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ABSTRACT 

Robust artificial intelligence models have been criticized for their lack of uncertainty 

control and inability to explain feature importance, which has limited their adoption. However, 

probabilistic machine learning and explainable artificial intelligence have shown great 

scientific and technical advances, and have slowly permeated other areas, such as Traffic 

Engineering. This thesis fulfils a literature gap related to probabilistic traffic breakdown 

forecasting. We propose a traffic breakdown probability calculation methodology based on 

probabilistic speed predictions. Since the probabilistic characteristic is absent in traditional 

formulations of neural networks, we suggest using Variational LSTMs to make the speed 

forecasts. This Recurrent Neural Network uses Dropout to produce a Bayesian approximation 

and generate probabilistic outputs. This thesis also investigates the effects of inclement weather 

on traffic breakdown probability and methods for identifying traffic breakdowns. The proposed 

methodology produces great control over the probability of congestion, which could not be 

achieved using deterministic models, resulting in important theoretical and practical 

contributions. 

Key words: traffic breakdown, traffic forecasting, neural networks, inclement weather, 

Bayesian statistics. 
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1  INTRODUCTION 

Congestion is a traffic state with unreasonable performance due to excess demand in 

a given segment or network. It occurs at a certain level in most cities worldwide in both urban 

and suburban areas and might impose high social costs. A study in Brazil suggests that travels 

with more than 30 minutes, an ideal maximum value for commuting (Bertaud, 2018), take on 

average 114 minutes and generate a loss of productive potential greater than R$ 111 billion 

yearly. Porto Alegre, where the study site of this thesis is placed, is the fifth city in terms of 

productive potential loss between the capitals, reaching more than R$ 3.4 billion, or 2.9% of its 

IGP (FIRJAN, 2015). 

The causes of traffic congestion vary from site to site. In this study, we strictly explore 

the phenomenon of congestion formation on highways. In this context, congestion can be 

generated due to bad geometric design, accidents, inclement weather, spillback from urban 

congestion nearby, constructions and, more recurrently, due to excessive demand. The excess 

of demand means that demand is higher than a certain threshold that the segment supports with 

reasonable traffic conditions, which is formally called capacity by the Traffic Engineering 

community (TRB, 2016). 

Highway capacity is strongly related to traffic breakdown, which is the main subject 

of this thesis. Breakdown is the point from which the traffic flow begins transitioning from the 

free flow regime to a congested state. It usually happens when demand exceeds capacity and 

precedes a rapid speed and decrease in traffic flow. This phenomenon is depicted in Figure 1. 

 
Figure 1: Traffic breakdown. Adapted from (Chaudhary et al., 2004). 
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Traffic breakdown happens when a given segment is so saturated that an inaccurate 

lane change or breaking causes a cascade effect on the upstream traffic, leading to a great 

reduction in speed and even complete stops. From this point on, the traffic flow will hardly 

recover to a free-flow state until the demand also decreases. The exact value of traffic flow that 

causes the breakdown is not a fixed number related to the capacity. It might vary daily due to 

changes in the demand profile, weather conditions and even the attention and dexterity level of 

each driver. This imposes a stochastic characteristic to traffic breakdown and hence to highway 

capacity, which the Transportation Engineering Community has widely studied (Brilon, 

Geistefeldt e Regler, 2005; Chen e Ahn, 2018; Elefteriadou, Roess e McShane, 1995; Kondyli 

et al., 2013; Persaud, Yagar e Brownlee, 1998; Qu, Zhang e Wang, 2017) and is called “classical 

understanding of stochastic highway capacity” (Kerner, 2019). 

Congestion side effects can be mitigated through multiple strategies. The most 

expensive are changes in the infrastructure, such as the construction of extra lanes, which 

immediately increase capacity. Although straightforward and effective, this approach has some 

side effects, such as induced demand, increased walking distance for crossing and impacts on 

the surrounding area. An alternative and often complementary approach is the use of Active 

Traffic Management (ATM) strategies, such as ramp metering (Zechin, Cybis e Caleffi, 2016) 

and variable speed limits (Caleffi, Moisan e Cybis, 2016). ATM strategies aim to respond to 

changes in the traffic state and dynamically actuate to coordinate it, optimize traffic output, and, 

among others, detain the occurrence of traffic breakdown. 

ATM strategies have increasingly incorporated forecasted data due to the abundant 

information available and the development of better forecasting models. Between the better-

performing and most adopted forecasting models, LSTM (Long Short-Term Memory) neural 

networks and their variations have played a significant role (Akhtar e Moridpour, 2021). 

Therefore, anticipating traffic states, especially the occurrence of traffic breakdown, offers 

substantial contributions to ATM strategies and the mitigation of congestion effects. 

This thesis proposes a methodology for traffic breakdown probability forecasting, 

which could be incorporated into multiple ATM strategies. For doing so, we suggested using 

Variational LSTMs, a variation of the classical LSTMs that can make probabilistic forecasts 

through Bayesian approximation. Our methodology uses the Variational LSTM to forecast 

sequences of speed distributions and, using a proposed formulation, calculate the breakdown 

probability for multiple future time steps. 
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1.1 Theme and main goals 

This thesis is inserted in the area of Traffic Engineering dedicated to studies of the 

road environment and has an interface with the area of Intelligent Transportation Systems. The 

study's main objective is to propose a methodology for short-term probabilistic traffic 

breakdown forecasting on highways, and for that, we use a Variational LSTM neural network. 

The secondary objectives are: 

a) Evaluate the effect of inclement weather on traffic breakdown probability; 

b) Propose a forecasting model with probabilistic characteristics; 

c) Increase the relative importance of predictions made during high-demand periods; 

d) Evaluate the predictions on different traffic states to better understand its quality; 

e) Propose a model optimization methodology. 

1.2 Justification 

This research is justified due to its methodological, theoretical, and practical 

contributions to the existing literature. As for the methodological contributions, we proposed 

using Variational LSTM neural networks to produce probabilistic traffic speed forecasts. 

Classical neural networks are deterministic and lack the probabilistic characteristics required 

for our study. Variational LSTMs use Dropout during inference to approximate Bayesian 

inference, giving it probabilistic characteristics (Fortunato, Blundell e Vinyals, 2017; Gal e 

Ghahramani, 2016a; b). Other relevant methodological contributions are increasing the 

relevance of high-demand periods during the model training, which biases the model to focus 

on critical traffic conditions, and evaluating the predictions for different traffic states, which 

enlarges the understanding of its performance and we could not find in past studies. 

The theoretical contributions are mainly related to the proposed formulation for traffic 

breakdown probability calculation based on probabilistic speed forecasts. Although there is 

extensive literature on, e.g., speed, flow, congestion, and travel-time forecasting (Akhtar e 

Moridpour, 2021), we could not find studies that aim to forecast breakdown probability and 

explore the forecasting horizon as we proposed. There is strong support for using recurrent 

neural networks for general traffic forecasting purposes, but few alternatives to deal with it 

probabilistically. We understand that this happens since probabilistic approaches of neural 

networks are still under development, and this knowledge has not thoroughly permeated into 

the Traffic Engineering community, which produces a gap that we have hopefully partially 

fulfilled. 
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The practical contributions of our methodology are especially related to the road 

operator side. Since our methodology enables producing probabilistic breakdown forecasts, 

road operators can anticipate the occurrence of this phenomenon with more control than by 

using traditional deterministic methods. This methodology can also be incorporated into Active 

Traffic Management strategies such as ramp metering and variable speed limits to increase their 

effectiveness. Although the probable direct user of our methodology is the road operator, we 

algo expect road users to have a better driving experience. 

1.3 Structure 

This thesis was written in a three-articles format. The document comprises six main 

sections, which are an Introduction, a chapter for each article, Complementary Materials and a 

final chapter of Conclusions. The articles' sequence and themes were essential for the realization 

of this work. In the first article, we understood the characteristics of the data we deal with, the 

characteristics of the traffic and the influence that rain has on the occurrence of breakdown. In 

the second, we tested and developed the necessary skills to make good speed predictions. In the 

third, we combine the concepts covered in both articles by proposing a methodology for 

breakdown forecasts that respects their stochastic characteristics.  

The first article, entitled “Influence of Rain on Highway Breakdown Probability”, 

was presented at the Transportation Research Board conference and later nominated for 

publication in the Transportation Research Record magazine. In this article, we studied the 

effect of rain on the probability of breakdown occurrence. We crossed rainfall data with traffic 

data and plotted breakdown probability curves as a function of traffic flow for different rainfall 

intensities. We plotted these curves using the Kaplan-Meier survival analysis model, which 

allowed us to show a significant effect of rain on breakdown occurrence. 

The second article, entitled “Forecast of traffic speeds with an encoder-decoder 

LSTM neural-network”, was presented at the national congress of ANPET and nominated for 

publication in Revista Transportes. This article proposes a methodology for future traffic speed 

predictions of up to 25min using LSTM neural networks. Given the conclusions of the first 

article, we included rainfall data as a feature of the proposed model. Neural networks are 

flexible and can be structured in different ways. Because of this, we suggested using the neural 

network hyperparameter optimization called Hyperband. We validated the predictions by 

building breakdown probability curves with them and with data collected in the field and 

statistically testing their equivalence. 
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The third article, entitled “Probabilistic traffic breakdown forecasting with 
Variational LSTM neural networks”, was published in Transportmetrica B. In this article, 

we proposed the probabilistic breakdown forecasting methodology that gives name to this 

thesis, being a natural sequence of the other articles that compose it. The motivations for this 

article are: (i) breakdown probability estimation models are not suitable for forecasting, (ii) the 

most used and best-performing traffic forecasting models use neural networks, (iii) the classic 

network formulations neural networks are deterministic, not producing information about the 

credibility of individual forecasts, (iv) the few studies that approach traffic forecasts in a 

probabilistic way do not focus on the breakdown. Because of this, there is a large gap in the 

literature regarding ways to perform probabilistic breakdown forecasts. In this article, we 

propose a methodology that fills this gap with two main contributions: (i) a formulation for 

calculating the breakdown probability using probabilistic velocity forecasts and (ii) to perform 

probabilistic velocity forecasts, using a neural network of the type Variational LSTM. This 

made it possible to calculate the probability of a breakdown occurring for different time 

horizons. The Variational LSTM neural network uses Dropout during inference to give the 

outputs a probabilistic character through approximate Bayesian inference. The choice of this 

neural network was made based on a bibliographic review and also on account of its 

probabilistic characteristic. To test the quality of the forecasts, we compared them with 

forecasts made using other baseline models. The proposed methodology provided a high level 

of control over the occurrence of a breakdown, which would not be possible using deterministic 

forecasts. 

We believe that this work resulted in interesting contributions to the theory and 

practice of Traffic Engineering. In addition to having achieved significant results, we believe 

that a good part of the contributions is related to the development of the articles. We seek to 

make clear the steps taken to achieve these results, avoiding the use of closed models and 

explaining how we optimized the chosen neural network model. We also made the used 

database public, which allows other researchers to test and propose the use of other models in 

future studies (Zechin, 2022). We understand that the use of neural networks is still incipient in 

the area of Traffic Engineering compared to its potential, partly because of their explainability 

restrictions. We hope this work contributes, even if discreetly, to the evolution of this field of 

studies. 
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1.4 Research stages 

To achieve the results of these three articles, we adopted the sequence of research 

stages presented Figure 2. We detailed each of these stages in the following subsections. 

 
Figure 2: Research stages 

1.4.1 Study subject identification 

The study subject identification is a sequence of past studies in the region of the Guaíba 

Bridge, in the metropolitan region of Porto Alegre, Brazil. This region presents daily congestion 

during the morning due to the confluence of the traffic flow from the BR-290 highway with the 

flow from the bridge, as shown in Figure 3. 

 
Figure 3: Study site. Source: Google Maps. 
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We used this region as a study site for several past studies of our research group. These 

studies include the effectiveness of active traffic management strategies, such as ramp metering 

and variable speed limits (Caleffi, 2018; Caleffi, Moisan e Cybis, 2016; Zechin, Cybis e Caleffi, 

2016), influence of inclement weather on the occurrence of accidents (Caleffi et al., 2016), 

evaluation of desired speed distributions (Galvan, Zechin e Cybis, 2019) and analysis of the 

impacts of the New Guaíba Bridge (Kappler, 2017), which was still under construction when 

the data of our study was collected. 

The traffic breakdown subject surged as an approach to evaluating the congestion 

periods of this region. In the first article of this thesis, we discussed the influence of inclement 

weather on the traffic breakdown probability, which produced a better understanding of this 

phenomenon on the study site. This article raised the question of whether it was possible to 

forecast traffic speeds focusing on pre-breakdown periods, which we discussed in the second 

paper. Finally, the third paper united the knowledge created in the first two articles and 

proposed a methodology to forecast breakdown probability. 

1.4.2 Literature Review 

The scope of the literature review stage varies according to the article. In the first 

paper, we focus on the influence of inclement weather on traffic flow, traffic breakdown 

identification methodologies, traffic breakdown theory and calculation methodologies. The 

second paper focuses on forecasting methodologies and their implementations for traffic 

forecasting purposes. The third paper has a broader scope, and its literature review comprises 

traffic breakdown theory, traffic congestion forecasting, recurrent neural networks, and 

probabilistic approaches to recurrent neural networks. 

1.4.3 Data and study site 

The three articles used data collected on the BR-290 highway. The detectors used were 

located close to the access to the Guaíba Bridge and the data was collected between 2016 and 

2017. The original traffic dataset was disaggregated so that each row represented an individual 

vehicle, timestamp, speed and vehicle type. Table 1 shows an excerpt of the original dataset. 

Table 1: Original traffic dataset 

Timestamp Speed [km/h] Lane Type 

2016-01-01 00:00:25.1 102 1 Car 

2016-01-01 00:00:25.2 118 2 Car 

2016-01-01 00:00:25.9 95 4 Car 

2016-01-01 00:00:26.1 41 4 Car 
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2016-01-01 00:00:27.1 89 3 Car 

2016-01-01 00:00:30.4 84 2 Car 

2016-01-01 00:00:32.4 77 2 Truck 

2016-01-01 00:01:04.4 108 3 Car 

2016-01-01 00:01:16.6 99 3 Car 

2016-01-01 00:01:20.5 115 2 Car 

2016-01-01 00:01:39.2 56 4 Car 

2016-01-01 00:02:21.9 64 2 Car 

2016-01-01 00:02:29.7 101 2 Car 
 

We aggregated the traffic dataset in 5min intervals. This approach produced a good 

balance between smoothening outliers and maintaining the level of detail required to 

characterize the breakdown. Due to our experience with this dataset, we understand that a 

smaller aggregation interval would introduce excessive variance to the final dataset. A bigger 

interval would hinder the correct description of the breakdown. In this region, a breakdown 

takes on average 4min to happen (Cybis et al., 2013). 

A data cleaning step was also necessary to produce a suitable dataset. The detectors 

presented malfunction during some periods, so those were mapped and removed from the final 

dataset. We also removed periods when the Guaíba Bridge was raised and when the traffic 

agency reported accidents in the surroundings. 

Especially for Articles 2 and 3, during aggregation, we opted for producing different 

measures that could be used as input features for the models that captured as much information 

as possible. For example, instead of only calculating the average speed, we also calculated its 

variance, maximum speed, minimum speed, etc. This step is better described in each article. It 

is open for future studies discussing the effectiveness of this step for model performance and 

which features were more relevant, but we opted to limit the scope of our study at this point. 

The rain dataset was acquired from a rain gauge 1.3km from the traffic detectors and 

accessed on the CEMADEN (Centro Nacional de Monitoramento e Alertas de Desastres 

Naturais) website under the code 431490215A. The precipitation readings were reported in up 

to 10min intervals during rainy moments and 1h intervals when no rain was measured. 

