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“The reality we can put into words is never reality itself.”  

 Werner Heisenberg 

 

 

 

 

 

Science cannot solve the ultimate mystery of nature.  

And that is because, in the last analysis,  

we ourselves are a part of the mystery  

that we are trying to solve. 

 

Max Planck 

 

 

 

 

 

"Forty-two," said Deep Thought (…) "I checked it very thoroughly,"  

(…)"and that quite definitely is the answer.  

I think the problem, to be quite honest with you, 

 is that you've never actually known what the question is.” 

 

― Douglas Adams, The Hitchhiker's Guide to the Galaxy 
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ABSTRACT 

 
 

This study presents the analysis of the bistable phenomenon for turbulent flows around two 

cylinders side-by-side using two methods for data analysis and chaos theory for dynamic 

analysis. The experimental data were acquired for various Reynolds numbers and pitch-to-

diameter ratio p/D of 1.16, 1.26, and 1.60, cylinders diameter was 25.1 mm. The experimental 

technique consists of measuring the velocity fluctuations in an aerodynamic channel using 

hot-wire anemometry. The study presents the application of the Hilbert-Huang transform 

(HHT) as a tool of analysis for non-stationary and non-linear signals. The method was first 

validated using single cylinders and then extended for two cylinders side-by-side. Results 

show that the HHT method may provide information about particular events in time-

frequency space and about the physics of flow scales. The statistical analysis of the 

experimental data is performed to identify statistical patterns that can be used to characterize 

the bistable flow. The signals are scanned by a moving window for the statistical analysis, 

creating blocks of probability density functions (PDFs). The four first statistical moments of 

each PDF are calculated, and a tendency of behavior based on their variations is established. 

The dynamics of the bistable flow system are studied applying chaos theory tools, like the 

largest Lyapunov exponent. The strange attractors of the velocity-time series are 

reconstructed, and their topology is useful to understand the physics of the bistable system. 

Each flow wake mode is analyzed separately. A general model of the bistable flow is 

reconstructed using probability functions. The application of a set of tools in the analysis of 

the turbulent wake behind cylinders is useful for the comprehension of turbulent phenomena, 

producing meaningful results and allowing the identification of turbulent structures and flow 

scales, and a better understanding of the system dynamics. 

 

Keywords: Hilbert-Huang transform, Empirical Mode Decomposition, Bistability, Chaos 

theory, Dynamic systems. 
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RESUMO 

 

 

Este estudo apresenta a análise do fenômeno da biestabilidade no escoamento em torno de 

dois cilindros lado a lado usando dois métodos para análise de sinais, e teoria do caos para a 

análise da dinâmica. Os dados experimentais foram adquiridos para vários números de 

Reynolds e várias razões de aspecto p/D de 1,16, 1,26 e 1,60, o diâmetro dos cilindros é de 

25,1 mm. A técnica experimental utilizada consiste em medir as flutuações de velocidade em 

um canal aerodinâmico utilizando anemometria de fio quente. O estudo apresenta a aplicação 

da transformada de Hilbert-Huang (HHT) como ferramenta de análise para sinais não 

estacionários e não lineares. O método é primeiramente validado utilizando sinais 

experimentais para um cilindro sobre escoamento turbulento e após aplicado ao escoamento 

sobre dois cilindros lado a lado. Resultados mostram que o método de HHT fornece não só 

uma definição mais precisa de eventos específicos no espaço tempo-frequência, mas também 

permite uma interpretação física mais significativa dos processos dinâmicos das escalas do 

escoamento. A análise estatística dos dados experimentais é feita com o objetivo de identificar 

padrões estatísticos que possam ser utilizados para caracterização do escoamento biestável. 

Para a análise estatística os dados são varridos por uma janela móvel, criando blocos de 

funções densidade de probabilidade (PDFs). Os quatro primeiros momentos estatísticos são 

calculados e é possível estabelecer uma tendência de comportamento baseada em suas 

variações. A dinâmica do sistema biestável é estudada aplicando ferramentas da teoria do 

caos, como o maior expoente de Lyapunov. O atrator estranho da série temporal da 

velocidade é reconstruído e sua topologia é utilizada para melhor compreensão do 

comportamento físico do fenômeno da biestabilidade. Cada esteira do escoamento biestável é 

analisada separadamente. Um modelo geral do escoamento biestável é reconstruído utilizando 

funções de probabilidade. A aplicação de um conjunto de ferramentas para a análise da 

turbulência das esteiras dos cilindros é útil para a melhor compreensão de fenômenos 

turbulentos, produzindo resultados significativos e permitindo a identificação de estruturas 

turbulentas e escalas do escoamento e um entendimento sobre a dinâmica do sistema.  

 

Palavras-chave: Transformada de Hilbert-Huang, Empirical Mode Decomposition, 

Biestabilidade, Teoria do Caos, Sistemas Dinâmicos. 
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1 INTRODUCTION 

Single cylinders and cylinder arrangements can simulate a wide range of practical 

situations, such as tube heat exchangers, chimney groups, cores of nuclear reactors, and 

offshore platforms. Two side-by-side cylinders are a classical representation of multiple 

structures, and the understanding of the flow around them can be enlightening for the 

comprehension of the flow around those structures.  

The cross-flow through circular cylinders of the same diameter placed side-by-side 

can present a wake with different modes, depending on the pitch-to-diameter ratio p/D 

[Sumner et al., 1999]. For intermediate pitch ratios (1.2 < p/D < 2.0), the flow is characterized 

by a wide near-wake behind one of the cylinders and a narrow near-wake behind the other. 

This phenomenon generates two dominant vortex shedding frequencies; the lower frequency 

associated with the wide wake and the higher frequency with the narrow wake. The gap flow 

is biased towards the back of the cylinders, switches sides, from one side to the other, at 

irregular time intervals. This switching of the gap flow is known as bistability. 

Reviews on two-cylinder flows were made by Zdravkovich, 1977; Sumner, 2010, and 

more recently by Zhou and Alam, 2016, where the effects of the space rations p/D, the 

orientations concerning the flow incidence, and the Reynolds number were investigated. A 

collection of previous results for many configurations were presented and made clear that the 

flow around two cylinders is complex and still has many aspects that need investigation. 

Experimental evidence was found by De Paula and Möller, 2018, that the flow through 

two cylinders or tube banks showed the presence of instabilities associated with the bistability 

phenomenon. Even though the dynamics of the bistability are not completely understood, 

their results showed the presence of positive Lyapunov exponents evidencing that bistability 

has a chaotic behavior. 

Instabilities in the wake of two cylinders have been the subject of studies for decades. 

The theory of instability was studied by authors like Parkinson and Smith, 1964, and Novak, 

1969, 1972. The experimental part also receives attention, especially the study of instability 

features of bluff bodies with different cross-sections. Those studies are interesting because 

bluff bodies are simplifications of structural elements, like buildings for example. 

Consequently, when designing certain structures such as particularly high and slender 

buildings, one may find that critical velocities of aeroelastic instabilities such as vortex-

induced excitation and galloping are within the design wind speed [Alam and Meyer, 2013]. 
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Strange attractors have been used in the study of turbulent flow especially since 

Lorenz’s studies, Lorenz, 1963. Ruelle and Takens, 1971 were some of the first to suggest 

that strange attractors could arise after a finite sequence of bifurcations and might provide a 

model for turbulent motion. Since then, many theories and methodologies were created to 

allow the dynamical analysis of experimental data for turbulent flows using chaos theory. 

Engineering and many other areas require data analysis as a mean to determine 

parameters necessary to construct models and to confirm those models represent the 

phenomenon. Data analysis is an indispensable step in understanding the physical processes. 

Usually, this data is analyzed using tools that are either for linear but nonstationary processes 

such as wavelets [Cohen, 1995; Daubechies, 1992] and Fourier analysis [Flandrin, 1999a; 

Bendat and Piersol, 2010] or nonlinear but stationary and statistically deterministic processes 

like the methods summarized by Tong, 1993; Diks, 1999; and Kantz and Schreiber, 2004. 

The Fourier analysis is one of the major accomplishments of physics and mathematics. 

Historically, Fourier spectral analysis has provided a general method for examining the global 

energy-frequency distributions. Its mathematical structure is naturally suited to common 

transform methods through its simplicity and has collaborated to the development of a large 

number of algorithms, programs, processors, and machines for frequency analysis. However 

Fourier analysis has some limitations, and restrictions concerning its physical interpretations 

and its range of applicability: to localize an event in time, the window width must be narrow, 

and the frequency resolution requires a longer time series, limiting its applicability. By 

performing the Fourier transform the signal is projected in the frequency domain, losing the 

link with the time domain, falling in the Heisenberg uncertainty principle [Flandrin, 1999a; 

Abbate et al., 2002; Huang et al., 1998].  

Wavelet transform arises from the idea of stretching and compressing the window of 

the windowed Fourier transform, to better fit the frequencies to be localized, hence allowing 

the definition of the scales in time and frequency domains, [Indrusiak and Möller, 2011]. 

Continuous or discrete, wavelet analysis is basically a linear analysis for non-stationary data. 

The method is very suitable for analyzing data with gradual frequency changes, and one of the 

many characteristics is that it provides a uniform resolution for all scales; however, the time 

scale has also uniformly poor resolution. It has many applications in edge detection and image 

compression, limited applications in time-frequency distribution in time series [Indrusiak et 

al., 2005; Indrusiak et al., 2016; Farge, 1992]. One of many disadvantages of the method is 

the choice of the appropriated wavelet and the interpretation of the results. As an example 
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given by Huang et al., 1998, to define a change occurring locally, one must look for the high-

frequency range, for the higher the frequency the more localized the basic wavelet will be. If a 

local event occurs only in the low-frequency range, one will still be forced to look for its 

effects in the high-frequency range, and this effect may difficult to correct physical 

interpretation. Besides, due to its non-adaptive nature, once the basic wavelet is chosen, one 

will use it to analyze the whole data and it can only give a physically meaningful 

interpretation for linear phenomena. 

Nevertheless, most of the real data is nonlinear and nonstationary and the analysis 

tools are limited, and those nonlinear processes need special treatment. The development of 

the Hilbert-Huang transform was motivated to overcome these problems of data analysis since 

it is not limited by linearity or stationarity and has an adaptive base, based and derived from 

the data itself. Besides periodicity, is attempted to learn the detailed dynamics in processes of 

the data.  The Hilbert-Huang transform reveals one of the typical characteristics of nonlinear 

processes, mentioned by Huang et al., 1998, its intra-wave frequency modulation, which 

indicates that the instantaneous frequency changes within one oscillation cycle.  

 

1.1 Objectives 

 

Based on the previous information this work objectives constitutes of: 

 

1. Evaluate and explore the use of Hilbert-Huang transform as a tool for signal analysis, 

since bistable flow is a non-stationary, non-linear and chaotic phenomenon.  Therefore, 

HHT was first tested in a turbulent flow around single cylinders due to its well-known 

features. When applied on single cylinders HHT was successful in identifying turbulent 

flow aspects like coherent structures, vortex shedding frequencies, and flow scales, 

proving to be a potential method of analysis. 

2. Evaluate the bistable signal from a dynamic perspective, using information such as the 

largest Lyapunov exponent, embedding dimension, and statistical methods for strange 

attractors.  

3. Identifying the physical parameters that influenced on the bistable dynamics and 

chaotic characteristics, and provide a way for reconstructing the general dynamics of 

bistable flows without the need of a differential equation. 

  



 

 

  4 

2 LITERATURE REVIEW 

This section discusses some of the main studies about the bistable phenomenon, some 

applications of the chaos theory in the studies of turbulence, and the most important 

developments on the Hilbert-Huang transform, main applications, and previous studies 

regarding turbulent systems. 

 

2.1 Bistability 

 

Many studies have researched multiple cylinder configurations immersed in steady 

cross-flow. One of the earliest experiments studies, on two circular cylinders in tandem and 

side-by-side configurations, was performed by Biermann and Herrnstein, 1934, who were 

interested in the interference effects of airplane struts. 

Spivack, 1946 studied the vortex frequency and the flow pattern in the wake of two 

parallel cylinders for various Reynolds numbers and varying the spacing ratio G/d, where G is 

the gap distance between the cylinders, and d is the diameter. The author presented an 

analysis on the Strouhal number as a function of G/d and as a function of the Reynolds 

number. No dependency on the Reynolds was found for values higher than 15x10³. For the 

Strouhal number, the values were considered constant, except for G/d < 1. For G/d = 0.454 

low and higher frequencies were found. 

Bearman and Wadcock, 1973 identified the presence of intermittence in the random 

switching of the biased gap flow of two cylinders placed side-by-side. They called this 

phenomenon bistability. 

When two circular cylinders of equal diameter D, are arranged in a side-by-side 

configuration in steady cross flow of velocity U, they exhibit asymmetrical flow pattern for 

intermediate values of pitch to diameter ratio 1.1 – 1.3 < p/D < 2.2 – 2.5. The asymmetrical 

flow pattern is characterized by a narrow near wake region behind one of the cylinders, a wide 

near wake behind the other cylinder, and two dominant vortex shedding frequencies. The 

biased flow pattern switches intermittently from one cylinder to the other being called 

bistable. At smaller pitch to diameter ratios (p/D < 1.1 – 1.3), the two cylinders act similarly 

to a single bluff body, whereas for higher pitch ratios (p/D > 2.2 – 2.5) the flow field behaves 

as two single bodies. A complex vortex street interaction in the combined wake of the bodies 

can be found because of the existence of two or more simultaneous side-by-side vortex 

shedding processes. Usually, the vortex streets are synchronized in an anti-phase 
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configuration, in which vortices are shed simultaneously on both sides of the gap between the 

cylinders. In-phase vortex shedding synchronization may also happen, according to Sumner et 

al., 1999. 

Kim and Durbin, 1988 studied the flow for the range of spacing ratios 0.1 < G/d < 1, 

where G is the gap distance. They described the bistable phenomenon as a flow that flip-

flopped between two quasi-stable, asymmetric states which are separated by an unstable 

symmetric state. When they positioned a plate in the centreline of the cylinders, the flopping 

stopped and hysteresis between the asymmetric flow was observed. Studying the interval 

between mode changes, they verified that the mean time between mode changing decreases 

exponentially with increasing Reynolds, following a Poisson stochastic model, and that the 

time-scale of the mode change several orders of magnitude longer than the vortex shedding 

time scale. The presence of two independent vortex shedding frequencies for each wake mode 

was also observed. 

Guillaume and LaRue, 1999 concluded in their study that the transition between the 

asymmetric states of the flow between two cylinders in the flopping regime is completely 

random and is not associated with a natural frequency. According to them the time between 

transitions is in the order of 10³ times longer than the vortex shedding period, and the mean 

time interval between switches decreases with an increase in Reynolds number. 

A study on the vortex pattern evolution at subcritical Reynolds regime for two parallel 

cylinders within the range of 1.5 < p/D < 2.0 with emphasis on the switching process was 

performed by Ng et al., 1997. A discrete-vortex model was used to describe the narrow wake 

vortex evolution. They concluded that the occurrence of amalgamation and vortex pairing, 

and dipole are found for the flip-flopping regime, and they associated the transition from the 

symmetric state to the asymmetric state do the asymmetry of one of the gap vortices. 

A review of the wake pattern for various configurations of cylinders was made by 

Zdravkovich, 1977 and more recently by Sumner, 2010 which reviewed studies about the 

flow around two circular cylinders in many configurations, for steady cross-flow, focusing on 

the near-wake flow patterns. Zhou and Alam, 2016 also reviewed the subject of flow around 

two cylinders. They provided a full picture of the flow in terms of several regimes, physical 

aspects, flow structures, Strouhal numbers, fluid forces, momentum transport, and the 

Reynolds number effect. 

Alam et al., 2003 studied the aerodynamic characteristics of two side-by-side cylinders 

for various spacing ratios and Reynolds number of Re = 5.5x104. They observed that the 
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narrow wake has the higher drag coefficients and the large wake has the smaller drag 

coefficients. They also associated the narrow wake mode with the higher vortex shedding 

frequency and the large wake mode with the low vortex shedding frequency. 

Gavilán Moreno, 2008 studied the bistable flow that occurred in a recirculation loop 

from the boiling vessel of a nuclear power station. In the study, the Hilbert transform was the 

tool of choice for signal analysis since it is suitable for non-linear and non-stationary data. 

The study concluded that the bistable phenomenon has a two-attractor structure and since the 

attractors are present in frequency and phase space analysis, the phenomenon is non-linear 

and non-stationary. They also created a model for this particular case, associating the 

bistability with a zero-mean uncorrelated Gaussian noise and treating it with the Hilbert 

transform, and the obtained results showed good statistical agreement with the experimental 

series. 

De Paula, 2013 studied the main parameters that characterize the bistable phenomenon 

using probability density functions, finite mixture model, deterministic chaos concepts, and 

symbolic dynamic. The analysis provided using finite mixture models [De Paula and Möller, 

2013] showed that the increase in the axial velocity component is accompanied by the 

increase of the transversal component, and their PDFs present two major states of energy, 

with two different shapes and distinct Strouhal numbers. The model was efficient to 

determine the numerical values and shape of PDF modes. De Paula and Möller, 2018 studied 

the chaotic nature of the bistable phenomenon. The studied results showed the presence of 

positive Lyapunov exponents evidencing that bistability has a chaotic behavior.  

Keogh and Meskell, 2014 studied the bistable flow in parallel triangular tube arrays 

with p/D = 1.375. The authors used Mode-average PIV for the analysis. They concluded that 

for certain flow velocities, there was a high correlation between the pressure signals of each 

instrumented cylinder. They also observed that the pressure field distributions showed a skew 

Gaussian distribution, suggesting that longer time series would be necessary for a more 

accurate analysis. 

