280,280

JAU =IDIAGIK) + IHIGH(K)=1+IABSUJDIF)

GO TO 290

KT=JOIF+K

JAU =I0TAG(KT) +JOIF

ICOL (K, JJ)=JAy

CONTINUE

CONTINUE

RETURN

END

6460
6470
€40
64390
6500
6540
6520
6530
6540
65¢0
€560
€570
€580
6550
6600
66140
6620
6620
6640
6650
66¢€0

6670
66 €0
6690
6700
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€970
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€399
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100

80
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SUBROUTINE SUB2(K1,K2,K3,I)
I
I THIS SUBROUTINE IS USED TO TRANSFER ONE ROW OF THE
I ARRAY ICOL TO ICAUX

I -

COMMON /PAR1/NX,NREAC,NCOMNF yNBOUN,NST{40,2},NCCt20,3}),N3(5),20(65)
1,0X(65) ,DXC(65),NP(65),AR(10,65),RR(10,65) ,HA(LD,65),FAF (65,5) 4 HF(
165,5) ,LOC30),NPF(65),TA(10,65) 4ALFA(65),AFI(65) sBETA(65) 4THETA (65)
1,NQS,ICONF,LDsLRCyCONST,F (10,65),I0PL, ITRS

COMHON /MAT/ICOL(13045),JCX(65,5) ,THIGH(130),IR(130),10IAG(130}),
1THIGH1(65), IR1(65),IDIAGL (65) 4NUM,JLIN(130),ICAUX(130,5),X1(130),
2AA(2000),8B(130),AK(1000)+8K{65)

OIMENSION K(3)

K1) =K1

K(2)=K2

K{3)=K3

KJ=NBOUN+NREAC*2¢(I=1)*3

DO 100 J=1,43

KJ=KJ+1

KK=K(J?)

JLIN(KJ)=KK

MH=ICOL (KJy1)

00 100 M=1,MH

ICAUX(KKs M) =ICCL(KY, M)

RETURN

END

HHH‘

SUBROUTINE SUBI(N14N2,J)

I I

I SUBROUTINE SUB =~ THIS IS AN AUXILIARY SUBROUTINE USED 8Y I
I THE SUBROUTINE MATRIX TQ GIVE THE COLUMN POSITION CF I

I THE COEFFICIENTS IN THE MATRIX I

I I
COMMON /MAT/ICOL(130,5)4JCX(65,5),IHIGH(130),IR(130),I01AG(130),
1IHIGHL1 (65) 4 IR1(65) ,IDIAGL(65) s NUMJLIN(130),ICAUX(130,5),XI(130),
2AA(2000) +8B(130),AK(1000),BK(65)

FENLSE

JLINCJY =3

ICOL(J,1)=5

M=2

NUP=N1

K= (NUP=1)*2¢1

ICOLtJ, M) =K

ICOL(JyMel1) =Kol

IFtM. EQ.4)RETURN

NUP=N2

M=M+2

GO TO 80

END

7140
71¢0
71¢€0
71170
7180
7190
7200
7210
7220
72230
T240
7250
72¢€0
1270
7280
7290
7300
7310
r320
7330
7340
T3¢0
73€0
7370
7380
7390

7400
7410
Tuzt
7420
7440
7450
74€0
7470
7480
7490
7500
7510
7520
7520
7540
7550
75€0
7570
75 €0
75¢0
7600
7610
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SULROUTINE MATRIXL

P e L L] R i !
¢ SUBROUTINE MATRIX1 IS USED TO ORGAHIZE THE COEFFICIENT I
I MATRIX RESULYED FROM THE USE OF THE NUMERICAL SCHEME IN I
I THE TRANSPORT EQUATION, IY IS CALLED IN THEZ MAIN PROGRAM I
s+ s s i 0 4 2 504 151 o 0 e e e ——]
COMION /ZPARL1/MX yNREAC NCONF s NBOUN4NST (40,2)4NCC(20,3),NB8(5),20(E5)
1,0%X(65) 3 0XC(65) yNPI65) ,AR(10,65) ,RRI10,65) ,HA(L0,65)sFAF (6545} +HF(
165,5) 4 LOCED)Y,NFF(65),TA{10,65) s ELFA(6S5) ,AFI(65) +BETA(65),THETA(65)
1,HQS, ICONF, LD, LRC,CONST,F (10,65}, I0PL, ITRS

COMMON /MAT/ZICCLE13045)4JCXUES5,5) ,THIGH(130),IR(130),IDIAG(130),
L1IHIGHL (65) 4 IRLU65) ,I0DIAGL(65) 4 NUM, JLIN (130} ,ICAUX (130,50 ,XI (1303,
2AA 12000 ,80(130),AK(1000),0K(65)

COMAON /TRSP/NSUBSIH5) ,HSUC(65) ,HBS(6) L, NUDIA) 4, TET,TE,IS1,I0K2
COVitOM /TIME/HO(65),00(65),HAB(100,5),0WLIL100,2),0L2(65¢2) 0T,
10T1,070,CSO,G NT4QT(30Y, HTC30) 4NV HITT,CB(100+5,3),NPX,CL (100,3,3)
00 8 I=1,.NBOUN

K=IABS(N3(I))

IF(K.EQ.0)K=TABSINV)

IF(NSEI).LT.0)6G0 TO 5

IcoL(K,1)=2

ICOL(K,2)=K

GO 10 8

ICOL{K,1) =4

ICOL (%Xy4) =K

IF(IABS(NBS(I)).NE.L)GO YO &

ICOL(K,2)=NUD(T)

ICOL(K,3) =NSUG(K)

GO 10 8

KI=NUDI(I)

ICOL (K, 2)=NCCtKI,1)

ICOL €Ky 3)=NCC(KI,2)

CONTINUE

D0 S0 I=1,NX

KI=NSU8SI)

IF(KIY10+50420

coLti,1y=u

KI=IA2S(KI)

ICOLLL2)=NST(KI,1)

ICOoL(T,3) =1

ICOLCI,u)=NSUC(I}

GO 10 50

IF(I.EQ.IABS(NCC(KI,3)))1G0 YO 40

ICOL(I,1) =0

ICOL (XIs2)=NSUC(I)

IFINSUCII) LT 0)ICOLCI,2)=TABS(NSUS(I))

ICOL(I,3)=1

ICOL(Iy4)=YABS(NCCIKI,3))

GO TO S0

IcCoLtI.1)=5

ICOL(Iy2)=NSUC(I)

ICOL(I,3)=I

ICOLtI 4 =NCCI(KI,Y1)

ICOL(1,51=NCCIKT,2)

CONTIMUE

CALL ARRAY(IR1,IHIGH1,IDIAGL,NX)

00 60 I=1,NX

M=ICOL(I+1)

00 60 JK=1.M

JCX{I4JK)=ICOL (IyJKD

RETURN

END

7620
7620
TELD
TR0
76¢€0
7670
76¢t0
76990
7700
7710
7720
7730
7740
7750
77¢€0
7770
17¢0
77%0
7800
78140
reza
7820
7840
7850
78¢€0
7870
7880
7830
7300
7910
7320
7910
7540
79¢0
79€0
79170
7980
7990
6000
8010
8020
8020
8040
80¢0
Q€0
80170
8080
8090
6100
8110
8120
8120
8140
8150
BLED
81170
81€0
8190
82040
8210
822C

821
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SUGROUTINE SKYLINE(A,88,NUM,X, IHIGH,IR,IDIAG) 8240

c T et et e e - I 8250
c I  SUBROUTINE SKYLINE =~ SUBROUTINE USED TO SOLVE THE SYS~I 82€0
c ITEM OS EQUATIONS BY THE GAUSS ELIMINATION PROCEDURE. 1 8270
c I THIS SUBROUTINE IS CALLED IN THE MAIN PROGRAM 1 8280
c O : I 3290
DIMENSION A(1),B8(1),X(1),IHIGH(L),IR(1),IDIAG(L) 8300

c 8310
C J IS THE INDEX LOOP OF THE COLUMN 8320
c 8330
NN1=NUM~1 8340

00 500 J=1.NN1 83¢€0
L1=I0TAG(Y) 8360

M=J+t 837¢

DO 500 JJ=M,NUM 8380

JAUX= JJ=J 8390
IFCIR(JJ) LY. JAUXIGO TO 500 8400
JAUX=IDIAG(JJ) +IHIGH (JJ) =1+ JAUX 8410

IF (ACJAUX) .EQ, 0)GO TO 500 8420
COEF=A(JAUX)/ACLL) 8420

BB (JJ)=BB(JJ)=BB(J) *COEF 8440

¢ 8450
C JJ IS THE LOOP INDEX OF THE RONS BELOW THE DIAGONAL ELEMENTS 84 €0
c 8470
00 400 JM=M,NUM 8480
JB=JM=Js1 8490
IF(JBL.GT. IHIGHIJNIIGO TO 400 8500
J3=IDIAG(JM) ¢JB=1 8510

IF (JH.LT.JJIGO TO 300 8520
JizJH=gJe1 8520
JZ=IDIAGIJH) ¢ Ji=1 8540

250 A(J2)=A(J2)=A(J3) *COEF 8550

. GO TO 400 85¢€0
300 "J1=JJ=IM 8570
J2=I0IAG(IIY +IHIGH(JI) =L +J1 8580

60 10 250 8530

400 CONTINUE 8600
500 CONTINUE 8610

c 8620
C AT THIS POINT THE COEFFICIENT MATRIX IS A UPPER TRIANGULE MATRIX 8630
C AND STARTS THE BACKWAROS SUBSTITUTION 8640
L=I0I AG (NUM) 8650

X (NUM) =BB(HUM) Z7A(L) 86€0

00 700 J=2,NUN 8670
K=NUM~Je1 8680
KizKel 8690

DO 600 M=K1,NUM 8700
JAUX=HmK 1 8710
IF(JAUX.GT.IHIGH(H)IGO TO 600 8720
JEZIDIAG (M) +JAUX=1 8730
BB(K)=BB(K)=A(JL) *X(M) 8740