The rain and traffic datasets have different aggregation intervals (10-60min and 5min 

intervals, respectively). Before crossing them, we opted for resampling the rain dataset so that 

it matched the 5min aggregation of the traffic dataset. For doing so we assumed a constant rain 

intensity for each reported rain interval by dividing the precipitation by the duration of the 

interval. Then we resampled the rain dataset in 5min intervals to match the traffic dataset and 
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joined them using time as key. The results obtained in the First Article suggest that this approach 

was enough to capture the influence of rain in traffic breakdown. However, we encourage future 

studies to explore approaches other than the assumption of a constant intensity, which is out the 

scope of this thesis. The final aggregated and cleaned dataset was made public so that other 

authors could replicate our studies (Zechin, 2022). 

The observed congestion profile characterizes the occurrence of the phenomenon 

called breakdown, since (i) they occur due to the confluence of two important flows in an active 

bottleneck, (ii) there is the formation of queues upstream of the two approaches, (ii) no 

slowdown is observed downstream of the active bottleneck and (iv) a rapid and expressive drop 

in speed is observed through the collected data. Figure 14 shows the speed profile of the study 

site, where we can observe the breakdown occurrence at around 7:30. When the breakdown 

happens, the speed drops from a free flow speed of circa 85km/h to approximately 25km/h. 

 
Figure 4: Speed profile at the study site. Each colour represents a different day. 

1.4.4 Rain influence studies 

This stage was crucial for this thesis since it produced evidence of the influence of 

inclement weather on the breakdown probability in this study site. Based on this study, we opted 

for using rain intensity as an input feature for the models proposed in the second and third 

articles.  

1.4.5 Model choice and development 

In both the second and third articles of this thesis, the model choice was primarily done 

based on the literature review. We opted for doing so since there is strong evidence on the 
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effectiveness of the chosen models and because we opted for focusing in the context on which 

the models were applied and not in the models per se. The LSTM model was the base model 

for both articles. We proposed using extra features such as hyperparameter tuning using the 

Hyperband technique, sample weighting to increase the relative importance of high-demand 

periods, encoder-decoder architecture, and bidirectional LSTM layers. 

As a requirement of the methodology proposed in the third paper, we need a robust 

forecasting model also able to produce probabilistic outputs. We chose the Variational LSTM 

model due to literature convergence on the use of LSTM for forecasting purposes and its rare 

ability to make probabilistic forecasts, which is not present in the classical formulation of neural 

networks. 

1.4.6 Breakdown probability calculation 

The breakdown probability calculation stage is present only in the third paper and 

refers to using the probabilistic speed outputs of the Variational LSTM to forecast breakdown 

probability. This stage refers to the main contribution of our thesis. 

1.4.7 Conclusions 

The conclusions are presented in the three papers and as a section of this thesis. In each 

of them, we aimed to summarize the articles’ findings and gave special attention to suggestions 

for future studies. We believe that the Traffic Engineering community still has a lot to benefit 

from the Machine Learning area and suggested some sequences of this study. 
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Abstract

Capacity has been used to describe a deterministic value that represents the maximum volume of traffic supported by a road.

Studies have pointed out the importance of not using a single value for capacity, but rather the concept of probability of
occurrence of a traffic-flow breakdown. In this paper the probabilities of breakdown for a Brazilian highway under different

weather conditions are compared. Data collected from inductive loop detectors and pluviometric data from automatic rain

gauges are combined. Two methodologies of breakdown identification are then compared. The most consistent methodology
for identifying breakdowns is used to generate breakdown probability distributions using the product limit and maximum-

likelihood methods with the Weibull distribution. The results indicate significant differences in probability of breakdown for

each studied climatic condition, including a maximum difference greater than 50% between dry and heavy rain conditions
under the same traffic flow.

The term capacity has been used to describe a determinis-

tic value that represents the maximum traffic volume sup-

ported by a highway. Although this concept has evolved

over time, the convenience of use of a single value for this

purpose overcomes the problems that this definition pre-

sents (1). The Highway Capacity Manual (HCM) (2)

defines capacity as ‘‘the maximum sustainable hourly

flow rate at which persons or vehicles reasonably can be

expected to traverse a point or a uniform section of a lane

or roadway during a given time period, under prevailing

roadway, environmental, traffic, and control conditions.’’

This definition is rather vague, disregarding the influence

of external conditions on highway capacity. In addition,

the HCM does not provide guidance on how highway

capacity should be measured (3). In its most recent ver-

sion, notions of capacity relating to occurrence of break-

down were added to this definition (4). Since it is a recent

update, these probabilistic concepts are not yet in the

mindset of most traffic engineers.

The first suggestions concerning the importance of not

using a single value for capacity were made by Ponzlet

(5), who suggested the use of different capacity values for

different climatic conditions, periods of the day, and

highway purposes. In other works, different capacity val-

ues were observed under constant conditions (6–8), which

motivated the study by Brilon et al. (1) that introduced a

probabilistic capacity analysis. In that paper, data from

traffic detectors and pluviometry data were analyzed to

determine the influence of different climatic conditions

on breakdown probability.

In this study, two breakdown identification methodol-

ogies, from Brilon et al. (1) and Lu and Elefteriadou (9),

are compared. The most consistent one was used for

breakdown probability curve generation by means of the

product limit method and maximum-likelihood methods

with the Weibull distribution. The contribution of the

present study is a better understanding of the application

of the most recent probabilistic concepts of capacity to

rainy conditions. This kind of evaluation can contribute

to the fields of traffic simulation and traffic safety analy-

sis, for example.

The remainder of this paper is organized as follows:

in the following section the methodologies for break-

down identification and calculation of breakdown prob-

ability are presented; the third section presents the study

site and data processing; the fourth section concludes the

paper with a summary and recommendations for further

work.

Methodology

The most recent definition of capacity is directly linked

to the phenomenon of breakdown (7). This can be under-

stood, on a highway, as the drop in speed and volume
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resulting from an excess of demand that leads to the tran-

sition from a free-flow to a congested regime. Since this

phenomenon occurs in different traffic flows, capacity is

treated as a probabilistic value. These values can be

related to three periods of interest, depending on the pur-

pose of the study: (i) before breakdown, (ii) immediately

before breakdown and (iii) observed during congestion

(10).

Although the influence of rainfall on traffic flow is a

well-established concept, its impacts on breakdown prob-

ability call for further study. Since breakdown is a phe-

nomenon that happens in a short period of time, and rain

may not happen frequently, a large amount of detailed

and closely located traffic and weather data are required.

The studies by Kim et al. (11) and van Stralen et al. (12)

address this topic and indicate that rainfall increases both

the probability and duration of traffic breakdown. These

authors also emphasize the need for more robust studies

to compensate the volatility of inclement weather events

and the consequences of different road configurations.

This section presents the methodologies for break-

down identification, as well as those used for the genera-

tion of breakdown probability distribution as a function

of traffic flow. Coupled with meteorological data, it is

possible to draw different probability distributions for

dry and rainy weather conditions, and to analyze their

differences.

Breakdown Identification Methods

Employing an adequate method to identify breakdown

occurrence is decisive for the success of this study. The

method chosen must be suitable for the analysis of break-

down under rainfall and for the available data format.

Several methodologies have been proposed in the litera-

ture, so the one most appropriate for the specific charac-

teristics of the traffic under analysis must be chosen from

among them. This section presents the two methodolo-

gies used in the study, those presented by Brilon et al. (1)

and Lu and Elefteriadou (9).

Methodology of Brilon et al. (1). Since breakdown events are

related to a significant drop in speed, many studies iden-

tify breakdown events by establishing a speed threshold

value (3). It is considered that a breakdown occurs in

period i when the speed drops to a plateau below this

threshold in period i+ 1. This level can be established

by observing time series of road speed and volume, and

identifying abrupt speed decrease at a characteristic level

of congested flow. A suggested speed threshold is one

that is not verified during non-congested flow situations

and that usually characterizes the transition to a con-

gested regime.

Data from loop detectors are grouped in time inter-

vals and arranged in chronological order. Each interval

receives a classification according to the breakdown traf-

fic condition {B}, free flow {F}, or congestion state {C},

according to the following criteria (1):

{B}: traffic flows well in time interval i, but the aver-

age speed drops below the threshold value in period

i+ 1, that is, breakdown occurs;

{F}: traffic flows well at time intervals i and i+ 1,

indicating that the capacity is greater than the volume

observed at i;

{C}: (i) traffic is congested in time interval i, that is,

the speed is below the threshold value or (ii) a break-

down is verified in the interval, that is, a downstream

detector registers congestion in the interval i or i–1. In

this case it is considered that the breakdown was

because of the queue generated by this congestion,

not the traffic conditions of the analyzed detector.

This data should be discarded because it does not

carry capacity information.

Traffic data may be grouped in small time intervals,

usually 1–5 min, so that traffic fluctuations can be per-

ceived (1). Brilon and Zuerlinden (13) concluded that

traffic data should be aggregated at 5 min intervals for

this methodology to produce good results.

Methodology of Lu and Elefteriadou (9). In this methodology,

breakdown occurrence is defined as five or more consecu-

tive intervals of 1 min with an average speed drop greater

than 16km/h (9). Therefore, the use of a speed limit, as

imposed by the previous methodology, is not required.

Although these criteria have been elaborated for the

study of highway capacity before and during accidents, it

is proposed to use them to calculate breakdown probabil-

ity. Three criteria are adopted to identify this phenom-

enon correctly:

The speed difference between two consecutive minutes

is negative.

DSi = Si � Si�1\0 ð1Þ

The average speed over the previous 5 min is greater

than the average speed over the next 5 min by at least

16 km/h.

Mean Si�5; . . . ; Si�1f g.Mean Si; . . . ; Si+ 4f g+ 16km=h

ð2Þ

The maximum speed during the next 10min is lower

than the speed before the speed drop.

Max Si; . . . ; Si+ 9f g\Si�1 ð3Þ
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Unlike the method of Brilon et al., this method does

not aim to classify the time intervals in {F} or {C}, it only

presents tools for the classification of interval i when

breakdown occurs, {B}. Intervals with flows lower than

1,000 vphpl (vehicles per hour per lane) were excluded

from this part of the analysis because it was considered

that they did not represent breakdown events, but fluc-

tuations because of the speed variability in free-flow

moments.

Methods for Calculation of Breakdown Probability

Although it may seem reasonable, the frequency with

which breakdown events occur cannot be used to calcu-

late breakdown probability. It is necessary to take into

account the probability that a certain volume is observed,

which demands more advanced mathematical treatment

(14, 15). Based on this, the purpose of these methods is to

construct a cumulative capacity distribution function,

Fc(q), which allows probability of breakdown to be calcu-

lated based on the volume observed in the lane in the

interval i. The most common methods used to construct

this function are the limit-product estimator, or Kaplan-

Meier estimator, and the adjustment to a Weibull cumu-

lative distribution using the maximum-likelihood

method. We adopt the internationally used nomenclature

to designate these methods, which are product limit

method and Weibull, respectively.

Product Limit Method. Product limit method (PLM) is a

statistical method to estimate survival functions (16). Its

main applications are associated with the durability of

mechanical components and medicine, when the survival

rates of individuals presenting specific clinical conditions

or the undergoing new treatments are evaluated.

Similarly, the transport engineering interest in this

method refers to the formulation of a probability distri-

bution of the non-occurrence of breakdowns (traffic sur-

vival) as a function of the observed traffic flow, S(q), or

of its complementary breakdown probability curve (traf-

fic death), F(q) = 1–S(q) (1, 14)

This method is quite accurate for low volumes, and it

is especially useful, for example, to calculate breakdown

probability on a highway subject to different access flows

(14). In these cases, breakdown probability is maintained

at around 20% by means of ramp metering, a technique

that aims to control the flow of on-ramps with traffic

lights.

The survival function described by PLM is given by:

S qð Þ=
Y

i:qił q

ki � di

ki
; i 2 B;Ff g ð4Þ

where

q = flow (vph [vehicles per hour]);

qi = flow in time interval i (vph);

ki = number of time intervals with a volume q ø qi;

di = number of breakdowns with a flow qi;

{B, F} = set of intervals when breakdown occurred or

when traffic flow was non-congested.

The cumulative capacity distribution function is then

given by:

Fc qð Þ= 1� S qð Þ= 1�
Y

i:qił q

ki � di

ki
; i 2 B;Ff g ð5Þ

This function accumulates in a value between 0 and 1. It

will only reach value 1 when the largest sample volume,

qmax, corresponds to an event belonging to set {B}, oth-

erwise accumulating in Fc(qmax) \ 1 (1).

The standard deviation of the PLM survival function

S(q) can be calculated, according to Greenwood (17), by:

sS qð Þ= S qð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i:qił q

di

ni ni � dið Þ

s

ð6Þ

From the standard deviation one can calculate the

function confidence interval with:

Fc qð Þ � za=2 � sS qð ÞłFc qð Þł SFc qð Þ+ za=2 � sS qð Þ ð7Þ

where za/2 is the a/2-th quantile of the normal distribu-

tion;and g is the desired confidence level.

Maximum Likelihood—Weibull. Because breakdown prob-

ability does not always stack at 100% according to PLM,

it is impossible to verify it for some volumes. To account

for this problem, the maximum-likelihood method is used

to fit an accumulated Weibull distribution to the data (1).

For capacity analysis the maximum-likelihood function is:

L=
Y

n

i= 1

fc qið Þdi � 1� Fc qið Þ½ �1�di ð8Þ

where

fc(qi) = statistical capacity density function;

Fc(qi) = capacity cumulative distribution function;

n = number of time intervals;

di = 1, if the range contains a non-censored value;

di = 0, if the range contains a censored value.

To make the adjustment, however, the log-likelihood

function L* is used since it has its maximum with the

same parameters as the maximum likelihood, but it is

computationally lighter. This function is given by:

L� = ln Lð Þ=
X

n

i= 1

di � ln fc qið Þ½ �+ 1� dið Þ � ln 1� Fc qið Þ½ �f g

ð9Þ
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As a capacity function distribution, we use the

Weibull distribution function:

Fc qð Þ= 1� e�
q

bð Þ
a

ð10Þ

where

Fc(q) = capacity distribution function;

q = flow (vph);

a = shape parameter;

b = scale parameter (vph).

The form parameter a represents the distribution var-

iance and is between 10 and 22 for the road capacity dis-

tribution function (15). The higher this value, the lower

the variance. The parameter b is directly related to the

problem shape, such as the number of lanes.

Study Site and Data Processing

The study site was a segment of Freeway BR-290/RS,

which is the main access to the city of Porto Alegre in

the state of Rio Grande do Sul, Brazil (see Figure 1).

The segment is located in km 95 northbound, has five

lanes in each direction, and presents daily breakdown

congestion because of bottlenecks immediately down-

stream. The movable Guaı́ba Bridge, located immedi-

ately downstream of the loop detectors, causes frequent

congestion because it is closed to traffic whenever it is

necessary to allow ships to pass through. Single-vehicle

data obtained from these loop detectors was correlated

to a rain gauge 1.35 km distant from them, so that traffic

was classified according to rainfall conditions. Similar

studies used rain gauges with a distance of 5–20 km from

their respective detectors (5).

Data from the loop detectors cover two years and

three months of traffic data recording the speed (km/h)

and the passage time of each vehicle with precision of 0.1

s. The traffic flow on this freeway is subject to several

irregularities that hamper the study of the main flow,

demanding data filtering. First, data from days with very

low traffic volumes compared with average daily volumes

observed—probably because of failure of a detector—

and before 6:00 a.m. and after 10.00 p.m. were removed.

Periods referring to accidents and activation of the

movable bridge that obstructed the roadway, causing

upstream traffic retention, were also removed. Finally,

data from lanes whose detectors showed capture failures

compromising the total freeway volume measurement

were removed. This filtering process reduced the amount

of data from 847 to 217days of data.

Elefteriadou (3) suggests that the detectors should be

located in the access for this type of analysis to be done

successfully. Detectors located downstream of the bottle-

necks tend not to represent the congested region of the

road, whereas detectors located at long distances

upstream do not represent the breakdown phenomenon,

but rather the decrease in speed and volume resulting

from the queue propagation generated.

Rain gauge data were obtained from the National

Center for Natural Disasters Monitoring and Alert

(Cemaden) database. They consist of precipitation

records in millimeters per hour, with shorter measure-

ment intervals during rain events, with a minimum of 10-

min intervals.

