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ABSTRACT 

 

In this paper, we seek to measure and forecast tail risk for a energy commodities portfolio. To 

address this challenge, we propose a dynamic D-vine copulas. This model allow us to capture 

the complex dependence structures of energy commodity returns, while also accommodating 

their specific characteristics, such as asymmetries and heavy tails. We also use generalized 

autoregressive score models as an updating mechanism for the copula parameters, which allows 

us to incorporate time-varying dependence structures and use the information about the copula 

distribution to improve parameter estimation. Our results demonstrate that the dynamic D-vine 

copula approach accurately forecasts tail risk in energy commodity returns and outperforms 

other models in terms of average loss. 

Key words: Vine copulas; Generalized autoregressive score; Energy commodities; Tail risk. 



 

RESUMO 

 

Nessa dissertação, tivemos como objetivo medir e prever risco na cauda para um portfolio 

de commodities de energia. Para esse fim, propomos D-vine copulas dinâmicas. Com esse 

modelo, podemos capturar características complexas da estrutura de dependência dos retornos 

de commodities de energia, e também incluir características individuais, tais como assimetria 

e caudas pesadas. Nós também utilizamos o modelo generalized autoregressive score como 

mecanismo de atualização dos parâmetros das cópulas, o que nos permite incluir dinâmica 

na estrutura de dependência e utiliza informação da distribuição da cópula para melhorar a 

estimação de parâmetros. Nossos resultados indicam que o modelo D-vine copulas dinâmicas 

mede corretamente risco na cauda para os retornos de commodities de energia e é o menor com 

menor perda média dentre os considerados. 

Palavras-chave: Vine copulas; Generalized autoregressive score; Commodities de energia; 

risco caudal. 
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1 INTRODUCTION 

 
Energy commodities hold relevant importance in the global economy, as they account for 

over 30% of the world’s energy consumption, in which oil and natural gas are among the most 

widely used energy sources in industries, transportation and agriculture (HAMILTON, 2008; 

ENERGY, 2020). As for financial assets, they are frequently of interest in both speculative and 

hedging strategies (BASHER; SADORSKY, 2016). Therefore, factors such as the phase of 

economic cycles, precautionary demand and geopolitical risk can become short-run drivers for 

their prices (and price returns), resulting in volatility clusters and sharp price changes (LAPORTA; 

MERLO; PETRELLA, 2018; AMARO et al., 2022). In this sense, understanding and accurately 

measuring risk is an important task for economic regulators and financial institutions. 

These energy commodities price returns are characterized by their complex and intricate 

behavior, which can be reflected on their nonstandard marginal distributions. Commonly their 

marginal distributions present non-normal behavior, heavy tails and volatility. Also, the complex 

nature of production and consumption of these commodities gives rise to possible time changing 

nonlinear relationships among the distinct commodities (SERLETIS; TIMILSINA; VASETSKY, 

2011). In this sense, accurately including these features in the returns joint distribution is crucial 

to correctly measure and forecast the risk of a portfolio formed by energy commodities returns. 

One way of dealing with this complex joint behavior of the returns is via copulas, which 

provide a powerful approach for modeling complex patterns of dependence among variables. 

By using copulas, we can effectively separate the modeling of the dependence structure from 

that of the marginal distributions, enabling us to more flexibly model the joint distribution. This 

allows us to capture a wide range of dependencies among variables and better understand the 

underlying relationships among them. 

Nevertheless, in a higher dimension problem, the dependence structure might become too 

complicate to characterize, which leads us to using vine copulas. Vine copulas present a flexible and 

efficient method for modeling the dependence structure among multiple variables. The pair-

copula construction (PCC) introduced by Aas et al. (2009) employs pair-copulas as building blocks, 

which can then be organized into different levels to capture the whole dependence structure. By 

using this approach, it is possible to model the joint distribution of multiple variables and also 

build conditional distributions. This capability has been shown to be a powerful tool for 

modeling higher dimensional dependence structures and also forecasting risk (RIGHI; 

SCHLENDER; CERETTA, 2015; TRUCÍOS; TIWARI; ALQAHTANI, 2020; YU et al., 2018). 

The time dynamic nature of dependence structures among financial assets has been 

commonly indicated in the literature. To address this feature, Tófoli et al. (2019) propose a 

dynamic vine structure, which is based on the copula dynamics introduced by Patton (2006). 

Also, Almeida, Czado e Manner (2016) propose to include a generalized autoregressive score 
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(GAS) model to update copula parameters. The important advantage of using GAS is that 

the parameters updating mechanism includes information of the most recent gradient of the 

copula density to improve the parameters updating process (similar a Newton-type optimization 

procedure), adjusting the copula dynamics according to the particular chosen copula. 

Measuring risk in energy commodities is crucial for economic policy and financial 

institutions. A commonly used measure is the Value-at-risk (VaR), which is used to quantify the 

level of financial risk of an asset or portfolio at certain level α, calculated as the α-quantile of 

the marginal distribution of an asset or a portfolio (JORION, 2000). To accurately compute a 

portfolio returns VaR one needs to fully understand the joint behavior of the returns that compose 

the portfolio. Thus, the use of multivariate models that incorporate the dependence structure 

among the asset returns is crucial in order to effectively manage and mitigate risk of a portfolio. 