Akar et al., 2016 investigated the bistable flow structure past a pair of cylinders side-

by-side in shallow waters applying PIV techniques. They identified two distinct vortex 

shedding frequencies. According to them in the wide wake around the cylinder, small-scale 

vortices are perceptible, and a large vortex is formed by the convergence of them. Meantime 

small-scale vortices merging with large vortex compose a larger vortex. The amalgamation of 

these positive vortexes collapses quickly and finally, this vortex starts to push the jet-like flow 
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in the direction of the other cylinder. They all form a single vortex around the cylinder with 

the wide wake, and the gap-flow changes its direction and switches from one side to another 

randomly and momentum transfer is carried by larger vortices from the core flow region into 

the wake region in each cycle.  

Liu and Jaiman, 2018 studied the dynamics of the gap flow and vortex-induced 

vibration on a side-by-side arrangement using numerical simulation, for Reynolds numbers in 

the range of 100 ≤ Re ≤ 800. The authors applied dynamic mode decomposition (DMD) to 

characterize the space-time evolution of the primary vortex wake. They found that a saddle 

point was formed along the interface between imbalanced counter-signed vorticity clusters. 

Also, around those saddle-point regions, the intensity of the fluid momentum and the fluid 

shearing were important for the near-wake instability. They concluded that the interaction 

dynamics between the gap-flow proximity interference and the gap-flow instability enhances 

the vortex-to-vortex interactions. 

Neumeister et al., 2018 found a very similar result with numerical simulations of the 

flow of side-by-side cylinders, where it was possible to observe that the mode changing was 

influenced by the interaction of vortex on the two wakes behind the cylinders. They also 

verified that the asymmetric characteristic of the wake is not observed simultaneously for the 

whole high of the cylinder, presenting a time delay between occurring in one end of the 

cylinder and the other. 

The influence of the angular position on the bistable phenomenon was studied 

experimentally and with flow visualizations by Habowski et al., 2020. The authors concluded 

that the biased gap flow was very sensitive to the position angle of the cylinders. For 

incidence angle 2.5° the flow attempted some switching, while for angles bigger than 5° the 

flow remained biased towards one of the cylinders. For angles of incidence of 60° and 75°, 

the large wake was dominant causing the narrow wake to be displaced downwards and 

increasing the amplitude of the vertical component of velocity. For this behavior, it is 

expected an increase in intensity for incidence angles greater than 75°. Vertical disturbances 

in the wakes were observed in the flow visualizations and may be related to the non-

simultaneous occurrence of bistability along the cylinder. 

A global analysis on the origin of the phenomenon and about the instability of two 

side-by-side circular cylinders was presented by Carini et al., 2014. Such studies were 

conducted numerically for a two-dimensional Navier-Stokes equation and at low Reynolds 

number, disregarding the three-dimensional features of turbulence. The authors pointed that a 
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connection between the flip-flop behaviour at low and high Reynolds numbers was not 

established. At low Reynolds numbers, it was attributed to the instability of the in-phase 

shedding cycle. 

Chatterjee and Biswas, 2015 studied numerically the dynamics of the flow around a 

row of square cylinders in a staggered arrangement. They varied the transversal spacing 

between the cylinders, G/d (where G is the transversal space and d is the diameter) in 1, 2, 3, 

and 5. They established low dimensional chaos for the flow at a relatively small transverse 

spacing of the cylinders. Also, they identified that the transition to chaos was through a quasi-

periodic route. The quasi-periodic route was characterized by a set of different tools like 

power spectra, autocorrelation function, state-space reconstruction, and Poincaré section. The 

chaos was quantified by the Lyapunov exponent and the fractal dimension. 

 

2.2 Chaos and strange attractors 

 

Experiments and numerical simulations have provided supporting evidence to the 

mathematical analysis showing that many physical systems may exhibit chaotic behavior 

without random inputs. Chaos is usually used to distinguish those systems from true random 

systems [Holmes and Moon, 1983] 

Chaotic systems can include mechanical devices with nonlinear springs, nonlinear 

circuits, convective flows, aeroelastic systems, hydrodynamic systems, and many others. 

Hydrodynamic systems can behave in many ways, some can exhibit steady-state flow 

patterns, others oscillate in a regular periodic way Lorenz, 1963, and some, like bistability, 

may oscillate in a non-periodic, irregular, and chaotic manner when observed in a long period. 

These chaotic motions have been called strange attractors to distinguish them from the limit 

cycle and periodic motion. 

Chaotic motions are also related to classic bifurcation theory in dynamic systems, 

being one of its features the succession of bifurcations to increasingly higher subharmonics as 

a parameter is varied [Holmes and Moon, 1983]. Landau suggested that an infinite sequence 

of bifurcations could be a route to turbulence, but it was Ruelle and Takens, 1971 that first 

suggested that strange attractors could arise after a finite sequence of bifurcations and might 

provide a model for turbulent motion [Holmes and Moon, 1983]. 
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“An important element in the explanation of the chaotic behavior of solutions 

of deterministic equations of motion is the sensitive dependence of solutions on initial 

conditions. In fact, sensitive dependence on the initial condition, in the form of the 

notion of ergodicity, has long played a central role in one of the standard 

justifications for the foundations of that subject. (…) For dissipative systems, what 

usually happens is that most of the points of the instantaneous state space are 

transient in the sense that the orbits that start there eventually go to and stay in 

another part of the state space. A simple instance is provided by the stable dynamic 

equilibrium that is usually set up when a dissipative system is driven gently. In this 

situation, all orbits, no matter where in the state space they start, converge eventually 

to a single stationary solution corresponding to laminar motion. In a certain sense, the 

system has no effective degrees of freedom, although the state space may have large or 

even infinite dimension. There are one, or possibly a few-invariant sets of relatively 

low dimensions in the state space to which almost all orbits converge. These sets are 

what are called attractors. (…) attractors, except for the very simplest ones, are 

typically not smooth surfaces in the state space but rather more complicated kinds of 

sets [Lanford, 1982].” 

 

The simplest types of behavior of a physical system are either stationary or periodic 

states. A stationary state corresponds, by definition, to dx/dt = 0 and is represented in the 

phase space by a fixed point of the differential system. A fixed point coincides with a singular 

point of the vector field X given by X(x) = 0. Periodic behavior is represented in the phase 

space by a closed orbit. In general, it is more difficult to determine periodic orbits than fixed 

points. The fixed points and limit circles represent asymptotic behaviors of the system: they 

are typical examples of attractors of dissipative systems and are represented in Figure 2.1. The 

ensemble of initial conditions from which the system evolves toward a given attractor is 

called the basin of attraction of the attractor. In two-dimensional phase space, it can be shown 

that the only possible attractors are fixed points and periodic orbits. In higher dimensions 

other attractors can exist, for example, tori representing periodic or quasi-periodic behavior 

with several frequencies, or strange attractors representing chaotic behavior. A strange 

attractor is characterized by its fractal structure and by the fact that the trajectories coming 

from two neighboring points diverge exponentially (while remaining on the attractor). This 
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latter phenomenon is very important and is referred to as sensitivity to, or exponential 

dependence on, the initial conditions [Charru, 2011]. 

 

 

 

Figure 2.1 – Examples of a) a fixed point attractor, b) a limit-cycle attractor and c) a strange 

attractor. Adapted from Richardson et al.,2014. 

 

Given a specific differential equation, the flow is the time evolution of the collection 

of solutions corresponding to all possible initial conditions for which solutions exist. If there 

is a limit set to which all solutions in the flow become arbitrarily close after a sufficiently long 

time, this set is called an attractor of the flow. Moreover, if the solutions remain arbitrarily 

close to the attractor for all subsequent times, the attractor is said to be stable. An important 

property of strange attractors is that they do not have integral dimension [McDonough et al., 

1984]. 

According to Ruelle, 1995, a strange attractor consists of an infinity of points in the 

plane or in m-dimensional space. These points correspond to the states of a chaotic system. In 

Lorenz, 1963 study, where a flow was represented in a three-dimensional space, existed a 

bounded region into which every trajectory became trapped eventually. Therefore, all 

trajectories tend to a set of measure zero, called attractor. In some cases, the attractor is 

simply a point (stable equilibrium point) or a closed curve (limit cycle). But in other cases, the 

attractor has a much more complex structure being called a strange attractor. Attractors are 

highly sensitive to initial conditions, [Hénon, 2004]. 

For Grassberger and Procaccia, 2004 a strange attractor arises when the flow does not 

contract a volume element in all directions, but, stretches in some. Therefore, to remain 

confined into the bounded domain, the volume element gets folded at the same time, creating 

after some time a multi-sheeted structure. 

(b) 

 

(a) (c) 
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Swinney and Gollub, 1986 suggested that certain fluid systems generate chaotic 

motion and can be described by introducing a state or phase space. The coordinates of the 

phase space can be the projections of the motion of the system onto the various modes into 

which it can be decomposed. For dissipative systems, the trajectories in phase space converge 

to a limit set known as attractor. For non-periodic states of deterministic systems, which are 

called chaotic, their representation is called strange attractor and has a complex topology. 

Typically, a strange attractor is an infinitely folded sheet of infinite extent located in a 

bounded region of phase space. The rates at which the trajectories diverge or converge in 

various locally defined orthogonal directions are called Lyapunov exponents and at least one 

of these must be positive for a chaotic flow. 

Lorenz, 1963 defined a phase space as an M-dimension Euclidian space Γ whose 

coordinates are X1, …, XM. Each point in phase space represents a possible instantaneous state 

of the system. A system governed by the set of equations 

 

𝑑𝑋𝑖
𝑑𝑡

⁄ =  𝐹𝑖(𝑋𝑖 , … , 𝑋𝑀),   𝑖 = 1, … , 𝑀, (1) 

 

is represented by a moving particle in phase space, traveling along a trajectory in phase space. 

The phase space concept has been useful in treating finite systems and treatment of 

differential equations. Also, the set of phase space trajectories for all possible initial 

conditions forms a phase portrait of the system [Roux et al., 1983, Charru, 2011]. 

Lorenz, 1963 studied a simple deterministic non-periodic flow, designed to represent a 

forced dissipative hydrodynamical system. His interest was in the nature of the nonperiodic 

solutions of the system of equations 

 

{
𝑋 =  −𝜎𝑥 + 𝜎𝑦

𝑌 =  −𝑥𝑧 + 𝑟𝑥 − 𝑦

𝑍 = 𝑥𝑦 − 𝑏𝑧
 (2) 

 

here x, y, and z are variables, and σ, r, and b are parameters of the equation. In those equations 

x is proportional to the intensity of the convective motion, y is proportional to the temperature 

difference between ascending and descending currents, and z is proportional to the distortion 

of the vertical temperature profile from linearity. Those equations are known as the Lorenz 

attractor, which occurs for the parameters σ = 10, r = 28, and b = 8/3. 
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Ruelle and Takens, 1971 were some of the first authors to propose a mechanism for 

the generation of turbulence associated with the theory of strange attractors. They studied the 

physical phenomenon of turbulent fluid motion for a dissipative system and suggested that 

strange attractors could arise after a finite sequence of bifurcations and might provide a model 

for turbulent motion. They hypothesized that a fluid flow in any particular experiment can be 

described by a typical (low) finite-dimensional, deterministic system of differential equations. 

Takens, 1981 reviewed the concepts presented previously in Ruelle and Takens, 1971 

and presented a procedure to decide if experimental data could be attributed to the presence of 

strange attractors. The procedures were applied to the Taylor-Couette experiment and 

compared with the theory presented by Landau and Lifshitz, 1987 concerning rotating 

cylinders. 

Strange attractor models are based upon systems of nonlinear Ordinary Differential 

Equations (ODE). Those systems present two essential features: a finite number of degrees of 

freedom and they are deterministic. Concerned with the fact that neither bifurcation theory 

nor experiments observing the routs to chaos were clear of whether the fluid flow continued to 

be described by a system with few degrees of freedom beyond the onset of chaos, 

Guckenheimer, 1986 proposed a way to test the Ruelle-Takens theories and alternative 

models for situations where the strange attractor models were inappropriate. The study 

concluded that it was possible to estimate the variance in a random perturbation of a strange 

attractor, even though this study did not test the method in experimental data. 

Zou et al., 1985 computed numerically the statistical characteristic quantities and the 

marginal probability distribution of the Lorenz attractor. Considering that the Lorenz system 

of equations is deterministic, the chaotic behavior of the attractor is due to its ergodic motion. 

Based on that some statistical quantities were related to the parameter ρ. For this analysis, it 

was assumed that the initial value X0 was indeterministic, but obeyed a deterministic 

probability distribution P(X0, t0). They computed the main statistical quantities like expected 

value, standard deviation, and marginal probability distribution. The results showed that even 

though the Lorenz system and its solutions are deterministic, the motion on the strange 

attractor is ergodic and random overall. They also concluded that the motion on the strange 

attractor is chaotic, but its statistical characteristics are stable, and it has a deterministic 

statistical structure that does not depend on the initial conditions. 

De Paula and Möller, 2018 studied the chaotic behavior of the bistable flow for two 

cylinders side-by-side and tube banks. They calculated the largest Lyapunov exponents for the 
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filtered signals and concluded that: for the two side-by-side circular cylinders the largest 

Lyapunov exponent was 1.6778 ± 0.1362, for the two rows tube bank the larges Lyapunov 

was 1.4034 ± 0.3273. They also demonstrated that the filtered signal presented a Lyapunov 

exponent 9.5 times greater than the original signal, showing that the dissociation of the 

bistable phenomenon from turbulence increases the value of the largest Lyapunov exponent. 

Analysing the previous references, it is possible to identify a lack of studies 

concerning the bistable phenomenon dynamics and characteristics, especially with the 

application of actual non-linear, non-stationary tools. In De Paula and Möller, 2018 the focus 

was on stablishing if the bistability was chaotic or not, and the main point was to identify the 

better method and parameters for reconstructing the strange attractor properly. This present 

study uses those values as a reference, and different from the previous bistability-chaos study, 

the focus is on identifying the physical parameters that influenced on the bistable dynamics 

and chaotic characteristics, and eventually provide a way for reconstructing the general 

dynamics of bistable flows without the need of a differential equation. 

 

2.3 Hilbert Huang Transform in turbulence 

 

Attempting to overcome the problems involved in the analysis of non-stationary and 

non-linear data, Huang et al., 1998 developed a new method, after called the Hilbert-Huang 

transform (HHT). The method is constituted by two parts, being the key part, the empirical 

mode decomposition (EMD), and the second part a Hilbert spectral analysis (HSA). The 

method allowed a final representation of the results in an energy-frequency-time distribution, 

designated as the Hilbert spectrum. Since the method was decomposed using the data as base, 

it provided a meaningful instantaneous frequency. Even though it was a good method some 

mathematical problems still needed to be solved in order to make it more robust. 

Huang et al., 1999 summarized the method on fluid mechanics examples of nonlinear 

waves, Stokes waves, and turbulence. They observed that the method provided a better 

precision on particular events in time-frequency than wavelet analysis, and those results also 

had a more physically meaningful interpretation of the underlying dynamic processes. 

Wavelet analysis gives a uniform frequency resolution, but, the time resolution is also 

uniformly poor. In comparison, the Hilbert spectrum gives a much sharper resolution in 

frequency and a more precise location in time. 
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 Huang et al., 2003 established a confidence limit for the HHT method and a stable 

range of stopping criteria for the decomposition sifting phase (EMD). This approach has made 

the results of the final processing with HSA, and the entire EMD/HSA method more 

definitive. 

The Hilbert-Huang transform proved to be a promising tool for non-linear and non-

stationary data, being applied in many areas of research, for example, the analysis of financial 

time series [Huang et al., 2003], molecular dynamics [Phillips et al., 2003], structural damage 

detection [Yang et al., 2004; Roveri and Carcaterra, 2012], vibration signal analysis [Peng et 

al., 2005; Feldman, 2011], biological data analysis for cardiac and neurological problems 

detection [Xie and Wang, 2006; Huang, Z. et al., 2007; Lo et al., 2009; Yang et al., 2010; 

Duman et al., 2012; Tsai et al., 2012; Sikkandar et al., 2013; Huang et al., 2014; Tsai et al., 

2016], seismic and geophysics [Battista et al., 2007; Huang and Wu, 2008; Yinfeng et al., 

2008], nuclear power plants [Gavilán Moreno, 2008] and many others. This work is going to 

summarize those studies concerning any form of turbulence. 

Veltcheva and Soares, 2004 studied the application of Hilbert Huang transform to 

identify the components of ocean waves. They applied the EMD method as well as a 

confident limit for each EMD in the sifting process. They concluded that the specific 

peculiarities of each wave were well captured by the EMD and reproduced by the Intrinsic 

Mode Functions (IMF), the energy contents of the wave were clearly traced by the Hilbert 

spectrum. Veltcheva and Soares, 2007 applied the method to analyze abnormal waves in the 

wave records from the North Sea. They concluded that the Hilbert spectrum detected the 

appearance of abnormal waves both in time and frequency domains. They verified that the 

instantaneous frequency increased considerably during a single abnormal wave occurrence, 

while the Hilbert spectrum of the abnormal wave group had very distinguished peaks. They 

also concluded that the asymmetry of abnormal waves is correlated with the magnitude of 

intra-wave frequency modulation. 

Dätig and Schlurmann, 2004 presented a general overview of the Hilbert Huang 

method; first, they used simple trigonometric functions to get an idea about the performance 

of the EMD on linear harmonic signals in general. They also applied the HHT on computed 

nonlinear irregular water waves and measured irregular water waves recorded in a laboratory 

wave flume. They concluded that the method has an excellent correspondence between the 

simulated and recorded wave, also the spectral representations showed the instantaneous 
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frequencies and amplitudes strongly correlated with the water surface elevations on both 

numerical and measured series. 