Methodology for Identifying Breakdowns

The two methodologies presented were tested, and the

most suitable to the study sequence was chosen. The

method of Lu and Elefteriadou (9) was applied so that all

time intervals i preceding breakdowns were identified.

These points were inserted into the set of points {B},

while the 10 points before them were inserted into the set

of points {F} (3). The method of Brilon et al. (1) was

applied by first establishing the limit speed. Some authors

use more sophisticated techniques to define this level,

such as clustering (18); however, since just one loop

detector was analyzed, it was decided to define it visually.

The traffic data were aggregated at intervals consistent

with the breakdown identification methods described in

the Methodology section (1min and 5min), generating

two distinct databases. The road average speed was cal-

culated by the arithmetic mean of the instantaneous

speeds observed in all lanes; the flow was defined by the

number of vehicles passing the detectors; and the density

was calculated by dividing the flow observed in the time

interval by the observed average speed.

Figure 1. Study site.
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The rainfall data were given a binary classification, 1 or

0, depending on whether or not it was raining, respectively,

in the given measurement range. They were then concate-

nated with the traffic databases, which received the binary

observed in the same period in the rain database.

The points belonging to sets {B} and {F} were then

classified as ‘‘dry’’ or ‘‘rain’’ according to the climatic

condition in the corresponding time interval. Figure 2

depicts the results of application of both methodologies.

Although the amount of breakdown occurrences with

each method was similar, it is observed that the condi-

tions in which they occurred are different. In the Brilon

et al. (1) methodology, the occurrences were limited to

the established speed threshold and, because of this, they

necessarily departed from a non-congested flow condi-

tion. In the Lu and Elefteriadou (9) methodology, break-

downs were identified in the transition region between

free-flow and congested regimes, even in the congested

region. Because of this, we chose the method of Brilon

et al. (1) for use in the later stages of the study.

PLM Breakdown Probability

Breakdown probability can be calculated with the PLM

and Weibull methods described in the Methodology sec-

tion. The data set was first separated according to rain

intensity, generating four different data sets. The group-

ing process was based on rain intensity to create groups

with smaller discretization for lower rain intensities.

According to Chung et al. (19), lower rain intensities are

associated with higher marginal decline of road capacity.

The resulting intervals were: 0mm/h, 0–1.3mm/h, 1.3–

4mm/h, and 4–17.5mm/h, which were related to 349, 19,

6, and 7 breakdown events respectively.

The generated data sets were submitted to the Brilon

et al. (1) method, chosen as the most efficient in the pre-

vious section. We kept the sets {B} and {F} resulting

from this methodology and the data belonging to set {C}

were excluded. The PLM was then applied to each of the

data sets and the results are presented in Figure 3, with

an 80% confidence interval.

The confidence intervals of the rainy and dry weather

curves indicated that, in general, there was a statistically

significant difference between them. The overlap of con-

fidence intervals at low volumes indicated that, at these

volumes, there was no significant difference in break-

down probability. Overlaps in larger volumes were

expected and resulted from the size of the confidence

intervals, which were related to the number of break-

down observations.

In Figure 2 it is possible to compare the breakdown

probabilities for a specific volume or the volume related

to a fixed breakdown probability for each rain intensity

curve. Breakdown probability rose with the increase of

rain intensity. However, the overlap between the curves

with higher rain intensities indicated that differences

became smaller as intensity increased.

The PLM method, therefore, does not allow accurate

measurements to be made in relation to breakdown prob-

ability at high volumes, and this is one of the main criti-

cisms of this method. The measurement of breakdown

probabilities for higher volumes can be done by adjusting

the data to a distribution such as Weibull’s.

Figure 2. Comparison between breakdown identification methods: (a) Lu and Elefteriadou (9); (b) Brilon et al. (1).
Note: vph = vehicles per hour.
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Breakdown Probability by Weibull Distribution

As expected, the distributions under analysis rejected the

null hypothesis that they come from a normal distribu-

tion and are better fitted to the Weibull distribution (1,

20). The adjustment to the Weibull distribution allowed

the probabilities to be extrapolated and the volume corre-

sponding to any probability to be calculated analytically.

Figure 4 depicts the Weibull distributions for each rain

intensity. The differences between each rainy scenario and

the dry scenario are also plotted and support the conver-

gence hypothesis between the curves of the groups with

higher rain intensities.

The representation used in Figure 4 is the traditional

visualization of breakdown probability. However, when

Figure 3. Speed-flow data and product limit method (PLM). The shadowed area represents the 80% confidence interval of the

associated rain intensity group.
Note: vph = vehicles per hour.

Figure 4. Comparison between product limit method (PLM) and Weibull distribution. Black lines refer to the Weibull distribution for

each rain intensity. Gray lines refer to the difference between the corresponding Weibull distribution and the dry scenario.
Note: vph = vehicles per hour.
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more than one curve is presented, the existing differences

between them are difficult to evaluate. An alternative for

interpreting the results is to visualize the relations

between breakdown probability and rain intensity for

different traffic flows. This is depicted in Figure 5, where

the mean value of rain intensity of each group is used in

the horizontal coordinates.

Figure 5 indicates that the highest increases in break-

down probability were observed with lower rain intensi-

ties for the same traffic flow. An asymptotic convergence

of breakdown probability was also observed for higher

rain intensities. Lower traffic flows, like 3,000 vph, were

less suitable to present breakdowns because the traffic

state was closer to a free-flow condition. Therefore, rain

intensity was less likely to cause breakdown. By contrast,

high traffic flows, like 5,500 vph, were so likely to present

breakdown that rain did not significantly affect the

breakdown probability. However, intermediate traffic

flows, ranging from 4,000 to 4,500 vph presented the

greatest marginal increase, with breakdown probability

increasing from 18% without rain to 73% with rain

intensity ranging between 1.3 and 4.0mm/h.

Conclusion

In this paper, the probability of traffic breakdown on a

freeway under different climatic conditions is analyzed.

For this study, two methodologies for breakdown identi-

fication were applied and the most consistent one was

used for generation of breakdown probability curves by

means of PLM and maximum-likelihood methods with

the Weibull distribution.

The breakdown identification methodology presented

by Brilon et al. (1) was more efficient and suitable than

that presented by Lu and Elefteriadou (9), for the spe-

cific purposes of this paper. The Lu and Elefteriadou (9)

methodology presents three generic, more complex and

subjective criteria, which hinders its calibration in studies

with many detectors. In contrast, the use of a speed

threshold value is more adjustable and comprehensible,

so it is possible to identify it with good specificity for

each detector.

The PLM indicated a significant difference in break-

down probability with and without rainfall. This metho-

dology is very efficient for the identification of

breakdown probability for smaller volumes, being ideal

for the joint application with ramp metering, to control

access volumes and minimize breakdown probabilities.

The 95% confidence intervals, however, indicated a

greater uncertainty for larger volumes. This is because

the frequency of observations in larger volumes is lower,

especially in relation to rainfall, which in itself is less fre-

quent than dry weather. To overcome this problem, the

use of longer data periods is recommended, which was

not feasible in this study.

The Weibull distribution adjustment to the data

explained the differences between the two climatic condi-

tions and allowed the calculation of breakdown prob-

abilities for all volumes. The breakdown probability

distributions of the detectors far from bottlenecks

demonstrated that this methodology is not suitable for

the capacity calculation in these cases. The differences in

capacity and probability found at detectors near bottle-

necks indicated that road operators must be aware of the

Figure 5. Relationship between breakdown probability and rain intensity for different traffic flows.
Note: vph = vehicles per hour.
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influence of rainfall on traffic, especially in locations

where rainfall is highly frequent.

The results observed in this paper show that this

methodology could be used to feed and improve existing

active traffic management strategies that rely on break-

down probability, such as ramp metering and variable

speed. Recommendations for future work focus on

understanding the benefits of using this method in traffic

management strategies and the effects on safety and

operational conditions. Practical recommendations are

the use of a larger data set, so that breakdown probabil-

ity distributions can be made for shorter rain intensity

ranges, and accounting for the period of the day. Other

methodologies can also be used to define deterministic

capacity values, such as those of Modi et al. (20),

Kondyli et al. (21), and Van Arde and Rakha (22).
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 ABSTRACT  
This ar-cle proposes a speed predic-on model for a highway segment in the city of Porto 

Alegre, which has daily traffic jams due to bo1lenecks. We used traffic data and 

environmental variables, such as rainfall intensity, accidents and atypical events to make 

the forecasts. Then we proposed a neural network model with an encoder-decoder 

architecture and long short-term memory (LSTM) layers, which has the characteris-c of 

establishing long-term rela-onships between the input variables, being relevant for 

applica-ons in the Transporta-on area. As addi-onal contribu-ons, we evaluated the 

quality of forecasts for different predic-on horizons and traffic regimes. We compared 

cumula-ve distribu-on func-ons (CDFs) generated using field and forecast data using a 

survival analysis method similar to the breakdown probability calcula-on. These CDFs 

represent the probability of a sudden speed drop due to the transi-on from the free-

flow to the congested regime. The methodology presented a sa-sfactory performance 

based on both criteria, making good predic-ons even in cri-cal traffic situa-ons. 

 
RESUMO   
Este ar-go tem como obje-vo propor uma modelo de previsão de velocidades para um 

trecho de rodovia na cidade de Porto Alegre, que apresenta conges-onamentos 

diariamente por conta de gargalos. Para realizar as previsões foram u-lizados dados de 

tráfego e variáveis ambientais, como intensidade de chuva, acidentes e eventos aBpicos. 

Propôs-se então um modelo de rede neural com arquitetura encoder-decoder e 

camadas long short-term memory (LSTM), que possuem a caracterís-ca de estabelecer 

relações de longa dependência temporal entre as variáveis de entrada, sendo 

per-nentes para aplicações na área de Transportes. Como contribuições adicionais, 

avaliou-se a qualidade das previsões para diferentes horizontes de predição e regimes 

de tráfego, e comparou-se a capacidade e as curvas de probabilidade de breakdown 

calculadas com dados de campo e previstos. A metodologia apresentou desempenho 

sa-sfatório com base em ambos os critérios, sendo capaz de fazer boas previsões 

mesmo em situações crí-cas de tráfego. 
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1. INTRODUCTION 

Traf�ic Engineering has received important contributions from recent technological advances 

in other areas, such as IoT (Internet of Things) and arti�icial intelligence. The intersection 

between these areas has led to the emergence of innovative �ields of study, such as Smart Cities 

and autonomous vehicles, in addition to contributing to traditional areas, such as active traf�ic 

management (ATM), in which this study �its. 
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 ATM has been around since the �irst half of the last century and traditionally proposes using 

simple algorithms and traf�ic and speed detectors to manage highway traf�ic operations. 

Although many traf�ic agencies still use these methods, ATM has received many contributions 

from data-driven approaches and seems to be increasingly merging with the concept of Smart 

Cities (Ma, Zhang and Ihler, 2020). An important feature made possible by more robust methods 

is improving traf�ic forecasts and anticipating undesired scenarios, such as congestion, 

accidents, and increased travel time. 

 In this paper, we propose using long short-term memory (LSTM) neural networks to perform 

speed predictions in the vicinity of a highway bottleneck located in the metropolitan region of 

Porto Alegre, Brazil. However, the proposed methodology aims to prioritize forecasts made 

close to the road capacity, which is the most critical moment for traf�ic management.  

The predictions consist of the expected average speed for the subsequent 5 time intervals of 5 

minutes and are based on traf�ic data, precipitation, and other possibly relevant information 

such as the day of the week and detector malfunctions. We chose this approach because LSTMs 

can retain information by creating long-term dependencies, which generally results in better 

performance than parametric methods and standard neural networks for time series 

prediction. 

 Speed forecasting can lead to good results in terms of average error since traf�ic speed is 

mostly stable due to the existence of speed limits. However, a low average error can hide large 

forecast errors at critical times, such as during peak demand periods, where traf�ic 

characteristics change quickly. Other authors rarely address this problem, so we propose 

segregating the data into �ive sets with equivalent traf�ic characteristics and analyzing the 

model error for each one individually and for each forecast horizon. 

 We used Survival Analysis by the Kaplan-Meyer method to con�irm the quality of traf�ic 

forecasts during peak periods close to road capacity. In this case, survival is related to the 

maintenance of a non-congested regime, and death is associated with the beginning of the 

transition to a congested regime. We statistically tested the similarity of cumulative distribution 

functions (CDFs) constructed with �ield and predicted data. Although the region presents 

breakdowns daily, the measured phenomenon was not treated as a breakdown because the 

detectors are located upstream of the active bottleneck. In this way, the CDFs represent the 

probability of starting the transition from the free-�low regime to the congested regime. 

 Until the conclusion of this article, the evaluation of the quality of traf�ic forecasting 

methodologies from the comparison of survival curves made with the forecasts and with �ield 

data had not been used in other researches. However, we understand that this produces a solid 

comparison, as these methods are already well established among the traf�ic engineering 

community and allow for the calculation of road capacity. Therefore, in addition to a detailed 

discussion about the model's error, we propose evaluating its effectiveness from this approach. 

2. LITERATURE REVIEW 

The development and improvement of traf�ic forecasting methods are alternatives for 

improving traf�ic management on urban highways and arterials (Vlahogianni, Karlaftis and 

Golias, 2014). Precise short-term and real-time predictions can be used as input into ATM 

algorithms, contributing to more ef�icient and responsive traf�ic management (Gu et	al., 2019). 

Traf�ic predictions are often a speci�ic application of parametric time series prediction methods 

such as naıv̈e and ARIMA. Although these methods have greater physical interpretability and 
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their solution is usually simpler (Fu, Zhang and Li, 2017), the computational capacity and the 

great availability of currently existing data allow the use of more robust models, such as neural 

networks. 

 Due to the dynamic nature of demand, non-linear non-parametric models tend to be better 

suited to capture traf�ic's spatial and temporal evolution to make good speed predictions. 

Recurrent Neural Networks (RNRs) adapt well to this type of problem, as they are a type of 

neural network capable of processing temporal sequences. However, there are different 

subtypes of RNRs with different purposes, and one of the best suited to this study is the LSTM. 

LSTMs can retain relationships with long temporal dependence, which is crucial for correctly 

interpreting traf�ic seasonality. 

 Hochreiter (1997) proposed the LSTM architecture with the main objective of modeling long 

dependencies, which is not possible with standard RNNs. Short-term traf�ic predictions can be 

de�ined as estimating the state of traf�ic for a close time in the future (Gu et	al., 2019). For this 

reason, accuracy and precision are essential aspects that must be considered. LSTM is a great 

candidate as it captures the non-linearity of traf�ic dynamics in an effective way across using 

memory blocks and thus has a superior capacity for predicting time series with long time 

dependencies (Ma et	al., 2015). 

 The ease of access to high-level neural network programming tools has enabled rapid 

assimilation of new techniques for speci�ic applications (Chollet, 2018; Géron, 2019). Because 

of this, the use of LSTM neural networks has gained space for solving traf�ic problems, which 

are highly time-dependent and have multiple variables that are related in a complex way. Fu et 

al. (2017) showed that LSTM and GRU neural networks (Gated Recurrent Units) have similar 

performance for traf�ic �low prediction and perform better when compared to the ARIMA 

method. Laptev et al. (2017) proposed an application of an LSTM neural network with an 

encoder-decoder structure to forecast the travel demand of an urban private transport 

company and capable of making predictions with high quality. A comparison between FFN 

(Feed Forward Network), CNN (Convolutional Neural Network), and LSTM was made by 

Asplund (2019), who obtained better results using the LSTM neural network to predict traf�ic 

conditions using public transport traf�ic information as input data. As stated by Vlahogianni et 

al. (2014), the interest of researchers has shifted towards more responsive prediction methods 

and models for non-recurring traf�ic conditions through the development of prediction systems 

with high algorithmic complexity. Furthermore, do Amaral (2020) compared the quality of 

velocity predictions in the same locality using different predictive models and concluded that 

an LSTM neural network produced better predictions than traditional methods such as linear 

regression, ARIMA, and regular neural networks. 