The literature has explored tail risk modeling under both univariate and multivariate 

perspectives. Žikovic´ (2017), Amaro et al. (2022), Laporta, Merlo e Petrella (2018) present 

ARMA-GARCH models for univariate risk modelling. In general, one of the most common 

findings is that specifying marginal distributions that account for heavy tails and asymmetry tend 

to be effective in risk forecasting for energy commodities. However, fitting more sophisticated 

models for conditional variance not always produces the best forecasts (AMARO et al., 2022). 

As for multivariate modeling, one possible approach is to use copulas or Extreme Value Theory 

(EVT), as explored in the works by Hsu, Tseng e Wang (2008), Lu, Lai e Liang (2014), Ghorbel 

e Trabelsi (2014). These studies investigate the dependence structure among different oil price 

returns, such as between WTI and Brent oil, and between oil and natural gas. While these models 

provide insights into tail risk and portfolio management, they do not fully capture the complex 

dependence structures. 

To address this limitation, González-Pedraz, Moreno e Peña (2014) propose an asymmet- ric 

DCC-GARCH model in the context of energy commodities. In addition to oil and natural gas, 

their model includes coal and electricity in the portfolio. The authors note that energy returns 

exhibit high volatility, dynamic correlation, and tail dependence, and that the inclusion of 

information about these characteristics can improve the accuracy of portfolio risk assess- ment 

and forecasting. Their empirical results show that the asymmetric DCC-GARCH model with 

generalized hyperbolic errors outperforms standard models such as multivariate normal or CCC-

GARCH models. 

While there is a considerable body of literature on risk assessment for energy commodities 

using univariate approaches, and some studies investigating the risk of energy commodity 

portfolios, to the best of our knowledge, no previous research has employed dynamic vine copulas to 

model the dependence structure of the asset returns which compose an energy commodities 

portfolio. Our study is the first to address this gap in the literature by employing this methodology. 

By utilizing dynamic vine copulas, we are able to capture the complex interdependence among 

the several energy commodities returns, which has important implications for risk management 
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and hedging strategies. Hence, the purpose of this study is to measure and predict returns risk of 

a portfolio composed by energy commodities by using dynamic D-vine copulas. We analyze the most 

actively traded energy commodities futures, including West Texas Intermediate (WTI) oil , gasoline, 

heating oil, natural gas and Brent oil. We find that dynamic vine copulas accurately forecast 

risk and have the lowest average loss among the considered models. 

Beyond this introduction, the dissertation is structured into three chapters. Chapter 2 

describes all methodological aspects present in this work, including definitions, models and 

estimation procedures. Chapter 3 shows our comprehensive empirical analysis, exposing the 

results and discussions. Finally, Chapter 4 brings our final comments. 
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2 METHODOLOGY 

 
2.1 MODELS FOR THE MARGINAL DISTRIBUTIONS 

 
As documented in literature, energy commodities price returns are characterized by their 

complex behavior, usually possessing nonstandard marginal distributions with heavy tails and 

volatility. We use an ARMA (p,q) to capture the autocorrelation in mean and an EGARCH(m,n), 

as proposed by Nelson (1991), to capture the asymmetric behavior of volatility. We describe 

these models in (2.1). 

 

 
p q 

xt =ϕ0 + 
Σ 

ϕpxt−i + 
Σ 

θiεt−1 + εt 
 

  

εt =σt.ηt, ηt ∼ Skewed − t(v, λ) 
n m 

 

 
(2.1) 

ln(σ2) =ω + 
Σ

(αjε2 + γk(|εt−j | − E |εt−j |)) + 
Σ 

βlln(σ2   ) 

In the expressions above, δ ≥ 0 and 
Σn 

αk  + 
Σm   

βl < 1. The parameter γ indicates 

a negative asymmetry, which represents the leverage effect. As for the marginal distribution ηt, 

we use the skewed-t distribution proposed Fernández e Steel (1998) to model both asymmetry 

and heavy tails. 

If the model is correctly specified, then we have that F (ηt) = F (xt|µt, σt) = Skewed − 

tv,λ((
xt−µt )), in which µt as conditional mean of xt, and σ2 as conditional variance. Additionally, 

σt t 

we have by the probability integral transform (PIT) that ut = F (xt|µt, σt) ∼ U [0, 1]. We use 

Kolmogorov-Smirnoff (KS) and Cramer-von Mises tests to check the specification of the marginal 

distributions. 

 
2.2 VINE COPULAS 

 
In this section, we present the vine copula models, which we use to characterize the 

dependence structure of the energy commodities. The advantages of using this model is that we 

can model the dependence structure in a flexible way, without making binding assumptions about 

the marginal distribution. This fits properly with the asymmetries and fat tails documented in 

literature for the marginal behavior of these commodities, and also to the complex relations 

among them. 

Let Xt = (x1,t, ..., xn,t) be a random vector and F (Xt) its joint distribution function. The 

theorem of Sklar (1973) states that every multivariate joint function can be expressed as a copula 

C(·, ·) and the Fi(xi) as marginals distributions of (X1, . . . , Xn).  Additionally, following 

the 

i=1 j=1 

k=1 l=1 
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| F (x v) = . 

 

probability integral transform, a cumulative distribution function (cdf) is also a random variable 

with uniform distribution. As such, we have that each Fi(xi) ∼ U [0, 1]. The expression (2.2) 

indicates a n-variate case and the joint density function. 
 