Li et al., 2005 proposed a new filtering method for data with intermittency problems 

present in the empirical mode decomposition. They pre-treated the data using wavelet 

transform then proceed with empirical mode decomposition. As a result, mode mixing is 

eliminated, and the resulting IMF components bear genuine physics sense. The choice of the 

most appropriate wavelet is fundamental for the correct analysis of the studied signal. 

Pesce et al., 2006 used Hilbert-Huang transform on the analysis of Vortex-Induced 

Vibration (VIV), which is a highly non-linear phenomenon. The aim was to characterize some 

hidden dynamics characteristics, like time-modulation, jumps of multi-branched response, and 

their related energy spectra. They concluded that the results for HHT have a better definition 

than those treated by wavelets. They pointed out the need for further investigation on the 

meaning of the IMF and their Hilbert spectra to construct a more complete and physical 

interpretation of the phenomena involved in VIV. 

Flow-induced vibrations, due to their high occurrence, are a serious problem, 

especially when associated with cooling systems or heat exchangers in the process industry 

and nuclear facilities. These vibrations cause a decrease in cooling capacity leading to fatigue 

and damage to pipes, [Kim and Alam, 2015]. Païdoussis et al., 2010 report several studies on 

instabilities induced by vortices in pairs of cylinders or small groups of cylinders. They also 

report studies on vortex-induced vibrations in bundles of tubes submitted to cross-flow. 

Several different behaviors were observed, which depend on the space ratio between the 

cylinders of the tube bundles. 

Huang et al., 2007 applied EMD and HHT in experimental homogeneous turbulence 

time series and concluded that the filtering characteristic of the method in the inertial range 

could have interesting applications in turbulence modelling. They also estimated the scaling 

properties and the Hilbert spectrum of the turbulent series. On their further work also in 

homogeneous turbulence analysis, they associated each IMF mode to dissipation, inertial 

range, and integral scales, and then they generalized the approach to characterize the scaling 

intermittency of turbulence in the inertial range in an amplitude-frequency space. They also 

obtained a 2D amplitude-frequency representation of the PDF of turbulent fluctuations with 

scaling trend, and that a log-Poisson distribution fits better the velocity amplitude PDF than a 

lognormal distribution, Huang et al., 2008. 



 

 

  16 

Miau et al., 2007 used Hilbert and Wavelet transformations to analyze the signals of 

MEMS sensors situated span wisely on a circular cylinder for examining the unsteady, three-

dimensional behavior of vortex shedding. The analysis allowed the identification of the strong 

three-dimensional vortex shedding process due to the occurrences of vortex dislocation. This 

was also demonstrated in further work, where hot wires and MEMS sensors were applied 

Miau et al., 2009. 

Vincent et al., 2010 applied the Hilbert-Huang transform to describe the time-evolving 

variability in wind speed time series from a wind farm on the west coast of Denmark. They 

concluded that the two-dimensional Hilbert spectrum gave a good representation of the scales 

of motion present in wind speed. They could identify the presence of coherent periodicities in 

the time series.  

Foucher and Ravier, 2010, studied stationary and non-stationary grid-generated 

turbulence using empirical mode decomposition and triple-decomposition. The non-stationary 

conditions were generated by superimposing periodic and random fluctuations on the original 

data. First, they applied the empirical mode decomposition to filter and separate the turbulent 

velocity components from those fluctuations then triple-decomposition was used to determine 

turbulent intensity, the integral length scales, and the power spectral density of the velocity. 

They compared the properties of the turbulence with and without the addition of the 

fluctuations and found good agreement. 

Mazellier and Foucher, 2011 evaluated the performances of the HHT method on a 

fully developed turbulent velocity signal on which they introduced a numerical perturbation 

mimicking a long-period flapping. They introduced a criterion of “resemblance” for 

distinguishing between the polluted and non-polluted modes extracted from the perturbed 

velocity signal using EMD. They found a good agreement between the recovered and the 

reference signal. They compared turbulence characteristics using spectra and the structure 

functions. 

Silveira and Möller, 2012 compared Fourier, Wavelets and Hilbert-Huang transform 

for the analysis of the shedding process in the turbulent wake of a circular cylinder. Their 

results were still preliminary, but they concluded that the Hilbert-Huang transform was more 

effective than wavelets in the identification of the vortex shedding frequency and its 

harmonics. 

Horszczaruk and Möller, 2013 analyzed the bistable phenomenon of the turbulent flow 

on two circular cylinders side-by-side using Hilbert-Huang transform. Two pitch-to-diameter 
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ratios were used in the study, p/D = 1.26 and 1.60. They compared the results found using 

HSA with those of wavelet transform. They concluded in a preliminary way that the HSA 

provided better visualization of the main frequencies of the phenomenon, but they could not 

find a relation between the Hilbert spectrum and the wavelet spectrogram. 

Huang et al., 2014 proposed to use an arbitrary order Hilbert spectral analysis to 

estimate the two-scale correlation of a turbulent velocity database obtained from an 

experimental homogeneous and nearly isotropic turbulent channel flow. They used an active-

grid technique to achieve a high Reynolds number. They found a logarithmic law in the 

inertial and dissipation ranges; moreover, the Hilbert analysis satisfies a lognormal 

distribution. They observed the power-law behavior of the maximum PDF of the Hilbert 

energy in the logarithmic frame with a scaling exponent of 0.33. They concluded that the 

Hilbert analysis was applicable to check the relation between two scales, in the energy sense 

or other statistical quantities.  

Medina et al., 2015 proposed a study approach to better understand the relationship 

between wind output and power output in a wind turbine in Denmark using empirical mode 

decomposition and time-dependent intrinsic correlation methods. They also characterized the 

wind turbulence using scaling power spectra and tried to identify the intermittency using the 

Hilbert spectral analysis. They concluded that some characteristics of the power spectrum 

could be caused by the turbine configurations. They were able to observe a zero-correlation 

progression in the time-dependent intrinsic correlation.  

Zhu et al., 2016 used empirical mode decomposition to study scale properties of 

turbulent transport and coherent structures based on velocity and temperature time series of 

atmosphere stably stratified turbulence. The velocity and temperature data were produced 

through numerical simulation using LES. They concluded that EMD was a good method to 

decompose turbulence signals, allowing the separation in different modes and the contribution 

of each scale. They found out that intermittency is intensified by the stratification in small 

scales, and that there are different time scales of coherent structure in different modes 

between the stream-wise and vertical velocities. The vertical scalar transport showed the 

presence of the counter-gradient transport (CGT) phenomena at certain modes, while gradient 

transport occurred in other modes. 
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3 METHODOLOGY 

3.1 Experimental technique 

 

The aerodynamic channel used in the experiments, Figure 3.1 has a rectangular test 

section of 0.146 m height, 0.193 m width, and 1.02 m length, made of acrylic. The air flow is 

driven by a centrifugal blower of 0.64 kW and passes through a diffuser, two honeycombs, 

and two screens, that homogenize the flow and reduce the turbulence intensity to about 0.6% 

in the test section. Before the test section, a Pitot tube is placed at a fixed position at 180 mm 

from the screens, to measure the steady reference velocity of the experiments. Placed beside 

the Pitot tube is a temperature sensor. Downstream the test section, outside the aerodynamic 

channel, a tri-dimensional positioning system is assembled; it allows the millimeter alignment 

of the probe support. Blower speed is controlled by a frequency inverter allowing the flow 

velocity in the aerodynamic channel to be varied from zero to 16 m/s.  

The velocity and its fluctuations are measured using a DANTEC StreamLine constant 

hot-wire anemometry system, with a hot wire probe (type DANTEC 55P11), with a single 

wire perpendicular to the main flow. Data acquisition was performed with a 16-bit A/D board 

(NATIONAL INSTRUMENTS 9215-A), with a USB interface. Measurements were 

performed at constant velocity. The error of the determination of the velocity fluctuations 

with hot wire is between 1 and 4 %.  
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Figure 3.1 – Schematic view of the aerodynamic channel. 

 

The cylinders diameter used in the experiment was D = 25.1 mm, and the cylinders 

were placed side-by-side with p/D = 1.16, 1.26, and 1.60, where p is the distance between 

centers of the cylinders. Reynolds numbers were calculated based on the cylinder diameter 

and the free stream velocity and varied from 7.22x10³ to 2.32x104. Uncertainties associated 

with the mean velocity values are about ± 3%, and for the instantaneous velocity values, about 

± 5%. 

The two cylinders side-by-side were positioned at 180 mm from the end of the 

channel. Two hot wire probes (type DANTEC 55P11) with a single wire perpendicular to the 

main flow were positioned at a downstream distance “x” from the center of the cylinders, of 

10 mm, according to the scheme in Fig. 3.2. Data were acquired at a sampling frequency of 

1000 Hz, and a low pass filter at 300 Hz. For the data analyses, once the data is symmetric, 

only the signal corresponding to probe 1 was considered,. 

Hilbert-Huang transform, Fourier, wavelets transform, statistical and the dynamic 

analysis were performed in a script using the Matlab® software. 

 

 

 

Figure 3.2 - Two cylinders side-by-side geometry and probe positioning at x = 10 mm from 

cylinder center. 

 

3.2 Time-frequency domains 

 

The time-domain analysis consists in calculating the four moments of the probability 

density function: mean values, standard deviation, skewness, and kurtosis. For the 

Flow 
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determination of how the fluctuations of one parameter are related over time, one can use the 

autocorrelation function, according to Tennekes and Lumley, 1972.  

The analysis in the frequency domain, also known as spectral analysis, is essentially 

made using the Fourier transform through the power spectral density function (PSD). 

According to Bendat and Piersol, 2010 this function allows highlighting the main 

characteristics of the signals, consisting in the Fourier spectra of a time series, smoothed by 

intervals of frequency, or bandwidth and in a set of estimates, or window. Further details on 

spectral analysis can be found on Möller and Silvestrini, 2004; De Paula, 2013; Indrusiak, 

2004; Flandrin, 1999b among others.  

For a better interpretation of the Fourier spectra, the frequency domain can be 

converted in dimensionless wavenumber, which can be defined as  

 

2
*

F
k D

u


=  (3) 

 

where F is the frequency vector and 〈𝑢〉 is the mean velocity of the signal. The spectrum 

function can be converted in a dimensionless energy spectrum function described as 
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The wavelet transform, as already mentioned, arises from the idea of stretching and 

compressing the window of the windowed Fourier transform, to better fit the frequencies to be 

localized, hence allowing the definition of the scales in time and frequency domains. Since 

the wavelet basis is localized simultaneously in time and frequency domains, this 

characteristic provides a uniform resolution in frequency, but also a uniformly poor resolution 

in time. This balance in frequency and time resolution is explained by Heisenberg’s 

uncertainty principle. Further description of the mathematical approach of the wavelet 

transform can be found in Daubechies, 1992; Farge, 1992, Indrusiak, 2004; Indrusiak et al., 

2016 among others.  

 

3.3 Chaos on experimental data 
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3.3.1 General Dimensions 

 

The so-called dimension of a strange attractor is actually a topological dimension and 

there are many methods to calculate it.  

Strange attractors are typically characterized by fractal dimensionality DF which is 

smaller than the number of degrees of freedom F, DF < F. This fractal dimension (or 

Hausdorff dimension) has been the most common measure of the strangeness of the attractor 

[Grassberger and Procaccia, 1983]. 

The fractal dimension is usually understood as the classical box-counting. The box-

counting dimension is more interesting for practical applications, whereas the Hausdorff 

dimension is more interesting for analytical properties since its definition is based on a 

measure [Fernández-Martínez and Sánchez-Granero, 2014, Fernández-Martínez and Sánchez-

Granero, 2015]. 

In order to define it, first, the attractor is covered by F-dimensional hypercubes of side 

length L and considers the limit 𝐿 → 0. If the minimum number of cubes needed to cover the 

attractor grows like 

 

𝑀(𝐿)   𝐿−𝐷𝐹
𝐿→0

≃  (5) 

 

the exponent DF is called the Hausdorff dimension of the attractor [Grassberger and 

Procaccia, 2004, Guckenheimer, 1982]. 

The definition of the capacity dimension and many attempts to calculate it are given 

by various authors such as Takens, 1981, Ott, 1981, and Greenside et al., 1982. The algorithm 

that is used to compute this dimension is also known as the box-counting algorithm. 

The capacity of an attracting set M, which is assumed to be contained in an invariant 

manifold of some dynamical system, is defined as: 

 

𝐶 =  lim
𝜖→0

ln 𝑁𝜖/ ln
1

𝜖
 (6) 

 

where Nϵ is the minimum number of boxes of side ϵ in phase space needed to cover the set M. 

This law is verified by computing Nϵ for an appropriate scaling region and then plotting, -

log(Nϵ) against log(ϵ).  Using linear regression is possible to see that this law is satisfied, and 

the capacity C is then given by the slope of the fitted line.  
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For low-dimensional sets (C ≤ 2) the method works, and a reasonable number of 

points is enough to determine de capacity of the dimensional vector. Turns out that the use of 

a single time series of any observable to extract this measure has been found to be impractical 

for dynamic systems which possess attractors whose C > 2. A more profound explanation of 

the limitations of the method can be found in Greenside et al., 1982 and Grassberger and 

Procaccia, 1983. 

Grassberger and Procaccia, 2004 proposed an algorithm to extract the correlation 

exponent, ν from the time series of a single variable. They also showed that ν correlates with 

the Lyapunov exponents and with de dimension DF. 

Considering a long time series on the attractor, where N is the number of points, 

denoted by: 

 

{𝑋⃗𝑖}
𝑖= 𝑁1

≡ {𝑋⃗(𝑡 + 𝑖𝜏)}
𝑖= 𝑁1

 (7) 

 

where τ is an arbitrary but fixed increment. The correlation integral is defined by: 

 

𝐶(𝑟) ≡ lim
𝑁→∞

1

𝑁2
∑ 𝜃(𝑟 − |𝑋⃗𝑖 − 𝑋⃗𝑗|𝑁

𝑖,𝑗=1 )  ≡ ∫ 𝑑𝑑𝑟′𝑐(𝑟′)
𝑟

0
 (8) 

 

where θ(x) is the Heaviside function and 𝑐(𝑟′⃗⃗⃗⃗ ) is the standard correlation function. for small r 

is assumed that C(r) behaves as a power of r 

 

𝐶(𝑟) ∝ 𝑟𝐷𝑐 (9) 

 

Dc is also called correlation dimension and it is related with the capacity dimension and with a 

properly defined entropy: 

 

𝑆(𝑙) = 𝑆0 − 𝜎 ln 𝑙 (10) 

 

where S(l) the general entropy, and σ is called the information dimension, via the set of 

inequalities: 

 

𝐷𝑐 ≤  𝜎 ≤ 𝐶 . (11) 
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The correlation integral is sensitive to the distribution of points in the attractor 

Grassberger and Procaccia, 1983, embedding dimension, reconstruction delay and is 

unreliable except for long, noise-free time series [Rosenstein et al., 1993, Eckmann and 

Ruelle, 1992].  

Kaplan and Yorke, 1979 proposed a dimension based on the Lyapunov exponents of 

the system. Ranking the Lyapunov exponents for larges λ1 to the smallest λd. Let j be the 

largest integer such that λ1+ λ2 +… + λj > 0, the Kaplan-Yorke dimension can be defined as 

 

𝐷𝐾𝑌 = 𝑗 +
∑ 𝜆𝑖

𝑗
𝑖=1

−𝜆𝑗+1
. (12) 

 

For the two-dimensional mapping, the box-counting dimension C equals the Kaplan-

Yorke dimension DKY. 

 

3.3.2 Rosenstein Method for the Largest Lyapunov 

 

Assuming a one-dimensional time series, and assuming that these data is originated 

from a dynamic system of higher dimensions, e.g. the Lorenz system, the first step in the 

analysis involves the reconstruction of the attractor dynamics. This reconstruction can be 

made using the differential equations (in case they are known), or using a time lag for the 

known variable, creating a vector from which the required coordinates will be provided. The 

method of delays presented by Packard et al., 1980 was tested by Takens, 1981, and later, 

improved by Sauer et al., 1991 and was the method of choice in this study. 

Consider a scalar function representing the measurements denoted by: 

 

𝑠(𝑡) = 𝑠(𝑡0 + 𝑛∆𝑡), (13) 

 

the idea consists of using the lagged variables, 𝑠(𝑡 + 𝑇) = 𝑠(𝑡0 + (𝑛 + 𝑇)∆𝑡) to form a 

coordinate system to capture the structure in the state space, where T is a time delay or 

reconstruction step. The coordinates of the reconstructed state space can then be provided by 

using a correlation of time lags to create a vector in D dimensions in the form  
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ℎ(𝑡) = [𝑠(𝑡), 𝑠(𝑡 + 𝑇), 𝑠(𝑡 + 2𝑇), … , 𝑠(𝑡 + (𝐷 − 1)𝑇)]. (14) 

 

Take as an example, this process applied in the Lorenz attractor which consists of a 

system with 3 coordinates [x(t), y(t), z(t)]. Selecting the x(t) variable and using a vector of 

time-delayed with 3 variables in R³, [x(t), x(t + T), x(t + 2T)]. The observed geometry of the 

original attractor and the reconstructed one are similar, even though distorted. This distortion 

does not matter for the analysis since the topological properties of the reconstructed system 

are preserved. The reconstructed 2D and 3D state space for the Lorenz attractor, for the 

parameters σ = 10, r = 28, and b = 8/3, are represented in Fig. 3.3. 