 In this article, therefore, we propose making speed predictions in a segment of a suburban 

highway where breakdowns are observed daily due to the existence of a bottleneck. To make 

these predictions, we used environmental and traf�ic data collected with inductive loops 

upstream of the bottleneck. We chose as the model a LSTM neural network with encoder-

decoder architecture to increase the predictive capabilities of LSTM neural networks pointed 

out in other studies. We assessed the quality of the predictions by comparing the error of the 

forecasts in traf�ic situations with similar characteristics and testing whether the CDF 

calculated with the predictions is equivalent to that calculated with �ield data. 
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3. METHODOLOGY 

This article proposes using an LSTM neural network to make speed predictions using traf�ic 

data from a point on a Brazilian highway. Information on precipitation, road accidents, and 

atypical events were concatenated with traf�ic data and then grouped by lane at regular 

intervals to generate the input variables that feed the neural network. As input and output 

variables, we de�ined how much time in the past and the future the proposed network would 

consider to make predictions. After training the neural network, we evaluated the results for 

different regions of the fundamental diagram and compared them with the CDF obtained 

through the �ield data. 

3.1. Study site 

The study region comprises a section of the BR-209 highway in Porto Alegre, RS, selected due 

to the high traf�ic volumes in the morning peak period. The breakdown phenomenon occurs 

regularly on weekdays due to this great demand, bottlenecks in the approaches, and the lifting 

of the mobile span of the Guaı́ba Bridge downstream of the data detection location (Calef�i et	

al., 2016; Calef�i, 2018; Zechin, Calef�i and Cybis, 2020), as shown in Figure 1. 

 

 
Figure 1. Study region 

 
3.2. Traffic and environmental data 

The data used in this article were made available by the company Triunfo Concepa, the 

concessionaire that operated the stretch of the highway. These data were collected using 

inductive loops located approximately 50 meters upstream of a fork that connects the road to 

the Guaı́ba Bridge. The data consists of two years (2016 and 2017) of disaggregated traf�ic 

counts with information on the instant of each vehicle's passage, speed, and lane. We only used 

data from the three lanes on the left since the others do not present congestion and connect the 

road to the bridge. We discarded data from days when the detectors malfunctioned, weekends, 

and days with accidents within a 5 km radius of the detectors, resulting in a useful sample of 

263 days. 

 We also used environmental data to provide the network with as much useful information as 

possible. We obtained rainfall data from a rain gauge 500 m away from the inductive loops from 

the Cemaden (National Center for Monitoring and Alerts for Natural Disasters) online portal. 

We treated it as a continuous variable since rainfall intensity was provided at intervals of up to 

10 minutes. We replicated the rainfall intensity calculated for a given instant to the previous 

data aggregation intervals used in the study until the time when another measurement was 

reported. This methodology is compatible with the data aggregation methodology used by 

Cemaden. In addition to rainfall data, we used the day of the week and bridge lifts as dummy 

variables. 
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 In this region, the breakdown phenomenon occurs daily around 7:30am with no important 

exceptions. Because of this, we de�ined 4am to 11am as a suitable period for the analysis based 

on the speed pro�ile of the highway. This covers the development of demand in the early 

morning, congestion, and the recovery of the free �low regime. 

3.3. Genera6on of inputs and outputs 

LSTM neural networks require data spaced in regular intervals to make adequate predictions, 

so we aggregated the data at 5 min intervals. Then, from the aggregated data, we created the 

variables volume, standard deviation of speed, average speed, minimum speed, median speed, 

and maximum speed per lane. We consolidated environmental variables and traf�ic variables, 

and continuous variables were normalized. 

 We de�ined the neural network inputs as 12 intervals in the past (60 min), each comprised 

of the previously created variables. For the outputs, we de�ined a forecast horizon of 25 min, 

corresponding to 5 intervals of 5 min, and the predicted variable was the average speed of the 

road. The �irst 80% of the data, in chronological order, was used for training and the remaining 

for testing. We did so to bring the study closer to an actual application, where past data would 

be used to predict unknown future events. 

3.4. LSTM neural network with encoder-decoder architecture 

Although neural networks with cells of the LSTM type have a remarkable ability to predict time 

series, relying on the ability to retain long-term information, there are network architectures 

that allow predictions to be even more accurate. In this work, we propose using the encoder-

decoder architecture, as shown in Figure 2, which has shown promising results in applications 

in the transport area (Laptev et	al., 2017). This architecture interprets the information in two 

stages: the encoder processes the data, and the decoder computes the model outputs. 

 

 
Figure 2. Encoder-decoder architecture with bidirectional LSTM layers 

 

 We inserted the input data into the neural network through the encoder. It passes through 

the bidirectional intermediate layers (Schuster and Paliwal, 1997), which make abstractions 

using LSTM cells. The computed information then follows two paths: (i) it is passed to a layer 

that generates intermediate outputs with the exclusive objective of increasing the assertiveness 

and stability of the model, and (ii) it is passed to the decoder, where it passes through 

intermediate layers before generating the outputs that are actually used as a forecast. 

4. RESULTS 

We created the proposed neural network model using the Keras (Chollet, 2015) and Tensor�low 

libraries in Python. As it is a relatively small neural network, it was possible to carry out the 
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training on the Google Colab cloud computing service, which has 12 GB of RAM memory and an 

NVIDIA Tesla P100 graphics card. 

 Neural network models have many parameters that can be adjusted to obtain better 

predictions. These parameters include the number of intermediate layers, number of neurons 

in each layer, activation functions, loss functions, optimization algorithms, and regularization 

algorithms. Although default values are used for general purposes, some parameters must 

necessarily be adjusted. These adjustments, in turn, can be made by trial and error or using 

some structured methodology. In this study, we used the hyperband technique (Li et	al., 2018), 

which has proven more time ef�icient and accurate than other techniques, such as grid search 

and random search. We also used the mean absolute error (MAE) of the decoder predictions as 

the objective function to be optimized. The optimization of the network hyperparameters took 

about 2 h. We present the optimized parameters and the respective optimal values in Table 1. 

 

Table 1 – Optimized Parameters 

Parameter Tested values Optimum value 

Bidirectional LSTM layers of the 

encoder 
0 – 3 bidirectional LSTM + 1 LSTM 2 

LSTM layers of the decoder 1 - 5 1 

Bidirectional LSTM layer neurons 32 - 512 512 

LSTM layer neurons 32 - 512 256 

Loss function 
Mean square error; absolute mean error; percent average absolute 

error 
Mean square error 

Optimizer Adam; RMSprop ; adagrad ; adadelta RMSprop 

Dropout 0.1 - 0.4 0.15 

 

In addition to these parameters, we used a variable learning rate as a function of the number of 

training epochs of the neural network. It started with a learning rate of 10-3 and was divided by 

10 every 20 training epochs. 

 Then we retrained the optimal model found with the hyperband technique for 60 epochs to 

achieve complete convergence. We used he model with the lowest MAE in the test portion for 

the following stages of the study since the use of many epochs can lead to over�itting (Chollet, 

2015; Gal and Ghahramani, 2016). 

4.1. Forecasts evalua6on 

The evaluation of the quality of traf�ic predictions on highways and arterials is not trivial since 

it does not have uniform characteristics in time and space. Traf�ic on these roads is usually 

classi�ied as free �low or congested, and traf�ic behavior in each of these situations is entirely 

different and requires different and speci�ic strategies. The transitions between these regimes 

also present peculiarities and are of particular interest for traf�ic management since they are 

linked to the operational capacity of the roads. 

 With this in mind, we proposed segregating the data into analysis regions with similar traf�ic 

characteristics from the �low-speed diagram. In this way, the error can be compared by analysis 

region and forecast horizon, as shown in Figure 3. We created the proposed regions empirically 

according to the following criteria: (R1) free �low; (R2) drop in speed due to proximity to 

capacity; (R3) transition to the congested state; (R4) congestion; and (R5) free �low recovery. 

 The MAE of the forecasts was 5.40 km/h globally. However, we observed that the error differs 

in order of magnitude when comparing different traf�ic regions and forecast horizons: 
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Figure 3. Regions of analysis and MAE by region and forecast horizon 

 

•  R1: In this region, vehicles travel at speeds limited by the legal limits of the road. Because 

of this, the MAE is expected to be low, basically resulting from different individual 

desired speed choices (Galvan, Zechin and Cybis, 2019). A low MAE was achieved by the 

proposed model, with little error increase even for the maximum forecast horizon; 

•  R2: this was the region where the model made the most accurate predictions, which is 

interesting since it precedes the beginning of the transition to the congested state. In this 

region, there is greater speed homogeneity resulting from the increase in traf�ic �low. 

However, the speed pro�ile does not follow a stable pattern like the R1 region. Good 

predictions, especially for longer horizons, indicate that the model is capable of 

predicting the onset of congestion; 

•  R3: This region refers to the transition from the free �low to the congested state. In this 

region, a sudden drop in speed is observed, and the calculated average velocity depends 

signi�icantly on the instant within the aggregation interval (5min in this study) in which 

this phenomenon occurred. Because of this, there is great speed variability in this region, 

and it is natural that larger errors are observed proportionally to the size of the chosen 

data aggregation interval. Thus, in this region, it is expected that the model is able to 

capture the rapid downward trend even with larger errors than in the other regions. 

Based on this, we understand that the errors found are compatible with expectations; 

•  R4: vehicles travel in a stop-and-go motion in this region, and the speed variability is 

more signi�icant. This happens mainly because data was collected with inductive loops, 

which measure the instantaneous speed of vehicles. The model errors are smaller for 

shorter prediction horizons and are close to the errors measured in the R1 region, but 

increase for larger horizons. There is less interest in obtaining highly accurate 

predictions in this region since the possibilities of acting on traf�ic are lower during 

congestion due to the high density and low speed of vehicles; 

•  R5: Although predictions during congestion are not very interesting, the possibility of 

predicting free �low recovery is interesting, and this is done in the R5 region. However, 

this is the region where the model incurred the most signi�icant errors. The probability 

that the congestion will end depends on the volume upstream of the bottleneck 

approaches decreasing, which cannot be measured with just one detector, especially 

during congestion. Because of this, we expected forecasts in this region to be reactive, 

respond to measured velocity variations, and have a low anticipation capacity. We stated 

that this occurred, since the error is high and increases as the forecast horizons increase. 
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 To support the interpretations above, we propose evaluating how the error behaves as a 

function of time. Figure 4 shows the speed pro�ile used in the test portion of the neural network 

along with the predictions made, the error of each prediction, and the volume used as weight 

during training. To evaluate the quality of predictions in the future, we present the predictions 

made for the �irst (5 min) and �ifth (25 min) predicted interval. As the test portion is large, we 

show a sample of 200 predicted sequences, where some important phenomena can be 

observed. 

 

 
Figure 4. Speed predictions over time. The volumes are scaled to correspond to the vertical axis. Red signals indicate 

the start of a new morning. 

 

 Although distant in time, we observe that the predictions made for 5 and 25 min in the future 

are similar in terms of error and have good adherence to the speeds measured in the �ield. The 

error is noticeably smaller in the regions close to the transition from the free �low to the 

congested regime since the volume was used as weight during the training process, increasing 

the relative importance of these intervals. This is a highly desired effect since good forecasts 

close to capacity are necessary to anticipate the beginning of the transition to the congested 

regime. In free-�low moments, speed variability is greater since the volume is low, and most 

vehicles travel unimpeded. It is interesting to note that the model converged to linear 

predictions in these situations since the main trend is stable and the weights are smaller 

because they are proportional to the volume. In the congested regime, both forecast horizons 

have larger and similar errors due to the speed �luctuations that occur during the stop-and-go 

motion. The biggest difference between the predicted intervals happens in the transition from 

the congested to the free �low regime; in this case, the speed forecasts seem to react to changes 

on the road without anticipation of speed recovery. This is clear by looking at the delay between 

forecasts and �ield measurements, which is even more signi�icant in the 25 min forecast. As 

expected, the predictions regarding the recovery of free �low are more erratic than the others 

since they are highly dependent on the �low of vehicles upstream of the bottleneck under 

analysis. As this information does not exist in this study, it is natural that the observed error is 

greater. 

4.2. Valida6on using the predic6ons to calculate CDFs 

The analyses indicate that the proposed model performs satisfactorily for the speed prediction 

task, especially in regions of particular interest for active traf�ic management.  
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Model validation was performed by calculating and statistically comparing CDFs constructed 

with �ield and predicted data. These curves were estimated using the breakdown probability 

calculation methodology suggested by Brilon et al. (2005) to provide robustness to the model 

validation (Han and Ahn, 2018). Then we statistically tested the hypothesis that the CDFs 

generated with measured and predicted speeds in the �ield are different. In this study, we did 

not use the term breakdown to refer to the measured phenomenon due to the unfavorable 

position of the detectors. However, the survival analysis does not make this distinction.  

It is suf�icient that we compute the observed phenomenon the same way using predicted and 

�ield data for the statistical analysis to be valid. 

 The methodology for breakdown probability calculation used by Brilon et al. (2005) is widely 

recognized for its effectiveness and simplicity, having also been used in several studies that 

followed it (Andrade and Setti, 2014; Elefteriadou et al., 2011, 2014). The original methodology 

de�ines a speed threshold, so that the interval preceding a drop in speed that exceeds this limit 

is considered a breakdown. This interval is censored (received a 1 marker) and the intervals 

preceding it receive a 0 marker. We discarded intervals following the breakdown. Then we 

sorted the markers and their respective volumes from the entire database by volume and 

applied them to the non-parametric Kaplan-Meier model (Kaplan and Meier, 1958) to generate 

breakdown probability curves as a function of volume. In this study, we considered that the 

beginning of the transition to the congested regime is analogous to the breakdown phenomenon 

treated in these studies. We adapted the methodology by Brilon et al. (2005), adding as a 

criterion for identifying a censored interval the need for 2 consecutive intervals to be below the 

established speed threshold. We did so to reduce the likelihood of identifying false positives. 

 Although the breakdown probability curve provides a stochastic view of the road's capacity, 

traf�ic managers tend to prefer to use a deterministic value for it. Shojaat et al. (2016) proposed 

the sustainable �low index (SFI) to meet this demand without giving up the information offered 

by the probability distribution. This metric originates from the concept of risk, de�ined as the 

multiplication of the probability of an adverse event occurring and the damage caused by it. In 

the context of traf�ic engineering, and more precisely of the occurrence of a breakdown , the SFI 

represents the volume that transits through a road and is calculated by the product between 

the volume and the complementary probability of the occurrence of a breakdown. 

 The capacity, therefore, is obtained by maximizing the SFI. As an example, the SFI curves, the 

CDFs made with the predictions, and the speeds measured in the �ield are shown in Figure 5. 

We used the last predicted interval (25 min in the future) and a speed threshold of 65 km/h. 

 Then we investigated the quality of the predictions applied to this methodology by varying 

the threshold velocity to identify the highest threshold velocity that (i) generates statistically 

identical probability curves and (ii) produces similar capabilities. The hypothesis that the 

generated curves are identical was tested by �itting the Cox survival model (Cox., 1972) to the 

volume data, from the binary marker of early transition to the congested regime calculated 

previously and an accessory variable that indicates whether the data refers to a prediction or a 

�ield measurement. We tested the signi�icance of the accessory variable in the model through 

the likelihood ratio test, so that p-values greater than an assigned acceptance limit α= 0.05 do 

not allow rejecting the null hypothesis that the curves are identical with 95% con�idence, which 

is desirable in this study. Figure 6 shows the p-values obtained in comparing the curves 

generated for different speed thresholds and each forecast horizon. Note that we only created 

4 curves, since we considered making two predictions lower than the established speed 
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threshold an identi�ication criterion for the beginning of the transition to the congested regime. 

We also present the calculated capacities. 