 

F (x1, ..., xn) =C(F1(x1), ..., Fn(xn)) 

f (x1, ..., xn) =c12...n(F1(x1), ..., Fn(xn)).f1(x1) .... fn(xn). 

 
(2.2) 

 

We can use copulas to model dependence structure between variables in a flexible way, 

separating the dependence structure of marginal distribution of the variables. Following Aas et 

al. (2009), we can factorise a joint pdf, such as (2.3). 

 
f (x1, ..., xn) = f (xn).f (xn−1|xn). . . . .f (x1|x2, ..., xn). (2.3) 

Aas et al. (2009) points that we can generalize this result for a n-variate case. We have the 

expressions in (2.4) showing the f (x|v) and F (x|v), respectively. In this notation, v is a vector 

of dimension d, where vj and v−j are chosen arbitrarily. The multivariate density, as showed in 

(2.4), involves conditioned marginal distributions in the form presented by Joe (1996): 

 
 

f (x|v) =cxvj |v−j (F (x|v−j), F (vj |v−j)).f (x|v−j). 

∂Cxvj |v−j (F (x|v−j), F (vj |v−j)) (2.4) 

∂F (vj |v−j) 

Since the decomposition is arbitrary, we can have many possibilities, and these increase 

with the number of variables. As a way to organize the relations between variables, Bedford e 

Cooke (2002) propose regular vines (R-vines). Vines are a graphical method which we build a 

sequence of nested trees, defining each edge as a pair-copula and each edge is an node in the 

following tree (JOE; KUROWICKA, 2011). For n variables, we have n − 1 number of trees, 

where each tree is denoted as Tj, j = 1, 2, ..., n − 1. However, as pointed by Aas et al. (2009), R-

vines still are very general with many possible decompositions. Two special cases can be 

highlighted: canonical vines (C-vines) and drawable vines (D-vine). 

In canonical vines, the first tree is built associating all variables to one central variable, 

which is useful when we know the key variable that governs the interactions. As for drawable 

vines, the only restriction is that no node is connected to more than one edge at any Tj tree and 

these trees has an unique node connected to n − j edges (AAS et al., 2009). 

To select the optimal tree structure, we use the algorithm proposed by Dissmann et al. 

(2013). In this procedure, we select the pairing of the variables that maximize the empirical 

Kendall’s τ for each tree level, then select the best fitting copula each pair using Schwarz 

Information Criterion (SIC or SBC). 
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For some of these pair-copula, we may also have time-varying parameters. Almeida, 

Czado e Manner (2016) introduces dynamic D-vine copulas, where we have all of the pair- 

copulae as dynamic and also, in which one of the proposed updating mechanism for copula 

parameters is a generalized autoregressive score model, as proposed by Creal, Koopman e Lucas 

(2013). Tófoli et al. (2019) introduces a dynamic D-vine copula, where some of the copula 

presents dynamic behavior, following the dynamic proposed by Patton (2006). In both cases, the 

iterative algorithm proposed for building conditional distributions and pair-copulae remains the 

same, as long as we account for the parameter dynamics in (2.4). In this paper, we use a dynamic 

D-vine copula, using a GAS (1,1) to model the evolution of dependence parameters over time1. 

 
2.3 TIME-VARYING COPULAS 

 
A common fact in the finance literature is the evolution of the dependency structure over 

time. We use generalized a autoregressive score model (GAS) to introduce dynamic in copula 

parameters. Following Manner e Reznikova (2012), the most used models to introduce 

dynamics in copula parameters are GAS models and the ARMA(1,m) dynamics, proposed by 

Patton (2006). The advantages of using GAS models is that we use information regarding the 

full conditional density, not only the first and second moment (CREAL; KOOPMAN; LUCAS, 

2013). 

As proposed by Creal, Koopman e Lucas (2013), the GAS (p,q) model has an updating 

mechanism for time-varying parameters that takes into account both the lagged parameter and 

score of the conditional density. Let θt be a time-varying parameter of interest and ut our vector of 

marginal distributions. We assume that ut ∼ c(ut|θt, Ft−1, ω), where Ft−1 is the information set up 

to time t − 1 and ω are fixed parameters. Following Almeida, Czado e Manner (2016), for t = 1, 

..., T , our copula parameters in 1 ≤ i ≠   j ≤ d. (2.5) describes the copula distribution and our time-

varying parameter. 

 

(ui,t, uj,t) ∼ c(·, ·, θi,j). (2.5) 

Since the parameters of different copula families range through different intervals, we 

bound the parameters to a range of values according to the correspondent copula. In this sense, 

for the elliptical copulas, we use a logistic transformation to associate the unrestricted parameter 

λi,j and the correlation parameter ρi,j. As for all the other copulas that the parameters had to 
t t 

assume a positive value, we use a restriction similar to the one indicated by Oh e Patton (2018), 

as indicated in Expression 2.6. 