To obtain sufficiently accurate results the choice of the time delay requires some care. 

If the chosen time delay is too large the coordinates s(t + T) and s(t + 2T) will be totally 

independent of each other statistically speaking, and the reconstructed attractor will be 

covering the whole state space. On the other hand, if the chosen time lag is too small, the 

coordinates will be hard to distinguish since their numerical values are very close (x = y) 

creating a linear dependency between the delayed values that does not happen in the original 

attractor. This linear dependency compresses the reconstructed attractor around the diagonal 

of the state space, [Takens,1981]. 

 

 

 

 

Figure 3.3 – a) representation of the state space for a 2D Lorenz attractor and b) reconstructed 

state space for the 2D Lorenz attractor, with T = 10. 

 

Wolf et al., 1985 suggested that the choice of the time delay is mostly arbitrary. Other 

methods to solve the issue have been applied like the use of average mutual information 

(a) (b) 
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(AMI) [Fraser and Swinney, 1986, Wallot and Mønster, 2018] and correlation integral 

[Liebert and Schuster, 1989, Franca and Savi, 2001, Bolea et al., 2014]. In this work the time 

lag was chosen arbitrarily as it was in De Paula and Möller, 2018, taking care that the 

reconstructed state space was not too compressed in the diagonal nor completely uncorrelated. 

Choosing a sufficiently large dimension D for the reconstruction is called embedding, 

and the selected dimension, embedding dimension De. Therefore, any dimension that follows 

D ≥ De could be an embedding. In this work, the method of the false nearest neighbors is 

applied to determine the minimum size necessary to embed an attractor, [Kennel et al., 1992]. 

The method consists of counting the number of false nearest neighbors for each point 

of the attractor. The attractor will be considered sufficiently unfolded when the number of 

false nearest neighbors reduces to zero, and the smaller embedding dimension able to 

represent it appropriately can be identified. 

To identify a false neighbor one can take k as a given point and k(1) as another point in 

the reconstructed attractor with dimension D. Consider also (RD)²(k) as the square distance 

between them.  So k(1) would be a false neighbor if 

 

{[𝑅𝐷  + 1)²(𝑘) – (𝑅𝐷)²(𝑘)]/(𝑅𝐷)²(𝑘)}1/2  >  𝑅𝑇 (15) 

 

where RT is a critical distance. For k(1) to be a false neighbor (RD)²(k) will probably increase 

when going from dimension D to D+1. In the case of experimental data, due to the finite 

number of points used, for k(1) to be a false neighbor, it has to satisfy the two following 

conditions: 

 

1) Considering RA a typical size of the attractor, then 𝑅𝐷 ~ 𝑅𝐴 and 𝑅𝐷+1(𝑘)~2𝑅𝐴 for a 

false neighbor. 

2) Establishing a critical limit Ac, so that [(𝑅𝐷+1)(𝑘)/𝑅𝐴   >  𝐴𝑐. 

 

As mentioned by De Paula and Möller, 2018 the dimension of an attractor associated 

with experimental data is usually unknown a priori, and some analyses are required to 

evaluate and interpret the values obtained. Depending on the strange attractor features, a 

reconstructed space smaller than RD may be sufficient to reveal its structure. For practical 

considerations, this parameter is very important, since computational cost rises exponentially 
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with D, and calculations for higher dimensions can be contaminated by the noise present in 

small dimensional data, [Abarbanel et al., 1993]. 

The next step is to evaluate the Largest Lyapunov exponent (λ1). The Lyapunov 

exponent can be interpreted as a rate at which the system loses predictability. Also, according 

to Wolf et al., 1985, Lyapunov exponents can be interpreted as the average exponential rates 

of divergence of the nearby orbits in state space, and the system would be defined as chaotic 

if at least one of the exponents is positive. This work uses an algorithm based on Rosenstein’s 

method proposed by Rosenstein et al., 1993. The approach consists of expressing the 

reconstructing trajectory X, as a matrix where each row is a phase space vector 

 

𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑀)′ (16) 

 

where Xi is the state of the system at a discrete time i. For a time series with N-points 

(𝑥1, 𝑥2, … , 𝑥𝑁) each Xi is given by 

 

𝑋𝑖 = (𝑥𝑖 , 𝑥𝑖+𝜏, … , 𝑥𝑖+(𝐷𝑒−1)𝜏) (17) 

 

where τ is the time lag and De is the embedding dimension. Therefore, X is an M × De matrix 

and the constants De, M, N, and τ are related as  

 

𝑀 = 𝑁 − (𝐷𝑒 − 1)𝜏. (18) 

 

A more detailed explanation of Rosenstein’s algorithm can be found in Rosenstein et 

al., 1993 and De Paula and Möller, 2018. 

The largest Lyapunov exponent is then estimated as the average separation of nearest 

neighbors  

 

𝜆1(𝑖) =
1

𝑖Δ𝑡(𝑀−𝑖)
∑ ln

𝑑𝑗(𝑖)

𝑑𝑗(0)
𝑀−1
𝑗=1  (19) 

 

where Δt is the sampling period of the time series, dj(i) is the distance between the jth pair of 

nearest neighbors after a discrete-time step i or iΔt seconds, and M is the number of 

reconstructed points.  

The largest Lyapunov exponent can also be defined mathematically by 
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𝑑(𝑡) = 𝐶 exp(𝜆1(𝑡)) (20) 

 

where d(t) is the average divergence in the time t, and C is the constant that minimizes the 

initial separation. It is assumed from the determination of λ1 that, the jth nearest pair of nearest 

neighbors diverge about the given rate 

 

𝑑𝑗(𝑖) ≈ 𝐶𝑗𝑒𝜆1(𝑖 Δ𝑡). (21) 

 

where Cj is the initial separation. The largest Lyapunov exponent is easily calculated using the 

least-squares fit to the average line defined by 

 

𝑦(𝑖) =
1

Δt
〈ln 𝑑𝑗(𝑖)〉. (22) 

 

where 〈 〉 denotes the average over all values of j. This process of obtaining the average value 

of the differences is, according to Rosenstein et al., 1993 key to obtaining an accurate value of 

λ1 when using experimental data and in the presence of noise. 

 

3.4 Hilbert-Huang transform 

 

Hilbert-Huang transform is a viable method for non-linear and non-stationary data 

analysis. It consists of two parts: the empirical mode decomposition (EMD) and the Hilbert 

Spectral Analysis (HSA). Huang et al., 1998 proposed that one of the typical characteristics of 

nonlinear processes is the intra-wave frequency modulation, which indicates that the 

instantaneous frequency changes within one oscillation cycle. Quoting Huang et al., 1998: 

 

There are actually, two types of frequency modulations: the interwave and the 

intrawave modulations. The first type is familiar to us; the frequency of the oscillation 

is gradually changing with the waves in a dispersive system. Technically, in the 

dispersive waves, the frequency is also changing within one wave, but that was not 

emphasized either for convenience or for lack of a more precise frequency definition. 

The second type is less familiar, but it is also a common phenomenon: if the frequency 

changes from time to time within a wave its profile can no longer be a simple sine or 
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cosine function. Therefore, any wave-profile deformation from the simple sinusoidal 

form implies the intrawave frequency modulation. In the past, such phenomena were 

treated as harmonic distortions. 

 

3.4.1 Hilbert transform 

 

The instantaneous frequency of a signal can be computed through the Hilbert 

transform. The Hilbert transform, Y(t) of an arbitrary time series, X(t), is obtained by 
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(23) 

 

where, P indicates the Cauchy principal value of the singular integral (further information in 

the Cauchy principal value [Legua and Sánchez-Ruiz, 2017]. Essentially Eq. 23, is a 

convolution of X(t) with 1/t; hence, the transform emphasizes the local properties of X(t). By 

definition X(t) and Y(t) form a complex conjugate pair, so it is possible to have an analytical 

signal, Z(t) described as 
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where a(t) is the instantaneous amplitude, and θ(t) is the phase function. Based on the Hilbert 

transform, the instantaneous frequency can be defined as: 
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( )
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d t
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
 =  (27) 

 

At any given time, it is possible that the signal may involve more than one oscillation 

mode, and consequently, the signal has more than one local instantaneous frequency at a time 

[Huang and Shen, 2005].  

 

 

3.4.2 Empirical mode decomposition 

 

The empirical mode decomposition (EMD) is a necessary method to deal with 

nonstationary and nonlinear data. It is an intuitive, direct, and adaptive method, with an a 

posteriori-defined basis from the decomposition method, based on and derived from the data 

[Huang and Shen, 2005]. 

The decomposition is based on the following assumptions [Huang et al., 1998]: 

 

4. The signal has at least two extrema, a maximum, and a minimum; 

5. The characteristic time scale is defined by the time lapse between the extrema; 

6. If the data were devoid of extrema but contained only inflection points, it can be 

differentiated once or more times to reveal the extrema. 

 

The method identifies the intrinsic oscillatory modes by their characteristic time scales 

in the data empirically and then decomposes the data accordingly. Each of these oscillatory 

modes is represented by an Intrinsic Mode Function (IMF). The IMF is a class of functions so 

that the instantaneous frequency can be defined everywhere based on the local properties of 

the data. An IMF is defined as a function that satisfies the two following conditions: 

 

a. The number of extrema and the number of zero crossings must either equal or differ at 

most by one in the whole data set, 

b. The mean value of the envelope defined by the local maxima and the envelope defined 

by the local minima is zero everywhere. 
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Instead of constant amplitude and frequency, like a simple harmonic component, the 

IMF can have a variable amplitude and frequency as functions of time. A systematic way to 

extract the IMF’s is described by Huang et al., 1998, designated as sifting process, starts by 

identifying all the extrema (maxima and minima) of the signal. Figure 3.4 represents data 

used as an example for a demonstration of the sifting method. These maxima and minima are 

connected with cubic spline lines to construct an upper envelope, and the same procedure is 

made for the minima. The upper and lower envelopes should cover the whole data. Their 

mean is designated as m1 and the difference between the data and m1 is the first component, 

h1, Figure 3.5 and Figure 3.6 exemplify the process. 

 

1 1( ) .h X t m= −  (28) 

 

If h1 does not satisfy the definition of an IMF, the sifting procedure can be repeated k 

times, until h1k is an IMF, exemplified in Figure 3.7.  

 

1 1( 1) 1 .k k kh h m−= −  (29) 

 

Then it is designated as the first IMF component from the data, Figure 3.8 exemplifies 

the first IMF, c1, of example the data 

 

1 1 .kc h=  (30) 

 

The sifting process serves two purposes, which are: to eliminate riding waves and to 

make the wave profiles more symmetric. The first component c1 should contain the finest 

scale or the shortest period component of the signal. If follows that c1 can be separated from 

the rest of the data by 

 

1 1( ) .r X t c= −  (31) 

 

Since the residue r1 still contains information of longer period components, it is treated 

as the new data and the same sifting process is repeated as described above in all the 

subsequent rj’s resulting 
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1 2 2 1,..., .n n nr c r r c r−− = − =  (32) 

 

The sifting process can be stopped either when the component cn or the residue rn 

becomes too small that it is less than the predetermined value of substantial consequence, or 

when the residue rn becomes a monotonic function from which no more IMF’s can be 

extracted. By summing Eq.31 and Eq.32, we obtain the data written in terms of IMF 

components plus the residue or trend 

 

1

( ) .
n

i n

i

X t c r
=

= +  (33) 

 

Because of the dyadic filter bank characteristic of the EMD, for an N data length, the 

finite number of steps in decomposition satisfies the relation below [Flandrin et al., 2004] 

 

2log .n N  (34) 

 

The components of the EMD are usually physically meaningful, for the characteristic 

scales are defined by physical data. Nevertheless, there are cases when a certain scale of a 

phenomenon is intermittent, in this case, the decomposed component could contain two scales 

on one IMF component. Therefore, the physical meaning of the decomposition comes only in 

the totality of the decomposed components in the Hilbert spectrum [Huang et al., 1998]. 

 

 

Figure 3.4 – Data used as an example of the EMD procedure. Adapted from [Flandrin, 2019]. 
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Figure 3.5 – The data and the upper and lower envelopes (blue and red, respectively), defined 

by the local maxima and minima, and the mean value of the upper and lower envelopes, m1, in 

magenta. Adapted from [Flandrin, 2019]. 

 

 

Figure 3.6 – The component h1 after the first sifting iteration. Adapted from [Flandrin, 2019]. 

 

 

 

Figure 3.7 – Repeating the sifting steps (a) with h12 and (b) with h13. Adapted from 

[Flandrin, 2019]. 
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Figure 3.8 – The first IMF component c1 after 8 steps. Adapted from [Flandrin, 2019]. 

 

3.4.3 Ensemble empirical mode decomposition 

 

The intermittency present in some IMF components causes the appearance of the so-

called mode mixing, which is when a single IMF consists of signals of widely disparate 

scales, or when a signal has similar scales residing in different IMF components (Wu and 

Huang, 2009).  

To successfully deal with the scale separation problem, a noise-assisted data analysis 

method was proposed, called the Ensemble Empirical Mode Decomposition (EEMD). The 

approach is based on the studies of the statistical properties of the white noise (Wu and 

Huang, 2004), which showed that the EMD is effectively an adaptive dyadic filter bank when 

applied to white noise. 

The concept of the EEMD is based on the following observations [Wu and Huang, 

2009]: 

 

1) A collection of white noise cancels each other out in time-space ensemble mean, 

surviving and persisting, only the final noise-added signal ensemble mean. 

2) Finite amplitude white noise is necessary to force the ensemble to exhaust all possible 

solutions; the finite magnitude noise makes the different scale signals reside in the 

corresponding IMF, dictated by the dyadic filter banks. 

3) The true physically meaningful answer to the EMD is not the one without noise, it is 

designated to be the ensemble mean of a large number of trials consisting of the noise-

added signal. 
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The EEMD algorithm is developed as follows: 

 

a) Add a white noise series to the data; 

b) Decompose the noise-added data into IMFs 

c) Repeat steps 1 and 2 N number of trials, with different white noise series each 

time; 

d) Obtain the ensemble mean of corresponding IMFs of the decompositions. 

 

The noise-added signal is treated as the possible random noise that would be 

encountered in the measured data. In those conditions, the observed data with the added noise 

is  

 

( ) ( ) ( )i iX t X t w t= +
 

(

(35) 

 

where Xi(t) is the ith observation of noise added data, X(t) is the observed data set, wi(t) is the 

ith realization of the white noise series. As the ensemble number approaches infinity, the final 

IMF, cj can be defined as 

 

𝑐𝑗 = 𝑙𝑖𝑚
𝑁→∞

1

𝑁
∑ [𝑐𝑗𝑖(𝑡) + 𝑟𝑘𝑖(𝑡)]𝑁

𝑖=1  
(

(36) 

 

in which cji(t) is the jth IMF component of the ith realization of noise-added data, and rki(t) is 

the residue after k number of IMFs are extracted in each sifting process. The ensemble 

number of trials, N, has to be large, for the ensemble mean to cancel out the added noise. A 

flowchart of the EEMD steps is presented in Figure 3.9. 
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Figure 3.9 – Flowchart of EEMD steps. 
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3.4.4 Hilbert spectral analysis 

 

After obtaining the intrinsic mode functions, one can apply the Hilbert transform to 

each IMF component and compute the instantaneous frequency using Eq. 23 to 27. The 

original data, after the Hilbert transform, can be expressed as the IMF real part ℜ. 

 

1

( ) ( ) exp[ ( ) ] .
n

H j j

j

X t a t i t dt
=

 
= 

 
   (37) 

 

With the IMF expansion, the amplitude and the frequency modulations are also clearly 

separated. This frequency-time distribution of the amplitude is designated as the Hilbert 

spectrum H (ω,t). Although the Hilbert transform can treat the monotonic trend as part of a 

longer oscillation, the energy involved in the residual trend representing a mean offset could 

be overpowering [Huang, 2014]. 

With the Hilbert Spectrum H(ω,t) defined, we can also define the marginal spectrum, 

h(ω) 

 

0
( ) ( , ) .

T

h H t dt =    (38) 

 

The marginal spectrum offers a measure of the total energy contribution of each 

frequency value. It represents the accumulated amplitude over the entire data span in a 

probabilistic sense. 

 

3.4.5 Normalized Hilbert transform 

 

Although the Hilbert transform exists for any function of Lp class (see Titchmarsh, 

1948), the phase function of the transformed function will not always yield meaningful 

instantaneous frequency results. The decomposition of the data into IMFs satisfies only the 

necessary condition to obtain meaningful instantaneous frequencies, two more theorems add 

some limitations to the Hilbert transform. 

The Bedrosian theorem [Hahn, 1996; Bedrosian, 1963] says that: the Hilbert transform 

of the product of two signals with no overlapping spectra equals the product of the low-pass 
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term by the Hilbert transform of the high-pass term. Meaning that only the high-frequency 

term is transformed. 

Considering two functions f(t) and g(t), where f(t) is the low-pass term and g(t) is the 

high-pass term, by the Bedrosian theorem, the Hilbert transform of the product f(t)g(t), can be 

written as: 

 

 [ ( ) ( )] ( ) [ ( )].H f t g t f t H g t=   (39) 

 

If the instantaneous frequency, defined in Eq. 27, is to be computed from the phase 

function, the data can be expressed in the IMF form as 

 

( ) ( )cos[ ( )];x t a t t=   (40) 

 

then the Hilbert transform gives the conjugated part as 

 

{ ( )cos[ ( )]} ( ) {cos[ ( )]}.H a t t a t H t =   (41) 

 

This relation can only be true if the amplitude is varying so slowly that the frequency 

spectra of the envelope and the carrier waves are disjoint. To satisfy this requirement a 

normalization of the IMFs was proposed, in Huang, 2005; and Huang et al., 2009. The steps 

for the normalization are: 

 

1) Find all the maxima of the IMFs 

2) Define the envelope by a spline through all the maxima, the envelope is designated 

as E(t). 