600 CONTINUE 8750
JL1=IDIAGIK) 8760

X (K) =8B (K) /A (J1) - 8rro

700 CONTINUE - 8780
RETURN 8790

END 8800
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SUBROUTINE GEOME

I PRSI 4

I SUBRQUTINE GEOME COMPUTES THE GEOMETRIC PROPERTIES OF THE I
I

I CROSS SECTXQNS- IT IS CALLED IN THE MAIN PROGRAM

I
REAL KC14+KC3,KT1,XT0

COMHON /TIME/HO (65),00(65), HOB(100,5) , QWL (100,234 OL2(65,2) , DTy

L10T1,0T04CS0,GyNT, QT (301, HTU30) yNVeITT,CB(100,593) sNPXoCL (100,3,3)
COMMON /PARL/NX oNREAC s NCONF yNBOUNyNST (40,2) NCG (204 3) 4NB (51,20 (65)
1,0X(65) sDXC(65) yNP(65) 4AR(10,65) yRR(10+65) ,HALL10,65),FAF(65,5) , HF(
165,5) L0300, NPF(65) 4 TALL0,65) ,ALFA(65) ,AFL(65),BETA(65)+THETA (65)

1,MQS4 ICONF,LD,LRC,CONST»FF(10,65) ,I0P1,1TRS

COMMON /PP/V3,P5,PB,P12)P13,P1P,J2,T(65),A(65)4R(65),CKI65),CKY.(65
10 ,SF(65) sATLL65) RTL(B5) 4 CKTL(65) ,CKYT1(65),SFT1(6E),E(65)ETL(65)

2 KTL(65) 4KT0(65),KCL1(65) +KC3I(65),CSyXLA(LS)4DB(65)

COMMON /MAT/ICOL (130,51,JCX(65,5) 4 THIGH(130T,IR(130),I01AG(L30),
LIHIGHL (65) + IR (65) 4 TOTAGL(65) s UM, JLIN (1300, TCAUX(130,5) »XI (1307

2AA(2000) ,88(130),AK(1000),8K(65)
00 100 I=1,NX

L=NP(T)

IFUITT.EQ.1)G0 TO 70
IKT=(I~1)*2¢1

AN=XI(IKT+1)

H1i=XI (IKT)

GO Yo 75

H1=HO(I)

QQ=00(I1)

IF(LDLNE, 0V Hi=H1+Z0O(I) -

ABLES INTERPOLATION

TOIY=FINT(HACLZI) o TALL, 1), L, HY)

AREA=FINT (HA(L14I)+AR(L,I),L,H1)
RAIO=FINT(HA(L,I)4RR(L,I),L,4H1)
IF(LRO.EQ.0)GO TO 80

£ =FINT(HACL y IV} o FF (441D 4L, HY)

GO0 TO 85

F =SFF(1,1)

0F=0.

IF(NPF(I).EQ.0)GO TO 90
AFTCIY=FINTIHF (L4 ID o+ FAF(1,1)4NPF(I),H1)
CONV =(RAIO®**(2,/3.)*AREA*CONST/F)
SLOPE=QQ*ABS(QQ)/CONV®*2

HAUX =H1e¢.01
RAUX:FINT(HA(i.I’vRR(iII’,L‘HAUX'
AUX=FINTC(HA(L,I)AR(L,1),L, HAUX)
DA=CAUX=~AREA)/ .01
IFCLROLNESOYOF=(FINT(HACL9I) o FF(L14I)4L yHAUX)=F) /01
DR=(RAUX=RAIO0) /401
Dconv:cONV'IDA/AREAO(Q./S.)'DR/RAIO-DF/F)

TORE THE CALCULATED VALUES IN THE ARRAYS

IF(ITT.EQ.1)G0 TO 95
AT1(I)=AREA
RT1(I)=RAIO
CKT1(I)=CONV
SFT1(1)=SLOPE
CKYTL¢I)=DCONV

GO TO 100

A(I)=AREA

R{I)=RAXO
CK(I}=CONV
SF(I)=SLOPE
CKY(I)=DCONV
CONTINUE
RETURN

END

8810
83820
8830
8840

‘88s4g

88¢e0
8870
8880
8830
8900
8910
8920
8920
8340
83¢0
8960
8970
8380
8930
9000
<010
c€0z0
<020
€040
<gca
€0€0
€a70
€080
€090
€100
€110
€120
€120
€140
<1€0
¢1€0
€170
180
<180
€130
€200
€210
€220
€230
€240
€250
€2¢€0
<210
€280
€290
<300
€10
€329
€320
€340
¢€3¢g
<3€0
€370
€380
€390
00

9410
€420
<420
€4t
<450
SLED
<470
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SURROUTINE COEFY
REAL KC1,KC3.KT1,KTQ

I - - I
I  SUBROUTINE COEFL — CALCULATE THE COEFFICIENTS OF ALL I
I EQUATIONS, IT IS CALLED IN THE MAIN PROGRAM IN EACH 1
I TIME STEP I
I I

COMHMON /PAR1/NX,sNREAC+NCONF yNBOUNNST(40,2),NCC(20,3),NB(5),20(65)
1,0X(65),0XC(65)sNP(65) yAR(10+165)4RR(10+65)4HA(L10,65) ,FAF (65,5) ,HF(
165+5) s LQUE30) 4 NPF(6E5),TALL10,65),ALFA(E5),AFI(65) ,BETA(E5) ,THETA(65)
1,NQS, ICONF,LO0,LRO,CONST,F(10,+65),10P1+ LTRS

COMMON /MAT/ICOL(1304+5),JCX(6545),IHIGH(130),IR(130),IDIAG(130),
1IHIGH1(65) , IR1L (65),IDIAGL (65) yNUM,JLIN(130),ICAUX(130,5),XI(130),
2AA(2000),88(130),AK(1000),BK(65)

COMMON /TIME/HO(65),Q0(65),HAB(10095) QU (100,2),0QL2(E5,2) 4DTy
1071,0T0+CS0+GyNT4QT (301, HT(30) 4NV, ITT,CB(100+5+3)4NPX,CL (100,3,3)

COMMON /PP/V3,P5,P8,P12,P13,P1P,J2,T(65),A(65),R(65),CK(65),CKY (65
1) ,SF(H5),ATL1(65) ,RT1(65),CKTL(65) ,CKYT1(65),SFTLI65),E165),ETL(65)
21KTL1(65) yKTO(65) 4KC1(65) 4KC3165),CSyXLALBS5),0B(65)

BOUNDARY EQUATIONMNS

DO 101 J=1,NBOUN
K=JLIN(J)

SPECIFICATION OF THE BOUNDARIES

IF(NB(J).EQ.0)GO0 TO 102
BB (K)Y=HOB(ITT,J)

K=ICOL (Ky2)

AA(K) =1,

GO0 70 101

RATING CURVE CONDITION

102 L1=ICOL(K,2)

L2=ICOL (K,3)
NS=TABS(NV)

AA(L2Y=1.

H1=HO(NS)

IF(LDNE.O) HL=HL{+ZO(NS)
IF(NV.LT.0)GO TO 103
DF=FINY(HT,QT,NPX,HAUX)
HAUX=H1+.01

DFL=F INT (HT,QT, NV,HAUX)
DF1= FINT(HT,QT,NPX,HAUX)
DF1=(0F1=0F)/.01
AA(LL1)==DF1

BB(K) =0F=DFL*HO(NS)

GO TO 101

103 L=NP(NS)

Hi=Hi+.01

R2=FINT {HA(1,NS) ,RR(14NS)yL4HL)
0R=(R2=R(NS))/.01¢
COC=2/3.*OR/RUNS) ¢TINS)/A(NS)
AA(L1)==Q0(NS)*COC

BB(K) =QO(NS)I*(1.~HQ(NS)*COC)

101 CONTINUE

REACH EQUATION

94480
9490
9500
9510
9520
9510
9540
9550
39564Q
9570
9580
3530
3660
9610
9620
9620
9640
2650
9€60
96740
6e0
6<0
<700
L5710
<720
<730
740
<7¢0
<760
<770
<780
€790
€300
<810
cgea
€820
<8¢l
<8¢0
<8€0
<8170
<880
<830
<300
€910
€920
€320
€340
€9¢0
€960
€970
<980
€930
10000
10010
10020
100230
10040
100¢€0
100€0
10070
10080
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J1=NDOUN+1 10090
00 110 I=1,NREAC 10100
J2=JL 4 tI=10%2 ¢4 - 10110
M=NST(I,1) 10120
J=NSTI,2) 10120
CS13=HO (MY +HO(J) 10140
CS1=T (M) ¢T(J) ¢+ (AFI (M) +AFI (J))/0XI(M) 10150
K=JL I (J2) 101€0
AXY=(T(J) =T (H4))/DX(H) ‘ 10170
L2=ICOL (K,2) 10180
L3I=ICOL (X, 3) 10190
L4=ICOL(K,4) 10200
L5=ICOL (K,5) . 10210
c o 10220
C CONTINUITY EQUATION 10220
c 10240
KAL) =4 *THETA(N) 102¢0
AA(LS)Y==AA(L3) 10260
AA(L2)=CSY 10270
MPALLL)=CSE 102890
B3(K)=THETA(M) *2%(QL2(Js1)+0QL2(J42))+CS1¥CSL3 10230
V1=00 (M) /A(M) . 10300
V2=Q0{J) 7A (J) 10310
CS1=THETA(MI*({V1eV2) 10320
CS2=THETA (M) *(BETA(M) *VL1+BETA(J)*V2) 1022
CS3=THETA(MI*(BETA(M) *VL*VI*T (M) ¢BETA(JI*V2*V2*T (J)) 10340
CSGL=THETA(M) *G* (A (M) ¢A L)) 103¢€0
CSS5=2.*CSO0*A (i) *SF (M) /CK(H) 10360
CSH=2. CSO*ALJI*SF I/ CKILD) 10370
CS7=0. 10380
CS8=THETA(M)*G* (A(M) +A(J)) 103¢0
6S9=SF(MI/Vi*CSO 10400
€S10=SF(J)/V2*CSO 10410
CS11=SF(MI*T(M)*CSI 10420
£S12=SF(JY*T(J)*CSO 10430
T1=1.¢2.%CS9 10449
J2=J42=1 10450
K=JLIN(J2) 104€0
L2=ICOL(Ky2} 10470
L3=ICOL(K+3) 10480
L4=ICOL (Ksl) 10490
L5=ICOL (Ky5) 105090
c 10518
[ MOMENTUM EQUATION 10520
[ 10520
AR(L3)=T1~CS2-»CS1*BETA(M) 10540
AQ(L3)=T1=CS2~CSL*THETA(N) 10550
T1=CS4+CSS*CKY (M)=CS11 10560
AALL2 )=CS3=~T14CS7 10570
T1=1,+2.%CS10 105 &0
AALLS 1=T1¢CS2¢CS1*BETALY) 10550
T1=CS4~CS6*CKY(J)+CS12 10600
AA(LG )==CS3+¢T14+CS7 10610
T1=QO (M) *(1.,+CS9I) 10620
72=00(J)*(1.,+CS10) 10620
T3=HO (M) *(CS11~CSS*CKY (M)} 10€40
T4=HO(J) *(CSL12~CSE*CKY ()) 10650
Y5=CS7*CS13 106€0
T6=0T*(BETA(M) *V1*VI+BETALJ)*V2¥V2) *aAXY 10670
BO(K)=T1eT2eTI+TUeTS¢T64CSB*(Z0(M) =201 U)) 10640