1 We have a dynamic D-vine in which some of the selected pair-copulae are static. 
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t 

t 

t 

It 

2 

t t t 

 

 

 

ρ
i,j  

=0.99 ∗
 1 − exp(−λt)  

1 + exp(−λi,j) 

δi,j =0.001 + 
exp(λi,j) 

(2.6) 

t t 

γi,j =1.001 + exp(λi,j) 
t t 

 

For the parameter λi,j, we have the following GAS(1,1) dynamics: 
 

 

λi,j =ωi,j + A1s
i,j   + B1λ

i,j 
t 

si,j  =Si,j.∇i,j 

t−
1 

t−1 
 

(2.7) 

∇i,j  =
∂c(ui,t, uj,t|ωi,j , Ft−1)

. t 
∂θi,j 

 

In (2.7), ωi,j is a vector of constants, A1 and B1 are coefficient matrices with 

appropriated dimensions,Si,j is a scaling matrix. For the choice of scaling matrix, Creal, 

Koopman e Lucas 

(2013) indicate that some possibilities, such as S  = −d 
t|t−1 , d = {0, 1 , 1}, where It|t−1  

= 

Et−1[∇t∇t
′ ] is Fisher information matrix up to time t − 1.  If d  =  0, we have St  =  I, but for 

d = 1, we have St as the variance of the parameter θt up to time t − 1. 

Following Almeida, Czado e Manner (2016) and Kielmann, Manner e Min (2022), we 

choose d = 1/2, which indicates the scaling matrix as the square-root of the inverse of the Fisher 

Information matrix. As such, the scaling matrix presents information referring to copula 

parameters added by new observations. This feature can capture dynamics in a more complete 

way than the updating mechanism proposed by Patton (2006), since the new information depends on 

copula function, not only by mean of the distance between the two marginals (as a measure of 

comonotonicity) (CREAL; KOOPMAN; LUCAS, 2013). 

 
2.4 ESTIMATION OF COPULAS 

 
For the joint distribution function of our five variables, we have (2.8) as log-likelihood 

function of a five-dimensional D-vine: 

t 
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Σ 

Σ 

Σ 

Σ 

Σ 

 

 

 

T 

ℓ(α, γ; X) = (logf (x4,t; α4) + logf (x2,t; α2) + logf (x1,t; α1) + logf (x5,t; α5) + logf (x3,t; α3))+ 
t=1 

T 

(logc42(F4(x4,t; α4), F2(x2,t; α2); γ42) + logc21(F2(x2,t; α2), F1(x1,t; α1); γ21)+ 
t=1 

logc15(F1(x1,t; α1), F5(x5,t; α5); γ15) + logc53(F5(x5,t; α5), F3(x3,t; α3); γ53))+ 

T 

(logc41|2(F4|2(x4,t|x2,t; α4, α2, γ42), F1|2(x1,t|x2,t; α1, α2, γ21); γ41|2)+ 
t=1 

logc25|1(F2|1(x2,t|x1,t; α2, α1, γ21), F5|1(x5,t|x1,t; α5, α1, γ15); γ25|1)+ 

logc31|5(F3|5(x3,t|x5,t; α3, α5, γ53), F1|5(x1,t|x5,t; α1, α5, γ15); γ31|5))+ 

T 

(logc45|12(F4|12(x4,t|x1,t, x2,t; α4, α1, α2, γ42, γ21, γ41|2), 
t=1 

F5|12(x5,t|x1,t, x2,t; α5, α1, α2, γ15, γ21, γ25|1; γ45|12)+ 

logc23|15(F2|15(x2,t|x1,t, x5,t; α2, α1, α5, γ21, γ15, γ25|1), 

F3|15(x3,t|x1,t, x5,t; α3, α1, α5, γ53, γ15, γ31|5; γ23|15))+ 
T 

(logc43|125(F4|125(x4,t|x1,t, x2,t, x5,t; α4, α1, α2, α5, γ42, γ21, γ15, γ41|2, γ25|1, γ41|12), 
t=1 

F3|125(x3,t|x1,t, x2,t, x5,t; α3, α1, α2, α5, γ53, γ15, γ21, γ25|1, γ31|5, γ23|15); γ43|125)) 

(2.8) 

 

To estimate the parameters in an asymptotic efficient manner, we use sequential maximum 

likelihood estimation (CZADO, 2019). As such, we estimate each level of the vine and use the 

estimated parameters in the following level. The first step of the procedure is similar to 

"inference from margins" as proposed by Joe e Xu (1996) (IFM), since we use directly the 

estimated marginal distributions from our variables. 

In the second step, we estimate the conditional distribution using the h-function, then we 

estimate the conditional pair-copulas. This procedure is followed for the other two steps, where 

we first generate the conditional distribution functions using the copulas from the previous levels, 

then we estimate the conditional copulas. Even including dynamics, the sequential procedure 

remains the same for computing conditional marginals using the proper h-function (ALMEIDA; 

CZADO; MANNER, 2016). 

 
2.5 DCC-GARCH 

 
As one of the dynamic models proposed, we use Dynamic Conditional Correlation 

GARCH (DCC-GARCH), as proposed by Engle (2002). In this model, we can model both 

covariance matrix and conditional variance of each variable in a dynamic form as separated 

processes. The advantages of this approach is considering first the conditional variance, then 

conditional correlation, accounting for each separately. Also, the conditional correlation is 

dynamic, encompassing changes in the relation between financial assets. As such, the model is 
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t 

i=1 

 ̂ ^ 

T 
t t 

3. We estimate each return as r = µ 

+ σ η 

 

commonly used as multivariate model in risk management (BRECHMANN; CZADO, 2013; 

ZHANG et al., 2014; MARCHESE et al., 2020). Expression (2.9) presents the DCC-GARCH 

model. 