3) Normalize the IMF by dividing it by E(t) as 

 

( )
( )

( )
f

x t
C t

E t
=   (42) 

 

where Cf(t) should be the carrier function with all the local maxima equal to unit. 

This construction was supposed to yield always unitary amplitudes, however at points 

where the amplitude fluctuation is large or at locations of fast changing amplitudes, the 



 

 

  38 

envelope spline line, passing through the maxima can go below some data points, and this 

causes the normalized data to have amplitudes higher than unity occasionally. 

Another limitation comes from the Nuttall theorem [Nuttall and Bedrosian, 1966]. 

This theorem questions the condition under which one can write  

 

{cos ( )} sin ( )H t t =   (43) 

 

for an arbitrary function of θ(t). It states that the Hilbert transform of a cosine is not 

necessarily a simple 90° phase shift, resulting in a sine function with the same arbitrary phase 

function. 

Nuttall first established that for any given function of the form of Eq. 40, for arbitrary 

a(t) and θ(t), and if the Hilbert transform of x(t) is given by xh(t), and the quadrature of x(t) is 

xq(t), defines as 

 

( ) ( )sin ( )xq t a t t=   (44) 

 

then, the error-index, ΔE, is  

 

0

2

0

[ ( ) ( )] ( )

T

qE xh t xq t dt F d



 
−

 = − =    (45) 

 

where 

 

( ) ( ) ( )sin ( ) i t

qF F i a t t e dt  


−

−

= +    (46) 

 

in which F(ω) is the Fourier spectrum of the signal, and Fq(ω) is the spectrum of the 

quadrature function. This is, however, not a practical result: first, it is expressed in terms of 

the Fourier spectrum of the quadrature, of a still unknown quadrature; second, the result is 

given as an overall integral, which provides a constant global measure of the error. For non-

stationary time series, this error will not reveal the location of the error on time. And finally, 

the error index is energy-based, it only states that the xh(t) and xq(t) are different, but do not 

offer an error index on the frequency, [Huang et al., 2009]. 
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With the normalization Huang, 2005 proposed a variable error. It is based on the 

principle that if the Hilbert transform indeed produces the quadrature, then the modulus of the 

analytical signal, defined in Eq. 24, from the empirical envelope should be unity. Any 

deviation of the modulus of Z(t) from unity is the error; thus, it is an energy-based indicator of 

the difference between the quadrature and the Hilbert transform, which can be defined simply 

as 

 

2( ) [ ( ( )) 1] .E t abs Z t = −   (47) 

 

This error indicator is a function of time and it gives a local measure of the error 

incurred in the amplitude. Two factors can contribute to the errors, the first is that the 

normalization process is not clean, so the normalized amplitude could exceed the unitary 

value, and the error would not be zero. The second factor arises from the phase function, 

where the phase plan will not be a perfect circle, resulting in amplitudes different from unity. 

Huang, 2005 and Huang et al., 2009 conducted detailed comparisons and found the result for 

the normalization satisfactory.  

 

3.5 Statistical Analysis 

 

The statistical analysis is based on calculating the statistical moments which consist 

of, mean value, variance, skewness, and kurtosis. Skewness and kurtosis were normalized by 

the variance, and the variance was normalized by the local mean. The analyzed data consists 

of eight seconds time series extracted from the original (65,536 points) longer data set, for 

p/D = 1.16, 1.26 and 1.60 and various Reynolds numbers. Each data set of 8.192 seconds was 

selected in a way that the bistable characteristics of the signal were clearly identified.  

For better performance of the algorithm, a time vector was created, corresponding to 

0.000 to 8.192 seconds. So, for example, for p/D = 1.16, the chosen data fragment was 

extracted in the time interval of 25.000 to 33.192 seconds of the original velocity signal, but 

in the graphics, the time vector of the fragment is represented as 0.000 to 8.192 seconds. This 

procedure is schematically represented in Figure 3.10. 
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Figure 3.10 – a) Original velocity time series with a fragment of 8.192 seconds indicated by 

the red box, and b) Fragment extracted from the marked area, with time vector from 0.000 to 

8.192 seconds. p/D = 1.16 and Re = 1.44x104. 

 

The fragments of the signal were processed for the statistical analysis as follows. First, 

the signal was scanned by a window of 256 points, with an overlapping of 64 points, creating 

blocks of signal, in total there were 125 dyadic blocks. This window can be adjusted 

according to need, size of the signal, and other specific characteristics.  

Each block was then converted into a probability density function (PDF), generating 

125 PDFs, each PDF with 100 bins. Those PDFs can be associated with a probability 

function, like a t-Student or a skew-normal distribution for example. The first four statistical 

moments of each PDF block were then calculated. The variations between the maximum, 

minimum and mean value of each statistical moment with Reynolds number and p/D were 

presented. Through this analysis, it is possible to associate each wake mode to its statistical 

characteristics and find patterns of behavior that may repeat for different bistable data sets. 

Figure 3.11 illustrates this process for three different situations, first with the window 

of 256 points in the large wake (Figure 3.11.a), the corresponding PDF is presented in Figure 

3.11.d). In the second situation, the window comprehends part of the large wake and part of 

the narrow wake (Figure 3.11.b), the corresponding PDF is shown in Figure 3.11.e). And at 

last, with the window in the narrow wake (Figure 3.11.c) and its corresponding PDF in Figure 

3.11.f).  

 

(a) 

(b) 
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Figure 3.11 - Schematic representation of the velocity time series (in blue) and the blocks of 

256 points (in black), and the corresponding PDFs for those blocks. a) large wake, b) the two 

modes simultaneously, c) narrow wake, d) PDF corresponding to the large wake, e) PDF 

corresponding to the two wakes simultaneously and f) PDF corresponding to the narrow 

wake. 

 

  

(a) 

(b) 

(c) 

(d) (e) (f) 



 

 

  42 

4 RESULTS  

In this chapter, the results of velocity measurements using hot-wire anemometry, for 

two cylinders side-by-side, in turbulent flow in aerodynamic channel will be presented. The 

study was realized for cylinders with D = 25.1 mm with Reynolds numbers, from 

Re = 7.22x10³ to 2.32x104, the pitch-to-diameter ratios of choice were p/D = 1.16, 1.26, and 

1.60.  

The results are separated into three subchapters, according to the different methods 

and analysis applied. Subchapter 4.1 brings the results about the Hilbert-Huang transform 

applied to the bistable phenomenon. Subchapter 4.2 shows the results of the statistical 

analysis of bistable time series. And subchapter 4.3 shows the results from the dynamic 

analysis using chaos theory. 

 

4.1 Hilbert Spectral Analysis 

 

The results on the application of the Hilbert-Huang transform methodology are 

presented in this section. The method was applied to velocity time series for two cylinders 

side-by-side with D = 25.1 mm, with p/D = 1.16. 1.26, and 1.60, submitted to a turbulent 

flow, Re = 1.44×104. The bistable phenomenon is identified by the two levels of velocity, 

small values for a large wake, high-velocity values for the narrow wake. 

The EEMD method was performed in the bistable time series as described in Figure 

3.9 generating a set of 16 IMF components and a residue; the velocity signal and the IMFs are 

shown in Fig. 4.1. for p/D = 1.16 and Figure 4.2 for p/D = 1.26. It is possible to observe that 

the first three IMF components present characteristics that resemble noise, also their content 

can be associated with the turbulent part of the signals. From components C4 to C8 it is 

possible to observe an increase in the amplitude of fluctuations in the regions where the mode 

changes from the large wake to the narrow wake. The bistable oscillatory behavior becomes 

more evident in the following IMF components; as the fluctuations around zero, 

corresponding to the large wake, reduce in amplitude; the fluctuations corresponding to the 

narrow wake increase in amplitude. The observations of the IMFs indicate that the bistable 

phenomenon is predominantly a low frequency phenomenon. 
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Figure 4.1 – Intrinsic Mode Functions and residue for D = 25.1 mm, p/D = 1.16, 

Re = 1.44×104.   
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Figure 4.2 – Intrinsic Mode Functions and residue for D = 25.1 mm, p/D = 1.26, 

Re = 1.44×104. 
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Looking at the power spectra of the IMF components, in Figure 4.3 it is possible to 

observe that component C1, which corresponds to the highest frequencies, does not fit 

properly with the spectrum of the velocity signal, C2 and C3 present the same behavior. This 

is probably a consequence of the presence of noise in those components, the turbulent part of 

the signal, and can be associated with the fact that the bistable phenomenon happens in two 

different frequencies simultaneously, wide wake and narrow wake, causing the EEMD to 

compensate the energy in the small-scale components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 - Power Spectral density for D = 25.1 mm, for a) p/D = 1.16, b) p/D = 1.26, 

c) p/D = 1.60. Re = 1.44×104. 
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Performing a correlation coefficient analysis between the IMF components and the 

velocity signal, it is possible to identify which IMF component is more related to the original 

signal, and therefore may contain more information about it. Figure 4.4 presents the results for 

the correlation between each IMF and the signal, for the various p/D, and Re = 1.44x104. The 

correlation coefficient for a single cylinder with D = 25.1 mm at the same Reynolds number 

was used as a reference. It is possible to observe that for the same Reynolds number, the 

aspect ratio plays an import role on which IMF presents the highest correlation coefficient. 

For p/D = 1.16 the most correlated is component C12, for p/D = 1.26 is component C11 and 

for p/D = 1.60 is component C9. The IMFs, one previous and one after those mentioned, also 

present a significant correlation coefficient, indicating that the most relevant information 

about the bistable flow is in the IMFs of lower frequency. The correlation coefficient for C16 

is very similar for all the p/D cases, varying from 0.1781 to 0.2611, but since IMF C16 is very 

close to the residue, it may be an artifice of the method. 

 

 
 

Figure 4.4 – Correlation coefficient between IMF components and the velocity time series, for 

D = 25.1 mm, for a single cylinder and p/D = 1.16, 1.26, and 1.60 for two cylinders side-by-

side. Re = 1.44×104. 

 

The signal can be reconstructed by summing all the IMF components. To verify the 

previous results about the correlation between IMFs and data, only IMFs from 16 to 11 were 
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added. Figure 4.5 shows the results for IMF reconstruction and compares with the DWT 

reconstruction of level 9, using a db20 wavelet. The reconstruction using only the low 

frequency IMFs made it possible to observe the bistable characteristics without the turbulent 

part and therefore was considered a good representation of the signal and the method very 

effective as a filter. The results are very similar to those found using the DWT, but not equal, 

due to the characteristics of the EEMD the reconstructed signal may present negative values, 

the exception in the studied cases, being the one for p/D = 1.60, which is almost an exact 

match to the DWT reconstruction.  

The NHES originated from the NHT of the IMFs is shown in Fig. 4.6. Different from 

the single cylinder case, where the vortex shedding frequency and its harmonics are clearly 

identified (see Appendix A, Fig. A.8), the NHES of the two cylinders case in a bistable flow 

does not highlight any specific range of frequency related to vortex shedding. In the low 

frequencies, it is possible to visualize a concentration of energy resembling the bistable 

behavior, but the frequencies related to each wake mode are not identified.  

Taking into account that bistability is a low frequency phenomenon, which is 

corroborated with the previous results, an NHES of only the 6 lower IMF components is 

presented in Figure 4.7. The results are shown for 65 seconds of data. 
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Figure 4.5 – Reconstruction using IMF components from C11 to C17 (black line) compared 

with DWT reconstruction of level 9 (red line), D = 25.1 mm, for a) p/D = 1.16, b) p/D = 1.26, 

c) p/D = 1.60. Re = 1.44×104. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 – Normalized Hilbert spectrum for D = 25.1 mm. p/D = 1.26, Re = 1.44×104. 
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Figure 4.7 – Normalized Hilbert spectrum of IMFs C11 to C16, for D = 25.1 mm. p/D = 1.26, 

Re = 1.44×104. 

 

For quantitative analysis of the energy of each IMF, the dimensionless Mean Square 

Energy (MSE), as an estimation measure, was defined as follows [Meng et al., 2012] 
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where N represents the length of the velocity series, T represents the sampling time, j 

represents the IMF order and U is the reference velocity. 

 The results for MSE for the various p/D at the same Reynolds number, are 

represented in Figure 4.8. While for the single cylinder, the energy peak was concentrated in 

one IMF (usually a high frequency component) followed by a gradual decrease of energy (see 

Apendix A, Fig. A.10), in the bistable flow, a peak of energy can be found in the first IMF, 

C1. The energy then decreases from IMFs C2 to C7 for all the aspect ratios, and then increase 

until reaching the maximum values. Energy peaks are located in C14, C11, and C10 for 

p/D = 1.16, 1.26, and 1.60 respectively, followed by an energy decline in the subsequent IMF 

components. This behavior is very likely connected to the bistable phenomenon and the two 

frequencies related to the wide and narrow wakes. Another possible cause is that the changes 
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in the wake flow are caused by an interaction in the vortices after the cylinder, causing an 

energy concentration in the fine scales of the flow, causing the energy peak in C1. The 

vortices interaction results in a larger vortex, culminating in the energy peak in the higher 

IMF components. 

 

Figure 4.8 – Dimensionless mean square energy for D =25.1 mm. p/D = 1.16, 1.26, and 1.60. 

Re = 1.44×104. 

 

The joint PDF of the first five IMFs of the bistable signal is shown in Figure 4.9 for 

p/D = 1.26 and Re = 1.44x104. One can see that the first component C1 presents higher 

amplitude when compared to the other IMFs distribution. Subsequent IMFs superimposed 

themselves in frequency, but present a regular amplitude. The IMFs also tend to present a 

higher concentration of amplitude in frequencies lower than 50 Hz, since bistability is a low 

frequency phenomenon. 
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Figure 4.9 – Joint PDF of amplitude and frequency for D =25.1 mm. p/D = 1.26, 

Re = 1.44×104. 

 

The influence of the Reynolds number was analyzed for p/D = 1.26. Results for the 

correlation coefficient between IMFs and the velocity signals are presented in Figure 4.10. 

Observing the results there seems to be no direct influence of the Reynolds variation on the 

correlation coefficient for p/D = 1.26. For most of the Reynolds numbers, the IMF with a 

higher correlation is IMF C11, exceptions are for Re = 1.14x104 for which is IMF C9, and 

Re = 2.32x104 with IMF C13, but even for those cases, IMF C11 presents a significant 

correlation value.  

The dimensionless mean square energy was calculated for the various Reynolds and 

presented in Figure 4.11. As it is possible to see, the value of the mean square energy of the 

first IMF component is influenced by the Reynolds number. The first IMF component, for the 

higher Reynolds, present higher values of MSE. The values decrease until IMF C6 for all 

Reynolds numbers evaluated, and then increase from IMF C7 reaching the maximum value in 

IMF C11. 

Those results may represent the fact that the frequency at which the bistability 

phenomenon mainly occurs, which is, at lower frequencies, does not suffer any influence of 

the Reynolds number, still the aspect ratio, p/D could be considered a parameter that 

influences significantly the energy distribution. Nevertheless, as will be seen in the last 
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section of results, the pseudo frequency at which the mode changes is influenced by both 

parameters, Reynolds number variation, and p/D. 

 

 

Figure 4.10 – Correlation coefficient for various Reynolds numbers, with p/D = 1.26. 

 

 

 

Figure 4.11 – Dimensionless mean square energy for various Reynolds numbers, and 

p/D = 1.26. 
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4.2 Statistical analysis of bistable flow 

 

The statistical analysis described in Section 3.5 was performed in a fragment of the 

velocity time series. For each p/D and Reynolds number, a piece of 8 seconds of the signal 

was chosen, taking into account that it should capture the bistable phenomenon properly. 

Those fragments of data were then separated into dyadic blocks that overlapped each other. 

Each block created a PDF. A representation of the process is represented in Figure 4.12. It is 

possible to identify the fragment of eight seconds of data and the 125 points used in the PDFs 

were marked in black in different parts of the data set, representing pieces of the large and 

narrow wake, and between both wakes. 

 

 

 

 
 

Figure 4.12 – Fragment of eight seconds for p/D = 1.26. Re = 1.44x104. The window of 

125 points, in black at a) Large Wake, b) Large and Narrow wake simultaneously and 

c) Narrow Wake. 

 

 

The PDFs created by the method can be approximated by a distribution function (de Paula, 

2013 used an asymmetric t-Student). Figure 4.13 shows the PDFs representing each wake 
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mode, and the place corresponding to the three 125 blocks of data points shown in Fig. 4.12. 

When the signal is at the large wake the PDF histogram concentrates in the lower values of 

velocity, the distribution has positive asymmetry and presents a tail in the high values, 

consequently higher values of variance. When the signal comprehends a mode change, 

meaning, part of it is in the large wake, and part in the narrow wake, the PDF presents two 

curves, being the combination of two probability distributions. And when the signal is in the 

narrow wake, the distribution is narrowed and concentrates in the higher values, with a 

negative asymmetry.  

Table 2 summarizes the statistical values of some of the Reynolds numbers analysed 

by the method for p/D = 1.16, 1.26 and 1.60. 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 – PDFs representing the blocks of 125 points of data. a) Large wake, b) 

transition from large to narrow wake and c) Narrow wake. D =25.1 mm. p/D = 1.26. 

Re = 1.44x104.  
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Table 2 – Time series statistical characteristics for various Reynolds numbers. 