110 CONVINUE 10690



IFINCONF,EN, D) RETURN

C - CONFLUENCE EQUATION, CALL COEFQ

116

120

J1=NBOUN+NRERC*2+1
D0 120 I=1,NUONF
J2=J1e(I=1) %2
K=JLIN(J2)

KM=ICOL (Ky2)
AA(KM)=1e

KM=ICOL (K,3)
AA(KMY=4.W
KM=ICOL (K, 4)
AA(KM)==1,

BA(K) =0
JA=(I~1)%2+1
KisNCC(I 1)
K2=1'CC(I42)
K3=IABS(NCCI(I,3))
IT=1

IF (HCC(I+3).LT.0)GO TO 116

196

CALL COEF2(K3»K1,IT,DXCUJA) ,ALFACIAY)
CALL COEF2(K3yK2,IT,0XCCJA+1),ALFA(JA+LY))

GO T0 120

CALL COEF2(X1i+K3+IT,DXC(JA)4ALFA(JAY)

IT=0

CALL COEF2(X2,K3,IT,0XClJA+1)},ALFA(JA+L))

CONTINUE
RETURN
END

10700
10710
10720
10723
10740
107¢0
107€0
10770
10780
10790
10800
10810
10829
10820
10840
10850
108€0
10870
10380
10890
10900
10910
10920
10920
10940
10950
109¢€0
10970
10980
10990
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SUNROUTINE COEF2(KL,K3,IT,0X1,ALF)

1 - e e 1

I SUDROUTINE COEF2 *- CALCULATE THE COEFFICIENTS OF I

I THE BIFURCATIONS ECUATIOHNS, THIS SUBROUTINE IS CALLEQ IN I

I THE SUBROUTINE COEF1L I

T et o e e e e e 2 e - 1

REAL KC1,KC3,KT1,KTO
COMMON /TIME/HO(65),00(65),HAB(100,5), OHL(100,27,QL2 (65,2) 40T,
107T1,0T0,CS0,GyNT,QT (30} HT(30) NV, ITT,CB(100,54+3) NPX,CL(100,3,3)

COMHON /PAR1/HX,NREAC,HCONF s NBOUN,NST(40,2),HCC20,3),HB(5),20(65)
1,0X(65) yDXC (65 NPL65) AR(10,65) yRR(10,65),HA(10,65) ,FAF(65,5) 4HF(
165,5) yLAI30)HPFU65),TAIL0.65) 4 ALFA(AST ,AFI(65) ,BETA(65) 4 THETA (65)
1,NQS,ICONF LD, LRO,CONST,F (10,65),10PL, ITRS

COMMON /PP/V3:P5,P8,P12,P13,P1P,J2,T(65),A(65),R(65) 4CKI65),CKY (65
1),SF(BS) 4 ATL (65 4 RT1(65) yCKTL {65} ,CKYTL(65) 4 SFTL(65) ,E(65) +ETL(65)
2,KT1(65) yKTO0(65) s KCL1(65) ,KC3(65),CSyXLA(65),0B(65)

COMMON /MATZICOLI{13045)4JCX{65,5) 4IHIGH(130),IR(130),IDIAG(L20),
1IHIGH1(65), IRL (65) ,JOTAGL(65) yNUM,JLIN(L130),ICAUX(130,5),X1€130),
2AA(2000) ,88(130),AK(1000),8K(65)

J2=J2+1

K=JLIN(J2)

IF(ICONF.EQ.8)GO TO 115

HEN THERE IS NOT LOSS OF ENERGY AT THE CONFLUENCE

P14=0.

P15=1.

P17=0.

P18==1.
P20=Z0(K3)~Z0 (K1)

GO TO 118
IF(IT.EQ.0)GO TO 117

ITH LOSS OF CNERGY AT THE CONFLUENCE

V3=QO(K3) /A (K3)
P5=VI*V3I*TINII/ALIKII /G

P8=SF (K3V/CK(K3)

P11=HO(K3) +Z0(K3)

P12=V3I/A(K3I)/G

P13=StH (K3)/Q0(K3)

pP1P=V3*V3/2./6G

v1=Q0 (K1) /A (KL)
PI=VLI*VI*TIKL) /A(KL1)V /G

P6=0X1  *SF(K1}/CK(K1)

PI=HO (K1) +ZO(K1) +V1*V1/2./6
P14=V1/A(KL)/G=0X1 *SF(K1)/00(K1)
P1521 . =P3+P6*CKYIKL)
P17==ALF*PL2=-DX1*P13
P18=ALF*PS=1.40X1*P8*CKY (K3)
P20==PI+PLL+ALF*PLP+OX1/2.* (SF (K1) +SF(XK3))
P20 =PL4*Q0(K1)+PL5*HOIKL) +P17+QO(K3I) +PLB*HO (K3) +P20
L2=1COL (Ky2)
L3=ICOL(K,3)

Le=ICOL(K,4)
LS=ICOL (Ky5)

AA(L3 )=Pi4

AA(L2 )=P15

AA(LS )=PL7
AA(LL )=P138

BB(K)=P20

REYURN

END

11000
11010
110290
11020
11040
110€0
110 €0
11070
11080
11090
11100
14110
11120
11130
11140
11150
111€0
11170
111 ¢80
11190
11200
11210
11220
11230
11240
112¢0
112€0
11270
11280
11290
11300
11310
11220
11330
11340
11350
113€0
14370
11380
11390
11400
11410
11420
11430
11440
11450
11460
11470
11480
14490
115C0
1145190
11520
11520
11540
115¢0
i1€€0
11570
11580
11590
11600
11610
11620

~
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SUBROUTINE HWQSIN 11620
C T s 1 vt s o 8 0 00 4 e e et e o oo 0 | 11640
Cc 1 SUBRCUTINE WOSIM IS CALLED IN EACH TIME STYEP TO SOLVE THE I 11650
[ I TRANSPORY EQUATION FOR AS MANY PARAMETER AS 1S REQUIRED o I 11€60
Cc I IT IS CALLED IN THE MAIN PROGRAM I 11670
c = e o e 2 o o e e ——em 1 11€80
COHMON /PAR1/NXyHREAC s HC ONF ¢ NBOUNWNST(50,2) 4NCC(20,3),NB(5),20(65) 116¢<0
1,0X(65) 4 OXC(HS5) 4NPIHS) AR(10465) yRRI104+65),HALL10,65) FAF (65,5 yHF( 11700
155,501 ,LQ030) yNPF(RS),TA(L10,65) ,ALFA(OT ), AFI(65) ,BETACG65) yTHETA(65) 11710
14 NOQS,ICONF 4LO,LRC,CONST,F(10,65),J0P1,ITRS 11720
COMHON /MAT/ICCL{130,5)4JCX(65,5) +IHIGH(L30},IR{130),I00AG(130), 11730
{IHIGH1(65) 4 IR1 (65) ,IDIAGL (65) ,NUMy JLIN(130), ICAUX(130,5),X1(130), 11740
2AA(2000) BB (130Y,AK(1000),BK(65) 11750
CONMON /TRSP/NSUBS(65) 4NSUC(65),NBS(6) 4 HUD(E) s TETHTELISL,I0K2 117¢€0
COHMON /CONC/ C(6593)4XC(65)4,CL(65),NTRS(3I),4I0E 11770
[ 117 €0
C INITIALIZATION ) 11790
c 11800
DO 90 J=1,IS51 11810
AALJ) =04 11320
90 AK{J)=0. 11830
IF(IOE.EQ.0)CALL DISPER(XI) 11840
C 118¢0
C LO0P FOR EACH PARAMETER 118¢€0
Cc 11870
00 100 I=1,I7TRS 118810
K=NTRS(I) 11890
IF(I.EQ.1)G0 TO 30 11900
C 11310
Cc CALL RHS TO COMPUTE THE RIGHT HAND SIDE MATRIX 11920
C 11930
CALL RHS(I,C(1,I)) 119¢0
00 20 J=1,IS% 119¢0
20 AACJI=AK(J) 119¢40
-G0 TO 35 11970
c 11980
c CALL TRANSP TO COMPUTE THE COEFFICIENT MATRIX AND THE RIGHT HAND 11990
C SIDE MATRIX 12000
c 12019
30 CALL TRANSP(I,C(1,1)) 12020
35 CONTINUE 12020
GO TO (50,404,453 ,K 12040
C 12050
C CALL BODOD FOR BOD SIMULATION 120¢€90
C ' 12070
40 CALL BODOD(X,C(1,I),C1,C1,D) 12080
GO TO S0 120940
c 12100
[ CALL BODOOD FOR DO SIMULATION 12110
c 12120
45 CALL BODOD(K,C(1,1),C(4,I~1),CL,I) 12130
50 CONTINUE 12140
c 121¢0
C CALL SKYLINE Y0 SOLVE THE SYSTEM OF EQUATIONS 121€0
c 12110
CALL SKYLINE(AABByNXyXCoIMNIGH1,IR1,I0IAGL) 1218¢
c 5 12190
[ CALL QUT TO PRINT THE SOLUTION 12200
c 12210
CALL OUT(I,XC) 12220
00 60 J=1,NX 12220
C1ty1=C(J,I) 12240
60 CCJ,I:=XClI!} :g:zg
100 CONTIIJE
T : . 122170
RETURN 12280