 

 
Xt =µt + εt 

εt =H1/2zt, zt ∼ iid(0, 1) 

Ht =DtRtDt 

 
(2.9) 

 

Similar to univariate case, we have an expression for conditional mean given by the first 

expression in (2.9). As for conditional variance, we decompose the covariance matrix in two 

elements: a diagonal matrix Dt = diag(h1/2, ..., h1/2) defined as the standard deviation 
1,t 5,t 

matrix and each hi,t representing the univariate GARCH (p,q) of each variable that might have 

different orders; and Rt as the correlation matrix. Since Ht is a covariance matrix, it has to be 

positive definite. To ensure this requirement, Engle (2002) proposes to further decompose Rt in 

Rt = Pt
−1QtPt

−1. Expressions in (2.10) define a DCC(1,1) model. 

 

Qt =(1 − a − b)Q + aξt−1ξt
′
−1 + bQt−1 

       T (2.10) 

Q = 
1 Σ 

ξ ξ′ 

 

We define ξt  = Dt
−1εt  ∼ N (0, Rt) as the standardized residuals, and both a and b are 

scalars. To ensure positive definite matrix, the following conditions are imposed: a, b ≥ 0 and a 

+ b < 1. The matrix Pt is a normalization matrix, composed by rescaled elements of Qt. 

 

2.6 VALUE-AT-RISK AND BACKTESTING 

 
We define Value-at-Risk as the α-quantile of the joint distribution function (JORION, 

2000). To calculate VaR forecasts, we use different approaches depending on the fitted model. 

For dynamic and all-static D-vines, we follow an approach proposed by Müller e Righi (2018), 

in which we have the following algorithm to compute V aR(α): 

 

1. Simulate a sample {ûi,t}
5 from the fitted D-vine copula. This procedure was done 1000 

times; 

 

2. From the simulated uniforms, we apply the inverse distribution to obtain the marginals, 

since ηi,t = 

F−1(ui,t 

), i = 1, ..., 5; 

 

^i,t ^i,t ^i,t ̂ i,t 

, i = 1, ..., 5; 

t=1 
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i=1 

 ̂

Σ
−Q = P  (α − 

d 
t+1 

t+1 t+1 

 

4. We compute a portfolio equally weighted Rt = 
Σ5 

0.2 ∗ (ri,t); 
 

5. We calculate V aR(α) = −inf {Rt ∈ R|α ≤ F (Rt)} as the quantile of the portfolio Rt 

at time t. The significance levels we choose are 0.10, 0.05 and 0.01. 

 

For DCC-GARCH, we have similar steps for conditional mean and variance, but ηi,t are 

the standardized residuals obtained in estimation. To compare the different risk forecasts, first we 

test for VaR violations using the unconditional coverage test proposed by Kupiec et al. (1995), 

the conditional coverage test proposed by Christoffersen (1998), and the dynamic quantile test 

proposed by Engle e Manganelli (2004). 

In the dynamic quantile test (DQ), we denote Hitt(α) = I(α) − α, a demeaned process, in 

which I is an indicator function that assumes 1 when rt  < V aRt.  The idea of this test is to 

check whether the violation today has correlation with its lags. For this, we test the joint 

significance of the lags in a linear regression, in which Hitt(α) = β0 + β1Hitt−1 + et, et ∼ iid. 

Under the null hypothesis, the hits are uncorrelated. 

Also, we use the loss function proposed by González-Rivera, Lee e Mishra (2004). The 

loss function is an altered version of the one proposed by Koenker e Jr (1978) to estimate 

parameters in quantile regression. As such, for a given α, (2.11) indicate the loss function Q. 

 

T 

1 α 
t+1 

)(yt+1 − V aRα 
 

). (2.11) 

t=R 

 

In (2.11), we have P as the prediction period, and dα 

 
= 1(yt+1 < V 

aRα 

 
) as an 

indicator function. In this loss function, we have a higher penalization of (1 − α) if yt+1 − 
α 
t+1 < 0. Smaller values of Q indicate better fit of the proposed model. In order to compare 

model forecasts, we use the test proposed by Diebold e Mariano (1995). Here we use loss 

functions to test if there is significant statistical difference between them. Under null hypothesis, 

we have that there is no significant difference between forecasts. 

V aR 
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3 EMPIRICAL ANALYSIS 

 
3.1 DATA 

 
The data we use in this paper consists in log-returns of the futures prices of selected 

energy commodities, such as West Texas Intermediate (WTI) oil, gasoline, heating oil, natural 

gas, and Brent oil. We choose these energy commodities since they are the most traded and also, 

the most influential to other energy commodities Ferreira et al. (2022). The full period of 

analysis is january-2011 to december-2022, totalling 3000 observations with a daily frequency. 

The variables represent the log returns of one month ahead future prices traded on New York 

Merchant Exchange (NYMEX). Chart 1 describes the variables as we refer to it in this paper. 

Chart 1 - Variables used in the estimated models 
 

Number in 

vine 

Notation Description Source 

1 doilt WTI future prices returns NYMEX 

2 dgasolt RBOB gasoline future prices returns NYMEX 

3 dheatt Heating oil futures prices returns NYMEX 

4 dgast Natural gas future prices returns NYMEX 

5 dbrentt Brent oil future prices returns NYMEX 

Source:author elaboration. 
 