Time series Re = 7.22x103 Re = 1.44x104 Re = 2.32x104 

p/D = 1.16 

 N.W* W.W** N.W W.W N.W W.W 

Mean (m/s) 5.01 1.99 13.49 2.22 16.75 4.18 

Std. deviation 2.51 2.14 5.04 1.22 6.11 2.79 

Kurtosis 1.60 4.44 3.46 3.86 1.56 12.90 

Skewness -0.41 1.63 -1.38 0.91 0.257 2.65 

p/D = 1.26 

 N.W W.W N.W W.W N.W W.W 

Mean (m/s) 7.86 1.88 13.17 1.91 20.44 6.17 

Std. deviation 0.72 1.86 3.59 1.16 0.77 3.79 

Kurtosis 45.72 6.79 5.97 9.55 79.49 7.95 

Skewness -6.04 2.06 -2.02 1.59 -6.69 2.05 

p/D = 1.60 

 N.W W.W N.W W.W N.W W.W 

Mean (m/s) 5.03 3.11 16.42 8.15 15.23 9.59 

Std. deviation 2.81 2.35 1.97 4.66 6.24 6.48 

Kurtosis 1.46 3.00 22.84 2.37 1.93 2.09 

Skewness -0.06 1.08 -4.27 0.72 -0.57 0.73 

*N.W – Narrow Wake 

**W.W – Wide Wake 

 

Figure 4.14.a) shows the velocity time series of a bistable signal, for p/D = 1.26, for 

D = 25.1 mm. The bistable characteristics of the signal are identified by the alternation 

between the two velocity levels, the small velocity values corresponding to the large near 

wake, and the higher velocity values to the narrow near wake. The mean value of each PDF is 

showed in Fig. 4.14. b). 

Figure 4.14.c) shows the variation of normalized standard deviation for each of the 

125 blocks of the signal. It is possible to associate the behavior of the standard deviation with 

each wake mode. When the signal is in the large wake, from block 1 to 26 and 100 to 125, 

corresponding to the small velocity, the standard deviation has values in the range of 0.45 to 

0.85. Those values reduce when the signal changes mode into the narrow wake, 

corresponding to PDF blocks from 27 to 99, or the higher velocity values. Then the standard 

deviation values became lower, in the range from 0.46 to 0.02. The moment the wake changes 

mode is preceded by an increase in the standard deviation values, corresponding to the peaks 

found in blocks 26 and 100. The signal also has some mode changes attempts that caused the 

smaller peaks in blocks 39, 61, and 84. 

Figure 4.14.d) shows the variation of the skewness for each PDF block. It is possible 

to associate the skewness behavior to the standard deviation behavior and the signal mode 
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changes. When the signal is in the large wake skewness values are positive, (blocks 1 to 26) 

coinciding with the higher values of standard deviation. When the mode changes to the 

narrow wake, the skewness values became negative, (block 27 to 98) coinciding with the 

lower values of standard deviation. The instant the signal changes from one wake to the other 

is marked by a peak in the skewness values, in blocks 24 and 100. The skewness peaks are 

also found in blocks 39, 61, and 84, which would correspond to the instant when the signal 

tries to change mode but fails. 

Figure 4.14.e) shows the variation in kurtosis for each PDF block. Kurtosis presents 

almost constant values, around 2 and 3.2, when the flow is in the large wake. Around the PDF 

blocks that include the mode change, some peaks on the values start to appear. When the 

mode changes to the narrow wake, from block 29 to 100, kurtosis presents high peaks, 

reaching values like 28 in block 52, intercalating with lower values, which may be related to 

the flow trying to change mode again. This inconstant behavior can also be related to the fact 

that kurtosis is associated with the tails of the distribution, and when in the narrow wake, the 

fluctuation values present a large range, producing a longer tail (more outlier values than a 

Gaussian distribution for example) in the distribution. One could also say that the narrow 

wake distribution approaches zero more slowly. Around block 100 the values of kurtosis tend 

to reduce back to the range of values of 5 to 2.  

A very similar behavior, and very similar range of values were found for the four 

statistical moments for p/D = 1.16 (Fig. 4.15) and 1.60 (Fig. 4.16), at the same Reynolds 

number. This concludes that at the same Reynolds number, the aspect ratio p/D does not 

directly influence the variation of the statistical moments of the bistable large and narrow 

wakes. 
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Figure 4.14 – Velocity signal and the variation of statistic moments for each PDF block for 

p/D = 1.26, Re = 1.44x104. a) Velocity signal, b) mean values, c) standard deviation 

normalized by the local mean, d) Skewness and e) Kurtosis. 
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Figure 4.15 – Velocity signal and the variation of statistic moments for each PDF block for 

p/D = 1.16, Re = 1.44x104. a) Velocity signal, b) mean values, c) standard deviation 

normalized by the local mean, d) Skewness and e) Kurtosis. 

(a) 

(b) 

(c) 

(d) 

(e) 



 

 

  59 

 

 

 

 

 

 
 

Figure 4.16 – Velocity signal and the variation of statistic moments for each PDF block for 

p/D = 1.60, Re = 1.44x104. a) Velocity signal, b) mean values, c) standard deviation 

normalized by the local mean, d) Skewness and e) Kurtosis. 
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After analyzing each set of eight seconds of data set, the influence of the Reynolds 

number on the behavior of the statistical moments of the bistable signals was considered. The 

analysis was made for p/D = 1.26, for multiple Reynolds numbers. The maxima, minima, and 

mean values were collected from the 125 PDF blocks.  

Figure 4.17 shows the results for maxima, minima, and mean values for the 

normalized standard deviation. The mean and the minimum value have very little variation 

and can be considered constant for the range of Reynolds numbers considered. The maximum 

value presents a decrease between the smaller Reynolds number (Re = 7.22x103) and the 

higher Reynolds number (Re = 2.32x104). This variation is ± 0,2948 and can be a function of 

the fragments of data analyzed. 

Figure 4.18 shows the results of maxima, minima, and mean values of skewness for 

p/D = 1.26, for various Reynolds. It is possible to see that the values are not significantly 

influenced by the variation on the Reynolds number. The mean values are concentrated 

around zero as expected. Maxima and minimum values present some oscillations, but in 

general, they can be considered constant. 

Figure 4.19 presents the variation of maxima, minima, and mean values kurtosis for 

p/D = 1.26, with various Reynolds numbers. Minimum and mean values are constant for all 

Reynolds numbers analyzed. The maximum values on the other hand are around the same 

value for three of the studied Reynolds numbers but present much lower values for 

Re = 7.22x10³ and 1.55x104. Those lower values may be associated with the presence of more 

or fewer fluctuations in the analyzed data fragment. 

Those results demonstrate that it is possible to establish patterns for the statistical 

behavior of the large and narrow wake in bistable flows, and for the subcritical range those 

values do not depend on the Reynolds number nor on the p/D ratio. Finding patterns in the 

behavior of the large and narrow wakes provides a first step in developing a potential method 

to describe and recreate bistability dynamics. 
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Figure 4.17 – Normalized Standard Deviation variation for various Reynolds numbers. 

p/D = 1.26. 

 

 
 

Figure 4.18 - Skewness variation with the Reynolds number. p/D = 1.26. 
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Figure 4.19 - Kurtosis variation for various Reynolds numbers. p/D = 1.26 

 

4.3 Chaos and stability 

 

The velocity time series acquired experimentally for two cylinders side-by-side for 

p/D = 1.16, 1.26, and 1.60, and Re = 1.44x104 are shown in Figure 4.20. Those time series 

were filtered using discrete wavelet transform (DWT), with a db20 wavelet and a 

reconstruction detail of level 9, which corresponds to 0.956 Hz of bandwidth, and the results 

are represented in black, superposed on the velocity time series. Reconstructing the signal 

with a DWT serves the purpose of eliminating the turbulent part of the data set, reducing 

noise, and resulting in a signal with fewer fluctuations. 

The strange attractors created using the filtered time series, are represented in 3D in 

Figure 4.21 a). The attractors were created by calculating the first and second derivatives of 

the filtered velocity signals in time. For better visualization of the behavior each plane is 

separately plotted in Figure 4.21 b), c), and d). In Figure 4.21.b) the plane containing velocity 

and its first derivative (acceleration) is represented and is possible to identify two basins of 

attraction where the points orbit around. These basins of attraction can be associated with the 

large and narrow wake of the system in the velocity axis. In the derivative axis, the basins of 

attraction are aligned around zero and it is observed that the acceleration increases (in positive 

and negative values) in the path between the two basins of attraction. 
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Figure 4.20 – Velocity time series and DWT reconstruction of level 9 (0.976 Hz). 

a) p/D = 1.16, b) p/D = 1.26 and c) p/D = 1.60. Re = 1.44x104. 

 

Figure 4.21.c) represents the velocity and its second derivative (called jerk). Jerk 

represents the rate at which acceleration changes with respect to time. In an ordinary system 

of differential equations, jerk equations are the minimal setting for solutions showing chaotic 

behavior. It is possible to observe that when the particles are around the basins corresponding 

to the large wake, identified by the small velocity values, jerk increases before the particle is 

pulled towards the narrow wake basins of attraction (higher velocity values). In the trajectory 

between large wake and narrow wake basins, jerk reduces its values, reaching its minimum 

before the particle is pulled around the narrow wake basins. The inverse process happens 

when the particle leaves the narrow wake towards the large wake. 

Thinking about the physical meaning of this process for the dynamic system, one 

could say that, when the system found itself in one of the lower energy states (meaning: 

deviated towards one of the cylinders) the acceleration rate is small and almost constant. Also, 

for the system to alternate to the other state of lower energy, the acceleration rate must 

increase, but in the path between the two states, the acceleration rate decreases again. One can 

(a) 

(b) 

(c) 
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also think of this effect as a slingshot effect, accumulating energy for propelling the flow and 

causing the wake mode to change.  

In Figure 4.21.d) the combination of first and second derivatives is represented. It is 

possible to see the relationship between jerk and acceleration. When jerk starts to increase, 

acceleration also increases, when jerk reaches its maximum values and starts to decrease, 

acceleration keeps increasing. When jerk is zero, the increment of acceleration is also zero. 

This is observed in the left and right sides of the graphic since it is an almost symmetric 

phenomenon.  

The strange attractors generated for p/D = 1.16 and 1.60 are represented in the 

isometric view in Figure 4.22. a) and b). the effect of the mode changing is visible in the 

attractors, p/D = 1.16 presents very little switching and therefore one of the basins of 

attraction is more evident than the other. Since p/D = 1.60 is almost a flip-flop, with very 

intense mode changing, the strange attractor does not divide itself into two basins of 

attraction, becoming tangled trajectory in the central region of the phase space. 
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Figure 4.21– a) 3D strange attractor for the bistable signal with Re = 1.44x104 and p/D = 1.26. 

b) velocity × first derivative plane, c) velocity × second derivative plane, and d) first 

derivative × second derivative plane. 
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Figure 4.22 – a) 3D strange attractor for p/D = 1.16 and b) 3D strange attractor for p/D = 1.60. 

Re = 1.44x104. 
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The Lyapunov exponent can be interpreted as a rate at which the system loses 

predictability. For the Lyapunov exponent, the phase space was reconstructed using a time 

delay (or time lag). In de Paula and Möller (2018), a wide range of embedded dimensions and 

time lags used for this purpose were analyzed, and the values chosen in this paper were based 

on the same method of choice. A too small time lag will linearly compress the data in the 

diagonal of the phase space, and a too large time lag will disperse it in the whole phase space. 

The best result for the time lag (T) for the time series presented in this study was for the 

values of, T = 50, 100, and 200, for p/D = 1.16, 1.26, and 1.60 respectively. All the 

parameters used to evaluate the bistable data sets are in Table 3. 

 

Table 3 – Parameters used to evaluate the filtered bistable time series. 

Time series Re = 7.22x10³ Re =1.44x104 Re = 1.94x104 Re = 2.32x104 

Frequency sampling (fs) 1000 Hz 

0.001 s 

20, 50, 100 and 200 

2 

65,536 

50, 100 and 200 

1 to 10 

Sampling period (Δt) 

Critical distance (Rt) 

Critical limit (Ac) 

Number of data points (N) 

Time lag (T) 

Embedding dimension (De) 

 

 

Figure 4.23, shows the phase space reconstruction of the strange attractor using the 

velocity time series u(t) as the variable, for a time lag of T = 100, and can be observed that the 

data is well distributed in the phase space and not too compressed in the diagonal nor too 

dispersed.  When comparing with Figure 4.21 it is possible to see some distortion and the 

shape of the 3D reconstruction does not match exactly this of the original attractor, this 

distortion does not matter for the analysis since the topological properties are preserved. 

The percentage of false nearest neighbors (FNN) is estimated using a critical distance 

Rt (20, 50, 100, and 200), a minimal distance Ac = 2, and 10 embedded dimensions, the results 

for Re = 1.44x104 and 2.32x104 are presented in Figure 4.24. The percentage of FNN in all 

cases converges to zero after De = 4. For Rt = 20 the FNN is about 0.393 % and reduces to 

0.045 % for Rt = 200, for Re = 1.44x104. The same behavior is found for Re = 2.32x104 (Rt = 

20, 0.4223%, Rt = 200, 0.0279%). Very similar behavior was also found for the other 

Reynolds numbers and p/D analyzed. Therefore, the chosen embedded dimensions for this 

analysis were 4, 5, 6, and 7. 

 



 

 

  68 

 
 

Figure 4.23  – a) 2D phase space reconstruction of the strange attractor and b) 3D phase space 

reconstruction of the strange attractor, for time lag T = 100. 

 

 
 

 

Figure 4.24 – False Nearest Neighbours percentage for various critical distances Rt. 

a) Re = 1.44x104 b) Re = 2.32x104. 

 

The choice of the period for calculating the largest Lyapunov was based on the 

number of mode changes that occurred in the data, for p/D = 1.26 and Re = 1.44x104 the wake 

changed sides 21 times. Therefore, the period of choice was P = 65,536/21 = 3,120.7 data 

points or 3.1207 seconds. For better visualization, a larger period of 6.000 seconds was shown 

in the graphics. Thus, the estimated largest Lyapunov exponent is calculated by the mean 

value of the various slopes in an interval range. For p/D = 1.26 at Re = 1.44x104 this range is 

from 0.508 s to 1.050 s and the largest Lyapunov found was λ1 = 1.5180± 0.0734. The 

variation of the average ln(divergence) for the Lyapunov exponent is presented in Figure 4.25 

for various embedded dimensions. Table 4 presents the largest Lyapunov exponents found for 

p/D = 1.16 at various Reynolds numbers.  
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Figure 4.25 – Average ln(divergence) versus time for various embedded dimensions (De). 

a) Re = 7.22x10³, b) Re = 1.44x104, c) Re = 1.94x104 e d) Re = 2.32x104. p/D = 1.26. 

 

Table 4 – Largest Lyapunov exponent for various Reynolds numbers for p/D = 1.26 

Time series λ1 Std deviation 

Re = 7.22x10³ 0.8375 ± 0.1064 

Re = 1.14x104 1.7826 ± 0.1790 

Re = 1.44x104 1.5180 ± 0.0734 

Re = 1.55x104 1.6859 ± 0.0749 

Re = 1.94x104 2.2773 ± 0.1191 

Re = 2.32x104 1.7644 ± 0.2264 

 

Results for the average ln(divergence) for p/D = 1.16 behaved similarly as those for 

p/D = 1.26. For p/D = 1.60, Reynolds number Re = 7.22x10³ the ln(divergence) was found to 

behave differently. Instead of the divergence starting negative or at smaller values, increasing 

and then stabilizing as happened with the other cases, the ln(divergence) started with a higher 
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value, then decreased, and the values did not stabilize but oscillated between higher and lower 

values. Even though the data is still chaotic and unpredictable, it can be considered unstable, 

and the largest Lyapunov cannot be found, since a linear region is difficult to establish. 

Results for various Reynolds numbers and embedded dimensions are pictured in Figure 4.26. 

For better visualization of the particular case, 10 seconds of data were shown in Fig. 4.26.a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26 – Average ln(divergence) versus time for various embedded dimensions (De). 

a) Re = 7.22x10³, b) Re = 1.44x104, c) Re = 1.94x104 e d) Re = 2.32x104. p/D = 1.60. 

 

The relationship of the largest Lyapunov exponent with various Reynolds numbers for 

the chosen embedded dimensions is shown in Figure 4.27, Figure 4.28, and Figure 4.29, for 

p/D = 1.16, 1.26, and 1.60 respectively. It is possible to observe that, although the data does 

not behave in a linear relationship, there is a tendency of the Lyapunov exponent to increase 

as the Reynolds number increases. Therefore, for higher Reynolds, the tendency is that the 

system became more unpredictable. 
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Figure 4.27 – Variation of the Lyapunov exponent with Reynolds number, for various 

embedding dimensions for p/D = 1.16. 

 

 
 

Figure 4.28 – Variation of the Lyapunov exponent with Reynolds number, for various 

embedding dimensions for p/D = 1.26. 
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Figure 4.29 – Variation of the Lyapunov exponent with Reynolds number, for various 

embedding dimensions for p/D = 1.60. 

 

This hypothesis can be exemplified by an analogy with a potential function or a 

double-well energy model. See Appendix B, Fig. B.1 for an schematic example of the 

following analogy. For a simple mechanical system, considering the potential V(t) to be 

kinetic energy. For lower values of Reynolds for example, there will be a minimum 

admissible velocity for the system. Since the system is non-linear, there would be some time 

instant and some modes where the system would accumulate energy in one of the modes and 

jump into the other mode. As the Reynolds increases, the contribution of energy became more 

elevated, meaning that the switch between the two bistable modes became easier since the 

value of energy that needs to accumulate to jump from one mode to the other is smaller. 