END
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SUBROUTINE BUDOD(K1,C,CLsC2,K2) 12290
1 . - : “rmmememem——a] 12300
I SUBRCUTINE 30000 COMPUTES THE SOJRCE AND SINK TERM FOR 1 123190
1 THE DIOCHEHICAL OXYGEN DEMAND (BOD) AND DISSOLVED OXYGEN I 12320
I (BO) o IT IS CALLED IN WQSIM I 12329
I~ ———————— tremame] 12340
REAL KC1,KE34KT1,K¥Q 123%0
COMHON /TRSP/NSUDSI6S) JHSUC (65) sNBS (6) yNUDIB) o TET 3 TE,IS1 4 [OK2 123€0
COMON /MAT/ICOLU{L30:5)4JCX(6545) sTHIGH(130),IR(130),I0LAG(130), 12370
1IHIGHL(ES5),IRL (651, IDLAGL(65) 1 NUM,JLIN (1301, ICAUX (130450 1XI (1304 123890
2AA {20062 4B8(130)4AK(1000) ,BK(65) o 12390

COMMON 77 P/V3sP54P8yP12,P13,PLP+J2,T(65),A(65) ,RI65),CK(65),CKY (65 12400
1) ,SFU65) : ATL(65) 4, RTLLES) yCKTL(65) sCKYTL(B65)+SFTLU6E5),E(65)4ETL (65) 126410
2,KT1(65); KT0(65)4sKC1UH5) ,KC3I(65),CS,XLA(65),0B(65) 12420

COMMON /PARL/HXyNREAC jHCONF y NBOUN,NST (40,2) yNCC (20, 3),NB(5),20¢(65) 12420
1,0X(65),0XC(65) NP(6S5) AR(10465),RR(10,65),HALL10,65),FAF(65,5) sHF( 12440
165,51+ LACI0) ,NPF(BS)TA(L10+65) yALFA(65),AFI(65),BETA(65) ,THETA(6S) 124510

1,NQSy iCONF+LD,LRO,CONST,F(10,65),I0P1,ITKS 124€0
COMIGN /TIME/HO(65),00(65),HQB(100,5), QHL(100, 2)'DL2(65’2),OT' 12470
1071,070,CSO,G,NT, ﬂT(30’gHT(30|vNV'ITT'CB(100o593),hPX CL(100,3,3) 12480
DIMENSION C(1),C1(1),C2(1) 12699
IF(K1.EQe3.AND.IUK2.€Q.0)CALL REARE (QO,HO,XI,NX5Z0,ITT) 12560
K=0 12540
KK=1 125240
00 100 I=1,NX 12520
CT=0. 12540
KI=HSUBS(I) 12¢cc
IF{X1.EQ.0)G0 TO 100 12560
KM=IDIAGL (I} 12570
IF(XK.GT.MAS)GO TO 35 12580
IF(LQIXK) .NEL,IIGO TO 35 12590
12600
LATERAL CONTRIBUTYION 12610
12620
CT=(CLOITT=1,KKyK2)*QL2(T 1) % (1. =TETI¢CLCITT,KK,K2}*TET*QL2(I,2))/ 12620
10X (1) 12€40
KK=KK*4 12650
35 IF(K1.EQ.31GQ TO 45 126€0
12670
80D 12680
12690
CONS=(KCL1 (I)+KC3{1))/86400. 12700
AA(KM)=AA(KM) + TET*CONS*ATL () 12710
BB(I)=BB(I)=(La=TET) *CONS*A(II*COI) #XLAIL) *(TET* (ATL(I)=AC(I))I+A(]) 12729
1)+CT 12720
GO 10 108 12740
45 AA(KMI=AACKM)#KTLCI) *AT1(I) *TET/86400. 112750
12760
o]0} 12770
12780
BB(I)=BB(IV4TET/86400.% (=KCL(IV*CL1 (I} ¢KTL(II*CSI*ATL(II¢ (L, =TET)/ 12790
186600.% (=KCLIII*C2(I) +KTO(I)*(CS=C(I))I*A(II+CT+OB(TI*(TET*(ATL(]) 12800
1=ACI))+ACIND 12810
100 CONTINUE 12820
RETURN 128230

END 12840
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10714070 CSOsGyNToQT(30) 4 HTC301,NV4ITT,CB1004+5,3)4NPX,CL(100,3,3)
COMHON /PARL/NX,NREAC , NCCNF s NBOUN,NST (40,2) ,NCC(20,43)+sNB(5)+20(65)
$,DX{65) ,0XCU65) NP (65) 9 ARI10+65) yRRI10,65) HALL0,65),FAF 165,5),HF L
165451 4LQAC30 4 HPF(65) 4 TACLLS65) ,ALFA(E5),AFI(65),BETA(E5) ,THETA(65)
1+NQSs ICONF, LU, LRO,CONST,F(10,65) ¢ IOP14 ITRS

i0
15
20

200

SUBROUTINE REARE(Q0,HO,XJ,N%,Z20,ITT)

I"

I SUBROUTINE REARE CCHPUTES THE
I BY 02 CONNOR AND OOUBDINS EQUATION FOR ALL SECTIONS IN

I EACH YIME STEP

REAERATION COEFFICIENT

1 -
REAL KC1,KC3.KT1,KT0

COMMON /PP/V3,P5,P8,P12,P13,P1P,J2,T(65),A(65) +R{65),CK(65),CKY (65
1) 4 SFU65), AT1(65) ,RTL(65) yCKTL(ES) ,CKYT1(65)4SFT1(65),E(65) ,ETL (65)
29KT1 (651 ,KT0(65)+KCLUES) 1 KCI(65),CS,XLA(65),DB(65)
COMMON/TRSP/HSUBS(65) 4 NSUCI65) NBS(6) ,NUB(6),TET,TE41S1,10K2

DIMENSION XJ11),20(1),00(1),H0(1)
0M=0.00192%1.04%*(TE~20,)

CS=14.652~.041022%TE+7 4 G3LE~3*TE*TE=7, 7774E=S*TE*TE*TE

IF(ITT.ENR.1)GO TO 15

DO 10 I=1,NX

KTQ(I ) =KTL (D)

M=(I=~1)%2+2
VA=ABS(XJ(M)I/ATL(I) /70,3048
HH=ABS(XJ(H=11)/.304L8
KTL(I)=SQRT(OK¥VHI/HN**1 ,5/2.303
RETURN

00 20 I=1,NX
VH=ABS(QO(I)I/A(IN/, 3048
HH=(HO0(I)=Z0(I))/.3048
KT1(I)=SQRT (OM*VR)/HW¥*1,5/2,303
CONTIHUE

RETURN

END

SUBROUTINE OISFER{(XJ)

¢
I SUBROUTINE DISPIR COMPUTES THE LONGITUDINAL DISPERSION

1 COEFFICIENT BY A MODIFLED TAYLOR EQUATIQN FOR ALL SECTIONS
I Id EACH TIME STEP. IV IS CALLED IN WQSIM AND IN THE HAIN

I

PROGRAN

—- v v .

I s W o

REAL KT1,KT3,XC1,KC3

COMAON /PP/V34PSePByPL2:P134P1IP,J2,T(65),A(65),R(65),CKI65),CKYLES
1) sSFUB5) 4 ATL(65) yRTL(65) 4 CKT1(65) yCKYT1(65),SFTL(65),E(65),ETL(6S)
2,KT1165),KTC65),KC1(65),KCI165),CS,XLA(6514+0B(65)

¢
I
I
I

= o ot o ot 0 e e e o |

COMMON /TIME/HO(65),00(65),H0B(100,5),QYL(100,2),0L2165,2} 07,

DIMENSION XJ(1)
IF(ITT.EQ.1)G0 YO 45
D0 10 I=1.4NX
EC(IY=ETL(D)

M= (I~4)%242
VH=XJ (MY ZAT L)

ET1(I)=8,72*F(1,I)*ABS(VH)I*RTL1(I) **(5,./6.)