 

To perform the estimation, we split the data in sub-periods: first, we have an in-sample of 

1500 observation we use to select the tree format of the vine copulas, the copula distributions and 

whether the copulas are dynamic of static. After this first estimation, we proceed to re-estimate 

using a rolling window with the size of 1500. To conditional mean and variance, we use the 

rolling window to forecast one-step ahead. As for the parameters in GAS dynamics for the 

copulas, we re-estimated at each 500 observations. This is due to the dependence structure not 

changing so drastically over time, as compared to conditional variance. 

Table 1: Descriptive statistics and unit root test for in-sample period 

 

Variable Mean SD Skewness Kurtosis PP KPSS 

doilt 0 0.02 0.16 2.95 -1628.60** 0.11 

dgasolt 0 0.02 0.17 9.55 -1553.30** 0.10 

dheatt 0 0.02 -0.64 10.26 -1654.80** 0.16 

dgast 0 0.03 0.24 1.71 -1585.70** 0.09 

dbrentt 0 0.02 0.11 3.79 -1680.60** 0.16 

Source:author elaboration. Asterisks indicate the rejection of null hypothesis. 
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Table 1 presents the descriptive statistics and unit root tests for the log-returns of the 

selected energy commodities for the in-sample period. According to presented results, there is 

evidence that log returns of gasoline and heating oil present heavy tails, while all other variables 

present kurtosis closer to 3. All log returns of energy commodities present positive asymmetry 

(with exception of heating oil). Additionally, both unit root tests present evidence of stationarity 

for all variables. 

 
3.2 ESTIMATION OF DYNAMIC D-VINE COPULAS 

 
In this section, we present the results for the estimation of dynamic D-vine copulas. First, 

we test whether the marginal distributions are correctly specified, using the Kolmogorov- 

Smirnoff and the Cramer-von Mises tests. Then, if the marginal are correctly specified, we 

proceed to select the best fitting pair-copulae among the presented families. To estimate the 

marginal distributions, we use an ARMA-eGARCH model and we select the lags with Schwarz 

Information Criterion. The results are presented in Table 2. 

Table 2: Results for the diagnosis of the estimated marginal distributions for energy commodities 

 

Coefficient doilt dgasolt dheatt dgast dbrentt 

Q(20) 0.9998 0.9775 0.8827 0.8456 0.8165 

Q2(20) 0.0716 0.6267 0.6097 0.1598 0.0718 

K − S 

CvM 

0.2487 

0.9813 

0.5387 

0.4365 

0.2467 

0.9240 

0.1096 

0.8244 

0.8357 

0.2132 

Source: author elaboration. P-value in parenthesis. 
 

 

By the results in Table 2, the Q(20) and Q2(20) tests indicate no evidence of autocorrela- 

tion or ARCH-type residuals up to lag 20. Also, we do not reject the null hypothesis for both 

Kolmogorov-Smirnoff and Cramer-von Mises, which indicate that we have evidence that the 

estimated marginal distributions are U [0, 1]. As such, we can proceed to copula estimation. 

Now we proceed to the dynamic vine copulas. The first step is to organize the dependence 

structure, and for such, we use the spanning tree algorithm proposed by Dissmann et al. (2013). 

After selecting the appropriate vine structure, we proceed to select the best fitting copula for 

each pair-copulae. Figure 1 present the selected tree format. 

As indicated in Figure 1, we select a D-vine copula. In this pairing, we have that the first 

pair-copula is gasoline and heating oil returns, then the second is heating oil and Brent oil, the 

third Brent oil and WTI oil, and the last, WTI oil and natural gas. The upper levels are 

conditioned to the first. 

Next, we select the best fitting copula for each pair. For that, we first select between five 

copula families among their static and dynamic version: Gaussian, t, BB7, Rotated Gumbel and 
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Figure 1 – Selected tree format for dynamic vine copulas 

 

Source: author elaboration. 
 
 

Gumbel. Both Gaussian and t model a linear correlation, but t copula also present symmetric tail 

dependence, while Gaussian does not present tail dependence. The Rotated Gumbel and Gumbel 

copulas present asymmetric tail dependence, being upper and lower tail dependence, respectively. 

We also include BB7, that allow us to model both lower and upper tail dependence in a separate 

manner. Table 3 presents the selected families and their SIC for the static and dynamic versions. 

Table 3: Results for family selection for vine copula 

 

Copula Family SIC 

Tree 1   

dgast, dheatt 

dheatt, dbrentt 

dbrentt, doilt 

doilt, dgasolt 

static Gaussian 

dynamic t 

dynamic t 

dynamic t 

−0.0251 

−2.1813 

−3.008 

−3.9181 

Tree 2   

dgast, dbrentt|dheatt 

doilt, dheatt|dbrentt 

dgasolt, dbrentt|doilt 

static Gaussian 

dynamic t static 

t 

−0.0010 

−0.5445 

−0.2676 

Tree 3   

doilt, dgast|dheatt, dbrentt 

dgasolt, dheatt|doilt, dbrentt 

static Gaussian 

static t 

0.0052 

−0.2080 

Tree 4   

dgasol, dgas|doilt, dheatt, dbrentt static Gaussian 0.0051 

Source:author elaboration. Asterisks indicate the best fitting model by SIC criteria. 
 