Therefore, the system became more chaotic and more unpredictable, and eventually, the 

bistable characteristics would be lost, and the flow would assume a flip-flopping 

configuration. 

This process can be interpreted as a spontaneous symmetry breaking, meaning the 

system is symmetric, but its behavior is asymmetrical. This idea corroborates with the bistable 

phenomenon, since the system always looks for minimizing potential energy, and in the 

bistable sense, it would mean, that the system accumulates energy in one of the modes until a 

limit is reached and minimizes this energy by switching to the other wake mode. 
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The double well model can be used to represent this system and, in this case, can be 

based on the probability distribution of the signal, being defined as [De Paula, 2013]: 

 

𝐷𝑊𝐸𝑀 =  − ln{𝑃[𝑢(𝑡)]} . (49) 

 

The PDFs for the whole signal and the wake modes are represented in Fig. 4.30. The 

double-well energy models for Re = 1.44x104 and 2.32x104 are represented in Fig. 4.31, Fig. 

4.32, and Fig. 4.33, for p/D = 1.26, 1.16, and 1.60 respectively. It can be verified that the 

wells are not symmetric, neither in large nor in deepness, and it is directly related to the 

probability of the flow falling in one or the other wake mode.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.30  – Probability Density Functions for a) complete bistable time series, b) large 

wake, c) narrow wake. For Re = 1.44x104, p/D = 1.26. 

 

 

 

Figure 4.31– Double well model for a) Re = 1.44x104 and b) Re = 2.32x104. 

p/D = 1.26. 

(a) (b) (c) 

(a) (b) 
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Figure 4.32 – Double well model for a) Re = 1.44x104 and b) Re = 2.32x104. 

p/D = 1.16. 

 

 

 

Figure 4.33 – Double well model for a) Re = 1.44x104 and b) Re = 2.32x104. 

p/D = 1.60. 

 

A probability estimation is made, based on the PDFs of the signals, and the cumulative 

probability for the various Reynolds numbers is plotted in Figure 4.34, Figure 4.35 and Figure 

4.36, for p/D = 1.26, 1.16, and 1.60 respectively. Despite the chaotic characteristics, the 

probabilities follow some tendency, and for p/D = 1.26, the flow has around 45% of 

probability of falling in one or the other wake mode. It was not observed for this case, a 

preferential mode. The transition between two modes corresponds to about 2% to 5 % of the 

probability. 

For p/D = 1.16, the probability curves, represented in Figure 4.35 may suffer some 

direct influence from the time series length. Since the number of mode changes is smaller for 

(a) (b) 

(a) (b) 
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this p/D ratio, the time series during observation tend to remain longer in one of the wake 

modes. For the acquired velocity time series, the large wake seems to be the preferred wake 

mode, even though this assumption cannot be generalized based only on the data sets 

analyzed. 

At p/D = 1.60, represented in Figure 4.36, the majority of the cumulative probability 

curves behave in a very similar tendency. Since the velocity time series behave closer to a 

flip-flop at this aspect ratio, the curves are more subtle, being almost linear.  

 

Figure 4.34 – Cumulative Probability for p/D = 1.26. 

 

Figure 4.35 – Cumulative Probability for p/D = 1.16. 
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Figure 4.36 – Cumulative Probability for p/D = 1.60. 

 

And at last, the two wake modes were analyzed separately. The average ln 

(divergence) of each wake mode system is represented in Fig. 4.37, Fig. 4.38, and Fig 4.39, 

for p/D = 1.26, 1.16, and 1.60 respectively. Analyzing the ln (divergence) for each wake 

separately it is possible to observe some interesting features.  

The large wake, in Fig 4.37 a) starts with a negative divergence that grows and 

became chaotic (values are positive), and then stabilizes around a range of values, for all the 

embedding dimensions. The narrow wake mode, Fig. 4.37.b), on the other hand, starts with a 

positive divergence that decreases fast in the first realizations, it also presents very evident 

oscillations, that would result in a variation between positive and negative Lyapunov 

exponents. These oscillations could be associated with the narrow wake being more unstable 

than the large wake, and therefore possessing more dominance on the switching process. The 

same behavior was verified for the other Reynolds numbers in all p/D. 
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Figure 4.37 – Average ln divergence for a) Large Wake mode and b) Narrow Wake 

mode. Re = 1.44x104. p/D = 1.26. 

 

  

 

 

 

 

 

 

 

 

 

Figure 4.38 – Average ln divergence for a) Large Wake mode and b) Narrow Wake 

mode. Re = 1.44x104. p/D = 1.16. 
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Figure 4.39 – Average ln divergence for a) Large Wake mode and b) Narrow Wake 

mode. Re = 1.44x104. p/D = 1.60. 

 

A model for reconstructing the bistable flow is proposed. The pseudo-frequency of 

mode changing for the various Reynolds numbers and p/D was calculated according to the 

definition: 

 

𝑓𝑝 = 𝑀. 𝐶./𝑁 (50) 

 

were M.C. is the number of mode switches that are counted considering a point of reference in 

the time series (like the mean value for example), and N is the number of data points or the 

length of the signal. The results are presented in Figure 4.40, Figure 4.41, and Figure 4.42 for 

p/D = 1.26, 1.16, and 1.60 respectively.  

This pseudo-frequency is used as one of the parameters for the reconstruction of the 

general bistable signal. The values of the pseudo-frequency were assumed to behave as a 

uniform probability distribution and the values used in the reconstruction were selected by 

Monte Carlo, between the range of 2x10-4 and 7x10-4. Using a random pseudo-frequency in 

the reconstruction made the results more robust and more relatable to the experimental data. 
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Figure 4.40– Variation of the Pseudo-frequency of mode changing with the Reynolds number 

for p/D = 1.26. 

 

 

 
 

Figure 4.41– Variation of the pseudo-frequency of mode changing with the Reynolds number 

for p/D = 1.16. 
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Figure 4.42– Variation of the pseudo-frequency of mode changing with the Reynolds number 

for p/D = 1.60. 

 

The general bistable signals were then reconstructed based on two probability 

distribution functions: Uniform distribution and Normal distribution, and a third 

reconstruction was made using the filtered data originated from HHT for p/D = 1.26. The 

general bistable signals resulting from the process are represented in Figure 4.43.  

For the reconstruction using the Normal distribution, in Fig 4.43.a), two parameters 

are necessary: mean (μ) and standard deviation (σ). Those values were chosen based on the 

statistical analysis made in Section 4.2, and the values used are those typically found for the 

large and narrow wake in experimental bistable time series, with p/D = 1.26. Therefore, for 

the distribution representing the large wake the values of choice where μ ≈ 1.9087 and 

σ ≈ 1.1637, and for the distribution representing the narrow wake, μ ≈ 13.7670 and 

σ ≈ 3.5970. A negative aspect is that this distribution may create negative points in the data 

set, due to its symmetric characteristic of distributing the values around a mean. So, if the 

values are close to zero, as in the case of the large wake, and if the standard deviation is big, 

some values may become negative. 

The reconstruction using a Uniform distribution (Fig. 4.43.b)) consists of a much 

simple and general representation. The values are defined by an inferior and a superior limit 

for the distribution. Those values were based on the range of velocity values that occur for the 

large and narrow wake in the experimental time series. For the large wake, the limits chosen 

were between 0.5 and 4 m/s, and for the narrow wake 10 and 18 m/s. The interval between the 
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limits is the range of values that comprehend the transition between the wake modes and 

therefore was ignored. 

The HHT reconstruction, represented in Fig. 4.43.c), and previously mentioned in 

section 4.1, was used as a secondary method, to verify the effectiveness of the HHT method to 

represent the dynamic of the bistable time series, when compared to other tools.  

 

 

 

 
 

Figure 4.43– Reconstruction of a generic bistable signal using a) Normal distribution, 

b) Uniform distribution and c) HHT reconstruction from C16 to C11. 

 

The PDFs of the general bistable signals are represented in Figure 4.44.a), Figure 

4.44.b) and Figure 4.44.c) for Normal distribution, Uniform distribution, and the HHT 

reconstruction respectively. As one can see, all the cases capture the essence of the bistable 

phenomena somehow, with more or less accuracy.  

When comparing with a PDF typical of a bistable phenomenon, like the one in Fig. 

4.30, it is possible to identify the main differences between the methods. For the case of the 

(a) 

(b) 

(c) 
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Normal distribution, in Fig 4.44.a), the resulting PDF does represent the signal very well and 

captures the two wake mode, but, the main differences and problematic aspects would be 

related to the positive skewness seen in the narrow wake values which are not properly 

represented. 

The uniform distribution, in Fig. 4.44.b) is a general representation of the dynamics; 

therefore, it represents the general range in which the values may occur for each wake. Since 

it does not require a mean value or standard deviation, the representation is flat, and the 

probability is equal for all values. Nevertheless, it would be suitable to represent the dynamic 

system in a simplified way. 

The HHT reconstruction PDF, represented in Fig. 4.44.c) has a most irregular 

distribution. This is probably because the data set used as a base for the PDF is filtered and 

possesses only the lower frequency present in the data, therefore, some information may be 

lost. Also, due to the characteristic of the EMD decomposition, the PDF does not represent 

properly the range of velocity values of the actual phenomenon. 

The strange attractors are reconstructed for the general signals and are represented in 

3D, for each case, in Figure 4.45. As it is possible to see, all the attractors are similar and 

could be said to represent properly the dynamics of the bistable flow and present features seen 

in an experimental bistable flow. 

For the Normal distribution case, Fig. 4.45.a), the attractor seems flatter, meaning, the 

path between the two basins of attraction has a smaller inclination. The Uniform distribution 

case, Fig. 4.45.b) seems to be closer in shape, when compared to the strange attractor shown 

in Figure 4.21 for example. The strange attractor created by the HHT reconstruction, in Fig 

4.45.c) is the most different in comparison, presenting some structures that resemble loops, 

and the path between basins of attraction is not well defined, but in general, the topology is 

similar to what is expected of a bistable strange attractor. 
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Figure 4.44– Probability density function for a) Normal distribution general bistable signal, b) 

Uniform distribution general signal and c) HHT reconstruction signal. 
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Figure 4.45– 3D strange attractor representation for a) Normal distribution general bistable 

signal, b) Uniform distribution general bistable signal and c) HHT reconstruction signal. 

 

 

5 CONCLUDING REMARKS 

This work presents a study of the bistable flow after two cylinders side-by-side using 

tools like Hilbert-Huang transform and statistical methods for signal analysis; and chaos 

theory for dynamic analysis.  

The Hilbert-Huang transform is a combination, in this case, of the ensemble empirical 

mode decomposition (EEMD) and the Normalized Hilbert Spectral Analysis (NHSA), being a 

viable tool for non-linear and non-stationary data analysis. The statistical methodology is 

(a) (b) 

(c) 
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interesting for identifying patterns in the flow and the chaos theory combines a series of tools 

to describe the dynamic system, like Lyapunov exponents and fractal dimensions. 

The HHT method was previously validated using a single cylinder (see Appendix A 

for results) as a parameter and extended to a bistable turbulent flow after two cylinders side-

by-side. For the bistable flow, two cylinders of D = 25.1 mm were used, with a p/D = 1.16; 

1.26 and 1.60, and various Reynolds numbers. 

Results demonstrated that the IMFs that present the higher correlation and the most 

important amount of information in the bistable flow are those of lower frequency (higher 

IMF number). In the Hilbert spectrum, no specific range of frequency was highlighted, 

demonstrating that the method may not be so efficient in separating frequencies when they 

occur simultaneously and with values not far apart, as is the case in bistability. Some energy 

although could be observed in the lower frequency range, emphasizing that the bistability is a 

low frequency phenomenon. The power spectra of the IMF components showed that the 

EEMD decomposition may not separate the flow scales properly in complex flows like the 

bistable one. 

The energy contained in each IMF component was calculated by the Mean Square 

Energy equation. Results demonstrated that the Reynolds number variation has no direct 

influence on the most energetic IMF component, and for the same p/D this component could 

be considered the same for all Reynolds. The aspect ratio p/D on the other hand has a direct 

influence on the most energetic component, the higher the p/D the lower the IMF component 

with higher energy. This means that the energy in higher p/D is contained in a smaller flow 

scale (higher frequency) than for smaller p/D. A similar relationship with Reynolds number 

and p/D was observed for the IMF correlation coefficient. 

The statistical analysis was performed in fragments of eight seconds extracted from 

the original velocity time series. In this analysis the data was scanned by a window, creating 

blocks of data points that were converted into PDFs. The four first statistical moments were 

calculated for each PDF block. Results showed that the statistical moments behaved in a very 

similar pattern for each p/D. For the standard deviation when the flow was in the large wake 

mode, the values were higher and oscillated around 0.4 - 0.6. When the flow changed to the 

narrow wake mode, the values decreased to close to zero, and peaks could be observed in 

attempts of changing. For skewness, the large wake corresponds to positive values between 

zero and 2 and the narrow wake presents a negative skewness whose values oscillated 

between a wider range. At kurtosis was possible to observe that the large wake presented 
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values the oscillated around zero, while the narrow wake presented higher values of kurtosis 

that varied according to the time the flow remained in this wake mode. It was not possible to 

establish a unique value for the wake modes statistics, but a range of values could be 

considered. It was possible to observe that the statistical moments behave following a pattern. 

No direct influence of the Reynolds number was observed in the statistical values. 

Chaos theory was applied as a tool to study the dynamics of the bistable flow. The 

strange attractors created by the method showed the geometric behavior of the flow and the 

presence of two basins of attraction that can be associated with each wake mode. Also, the 

topological analysis of the attractor brought some light to the physics of the bistable 

phenomenon, demonstrating the influence of acceleration and jerk in the process of mode 

switching. 

The largest Lyapunov exponent was calculated for the bistable flow, and as was 

already shown in previous works, bistability presents a chaotic behavior, demonstrated by the 

presence of a positive Lyapunov exponent. The influence of the Reynolds number in the 

Lyapunov exponent was explored, and the results showed that the Lyapunov exponent tends 

to increase as the Reynolds number increases. This result demonstrates that the bistable flow 

becomes more chaotic for higher Reynolds numbers. An analogy with a double-well model 

was made and the fact that the flow becomes more chaotic with the Reynolds, until the point 

where the bistability would be lost can be interpreted as a spontaneous symmetry breaking 

since the system is symmetric, but its behavior is not. 

Each wake mode was also analyzed separately using the largest Lyapunov exponent. 

These results identified that even though both wake modes are chaotic, the narrow wake mode 

is more unstable since its ln (divergence) oscillates between higher and lower values and is 

not possible to establish only one Lyapunov exponent. The large wake, on the other hand, 

presents an ln (divergence) that increases and stabilizes around a value, and a positive 

Lyapunov exponent can be identified. These results demonstrate that the narrow wake, for its 

unstable characteristics, might be the dominant wake in the switching processes. 

A general bistable model was created using Normal and Uniform probability functions 

and with the reconstruction created by the lower frequency IMFs from the HHT method. The 

data sets were sampled using Monte Carlo. The strange attractors of the general signals were 

reconstructed. Each result showed some particularities and some aspects that diverged from 

the original dynamics, but in general, all the methods were satisfactory and appropriately 

reproduced the bistable dynamics.  
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This work also showed that the bistable phenomenon can be reconstructed using only 

the lower frequency IMF components, excluding the IMF components that represent the 

turbulent part of the signal (same effect obtained by using DWT), and yet be well represented. 

The fact that the dissipative part can be removed, but bistability is still well characterized, 

leads to understand that bistability is not a dissipative phenomenon itself, and the dissipative 

part comes from the turbulence, which is alike for all turbulent flows. This is also 

corroborated by the interpretation that the bistability is a temporal-symmetric phenomenon, 

and if it was dissipative this symmetry would be broken. 
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APPENDIX A   Single Cylinder Results 

 

A.1  Same Reynolds number  

 

In this section, the different diameters are analyzed under the same Reynolds number, 

Re = 1.71x104. Figure A.1 shows the power spectral density, as a function of the Strouhal 

number, for three diameters. The frequency peaks found in the spectra correspond to Strouhal 

numbers of 0.2240, 0.2181 and 0.2289 for D = 25.1 mm, 32 mm, and 50 mm respectively. 

The Ensemble empirical mode decomposition (EEMD) was performed on the velocity 

signals for the three diameters. The decomposition resulted for each signal in 16 Intrinsic 

Mode Functions (IMF) plus a residue which is a monotonic function from which no further 

IMF can be extracted. The IMFs for D = 25.1 mm are represented in Fig. A.2, only the first 10 

seconds of data are shown to enable better visualization of the oscillatory behavior of each 

component. The IMFs for the other diameters have very similar characteristics and therefore 

will be disregarded. 