 

 
Figure 5. CDFs of the beginning of the transition to the congested regime and SFI for speed threshold = 65 km/h with  

25 min prediction data 

 

 Speeds greater than 70 km/h generally produce p-values below the limit α, where the null 

hypothesis that the distributions are identical is rejected. However, we note that the threshold 

speed from which the p-values become greater than this threshold decreases as the forecast 

horizon increases. We understand that this occurs because the forecasts are more imprecise the 

longer the forecast horizon, and the assertiveness of the forecasts increases when there are 

clearer signs that the speed drop has started and lower speeds are measured. 

 Visual inspection in Figure 6 shows a convergence between the calculated capacity values for 

values close to 65 km/h, where there is a maximum absolute difference below 200 veh/h.  

As we observe convergence between capacities for this speed threshold and all p-values are 

greater than 0.05, we understand that the neural network well represents both the beginning 

of the transition to the congested regime and capacity. 

 

  
Figure 6. p-value of the accessory variable in the Cox survival model and capacity for different limit speeds 

 

 In this application, the speed threshold of 65 km/h could be suggested to characterize the 

beginning of the transition to the congested regime from speeds predicted by the real-time 

model in practical applications. However, it is noteworthy that this value is suggested based on 

the data of this speci�ic case study, so that the ideal speed threshold may differ in other locations 

due to geometric and behavioral speci�icities and peculiarities in the demand pro�ile. 
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5. CONCLUSIONS 

In this article, we proposed using an LSTM neural network with encoder-decoder architecture 

to perform speed predictions of a road segment where breakdowns are observed daily due to a 

bottleneck. We used rainfall and traf�ic data collected with inductive loops, including road 

accidents and lifting information from the mobile span of a bridge, to aggregate as much 

information relevant to the neural network as possible. We evaluated the forecast results for 

different traf�ic states to detail the model's quality. We also validated the results by applying 

predictions in the calculation of CDFs that represent the probability of the beginning of the 

transition to the congested regime. 

 With an MAE of 5.40 km/h, the forecast errors obtained in the regions of greatest interest 

showed satisfactory results for all predicted intervals, but it is noted that the error increases 

with the forecast horizon. The use of volumes as a sample weight allowed the reduction of 

prediction errors in situations where traf�ic is close to capacity. Because of this, we observed 

convergence between the probability curves calculated with �ield and predicted data, indicating 

that the model can also make good predictions at critical moments for traf�ic. 

 Practical applications of the proposed methodology must consider the peculiarities of the 

used data. The hyperparameters found during the neural network optimization process may 

differ depending on factors such as the amount of data, the number of variables created, data 

aggregation, and traf�ic characteristics in the studied region. The suitability of the methodology 

for the chosen region can also be veri�ied through the generation and statistical comparison of 

CDFs . 

 We suggest for future work using data from detectors located closer to the bottlenecks, so 

that the breakdown characterization can be performed with greater precision, and to assess 

whether the location of the detectors signi�icantly in�luences the results. The use of data from 

multiple sections of the segment, especially upstream, would also be interesting, as it would 

allow the model to consider the local traf�ic state and the volume of vehicles that will pass 

through the section in the future. Traf�ic has a stochastic nature, so the probabilistic prediction 

of speeds may be a more appropriate tool (Fortunato et al., 2017; Kendall and Gal, 2017). 

Making predictions using adaptations of LSTM neural networks compatible with disaggregated 

traf�ic data can also contribute to maximizing the use of information (Neil, Pfeiffer and Liu, 

2016). Neural network models are often considered black-box models. However, recent 

advances indicate ways to create visualizations for humans (Arras et	al., 2019). Crossing traf�ic 

data with other databases can add even more information to the network, such as the use of 

traf�ic images, Bluetooth data, telephony data, and integrations with mobility applications, as 

well as a previous study of the signi�icance of the variables, to reduce the number of variables 

used and provide only relevant information. Other models of neural networks, such as 

transformers networks, also seem promising for solving traf�ic problems (Wu et al., 2020) but 

still demand more studies. 
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ABSTRACT

Thispaperproposes a framework for short-term traffic breakdownprobabil-
ity calculation using a Variational LSTM neural networkmodel. Considering
that traffic breakdown is a stochastic event, this forecast framework was
devised to produce distributions as outputs, which cannot be achieved
using standard deterministic recurrent neural networks. Therefore, the
model counts on the robustness of neural networks but also includes the
stochastic characteristics of highway capacity. The framework consists of
three main steps: (i) build and train a probabilistic speed forecasting neu-
ral network, (ii) forecast speed distributions with the trained model using
Monte Carlo (MC) dropout, and therefore perform Bayesian approxima-
tion, and (iii) establish a speed threshold that characterizes breakdown
occurrence and calculate breakdown probabilities based on the speed dis-
tributions. The proposed framework produced an efficient control over
traffic breakdown occurrence, can deal with many independent variables
or features, and can be combined with traffic management strategies.
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Introduction

Traffic engineering has received valuable contributions from technological advances like the internet

of things and artificial intelligence. The intersection between these areas has led to emerging inno-

vative fields and contributed to traditional areas, such as active traffic management (ATM), in which

this study fits. Traffic forecasting improvements and anticipation of unwanted scenarios, such as con-

gestion, accidents, and increased travel-time, have been enabled by using more robust methods (Li,

Abdel-Aty, and Yuan 2020).

Traffic forecasting is usually treated as a time series prediction problem and solvedwith parametric

methods such as ARIMA (Vlahogianni, Karlaftis, and Golias 2014). These methods have great physical

interpretability, require small amounts of data, and their solution is usually simple and demands low

computational power. At the same time, recent advances in machine learning suggest that Recurrent

Neural Networks (RNNs) adapt well to this type of problem. They can process temporal sequences and

are more suitable for capturing traffic’s spatial and temporal characteristics, considering the dynamic

natureof demand.Asof this paper’swriting, LSTM (LongShort-TermMemory), proposedbyHochreiter

(1997), has proven to outperform other RNN subtypes for most applications (Akhtar and Moridpour

2021). For that reason, we chose LSTMs to conduct this study and apply the proposed methodology.

Most models that use deep learning methods to forecast traffic speed or flow do not consider its

stochastic nature and only perform deterministic predictions, mainly because standard NNs cannot
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capture model uncertainty (Gal and Ghahramani 2016b). However, the relevance of the probabilistic

characteristic of highway capacity hasbeenwidely studiedby theTransportationEngineering commu-

nity (Brilon, Geistefeldt, and Regler 2005; Chen and Ahn 2018; Elefteriadou, Roess, andMcShane 1995,

2011; Kondyli et al. 2013; Persaud, Yagar, and Brownlee 1998; Qu, Zhang, andWang 2017), resulting in

what is called the classical understanding of stochastic highway capacity (Kerner 2019).

This paper proposes a framework for forecasting short-term traffic breakdown probability that

attempts to address multiple gaps. Firstly, we propose a formulation for calculating traffic breakdown

probability based on samples of speed distributions generated by a probabilistic forecasting model.

This formulation enables the calculation of the breakdown probability of individual events, differing

from past studies that usually use survival analysis to produce time-independent traffic breakdown

probability distributions. Survival analysis-based models define breakdown probability as a function

of traffic flow and are unsuitable for short-term forecasting purposes. Secondly, we adopted a novel

probabilistic RNN approach for traffic forecasting, fromwhich we sampled the aforementioned speed

distribution forecasts. RNNs standout fromothermodels for traffic forecasting and arewidely adopted

for multiple purposes in past studies (Akhtar and Moridpour 2021). However, the traditional formu-

lation of these networks cannot produce probabilistic forecasts and is unsuitable for the needs of

our framework. To address this gap and represent model uncertainty we propose adopting Varia-

tional LSTMs (Gal and Ghahramani 2016b) for speed forecasting, by using dropout as a Bayesian

approximation of a Gaussian process.

This study also proposes additional contributions by suggesting approaches to improve the fore-

casting quality in a traffic breakdown context. Firstly, since this paper is related to traffic breakdowns

on highways, we are interested in making good predictions during high-demand periods. In most

traffic prediction models that use RNNs, the loss function weights each sample of the training set

equally, and there is no concern regarding the criticality of the evaluated traffic state. Although

critical, high-demand, pre-breakdownperiods are less frequent than uncongested situations and gen-

erate a relatively small number of observations in datasets. To overcome this particular issue, the

proposed methodology adopts traffic flow as the sample weight during the training process of the

neural network to increase their relative importance and force the model to make better predic-

tions in these situations. Secondly, the error of the predictions is evaluated individually for 5 different

regions of the fundamental diagram to account for differences in the quality of the predictions in

different traffic states. This is fundamental to prevent a large number of good predictions, usually

made during stable and more frequent traffic conditions, from masking bad predictions made dur-

ing critical situations. Thirdly, we propose the use of an encoder–decoder neural network model

with an extra output to increase the model training performance. The extra output is positioned

after the encoder, in parallel with the decoder, and is used only during the training phase of the NN

model.

The complete methodology for probabilistic short-term traffic breakdown predictions presented

in this paper consists of three main parts:

(1) Variational LSTM neural network model:

(a) Data preparation;

(b) Neural network architecture;

(c) Sample weighting;

(d) Hyperparameter tuning and training.

(2) Speed forecasting and evaluation:

(a) Speed distribution forecasting using Monte Carlo Dropout;

(b) Model evaluation for different traffic states to guarantee that traffic breakdown periods are

well represented.
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Figure 1. Methodology scheme.

(3) Traffic breakdown probability forecasting:

(a) Speed and breakdown probability thresholds;

(b) Calculate traffic breakdown probability for each forecasted time step.

This methodology is schematically presented in Figure 1.

Theoretical background

The methodology presented in this paper consists of three main parts. The first and second parts

refer to forecasting speed distributions with credible intervals using a Variational LSTM neural

network model. The third part presents the methodology for identifying traffic flow breakdowns

from the forecasted speed distributions. In the following sections, we present the theory that sup-

ports these topics and a literature review concerning applications of these methods to similar

problems.

Traffic breakdown

In the context of highways, traffic breakdown refers to a sudden speed reduction that makes traf-

fic transition from proper operation to non-acceptable flow conditions. This phenomenon occurs

as a consequence of the traffic flow achieving the highway capacity in a particular segment, most

commonly on an active bottleneck. Therefore, breakdown and capacity are deeply related (Brilon,

Geistefeldt, and Regler 2005).

The conditions that trigger the occurrence of a traffic breakdown differ from site to site and include

geometry, weather conditions, demand profile, and fleet and driver characteristics. The maximum

observed traffic flow that precedes a breakdown also varies under similar conditions, which indicates

that highway capacity is a probabilistic measure (Kerner 2019).

The most common approach to traffic breakdown probability calculation is using survival-analysis

or hazard models. These models are frequently used in medicine to describe the survival probability

of a group using a specific medication or with a particular disease, in mechanics to describe engine

durability, and in business to calculate customer churn probability. In traffic engineering applications,

the breakdown probability – analogous to traffic death – has not been related to time but traffic flow.

The general understanding is that breakdown probability is higher with higher traffic flows as well

as the probability of an engine failing increases as time passes (Brilon, Geistefeldt, and Regler 2005;

Elefteriadou, Roess, and McShane 1995; Kidando, Moses, and Sando 2019; Lu and Elefteriadou 2013;

Persaud, Yagar, and Brownlee 1998).
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The non-parametric Kaplan-Meier estimator is a commonly adopted hazard model. This model

requires traffic flow and speed data aggregated in time intervals that range from 1 to 5 min. The first

step is producing a binary feature that indicates if a breakdown occurred in each time-step, which

is usually done by observing a sudden speed drop. This binary variable and the traffic flow are then

applied to the following formulation to produce a breakdown probability curve as a function of traffic

flow.

Fc(q) = 1 − S(q) = 1 −
∏

i:qi≤q

ki − di

ki
, i ∈ {B, F}

Where: q: flow [veic / h]; qi: flow in time interval i [veic / h]; ki: number of time intervals with a volume

q ≥ qi; di: number of breakdowns with a flow qi; {B, F}: set of intervals when breakdown occurred or

when traffic flow was non-congested.

A successful implementation of this formulation depends on correctly identifying breakdown

occurrence. Among the traffic breakdown identification methodologies presented in the literature,

one of the most studied and well-accepted is to consider that a breakdown happens when the aver-

age speed measured on a highway is higher than a speed threshold, sth, in a time step t and lower in

the subsequent time step t+ 1 (Brilon, Geistefeldt, and Regler 2005; Elefteriadou, Roess, andMcShane

1995; Kidando,Moses, and Sando 2019; Lu and Elefteriadou 2013; Persaud, Yagar, and Brownlee 1998).

Although mathematically more complex models such as wavelet decomposition (Ke et al. 2018) have

also been reported to be reliable in identifying traffic breakdowns, we used the speed threshold

approach in this paper.

Although the Kaplan-Meier estimator is a simple and widely used method, it only describes break-

down probability as a function of traffic flow. Authors have opted to use the Cox proportional hazard

model to increase robustness andexplainability (Guo,Wang, andBubb2013;AsgharzadehandKondyli

2020; Li et al. 2022). This model uses similar concepts to the Kaplan-Meier estimator but enables

incorporating information from external covariates, resulting in a richer model.

The methodologies used to describe traffic breakdown probability have the primary goal of

stochastically defining the capacity of a highway segment based on historical data, which might be

relevant to evaluate geometry adjustments, for example. However, although these models have a

probabilistic approach to breakdown, they are not designed for forecasting purposes and are unsuit-

able for our needs. In the following sections, we present traffic forecasting approaches and propose a

methodology that enables forecasting respecting the stochastic nature of traffic breakdown.

Traffic breakdown forecasting

Traffic forecasting is a broad expression that can refer tomultiple purposes. Forecasts are applicable in

various contexts, such as urban roads, rural roads, arterial roads, and highways. The forecasted values

also differ, and some of the most common are speed, flow, occupancy and incident probability.

Traffic forecasting is essentially a time-series problem. This problem category can be solved suf-

ficiently well using baseline models such as Multiple Linear Regression (MLR) and autoregressive

integrated moving average (ARIMA) models. However, these models have lost space due to the rapid

development ofMachine Learning and the increased availability of data and computational resources.

Akhtar and Moridpour (2021) made a broad systematic review of traffic congestion forecasting, the

specific topic where our study lies. They concluded that machine learningmodels already prevail over

more traditional ones and that there is still a wide range of algorithms to be tested for this purpose.

LSTMneural networks and their variations are among themost supportedmodels for traffic prediction

on highways.

Applications of LSTMs for traffic forecasting consist of variations of LSTMs and their conjoint use

with different types of NNs (Luo and Zhou 2021). Among several applications, it is worth mentioning

works like Gu et al. (2019), which proposed a deep learning model for short-term prediction of lane-

level traffic speeds. Their model included stacked LSTM and GRU (Gated Recurrent Units) layers and
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proved superior to other popular time series forecastingmodels.Ma, Zhang, and Ihler (2020) proposed

mixed CNN and LSTM models to predict flow and speed, and Li et al. (2020) to predict congestion.

Aiming for increased accuracy and scalability using big data, Xia et al. (2021) proposed aNAW-DBLSTM

model on Spark that uses a bidirectional LSTM with an attention mechanism to perform traffic flow

forecasting.

Although these models produce accurate predictions, they do not offer a manner to measure the

confidence of individual predictions and are unsuitable for our study. Ourmethodology utilises proba-

bilistic speed predictions to forecast traffic breakdown probability, and as for the writing of this paper,

we couldnot find studies that propose a similar solution for this problem. Therefore,weproposedevel-

oping our methodology over a specific neural network called Variational LSTM. This kind of neural

network has the required probabilistic characteristics, has strong literature support and has proven

more effective than baseline non-probabilistic models for speed forecasting, as presented later in the

text.

Variational LSTMs

LSTMs were devised to mitigate the vanishing gradient problem that causes simpler RNNs of a cer-

tain size to become untrainable (Hochreiter 1997). LSTMs use memory cells with internal recurrence

and grant the possibility of controlling the information that should be retained or forgotten. This char-

acteristic allows LSTMs to outperform standard NNs and RNNs on time series problems, improving

their ability to retain long-term dependencies, preventing older signals from vanishing during the

training process, and improving training convergence (Goodfellow, Bengio, and Courville 2016). We

have omitted the mathematical background on LSTMs since it is widely available in machine learning

books.