CONTINUE
RETURN
D0 20 I=1.NX

ET1{I)=8,72%F(1,I)%ABS(QO(I}/A(I))*RILI**(5./64)

CONTINUE
RETURN
END

-

128¢0
128€0
12870
12880
12390
12900
12310
12920
12930
12940
129¢0
12960
12970
12980
12930
13000
13010
13020
13020
13040
130¢0
130€0
13070
13080 .
13090
13100
13110
13120
13130

13140
13150
131€0
13170
131860
13190
13200
13210
13220
13220
13240
13250
132€0
13270
13280
132¢0
13200
13110
13320
13330
13340
133¢0
13360
13370
13380
13390
13400
13440
12420
136420
13440
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SUBROUTTINE OUY (K,C)

1 [ YU ¢

I SUBHOUTINE OUT IS USED TO PRINT THE CONCENTRATION FOR ALLI
I SECTZOMNS IN EACH TIME STEP. IT IS CALLED IN WQSIM 1

I . : ——— S
COMMON /PARL/IIX,NREAC yHCONF yNBOUNNST(40¢2) yHCC(20,3) 4NB(5),70(65)
1,0%(65) 4 OXC(65) yNP(65) ARC10,65) ,RRI10,65) 4 HA(LN,65) ,FAFL65,5) 4 HF (
16545) JLN(30) s HPF (65) 2 TA(L10,65) yALFA(65) ,AFI(65) ,BETA(BES) ,THETA(65)
15HAS, ICONF, LD, LROGCONST,F(10,65),I0PL,ITRS

COMMON /TIME/HO(65),Q0(65),HOB(100,5)+QHL (100,2) ,QL2(65,2) 40T,
10T140T0+CS04GNT+QT(30) s HTU30) SNV ITT, COLL100,5,3) ,NPX,CL (10043 ,3)
COMMON /PRINT/CABE(20),CABEL(20),SUBS(3),HPS(65),L0T,LOT2,I0P2,
1QAUX (2000

OIMENSION C(1)

IF(ITT.EQ.2) PRINT 1,CABEL

IF(K.ER.LIPRINT 2,ITT

PRINT 3,SUBSI(K)

PRINT 4, (I,C(I),I=1,NX)

FORMAT(10X,2044)

FORKAT(// 10X, 2TIME STEPZ,IT7)

FORMAT(/ 210X, 2STHULATED PARAMETER %, 484 3X,2(MG/L) 2)
FOPHAT(B(IS:F10,3))

RETURN

END

13450
134€0
13470
13480
136420
13500
13510
13520
13520
13540
135¢0
13560
135170
12580
135¢0
13600
13€10
13620
13630
13640
13650
136€0
13670
13680
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SUBROUTINE RMS(J,CH

REAL KC1,KC3,KT1,KT0

COMMON /PARL/NX4NREALC yNCONF 2 NBOUNJNST (40, 2)4NCC(208,3),NB(5),20(65)
1,0X(65) 4OXC{B65)NP(65) yAR(L0465) yRR(10,65),HA(10,65) ,FAF (65,5) 4 HF(
165,5) 4y LQUE30)4NPF(6S5) 4 TA{L0,65),ALFA(E5),AFI(65) ,BETA(65) 4THETA(B5)
1,10S, ICONF, LD, LRO,CONST+F (10,465) 4 I0OPL, ITRS

COMHMOH /PP/V34+P5,P3,P12,P13,P1P,J2,T(B5),A(B5),R(65),CK(65),CKY (65
1) 4 SF(65) 4 ATL(65) 4 RT1(65),CKTL1(65) 4CXYTL1(65)4SFTL(65) E(65) 4ETL(65)
24KT1(65),KTQ(65)4KCLI65) 4KCI(65) 4CSHXLALOL5),08(65)

COMMON /TIME/HOU65),0Q0(65),HQB(100,5),QNL(100,2),QL2¢65,2),0T,
1071,0704CSO+GyNT,QT(30), HT(30Y NV, ITT,C0(100,5,3),NPX,CL(100+3+3)
COMMON /MAT/IGCOL (130,5),JCX (65,5) s IHIGH(130),IRC130),IDIAG(130),
{IHIGHL (65) 4 IR1 (65) ,IDIAGL(65) ,NUM,JLIN(L130)ICAUX(130,5),XJ(230),

2AA€2000),BB(130),AK(1000),BK(65) N
COMMON /TRSP/NSUBS(65) yNSUC(65) NBS(6),NUD(6) ,TET+TE,ISL,I0K2
I ET—. I

I SUBROUTINE RHS COMPUTES THE RIGHT HAND SIDE MATRIX , 1
I IT IS USED WHEN THERE ARE MORE THAN ONE PARAMETER T0 BE I
I SIMULATEDe. IT IS CALLEDO IN WQOSIM. I
be - e ]
DIMENSION C(1}

AET(X19X29 X3y XU)=(X1¥X2¢X3"XL)

BOUNDARY EQUATIONS

DO 10 I=1,KNBOUN

K=TABS(NB(I))

TF(NB(IY.EQ.D) K=IABS(HV)

IFINBS(I).LE.D0)GO TO 6

BB(KI=CBIITT,I,J)

GO 70 190

IFIIABS(NBS(I}).€Q.1160 TO 7

KI=NUD(I)

MK=(KI~1)%2¢1

AX1=DXC (HK)

AX2=DXC (MK+1)

I1=HCC(KI,1)

I2=HCC(KI,2)

AX=(AX14AX2)/2,

Ch=A(I2)*E(12)*2

C3=A(ILI*E(ILI*2

AX=AX+500,

BBIK)=A(KI*CIK) /DT ¢ (L =TET)* ((=CI* (C{KI=C(IL))/AXL=CH*(C{K)=C(I2))
1/7AX2) 7AX=(QO(I1)* (C(K)I=C(I1)}/AX1+Q0(I2)*(CIKI=C(I2))/7AX2))
- GO 10 10

7 8B(K)=0.
10 CONTINUE

LOOP OF THE SECTIONS

00 100 I=1,NX

KI=NSUBSI(I)

IF(XTI.EQ.0)G0 TO 100

K2=NSUC(I)

IF(K2.L7.0)1G0 TO 15

C2=AET(A(I) E(I),A(K2),E(K2))
15 IF(KI.GT.0)G0 TO 20

REACH EQAUTION

KI=IABS(KI)

1360
12700
13710
13720
13720
123740
137¢0
13760
13770
13780
137¢<0
13800
13810
13820
13320
13340
13850
138¢€0
13870
13820
13890
13900
13910
13920
13930
13340
139¢€0
13960
13970
13960
139390
14000
16010
14020
14020
14040
140¢0
140¢€0
14070
14080
14090
14100
14110
16120
14130
164140
141650
14160
14170
14180
14190
14200
1464210
164220
14230
14240
14250
142€0
14270
14280
14290
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Ki=NST(KI,1)

OXM=DX{I)+DX(K1)

ORCI)=ALIY /DT *CUIN+(1~TET)* ((CR*(CIK2)=CUIIV/DXIL)=RETCA(I),EC(TI) A
LKLY 2 E(K1) ) * (C(IImCIKL)) 70X (K1) )/ DXM={QOLT }#CLI )}=QO(KL)*C{KL)}/D

1X (K1)
G0 TO 100
20 IF(IEQ.IABS(NCC(KI»3)))1GO TO 40

C

c CONFLUENCE EQUATIONS

c 0
M3I=(KI=1)%2+2 I
AX=DXC(M3)

IF(NCC(KI1).EQ.I)RX=DXC(H3I~1)
K3=IADSINCC (KI,3))
C3=A(TI)*ECI)*2
IF(HCC(KIZ3).LT.0)G0 TO 30
IF(K2.LT.0)G0 TO 25
AY1=AX+0DX(I)
AX2=0X(I)
GO YO 27
25 C2=ALIV*ELI)*2
K2=IABS(K2)
KAUX=1SUBS(K2)
MH= (KAUX=1)*2¢1
AX2=DXC (MN)
IF(HCCIKAUXy1) «NELT ) AX2=DXC (MN+1)
AXL1=AX¢AX2
27 30U =ALI)/DT*CHIN ¢+ (1. =TET)I*((C2% (C(K2)=C(I))/AX2 =C3I*(C(I}~C(K3)
11/78%X) 7AX1=Q0CI ) *(CUI)=C(K3))/AX)
GO TO 100
30 AX1=AXsDX(K2)
BBCII=ACIN /0T CUI) ¢ {1, ~TETI* ((=C2*(C(IV=C(K2))}/DX(K2)+¢CI*(C(K3)=C(
{IVYI/AX) ZAXL=(QO(I}*C(I)~QOCK2) *C(K2))/DX(K2))
GO TO 100
40 MKL=(KI~1)*2+1
AX=(DXCI{MK1) ¢DXCIMKLI+1)) /2,
AX1=zDXC (MKL}
AX2=DXC (MK1+1)
KK1=NCC (KI,1)
KK2=NCC (KIy2)
C3=A(KKL) *E(KK1)%2
Cl=A(KK2) *E (KK2}%2
IF(NCC(KIL3).LT.0)GO TO 50
AX=AX+DX(K2)
B88(I)=ACI) /0T CUID ¢ L =TET)*(((CUKK1)=C(II)/AXL*C34(C(KK2})=C(L)}/A
1X2%Ch=~(CII)=C(K2))*C2/DX(K2) ) /AX=(QO(I)*C (L) =QO(K2)*CIK2)) /0X(K2) )
G0 TO 100
50 AX=2X+DX(I)
BBIIN=ALII*CUIN/0T+(L . ~TET)*(((C(K2)=C (L)) *C2/0X(I)=C3I*(C(I)=C (KKL
1)) 7AX1=Cu* (C(T)=C(KK2)I/AX2) /AX=~(QDO(KKL1)* (CCI)=C (KKL1)) /A XL +QO(KK2)
2% (C{II=CIKK2)) /AX2H)
100 CONTINUE
- RETURN
END

14300
14310
14220
14320
14360
14350
143€0
14370
14380
14390
14400
144140
146420
14420
14640
144¢0
144€Q
14670
14480
14650
14500
14510
14520
145230
14540
14550
1645€0
14570
145¢0
14590
14€00
14640
14620
14620
14640
14650
14660
146790
14680
14690
14700
14710
14720
14720
14740
147580
14760
14770
14780
164750
14800
14810
14820
16830
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SUBROUTINE TRANSP (J,C) 14840
I e B e 1460
I SUPROUTINE TRANSP COMPUTES THE COEFFICIENT MATRIX AND I 148€0
I THE RIGHT HAND SIDE MATRIX. IT IS CALLED LN WQSIM I 14€70Q
I R 14880
REAL XT14KT0,KC14KC3 14890