 

The results in Table 3 indicate that, for all pair-copulae, we choose symmetric copulas, 

where t copula is the most common. According to Righi, Schlender e Ceretta (2015), t copulas 

are one of the most used in dependence structures of financial assets. These findings are in line 

with part of the literature which use copulas for energy commodities returns modelling (HSU; 

TSENG; WANG, 2008; LU; LAI; LIANG, 2014). 

Out of the ten estimated copulas, we select dynamic copulas for four of them, being 

present in the first and second trees of the vine. These copulas indicate evidence of significant 
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change of these dependence structures over time. However, most of the second, and all of the 

pair-copula in third and fourth trees, present a better fit with static copulas. As such, we have 

evidence of constant relation over time. In Table 4, we present the estimated parameters of the 

dynamic D-Vine copulas. 

Table 4: Estimates from dynamic copulas models for energy commodities 

 

 

 

 

 

 

 

 

 

 
(0.0244) 

 

 

 

 

 

 

 

 

 

 
 

 

 

Source: author elaboration. Standard error in parenthesis. 
 

 

For first tree, we have that all time-invariant copula parameters are statistically significant. 

Also, we have evidence of symmetric tail dependence and a time-invariant linear correlation. 

However, in the second and third trees, we have lower correlation between energy commodities, 

and even a non-significant time-invariant parameter for c4,5|3and c2,4|1,3,5, which might indicate 

no correlation. All t copulas present significant symmetric tail dependence. 

Understanding some of the correlations between energy commodities might be complex 

due to nature of production and consumption, but some are quite direct, as for correlation 

between WTI and Brent oil. We can see a reflection of oil markets integration through the high 

correlation between both oil prices, in which Brent is a benchmark for european oil and WTI 

(West Texas Intermediate) is an american benchmark. In some extension, the price differences 

might indicate the effect of local markets, but the most predominant factor are global oil markets 

drivers, such as global supply and demand (HAMILTON, 2009; KRUSE; WEGENER, 2020). 

Other energy commodities, such as gasoline and heating oil, are linked with oil since 

they are oil derivatives, which implicates price spillovers between these markets (FERREIRA et 

Copula ω1 ω2 α β 

dgast, dheatt 0.1226 
(0.0253) 

− − − 

dheatt, dbrentt 0.6345 4.0112 0.3060 0.7634 
 (0.4548) (0.0501) (0.0760) (0.1684) 
dbrentt, doilt 0.0352 2.4789 0.0998 0.9847 
 (0.0038) (0.0369) (0.0417) (0.000) 
doilt, dgasolt 0.1529 8.3752 0.1261 0.9124 
 (0.000) (0.0152) (0.000) (0.000) 

dgast, dbrentt|dheatt −0.0095 − − − 

doilt, dheatt|dbrentt 0.2045 
(0.0358) 

8.9847 
(0.0150) 

0.2131 
(0.0226) 

0.5272 
(0.0913) 

dgasolt, dbrentt|doilt 0.4669 
(0.0201) 

9.5969 
(0.0211) 

− − 

doilt, dgast|dheatt, dbrentt 0.0638 
(0.0258) 

− − − 

dgasolt, dheatt|doilt, dbrentt 0.2488 
(0.0252) 

13.1406 
(0.0224) 

− − 

dgasol, dgas|doilt, dheatt, dbrentt 0.018 
(0.0163) 

− − − 
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al., 2022; ALBULESCU; TIWARI; JI, 2020; MARCHESE et al., 2020). A result that was not 

expected is the low time-invariant correlation between gasoline and WTI oil prices (the estimated 

parameter was 0.1529), but high dynamic correlation. Additionally, in contrast to oil markets, 

the price of these energy commodities are dominated by factors associated with local markets, 

specially on demand side (ENERGY, 2020). 

Regarding to the parameters associated with GAS dynamics, an important finding is that 

for all dynamic copulas, the coefficient referring to the scaling matrix is significant, which gives 

us evidence that information about copula family affects dynamic parameters. Specifically, since our 

scaling matrix St is the square-root of the inverse of the Fisher Information matrix, we have 

information specifically about the asymptotic standard deviation of our copula estimated 

parameters 1. The autoregressive parameter is also significant for all copulas, which also means 

a degree of dependence of the parameter in time t to its first lag. Figure 2 indicates the trajectory 

of the estimated dynamic parameters in-sample. 

Figure 2 – Estimated correlation parameter from time-varying copulas 

 
 

 

Source: author elaboration. 

 

 

3.3 VAR ESTIMATION 

 
Our results are based in the following models: dynamic D-Vine copula, static D-vine 

copula, and DCC-GARCH. We analyze the results of the unconditional coverage test proposed by 

Kupiec et al. (1995), in which it is evaluated if the number of effective exceedances is equal to the 

nominal α. Also, the independence test proposed by Christoffersen (1998), which tests whether 

the breaches are independent, as well as Dynamic Quantile test, which tests unconditional 

coverage and independence at the same time. The results are presented in Table 5. 