The predictive power of variations of LSTMs for traffic forecasting is already well established.

However, the uncertainty of the predictions might be of great concern for critical applications of

machine learning-based strategies, and the calculation of confidence intervals is not possible with

the traditional formulation of neural networks. To address this specific limitation, variational inference

was suggested to approximate posterior distributions using neural networks and generate Bayesian

NNs (Graves 2011). Although this enables the production of outputs with credibility intervals, this

technique has proved computationally complex (Gal and Ghahramani 2016b).

Amore straightforwardand reliablemethod toapproximateBayesianNNswasproposedbyGal and

Ghahramani (2016b) using dropout, a technique commonly used for NN regularization. Dropout con-

sists of zeroing the weights of a percentage of the neurons to avoid overfitting (Srivastava et al. 2014)

and is usually applied only during the training process of NNs. However, when used during inference,

dropout imposes a Bernoulli distribution over the NN’s weights, and each prediction turns out to be

slightly different. Sampling from theNNusing dropout during inference results in a distribution of out-

puts and is calledMonte Carlo (MC) dropout. It produces a Bayesian approximation, as mathematically

demonstrated for vanilla NNs by Gal and Ghahramani (2016b), and therefore a distribution that can be

used for probability calculations.

Gal and Ghahramani (2016a) later suggested that, with additional considerations, MC dropout can

also be applied to LSTMs, resulting in NNs that are able to perform approximate variational inference

and called Variational LSTMs. For Variational LSTMs to have these Bayesian properties, the same net-

work units (same mask) are dropped at each time step for inputs, outputs, and recurrent layers. We

depict the configuration of a simple two-layer Variational LSTM in Figure 2 and represent dropouts

between cells as arrows.

In contrast, in naïve applications of dropout on LSTMs, different dropoutmasks are sampled at each

time step for the inputs and outputs, and no dropout is used on the recurrent connections. Fortunato,

Blundell, and Vinyals (2017) proved mathematically that Variational LSTMs produce correct poste-

rior distributions. This study uses speed distributions forecasted using Variational LSTMs to calculate

breakdown probability, as shown in the following section.
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Figure 2. LSTM example with 2 layers (horizontal rows) and 3 cells each layer. Vertical arrows represent conventional dropout, and
horizontal arrows represent recurrent dropout. Each arrow dash style is a different mask.

Proposed traffic breakdown forecastingmethodology

Before using the neural network outputs to calculate traffic breakdowns, it is first necessary to define

how to identify thembasedon aggregateddata and todefine a calculationmethodology. In this study,

we adopted the speed threshold strategy presented in the Traffic Breakdown section to identify break-

downs due to its simplicity, interpretability, and efficiency (Lu and Elefteriadou 2013). We added a

complementary condition that the speed remains under the speed threshold for a minimum number

of time steps to avoid false positives, which has been widely used for this purpose.

In this paper, the evaluation is done within an evaluation window, which comprises a set of N+ 1

time steps. The first time step, t, aims to identify a pre-breakdown situation by checking if the aver-

age speed st is greater than a speed threshold sth. The subsequent N time steps, t+ n, represent the

number of time steps required to present the average speed under the speed threshold in order to

correctly characterize a breakdown event. If, and only if, all of these criteria are matched, we consider

that a breakdown happens in the time step t of the evaluation window.

Breakdown identification is trivial when analysing field data andwe can assume that the probability

that an event B refers to a breakdown b during the time step t is binary since we observed it. In this

case, the breakdown probability on a time interval t can be calculated by:

P(B = b|sth, s,N, t) =

{

1, (st ≥ sth) and (st+n < sth)

0, otherwise
for n = 1, . . . ,N (1)

However, the outputs of the proposed NN are not discrete, and the speed predictions of each fore-

casted time step t are associated with a probability distribution. Therefore, there is an associated

uncertainty on whether the forecasted speed dropped below the speed threshold. The Bayesian

approximation consists of replicating the predictions several times to produce a distribution of out-

puts, sowe applied the same breakdown identification rule for the predicted speed sequences of each

replication. We calculated the breakdown probability of a time step t as the ratio between the number

of sequences that satisfy the breakdown identification rule and the total number of replications. Con-

sideringR, thenumberof replications, and r, the subindexdenotinga single replication, thebreakdown

probability at a time step t is given by

P(B = b|sth, s,N, t, R) =

∑R
r=1

{

1, (str ≥ sth) and (st+nr < sth)

0, otherwise

R
for n = 1, . . . ,N (2)

In the context of our framework, the sequences of speed distributions are generated by the

Variational LSTM neural network for a desired number of forecasted time steps. We applied the

aforementioned breakdown probability formulation to these speed distributions and calculated the
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Figure 3. Visualization of the methodology for traffic breakdown probability calculation.

final breakdown probability by defining the speed threshold, sth. This produces a traffic breakdown

probability for each of the forecasted time steps.

Figure 3 elucidates the proposed methodology with a simplified example. After reading average

speeds up to t0 wepredicted speeds for future time steps t1, t2, t3, t4 and t5, or a forecast horizon of five

time steps. For simplicity and clarity, we adopted a total number of replications R = 3 in this example,

and a speed threshold sh = 65 km/h. We also set the value of N to 2, which means that a breakdown

is predicted when a speed higher than the speed threshold is followed by two time steps with speeds

under the speed threshold. In this example, the evaluation window is 3 time steps. Supposing that we

are interested in evaluating thewindowbetween t1 and t3, only the sequence represented by the grey

line with circle markers satisfies the breakdown identification rule. Using Equation 2, we have that the

breakdown probability for this evaluation window is B = 1/3.

Most authors define sth visually, either by observation of the fundamental diagram or by the traffic

speed time series (Kidando,Moses, and Sando 2019). In the Third Part of themethodology,wepropose

using recall, precision, and the F1-score to define an optimum value for sth.

The traffic breakdown probability might not be a satisfactory answer depending on the require-

ments of the practical application of this methodology. It might be necessary to define whether a

breakdown is expected to happen or not. A traffic breakdown probability threshold, bth, can be used

to define the minimum probability for a positive event to be considered. In the Third Part of this

framework, we propose a methodology for determining both sth and bth.

First part: variational LSTM neural networkmodel

The first part of the methodology consists of building and training a Variational LSTM neural network

model, which we used to produce speed forecasting. This session describes the several steps devel-

oped to build this model. The first step involves the data gathering and preparation effort, aiming to

present as much information as possible to the neural network to optimize its prediction capabilities.

We defined the neural network structure in the second step and set up sample weighting in the third

step using traffic flow values to increase the relative importance of breakdown periods during the

training process. In the fourth step, we submitted themodel to hyperparameter tuning to optimize its

structure and improve its prediction capability, and then we trained it upon convergence.

Data preparation

This paper focuses on forecasting highway speeds close to a bottleneck, particularly in performing

goodpredictionsduring traffic breakdowns. Traffic datawas collectedupstreamof ahighway segment
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Figure 4. Study site and traffic detector’s location.

Table 1. Input and output variables of the NN.

Purpose Type Feature Number of features Format Description

Input Traffic data speed_avg_n 3 Continuous Average speed on lane n.
speed_med_n 3 Continuous Median speed on lane n.
speed_min_n 3 Continuous Minimum speed on lane n.
speed_max_n 3 Continuous Maximum speed on lane n.
speed_std_n 3 Continuous Standard deviation of the speed on

lane n.
volume_ln 3 Continuous Volume on lane n.
detected_n 3 Binary Indicates if any vehicle was detected

on lane n during a given time step.
Mitigates the effects of null average
speeds.

Environment day_week_d 5 Binary Indicates the day of the week.
precipitation 1 Continuous Average rain intensity in mm/h.

Output Traffic data speed_f 5 Continuous Average track speed of the f th time
step in the future.

withmultiple on-ramps and daily morning congestion in themetropolitan area of Porto Alegre, Brazil,

as shown in Figure 4. The bottleneck happens due to traffic originated in the metropolitan region of

the city that is accessing the main road through an on-ramp (depicted as Guaíba Bridge in Figure 4)

and a secondary access with minor traffic originated in the local neighbourhood. Due to fleet hetero-

geneity and intense and concentrated demand, traffic management is very challenging in this region,

and some active traffic management strategies have been studied to mitigate congestion and the

occurrence of crashes (Caleffi, Moisan, and Cybis 2016; Zechin, Caleffi, and Cybis 2020).

We gathered disaggregated traffic data from the loop detectors with information on passing vehi-

cles’ timestamps, speed, and lane for a two-year period. The Guaíba Bridge is a movable bridge, and

the upstream traffic must be interrupted frequently due to the bridge lift. We created a binary variable

indicatingbridge interruptionevents for eachevaluated time step, since removingdata fromtheentire

daywith bridge liftingwould compromise and reduce the dataset. The dataset also comprised a binary

variable to indicate periods when light crashes occurred. The data set included rain intensity data col-

lected from a pluviometer 500 m distant from the traffic detectors to allow the model to account for

the influence of the weather. We also removed periods with severe crashes, malfunction of detectors,

and weekends, resulting in 246 days of useful data. Since this region presents traffic breakdowns only

in the morning, the analysis period was limited to between 4 and 12 am.

LSTMs require inputs organized in regular time intervals, demanding data aggregation. We per-

formed feature engineering to create the inputs of the NNwhile preserving essential traffic character-

istics and losing as little information as possible, and aggregated the data in 5 min intervals per lane.

For the outputs, we calculated the average speed of the whole segment in 5 min intervals up to 25

min in the future. Feature engineering resulted in the features presented in Table 1, and we detail the

NN structure in the next section.

53



TRANSPORTMETRICA B: TRANSPORT DYNAMICS 9

Figure 5. Encoder–decoder LSTM architecture.

Neural network architecture

Concerning the NN model, we propose an encoder–decoder architecture and LSTM layers for traffic

speed predictions. The encoder–decoder architecture comprises two main parts: (i) the encoder is

responsible for interpreting the time series given as input to the NN, and (ii) the decoder receives this

information andgenerates the outputs. This architecture has achievedbetter results than standardNN

with LSTM layers (Laptev et al. 2017).Weusedbidirectional LSTM layers in the encoder since they led to

better results in preliminary tests and were also suggested by other authors (Cui, Ke, andWang 2018).

We stacked multiple bidirectional and traditional LSTM layers in both the encoder and the decoder

to expand the learning capacities of the model (Chollet 2015; Géron 2019). Figure 5 presents a visual

representation of the proposed model.

The proposed NN inputs are time series, so we used a lookback of 12 time steps of 5 min intervals

(1 h) for each sample, and each time step contains all the n_features presented in Table 1 as inputs.

When structured, the inputs have a final shape (n_features, n_samples, lookback), where n_samples is

the number of samples in the dataset. This NN architecture is very flexible, and there is no consensus in

the literature regarding optimal construction. We propose a neural network model with two outputs:

• Decoder output: this is the main output, which is used during the training and testing phases and

to make final speed predictions. Its shape is (n_samples, forecast), where forecast is the number of

forecasted time steps.

• Encoder output: we set this output on top of the encoder to stabilize convergence and increase

the decoder output accuracy. Its shape is (forecast, n_samples, lookback), so for each of the 12 time

steps in the past, the output is the 5 subsequent time steps. This output is also taken into account

in the loss function and used for backpropagation, so the encoder receives closer updates during

training and the model converges faster and becomes more stable. We tested several approaches

beforehand and used this in our study since it performed better. The encoder output is used only

during the training phase and is removed from the model during inference. Therefore, although it

increases the complexity of themodel during training, the complexity during inference is the same

as if it were not used.

We built the Variational LSTM neural network model with the Keras/Tensorflow Python library since

it has implementations that enable its representation, especially regarding the peculiarities of the

dropout. Building the neural network from scratch was also crucial to model the encoder–decoder

architecture with two outputs, sample weighting using traffic flow, and perform hyperparameters

tuning.

Sample weighting

It is reasonable to assume that the relative importance of these outputs is not the same. To address this

problem, we used the weighted sum of the Mean Squared Error (MSE) of each output as the final loss

function. Usingweights equal to 3 and 1 for the decoder and encoder outputs, respectively, produced

the best results in preliminary tests and was kept during the training processes.

54



10 D. ZECHIN ET AL.

Table 2. Hyperparameter tuning.

Hyperparameter Tested values Optimum value

Bidirectional LSTM layers on the encoder (+ 1 LSTM layer) [0;1;2;3] 3
LSTM layers on the decoder [1;2;3;4;5] 1
Number of neurons on encoder layers [32;64;128;256;512] 512
Number of neurons on decoder layers [32;64;128;256;512] 256
Loss function Mean Squared Error (MSE);
Mean Absolute Error (MAE);
Mean Absolute Percentage Error (MAPE) MSE
Optimizer Adam; RMSProp; Adagrad; Adadelta RMSProp
Dropout and recurrent dropout rate [0,1–0,4] 0,15

The importance ofmaking good predictions varies according to traffic conditions since traffic char-

acteristics are entirelydifferent atmomentswith low traffic flowandduringpeakhours (Caleffi,Moisan,

and Cybis 2016). These situations should somehow have different relative importance during the

NN training process. However, traditional loss functions such as the Mean Average Error, Root Mean

Squared Error, or Mean Squared Error consider that all samples have the same importance except for

the magnitude of the respective error. Therefore, less frequent events like breakdowns, which are of

the utmost importance for practical reasons, tend to be neglected in favour of reducing the error in

the abundant and less important periods with low traffic flowwhen speed variance and errors tend to

be higher (Goodfellow, Bengio, and Courville 2016).

We proposed using sample weights during the training process to address this problem as we

understand that the importance of the predictions is highly correlated to traffic flow as traffic break-

down and traffic flow are also highly correlated. We weighted errors in both outputs by the traffic

flow 10 min before the first predicted time step to deal with the imbalance between breakdown

and non-breakdown periods (Yang et al. 2019). Considering that qn is the traffic flow 10 min before

the first predicted time step of a sample n out of N samples, Lnis the non-weighted loss calcu-

lated for sample n, and p is the proportion of non-zero traffic flow values, the final loss function L∗

will be:

L∗ =
1

N

N
∑

n=1

qnLn

p
(9)

The final loss function L∗ will depend on the chosen non-weighted loss function L, chosen via

hyperparameter tuning and presented in the next section.

Hyperparameter tuning and training

For the training process, we split the dataset into a training and a test set to guarantee that themodel

can perform well on unseen data. Therefore, we used the training set during the training process and

evaluated its performance using both sets. This study deals with time series data so we did not shuffle

the data to build these sets. The training set was built using the first 80% of the dataset after cleaning

and the remaining data was left for the testing set.

NN models have many parameters that can be adjusted to obtain better predictions. Although

these adjustments could have beenmade by trial and error in this study, we used the hyperband tech-

nique (Li et al. 2018), which has proved to be more efficient and accurate than traditional methods

such as grid search and random search. We used the mean absolute error (MAE) of the decoder pre-

dictions as the optimization objective function. The optimum values of each tuned hyperparameter

are shown in Table 2.
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Figure 6. Traffic regions, MAE, and speed’s standard deviation per region and forecasted interval.

Second part: speed forecasting and evaluation

The second part of the methodology involves two steps: prediction generation and results evalua-

tion. Although we used the neural network model at this stage, we preferred to present it separately

because once the model has been successfully trained, only its structure and weights are relevant to

the next steps.

The proposed methodology for speed distribution forecasting using MC Dropout consists of run-

ning the neural network over the test dataset inputs 1000 times (Gal and Ghahramani 2016a). This

process produces slightly different outputs in each iteration due to the use of dropout with random

masks during inference, resulting in a distribution that approximates a Bayesian inference. Each input

sample of the test dataset produced 5 speed distributions, corresponding to a sequence of 5 average

speed time steps aggregated over 5 min intervals.