COMMO! /PARL/HX NREAC, NCONF ¢NBOUN,NSTLLD,2),HCC(20,3), NB(Sl,ZO(GS) 14300
140X(65) ,DXC(65) 4NP(65) ,AR(10+65),RRI10,65),HACLD,65) 4FAF (6545) 4 HF ( 14910
165,52, QU30),NPF(65) TAL10+65) +ALFALB5) +AFI(65) +BETA(65),THETA(65) 14920
1,HQS,ICONF4LD,LRO,CONST,F(10,65),I0P1, ITRS 14930

COHMQH /PP/V34PSyP8,P124P13,PLP,J2,T(B5),A(65),R(65),CK(65),CKY(ES 14940
1V SFULSY 4 AT1(65) ,RT1(65),CKTL(65) ,CKYTL(O65)+sSFTL(65),E(65),ETL (65) 14950

2,KT1(65) ,KT0(65),KC1(65),KCI(65),CSsXL A(L5),0B(65) 14950
COMMON /TIME/HO(65),Q0(65),HQB(100,5),QHL(100,2),0QL2(65,2),0T, 149130
10T1+0T04CSO,G,NT,QT(30), HTI30) ,NV,ITT,C80100,5,3) 4KPXyCL{100+3,43) 149890
COMEON /MAT/ICCL(13045)4JCX(65,5) IHIGH(130),IR(130),I0TAG(130), 149990
L1IHIGIIL(65) y IRL (£5),IDTAGL (65) 9y NUMyJLIN(L30) s ICAUX(L30,5),XJ(130), 15000
ZAA(?fOO) 88(130),AK(1000),BX(65) 15010
OMHON /YRJP/NSUBS(ﬁs,gNSUc(65)’NBS(6)ONUD(S"TET’T[‘ISI!IGKZ 1€020
DIM&HSION c(1) 15020
AETOXL X239 X Iy XU)=(XLEX24X3* XG) 15040
1€0¢€0

BOUNDARY EQUATIONS 15060
1¢070

DO 10 I=1:NBOUN 1080
K=IABS(NBI(I)) 1090
IF(HBLI) .E£Q.0) K=TABS(NV) 16100
KM=JCX(Ky2) 19110
IF(NBS(I).LE.0)GO TO 5 1€120
AA(KHI=1. 16120
BBIKY=CBLITT,I,J) . 18140
G0 70 10 1150
5 KM2=JCX(K,3) 1:160
KH3=JCX (K4 k) 16170
IF(IABS(NAS(I))1.EQ.1)G0 TO 7 1120
KI=NUDI(T}) 1€130
MK=(KI=-1) *2+1 1€200
A%1=0XC (MX) 1£210
AX2=0XC(MKe+1) 11220
I1=NCC(X[,1) 1£220
I2=NCC(KI,2) 19240
AX=(AX1¢AX2)/2. 1€2¢0
Cu=A(I2}%E(I2) "2 1€2¢€0
C3=A(IL1)*E(IL1)*2 1¢270
AX=AX+500. 1280
H1=(I1~1) %28 19290
M3I=(I2=~1) %2+ 1€300
CCL=ATI1(I2) *ET1(I2)*%2 18310
CC3=ATL(I1)*ETL(IL)*2 1320
AA(KH) ==TET/AX1% (XJ(M1)+CCI/AX) . 16320
AA(KE2)==TET/AX2* (XJ(M3) «CCU/AX) 1£340
AA(KiIt3)=ATLIK) ZOT+TET* ((CCI/AXL4CCU/AX2)/AX+XI(HL)/AXL4XILHI)/AX2) 1€2¢0
BBIK)=A(K) *CUK) /DT + (L =TET) *((=C3*(C(K)=~CUIL{))/AXL1=CL*(CIK)I=C(I2)) 15360
1/7AX2) ZAX=(QO(I 1) *(CI(K)=C(IL))/AXL+QO(L2)* (C(KI=C(I2))/AX2)) 15370
GO 70 10 15380
7 AA(KM)=1. 1£390
AA(KMZ)==2, 15400
AACKM3) =1, 15410
8B (K)=0. 18420
10 CONTINUE 13430

15640
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SECTIONA LoOP

00 100 I=1.,NX

KI=NSUBS(I)

IF(KI.EQ.0)GO0 TO 100

KHM=JCX(I,2)

K2=HSUCHI)

IF(K2.,LT.0)GO YO 15
C2=AET(A(I)ELTI)+AIK2),E(K2))
CC2=AET(ATLCI) JETLUII) , AT (K2),ET1(K2))

REACH EQUATION

M2={K2=-1)*2¢2 .

M= (I=1)%242 "

IF(KI.GT.0)GO TO 20

KI=YABS(KI)

K1=NST(KI,1)

ML=(K1=10%2¢2

CCL=AETCATL(I) JETL(I),AT1(K1) ,ETL (K1)}

DXM=DX(I)+0X{K1)

ARCKM)==TET /DX (K1) *(XJ(ML)¢CCL/DXN)

KM=JCX{I,43)

PACKMI=ATLLI) /DT TET*((CC2/0X(I)I+CCL/0X(KL))I/DXH+XJI (M) /DX (KL))

KH=JCX{Ist)

AATKHI==TET¥CC2/ (DX (I *DXM)

BO(I)=ALIY/0T*CUID +(L~TETI*¥((C2¥(C(K2)~C (L)) /DX(I)=AET(ACI)ECI),A
LK1, ECKIII¥UCCII=C(KL1)) 70X (KL))/DXM=(QO(I )*C(I )~Q0(K1)*C(K1))/D
1X(K1))

GO TO 100

IF(I.EQ.IABSINCC(KI,3)})GO YO 4O

COGNFLUENCE EQUATIONS

K3=IABS (NCG(KIo31)

M3=(RI=1)¥2+2

AX=DYC(M3)

IF (HCC(KI 1)« EQ IV AX=0XC (K31}

CI=A(TI*E(I)*2

CC3=AT1(II*ETL(I1*

IF (HCC(KI43) .LT.01GO TO 3¢

IF(K2.LT.0)GO T0 25

AX1=AX¢DX(I)

AX2=0%X(1)

60 10 27

C2=ALI)*E(I)*2

CC2=ATL(IN*ETL(I) *2

K2=IABS(K2)

KAUX=NSUBS (K2)

MN=(KAUX=~1) %2¢1 °

AX2=0XC (MN)

IF (NCCUXAUX; 1) o NELT ) AX2=0XC(MN+1)

AX1=AX+AX2

BBIIY=ACT)/DT*CAT I+ (L, =TETI ¥ ((C2*(C(K2)=CUI)}/AX2 =C3*(CLI)=C (K3
S4)/AX) FAXL=00(I) ¥ (C(I)=C{K3) }/AX)

AA (KM ==TET*CC2/AX1/AX2

KH=JCX(I,3)

AA(KMI=ATLLI)/DT+TET® ((CC2/AX2 +CC3/AX)/AXL+XJ (H)/AX)

KM=JCX (T4t}

AR (KHI==TET/AX® (XJIM) +CC3/AX1)

GO TO 100

156450
15460
154170
15480
15490
15500
15510
15520
1€530
15540
15550
155€0
155170
15580
15590
15600
1610
1620
1620
1£640
156¢0
156¢€0
15670
156 &0
156980
15700
1710
1€120
15730
1¢749
1¢750
157¢€0
1770
15780
15790
1600
16810
1:820
1£820
15840
1¢85¢0
1860
17870
1£88¢0
1¢890
1:900
16910
15920
1920
1940
12950
1€3€0
15970
15980
15890
16000
16010
1€020
16030
1€040
1€0¢0
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30 AX1=AX¢0X(K2)

40

50

ARLKMY==TET/0X(K2)*(XJ(M2)e¢CC2/AX1)
KH=JCX (1,3
AATKMI=ATL(I)Y /0T+ TET* ((CC2/DX(K2) ¢+CCI/AX) /AXL¢XJI (M) /70X (K2))
KM=JCX(I,t)
AALKH)==TET*CCI/AXL/AX
BOCI)=ACI) /0TYCAIY#(1 o=TET)*((~C2*¥(C(I)=C(K2))/0X(K2)¢CI*(C(KII=C(
1111 /7AX) 7AX1~(QO(II*C(I)'-Q0(K2)*C(K2)) /DX (K2))
GO TO 100
MK1= (KI=1)*2+1
AX=(DXC({MK1)+DXC(MKL141)) /2,
AX1=DXC{MK1)
AX2=0XC (MK1+1)
KK1=HCC(KTI,1)
KK2=NCC{KI,y2)
M1=(XK1=1)*2+42
M3I=(KK2~1)*2+2
C4=A(KK2} *E(KKZ)*2
C3=A(KK1}*E(KK1)*2
CC3I=ATL(KKLI*ET1(KKL)*2
CCLU=ATL(KK2)*ETL(KK2)*2
IF(NCCIXI,3).LT.0)GO TO S0
AX=AX+DX(K2)
AAIKMI==TET/0X (K2)* {XJ(M2)+CC2/AX)
KM=JCXUI,3)
AA(KM)=ATL(I)/DT+TET*((CC2/0X(K2)+CC3/AXL+CCL/AX2)/AX¢XJ (M) /DX (K2)
1)
(M=JCX(Iyb)
AACKM)=~TET*CC3/AX/AXY
KH=JCX(I,5)
CAKMY==TET*CCLU/AX/AX2
GBI =ACIN /0T *CUID 0L o=~TETH* (((C(KKLI=CULI})/AXL*C3+(C(KK2}=C(I))I/A
1X2%C4=~(C(II=C(K2))¥C2/DX(K2) ) 7AX=(QO(I)*L(I)=Q0(K2)*C(K2)) /DX(K2))
GO YO 100
AX=AX+DX(I)
AA(KM)==~TET*CC2/AX/DX(I)
KN=JCX(I,3)
AA(KM)Y=ATL(I) /0T +TET*((CC2/0X(I)+CC3I/AXL+CCL/AX2) /AXeXJMLI/ZAXL XY
1(M3)7AX2)
KM=JCX(I4&)
AA(KH)==TET/AXL1*(XJ(ML1)}+CC3/AX)
KM=JCX(I+5)
AA(KM)==TET/AX2% (XJ{M3)+CCL/AX)
BB(IN=A(I)*CUI}/0T4 (L ~TETI*(L(C(K2)=C(I))*¥C2/DX(I)=~CI¥(CLI)=C(KKL
1)) /7AX1=CL* (C(I)=C(KK2))/AX2) /AX=( QO (KKL1)* (C(I}=C (KK1)})/AX1+QO(KK2)
2*(C(I)=C(KK2)) /7AaX2))