1 For MLE estimators, the inverse of the Fisher information matrix is equal to asymptotic variance of the estimators. 
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Table 5: Results for backtesting procedures of VaR 

 

Test 10% 5% 1% 

 Dynamic D-vine   

Kupiec 0.0359 0.6209 1.8405 

 (0.8497) (0.1054) (0.1748) 

Christoffersen 0.0444 2.8222 6.8094** 

 (0.9780) (0.2438) (0.0332) 

DQ 1.3999 4.4287 19.1693** 

 (0.8442) (0.3510) (0.0007) 

 Static D-vine   

Kupiec 12.1964** 5.1701** 0.2249 

 (0.0004) (0.0229) (0.6353) 

Christoffersen 12.2108** 5.7631** 3.0793 

 (0.0022) (0.0560) (0.2144) 

DQ 11.9404** 6.7937 10.8723** 

 (0.0177) (0.1471) (0.0280) 

 DCC-GARCH   

Kupiec 0.1222 3.4305 7.5516** 

 (0.7266) (0.0639) (0.0059) 

Christoffersen 1.1058 3.7436 10.5761** 

 (0.5752) (0.1538) (0.0050) 

DQ 1.7367 5.5886 22.1801** 

 (0.7840) (0.2320) (0.0001) 

Source: author elaboration. The asterisks indicate the rejection of null hypothesis. 
 

 
 

The results of the unconditional coverage test indicate that VaR measures based on 

dynamic D-vine present the expected exceedances percentages for all levels of significance. 

However, we reject the hypothesis of independence of violations for 1% significance level. This 

is corroborated by DQ test, which evaluates the percentage of exceedances and independence at 

the same time. These results are similar to the ones of the ones from DCC-GARCH model. This 

might be due to both models presenting dynamic modelling of correlation structure, and also 

because most of the selected pair-copulae present linear dependence and symmetric tail 

dependence. 

The VaR based on static D-Vine presents opposite results: the tests indicate evidence 

of the percentage of correct exceendances and independence only for 1% significance level, 

even though the DQ test indicates correct exceedances and independence for 5%. As such, we 

have evidence that dynamic D-vine and DCC-GARCH perform better than static D-Vine for 

measuring tail risk for 10% and 5% significance levels. 

To compare the forecasts, we use the average of the loss function proposed by González- 

Rivera, Lee e Mishra (2004) and the Diebold-Mariano test. For Diebold-Mariano test, we use 

dynamic D-Vine as benchmark model. We present the results in Table 1. 
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Table 1 – Results for Average Loss and Diebold-Mariano tests 

 

Model 10% 5% 1% 

Dynamic D-vine 0.00389 0.00252 0.00078 

Static D-vine 

 

DCC-GARCH 

0.00394 

(0.0000)** 

0.00388 

0.00252 

(0.0000)** 

0.00250 

0.00078 

(0.0235)** 

0.00078 

 (0.9026) (0.4149) (0.9100) 

Source: author elaboration. P-value of Diebold-Mariano in parenthesis. 
 

 
 

Following the results, we have that the average loss of DCC-GARCH and D-vine models are 

roughly equivalent at all significance levels, leading to no significant statistical difference 

between their average losses (as pointed by DM test). For all levels of significance, static D-vine 

presents similar loss to dynamic D-vine, however, the DM test indicates difference between its 

forecasts and the ones from dynamic D-vine. In this sense, we have evidence that dynamic D-

vine and DCC-GARCH present the best forecast capacity in the collection of models we 

evaluate for this data set. 

Figure 3 presents the time evolution of the portfolio returns of the energy commodities 

and the estimated tail risk measure VaR for all used models. 

 

Figure 3 – One-step ahead VaR forecasts 
 

Source: author elaboration. 
 
 

Overall, the results from backtesting indicate that dynamic models present better for 

VaR forecast, since they present conditional coverage for two different quantiles, while the 

static D-vine presents conditional coverage only for one quantile. The concordance between the 

dynamic D-vine and DCC-GARCH for these commodities might be due to the observed linear 
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relations between them. In this sense, the joint distribution function presented a similar format 

than the one indicated by the DCC-GARCH. This result goes in a similar direction to that in 

González-Pedraz, Moreno e Peña (2014), where the authors also conclude that models which 

incorporate dynamic correlation, asymmetry and heavy tails tend to perform better. 
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4 CONCLUSION 

 
In this paper, we seek to measure and forecast tail risk for energy commodities. For such 

end, we propose the use of dynamic vine copulas. The advantages of the vine copulas are that 

we can model the dependence structure in a separate manner from the joint distribution, and 

with it, capture the complex features of the energy commodities individually and also their 

possible nonlinear relations. Also, the vine copulas allow the decomposition of high dimensional 

dependence structure in simple building blocks, the pair-copulae. With such, we can estimate 

the parameters in a flexible and efficient manner. For the marginal distributions, we use ARMA- 

eGARCH models with a skewed-t distribution for the innovations, since the literature indicate 

the presence of asymmetries in conditional volatility, and also, heavy tails for the returns of the 

energy commodities. 

The main results of the paper is that dynamic vine copulas present a good fit to measure 

risk for energy markets, since for backtesting, we only fail to present the correct exceendances 

for 1%. Also, the model presented a lower average loss than the static alternative, indicating that 

accounting for the dynamic behavior of the relations between energy commodities improve the 

risk measure. Due to the linear correlations found between energy commodities, the dynamic 

vine copulas presented a similar fit to the DCC-GARCH models, which also models dynamic 

correlation and includes information about heavy tails in the multivariate t distribution. For 

further studies, we indicate the possibility of including different energy commodities portfolios. 
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