For evaluation purposes, we segregated the data into analysis regions with similar characteristics

based on the flow-speed diagram. This was because highway traffic presents completely different

characteristics during free andcongested flow, and the transitionbetween these regimes alsopresents

peculiarities that are strongly related to capacity. Therefore, the MAE and forecasted speed’s standard

deviation (SSD) canbe comparedbyanalysingeach chart regionand forecasting time step, as shown in

Figure 6. MAEmeasures how close the average predicted speed is to the fieldmeasurements, and SSD

indicates how spread the speed distributions made by the NN are. We created the proposed analysis

regions visually according to the following criteria: (R1) free flow; (R2) drop in speed due to the proxim-

ity of capacity; (R3) transition to congested state; (R4) congestion, and (R5) recovery to free flow.Amore

robust segregation method could have been used for this purpose, but the visual approach seemed

more reasonable due to its simplicity and since this analysis is not part of the proposedmethodology.

The global MAE of the forecasts was 7.92 km/h, and the global standard deviation of the speedwas

1.79 km/h. However, we observed that these metrics differ when comparing different traffic regions

and forecasted time steps:

• R1: in this region, vehicles travel at speeds limited by the legal limits of the road. MAE is expected

to be low, varying mainly due to fluctuations in desired speed. This was achieved by the model

predictions, with a minor increase in error and SSD even for the maximum forecast horizon;

• R2: in this region, there is a greater speed homogeneity resulting from increased traffic synchrony.

Good forecasts, especially for longer forecasting horizons, indicate that the model can predict

the onset of congestion. Although the observed MAE is considerably slower in R2 than R1, the

SSD is more than double, indicating that the model is more accurate but has more uncertainty in

this region. This shows the effectiveness of using volume as the sample weight to prioritize high-

demand time steps, which were assumed to be more relevant. The higher SSD also evidences the

stochastic characteristics of traffic breakdown;

• R3: this region refers to the transition from the free flow to the congested regime through a break-

down. Breakdowns trigger an abrupt drop in speed so that the average speed calculated during the
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Table 3. Baseline models used for speed forecasting comparison.

Model Characteristics

Multiple Linear Regression (MLR) –
Neural Network 1x 512 neurons layer+ 1x 256 neurons layer;
Adam optimizer;
MSE loss function
LSTM (simple) 1x 512 neurons layer;
Adam optimizer;
Dropout = 0.1
MSE loss function
Variational LSTM (simple) 1x 512 neurons layer;
Adam optimizer;
Dropout = 0.1
MSE loss function
ARIMA p = 3; d = 0; q = 1
XGBoost Estimators = 100; Learning rate = 0.1

transition depends on the time within the aggregation interval (5 min in this study) when this phe-

nomenon occurred. This region has great speed variability due to the nature of traffic behaviour,

and the larger the aggregation interval, thegreater theobservederrors. Thus, themodel is expected

to capture the rapid downward trend in speed so that a future breakdown can still be characterized

alongwith R2’s forecasts. Interestingly, the SSDwas slower for longer forecasting horizons because

the model’s inability to make these predictions is embedded in the high errors observed in this sit-

uation, resulting in low variance and high bias. Based on this, we understand that the errors and

SSDs found are compatible with expectations;

• R4: vehicles travel in stop-and-gomovements and the average speed is slow in this region, resulting

in great speed variability. The model errors are larger than in regions R1 and R2 and close to those

from R3, but they increase for larger horizons. There is less interest in obtaining highly accurate

predictions in this region since the possibilities of traffic actuation are smaller during congestion

due to the high density and low speeds. A lower calculated SSD compared to R3 accompanied by

a large MAE indicates that the model has high bias and low variance in this region;

• R5: Although accurate speed forecasts may not be particularly interesting during highly congested

periods, the possibility of predicting speed recovery may be useful, and this is an outcome of the

analysis of the R5 region. However, this is the region where the model made the biggest mistakes.

While the probability of breakdowns can be treated as a function of the traffic flow (Brilon, Geis-

tefeldt, and Regler 2005), the probability of ending congestion depends on whether the volume

upstream of the bottleneck decreases, which cannot be measured with only one measurement

location. On account of the configuration of the study area, we expected the forecasts in this region

to be reactive to measured speed variations and have low anticipation capacity. These expecta-

tions were met since the error is high and increases as the forecast horizons increase alongside a

reduction in SSD, as occurred in R3.

The primary goal of our paper is to propose a breakdown probability forecasting methodology. For

doing so, we used a well-established neural network that has the required probabilistic characteris-

tics and trained it focusing on good predictions during high-demand periods. To demonstrate where

our model stands in relation to baseline models, we propose a comparative analysis of its forecasting

quality with the baseline models presented in Table 3.

With the MLR we aim to set a baseline; the simpler LSTMs and the NN put our Encoder-Decoder

architecture into perspective; the ARIMA model is widely used for time-series problems; and the

XGBoost is a state-of-the-art Machine Learning model based on decision trees that uses extreme gra-

dient boosting for performance enhancement and has also been proven effective to solve time-series
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Figure 7. Forecasting error comparison with baseline models.

problems, outperforming even Deep Learning models (Fang et al. 2022). Except for the simpler Vari-

ational LSTM, these models do not produce probabilistic forecasts, so we used the average values of

our predictions to compare them.

Wecompared theMAEof thepredictionsmade in theR2andR3 regions (pre-breakdownand transi-

tion to congested state) and the overall performance. The error distribution of all models passed a test

for normality using the Kolmogorov–Smirnov testwith a 95%confidence interval (p-value < 0.05).We

present the comparisons in Figure 7.

Our model has the slowest MAE compared to all the other models for the R2 and R3 regions, which

are the main focus of our study and for which our model was trained to perform better. The Neural

Network and the simpler LSTMs performed poorly, which evidences the importance of fine-tuning

and correctly scaling deep learning models as presented in our study. Our model outperformed the

XGBoost model, which was the best performing model among the ones chosen for comparison.

Besides outperforming the other models, our model can also forecast speed sequences with cred-

ible intervals, an essential feature for our methodology. These results state the quality of our model

and its suitability to being used in our methodology.

We did not compare our model with other Bayesian models since they require a series of assump-

tions, such as the definition of prior distributions for each input feature. Since we are proposing and

applying a methodology, we understand that these discussions would be beyond our scope. Still, we

encourage future studies to explore these comparisons and we suggest the use of other models with

the same probabilistic characteristics.

Third part: traffic breakdown probability forecasting

The third part of the breakdown forecasting method is the estimation of the breakdown probability

from the speed predictions of the neural network model. In this study we used an evaluation window

of 3 time steps to define a breakdown event, which comprises a set of 1 time step with average speed

above and 2 time steps with average speed under the speed threshold, sth. This procedure produces

a breakdown probability for each forecasted time step. Such probabilities can then be compared to a
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Figure 8. Speed and breakdown probability thresholds example. The cross signs along with the probability line represent non-
breakdown intervals based on the probability threshold, and the plus sign represents the opposite.

breakdownprobability threshold,bth, to decidewhether the time stepwill be considered abreakdown

or not.

Figure 8 shows an example of the interaction of sth and bth along with the speed predictions. In

this example, the current time is 07:05 and the breakdown probability forecasting horizon is 25min in

the future, or 5 time steps of 5 min intervals. The grey lines represent forecasted speed distributions

associated with each of these time steps, and the chosen speed threshold, sth, is 75 km/h. Apply-

ing the abovementioned methodology to calculate the breakdown probability resulted in the values

presented by the dashed line. The breakdown probabilities can then be used as inputs for another

application or, upon definition of a probability threshold bth, state whether the breakdown will occur

in each of the forecasted time steps or not. In this example, a bth of 0.4 indicates that a breakdown

should happen in the second upcoming time step, which indeed occurred, as we can observe based

on the measured speed line.

Defining which thresholds should be used is, in turn, not trivial. Although empirically determined

values, such as visually defining the speed threshold, could lead to satisfactory results, we propose

a structured method to define both thresholds and discuss their implications. Using the breakdown

identificationmethodology,we calculated thebreakdownprobability for each sample and forecasting

time stepsof the test dataset. Thenweused standardmachine learningmetrics to testwhether thepre-

diction quality is suitable for this purpose and to define speed and breakdown probability thresholds.

These metrics are adequate for this purpose since they mainly focus on the true events, represent-

ing traffic breakdowns in this study. The metrics used were precision, recall, and F1-score, which are

calculated as follows:

Precision = (True Positive)/(Predicted Positive) (10)

Recall = (True Positive)/(Actual Positive) (11)

F1 = 2 (Precision × Recall)/(Precision + Recall) (12)

where: True Positive = correctly predicted true (breakdown) events. Predicted Positive = total of

predicted true events. Actual Positive = total of actual true events.

Tuning a model based solely on recall or precision penalizes its performance in terms of the other

metric. When precision is increased, for example, the total number of true predictions decreases, so

only the most certain ones are considered. On the other hand, when recall rises, the total number of

true predictions also increases, and, in a limiting case, all labels could be considered true for a perfect
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Figure 9. F1-score of breakdown predictions with varying speed and probability thresholds.

recall to be achieved. However, when the number of True Positives is low, both recall and precisionwill

also be low. The F1-scorewas proposed to balance thesemetrics, which is calculatedby their harmonic

mean. We varied the speed and probability thresholds to produce greater insight into the optimal

values for both these parameters and calculated the F1-score for each pair.

It is also interesting to analyse whether the predictions were effective along each sequence but

not necessarily precise in predicting the exact moment the breakdown occurs within the forecasting

horizon and the time limits up to which the neural network can correctly predict this phenomenon.

Therefore, while the normal F1-scores are calculated for each evaluation window of the predicted

sequence, we propose a conjoint F1-score that uses the maximum breakdown probability between

these evaluation windows. We compared the conjoint score with the occurrence or not of a break-

down in the same period, as presented in Figure 9. We gradually removed the shorter-term evaluation

windows, aiming to evaluate the conjoint quality of the longer-term forecasts.

This visualization indicates that a speed threshold of 75 km/h combined with a probability thresh-

old of approximately 0.4 produces the most accurate predictions based on the F1-score. 5 and 10min

forecasting horizons are adequate for predicting breakdowns, but 15 and 20 min present poor F1-

scores for this scenario. However, the conjoint score of the 15–20 min produces results that are even

better than the 10 min horizon alone. Since uncertainties are more significant as the forecasting hori-

zon increases, it is reasonable to use this conjoint score for the 15 and 20 min intervals instead of

the individual predictions. Therefore, in this study case, the decision-maker could use 5 and 10 min

predictions and the conjoint analysis made for 15–20 min to make the final predictions for practical

purposes.

Discussion

In the presentedmethodology, we proposed using a probability threshold that optimizes the F1-score

to assess the occurrence of traffic breakdowns in future time steps. However, depending on the pur-

pose of the application, a different weighting between recall or precision – or even just one of them –

could be used. For example, assuming that the application does not tolerate false positives, only very

likely breakdown events should be considered. For that, a high probability threshold should be used,
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Figure 10. Breakdown forecasting evaluation using recall, precision, and F1-score.

resulting in a higher precision. To illustrate this statement, we fixed the speed threshold at 75 km/h,

varied the probability threshold from 0.05 to 0.95, and calculated the recall, precision, and F1-score, as

presented in Figure 10.

Based on the global F1-score, we would reach the same conclusions concerning an optimal proba-

bility threshold as obtained based on Figure 9 and choose a value close to 0.4. This result could satisfy

a general purpose. However, practical applications of this methodology could prioritize recall or pre-

cision, or even focus on better predictions for a specific forecasting horizon. The richness of these

results illustrates the benefits of Variational RNNs in this context, enabling the decision-maker to cre-

atemuchmore controlled policies when compared to predictionsmadewith neural networkswithout

this probabilistic characteristic.

In practical implementations of this framework, breakdown probabilities can be calculated in real

time based on field measurements, and the breakdown probability of any fixed moment in time can

be continuously monitored. The results above indicate a higher precision for shorter forecasting hori-

zons, which is reasonable for a highly stochastic phenomenon such as traffic breakdown. Therefore,

a stronger signal indicating the occurrence or non-occurrence of a breakdown will be produced, the

closer the monitored moment is to the present.

The proposed probability threshold approach allows for a concrete decision about the prediction

of a breakdown event, which can benefit real-time ATM decisions. Furthermore, both speed distribu-

tions and breakdownprobabilities could be incorporated into strategies such as dynamic speed limits,

adaptive rampmetering, lane use control, hard shoulder running, and improved traveller information.

The position and quality of the collected field data is crucial for a successful implementation of

this framework. In this study we used data from loop detectors on a single location of the studied

segment. This imposes some challenges compared to studies that use data from multiple segments,

mainly because upstream traffic flow is important to characterize the upcoming demand on the bot-

tlenecks. Even so, due to the ability to learn long – and short-term rules of the LSTM, the final model

could make reasonable traffic breakdown predictions. Also, a common problem when dealing with

traffic data is the quality of the available information. It is not rare for loop detectors to malfunction

and a lot of potentially useful information is lost, which happened in this study. Future studies could
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consider approaches to aggregate missing data in the methodology (Tian et al. 2018) and test it in a

broader dataset.

Concerning the maintenance of this framework, practical implementations can expect the occur-

rence of model drift, with degradation of the model performance over time. As for most forecasting

models, this happensdue to changes in traffic behaviour, in traffic demandor in the surrounding infras-

tructure, which is known as data drift. The quality of the predictions should be monitored over time

and themodel should be retrainedwhen its performancematches a certain criterion. The cause, mag-

nitude and frequency ofmodel driftwill vary according to each location, and it is possible that even the

speed and breakdown thresholds should be recalculated. The model should also be retrained when

new features are added, such as data from upstream traffic detectors or a weather station.

Conclusions

This study proposed a framework for traffic breakdown probability forecasting on a freeway segment

with daily traffic breakdowns. The methodology presents an approach for calculating the break-

down probability based on sequences of forecasted speed distributions and proposes the use of a

Variational LSTM neural network model to produce the forecasts. This type of neural network pro-

duces credible intervals, a fundamental characteristic for our framework that is absent in the classical

implementations of neural networks that are traditionally used for traffic forecasts.

The quality of speed predictions was adequate for pre-breakdown conditions, and traffic break-

downs could be reasonably predicted for forecasting horizons up to 15 min. The paired tuning of

the breakdown probability threshold using precision, recall and the F1-score produced great control

over the framework results, so that the predictions can be interpreted according to each application

requirement.

AlthoughNNshaveprovenpredictive capabilities, they are usually treated as black-boxmodels and

the abstractions captured by themodels can be hard to understand. In this sense, Explainable AI (XAI)

has gained space among the deep learning community by proposing methods that allow humans to

visualize these abstractions in a human-friendly way. XAI is a relatively new field, and some advances

have already been made for LSTMs (Arras et al. 2019). Applying these methods to transportation

problems is an open field and should be considered in future studies.

Besides enhancing interpretability, different models have also been suggested for time series fore-

casting purposes. LSTM has the limitation of dealing solely with data spaced at regular time intervals

and much information is lost during the aggregation process. To account for that, some adjustments

to the traditional formulation of LSTMs have beenmade in other knowledge fields, for example, to cre-

ate a model that makes disease predictions for patients with irregularly spaced appointments (Baytas

et al. 2017) and deal with signal processing (Neil, Pfeiffer, and Liu 2016). Beyond LSTMs, Transform-

ers (Vaswani et al. 2017), which use attention mechanisms, have been widely studied and should be

considered in future studies.

The methodology presented in this study uses well-studied concepts of traditional traffic break-

down probability models to produce a model that is able to forecast traffic breakdown probabilities

using deep learning. It relies on traffic and environmental data to support its training process and pre-

dictions and can be set to operate in real time if there is immediate data availability. Themethodology

is also very flexible, and themodel produced canbe tuned tomeet specific site needsby adaptingboth

speed and traffic breakdown probability thresholds. The final product is a data-driven approach that

creates a flexible methodology that is suitable for real-time applications, captures modern advances

made in the field ofmachine learning, and is also groundedon traffic engineeringdevelopmentsmade

over the last decades.
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5  COMPLEMENTARY MATERIALS 

This chapter aims to present complementary content that did not fit the articles but also 

brings important contributions. In the following sections we present charts that better depict the 

predictions, the code used to generate the proposed Variational LSTM model, and the 

limitations and recommendations for future studies. 