100 CONTINUE

DO 110 M=1,IS1

110 AKGH) =AA(M)

- RETURN

END

1€0¢€0
16070
1€080
1€090
16100
1€110
1¢120
1€130
1€140
1E€150
161€0
1€17¢0
1€180
1€190
1€200
1€210
1€220
1€230
1€249
1€2¢€0
1¢62€0
1€270
1€280
1€290
1€300
16310
1€320
1€320
16230
1€340
1€3¢0
1€360
16370
16380
1€399
16400
1€410
1€6420
16420
1E44LO
16450
1€4ED
15470
1€480
1€490
16500
1€510
1€520
165230
1E540
1€5¢0
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Typical output from the program UNSWQ:

FRINTING INPUT CARDS

16 12 2 2 0 1 0 .0 ] ] 0 1
1 2 2 3 4 6 5 7 6 s 4 3 10 11 11 12
12 13 13 14 14 15 15 1§
4 s 3 8 9 =10
-y [} o '
0.00 0.00
1.00 1.00 1.00 1.00 1.00 1,00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
.55 «50 45 43 .43 .38 .38 .33 .33 .30
.25 .20 .15 .10 .05 0.00 ’
.030 .030 .030 .030 .030 .030 .030 . 030
<039 «030 .030 . 030 .030 .030 .030 . 030

1000.00 1000.00 1000, 00 1000.00 1000.00 1000.00 1000.00 1000.00
1C00. 00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00
500. 00 500.00 500.00 500.00

1.00 1.00 1.00 1.00
4 4 4 4 4 4 4 4 4 4 4 4 b 4 4 b
1

£.000 30.000 60.000 90.000
30.000 30.000 30.000 30.000
8.000 .938 1.765 2.530
0.000 1.000 2.000 3.000
2

0.000 30.000 60,000 96.000
30.000 30,000 30.000 30.500
9.000 .938 1.765 2.500 ‘

0.000 1.000 2.000 3.000
3

0.000 30.000 69,000 30.000
30,000 30.000 30.000 30.000
0.000 «938 1.765 2.590
0.000 1.000 2.000 3.000
[

0.000  15.000 30,000 45,000
15,000 15.000 15.000 15.000
0.000 .882 1.579 2.163
0.0C0 1.000 2.000 3.000

H]
0.000 15.000 30.000 45.000
15.000 15.000 15.000 15.000

0.000 «882 1.573 2,143
0.000 1.000 2.000 3.000
6

g.0c0 15.000 30.000 45,000
15.000 15.000 15.000 15.000
0.000 . 882 1.579 24143
0,000 1.000 2.000 34000

7
0.000 15.000 30.000 45.000
15.000 15.000 15.000 15.000

0.000 . 882 1.579 241463
0.000 1.000 2.000 3.000
8

0.000 15.000 30.000 45,000
15.000 15.000 15.000 15.000
0.600C 832 1.579 2.143
0.000 1.000 2.000 3.000

9
0.000 15,000 30.000 45.000
15.000 15.000 15.000 15.000



Typical output (continued)

10
0.000
10.0C0
0.000
0.000
11
0.000
30.000
0.000
0.000
12
0,000
30.000
0.000
0.000
13
0.600
30.000
0.000
0.000
14
0.000
30.000
0.000
0.000
15
0.000
30.000
0.000
0.000
16
0.000
30.000
0,000
0.0080
0 0
3600«
2.00
2.00
20. 00
10.00
27.10
TEST 800
«50

-1
15
-1

3
.25
«25
0.00
0.00
0.00
0.00
0.0C0
0.00
2.00
2.00
5.00
S. 00
1.00
1.00

oo N

30,000
30.0G0
938
1.000

30.0C0
30.000
« 938
1.000

30.000
30.000
938
1.000

30,000
30.000
.938
1.000

30.000
30.000
938
1.000

30.000
30.000
+938
1.000

30.000
30.000
«938
1.000
0 0

8

2.00
2.00
20.00
20.00
33.50
AND DO
25.00

N
o

25

.25
0.00
0.00
0.00
.00
0.00
0.00
2.00
2.00
5.00
5.00
1.00
1.00

60.000
30.000
1.765
2.000

60.00C0
30.000
1.765

+ 2.000

60,000
30.000

1,765

2.000

60,000
30.000
1.7565
2.L00

60.000
30.000
1.765
2,000

60.000
30.0C0
1.765
2,000

60.C00
30.000
1.765
2.000
0 0
1

2.00
2.00
20.00
20.00
39.30

1

1 -3

«25

«25
0.00
0.00
0.00
0.00
0.00
0.00
2.00
2.00
5.00
S.00
1.00
1.00

30.000
30.000
2.500
J.000

20.000
30,000
2.500
3.000

90.000
30.000
2.500
3.000

90.000
30.000
2.500
3.000

30.000
30.000
2.560
3.000

90.000
30.000
2.500
3.000

30.000
30.000
2.500
3.000
0 1]
1200.

2.00

2.00
10.00
20.00
44,50

1

25

'25
0.00
0.00
0.00
0.00
0.00
0.00
2.00
2400
5.00
5.00
1.00
1.00

208

2.00
2.00
10.00
20.00
43.10

T.80

11
«25
«25

0.00
0.00
0.00
0.00
0.00
0.00
2.00
2.00
5.00
5.00
1.00
1.00

-7
12

2.00
2.00
10,00
20.00
53.20

-8
13
«25
025
0.00
0.00
0.00
0.00
0.00
0.00
2.00
2,00
5.00
500
1.00
1.00

-9
14

2.00
2.00
10.00
20.00
56480

-10
15
«25
«25
0.00
0.00
0.00
g.00
0.00
0.00
2.00
2.00
5.00
5.00
1.00
.00

-11
16

2.00
2.00
10,00
20.00
60.10

0

14

« 25

«25

0.00
0.00
0.00
0.00
0.00
0.00
2.00
2400
5.00
5.00
1.00
100



8

IMPLICIT SCHEME OF UNCCUPLED EQUATIONS PAGE 2
TEST CONFLUENCE SYSTEM
OT =3600. SEC OJT1 =1200. SEC
Y PYYEE R RS - . » ¥ » » 4 - 3 - ¥ - -
I TIME I ISECTIONI INITIAL I AY I FINAL I LEVEL ISECTIONI INITIAL I AQ I FINAL I
I sTep I I I DEPTH I I OEPTH I I I DISCHARGE I I DISCHARGE I
[ XS RYRE) L — » . - * - Ld » ——ree &
1 2.00C0 2.5500 i 20.0000
2 2.00070 2.5000 2 20.0000
3 2.0000 2.4500 3 20,0000
& 2.0C30 2.4250 4 10.0000
S 2.092¢C 2.4250 5 10.0002
6 2.0000 2.3750 6 10.0000
7 2. 03000 243750 7 10.0000
8 2.0000 243250 8 10.00C0
9 2.02C0¢C 2.3250 9 10.0000
1c 2.0C4Q¢C 2.3000 10 20.0000
11 2.00090 242500 11 20.0000
12 2.9C000 242000 12 20.0000
13 2.0000 2.1500 13 20,0000
14 2.0000 2.1000 i 20.0000
15 2.0CCC 2.05C0 15 20.0000
16 2.00C0 2.0000 16 20.0000
1 2.0C00 1273 241273 246773 1 20.0000 9.2333 29,2333
2 2.0000 «3942 2.0942 245942 2 20.0000 6. 4b54 2644654
3 2.0000 «0736 2.07386 25236 3 20.0000 4.3679 2b.367G
L3 2.0000 <0643 2.0648 244898 4 10.0003 2.1839 12.1839
5 2,0000 <0643 240648 2.4898 5 10.0000 241839 12.1839
6 2.0C000Q 0421 20421 2.4172 6 10.0000 1.5157 11.5157
7 2.003¢0 +04&28 2.0421 2a4171 7 10.0000 15157 11.5197
8 2.0030 «0250 2.0250 243500 8 10.0000 1.0963 11.0963
9 2.00079 «02¢0 240250 2.3500 9 10.6000 1.0963 11.09€3
10 2.0C020 20200 2.0200 2.3200 10 20.0000 2.1928 22.1926
11 2.03%0 «0149 2.0149 242649 11 20,0000 1.7566 21.7566
12 2,0000 «0118 2.0118 2.2118 12 20.0000 1.4233 2144233
13 2.Q300 «0103 2.0103 241603 13 20.0000 11673 2141473
14 2.00¢C0 <0104 20104 2.1104 14 20.0000 8884 20.8884
15 2.0000 «0122 2.0122 2.0622 15 20.0000 « €058 20.6058
16 2.0020 <0162 2.0162 2.0162 16 20.0000 «2513 20.2513
TEST BOD AND DO
TIME STEP 2
SIMULATED PARAMETER 800 (MG /7)Y
1 11.633 2 3. 364 3 1.077 & 14131 5 1.131 6 1.017 7 1.017
9 997 10 « 998 i1 «993 12 « 994 13 «994 14 «994 15 «993