Each oscillatory mode present in the flow is represented by an IMF; small order IMF 

components represent the high frequency terms and the finest scales in the flow. In Fig. A.2 it 

is possible to see that the total amplitude of the IMFs reduces as the frequency reduces. The 

oscillatory behavior that can be associated with the vortex formations and flow scales can be 

identified from IMF 1 to 8 (C1 to C8). Looking in detail to IMF 3 (C3), Fig. A.3 a), it is 

possible to see an oscillatory behavior characteristic of vortex shedding caused by the cylinder 

in the flow. This oscillatory behavior is also seen in smaller amplitudes in IMF 4 and 5 (C4 

and C5), Fig. A.3 b) and c). This demonstrates that the vortex shedding does not occur at a 

fixed frequency, but rather oscillates around a frequency range. IMF 8 (C8), which 

corresponds to the lower frequency and a larger scale, presents a more homogeneous 

oscillatory characteristic. High order IMFs (IMF C9 to C16) present an almost monotonic 

behavior and frequencies very close to zero. Those IMFs do not have any physical 

significance in the flow and can be considered as pseudo frequencies originated from the 

decomposition. 
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Figure A.1- Dimensionless power spectra for different diameters and Re = 1.71x104. 
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Figure A.2 – Intrinsic Mode Functions and residue for D = 25.1 mm. Re = 1.71x104. 
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According to Huang et al., 2013 the physical meaning of IMFs is the decomposition of 

the original signal in quasieigenmodes with locally homogeneous oscillating properties. The 

intrinsic mode functions represent, therefore, the flow wave modulations in their characteristic 

time scale. For a better comprehension of the scales involved in the flow, Fig. A.4, shows the 

wavenumber spectra of the 16 IMFs of the 25.1 mm diameter at Re = 1.71x104 and the spectra 

of the original velocity fluctuation.  

It is possible to observe in the spectra that the first five IMF components are those 

carrying the features of the signal corresponding to the vortex shedding frequencies and the 

first harmonic, characterized by the peaks in turbulence spectra and corresponding IMF. 

Components from IMF 5 to IMF 8 correspond to the energy comprehended in the largest 

scales of the flow and generated by the channel itself. Subsequent IMFs have almost uniform 

energy for a gradual increase of the scales, characterized by the reduction of the 

dimensionless wavenumbers; therefore, they do not contribute with the fluid motion and 

present no physical flow meaning, and can be interpreted as an artifice of the method to fulfill 

the number of total IMFs. For better visualization of IMF features, in the following spectra, 

only the 8 first components will be represented. 

Figures A.5, A.6, and A.7 present the dimensionless wavenumber spectra of IMF and 

velocity fluctuation for the three diameters 25.1 mm, 32 mm, and 50 mm, respectively, and 

the same Reynolds number Re = 1.71x104. The five first IMF are indicated by tags (C1 to C5) 

and contain information about the small scales in the flow, and the vortex shedding 

frequencies. One can see that the IMF components behave essentially the same way for all 

studied diameters, demonstrating the hypothesis of similarity and self-preservation of the flow 

by associating the IMF corresponding scale to a wavenumber in spectra. That hypothesis 

states that at all high Reynolds numbers the processes that determine the main structure of 

turbulent motion are independent of the fluid viscosity and that the structure at all instants of 

time is similar [Townsend, 1956]. 

Since each IMF represents locally homogeneous oscillating properties, it is possible to 

associate each one of them to a corresponding dimensionless wavenumber k*, and 

consequently to a flow scale. The first IMF (C1) can be associated with the finest scales in the 

flow and fits in the wavenumber range of 4 < k* < 21. Component C2 englobes part of the 

fine scales and the frequencies related to the first harmonic, 1 < k* < 6. Third, to fifth IMFs 

(C3 to C5) present the contents corresponding to the energy of vortex shedding, fitting in the 
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range of wavenumber 0.2 < k* < 2. IMFs C6 to C8 correspond to the wave modulations of the 

largest scales in the flow and contribute to the fluid motion energy, also they are related to 

vortices generated by the channel itself from 0.02 < k* < 0.2. Higher orders IMFs do not have 

a significant energetic contribution to the fluid motion and can be considered as a 

pseudofrequency, originated from the decomposition method, they present dimensionless 

wavenumber k* < 0.02. 

 

 

 

 

 

 

 

 

 

 

Figure A.3 – Detail of IMF components C2, C3, and C4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.4 – Dimensionless wavenumber spectra of IMF components and velocity fluctuation 

for D = 25.1 mm, Re = 1.71x104. Velocity fluctuation is a solid black bold line. IMF 

components 1 to 5 are in solid grey lines and indicated by arrows (C1 to C5). Higher-order 

IMFs are in dashed lines.  
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Figure A.5 – Dimensionless wavenumber spectra for D = 25.1 mm. Re = 1.71×104.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.6 - Dimensionless wavenumber spectra for D = 32 mm and. Re = 1.71×104. 
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Figure A.7 – Dimensionless wavenumber spectra for D = 50 mm. Re = 1.71×104. 

 

Based on the definition of IMF, which is any function having symmetrical envelopes 

defined by the local maxima and minima separately, in which the number of zero-crossings 

differs at most by one from the number of extrema, one can determine the mean period of the 

function by counting the number of peaks (local maxima) of the function. Table A.1 lists the 

mean period in terms of the number of data points, and the corresponding period in seconds, 

for the IMF mode generated for the signal from the 25.1 mm cylinder with a data sample of 

131,072 points. By analyzing the mean period of each of the 16 IMF, it is possible to identify 

that for any IMF component each mean period almost doubles the value of the previous one. 

From the spectra of the IMF components in Fig. A.4, it is observed that the IMFs tend to 

organize themselves like a filter bank structure. The filter associated with the first mode (C1) 

is essentially a high pass filter, and the modes of higher order are characterized by a set of 

overlapping bandpass filters. Furthermore, each mode of the index (i + 1), i ≥ 2 occupies a 

frequency domain which is approximately the upper half-band of that of the previous index 

[Flandrin et al., 2004]. 
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Table A.1 - Mean period associated with each IMF, for D = 25.1 mm, Re = 1.71×104. 

 

IMF 

Mode nº 
1 2 3 4 5 6 7 8 

Mean 

Period T 
3.1508 7.3454 10.0269 23.3017 47.0298 92.4344 182.8061 363.0803 

Period T 

[s] 
0.024 0.056 0.077 0.178 0.358 0.705 1.395 2.770 

IMF 

Mode nº 
9 10 11 12 13 14 15 16 

Mean 

Period T 
740.52 1456.4 2849.4 5461.3 13170 21845 65536 131072 

Period T 

[s] 
5.649 11.111 21.739 41.666 100.479 166.664 500.000 1000.000 

 

After performing the EEMD on the velocity signal, the Hilbert transform is applied to 

each IMF component. The Hilbert spectral analysis shows each instantaneous frequency at its 

corresponding time and energy amplitude. It can be interpreted as a weighted non-normalized 

joint amplitude-frequency-time distribution, the local amplitude being the weight assigned to 

each time-frequency cell, giving the exact occurring time of the oscillations [Huang et al., 

1998].  

Figure A.8 shows the normalized Hilbert Energy Spectra (NHES) for different 

diameters and a constant Reynolds number. The vertical axis on the left side of the graphic 

represents frequency in Hz, the vertical axis on the right side is the corresponding Strouhal 

number. The lower horizontal axis represents time in seconds, and the upper horizontal axis is 

a dimensionless time. It is observed that the higher concentrations of amplitude for each 

diameter are in the band range that corresponds to the vortex shedding frequencies, which are 

93.74 Hz, 56.64 Hz, and 23.44 Hz, and corresponding Strouhal numbers of 0.2240, 0.2181, 

and 0.2289. That was expected since this range corresponds to the most energetic IMFs. It is 

also visible that the shedding frequency is not constant; rather it oscillates about a constant 

value, corresponding to a St ≈ 0.21 along time. The energy contents of the first harmonics are 

also present in the NHES but in a larger frequency band, giving to them a more dispersed 

appearance and very poor resolution, which difficult identification. The pseudo frequencies 
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created by the decomposition method appear concentrated in the frequencies close to zero and 

have no physical meaning. 

Figure A.9 shows the continuous Wavelet transform of the velocity signal. A db20 

wavelet was used in this analysis. The highlighted energy is concentrated in the bands around 

the vortex shedding frequency. Due to the characteristic of the wavelet transform of a giving 

frequency resolution and consequently uniformly poor time resolution [Huang et al., 1999], 

the effects of the wavelet are visible in frequencies higher and lower than the actual vortex 

shedding frequency. In comparison, the NHES defines clearly what the frequency limits are, 

and though there is some dispersion in the highest frequencies, it is also possible to visualize 

the presence of the first harmonic, especially in Fig. A.8 b), in the region around 100 Hz. 

Results corroborate that the shedding frequency is not constant as shown in Fig. A.9. 
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Figure A.8 – Normalized Hilbert spectrum for (a) D = 25.1 mm, (b) D = 32 mm and 

(c) D = 50 mm. Re = 1.71x104.
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Figure A.9 - Continuous Wavelet transform (a) D = 25.1mm, (b) D = 32 mm, and 

(c) D = 50 mm. Re = 1.71×104. 

 

By definition, a coherent structure is a large-scale turbulent mass of fluid with phase-

correlated vorticity over its spatial extent [Hussain, 1983], distinguished in a turbulent flow 

from how much energy it contains. The EEMD method also recognizes the coherent structure 

in the sense of the mean energy. A mode can be considered a coherent structure if its mean 

energy exceeds 10% of the whole fluctuation energy [Zhu et al., 2016]. 

The Mean Square Energy (MSE) was calculated according to Eq. 40. Figure A.10 

illustrates the dimensionless mean square energy of each IMF for the three diameters at the 

same Reynolds number, Re = 1.71×104. The energy increases in the first IMF modes, reaching 
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the maximum value at the third IMF (C3) for 25.1 and 32 mm; the maximum value occurs at 

the fourth IMF (C4) for the 50 mm. Compared with the whole energy fluctuations, those 

modes with maximum values account for 62.7 %, 48.9 %, and 53.36 % of the total energy, 

respectively. After reaching the maximum value, the energy starts decreasing in the higher-

order IMFs reaching a minimum at C8 and remaining constant for higher-order IMFs. The 

decrease in the energy amounts for the higher-order IMF is also indicative that the large scale 

does not have a significant contribution to the dynamics of the fluid motion after the cylinder. 

Hence, IMF 9 to 16 have similar energy for all diameters, most likely because they 

correspond to pseudo frequencies generated by the decomposition method, and do not have 

physical significance. 

 

 

 

Figure A.10 – Dimensionless Mean Square energy for different diameters. Re = 1.71x104. 

 

Figure A.11 presents the joint Probability Density Function (PDF) of the normalized 

amplitude and frequency of the first five IMF components for the various diameters at the 

same Reynolds number. The inferior horizontal axis represents frequency in Hz, and the upper 

horizontal axis represents the dimensionless wavenumber (k*). It is possible to observe that 

the first IMF contains higher frequencies, and its amplitude is lower, with the concentrations 

distributed in a wide range of frequency values, from around 200 Hz to 500 Hz. For 25.1 mm 
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320 Hz and the other in the range of 350 Hz to 450 Hz. This behavior for C1 is not visualized 

in the PDFs for other diameters. As the IMF order increases, the distributions concentrate in 

smaller ranges of frequencies, since the increase in the IMF order means large flow scales and 

a more monotonic IMF component. Also, the overlapping of IMF components is observed in 

the range of the vortex shedding frequencies; this behavior is due to the oscillation of the 

vortex shedding frequency around a fixed value, hence more than one IMF containing those 

frequencies, as was observed in the spectra in Figs. A.5, A.6, and A.7. 

By observing Fig. A.11 the IMFs with higher energy for Re = 1.71×104 are C3, for 

cylinders with a diameter of 25.1 and 32 mm and C4 and C5 for the 50mm cylinder. These 

IMFs have two important features, compared to the others: they are concentrated on a region 

about the shedding frequency, showing that the shedding process does not occur on a sharp 

fixed frequency, rather it wanders about that value, and there is a high probability of these 

frequencies present high amplitudes combined with high energy values. These IMFs 

correspond to the shedding vortices characterizing, according to Hussain, 1983, the so-called 

preferred mode, the characteristic geometric configuration of the structure in the physical 

space. The wandering shedding frequency may be a consequence of the three-dimensionality 

of the wake flow resulting from vortex dislocation along the cylinder and time [Miau et al., 

2007]. Therefore, EEMD is an efficient process of the eduction of coherent structures. 
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Figure A.11 – Joint PDF of amplitude and frequency for (a) D = 25.1mm, (b) D = 32 mm and 

(c) D = 50 mm. Re = 1.71×104.  
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A.2  Different Reynolds numbers 

 

In this section, the previous study is extended to various Reynolds numbers for the 

previous diameters. Figure A.12 represents the dimensionless power spectra as a function of 

Strouhal number for the diameters of 25.1, 32, and 50 mm at various Reynolds numbers 

corresponding to free stream velocities of U = 5.08, 10.5, and 16 m/s, according to Table A.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.12 - Dimensionless power spectra for different diameters for various Re, 

(a) D = 25.1 mm; (b) D = 32 mm and (c) D = 50 mm. 
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The EEMD method was applied to the various velocity signals generating a set of 16 

IMF components for each signal. Due to the similarities with the IMF components shown in 

Fig. A.2, this part will be omitted in this section. 

The wavenumber spectra showing the variation in the Reynolds number and the 

influence in the IMF structure are shown for various diameters in Fig. A.13, for D = 25.1 mm, 

Fig. A.14, for D = 32 mm, and Fig. A.15, for D = 50 mm. Essentially all the IMFs in the 

many different Reynolds numbers behave the same. The first IMFs, usually C1 to C5, 

comprehend the flow features such as the vortex shedding frequency. Higher-order IMFs, 

from C6 to C8, represent the flow motion energy or the large scales. Therefore, as one can 

see, the self-preservation and self-similarity hypotheses do not depend on the Reynolds 

number.  

The filter bank characteristic of IMF also does not suffer the influence of the Reynolds 

number. It is visible that as the Reynolds number increases, the spectra dislocate the first 

IMFs to the right (higher wavenumbers), this influences the IMFs corresponding to the vortex 

shedding frequencies. So, as the Reynolds number reduces, the order of the IMFs 

corresponding to the shedding process increases. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.13 – Dimensionless wavenumber power spectral density for D = 25.1 mm, 

(a) Re = 8.25×10³, (b) Re = 1.71×104, and (c) Re = 2.61×104. 
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Figure A.14 – Dimensionless wavenumber power spectral density for D = 32 mm, 

(a) Re = 1.05×104, (b) Re = 2.18×104, and (c) Re = 3.28×104. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.15 - Dimensionless wavenumber power spectral density for D = 50 mm, 

(a) Re = 1.71×104, (b) Re = 3.42×104, and (c) Re = 5.17×104. 
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The Normalized Hilbert-Huang transform was performed on each set of IMFs of each 

signal. Figure A.16 shows the NHES for D = 25.1 mm at various Reynolds numbers. One can 

see the evolution and increase in the frequency of vortex shedding with the increase in 

Reynolds number. 

Calculating the mean square energy of the IMFs for each diameter, represented in Fig. 

A.17 for D = 25.1; Fig. A.18 for D = 32 mm and Fig. A.19 for D = 50 mm, is possible to 

identify a pattern in the behavior of the most energetic IMF. The augment in Reynolds 

number reduces the order of the IMF containing the biggest amount of energy that is also 

visible in the power spectrum represented in Figs. A.13, A.14, and A.15. The most energetic 

IMF, corresponding to the location of the coherent structures of the flow varies from IMF 4 or 

3, for the lowest velocity, and IMF 2 or 1 for the highest velocity.  

The Joint PDFs the normalized amplitude and frequency for the first five IMFs, in the 

various Reynolds numbers, for D = 32 mm, are shown in Fig. A.20. The upper horizontal axis 

represents dimensionless wavenumber (k*), the lower horizontal axis represents frequency in 

Hz. As the Reynolds number increases for a constant diameter, the amplitude of the energy 

also increases. The higher energy IMF changes according to the Reynolds numbers, for the 

smallest Reynolds number Re = 1.05×104, is C4, for Re = 2.18×104 is C3 and for 

Re = 3.28×104 is C2. It is possible to see that those IMF containing the vortex shedding 

features tend to overlap with other IMF components like C4 with C3 and C5 for 

Re = 1.05×104, and C2 with C3 for Re = 2.18×104, showing that the shedding process does 

not occur at a fixed frequency, but due to the three-dimensionality of the wake flow wanders 

around that value. This fact also demonstrates that the coherent structures are present and 

identified around the same flow scale, corresponding to the wavenumber range of k* = 0.9 to 

k* = 2.50. 
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 Figure A.16 – Normalized Hilbert spectrum for D = 25.1 mm. (a) Re = 8.25×10³, 

(b) Re = 1.71×104, and (c) Re = 2.61×104. 
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Figure A.17 – Dimensionless mean square energy for D =25.1 mm at various Reynolds 

numbers. 

 
 

Figure A.18 – Dimensionless mean square energy for D =32 mm at various Reynolds 

numbers. 

 

 

Figure A.19 – Dimensionless mean square energy for D =50 mm at various Reynolds 

numbers.  
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Figure A.20 - Joint PDF of amplitude and frequency for D = 32 mm at (a) U = 5.08 m/s, 

(b) U = 10.5 m/s and (c) U = 16 m/s. 
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APPENDIX B   Double Well Analogy 

 

Figure B.1 is referent to the analogy made in Chapter 4, Section 4.3. 

For a simple mechanical system, considering the potential V(t) to be kinetic 

energy,M1 and M2 represent the two wake modes. For lower values of Reynolds for example, 

there will be a minimum admissible velocity for the system, represented as a grey line in Fig. 

B.1. Since the system is non-linear, there would be some time instant and some modes where 

the system would accumulate energy in one of the modes and jump into the other mode. As 

the Reynolds increases, the contribution of energy became more elevated, meaning that the 

switch between the two bistable modes became easier since the value of energy that needs to 

accumulate to jump from one mode to the other is smaller. Therefore, the system became 

more chaotic and more unpredictable, and eventually, the bistable characteristics would be 

lost, and the flow would assume a flip-flopping configuration. 

 

 

 

 
 

 

Figure B. 1 – Double well energy model analogy for the bistable phenomenon. 
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