5.1 Speed forecasting (Third article) 

This section presents some speed forecasting analyses made during the comparison 

between our model and the benchmarks that did not fit the third article but produced a better 

understanding. Figure 1, for example, presents the error distribution of all the compared 

models. We can observe that our model (Enc-Dev Var. LSTM) has a higher kurtosis than the 

benchmarks and a distribution well centered in the origin. 

 
Figure 1: Ridgeplot of the speed forecasting error distribution of the proposed model and the 

benchmarks 

Another interesting visualization for comparing the models is plotting the speed profile 

over time for each. In Figure 2 we plotted the ground truth speed values in black and each 

predicted sequence with a colourful line starting with a circular marker. The background colours 

indicated the current region of the fundamental diagram, as suggested in the articles. This figure 

shows how much better the proposed model performs compared to the benchmarks, especially 

during the breakdown. The performance is similar during high-speed (free flow) time intervals, 

as traffic speeds have small variability. All models fail to anticipate the end of the congestions 

(region 4, red background) due to the lack of information regarding upstream traffic. Our model 

had a better performance during this period, however this discussion was out of the scope of 

this study. Future studies should specifically consider exploring this topic. 
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Figure 2: Comparison of speed forecasts between our model (last) and other benchmarks. The black 

line represents the ground truth, and each colourful line represents a sequence of speed forecasts. The background 

colours and numbers represent the regions of the fundamental diagram used in the articles. 

5.2 Code for the Variational LSTM model (Third article) 

We developed the code for the Variational LSTM model in Python using the 

Tensorflow/Keras library. We trained the model using the Google Colab platform, which, as 

the writing of this thesis, offers good computational power with GPUs for free. The dataset was 

also made public (Zechin, 2022). The code for the neural network is as follows: 
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# LIBRARIES IMPORTING --------------------------------------------------------------- 

import numpy as np 

import tensorflow as tf 

from os.path import join 

from tensorflow.keras.layers import Dense, LSTM, Input, RepeatVector, Bidirectional 

from tqdm import tqdm 

 

# DATA LOADING --------------------------------------------------------------- 

folder = "path/to/folder/containg/data/" 

 

X_train = np.load(join(folder, "X_train.npy")) 

Y_train = np.load(join(folder, "Y_train.npy")) 

vol_train = np.load(join(folder, "vol_train.npy")) 

X_test = np.load(join(folder, "X_test.npy")) 

Y_test = np.load(join(folder, "Y_test.npy")) 

vol_test = np.load(join(folder, "vol_test.npy")) 

u = np.load(join(folder, "u.npy")) 

s = np.load(join(folder, "s.npy")) 

dias_train = np.load(join(folder, "days_train.npy")) 

dias_test = np.load(join(folder, "days_test.npy")) 

 

# Denormalize data 

X_test_desnorm = X_test * s + u 

Spd_test_desnorm = ( 

    X_test_desnorm[:, -1, 0] * X_test_desnorm[:, -1, 15] 

    + X_test_desnorm[:, -1, 1] * X_test_desnorm[:, -1, 16] 

    + X_test_desnorm[:, -1, 2] * X_test_desnorm[:, -1, 17] 

) / (X_test_desnorm[:, -1, 15] + X_test_desnorm[:, -1, 16] + X_test_desnorm[:, -1, 17]) 

Vol_test_desnorm = ( 

    X_test_desnorm[:, -1, 15] + X_test_desnorm[:, -1, 16] + X_test_desnorm[:, -1, 17] 

) 

 

# Create the ouput for the decoder 

Y_train_decoder = Y_train[:, -1, :].reshape(Y_train.shape[0], Y_train.shape[2], 1) 

Y_test_decoder = Y_test[:, -1, :].reshape(Y_test.shape[0], Y_test.shape[2], 1) 

vol_train_decoder = vol_train[:, -1, :].reshape( 

    vol_train.shape[0], vol_train.shape[2], 1 

) 

vol_test_decoder = vol_test[:, -1, :].reshape(Y_test.shape[0], vol_test.shape[2], 1) 

 

# NEURAL NETWORK DEFINITION --------------------------------------------------------------- 

 

# Constants 

inp_shape = (X_train.shape[1], X_train.shape[2]) 

dropout_rate = 0.15 

weight_decay = 1e-5 

latent_dim = 256 
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window_len = X_train.shape[1] 

n_total_features = X_train.shape[2] 

forecast = Y_train.shape[2] 

n_deterministic_features = X_train.shape[2] 

 

# Encoder 

encoder = Input(shape=(window_len, n_total_features), name="Input") 

encoder1 = Bidirectional( 

    LSTM(512, dropout=dropout_rate, return_sequences=True, name="Encoder_LSTM_1") 

)(encoder, training=True) 

encoder2 = Bidirectional( 

    LSTM(512, dropout=dropout_rate, return_sequences=True, name="Encoder_LSTM_2") 

)(encoder1, training=True) 

encoder3 = Bidirectional( 

    LSTM(512, dropout=dropout_rate, return_sequences=True, name="Encoder_LSTM_3") 

)(encoder1, training=True) 

encoder_outputs, state_h, state_c = LSTM( 

    256, 

    dropout=dropout_rate, 

    return_state=True, 

    return_sequences=True, 

    name="Encoder_LSTM_4", 

)(encoder3, training=True) 

encoder_out = Dense(forecast, activation="linear", name="Output_encoder")( 

    encoder_outputs 

) 

 

# Decoder 

decoder = RepeatVector(forecast, name="Repeat_Vector")(encoder_outputs[:, -1, :]) 

decoder1 = LSTM( 

    256, dropout=dropout_rate, return_sequences=True, name="Decoder_LSTM_1" 

)(decoder, initial_state=[state_h, state_c], training=True) 

decoder2 = tf.keras.layers.Dense(1, activation="linear", name="Output_decoder")( 

    decoder1 

) 

 

# Final model definition 

model = tf.keras.models.Model(inputs=encoder, outputs=[encoder_out, decoder2]) 

 

# NEURAL NETWORK COMPILING --------------------------------------------------------------- 

 

# Function for calculating the last time step MAE 

def last_time_step_mae(Y_true, Y_pred): 

    return tf.keras.metrics.mean_absolute_error(Y_true[:, -1, :], Y_pred[:, -1, :]) 

 

# Compiling the model 

optimizer = tf.keras.optimizers.RMSprop(10e-2) 
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loss = tf.keras.losses.MeanSquaredError() 

model.compile( 

    loss=[loss, loss], 

    optimizer=optimizer, 

    metrics={"Output_encoder": last_time_step_mae, "Output_decoder": "mae"}, 

    loss_weights=[1, 3], 

) 

 

# NEURAL NETWORK TRAINING --------------------------------------------------------------- 

 

# Function for decaying the learning rate and callback to use it 

def decay(epoch): 

    if epoch < 40: 

        return 0.004 

    elif epoch < 60: 

        return 0.0004 

    else: 

        return 0.00004 

 

call_decay = tf.keras.callbacks.LearningRateScheduler(decay) 

 

# Callback to save the best model 

call_check = tf.keras.callbacks.ModelCheckpoint( 

    filepath="Variational_LSTM", 

    monitor="val_Output_decoder_mae", 

    verbose=0, 

    save_best_only=True, 

    save_weights_only=True, 

    mode="auto", 

    save_freq="epoch", 

) 

 

# Sample weights using the volume 

sample_weight = np.roll(vol_train[:, -1, 0], 2) 

 

# Training the model 

r = model.fit( 

    x=X_train, 

    y=[Y_train, Y_train_decoder], 

    epochs=100, 

    verbose=1, 

    validation_data=(X_test, [Y_test, Y_test_decoder]), 

    shuffle=False, 

    batch_size=512, 

    sample_weight=sample_weight, 

    callbacks=[call_check, call_decay], 

)  # 
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# INFERENCE --------------------------------------------------------------- 

 

n_inference = 1000  # Number of inference samples 

pred = [] 

 

for _ in tqdm(range(n_inference)): 

    pred.append(model.predict(X_test)[1]) 

 

pred = np.asarray(pred) 

 

# Save the predictions 

with open("Y_pred_new.npy", "wb") as f: 

    np.save(f, pred) 

 

5.3 Complementary discussions 

Due to the format of this thesis some discussions did not fit the articles but are worth 

mentioning and therefore presented in this section. 

5.3.1 Speed profile smoothing 

As observed in Figure 2, the speed forecasting model fits the speed profile but tends 

to smooth its oscillations. We understand this has two main reasons. First, we only use data 

from a single traffic detector, so the predictions are entirely made based on the historical trends 

learned during training (weights and biases) and the traffic data of the previous time steps 

(inputs). Traffic data of an additional upstream detector could provide more information on the 

future traffic state and help better represent speed oscillations. 

Secondly, during training, the model learns by minimizing prediction errors. Since the 

dataset has a high variance due to the traffic’s stochastic nature and information suppression 

due to the aggregation, the model converges to a more conservative approach that prioritizes 

representing the main trends and, on average, minimizes the error. 

5.3.2 Forecasting horizon 

In this study, we used a forecasting horizon of up to 25min. We understand this horizon 

is adequate compared to the present literature, where we mainly observe 1-10min forecasting 

horizons for studies that deal with short-term traffic predictions (Akhtar e Moridpour, 2021; 

Vlahogianni, Karlaftis e Golias, 2014). 
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From a practical perspective, the forecasting horizon will depend on the applications 

of the presented methodology. For example, active traffic management strategies used in a 

highway breakdown context usually aim to postpone the occurrence of the breakdown as much 

as possible. In this context, the 25min horizon seems adequate, and the predictions could 

support strategies such as variable speed limits and ramp metering. 

Finally, the 25min horizon used in this study was chosen due to its fit with the literature 

and a reasonable idea of possible applications of the methodology but is by no means fixed. 

The quality of the predictions might vary according to the quality of the data and traffic and 

infrastructure characteristics. Our methodology accounts for the flexibility of neural networks, 

so this value should be changed as needed. 

5.3.3 Free-flow speed recovery 

As depicted in Figure 2, the speed forecasting model can not produce good predictions 

regarding the end of congestions and the recovery of the free-flow speed. This topic is not 

related to our primary goals but is worth mentioning. 

During the speed forecasting model training, we used sample weighting to increase the 

relative importance of traffic breakdown periods. As a side effect, this approach penalizes other 

periods by decreasing their importance during training. Although this approach can contribute 

to reducing the performance during free-flow recovery, our model steel outperforms the 

benchmarks. 

Therefore, we mainly relate the insufficient prediction quality during free-flow 

recovery to the lack of upstream data. As depicted in Figure 4 of the Introduction, the moment 

when the recovery happens has a much greater variance than the traffic breakdown. The lacking 

information regarding upcoming flow is determinant for this case since it will indicate if there 

is enough clearance between vehicles for the average speed to be higher. 

This topic is an interesting follow-up of this thesis and should be considered for future 

studies, as mentioned in the following section, along with other suggestions. 

5.4 Limitations and recommendations for future studies 

This study uses traffic data collected in a highway segment with daily congestion due 

to a bottleneck. This is an optimum scenario for this study since traffic breakdowns happen 

approximately in the same period every day, resulting in a good and consistent traffic sample. 

The dataset was disaggregated so that each line of the dataset is a passing vehicle with its 
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characteristics. It enabled us to aggregate the data most adequately and produce features such 

as the speed variance, which could not be achieved with already aggregated data. This might 

be a limitation for future studies that aim at replicating our methodology since disaggregated 

data is seldom stored by traffic agencies. 

The traffic dataset comprises a single segment of the studied highway. Due to that, the 

forecasting model has no information regarding upcoming traffic, which could improve its 

performance. We highly recommend that future studies explore the usage of upstream and 

downstream traffic data and measure the benefits of using and not using them. Predictions of 

the end of congestion and not only their beginning should also be explored. In our study, the 

detectors were positioned slightly upstream of the active bottleneck. Future studies could study 

the effects of the position of the sensors on the model performance. 

This study also accounts for rain data obtained from a rain gauge close to the traffic 

detectors. In its raw format, the rain data was aggregated in a minimum interval of 10 min and 

maximum of 60 min, according to the measured rain intensity. We consider this a good-quality 

weather dataset since most are aggregated hourly or daily. The proximity of the rain gauge and 

the data frequency were beneficial for our study and might impose limitations on future studies. 

We chose the Variational LSTM model for this study since it accounts for the 

probabilistic approach, rare among other neural network models. Also, LSTMs have strong 

literature support as one of the best-performing models in traffic forecasting. Besides that, we 

also proposed improvements over the traditional model, such as using the encoder-decoder 

architecture and sample weighting to improve the relative importance of high-demand periods. 

To test the quality of the proposed model, we compared its speed predictions with predictions 

made with other benchmark models. As a recommendation for future studies, we suggest 

searching for other forecasting models with probabilistic characteristics and comparing their 

performance with the performance of the proposed model. This was not done in our study since 

our main contribution is the proposed method; however, it is an interesting topic to study 

further. 

An interesting topic that could also be addressed in future works is feature importance. 

The machine learning area called Explainable Artifical Intelligence has made good progress by 

proposing ways of producing reasoning and explainability for neural networks. The lack of 

these features has imposed resistance in their adoption, which is increasingly starting to loosen. 

This also comes with the usage of data from different sources, such as users reported, Bluetooth 
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and mobile devices data and metadata, which could be used to enrichen forecasting models and 

produce more insights on explainability. 
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6  CONCLUSIONS 

This thesis proposes a framework for probabilistic traffic breakdown forecasting in a 

highway segment. The study comprises three articles and is structured in six chapters: an 

Introduction, a chapter for each article, a chapter with Complementary Materials and this 

Conclusion. 

The first article, entitled Influence of Rain on Highway Breakdown Probability, 

analyses the probability of traffic breakdown on a freeway under different climatic conditions. 

The speed threshold was found to be the most suitable methodology for breakdown 

identification. We used the Weibull distribution to generate breakdown probability curves with 

traffic data gathered under different rain intensities. We found that the breakdown probability 

is significantly higher during rainfall and can increase up to 50% when the traffic flow is close 

to capacity. The results suggest that this methodology could be used to improve existing traffic 

management strategies. Recommendations for future studies include using a larger data set and 

accounting for the time of day. 

The second article, entitled Forecast of Traffic Speeds with Neural Network LSTM 

Encoder-Decoder, used an LSTM neural network to perform speed predictions on a road 

segment with daily congestions using rainfall and traffic data. The model had satisfactory 

results with an MAE of 5.4 km/h for all predicted intervals. Using volumes as sample weight 

helped reduce prediction errors when traffic was close to capacity. Comparing the breakdown 

probability curves obtained from the predictions and field data showed that the model captured 

the transition from free flow to congested traffic. 

The third article, entitled Probabilistic Traffic Breakdown Forecasting through 

Bayesian Approximation Using Variational LSTMs, is a sequence of the previous ones and 

benefits from their methodology, results, and conclusions. In this study, we proposed a 

methodology for traffic breakdown probability calculation based on probabilistic speed 

forecasts. For that, we developed a machine learning model that uses Dropout to approximate 

a Bayesian inference and produce probabilistic outputs. The proposed model had better speed 

forecasting performance during high-demand periods when compared to baseline models. The 

produced breakdown probability forecasts enable a level of control over highway operations 

that could be achieved using deterministic forecasts. Besides its theoretical contributions, this 

methodology could also be used in practical applications to improve the effectiveness of traffic 

management strategies. 
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This thesis fulfils a literature gap related to probabilistic traffic breakdown forecasting 

by developing a traffic breakdown probability calculation methodology using speed forecasts. 

The probabilistic forecasts were possible due to recent contributions in the Probabilistic 

Machine Learning area. We hope this study will positively influence future works regarding 

the absorption of concepts from both the Probabilistic Machine Learning and Explainable 

Artificial Intelligence areas so that the Traffic Engineering community sustainably and 

confidently incorporates robust and more general models. 
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