16

«997
- 995

(penutiuod) indino 1ed1dL]

60¢



APPENDIX C

SOLUTION OF THE TRANSPORT EQUATION‘WITH CONSTANT
COEFFICIENTS
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APPENDIX C

SOLUTION OF THE TRANSPORT EQUATION WITH CONSTANT
COEFFICIENTS

The transport equation is

§§_+ vaC - E 82C
at 9x 5 2
x s

using the following numerical scheme

t+l t
a c;’m - ¢
ot At
aC _ [“(Ci+1 - C) . BIC; - € 1) t+e
ax Ax Ax ]
2%C _ 1__[(Ci+1 T8 € -G e
ax2 T Bx Ax Ax ]

(C.1)

(C.2)

Substituting the numerical scheme Equation (C.2) in (C.1) yields

C§+1 - Cz v t+6 E
it tax [0y -G+ B(C -G D] s =5
Ax
[Cipp - 265+ G177
then
N R Kot
where
Ay = - O *
B, = 1+ 0[pe- (8 - ) + 2E8Y
AX
D, = o[t - 2%

Ax

(C.3)
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ot t .t t Lt i
B, = Cy - (1 -8t {v[a(Cy,; - Cj) + B(C; - C5_ ;)]
E -t t |, ~t
-y (G4, - 26+ G D)

Ax

The values of o and B are used to define the scheme:

a=1 and B =0 forward
o=1 and B =1 central
o=0 and B =0 backward

In a reach with N sections the Equation (C.3) is applied to the
sections 2, 3, ...N-1. There are N unknowns and N-2 equations.
Conditions at the boundaries give two more equations that result

in a system of equations of N x N. The system of equations is

F-C-E (c.4)
where
B) Dy
A, B, D,
E:
An-1 Bno1 Dn-:
Ay By
1 E)
c, E,
Cs Es
c- Be -
N-1 EN-1
E
Cy
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The coefficient matrix F is a tridiagonal matrix and to solve
the system of equations the Thomas algorithm can be applied. This

algorithm is

AiPio
B. = B. -
1 1 Bi—l
for i =2, 3, ...N
A.E.
171-1
E; =B - 73,
1
then
Cy = Ey/By
for i =N-1 2,1
(El B Ci-lDl) ’
C. = B
1 i

The program TRANS solves the transport equation with constant
coefficients by the numerical scheme of Equation (C.2). The description
of the input variables is in the computer program listing on the

next pages.



Crosmum s .

R R R e el e N e N N N s N e N N N N N s N e Ny o N e W e s N e e N s s Ny N R e N e N e N e N N e R s Rz R R N2 X s R R R R R N R o N e R N e R N e R )

214

PROGRAM TRANSUINPUT, OUTPUT)

THE PROGRAM TRANS WAS PREPARED TO SOLVE THE ONE OIMENSICN
1RANSPORT EQUATION HITH CONSTANT COEFFICIENTS BY A FINIVE
DIFFERENCE METHOD

PROGRAMED 8Y CARLOS TUCCI

INPUY DATA
CARD A HNX -« NUMBER OF SECTIONS
3R «~NUMBER OF TIME STEPS

rop = NUMBER OF PARAMETERS TO BE SIHULATEOD
1opP2 -~ =0 00 NOT PRINT INPUT DATA
=1 PRINTS
103 b =1 CONSTANT BOUNDARY CONCENTRATION
=0 C(T) IN THE BOUNDARY
I0P% - =N WHERE % IS YHE SPACING OF TIME STEPS IN HHICH
THE CONCENTRATIONS SHOULD BE PRINTED
FORVAT(BIS)
HHEN NX=0 THE PROGRAM STOPS THE EXECUTION. USE A BLANK CARD

TO STOP,
CARD B V - VELOCITY
E ~ LONGITUOINAL DISPERSION COEFFICIENT

CARD C

CARD O

CARD E

CARD F

CARD G

XK1 ~ COEFFICIENY K1i(B80O0 REACTION RATE)
XK3 = COEFFICIENT K3
XK2 REAERATION COEFFICIENT K2

AT = TIME STEP

cSs = SATURATED CONCENTRATION
XLA = RATE LA

08 = RATE 08

TET = INTEGRATION PARAMETER TETA

TETA=0 EXPLICIT
TETA=0.5 CENTRAL IMPLICITY '
TETA=1. FULLY IMPLICIT
FCRMAT(10F8.2)
USE THE SAME SYSTEM OF UNITS FOR THOSE VARIABLES

ALFA AND BETA = DEFINE THE NUMERICAL SCHEME IN THE SPACE
ALFA=1, BETA=0 FORWARD
ALFA=1,BETA=1 CENTRAL
ALFA=0, BETA=1 BACKWARD
FORMAT(10F8,2)

OX(I) = SPACING BETWEEN THE SECTIONS, I IS THE UPSTREAM
SEGTION » FORMAT(10F8.2)

NS(I) = THE CODE OF THE PARAMETER TO BE SIMULATED
=1 CONSERVATIVE
=2 800
=3 00
FORMAT(81I5)

CI(I,J)= FOR EACH SUBSTANCE J THE CONCENTRATION IN EACH
SECTION I AT THE INITVIAL TIME STEP , FORHAT(10F8.2)

WHEN 103=0

CBIIT,M)~ FOR EACH SUBSTANCE H THE PROGRAM READS THE BOUNDARY

CONCENTRATION FOR EACH TIME STEP. FORMAT(10F8.2)
WHEN I0E=1
CBL(I) = THE CONSTANT CONCENTRATION FOR EACH SUBSTANCE I
FORMAT(10F 8.2)

WOOOODOOODOOOOO

+

OO0 O0N O

10
20
20
40
50
€0
70
80
99
100
1190
120
120
140
150
1€0
170
180
190
200
210
220
230
240
2¢
260
270
280
290
300
319
320
30
340
3¢90
360
3ro
380
390
400
418
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
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160

170

189

190
200

100

120

216

VV=(CTI(T¢1,M)=CI(I,M)) ALFA
ve={ CI(I,M)=CI(I~1,M)}*BETA
DEDY=CIlTyMI=(L1.,~TET) Y (AAP(VV+UB) /(ALFA*DX (L) ¢ BETAYOX(I- 1)) =E*AT/(

10X (X)) ¢0X (Tt )) ¥ (CCTCI 41, HI=CI (I, M) /70X (L) ={CI(I, ,M)=CXC1=1yM4))/0X(I
2=11))

CONTINUE

IF(H1~2920041604180

D0 170 I=2,NN

DKL) =0K(I) +CX*TET*AT

D(D)=D(I) el (L, =TETI*(=CX*CI(IyHM)) +XLA) *AT

CONTINUE

GO 1O 200

00 190 I=2,NN

BKUI) =BX(I)+TET*CXL1*AT
D(I)=D(I)+(CXL*CS=TET*CX2*CI(IyH=1}=(L~TET) *(CXZ*CL{I)+CX1*CI( I, H)

1)~0B) *AT .

CONTINUE

CALL MATRIXCAK,BK,CK,yD4X,NX)
IF(IT/IOP4*IOP4.NEL.IT)IGO YO 205
PRINT 4yNS(M)

PRINT 54 (KaX{K) 4K=1,NX)

00 210 J=1,NX

C1eI =CI(Jy M}

CIt{I;MI=XY)

CONTINUE

GO YO 99

FORMAT (815)

FORMAT(10F8.2)

FORMAT(/ /45Xy #TINE STEP£,I5)
FORMAT(S5Y, #PARATETERZ,, IS}
FORMAT(8(I3,F10.3))
FORHAT(1K1)

END

SUBROUTINE MATRIX(A,B,Cy04XsNX)
DOUBLE PRECISICH A,y3,C4DyX
DIMYENSION A(1),8(1),C(1),DC1),X (1}
NN=NX=1

00 100 I=2,NN
B(I)=B(I)=A(I}/B(I~1)*C(I=1)
D(IN=D(I}=A(I)/B(I~1)*D(I=1)
CORTINUE

BH=w=2 (=l (NX=2) /B (NX=2)

00==D (NX=2)} /B (liX~2)
CH=1e=BN*CINX=1) /7B (NX=1)

XINX) =(0D=BN*D (NX=11 /8 {NX~1L)}/CN
0O 120 I=1.NN

H=NX=1
X{N)=(D{N)I=C(N)I*X{N+1)})/B(N)
RETURN

END

1220
1240
1250
12€0
1270
1280
1290
1300
1310
1320
1330
1340
1350
13¢€0
13170
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1520
1540
15¢€0

15¢€0
1570
15¢€0
1590
1600
1610
1620
1620
1640
16¢0
1660
1670
‘680
16¢<0
1700
1710
1720



40 50
5.00
0.00

50
«50
«50
«50

.00
0.00
0.00
0.00
9.00
9.00
9.00
3.00
10.00

1.50
1.00
50
50
«50
«50

C.00
0.00
0.00
0.00
3.0
9.00
3.00
9.00
8.73

.25

«50
50

50"

<50

0.CC
0.00
0.C0
.00
3.00
9.00
Q.00
9.G0

10
.00

«5C
+50
50
W50

3.3
3.00
0.30
¢.00
9.36
3.0C
9.00
9.00
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Typical output from the program TRANS

«50

50
50
.50
50 ¢

t.00
J.00
0.00
0.00
9.00
9,00
9.00
9.30

.01

«53
« 53
« 52
« 50

0.C0
J. 06
2.09
0.C0
3.0¢
9.00
3.00
3.00

9.00

50
50
50
«50

2.¢C
.00
3.C0
3.098
3.06C
2.30
9.60
9.00

« 50

83
56
« 50

5.0
[
G.00
G.C0
9.090
9.00
3.00
9.00
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N DO
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Typical output (continued)
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